Zuo, K; Bellanger, J J; Yang, C; Shu, H; Le Bouquin Jeannés, R
2013-01-01
This paper aims at estimating causal relationships between signals to detect flow propagation in autoregressive and physiological models. The main challenge of the ongoing work is to discover whether neural activity in a given structure of the brain influences activity in another area during epileptic seizures. This question refers to the concept of effective connectivity in neuroscience, i.e. to the identification of information flows and oriented propagation graphs. Past efforts to determine effective connectivity rooted to Wiener causality definition adapted in a practical form by Granger with autoregressive models. A number of studies argue against such a linear approach when nonlinear dynamics are suspected in the relationship between signals. Consequently, nonlinear nonparametric approaches, such as transfer entropy (TE), have been introduced to overcome linear methods limitations and promoted in many studies dealing with electrophysiological signals. Until now, even though many TE estimators have been developed, further improvement can be expected. In this paper, we investigate a new strategy by introducing an adaptive kernel density estimator to improve TE estimation. PMID:24110694
Density Estimation with Mercer Kernels
NASA Technical Reports Server (NTRS)
Macready, William G.
2003-01-01
We present a new method for density estimation based on Mercer kernels. The density estimate can be understood as the density induced on a data manifold by a mixture of Gaussians fit in a feature space. As is usual, the feature space and data manifold are defined with any suitable positive-definite kernel function. We modify the standard EM algorithm for mixtures of Gaussians to infer the parameters of the density. One benefit of the approach is it's conceptual simplicity, and uniform applicability over many different types of data. Preliminary results are presented for a number of simple problems.
Putting Priors in Mixture Density Mercer Kernels
NASA Technical Reports Server (NTRS)
Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd
2004-01-01
This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly infinite dimensional feature space. We describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using predefined kernels. These data adaptive kernels can en- code prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS). The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains template for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic- algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code. The results show that the Mixture Density Mercer-Kernel described here outperforms tree-based classification in distinguishing high-redshift galaxies from low- redshift galaxies by approximately 16% on test data, bagged trees by approximately 7%, and bagged trees built on a much larger sample of data by approximately 2%.
Adaptive wiener image restoration kernel
Yuan, Ding
2007-06-05
A method and device for restoration of electro-optical image data using an adaptive Wiener filter begins with constructing imaging system Optical Transfer Function, and the Fourier Transformations of the noise and the image. A spatial representation of the imaged object is restored by spatial convolution of the image using a Wiener restoration kernel.
Bermejo, Guillermo A; Clore, G Marius; Schwieters, Charles D
2012-01-01
Statistical potentials that embody torsion angle probability densities in databases of high-quality X-ray protein structures supplement the incomplete structural information of experimental nuclear magnetic resonance (NMR) datasets. By biasing the conformational search during the course of structure calculation toward highly populated regions in the database, the resulting protein structures display better validation criteria and accuracy. Here, a new statistical torsion angle potential is developed using adaptive kernel density estimation to extract probability densities from a large database of more than 106 quality-filtered amino acid residues. Incorporated into the Xplor-NIH software package, the new implementation clearly outperforms an older potential, widely used in NMR structure elucidation, in that it exhibits simultaneously smoother and sharper energy surfaces, and results in protein structures with improved conformation, nonbonded atomic interactions, and accuracy. PMID:23011872
Nonparametric entropy estimation using kernel densities.
Lake, Douglas E
2009-01-01
The entropy of experimental data from the biological and medical sciences provides additional information over summary statistics. Calculating entropy involves estimates of probability density functions, which can be effectively accomplished using kernel density methods. Kernel density estimation has been widely studied and a univariate implementation is readily available in MATLAB. The traditional definition of Shannon entropy is part of a larger family of statistics, called Renyi entropy, which are useful in applications that require a measure of the Gaussianity of data. Of particular note is the quadratic entropy which is related to the Friedman-Tukey (FT) index, a widely used measure in the statistical community. One application where quadratic entropy is very useful is the detection of abnormal cardiac rhythms, such as atrial fibrillation (AF). Asymptotic and exact small-sample results for optimal bandwidth and kernel selection to estimate the FT index are presented and lead to improved methods for entropy estimation. PMID:19897106
Kernel Manifold Alignment for Domain Adaptation.
Tuia, Devis; Camps-Valls, Gustau
2016-01-01
The wealth of sensory data coming from different modalities has opened numerous opportunities for data analysis. The data are of increasing volume, complexity and dimensionality, thus calling for new methodological innovations towards multimodal data processing. However, multimodal architectures must rely on models able to adapt to changes in the data distribution. Differences in the density functions can be due to changes in acquisition conditions (pose, illumination), sensors characteristics (number of channels, resolution) or different views (e.g. street level vs. aerial views of a same building). We call these different acquisition modes domains, and refer to the adaptation problem as domain adaptation. In this paper, instead of adapting the trained models themselves, we alternatively focus on finding mappings of the data sources into a common, semantically meaningful, representation domain. This field of manifold alignment extends traditional techniques in statistics such as canonical correlation analysis (CCA) to deal with nonlinear adaptation and possibly non-corresponding data pairs between the domains. We introduce a kernel method for manifold alignment (KEMA) that can match an arbitrary number of data sources without needing corresponding pairs, just few labeled examples in all domains. KEMA has interesting properties: 1) it generalizes other manifold alignment methods, 2) it can align manifolds of very different complexities, performing a discriminative alignment preserving each manifold inner structure, 3) it can define a domain-specific metric to cope with multimodal specificities, 4) it can align data spaces of different dimensionality, 5) it is robust to strong nonlinear feature deformations, and 6) it is closed-form invertible, which allows transfer across-domains and data synthesis. To authors' knowledge this is the first method addressing all these important issues at once. We also present a reduced-rank version of KEMA for computational
Kernel Manifold Alignment for Domain Adaptation
Tuia, Devis; Camps-Valls, Gustau
2016-01-01
The wealth of sensory data coming from different modalities has opened numerous opportunities for data analysis. The data are of increasing volume, complexity and dimensionality, thus calling for new methodological innovations towards multimodal data processing. However, multimodal architectures must rely on models able to adapt to changes in the data distribution. Differences in the density functions can be due to changes in acquisition conditions (pose, illumination), sensors characteristics (number of channels, resolution) or different views (e.g. street level vs. aerial views of a same building). We call these different acquisition modes domains, and refer to the adaptation problem as domain adaptation. In this paper, instead of adapting the trained models themselves, we alternatively focus on finding mappings of the data sources into a common, semantically meaningful, representation domain. This field of manifold alignment extends traditional techniques in statistics such as canonical correlation analysis (CCA) to deal with nonlinear adaptation and possibly non-corresponding data pairs between the domains. We introduce a kernel method for manifold alignment (KEMA) that can match an arbitrary number of data sources without needing corresponding pairs, just few labeled examples in all domains. KEMA has interesting properties: 1) it generalizes other manifold alignment methods, 2) it can align manifolds of very different complexities, performing a discriminative alignment preserving each manifold inner structure, 3) it can define a domain-specific metric to cope with multimodal specificities, 4) it can align data spaces of different dimensionality, 5) it is robust to strong nonlinear feature deformations, and 6) it is closed-form invertible, which allows transfer across-domains and data synthesis. To authors’ knowledge this is the first method addressing all these important issues at once. We also present a reduced-rank version of KEMA for computational
Kernel density estimation using graphical processing unit
NASA Astrophysics Data System (ADS)
Sunarko, Su'ud, Zaki
2015-09-01
Kernel density estimation for particles distributed over a 2-dimensional space is calculated using a single graphical processing unit (GTX 660Ti GPU) and CUDA-C language. Parallel calculations are done for particles having bivariate normal distribution and by assigning calculations for equally-spaced node points to each scalar processor in the GPU. The number of particles, blocks and threads are varied to identify favorable configuration. Comparisons are obtained by performing the same calculation using 1, 2 and 4 processors on a 3.0 GHz CPU using MPICH 2.0 routines. Speedups attained with the GPU are in the range of 88 to 349 times compared the multiprocessor CPU. Blocks of 128 threads are found to be the optimum configuration for this case.
Analog forecasting with dynamics-adapted kernels
NASA Astrophysics Data System (ADS)
Zhao, Zhizhen; Giannakis, Dimitrios
2016-09-01
Analog forecasting is a nonparametric technique introduced by Lorenz in 1969 which predicts the evolution of states of a dynamical system (or observables defined on the states) by following the evolution of the sample in a historical record of observations which most closely resembles the current initial data. Here, we introduce a suite of forecasting methods which improve traditional analog forecasting by combining ideas from kernel methods developed in harmonic analysis and machine learning and state-space reconstruction for dynamical systems. A key ingredient of our approach is to replace single-analog forecasting with weighted ensembles of analogs constructed using local similarity kernels. The kernels used here employ a number of dynamics-dependent features designed to improve forecast skill, including Takens’ delay-coordinate maps (to recover information in the initial data lost through partial observations) and a directional dependence on the dynamical vector field generating the data. Mathematically, our approach is closely related to kernel methods for out-of-sample extension of functions, and we discuss alternative strategies based on the Nyström method and the multiscale Laplacian pyramids technique. We illustrate these techniques in applications to forecasting in a low-order deterministic model for atmospheric dynamics with chaotic metastability, and interannual-scale forecasting in the North Pacific sector of a comprehensive climate model. We find that forecasts based on kernel-weighted ensembles have significantly higher skill than the conventional approach following a single analog.
The Kernel Adaptive Autoregressive-Moving-Average Algorithm.
Li, Kan; Príncipe, José C
2016-02-01
In this paper, we present a novel kernel adaptive recurrent filtering algorithm based on the autoregressive-moving-average (ARMA) model, which is trained with recurrent stochastic gradient descent in the reproducing kernel Hilbert spaces. This kernelized recurrent system, the kernel adaptive ARMA (KAARMA) algorithm, brings together the theories of adaptive signal processing and recurrent neural networks (RNNs), extending the current theory of kernel adaptive filtering (KAF) using the representer theorem to include feedback. Compared with classical feedforward KAF methods, the KAARMA algorithm provides general nonlinear solutions for complex dynamical systems in a state-space representation, with a deferred teacher signal, by propagating forward the hidden states. We demonstrate its capabilities to provide exact solutions with compact structures by solving a set of benchmark nondeterministic polynomial-complete problems involving grammatical inference. Simulation results show that the KAARMA algorithm outperforms equivalent input-space recurrent architectures using first- and second-order RNNs, demonstrating its potential as an effective learning solution for the identification and synthesis of deterministic finite automata. PMID:25935049
A kernel adaptive algorithm for quaternion-valued inputs.
Paul, Thomas K; Ogunfunmi, Tokunbo
2015-10-01
The use of quaternion data can provide benefit in applications like robotics and image recognition, and particularly for performing transforms in 3-D space. Here, we describe a kernel adaptive algorithm for quaternions. A least mean square (LMS)-based method was used, resulting in the derivation of the quaternion kernel LMS (Quat-KLMS) algorithm. Deriving this algorithm required describing the idea of a quaternion reproducing kernel Hilbert space (RKHS), as well as kernel functions suitable with quaternions. A modified HR calculus for Hilbert spaces was used to find the gradient of cost functions defined on a quaternion RKHS. In addition, the use of widely linear (or augmented) filtering is proposed to improve performance. The benefit of the Quat-KLMS and widely linear forms in learning nonlinear transformations of quaternion data are illustrated with simulations. PMID:25594982
An information theoretic approach of designing sparse kernel adaptive filters.
Liu, Weifeng; Park, Il; Principe, José C
2009-12-01
This paper discusses an information theoretic approach of designing sparse kernel adaptive filters. To determine useful data to be learned and remove redundant ones, a subjective information measure called surprise is introduced. Surprise captures the amount of information a datum contains which is transferable to a learning system. Based on this concept, we propose a systematic sparsification scheme, which can drastically reduce the time and space complexity without harming the performance of kernel adaptive filters. Nonlinear regression, short term chaotic time-series prediction, and long term time-series forecasting examples are presented. PMID:19923047
Prediction of kernel density of corn using single-kernel near infrared spectroscopy
Technology Transfer Automated Retrieval System (TEKTRAN)
Corn hardness as is an important property for dry and wet-millers, food processors and corn breeders developing hybrids for specific markets. Of the several methods used to measure hardness, kernel density measurements are one of the more repeatable methods to quantify hardness. Near infrared spec...
A locally adaptive kernel regression method for facies delineation
NASA Astrophysics Data System (ADS)
Fernàndez-Garcia, D.; Barahona-Palomo, M.; Henri, C. V.; Sanchez-Vila, X.
2015-12-01
Facies delineation is defined as the separation of geological units with distinct intrinsic characteristics (grain size, hydraulic conductivity, mineralogical composition). A major challenge in this area stems from the fact that only a few scattered pieces of hydrogeological information are available to delineate geological facies. Several methods to delineate facies are available in the literature, ranging from those based only on existing hard data, to those including secondary data or external knowledge about sedimentological patterns. This paper describes a methodology to use kernel regression methods as an effective tool for facies delineation. The method uses both the spatial and the actual sampled values to produce, for each individual hard data point, a locally adaptive steering kernel function, self-adjusting the principal directions of the local anisotropic kernels to the direction of highest local spatial correlation. The method is shown to outperform the nearest neighbor classification method in a number of synthetic aquifers whenever the available number of hard data is small and randomly distributed in space. In the case of exhaustive sampling, the steering kernel regression method converges to the true solution. Simulations ran in a suite of synthetic examples are used to explore the selection of kernel parameters in typical field settings. It is shown that, in practice, a rule of thumb can be used to obtain suboptimal results. The performance of the method is demonstrated to significantly improve when external information regarding facies proportions is incorporated. Remarkably, the method allows for a reasonable reconstruction of the facies connectivity patterns, shown in terms of breakthrough curves performance.
How bandwidth selection algorithms impact exploratory data analysis using kernel density estimation.
Harpole, Jared K; Woods, Carol M; Rodebaugh, Thomas L; Levinson, Cheri A; Lenze, Eric J
2014-09-01
Exploratory data analysis (EDA) can reveal important features of underlying distributions, and these features often have an impact on inferences and conclusions drawn from data. Graphical analysis is central to EDA, and graphical representations of distributions often benefit from smoothing. A viable method of estimating and graphing the underlying density in EDA is kernel density estimation (KDE). This article provides an introduction to KDE and examines alternative methods for specifying the smoothing bandwidth in terms of their ability to recover the true density. We also illustrate the comparison and use of KDE methods with 2 empirical examples. Simulations were carried out in which we compared 8 bandwidth selection methods (Sheather-Jones plug-in [SJDP], normal rule of thumb, Silverman's rule of thumb, least squares cross-validation, biased cross-validation, and 3 adaptive kernel estimators) using 5 true density shapes (standard normal, positively skewed, bimodal, skewed bimodal, and standard lognormal) and 9 sample sizes (15, 25, 50, 75, 100, 250, 500, 1,000, 2,000). Results indicate that, overall, SJDP outperformed all methods. However, for smaller sample sizes (25 to 100) either biased cross-validation or Silverman's rule of thumb was recommended, and for larger sample sizes the adaptive kernel estimator with SJDP was recommended. Information is provided about implementing the recommendations in the R computing language. PMID:24885339
Technology Transfer Automated Retrieval System (TEKTRAN)
Maize kernel density impacts milling quality of the grain due to kernel hardness. Harder kernels are correlated with higher test weight and are more resistant to breakage during harvest and transport. Softer kernels, in addition to being susceptible to mechanical damage, are also prone to pathogen ...
Scene sketch generation using mixture of gradient kernels and adaptive thresholding
NASA Astrophysics Data System (ADS)
Paheding, Sidike; Essa, Almabrok; Asari, Vijayan
2016-04-01
This paper presents a simple but eﬀective algorithm for scene sketch generation from input images. The proposed algorithm combines the edge magnitudes of directional Prewitt diﬀerential gradient kernels with Kirsch kernels at each pixel position, and then encodes them into an eight bit binary code which encompasses local edge and texture information. In this binary encoding step, relative variance is employed to determine the object shape in each local region. Using relative variance enables object sketch extraction totally adaptive to any shape structure. On the other hand, the proposed technique does not require any parameter to adjust output and it is robust to edge density and noise. Two standard databases are used to show the eﬀectiveness of the proposed framework.
Spatiotemporal Domain Decomposition for Massive Parallel Computation of Space-Time Kernel Density
NASA Astrophysics Data System (ADS)
Hohl, A.; Delmelle, E. M.; Tang, W.
2015-07-01
Accelerated processing capabilities are deemed critical when conducting analysis on spatiotemporal datasets of increasing size, diversity and availability. High-performance parallel computing offers the capacity to solve computationally demanding problems in a limited timeframe, but likewise poses the challenge of preventing processing inefficiency due to workload imbalance between computing resources. Therefore, when designing new algorithms capable of implementing parallel strategies, careful spatiotemporal domain decomposition is necessary to account for heterogeneity in the data. In this study, we perform octtree-based adaptive decomposition of the spatiotemporal domain for parallel computation of space-time kernel density. In order to avoid edge effects near subdomain boundaries, we establish spatiotemporal buffers to include adjacent data-points that are within the spatial and temporal kernel bandwidths. Then, we quantify computational intensity of each subdomain to balance workloads among processors. We illustrate the benefits of our methodology using a space-time epidemiological dataset of Dengue fever, an infectious vector-borne disease that poses a severe threat to communities in tropical climates. Our parallel implementation of kernel density reaches substantial speedup compared to sequential processing, and achieves high levels of workload balance among processors due to great accuracy in quantifying computational intensity. Our approach is portable of other space-time analytical tests.
Hensen, Ulf; Grubmüller, Helmut; Lange, Oliver F
2009-07-01
The quasiharmonic approximation is the most widely used estimate for the configurational entropy of macromolecules from configurational ensembles generated from atomistic simulations. This method, however, rests on two assumptions that severely limit its applicability, (i) that a principal component analysis yields sufficiently uncorrelated modes and (ii) that configurational densities can be well approximated by Gaussian functions. In this paper we introduce a nonparametric density estimation method which rests on adaptive anisotropic kernels. It is shown that this method provides accurate configurational entropies for up to 45 dimensions thus improving on the quasiharmonic approximation. When embedded in the minimally coupled subspace framework, large macromolecules of biological interest become accessible, as demonstrated for the 67-residue coldshock protein. PMID:19658735
NASA Astrophysics Data System (ADS)
Balakrishnan, Nikhil; Schonfeld, Dan
2006-02-01
In this paper, we develop a new algorithm to estimate an unknown probability density function given a finite data sample using a tree shaped kernel density estimator. The algorithm formulates an integrated squared error based cost function which minimizes the quadratic divergence between the kernel density and the Parzen density estimate. The cost function reduces to a quadratic programming problem which is minimized within the maximum entropy framework. The maximum entropy principle acts as a regularizer which yields a smooth solution. A smooth density estimate enables better generalization to unseen data and offers distinct advantages in high dimensions and cases where there is limited data. We demonstrate applications of the hierarchical kernel density estimator for function interpolation and texture segmentation problems. When applied to function interpolation, the kernel density estimator improves performance considerably in situations where the posterior conditional density of the dependent variable is multimodal. The kernel density estimator allows flexible non parametric modeling of textures which improves performance in texture segmentation algorithms. We demonstrate performance on a text labeling problem which shows performance of the algorithm in high dimensions. The hierarchical nature of the density estimator enables multiresolution solutions depending on the complexity of the data. The algorithm is fast and has at most quadratic scaling in the number of kernels.
NASA Astrophysics Data System (ADS)
Fomin, Fedor V.
Preprocessing (data reduction or kernelization) as a strategy of coping with hard problems is universally used in almost every implementation. The history of preprocessing, like applying reduction rules simplifying truth functions, can be traced back to the 1950's [6]. A natural question in this regard is how to measure the quality of preprocessing rules proposed for a specific problem. For a long time the mathematical analysis of polynomial time preprocessing algorithms was neglected. The basic reason for this anomaly was that if we start with an instance I of an NP-hard problem and can show that in polynomial time we can replace this with an equivalent instance I' with |I'| < |I| then that would imply P=NP in classical complexity.
Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System
2016-01-01
This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour. PMID:27379165
Knowledge Driven Image Mining with Mixture Density Mercer Kernels
NASA Technical Reports Server (NTRS)
Srivastava, Ashok N.; Oza, Nikunj
2004-01-01
This paper presents a new methodology for automatic knowledge driven image mining based on the theory of Mercer Kernels; which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly infinite dimensional feature space. In that high dimensional feature space, linear clustering, prediction, and classification algorithms can be applied and the results can be mapped back down to the original image space. Thus, highly nonlinear structure in the image can be recovered through the use of well-known linear mathematics in the feature space. This process has a number of advantages over traditional methods in that it allows for nonlinear interactions to be modelled with only a marginal increase in computational costs. In this paper, we present the theory of Mercer Kernels, describe its use in image mining, discuss a new method to generate Mercer Kernels directly from data, and compare the results with existing algorithms on data from the MODIS (Moderate Resolution Spectral Radiometer) instrument taken over the Arctic region. We also discuss the potential application of these methods on the Intelligent Archive, a NASA initiative for developing a tagged image data warehouse for the Earth Sciences.
NASA Astrophysics Data System (ADS)
Rojas-Lima, J. E.; Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.
2016-09-01
Considering the necessity of photothermal alternative approaches for characterizing nonhomogeneous materials like maize seeds, the objective of this research work was to analyze statistically the amplitude variations of photopyroelectric signals, by means of nonparametric techniques such as the histogram and the kernel density estimator, and the probability density function of the amplitude variations of two genotypes of maize seeds with different pigmentations and structural components: crystalline and floury. To determine if the probability density function had a known parametric form, the histogram was determined which did not present a known parametric form, so the kernel density estimator using the Gaussian kernel, with an efficiency of 95 % in density estimation, was used to obtain the probability density function. The results obtained indicated that maize seeds could be differentiated in terms of the statistical values for floury and crystalline seeds such as the mean (93.11, 159.21), variance (1.64× 103, 1.48× 103), and standard deviation (40.54, 38.47) obtained from the amplitude variations of photopyroelectric signals in the case of the histogram approach. For the case of the kernel density estimator, seeds can be differentiated in terms of kernel bandwidth or smoothing constant h of 9.85 and 6.09 for floury and crystalline seeds, respectively.
Excitons in solids with time-dependent density-functional theory: the bootstrap kernel and beyond
NASA Astrophysics Data System (ADS)
Byun, Young-Moo; Yang, Zeng-Hui; Ullrich, Carsten
Time-dependent density-functional theory (TDDFT) is an efficient method to describe the optical properties of solids. Lately, a series of bootstrap-type exchange-correlation (xc) kernels have been reported to produce accurate excitons in solids, but different bootstrap-type kernels exist in the literature, with mixed results. In this presentation, we reveal the origin of the confusion and show a new empirical TDDFT xc kernel to compute excitonic properties of semiconductors and insulators efficiently and accurately. Our method can be used for high-throughput screening calculations and large unit cell calculations. Work supported by NSF Grant DMR-1408904.
MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods
Schmidt, Johannes F. M.; Santelli, Claudio; Kozerke, Sebastian
2016-01-01
An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and ℓ1-regularized parallel imaging methods. PMID:27116675
MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods.
Schmidt, Johannes F M; Santelli, Claudio; Kozerke, Sebastian
2016-01-01
An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and ℓ1-regularized parallel imaging methods. PMID:27116675
Wang, Dongliang; Hutson, Alan D.
2016-01-01
The traditional confidence interval associated with the ordinary least squares estimator of linear regression coefficient is sensitive to non-normality of the underlying distribution. In this article, we develop a novel kernel density estimator for the ordinary least squares estimator via utilizing well-defined inversion based kernel smoothing techniques in order to estimate the conditional probability density distribution of the dependent random variable. Simulation results show that given a small sample size, our method significantly increases the power as compared with Wald-type CIs. The proposed approach is illustrated via an application to a classic small data set originally from Graybill (1961). PMID:26924882
Kernel density estimation-based real-time prediction for respiratory motion
NASA Astrophysics Data System (ADS)
Ruan, Dan
2010-03-01
Effective delivery of adaptive radiotherapy requires locating the target with high precision in real time. System latency caused by data acquisition, streaming, processing and delivery control necessitates prediction. Prediction is particularly challenging for highly mobile targets such as thoracic and abdominal tumors undergoing respiration-induced motion. The complexity of the respiratory motion makes it difficult to build and justify explicit models. In this study, we honor the intrinsic uncertainties in respiratory motion and propose a statistical treatment of the prediction problem. Instead of asking for a deterministic covariate-response map and a unique estimate value for future target position, we aim to obtain a distribution of the future target position (response variable) conditioned on the observed historical sample values (covariate variable). The key idea is to estimate the joint probability distribution (pdf) of the covariate and response variables using an efficient kernel density estimation method. Then, the problem of identifying the distribution of the future target position reduces to identifying the section in the joint pdf based on the observed covariate. Subsequently, estimators are derived based on this estimated conditional distribution. This probabilistic perspective has some distinctive advantages over existing deterministic schemes: (1) it is compatible with potentially inconsistent training samples, i.e., when close covariate variables correspond to dramatically different response values; (2) it is not restricted by any prior structural assumption on the map between the covariate and the response; (3) the two-stage setup allows much freedom in choosing statistical estimates and provides a full nonparametric description of the uncertainty for the resulting estimate. We evaluated the prediction performance on ten patient RPM traces, using the root mean squared difference between the prediction and the observed value normalized by the
Chen, Lili; Zhang, Xi; Wang, Hui
2015-05-01
Obstructive sleep apnea (OSA) is a common sleep disorder that often remains undiagnosed, leading to an increased risk of developing cardiovascular diseases. Polysomnogram (PSG) is currently used as a golden standard for screening OSA. However, because it is time consuming, expensive and causes discomfort, alternative techniques based on a reduced set of physiological signals are proposed to solve this problem. This study proposes a convenient non-parametric kernel density-based approach for detection of OSA using single-lead electrocardiogram (ECG) recordings. Selected physiologically interpretable features are extracted from segmented RR intervals, which are obtained from ECG signals. These features are fed into the kernel density classifier to detect apnea event and bandwidths for density of each class (normal or apnea) are automatically chosen through an iterative bandwidth selection algorithm. To validate the proposed approach, RR intervals are extracted from ECG signals of 35 subjects obtained from a sleep apnea database ( http://physionet.org/cgi-bin/atm/ATM ). The results indicate that the kernel density classifier, with two features for apnea event detection, achieves a mean accuracy of 82.07 %, with mean sensitivity of 83.23 % and mean specificity of 80.24 %. Compared with other existing methods, the proposed kernel density approach achieves a comparably good performance but by using fewer features without significantly losing discriminant power, which indicates that it could be widely used for home-based screening or diagnosis of OSA. PMID:25732075
Performance Assessment of Kernel Density Clustering for Gene Expression Profile Data
Zeng, Beiyan; Chen, Yiping P.; Smith, Oscar H.
2003-01-01
Kernel density smoothing techniques have been used in classification or supervised learning of gene expression profile (GEP) data, but their applications to clustering or unsupervised learning of those data have not been explored and assessed. Here we report a kernel density clustering method for analysing GEP data and compare its performance with the three most widely-used clustering methods: hierarchical clustering, K-means clustering, and multivariate mixture model-based clustering. Using several methods to measure agreement, between-cluster isolation, and withincluster coherence, such as the Adjusted Rand Index, the Pseudo F test, the r2 test, and the profile plot, we have assessed the effectiveness of kernel density clustering for recovering clusters, and its robustness against noise on clustering both simulated and real GEP data. Our results show that the kernel density clustering method has excellent performance in recovering clusters from simulated data and in grouping large real expression profile data sets into compact and well-isolated clusters, and that it is the most robust clustering method for analysing noisy expression profile data compared to the other three methods assessed. PMID:18629292
NASA Astrophysics Data System (ADS)
Ma, Chao; Ouyang, Jihong; Chen, Hui-Ling; Ji, Jin-Chao
2016-04-01
In this paper, we propose a novel learning algorithm, named SABC-MKELM, based on a kernel extreme learning machine (KELM) method for single-hidden-layer feedforward networks. In SABC-MKELM, the combination of Gaussian kernels is used as the activate function of KELM instead of simple fixed kernel learning, where the related parameters of kernels and the weights of kernels can be optimised by a novel self-adaptive artificial bee colony (SABC) approach simultaneously. SABC-MKELM outperforms six other state-of-the-art approaches in general, as it could effectively determine solution updating strategies and suitable parameters to produce a flexible kernel function involved in SABC. Simulations have demonstrated that the proposed algorithm not only self-adaptively determines suitable parameters and solution updating strategies learning from the previous experiences, but also achieves better generalisation performances than several related methods, and the results show good stability of the proposed algorithm.
Jointly optimal bandwidth selection for the planar kernel-smoothed density-ratio.
Davies, Tilman M
2013-06-01
The kernel-smoothed density-ratio or 'relative risk' function for planar point data is a useful tool for examining disease rates over a certain geographical region. Instrumental to the quality of the resulting risk surface estimate is the choice of bandwidth for computation of the required numerator and denominator densities. The challenge associated with finding some 'optimal' smoothing parameter for standalone implementation of the kernel estimator given observed data is compounded when we deal with the density-ratio per se. To date, only one method specifically designed for calculation of density-ratio optimal bandwidths has received any notable attention in the applied literature. However, this method exhibits significant variability in the estimated smoothing parameters. In this work, the first practical comparison of this selector with a little-known alternative technique is provided. The possibility of exploiting an asymptotic MISE formulation in an effort to control excess variability is also examined, and numerical results seem promising. PMID:23725887
Adaptive Optimal Kernel Smooth-Windowed Wigner-Ville Distribution for Digital Communication Signal
NASA Astrophysics Data System (ADS)
Tan, Jo Lynn; Sha'ameri, Ahmad Zuribin
2009-12-01
Time-frequency distributions (TFDs) are powerful tools to represent the energy content of time-varying signal in both time and frequency domains simultaneously but they suffer from interference due to cross-terms. Various methods have been described to remove these cross-terms and they are typically signal-dependent. Thus, there is no single TFD with a fixed window or kernel that can produce accurate time-frequency representation (TFR) for all types of signals. In this paper, a globally adaptive optimal kernel smooth-windowed Wigner-Ville distribution (AOK-SWWVD) is designed for digital modulation signals such as ASK, FSK, and M-ary FSK, where its separable kernel is determined automatically from the input signal, without prior knowledge of the signal. This optimum kernel is capable of removing the cross-terms and maintaining accurate time-frequency representation at SNR as low as 0 dB. It is shown that this system is comparable to the system with prior knowledge of the signal.
Density-Aware Clustering Based on Aggregated Heat Kernel and Its Transformation
Huang, Hao; Yoo, Shinjae; Yu, Dantong; Qin, Hong
2015-06-01
Current spectral clustering algorithms suffer from the sensitivity to existing noise, and parameter scaling, and may not be aware of different density distributions across clusters. If these problems are left untreated, the consequent clustering results cannot accurately represent true data patterns, in particular, for complex real world datasets with heterogeneous densities. This paper aims to solve these problems by proposing a diffusion-based Aggregated Heat Kernel (AHK) to improve the clustering stability, and a Local Density Affinity Transformation (LDAT) to correct the bias originating from different cluster densities. AHK statistically\\ models the heat diffusion traces along the entire time scale, so it ensures robustness during clustering process, while LDAT probabilistically reveals local density of each instance and suppresses the local density bias in the affinity matrix. Our proposed framework integrates these two techniques systematically. As a result, not only does it provide an advanced noise-resisting and density-aware spectral mapping to the original dataset, but also demonstrates the stability during the processing of tuning the scaling parameter (which usually controls the range of neighborhood). Furthermore, our framework works well with the majority of similarity kernels, which ensures its applicability to many types of data and problem domains. The systematic experiments on different applications show that our proposed algorithms outperform state-of-the-art clustering algorithms for the data with heterogeneous density distributions, and achieve robust clustering performance with respect to tuning the scaling parameter and handling various levels and types of noise.
Density-Aware Clustering Based on Aggregated Heat Kernel and Its Transformation
Huang, Hao; Yoo, Shinjae; Yu, Dantong; Qin, Hong
2015-06-01
Current spectral clustering algorithms suffer from the sensitivity to existing noise, and parameter scaling, and may not be aware of different density distributions across clusters. If these problems are left untreated, the consequent clustering results cannot accurately represent true data patterns, in particular, for complex real world datasets with heterogeneous densities. This paper aims to solve these problems by proposing a diffusion-based Aggregated Heat Kernel (AHK) to improve the clustering stability, and a Local Density Affinity Transformation (LDAT) to correct the bias originating from different cluster densities. AHK statistically\\ models the heat diffusion traces along the entire time scale, somore » it ensures robustness during clustering process, while LDAT probabilistically reveals local density of each instance and suppresses the local density bias in the affinity matrix. Our proposed framework integrates these two techniques systematically. As a result, not only does it provide an advanced noise-resisting and density-aware spectral mapping to the original dataset, but also demonstrates the stability during the processing of tuning the scaling parameter (which usually controls the range of neighborhood). Furthermore, our framework works well with the majority of similarity kernels, which ensures its applicability to many types of data and problem domains. The systematic experiments on different applications show that our proposed algorithms outperform state-of-the-art clustering algorithms for the data with heterogeneous density distributions, and achieve robust clustering performance with respect to tuning the scaling parameter and handling various levels and types of noise.« less
Monte Carlo-based adaptive EPID dose kernel accounting for different field size responses of imagers
Wang, Song; Gardner, Joseph K.; Gordon, John J.; Li, Weidong; Clews, Luke; Greer, Peter B.; Siebers, Jeffrey V.
2009-01-01
independent and are able to predict fields with varied incident energy spectra and a H&N IMRT patient field. The proposed adaptive EPID dose kernel method provides the necessary infrastructure to build reliable and accurate portal dosimetry systems. PMID:19746793
Chen, Rongda; Wang, Ze
2013-01-01
Recovery rate is essential to the estimation of the portfolio’s loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody’s. However, it has a fatal defect that it can’t fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody’s new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management. PMID:23874558
Chen, Rongda; Wang, Ze
2013-01-01
Recovery rate is essential to the estimation of the portfolio's loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody's. However, it has a fatal defect that it can't fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody's new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management. PMID:23874558
Multi-source adaptation joint kernel sparse representation for visual classification.
Tao, JianWen; Hu, Wenjun; Wen, Shiting
2016-04-01
Most of the existing domain adaptation learning (DAL) methods relies on a single source domain to learn a classifier with well-generalized performance for the target domain of interest, which may lead to the so-called negative transfer problem. To this end, many multi-source adaptation methods have been proposed. While the advantages of using multi-source domains of information for establishing an adaptation model have been widely recognized, how to boost the robustness of the computational model for multi-source adaptation learning has only recently received attention. To address this issue for achieving enhanced performance, we propose in this paper a novel algorithm called multi-source Adaptation Regularization Joint Kernel Sparse Representation (ARJKSR) for robust visual classification problems. Specifically, ARJKSR jointly represents target dataset by a sparse linear combination of training data of each source domain in some optimal Reproduced Kernel Hilbert Space (RKHS), recovered by simultaneously minimizing the inter-domain distribution discrepancy and maximizing the local consistency, whilst constraining the observations from both target and source domains to share their sparse representations. The optimization problem of ARJKSR can be solved using an efficient alternative direction method. Under the framework ARJKSR, we further learn a robust label prediction matrix for the unlabeled instances of target domain based on the classical graph-based semi-supervised learning (GSSL) diagram, into which multiple Laplacian graphs constructed with the ARJKSR are incorporated. The validity of our method is examined by several visual classification problems. Results demonstrate the superiority of our method in comparison to several state-of-the-arts. PMID:26894961
Efficient 3D movement-based kernel density estimator and application to wildlife ecology
Tracey-PR, Jeff; Sheppard, James K.; Lockwood, Glenn K.; Chourasia, Amit; Tatineni, Mahidhar; Fisher, Robert N.; Sinkovits, Robert S.
2014-01-01
We describe an efficient implementation of a 3D movement-based kernel density estimator for determining animal space use from discrete GPS measurements. This new method provides more accurate results, particularly for species that make large excursions in the vertical dimension. The downside of this approach is that it is much more computationally expensive than simpler, lower-dimensional models. Through a combination of code restructuring, parallelization and performance optimization, we were able to reduce the time to solution by up to a factor of 1000x, thereby greatly improving the applicability of the method.
Burke, TImothy P.; Kiedrowski, Brian C.; Martin, William R.; Brown, Forrest B.
2015-11-19
Kernel Density Estimators (KDEs) are a non-parametric density estimation technique that has recently been applied to Monte Carlo radiation transport simulations. Kernel density estimators are an alternative to histogram tallies for obtaining global solutions in Monte Carlo tallies. With KDEs, a single event, either a collision or particle track, can contribute to the score at multiple tally points with the uncertainty at those points being independent of the desired resolution of the solution. Thus, KDEs show potential for obtaining estimates of a global solution with reduced variance when compared to a histogram. Previously, KDEs have been applied to neutronics for one-group reactor physics problems and fixed source shielding applications. However, little work was done to obtain reaction rates using KDEs. This paper introduces a new form of the MFP KDE that is capable of handling general geometries. Furthermore, extending the MFP KDE to 2-D problems in continuous energy introduces inaccuracies to the solution. An ad-hoc solution to these inaccuracies is introduced that produces errors smaller than 4% at material interfaces.
Yang, Shanshan; Cai, Suxian; Zheng, Fang; Wu, Yunfeng; Liu, Kaizhi; Wu, Meihong; Zou, Quan; Chen, Jian
2014-10-01
This article applies advanced signal processing and computational methods to study the subtle fluctuations in knee joint vibroarthrographic (VAG) signals. Two new features are extracted to characterize the fluctuations of VAG signals. The fractal scaling index parameter is computed using the detrended fluctuation analysis algorithm to describe the fluctuations associated with intrinsic correlations in the VAG signal. The averaged envelope amplitude feature measures the difference between the upper and lower envelopes averaged over an entire VAG signal. Statistical analysis with the Kolmogorov-Smirnov test indicates that both of the fractal scaling index (p=0.0001) and averaged envelope amplitude (p=0.0001) features are significantly different between the normal and pathological signal groups. The bivariate Gaussian kernels are utilized for modeling the densities of normal and pathological signals in the two-dimensional feature space. Based on the feature densities estimated, the Bayesian decision rule makes better signal classifications than the least-squares support vector machine, with the overall classification accuracy of 88% and the area of 0.957 under the receiver operating characteristic (ROC) curve. Such VAG signal classification results are better than those reported in the state-of-the-art literature. The fluctuation features of VAG signals developed in the present study can provide useful information on the pathological conditions of degenerative knee joints. Classification results demonstrate the effectiveness of the kernel feature density modeling method for computer-aided VAG signal analysis. PMID:25096412
Cen, Guanjun; Zeng, Xianru; Long, Xiuzhen; Wei, Dewei; Gao, Xuyuan; Zeng, Tao
2015-01-01
In insects, the frequency distribution of the measurements of sclerotized body parts is generally used to classify larval instars and is characterized by a multimodal overlap between instar stages. Nonparametric methods with fixed bandwidths, such as histograms, have significant limitations when used to fit this type of distribution, making it difficult to identify divisions between instars. Fixed bandwidths have also been chosen somewhat subjectively in the past, which is another problem. In this study, we describe an adaptive kernel smoothing method to differentiate instars based on discontinuities in the growth rates of sclerotized insect body parts. From Brooks’ rule, we derived a new standard for assessing the quality of instar classification and a bandwidth selector that more accurately reflects the distributed character of specific variables. We used this method to classify the larvae of Austrosimulium tillyardianum (Diptera: Simuliidae) based on five different measurements. Based on head capsule width and head capsule length, the larvae were separated into nine instars. Based on head capsule postoccipital width and mandible length, the larvae were separated into 8 instars and 10 instars, respectively. No reasonable solution was found for antennal segment 3 length. Separation of the larvae into nine instars using head capsule width or head capsule length was most robust and agreed with Crosby’s growth rule. By strengthening the distributed character of the separation variable through the use of variable bandwidths, the adaptive kernel smoothing method could identify divisions between instars more effectively and accurately than previous methods. PMID:26546689
Using kernel density estimation to understand the influence of neighbourhood destinations on BMI
King, Tania L; Bentley, Rebecca J; Thornton, Lukar E; Kavanagh, Anne M
2016-01-01
Objectives Little is known about how the distribution of destinations in the local neighbourhood is related to body mass index (BMI). Kernel density estimation (KDE) is a spatial analysis technique that accounts for the location of features relative to each other. Using KDE, this study investigated whether individuals living near destinations (shops and service facilities) that are more intensely distributed rather than dispersed, have lower BMIs. Study design and setting A cross-sectional study of 2349 residents of 50 urban areas in metropolitan Melbourne, Australia. Methods Destinations were geocoded, and kernel density estimates of destination intensity were created using kernels of 400, 800 and 1200 m. Using multilevel linear regression, the association between destination intensity (classified in quintiles Q1(least)–Q5(most)) and BMI was estimated in models that adjusted for the following confounders: age, sex, country of birth, education, dominant household occupation, household type, disability/injury and area disadvantage. Separate models included a physical activity variable. Results For kernels of 800 and 1200 m, there was an inverse relationship between BMI and more intensely distributed destinations (compared to areas with least destination intensity). Effects were significant at 1200 m: Q4, β −0.86, 95% CI −1.58 to −0.13, p=0.022; Q5, β −1.03 95% CI −1.65 to −0.41, p=0.001. Inclusion of physical activity in the models attenuated effects, although effects remained marginally significant for Q5 at 1200 m: β −0.77 95% CI −1.52, −0.02, p=0.045. Conclusions This study conducted within urban Melbourne, Australia, found that participants living in areas of greater destination intensity within 1200 m of home had lower BMIs. Effects were partly explained by physical activity. The results suggest that increasing the intensity of destination distribution could reduce BMI levels by encouraging higher levels of physical activity
Kernel based model parametrization and adaptation with applications to battery management systems
NASA Astrophysics Data System (ADS)
Weng, Caihao
With the wide spread use of energy storage systems, battery state of health (SOH) monitoring has become one of the most crucial challenges in power and energy research, as SOH significantly affects the performance and life cycle of batteries as well as the systems they are interacting with. Identifying the SOH and adapting of the battery energy/power management system accordingly are thus two important challenges for applications such as electric vehicles, smart buildings and hybrid power systems. This dissertation focuses on the identification of lithium ion battery capacity fading, and proposes an on-board implementable model parametrization and adaptation framework for SOH monitoring. Both parametric and non-parametric approaches that are based on kernel functions are explored for the modeling of battery charging data and aging signature extraction. A unified parametric open circuit voltage model is first developed to improve the accuracy of battery state estimation. Several analytical and numerical methods are then investigated for the non-parametric modeling of battery data, among which the support vector regression (SVR) algorithm is shown to be the most robust and consistent approach with respect to data sizes and ranges. For data collected on LiFePO 4 cells, it is shown that the model developed with the SVR approach is able to predict the battery capacity fading with less than 2% error. Moreover, motivated by the initial success of applying kernel based modeling methods for battery SOH monitoring, this dissertation further exploits the parametric SVR representation for real-time battery characterization supported by test data. Through the study of the invariant properties of the support vectors, a kernel based model parametrization and adaptation framework is developed. The high dimensional optimization problem in the learning algorithm could be reformulated as a parameter estimation problem, that can be solved by standard estimation algorithms such as the
Automated endmember determination and adaptive spectral mixture analysis using kernel methods
NASA Astrophysics Data System (ADS)
Rand, Robert S.; Banerjee, Amit; Broadwater, Joshua
2013-09-01
Various phenomena occur in geographic regions that cause pixels of a scene to contain spectrally mixed pixels. The mixtures may be linear or nonlinear. It could simply be that the pixel size of a sensor is too large so many pixels contain patches of different materials within them (linear), or there could be microscopic mixtures and multiple scattering occurring within pixels (non-linear). Often enough, scenes may contain cases of both linear and non-linear mixing on a pixel-by-pixel basis. Furthermore, appropriate endmembers in a scene are not always easy to determine. A reference spectral library of materials may or may not be available, yet, even if a library is available, using it directly for spectral unmixing may not always be fruitful. This study investigates a generalized kernel-based method for spectral unmixing that attempts to determine if each pixel in a scene is linear or non-linear, and adapts to compute a mixture model at each pixel accordingly. The effort also investigates a kernel-based support vector method for determining spectral endmembers in a scene. Two scenes of hyperspectral imagery calibrated to reflectance are used to validate the methods. We test the approaches using a HyMAP scene collected over the Waimanalo Bay region in Oahu, Hawaii, as well as an AVIRIS scene collected over the oil spill region in the Gulf of Mexico during the Deepwater Horizon oil incident.
Yan, Shengye; Xu, Xinxing; Xu, Dong; Lin, Stephen; Li, Xuelong
2015-03-01
We present a framework for image classification that extends beyond the window sampling of fixed spatial pyramids and is supported by a new learning algorithm. Based on the observation that fixed spatial pyramids sample a rather limited subset of the possible image windows, we propose a method that accounts for a comprehensive set of windows densely sampled over location, size, and aspect ratio. A concise high-level image feature is derived to effectively deal with this large set of windows, and this higher level of abstraction offers both efficient handling of the dense samples and reduced sensitivity to misalignment. In addition to dense window sampling, we introduce generalized adaptive l(p)-norm multiple kernel learning (GA-MKL) to learn a robust classifier based on multiple base kernels constructed from the new image features and multiple sets of prelearned classifiers from other classes. With GA-MKL, multiple levels of image features are effectively fused, and information is shared among different classifiers. Extensive evaluation on benchmark datasets for object recognition (Caltech256 and Caltech101) and scene recognition (15Scenes) demonstrate that the proposed method outperforms the state-of-the-art under a broad range of settings. PMID:24968365
Racing to learn: statistical inference and learning in a single spiking neuron with adaptive kernels
Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J.
2014-01-01
This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively “hiding” its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research. PMID:25505378
NASA Astrophysics Data System (ADS)
Chen, W.; Shao, Z.; Tiong, L. K.
2015-11-01
Drought caused the most widespread damage in China, making up over 50 % of the total affected area nationwide in recent decades. In the paper, a Standardized Precipitation Index-based (SPI-based) drought risk study is conducted using historical rainfall data of 19 weather stations in Shandong province, China. Kernel density based method is adopted to carry out the risk analysis. Comparison between the bivariate Gaussian kernel density estimation (GKDE) and diffusion kernel density estimation (DKDE) are carried out to analyze the effect of drought intensity and drought duration. The results show that DKDE is relatively more accurate without boundary-leakage. Combined with the GIS technique, the drought risk is presented which reveals the spatial and temporal variation of agricultural droughts for corn in Shandong. The estimation provides a different way to study the occurrence frequency and severity of drought risk from multiple perspectives.
Azimi-Sadjadi, Mahmood R; Salazar, Jaime; Srinivasan, Saravanakumar
2009-07-01
This paper presents an adaptable content-based image retrieval (CBIR) system developed using regularization theory, kernel-based machines, and Fisher information measure. The system consists of a retrieval subsystem that carries out similarity matching using image-dependant information, multiple mapping subsystems that adaptively modify the similarity measures, and a relevance feedback mechanism that incorporates user information. The adaptation process drives the retrieval error to zero in order to exactly meet either an existing multiclass classification model or the user high-level concepts using reference-model or relevance feedback learning, respectively. To facilitate the selection of the most informative query images during relevance feedback learning a new method based upon the Fisher information is introduced. Model-reference and relevance feedback learning mechanisms are thoroughly tested on a domain-specific image database that encompasses a wide range of underwater objects captured using an electro-optical sensor. Benchmarking results with two other relevance feedback learning methods are also provided. PMID:19447718
A high-order Legendre-WENO kernel density function method for modeling disperse flows
NASA Astrophysics Data System (ADS)
Smith, Timothy; Pantano, Carlos
2015-11-01
We present a high-order kernel density function (KDF) method for disperse flow. The numerical method used to solve the system of hyperbolic equations utilizes a Roe-like update for equations in non-conservation form. We will present the extension of the low-order method to high order using the Legendre-WENO method and demonstrate the improved capability of the method to predict statistics of disperse flows in an accurate, consistent and efficient manner. By construction, the KDF method already enforced many realizability conditions but others remain. The proposed method also considers these constraints and their performance will be discussed. This project was funded by NSF project NSF-DMS 1318161.
NASA Astrophysics Data System (ADS)
Ishida, Tateki; Morita, Akihiro
2006-08-01
We propose an extended treatment of the charge response kernel (CRK), (∂Qa/∂Vb), which describes the response of partial charges on atomic sites to external electrostatic potential, on the basis of the density functional theory (DFT) via the coupled perturbed Kohn-Sham equations. The present CRK theory incorporates regulation procedures in the definition of partial charges to avoid unphysical large fluctuation of the CRK on "buried" sites. The CRKs of some alcohol and organic molecules, methanol, ethanol, propanol, butanol, dimethylsulfoxide (DMSO), and tetrahydrofuran (THF) were calculated, demonstrating that the new CRK model at the DFT level has greatly improved the performance of accuracy in comparison with that at the Hartree-Fock level previously proposed. The CRK model was also applied to investigate spatial nonlocality of the charge response through alkyl chain sequences. The CRK model at the DFT level enables us to construct a nonempirical strategy for polarizable molecular modeling, with practical reliability and robustness.
Monforti, F; Vitali, L; Bellasio, R; Bianconi, R
2006-02-21
In this paper a new approach to photochemical modeling is investigated and a lagrangian particle model named Photochemical Lagrangian Particle Model (PLPM) is described. Lagrangian particle models are a consolidated tool to deal with the dispersion of pollutants in the atmosphere. Good results have been obtained dealing with inert pollutants. In recent years, a number of pioneering works have shown as Lagrangian models can be of great interest when dealing with photochemistry, provided that special care is given in the reconstruction of chemicals concentration in the atmosphere. Density reconstruction can be performed through the so called ''box counting'' method: an Eulerian grid for chemistry is introduced and density is computed counting particles in each box. In this way one of the main advantages of the Lagrangian approach, the grid independence, is lost. Photochemical reactions are treated in PLPM by means of the complex chemical mechanism SAPRC90 and four density reconstruction methods have been developed, based on the kernel density estimator approach, in order to obtain grid-free accurate concentrations. These methods are all fully grid-free but they differ each other in considering local or global features of the particles distribution, in treating the Cartesian directions separately or together and in being based on receptors or particles positions in space.
NASA Astrophysics Data System (ADS)
Cao, Yuan; He, Haibo; Man, Hong; Shen, Xiaoping
2009-09-01
This paper proposes an approach to integrate the self-organizing map (SOM) and kernel density estimation (KDE) techniques for the anomaly-based network intrusion detection (ABNID) system to monitor the network traffic and capture potential abnormal behaviors. With the continuous development of network technology, information security has become a major concern for the cyber system research. In the modern net-centric and tactical warfare networks, the situation is more critical to provide real-time protection for the availability, confidentiality, and integrity of the networked information. To this end, in this work we propose to explore the learning capabilities of SOM, and integrate it with KDE for the network intrusion detection. KDE is used to estimate the distributions of the observed random variables that describe the network system and determine whether the network traffic is normal or abnormal. Meanwhile, the learning and clustering capabilities of SOM are employed to obtain well-defined data clusters to reduce the computational cost of the KDE. The principle of learning in SOM is to self-organize the network of neurons to seek similar properties for certain input patterns. Therefore, SOM can form an approximation of the distribution of input space in a compact fashion, reduce the number of terms in a kernel density estimator, and thus improve the efficiency for the intrusion detection. We test the proposed algorithm over the real-world data sets obtained from the Integrated Network Based Ohio University's Network Detective Service (INBOUNDS) system to show the effectiveness and efficiency of this method.
NASA Astrophysics Data System (ADS)
Carlsson Tedgren, Åsa; Plamondon, Mathieu; Beaulieu, Luc
2015-07-01
/phantom for which low doses at phantom edges can be overestimated by 2-5 %. It would be possible to improve the situation by using a point kernel for multiple-scatter dose adapted to the patient/phantom dimensions at hand.
Tedgren, Åsa Carlsson; Plamondon, Mathieu; Beaulieu, Luc
2015-07-01
/phantom for which low doses at phantom edges can be overestimated by 2-5 %. It would be possible to improve the situation by using a point kernel for multiple-scatter dose adapted to the patient/phantom dimensions at hand. PMID:26108232
Non-Gaussian probabilistic MEG source localisation based on kernel density estimation☆
Mohseni, Hamid R.; Kringelbach, Morten L.; Woolrich, Mark W.; Baker, Adam; Aziz, Tipu Z.; Probert-Smith, Penny
2014-01-01
There is strong evidence to suggest that data recorded from magnetoencephalography (MEG) follows a non-Gaussian distribution. However, existing standard methods for source localisation model the data using only second order statistics, and therefore use the inherent assumption of a Gaussian distribution. In this paper, we present a new general method for non-Gaussian source estimation of stationary signals for localising brain activity from MEG data. By providing a Bayesian formulation for MEG source localisation, we show that the source probability density function (pdf), which is not necessarily Gaussian, can be estimated using multivariate kernel density estimators. In the case of Gaussian data, the solution of the method is equivalent to that of widely used linearly constrained minimum variance (LCMV) beamformer. The method is also extended to handle data with highly correlated sources using the marginal distribution of the estimated joint distribution, which, in the case of Gaussian measurements, corresponds to the null-beamformer. The proposed non-Gaussian source localisation approach is shown to give better spatial estimates than the LCMV beamformer, both in simulations incorporating non-Gaussian signals, and in real MEG measurements of auditory and visual evoked responses, where the highly correlated sources are known to be difficult to estimate. PMID:24055702
NASA Astrophysics Data System (ADS)
García-Senz, Domingo; Cabezón, Rubén M.; Escartín, José A.; Ebinger, Kevin
2014-10-01
Context. The smoothed-particle hydrodynamics (SPH) technique is a numerical method for solving gas-dynamical problems. It has been applied to simulate the evolution of a wide variety of astrophysical systems. The method has a second-order accuracy, with a resolution that is usually much higher in the compressed regions than in the diluted zones of the fluid. Aims: We propose and check a method to balance and equalize the resolution of SPH between high- and low-density regions. This method relies on the versatility of a family of interpolators called sinc kernels, which allows increasing the interpolation quality by varying only a single parameter (the exponent of the sinc function). Methods: The proposed method was checked and validated through a number of numerical tests, from standard one-dimensional Riemann problems in shock tubes, to multidimensional simulations of explosions, hydrodynamic instabilities, and the collapse of a Sun-like polytrope. Results: The analysis of the hydrodynamical simulations suggests that the scheme devised to equalize the accuracy improves the treatment of the post-shock regions and, in general, of the rarefacted zones of fluids while causing no harm to the growth of hydrodynamic instabilities. The method is robust and easy to implement with a low computational overload. It conserves mass, energy, and momentum and reduces to the standard SPH scheme in regions of the fluid that have smooth density gradients.
NASA Astrophysics Data System (ADS)
Zheng, Zhihui; Gao, Lei; Xiao, Liping; Zhou, Bin; Gao, Shibo
2015-12-01
Our purpose is to develop a detection algorithm capable of searching for generic interest objects in real time without large training sets and long-time training stages. Instead of the classical sliding window object detection paradigm, we employ an objectness measure to produce a small set of candidate windows efficiently using Binarized Normed Gradients and a Laplacian of Gaussian-like filter. We then extract Locally Adaptive Regression Kernels (LARKs) as descriptors both from a model image and the candidate windows which measure the likeness of a pixel to its surroundings. Using a matrix cosine similarity measure, the algorithm yields a scalar resemblance map, indicating the likelihood of similarity between the model and the candidate windows. By employing nonparametric significance tests and non-maxima suppression, we detect the presence of objects similar to the given model. Experiments show that the proposed detection paradigm can automatically detect the presence, the number, as well as location of similar objects to the given model. The high quality and efficiency of our method make it suitable for real time multi-category object detection applications.
Elazab, Ahmed; Wang, Changmiao; Jia, Fucang; Wu, Jianhuang; Li, Guanglin; Hu, Qingmao
2015-01-01
An adaptively regularized kernel-based fuzzy C-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and devised weighted images, respectively. The algorithms employ the heterogeneity of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean distance with Gaussian radial basis kernel functions. The main advantages are adaptiveness to local context, enhanced robustness to preserve image details, independence of clustering parameters, and decreased computational costs. The algorithms have been validated against both synthetic and clinical magnetic resonance images with different types and levels of noises and compared with 6 recent soft clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image details and segmentation accuracy while maintaining a low computational complexity. PMID:26793269
Wang, Changmiao; Jia, Fucang; Wu, Jianhuang; Li, Guanglin
2015-01-01
An adaptively regularized kernel-based fuzzy C-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and devised weighted images, respectively. The algorithms employ the heterogeneity of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean distance with Gaussian radial basis kernel functions. The main advantages are adaptiveness to local context, enhanced robustness to preserve image details, independence of clustering parameters, and decreased computational costs. The algorithms have been validated against both synthetic and clinical magnetic resonance images with different types and levels of noises and compared with 6 recent soft clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image details and segmentation accuracy while maintaining a low computational complexity. PMID:26793269
Wang, Ying; Wu, Fengchang; Giesy, John P; Feng, Chenglian; Liu, Yuedan; Qin, Ning; Zhao, Yujie
2015-09-01
Due to use of different parametric models for establishing species sensitivity distributions (SSDs), comparison of water quality criteria (WQC) for metals of the same group or period in the periodic table is uncertain and results can be biased. To address this inadequacy, a new probabilistic model, based on non-parametric kernel density estimation was developed and optimal bandwidths and testing methods are proposed. Zinc (Zn), cadmium (Cd), and mercury (Hg) of group IIB of the periodic table are widespread in aquatic environments, mostly at small concentrations, but can exert detrimental effects on aquatic life and human health. With these metals as target compounds, the non-parametric kernel density estimation method and several conventional parametric density estimation methods were used to derive acute WQC of metals for protection of aquatic species in China that were compared and contrasted with WQC for other jurisdictions. HC5 values for protection of different types of species were derived for three metals by use of non-parametric kernel density estimation. The newly developed probabilistic model was superior to conventional parametric density estimations for constructing SSDs and for deriving WQC for these metals. HC5 values for the three metals were inversely proportional to atomic number, which means that the heavier atoms were more potent toxicants. The proposed method provides a novel alternative approach for developing SSDs that could have wide application prospects in deriving WQC and use in assessment of risks to ecosystems. PMID:25953609
Ishida, Tateki; Morita, Akihiro
2006-08-21
We propose an extended treatment of the charge response kernel (CRK), (partial differential Q(a)/partial differential V(b)), which describes the response of partial charges on atomic sites to external electrostatic potential, on the basis of the density functional theory (DFT) via the coupled perturbed Kohn-Sham equations. The present CRK theory incorporates regulation procedures in the definition of partial charges to avoid unphysical large fluctuation of the CRK on "buried" sites. The CRKs of some alcohol and organic molecules, methanol, ethanol, propanol, butanol, dimethylsulfoxide (DMSO), and tetrahydrofuran (THF) were calculated, demonstrating that the new CRK model at the DFT level has greatly improved the performance of accuracy in comparison with that at the Hartree-Fock level previously proposed. The CRK model was also applied to investigate spatial nonlocality of the charge response through alkyl chain sequences. The CRK model at the DFT level enables us to construct a nonempirical strategy for polarizable molecular modeling, with practical reliability and robustness. PMID:16942327
Rigorous home range estimation with movement data: a new autocorrelated kernel density estimator.
Fleming, C H; Fagan, W F; Mueller, T; Olson, K A; Leimgruber, P; Calabrese, J M
2015-05-01
Quantifying animals' home ranges is a key problem in ecology and has important conservation and wildlife management applications. Kernel density estimation (KDE) is a workhorse technique for range delineation problems that is both statistically efficient and nonparametric. KDE assumes that the data are independent and identically distributed (IID). However, animal tracking data, which are routinely used as inputs to KDEs, are inherently autocorrelated and violate this key assumption. As we demonstrate, using realistically autocorrelated data in conventional KDEs results in grossly underestimated home ranges. We further show that the performance of conventional KDEs actually degrades as data quality improves, because autocorrelation strength increases as movement paths become more finely resolved. To remedy these flaws with the traditional KDE method, we derive an autocorrelated KDE (AKDE) from first principles to use autocorrelated data, making it perfectly suited for movement data sets. We illustrate the vastly improved performance of AKDE using analytical arguments, relocation data from Mongolian gazelles, and simulations based upon the gazelle's observed movement process. By yielding better minimum area estimates for threatened wildlife populations, we believe that future widespread use of AKDE will have significant impact on ecology and conservation biology. PMID:26236833
Novelty detection by multivariate kernel density estimation and growing neural gas algorithm
NASA Astrophysics Data System (ADS)
Fink, Olga; Zio, Enrico; Weidmann, Ulrich
2015-01-01
One of the underlying assumptions when using data-based methods for pattern recognition in diagnostics or prognostics is that the selected data sample used to train and test the algorithm is representative of the entire dataset and covers all combinations of parameters and conditions, and resulting system states. However in practice, operating and environmental conditions may change, unexpected and previously unanticipated events may occur and corresponding new anomalous patterns develop. Therefore for practical applications, techniques are required to detect novelties in patterns and give confidence to the user on the validity of the performed diagnosis and predictions. In this paper, the application of two types of novelty detection approaches is compared: a statistical approach based on multivariate kernel density estimation and an approach based on a type of unsupervised artificial neural network, called the growing neural gas (GNG). The comparison is performed on a case study in the field of railway turnout systems. Both approaches demonstrate their suitability for detecting novel patterns. Furthermore, GNG proves to be more flexible, especially with respect to dimensionality of the input data and suitability for online learning.
Electron density measurements for plasma adaptive optics
NASA Astrophysics Data System (ADS)
Neiswander, Brian W.
Over the past 40 years, there has been growing interest in both laser communications and directed energy weapons that operate from moving aircraft. As a laser beam propagates from an aircraft in flight, it passes through boundary layers, turbulence, and shear layers in the near-region of the aircraft. These fluid instabilities cause strong density gradients which adversely affect the transmission of laser energy to a target. Adaptive optics provides corrective measures for this problem but current technology cannot respond quickly enough to be useful for high speed flight conditions. This research investigated the use of plasma as a medium for adaptive optics for aero-optics applications. When a laser beam passes through plasma, its phase is shifted proportionally to the electron density and gas heating within the plasma. As a result, plasma can be utilized as a dynamically controllable optical medium. Experiments were carried out using a cylindrical dielectric barrier discharge plasma chamber which generated a sub-atmospheric pressure, low-temperature plasma. An electrostatic model of this design was developed and revealed an important design constraint relating to the geometry of the chamber. Optical diagnostic techniques were used to characterize the plasma discharge. Single-wavelength interferometric experiments were performed and demonstrated up to 1.5 microns of optical path difference (OPD) in a 633 nm laser beam. Dual-wavelength interferometry was used to obtain time-resolved profiles of the plasma electron density and gas heating inside the plasma chamber. Furthermore, a new multi-wavelength infrared diagnostic technique was developed and proof-of-concept simulations were conducted to demonstrate the system's capabilities.
Kenchington, Ellen; Murillo, Francisco Javier; Lirette, Camille; Sacau, Mar; Koen-Alonso, Mariano; Kenny, Andrew; Ollerhead, Neil; Wareham, Vonda; Beazley, Lindsay
2014-01-01
The United Nations General Assembly Resolution 61/105, concerning sustainable fisheries in the marine ecosystem, calls for the protection of vulnerable marine ecosystems (VME) from destructive fishing practices. Subsequently, the Food and Agriculture Organization (FAO) produced guidelines for identification of VME indicator species/taxa to assist in the implementation of the resolution, but recommended the development of case-specific operational definitions for their application. We applied kernel density estimation (KDE) to research vessel trawl survey data from inside the fishing footprint of the Northwest Atlantic Fisheries Organization (NAFO) Regulatory Area in the high seas of the northwest Atlantic to create biomass density surfaces for four VME indicator taxa: large-sized sponges, sea pens, small and large gorgonian corals. These VME indicator taxa were identified previously by NAFO using the fragility, life history characteristics and structural complexity criteria presented by FAO, along with an evaluation of their recovery trajectories. KDE, a non-parametric neighbour-based smoothing function, has been used previously in ecology to identify hotspots, that is, areas of relatively high biomass/abundance. We present a novel approach of examining relative changes in area under polygons created from encircling successive biomass categories on the KDE surface to identify “significant concentrations” of biomass, which we equate to VMEs. This allows identification of the VMEs from the broader distribution of the species in the study area. We provide independent assessments of the VMEs so identified using underwater images, benthic sampling with other gear types (dredges, cores), and/or published species distribution models of probability of occurrence, as available. For each VME indicator taxon we provide a brief review of their ecological function which will be important in future assessments of significant adverse impact on these habitats here and
Kenchington, Ellen; Murillo, Francisco Javier; Lirette, Camille; Sacau, Mar; Koen-Alonso, Mariano; Kenny, Andrew; Ollerhead, Neil; Wareham, Vonda; Beazley, Lindsay
2014-01-01
The United Nations General Assembly Resolution 61/105, concerning sustainable fisheries in the marine ecosystem, calls for the protection of vulnerable marine ecosystems (VME) from destructive fishing practices. Subsequently, the Food and Agriculture Organization (FAO) produced guidelines for identification of VME indicator species/taxa to assist in the implementation of the resolution, but recommended the development of case-specific operational definitions for their application. We applied kernel density estimation (KDE) to research vessel trawl survey data from inside the fishing footprint of the Northwest Atlantic Fisheries Organization (NAFO) Regulatory Area in the high seas of the northwest Atlantic to create biomass density surfaces for four VME indicator taxa: large-sized sponges, sea pens, small and large gorgonian corals. These VME indicator taxa were identified previously by NAFO using the fragility, life history characteristics and structural complexity criteria presented by FAO, along with an evaluation of their recovery trajectories. KDE, a non-parametric neighbour-based smoothing function, has been used previously in ecology to identify hotspots, that is, areas of relatively high biomass/abundance. We present a novel approach of examining relative changes in area under polygons created from encircling successive biomass categories on the KDE surface to identify "significant concentrations" of biomass, which we equate to VMEs. This allows identification of the VMEs from the broader distribution of the species in the study area. We provide independent assessments of the VMEs so identified using underwater images, benthic sampling with other gear types (dredges, cores), and/or published species distribution models of probability of occurrence, as available. For each VME indicator taxon we provide a brief review of their ecological function which will be important in future assessments of significant adverse impact on these habitats here and elsewhere
Probability Distribution Extraction from TEC Estimates based on Kernel Density Estimation
NASA Astrophysics Data System (ADS)
Demir, Uygar; Toker, Cenk; Çenet, Duygu
2016-07-01
Statistical analysis of the ionosphere, specifically the Total Electron Content (TEC), may reveal important information about its temporal and spatial characteristics. One of the core metrics that express the statistical properties of a stochastic process is its Probability Density Function (pdf). Furthermore, statistical parameters such as mean, variance and kurtosis, which can be derived from the pdf, may provide information about the spatial uniformity or clustering of the electron content. For example, the variance differentiates between a quiet ionosphere and a disturbed one, whereas kurtosis differentiates between a geomagnetic storm and an earthquake. Therefore, valuable information about the state of the ionosphere (and the natural phenomena that cause the disturbance) can be obtained by looking at the statistical parameters. In the literature, there are publications which try to fit the histogram of TEC estimates to some well-known pdf.s such as Gaussian, Exponential, etc. However, constraining a histogram to fit to a function with a fixed shape will increase estimation error, and all the information extracted from such pdf will continue to contain this error. In such techniques, it is highly likely to observe some artificial characteristics in the estimated pdf which is not present in the original data. In the present study, we use the Kernel Density Estimation (KDE) technique to estimate the pdf of the TEC. KDE is a non-parametric approach which does not impose a specific form on the TEC. As a result, better pdf estimates that almost perfectly fit to the observed TEC values can be obtained as compared to the techniques mentioned above. KDE is particularly good at representing the tail probabilities, and outliers. We also calculate the mean, variance and kurtosis of the measured TEC values. The technique is applied to the ionosphere over Turkey where the TEC values are estimated from the GNSS measurement from the TNPGN-Active (Turkish National Permanent
King, Tania L.; Thornton, Lukar E.; Bentley, Rebecca J.; Kavanagh, Anne M.
2015-01-01
Background Local destinations have previously been shown to be associated with higher levels of both physical activity and walking, but little is known about how the distribution of destinations is related to activity. Kernel density estimation is a spatial analysis technique that accounts for the location of features relative to each other. Using kernel density estimation, this study sought to investigate whether individuals who live near destinations (shops and service facilities) that are more intensely distributed rather than dispersed: 1) have higher odds of being sufficiently active; 2) engage in more frequent walking for transport and recreation. Methods The sample consisted of 2349 residents of 50 urban areas in metropolitan Melbourne, Australia. Destinations within these areas were geocoded and kernel density estimates of destination intensity were created using kernels of 400m (meters), 800m and 1200m. Using multilevel logistic regression, the association between destination intensity (classified in quintiles Q1(least)—Q5(most)) and likelihood of: 1) being sufficiently active (compared to insufficiently active); 2) walking≥4/week (at least 4 times per week, compared to walking less), was estimated in models that were adjusted for potential confounders. Results For all kernel distances, there was a significantly greater likelihood of walking≥4/week, among respondents living in areas of greatest destinations intensity compared to areas with least destination intensity: 400m (Q4 OR 1.41 95%CI 1.02–1.96; Q5 OR 1.49 95%CI 1.06–2.09), 800m (Q4 OR 1.55, 95%CI 1.09–2.21; Q5, OR 1.71, 95%CI 1.18–2.48) and 1200m (Q4, OR 1.7, 95%CI 1.18–2.45; Q5, OR 1.86 95%CI 1.28–2.71). There was also evidence of associations between destination intensity and sufficient physical activity, however these associations were markedly attenuated when walking was included in the models. Conclusions This study, conducted within urban Melbourne, found that those who lived
PeaKDEck: a kernel density estimator-based peak calling program for DNaseI-seq data.
McCarthy, Michael T; O'Callaghan, Christopher A
2014-05-01
Hypersensitivity to DNaseI digestion is a hallmark of open chromatin, and DNaseI-seq allows the genome-wide identification of regions of open chromatin. Interpreting these data is challenging, largely because of inherent variation in signal-to-noise ratio between datasets. We have developed PeaKDEck, a peak calling program that distinguishes signal from noise by randomly sampling read densities and using kernel density estimation to generate a dataset-specific probability distribution of random background signal. PeaKDEck uses this probability distribution to select an appropriate read density threshold for peak calling in each dataset. We benchmark PeaKDEck using published ENCODE DNaseI-seq data and other peak calling programs, and demonstrate superior performance in low signal-to-noise ratio datasets. PMID:24407222
Anifah, Lilik; Purnama, I Ketut Eddy; Hariadi, Mochamad; Purnomo, Mauridhi Hery
2013-01-01
Localization is the first step in osteoarthritis (OA) classification. Manual classification, however, is time-consuming, tedious, and expensive. The proposed system is designed as decision support system for medical doctors to classify the severity of knee OA. A method has been proposed here to localize a joint space area for OA and then classify it in 4 steps to classify OA into KL-Grade 0, KL-Grade 1, KL-Grade 2, KL-Grade 3 and KL-Grade 4, which are preprocessing, segmentation, feature extraction, and classification. In this proposed system, right and left knee detection was performed by employing the Contrast-Limited Adaptive Histogram Equalization (CLAHE) and the template matching. The Gabor kernel, row sum graph and moment methods were used to localize the junction space area of knee. CLAHE is used for preprocessing step, i.e.to normalize the varied intensities. The segmentation process was conducted using the Gabor kernel, template matching, row sum graph and gray level center of mass method. Here GLCM (contrast, correlation, energy, and homogeinity) features were employed as training data. Overall, 50 data were evaluated for training and 258 data for testing. Experimental results showed the best performance by using gabor kernel with parameters α=8, θ=0, Ψ=[0 π/2], γ=0,8, N=4 and with number of iterations being 5000, momentum value 0.5 and α0=0.6 for the classification process. The run gave classification accuracy rate of 93.8% for KL-Grade 0, 70% for KL-Grade 1, 4% for KL-Grade 2, 10% for KL-Grade 3 and 88.9% for KL-Grade 4. PMID:23525188
Anifah, Lilik; Purnama, I Ketut Eddy; Hariadi, Mochamad; Purnomo, Mauridhi Hery
2013-01-01
Localization is the first step in osteoarthritis (OA) classification. Manual classification, however, is time-consuming, tedious, and expensive. The proposed system is designed as decision support system for medical doctors to classify the severity of knee OA. A method has been proposed here to localize a joint space area for OA and then classify it in 4 steps to classify OA into KL-Grade 0, KL-Grade 1, KL-Grade 2, KL-Grade 3 and KL-Grade 4, which are preprocessing, segmentation, feature extraction, and classification. In this proposed system, right and left knee detection was performed by employing the Contrast-Limited Adaptive Histogram Equalization (CLAHE) and the template matching. The Gabor kernel, row sum graph and moment methods were used to localize the junction space area of knee. CLAHE is used for preprocessing step, i.e.to normalize the varied intensities. The segmentation process was conducted using the Gabor kernel, template matching, row sum graph and gray level center of mass method. Here GLCM (contrast, correlation, energy, and homogeinity) features were employed as training data. Overall, 50 data were evaluated for training and 258 data for testing. Experimental results showed the best performance by using gabor kernel with parameters α=8, θ=0, Ψ=[0 π/2], γ=0,8, N=4 and with number of iterations being 5000, momentum value 0.5 and α0=0.6 for the classification process. The run gave classification accuracy rate of 93.8% for KL-Grade 0, 70% for KL-Grade 1, 4% for KL-Grade 2, 10% for KL-Grade 3 and 88.9% for KL-Grade 4. PMID:23525188
Subramanian, Sundarraman
2006-01-01
This article concerns asymptotic theory for a new estimator of a survival function in the missing censoring indicator model of random censorship. Specifically, the large sample results for an inverse probability-of-non-missingness weighted estimator of the cumulative hazard function, so far not available, are derived, including an almost sure representation with rate for a remainder term, and uniform strong consistency with rate of convergence. The estimator is based on a kernel estimate for the conditional probability of non-missingness of the censoring indicator. Expressions for its bias and variance, in turn leading to an expression for the mean squared error as a function of the bandwidth, are also obtained. The corresponding estimator of the survival function, whose weak convergence is derived, is asymptotically efficient. A numerical study, comparing the performances of the proposed and two other currently existing efficient estimators, is presented. PMID:18953423
NASA Astrophysics Data System (ADS)
Liu, Jiaqi; Han, Jing; Zhang, Yi; Bai, Lianfa
2015-10-01
Locally adaptive regression kernels model can describe the edge shape of images accurately and graphic trend of images integrally, but it did not consider images' color information while the color is an important element of an image. Therefore, we present a novel method of target recognition based on 3-D-color-space locally adaptive regression kernels model. Different from the general additional color information, this method directly calculate the local similarity features of 3-D data from the color image. The proposed method uses a few examples of an object as a query to detect generic objects with incompact, complex and changeable shapes. Our method involves three phases: First, calculating the novel color-space descriptors from the RGB color space of query image which measure the likeness of a voxel to its surroundings. Salient features which include spatial- dimensional and color -dimensional information are extracted from said descriptors, and simplifying them to construct a non-similar local structure feature set of the object class by principal components analysis (PCA). Second, we compare the salient features with analogous features from the target image. This comparison is done using a matrix generalization of the cosine similarity measure. Then the similar structures in the target image are obtained using local similarity structure statistical matching. Finally, we use the method of non-maxima suppression in the similarity image to extract the object position and mark the object in the test image. Experimental results demonstrate that our approach is effective and accurate in improving the ability to identify targets.
Liu, Yi-Hung; Wu, Chien-Te; Kao, Yung-Hwa; Chen, Ya-Ting
2013-01-01
Single-trial electroencephalography (EEG)-based emotion recognition enables us to perform fast and direct assessments of human emotional states. However, previous works suggest that a great improvement on the classification accuracy of valence and arousal levels is still needed. To address this, we propose a novel emotional EEG feature extraction method: kernel Eigen-emotion pattern (KEEP). An adaptive SVM is also proposed to deal with the problem of learning from imbalanced emotional EEG data sets. In this study, a set of pictures from IAPS are used for emotion induction. Results based on seven participants show that KEEP gives much better classification results than the widely-used EEG frequency band power features. Also, the adaptive SVM greatly improves classification performance of commonly-adopted SVM classifier. Combined use of KEEP and adaptive SVM can achieve high average valence and arousal classification rates of 73.42% and 73.57%. The highest classification rates for valence and arousal are 80% and 79%, respectively. The results are very promising. PMID:24110685
Larsson, Joel; Båth, Magnus; Ledenius, Kerstin; Caisander, Håkan; Thilander-Klang, Anne
2016-06-01
The purpose of this study was to investigate the effect of different combinations of convolution kernel and the level of Adaptive Statistical iterative Reconstruction (ASiR™) on diagnostic image quality as well as visualisation of anatomical structures in paediatric abdominal computed tomography (CT) examinations. Thirty-five paediatric patients with abdominal pain with non-specified pathology undergoing abdominal CT were included in the study. Transaxial stacks of 5-mm-thick images were retrospectively reconstructed at various ASiR levels, in combination with three convolution kernels. Four paediatric radiologists rated the diagnostic image quality and the delineation of six anatomical structures in a blinded randomised visual grading study. Image quality at a given ASiR level was found to be dependent on the kernel, and a more edge-enhancing kernel benefitted from a higher ASiR level. An ASiR level of 70 % together with the Soft™ or Standard™ kernel was suggested to be the optimal combination for paediatric abdominal CT examinations. PMID:26922785
NASA Astrophysics Data System (ADS)
Galindo, I.; Romero, M. C.; Sánchez, N.; Morales, J. M.
2016-06-01
Risk management stakeholders in high-populated volcanic islands should be provided with the latest high-quality volcanic information. We present here the first volcanic susceptibility map of Lanzarote and Chinijo Islands and their submarine flanks based on updated chronostratigraphical and volcano structural data, as well as on the geomorphological analysis of the bathymetric data of the submarine flanks. The role of the structural elements in the volcanic susceptibility analysis has been reviewed: vents have been considered since they indicate where previous eruptions took place; eruptive fissures provide information about the stress field as they are the superficial expression of the dyke conduit; eroded dykes have been discarded since they are single non-feeder dykes intruded in deep parts of Miocene-Pliocene volcanic edifices; main faults have been taken into account only in those cases where they could modified the superficial movement of magma. The application of kernel density estimation via a linear diffusion process for the volcanic susceptibility assessment has been applied successfully to Lanzarote and could be applied to other fissure volcanic fields worldwide since the results provide information about the probable area where an eruption could take place but also about the main direction of the probable volcanic fissures.
Galindo, I.; Romero, M. C.; Sánchez, N.; Morales, J. M.
2016-01-01
Risk management stakeholders in high-populated volcanic islands should be provided with the latest high-quality volcanic information. We present here the first volcanic susceptibility map of Lanzarote and Chinijo Islands and their submarine flanks based on updated chronostratigraphical and volcano structural data, as well as on the geomorphological analysis of the bathymetric data of the submarine flanks. The role of the structural elements in the volcanic susceptibility analysis has been reviewed: vents have been considered since they indicate where previous eruptions took place; eruptive fissures provide information about the stress field as they are the superficial expression of the dyke conduit; eroded dykes have been discarded since they are single non-feeder dykes intruded in deep parts of Miocene-Pliocene volcanic edifices; main faults have been taken into account only in those cases where they could modified the superficial movement of magma. The application of kernel density estimation via a linear diffusion process for the volcanic susceptibility assessment has been applied successfully to Lanzarote and could be applied to other fissure volcanic fields worldwide since the results provide information about the probable area where an eruption could take place but also about the main direction of the probable volcanic fissures. PMID:27265878
Galindo, I; Romero, M C; Sánchez, N; Morales, J M
2016-01-01
Risk management stakeholders in high-populated volcanic islands should be provided with the latest high-quality volcanic information. We present here the first volcanic susceptibility map of Lanzarote and Chinijo Islands and their submarine flanks based on updated chronostratigraphical and volcano structural data, as well as on the geomorphological analysis of the bathymetric data of the submarine flanks. The role of the structural elements in the volcanic susceptibility analysis has been reviewed: vents have been considered since they indicate where previous eruptions took place; eruptive fissures provide information about the stress field as they are the superficial expression of the dyke conduit; eroded dykes have been discarded since they are single non-feeder dykes intruded in deep parts of Miocene-Pliocene volcanic edifices; main faults have been taken into account only in those cases where they could modified the superficial movement of magma. The application of kernel density estimation via a linear diffusion process for the volcanic susceptibility assessment has been applied successfully to Lanzarote and could be applied to other fissure volcanic fields worldwide since the results provide information about the probable area where an eruption could take place but also about the main direction of the probable volcanic fissures. PMID:27265878
NASA Astrophysics Data System (ADS)
Chen, Y.; Ho, C.; Chang, L.
2011-12-01
In previous decades, the climate change caused by global warming increases the occurrence frequency of extreme hydrological events. Water supply shortages caused by extreme events create great challenges for water resource management. To evaluate future climate variations, general circulation models (GCMs) are the most wildly known tools which shows possible weather conditions under pre-defined CO2 emission scenarios announced by IPCC. Because the study area of GCMs is the entire earth, the grid sizes of GCMs are much larger than the basin scale. To overcome the gap, a statistic downscaling technique can transform the regional scale weather factors into basin scale precipitations. The statistic downscaling technique can be divided into three categories include transfer function, weather generator and weather type. The first two categories describe the relationships between the weather factors and precipitations respectively based on deterministic algorithms, such as linear or nonlinear regression and ANN, and stochastic approaches, such as Markov chain theory and statistical distributions. In the weather type, the method has ability to cluster weather factors, which are high dimensional and continuous variables, into weather types, which are limited number of discrete states. In this study, the proposed downscaling model integrates the weather type, using the K-means clustering algorithm, and the weather generator, using the kernel density estimation. The study area is Shihmen basin in northern of Taiwan. In this study, the research process contains two steps, a calibration step and a synthesis step. Three sub-steps were used in the calibration step. First, weather factors, such as pressures, humidities and wind speeds, obtained from NCEP and the precipitations observed from rainfall stations were collected for downscaling. Second, the K-means clustering grouped the weather factors into four weather types. Third, the Markov chain transition matrixes and the
NASA Astrophysics Data System (ADS)
Duguet, T.; Bender, M.; Ebran, J.-P.; Lesinski, T.; Somà, V.
2015-12-01
This programmatic paper lays down the possibility to reconcile the necessity to resum many-body correlations into the energy kernel with the fact that safe multi-reference energy density functional (EDF) calculations cannot be achieved whenever the Pauli principle is not enforced, as is for example the case when many-body correlations are parametrized under the form of empirical density dependencies. Our proposal is to exploit a newly developed ab initio many-body formalism to guide the construction of safe, explicitly correlated and systematically improvable parametrizations of the off-diagonal energy and norm kernels that lie at the heart of the nuclear EDF method. The many-body formalism of interest relies on the concepts of symmetry breaking and restoration that have made the fortune of the nuclear EDF method and is, as such, amenable to this guidance. After elaborating on our proposal, we briefly outline the project we plan to execute in the years to come.
A Biologically Inspired Self-Adaptation of Replica Density Control
NASA Astrophysics Data System (ADS)
Izumi, Tomoko; Izumi, Taisuke; Ooshita, Fukuhito; Kakugawa, Hirotsugu; Masuzawa, Toshimitsu
Biologically-inspired approaches are one of the most promising approaches to realize highly-adaptive distributed systems. Biological systems inherently have self-* properties, such as self-stabilization, self-adaptation, self-configuration, self-optimization and self-healing. Thus, the application of biological systems into distributed systems has attracted a lot of attention recently. In this paper, we present one successful result of bio-inspired approach: we propose distributed algorithms for resource replication inspired by the single species population model. Resource replication is a crucial technique for improving system performance of distributed applications with shared resources. In systems using resource replication, generally, a larger number of replicas lead to shorter time to reach a replica of a requested resource but consume more storage of the hosts. Therefore, it is indispensable to adjust the number of replicas appropriately for the resource sharing application. This paper considers the problem for controlling the densities of replicas adaptively in dynamic networks and proposes two bio-inspired distributed algorithms for the problem. In the first algorithm, we try to control the replica density for a single resource. However, in a system where multiple resources coexist, the algorithm needs high network cost and the exact knowledge at each node about all resources in the network. In the second algorithm, the densities of all resources are controlled by the single algorithm without high network cost and the exact knowledge about all resources. This paper shows by simulations that these two algorithms realize self-adaptation of the replica density in dynamic networks.
Langlois, Timothy J.; Fitzpatrick, Benjamin R.; Fairclough, David V.; Wakefield, Corey B.; Hesp, S. Alex; McLean, Dianne L.; Harvey, Euan S.; Meeuwig, Jessica J.
2012-01-01
Age structure data is essential for single species stock assessments but length-frequency data can provide complementary information. In south-western Australia, the majority of these data for exploited species are derived from line caught fish. However, baited remote underwater stereo-video systems (stereo-BRUVS) surveys have also been found to provide accurate length measurements. Given that line fishing tends to be biased towards larger fish, we predicted that, stereo-BRUVS would yield length-frequency data with a smaller mean length and skewed towards smaller fish than that collected by fisheries-independent line fishing. To assess the biases and selectivity of stereo-BRUVS and line fishing we compared the length-frequencies obtained for three commonly fished species, using a novel application of the Kernel Density Estimate (KDE) method and the established Kolmogorov–Smirnov (KS) test. The shape of the length-frequency distribution obtained for the labrid Choerodon rubescens by stereo-BRUVS and line fishing did not differ significantly, but, as predicted, the mean length estimated from stereo-BRUVS was 17% smaller. Contrary to our predictions, the mean length and shape of the length-frequency distribution for the epinephelid Epinephelides armatus did not differ significantly between line fishing and stereo-BRUVS. For the sparid Pagrus auratus, the length frequency distribution derived from the stereo-BRUVS method was bi-modal, while that from line fishing was uni-modal. However, the location of the first modal length class for P. auratus observed by each sampling method was similar. No differences were found between the results of the KS and KDE tests, however, KDE provided a data-driven method for approximating length-frequency data to a probability function and a useful way of describing and testing any differences between length-frequency samples. This study found the overall size selectivity of line fishing and stereo-BRUVS were unexpectedly similar. PMID
Langlois, Timothy J; Fitzpatrick, Benjamin R; Fairclough, David V; Wakefield, Corey B; Hesp, S Alex; McLean, Dianne L; Harvey, Euan S; Meeuwig, Jessica J
2012-01-01
Age structure data is essential for single species stock assessments but length-frequency data can provide complementary information. In south-western Australia, the majority of these data for exploited species are derived from line caught fish. However, baited remote underwater stereo-video systems (stereo-BRUVS) surveys have also been found to provide accurate length measurements. Given that line fishing tends to be biased towards larger fish, we predicted that, stereo-BRUVS would yield length-frequency data with a smaller mean length and skewed towards smaller fish than that collected by fisheries-independent line fishing. To assess the biases and selectivity of stereo-BRUVS and line fishing we compared the length-frequencies obtained for three commonly fished species, using a novel application of the Kernel Density Estimate (KDE) method and the established Kolmogorov-Smirnov (KS) test. The shape of the length-frequency distribution obtained for the labrid Choerodon rubescens by stereo-BRUVS and line fishing did not differ significantly, but, as predicted, the mean length estimated from stereo-BRUVS was 17% smaller. Contrary to our predictions, the mean length and shape of the length-frequency distribution for the epinephelid Epinephelides armatus did not differ significantly between line fishing and stereo-BRUVS. For the sparid Pagrus auratus, the length frequency distribution derived from the stereo-BRUVS method was bi-modal, while that from line fishing was uni-modal. However, the location of the first modal length class for P. auratus observed by each sampling method was similar. No differences were found between the results of the KS and KDE tests, however, KDE provided a data-driven method for approximating length-frequency data to a probability function and a useful way of describing and testing any differences between length-frequency samples. This study found the overall size selectivity of line fishing and stereo-BRUVS were unexpectedly similar. PMID
NASA Astrophysics Data System (ADS)
Rahbaralam, Maryam; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier
2015-12-01
Random walk particle tracking methods are a computationally efficient family of methods to solve reactive transport problems. While the number of particles in most realistic applications is in the order of 106-109, the number of reactive molecules even in diluted systems might be in the order of fractions of the Avogadro number. Thus, each particle actually represents a group of potentially reactive molecules. The use of a low number of particles may result not only in loss of accuracy, but also may lead to an improper reproduction of the mixing process, limited by diffusion. Recent works have used this effect as a proxy to model incomplete mixing in porous media. In this work, we propose using a Kernel Density Estimation (KDE) of the concentrations that allows getting the expected results for a well-mixed solution with a limited number of particles. The idea consists of treating each particle as a sample drawn from the pool of molecules that it represents; this way, the actual location of a tracked particle is seen as a sample drawn from the density function of the location of molecules represented by that given particle, rigorously represented by a kernel density function. The probability of reaction can be obtained by combining the kernels associated to two potentially reactive particles. We demonstrate that the observed deviation in the reaction vs time curves in numerical experiments reported in the literature could be attributed to the statistical method used to reconstruct concentrations (fixed particle support) from discrete particle distributions, and not to the occurrence of true incomplete mixing. We further explore the evolution of the kernel size with time, linking it to the diffusion process. Our results show that KDEs are powerful tools to improve computational efficiency and robustness in reactive transport simulations, and indicates that incomplete mixing in diluted systems should be modeled based on alternative mechanistic models and not on a
MC Kernel: Broadband Waveform Sensitivity Kernels for Seismic Tomography
NASA Astrophysics Data System (ADS)
Stähler, Simon C.; van Driel, Martin; Auer, Ludwig; Hosseini, Kasra; Sigloch, Karin; Nissen-Meyer, Tarje
2016-04-01
We present MC Kernel, a software implementation to calculate seismic sensitivity kernels on arbitrary tetrahedral or hexahedral grids across the whole observable seismic frequency band. Seismic sensitivity kernels are the basis for seismic tomography, since they map measurements to model perturbations. Their calculation over the whole frequency range was so far only possible with approximative methods (Dahlen et al. 2000). Fully numerical methods were restricted to the lower frequency range (usually below 0.05 Hz, Tromp et al. 2005). With our implementation, it's possible to compute accurate sensitivity kernels for global tomography across the observable seismic frequency band. These kernels rely on wavefield databases computed via AxiSEM (www.axisem.info), and thus on spherically symmetric models. The advantage is that frequencies up to 0.2 Hz and higher can be accessed. Since the usage of irregular, adapted grids is an integral part of regularisation in seismic tomography, MC Kernel works in a inversion-grid-centred fashion: A Monte-Carlo integration method is used to project the kernel onto each basis function, which allows to control the desired precision of the kernel estimation. Also, it means that the code concentrates calculation effort on regions of interest without prior assumptions on the kernel shape. The code makes extensive use of redundancies in calculating kernels for different receivers or frequency-pass-bands for one earthquake, to facilitate its usage in large-scale global seismic tomography.
NASA Astrophysics Data System (ADS)
Gritsenko, Oleg; Baerends, Evert Jan
2004-07-01
Time-dependent density functional theory (TDDFT) calculations of charge-transfer excitation energies ωCT are significantly in error when the adiabatic local density approximation (ALDA) is employed for the exchange-correlation kernel fxc. We relate the error to the physical meaning of the orbital energy of the Kohn-Sham lowest unoccupied molecular orbital (LUMO). The LUMO orbital energy in Kohn-Sham DFT—in contrast to the Hartree-Fock model—approximates an excited electron, which is correct for excitations in compact molecules. In CT transitions the energy of the LUMO of the acceptor molecule should instead describe an added electron, i.e., approximate the electron affinity. To obtain a contribution that compensates for the difference, a specific divergence of fxc is required in rigorous TDDFT, and a suitable asymptotically correct form of the kernel fxcasymp is proposed. The importance of the asymptotic correction of fxc is demonstrated with the calculation of ωCT(R) for the prototype diatomic system HeBe at various separations R(He-Be). The TDDFT-ALDA curve ωCT(R) roughly resembles the benchmark ab initio curve ωCTCISD(R) of a configuration interaction calculation with single and double excitations in the region R=1-1.5 Å, where a sizable He-Be interaction exists, but exhibits the wrong behavior ωCT(R)≪ωCTCISD(R) at large R. The TDDFT curve obtained with fxcasymp however approaches ωCTCISD(R) closely in the region R=3-10 Å. Then, the adequate rigorous TDDFT approach should interpolate between the LDA/GGA ALDA xc kernel for excitations in compact systems and fxcasymp for weakly interacting fragments and suitable interpolation expressions are considered.
Kernel Phase and Kernel Amplitude in Fizeau Imaging
NASA Astrophysics Data System (ADS)
Pope, Benjamin J. S.
2016-09-01
Kernel phase interferometry is an approach to high angular resolution imaging which enhances the performance of speckle imaging with adaptive optics. Kernel phases are self-calibrating observables that generalize the idea of closure phases from non-redundant arrays to telescopes with arbitrarily shaped pupils, by considering a matrix-based approximation to the diffraction problem. In this paper I discuss the recent fhistory of kernel phase, in particular in the matrix-based study of sparse arrays, and propose an analogous generalization of the closure amplitude to kernel amplitudes. This new approach can self-calibrate throughput and scintillation errors in optical imaging, which extends the power of kernel phase-like methods to symmetric targets where amplitude and not phase calibration can be a significant limitation, and will enable further developments in high angular resolution astronomy.
An Ensemble Approach to Building Mercer Kernels with Prior Information
NASA Technical Reports Server (NTRS)
Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd
2005-01-01
This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly dimensional feature space. we describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using pre-defined kernels. These data adaptive kernels can encode prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. Specifically, we demonstrate the use of the algorithm in situations with extremely small samples of data. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS) and demonstrate the method's superior performance against standard methods. The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains templates for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic-algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code.
Collins, John; Rogers, Ted
2015-04-01
There is considerable controversy about the size and importance of non-perturbative contributions to the evolution of transverse momentum dependent (TMD) parton distribution functions. Standard fits to relatively high-energy Drell-Yan data give evolution that when taken to lower Q is too rapid to be consistent with recent data in semi-inclusive deeply inelastic scattering. Some authors provide very different forms for TMD evolution, even arguing that non-perturbative contributions at large transverse distance bT are not needed or are irrelevant. Here, we systematically analyze the issues, both perturbative and non-perturbative. We make a motivated proposal for the parameterization of the non-perturbative part ofmore » the TMD evolution kernel that could give consistency: with the variety of apparently conflicting data, with theoretical perturbative calculations where they are applicable, and with general theoretical non-perturbative constraints on correlation functions at large distances. We propose and use a scheme- and scale-independent function A(bT) that gives a tool to compare and diagnose different proposals for TMD evolution. We also advocate for phenomenological studies of A(bT) as a probe of TMD evolution. The results are important generally for applications of TMD factorization. In particular, they are important to making predictions for proposed polarized Drell- Yan experiments to measure the Sivers function.« less
Collins, John; Rogers, Ted
2015-04-01
There is considerable controversy about the size and importance of non-perturbative contributions to the evolution of transverse momentum dependent (TMD) parton distribution functions. Standard fits to relatively high-energy Drell-Yan data give evolution that when taken to lower Q is too rapid to be consistent with recent data in semi-inclusive deeply inelastic scattering. Some authors provide very different forms for TMD evolution, even arguing that non-perturbative contributions at large transverse distance bT are not needed or are irrelevant. Here, we systematically analyze the issues, both perturbative and non-perturbative. We make a motivated proposal for the parameterization of the non-perturbative part of the TMD evolution kernel that could give consistency: with the variety of apparently conflicting data, with theoretical perturbative calculations where they are applicable, and with general theoretical non-perturbative constraints on correlation functions at large distances. We propose and use a scheme- and scale-independent function A(bT) that gives a tool to compare and diagnose different proposals for TMD evolution. We also advocate for phenomenological studies of A(bT) as a probe of TMD evolution. The results are important generally for applications of TMD factorization. In particular, they are important to making predictions for proposed polarized Drell- Yan experiments to measure the Sivers function.
NASA Astrophysics Data System (ADS)
Cho, K.; Kim, B.; Lee, D.; Choi, N.; Park, C.
2011-12-01
Adaptation to environment is a natural phenomena that takes place in many animals, plants and microorganisms. These adapted organisms achieve stronger applicability than unadapted organisms after habitation in a specific environment for a long time. In the biohydrometallurgical industry, adaptation to special environment conditions by selective culturing is the most popular method for improving bioleaching activity of strains-although that is time consuming. This study investigated the influence of the bioleaching efficiency of mine waste under batch experimental conditions (adaptation and pulp density) using the indigenous acidophilic bacteria collected from acid mine drainage in Go-seong and Yeon-hwa, Korea. We conducted the batch experiments at the influences of parameters, such as the adaptation of bacteria and pulp density of the mine waste. In the adaptation case, the value of pH in 1'st adaptation bacteria sample exhibited lower than in 2'nd adaptation bacteria sample. And the content of both Cu and Zn at 1'st adaptation bacteria sample appeared lower than at 2'nd adaptation bacteria sample. In the SEM analysis, the rod-shaped bacteria with 1μm in length were observed on the filter paper (pore size - 0.45μm). The results of pulp density experiments revealed that the content of both Cu and Zn increased with increasing pulp density, since the increment of pulp density resulted in the enhancement of bioleaching capacity.
Technology Transfer Automated Retrieval System (TEKTRAN)
Wheat kernel shape and size has been under selection since early domestication. Kernel morphology is a major consideration in wheat breeding, as it impacts grain yield and quality. A population of 160 recombinant inbred lines (RIL), developed using an elite (ND 705) and a nonadapted genotype (PI 414...
Application of adaptive cluster sampling to low-density populations of freshwater mussels
Smith, D.R.; Villella, R.F.; Lemarie, D.P.
2003-01-01
Freshwater mussels appear to be promising candidates for adaptive cluster sampling because they are benthic macroinvertebrates that cluster spatially and are frequently found at low densities. We applied adaptive cluster sampling to estimate density of freshwater mussels at 24 sites along the Cacapon River, WV, where a preliminary timed search indicated that mussels were present at low density. Adaptive cluster sampling increased yield of individual mussels and detection of uncommon species; however, it did not improve precision of density estimates. Because finding uncommon species, collecting individuals of those species, and estimating their densities are important conservation activities, additional research is warranted on application of adaptive cluster sampling to freshwater mussels. However, at this time we do not recommend routine application of adaptive cluster sampling to freshwater mussel populations. The ultimate, and currently unanswered, question is how to tell when adaptive cluster sampling should be used, i.e., when is a population sufficiently rare and clustered for adaptive cluster sampling to be efficient and practical? A cost-effective procedure needs to be developed to identify biological populations for which adaptive cluster sampling is appropriate.
NASA Astrophysics Data System (ADS)
Ngan, Henry Y. T.; Yung, Nelson H. C.; Yeh, Anthony G. O.
2015-02-01
This paper aims at presenting a comparative study of outlier detection (OD) for large-scale traffic data. The traffic data nowadays are massive in scale and collected in every second throughout any modern city. In this research, the traffic flow dynamic is collected from one of the busiest 4-armed junction in Hong Kong in a 31-day sampling period (with 764,027 vehicles in total). The traffic flow dynamic is expressed in a high dimension spatial-temporal (ST) signal format (i.e. 80 cycles) which has a high degree of similarities among the same signal and across different signals in one direction. A total of 19 traffic directions are identified in this junction and lots of ST signals are collected in the 31-day period (i.e. 874 signals). In order to reduce its dimension, the ST signals are firstly undergone a principal component analysis (PCA) to represent as (x,y)-coordinates. Then, these PCA (x,y)-coordinates are assumed to be conformed as Gaussian distributed. With this assumption, the data points are further to be evaluated by (a) a correlation study with three variant coefficients, (b) one-class support vector machine (SVM) and (c) kernel density estimation (KDE). The correlation study could not give any explicit OD result while the one-class SVM and KDE provide average 59.61% and 95.20% DSRs, respectively.
NASA Astrophysics Data System (ADS)
Sarp, Gulcan; Duzgun, Sebnem
2015-11-01
A morphometric analysis of river network, basins and relief using geomorphic indices and geostatistical analyses of Digital Elevation Model (DEM) are useful tools for discussing the morphometric evolution of the basin area. In this study, three different indices including valley floor width to height ratio (Vf), stream gradient (SL), and stream sinuosity were applied to Afşin-Elbistan lignite basin to test the imprints of tectonic activity. Perturbations of these indices are usually indicative of differences in the resistance of outcropping lithological units to erosion and active faulting. To map the clusters of high and low indices values, the Kernel density estimation (K) and the Getis-Ord Gi∗ statistics were applied to the DEM-derived indices. The K method and Gi∗ statistic highlighting hot spots and cold spots of the SL index, the stream sinuosity and the Vf index values helped to identify the relative tectonic activity of the basin area. The results indicated that the estimation by the K and Gi∗ including three conceptualization of spatial relationships (CSR) for hot spots (percent volume contours 50 and 95 categorized as high and low respectively) yielded almost similar results in regions of high tectonic activity and low tectonic activity. According to the K and Getis-Ord Gi∗ statistics, the northern, northwestern and southern parts of the basin indicates a high tectonic activity. On the other hand, low elevation plain in the central part of the basin area shows a relatively low tectonic activity.
Chen, Tai-Been; Chen, Jyh-Cheng; Lu, Henry Horng-Shing
2012-01-01
Segmentation of positron emission tomography (PET) is typically achieved using the K-Means method or other approaches. In preclinical and clinical applications, the K-Means method needs a prior estimation of parameters such as the number of clusters and appropriate initialized values. This work segments microPET images using a hybrid method combining the Gaussian mixture model (GMM) with kernel density estimation. Segmentation is crucial to registration of disordered 2-deoxy-2-fluoro-D-glucose (FDG) accumulation locations with functional diagnosis and to estimate standardized uptake values (SUVs) of region of interests (ROIs) in PET images. Therefore, simulation studies are conducted to apply spherical targets to evaluate segmentation accuracy based on Tanimoto's definition of similarity. The proposed method generates a higher degree of similarity than the K-Means method. The PET images of a rat brain are used to compare the segmented shape and area of the cerebral cortex by the K-Means method and the proposed method by volume rendering. The proposed method provides clearer and more detailed activity structures of an FDG accumulation location in the cerebral cortex than those by the K-Means method. PMID:22948355
Dieudonné, Arnaud; Hobbs, Robert F.; Lebtahi, Rachida; Maurel, Fabien; Baechler, Sébastien; Wahl, Richard L.; Boubaker, Ariane; Le Guludec, Dominique; Sgouros, Georges; Gardin, Isabelle
2014-01-01
Dose kernel convolution (DK) methods have been proposed to speed up absorbed dose calculations in molecular radionuclide therapy. Our aim was to evaluate the impact of tissue density heterogeneities (TDH) on dosimetry when using a DK method and to propose a simple density-correction method. Methods This study has been conducted on 3 clinical cases: case 1, non-Hodgkin lymphoma treated with 131I-tositumomab; case 2, a neuroendocrine tumor treatment simulated with 177Lu-peptides; and case 3, hepatocellular carcinoma treated with 90Y-microspheres. Absorbed dose calculations were performed using a direct Monte Carlo approach accounting for TDH (3D-RD), and a DK approach (VoxelDose, or VD). For each individual voxel, the VD absorbed dose, DVD, calculated assuming uniform density, was corrected for density, giving DVDd. The average 3D-RD absorbed dose values, D3DRD, were compared with DVD and DVDd, using the relative difference ΔVD/3DRD. At the voxel level, density-binned ΔVD/3DRD and ΔVDd/3DRD were plotted against ρ and fitted with a linear regression. Results The DVD calculations showed a good agreement with D3DRD. ΔVD/3DRD was less than 3.5%, except for the tumor of case 1 (5.9%) and the renal cortex of case 2 (5.6%). At the voxel level, the ΔVD/3DRD range was 0%–14% for cases 1 and 2, and −3% to 7% for case 3. All 3 cases showed a linear relationship between voxel bin-averaged ΔVD/3DRD and density, ρ: case 1 (Δ = −0.56ρ + 0.62, R2 = 0.93), case 2 (Δ = −0.91ρ + 0.96, R2 = 0.99), and case 3 (Δ = −0.69ρ + 0.72, R2 = 0.91). The density correction improved the agreement of the DK method with the Monte Carlo approach (ΔVDd/3DRD < 1.1%), but with a lesser extent for the tumor of case 1 (3.1%). At the voxel level, the ΔVDd/3DRD range decreased for the 3 clinical cases (case 1, −1% to 4%; case 2, −0.5% to 1.5%, and −1.5% to 2%). No more linear regression existed for cases 2 and 3, contrary to case 1 (Δ = 0.41ρ − 0.38, R2 = 0.88) although
Domain transfer multiple kernel learning.
Duan, Lixin; Tsang, Ivor W; Xu, Dong
2012-03-01
Cross-domain learning methods have shown promising results by leveraging labeled patterns from the auxiliary domain to learn a robust classifier for the target domain which has only a limited number of labeled samples. To cope with the considerable change between feature distributions of different domains, we propose a new cross-domain kernel learning framework into which many existing kernel methods can be readily incorporated. Our framework, referred to as Domain Transfer Multiple Kernel Learning (DTMKL), simultaneously learns a kernel function and a robust classifier by minimizing both the structural risk functional and the distribution mismatch between the labeled and unlabeled samples from the auxiliary and target domains. Under the DTMKL framework, we also propose two novel methods by using SVM and prelearned classifiers, respectively. Comprehensive experiments on three domain adaptation data sets (i.e., TRECVID, 20 Newsgroups, and email spam data sets) demonstrate that DTMKL-based methods outperform existing cross-domain learning and multiple kernel learning methods. PMID:21646679
Deb, M.K.; Kennon, S.R.
1998-04-01
A cooperative R&D effort between industry and the US government, this project, under the HPPP (High Performance Parallel Processing) initiative of the Dept. of Energy, started the investigations into parallel object-oriented (OO) numerics. The basic goal was to research and utilize the emerging technologies to create a physics-independent computational kernel for applications using adaptive finite element method. The industrial team included Computational Mechanics Co., Inc. (COMCO) of Austin, TX (as the primary contractor), Scientific Computing Associates, Inc. (SCA) of New Haven, CT, Texaco and CONVEX. Sandia National Laboratory (Albq., NM) was the technology partner from the government side. COMCO had the responsibility of the main kernel design and development, SCA had the lead in parallel solver technology and guidance on OO technologies was Sandia`s main expertise in this venture. CONVEX and Texaco supported the partnership by hardware resource and application knowledge, respectively. As such, a minimum of fifty-percent cost-sharing was provided by the industry partnership during this project. This report describes the R&D activities and provides some details about the prototype kernel and example applications.
A density-based adaptive quantum mechanical/molecular mechanical method.
Waller, Mark P; Kumbhar, Sadhana; Yang, Jack
2014-10-20
We present a density-based adaptive quantum mechanical/molecular mechanical (DBA-QM/MM) method, whereby molecules can switch layers from the QM to the MM region and vice versa. The adaptive partitioning of the molecular system ensures that the layer assignment can change during the optimization procedure, that is, on the fly. The switch from a QM molecule to a MM molecule is determined if there is an absence of noncovalent interactions to any atom of the QM core region. The presence/absence of noncovalent interactions is determined by analysis of the reduced density gradient. Therefore, the location of the QM/MM boundary is based on physical arguments, and this neatly removes some empiricism inherent in previous adaptive QM/MM partitioning schemes. The DBA-QM/MM method is validated by using a water-in-water setup and an explicitly solvated L-alanyl-L-alanine dipeptide. PMID:24954803
Bruemmer, David J.
2009-11-17
A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. PMID:25528318
Lombardo, Marco; Serrao, Sebastiano; Lombardo, Giuseppe
2014-01-01
Purpose To investigate the influence of various technical factors on the variation of cone packing density estimates in adaptive optics flood illuminated retinal images. Methods Adaptive optics images of the photoreceptor mosaic were obtained in fifteen healthy subjects. The cone density and Voronoi diagrams were assessed in sampling windows of 320×320 µm, 160×160 µm and 64×64 µm at 1.5 degree temporal and superior eccentricity from the preferred locus of fixation (PRL). The technical factors that have been analyzed included the sampling window size, the corrected retinal magnification factor (RMFcorr), the conversion from radial to linear distance from the PRL, the displacement between the PRL and foveal center and the manual checking of cone identification algorithm. Bland-Altman analysis was used to assess the agreement between cone density estimated within the different sampling window conditions. Results The cone density declined with decreasing sampling area and data between areas of different size showed low agreement. A high agreement was found between sampling areas of the same size when comparing density calculated with or without using individual RMFcorr. The agreement between cone density measured at radial and linear distances from the PRL and between data referred to the PRL or the foveal center was moderate. The percentage of Voronoi tiles with hexagonal packing arrangement was comparable between sampling areas of different size. The boundary effect, presence of any retinal vessels, and the manual selection of cones missed by the automated identification algorithm were identified as the factors influencing variation of cone packing arrangements in Voronoi diagrams. Conclusions The sampling window size is the main technical factor that influences variation of cone density. Clear identification of each cone in the image and the use of a large buffer zone are necessary to minimize factors influencing variation of Voronoi diagrams of the cone
An Efficient Adaptive Weighted Switching Median Filter for Removing High Density Impulse Noise
NASA Astrophysics Data System (ADS)
Nair, Madhu S.; Ameera Mol, P. M.
2014-09-01
Restoration of images corrupted by impulse noise is a very active research area in image processing. In this paper, an Efficient Adaptive Weighted Switching Median filter for restoration of images that are corrupted by high density impulse noise is proposed. The filtering is performed as a two phase process—a detection phase followed by a filtering phase. In the proposed method, noise detection is done by HEIND algorithm proposed by Duan et al. The filtering algorithm is then applied to the pixels which are detected as noisy by the detection algorithm. All uncorrupted pixels in the image are left unchanged. The filtering window size is chosen adaptively depending on the local noise distribution around each corrupted pixels. Noisy pixels are replaced by a weighted median value of uncorrupted pixels in the filtering window. The weight value assigned to each uncorrupted pixels depends on its closeness to the central pixel.
Sadeghian, Keyarash; Bocola, Marco; Schütz, Martin
2011-05-01
The intermolecular interactions of the photodamaged cyclobutane pyrimidine dimer (CPD) lesion with adjacent nucleobases in the native intrahelical DNA double strand are investigated at the level of density functional theory symmetry-adapted perturbation theory (DFT-SAPT) and compared to the original (or repaired) case with pyrimidines (TpT) instead of CPD. The CPD aggregation is on average destabilized by about 6 kcal mol(-1) relative to that involving TpT. The effect of destabilization is asymmetric, that is, it involves a single H-bonding (Watson-Crick (WC) type) base-pair interaction. PMID:21452189
Melacci, Stefano; Gori, Marco
2013-11-01
Supervised examples and prior knowledge on regions of the input space have been profitably integrated in kernel machines to improve the performance of classifiers in different real-world contexts. The proposed solutions, which rely on the unified supervision of points and sets, have been mostly based on specific optimization schemes in which, as usual, the kernel function operates on points only. In this paper, arguments from variational calculus are used to support the choice of a special class of kernels, referred to as box kernels, which emerges directly from the choice of the kernel function associated with a regularization operator. It is proven that there is no need to search for kernels to incorporate the structure deriving from the supervision of regions of the input space, because the optimal kernel arises as a consequence of the chosen regularization operator. Although most of the given results hold for sets, we focus attention on boxes, whose labeling is associated with their propositional description. Based on different assumptions, some representer theorems are given that dictate the structure of the solution in terms of box kernel expansion. Successful results are given for problems of medical diagnosis, image, and text categorization. PMID:24051728
Melacci, Stefano; Gori, Marco
2013-04-12
Supervised examples and prior knowledge on regions of the input space have been profitably integrated in kernel machines to improve the performance of classifiers in different real-world contexts. The proposed solutions, which rely on the unified supervision of points and sets, have been mostly based on specific optimization schemes in which, as usual, the kernel function operates on points only. In this paper, arguments from variational calculus are used to support the choice of a special class of kernels, referred to as box kernels, which emerges directly from the choice of the kernel function associated with a regularization operator. It is proven that there is no need to search for kernels to incorporate the structure deriving from the supervision of regions of the input space, since the optimal kernel arises as a consequence of the chosen regularization operator. Although most of the given results hold for sets, we focus attention on boxes, whose labeling is associated with their propositional description. Based on different assumptions, some representer theorems are given which dictate the structure of the solution in terms of box kernel expansion. Successful results are given for problems of medical diagnosis, image, and text categorization. PMID:23589591
Sparse representation with kernels.
Gao, Shenghua; Tsang, Ivor Wai-Hung; Chia, Liang-Tien
2013-02-01
Recent research has shown the initial success of sparse coding (Sc) in solving many computer vision tasks. Motivated by the fact that kernel trick can capture the nonlinear similarity of features, which helps in finding a sparse representation of nonlinear features, we propose kernel sparse representation (KSR). Essentially, KSR is a sparse coding technique in a high dimensional feature space mapped by an implicit mapping function. We apply KSR to feature coding in image classification, face recognition, and kernel matrix approximation. More specifically, by incorporating KSR into spatial pyramid matching (SPM), we develop KSRSPM, which achieves a good performance for image classification. Moreover, KSR-based feature coding can be shown as a generalization of efficient match kernel and an extension of Sc-based SPM. We further show that our proposed KSR using a histogram intersection kernel (HIK) can be considered a soft assignment extension of HIK-based feature quantization in the feature coding process. Besides feature coding, comparing with sparse coding, KSR can learn more discriminative sparse codes and achieve higher accuracy for face recognition. Moreover, KSR can also be applied to kernel matrix approximation in large scale learning tasks, and it demonstrates its robustness to kernel matrix approximation, especially when a small fraction of the data is used. Extensive experimental results demonstrate promising results of KSR in image classification, face recognition, and kernel matrix approximation. All these applications prove the effectiveness of KSR in computer vision and machine learning tasks. PMID:23014744
Duff, I.
1994-12-31
This workshop focuses on kernels for iterative software packages. Specifically, the three speakers discuss various aspects of sparse BLAS kernels. Their topics are: `Current status of user lever sparse BLAS`; Current status of the sparse BLAS toolkit`; and `Adding matrix-matrix and matrix-matrix-matrix multiply to the sparse BLAS toolkit`.
NASA Astrophysics Data System (ADS)
He, Wenda; Juette, Arne; Denton, Erica R. E.; Zwiggelaar, Reyer
2015-03-01
Breast cancer is the most frequently diagnosed cancer in women. Early detection, precise identification of women at risk, and application of appropriate disease prevention measures are by far the most effective ways to overcome the disease. Successful mammographic density segmentation is a key aspect in deriving correct tissue composition, ensuring an accurate mammographic risk assessment. However, mammographic densities have not yet been fully incorporated with non-image based risk prediction models, (e.g. the Gail and the Tyrer-Cuzick model), because of unreliable segmentation consistency and accuracy. This paper presents a novel multiresolution mammographic density segmentation, a concept of stack representation is proposed, and 3D texture features were extracted by adapting techniques based on classic 2D first-order statistics. An unsupervised clustering technique was employed to achieve mammographic segmentation, in which two improvements were made; 1) consistent segmentation by incorporating an optimal centroids initialisation step, and 2) significantly reduced the number of missegmentation by using an adaptive cluster merging technique. A set of full field digital mammograms was used in the evaluation. Visual assessment indicated substantial improvement on segmented anatomical structures and tissue specific areas, especially in low mammographic density categories. The developed method demonstrated an ability to improve the quality of mammographic segmentation via clustering, and results indicated an improvement of 26% in segmented image with good quality when compared with the standard clustering approach. This in turn can be found useful in early breast cancer detection, risk-stratified screening, and aiding radiologists in the process of decision making prior to surgery and/or treatment.
NASA Astrophysics Data System (ADS)
Hirthe, E. M.; Graf, T.
2012-04-01
Fluid density variations occur due to changes in the solute concentration, temperature and pressure of groundwater. Examples are interaction between freshwater and seawater, radioactive waste disposal, groundwater contamination, and geothermal energy production. The physical coupling between flow and transport introduces non-linearity in the governing mathematical equations, such that solving variable-density flow problems typically requires very long computational time. Computational efficiency can be attained through the use of adaptive time-stepping schemes. The aim of this work is therefore to apply a non-iterative adaptive time-stepping scheme based on local truncation error in variable-density flow problems. That new scheme is implemented into the code of the HydroGeoSphere model (Therrien et al., 2011). The new time-stepping scheme is applied to the Elder (1967) and the Shikaze et al. (1998) problem of free convection in porous and fractured-porous media, respectively. Numerical simulations demonstrate that non-iterative time-stepping based on local truncation error control fully automates the time step size and efficiently limits the temporal discretization error to the user-defined tolerance. Results of the Elder problem show that the new time-stepping scheme presented here is significantly more efficient than uniform time-stepping when high accuracy is required. Results of the Shikaze problem reveal that the new scheme is considerably faster than conventional time-stepping where time step sizes are either constant or controlled by absolute head/concentration changes. Future research will focus on the application of the new time-stepping scheme to variable-density flow in complex real-world fractured-porous rock.
Density of muscle spindles in prosimian shoulder muscles reflects locomotor adaptation.
Higurashi, Yasuo; Taniguchi, Yuki; Kumakura, Hiroo
2006-01-01
We examined the correlation between the density of muscle spindles in shoulder muscles and the locomotor mode in three species of prosimian primates: the slow loris (Nycticebus coucang), Garnett's galago (Otolemur garnettii), and the ring-tailed lemur (Lemur catta). The shoulder muscles (supraspinatus, infraspinatus, teres major, teres minor, and subscapularis) were embedded in celloidin and cut into transverse serial thin sections (40 microm); then, every tenth section was stained using the Azan staining technique. The relative muscle weights and the density of the muscle spindles were determined. The slow loris muscles were heavier and had sparser muscle spindles, as compared to Garnett's galago. These features suggest that the shoulder muscles of the slow loris are more adapted to generating propulsive force and stabilizing the shoulder joint during locomotion and play a less controlling role in forelimb movements. In contrast, Garnett's galago possessed smaller shoulder muscles with denser spindles that are suitable for the control of more rapid locomotor movements. The mean relative weight and the mean spindle density in the shoulder muscles of the ring-tailed lemur were between those of the other primates, suggesting that the spindle density is not simply a consequence of taxonomic status. PMID:17361082
NASA Astrophysics Data System (ADS)
Ja'fari, Ahmad; Kadkhodaie-Ilkhchi, Ali; Sharghi, Yoosef; Ghanavati, Kiarash
2012-02-01
Fractures as the most common and important geological features have a significant share in reservoir fluid flow. Therefore, fracture detection is one of the important steps in fractured reservoir characterization. Different tools and methods are introduced for fracture detection from which formation image logs are considered as the common and effective tools. Due to the economical considerations, image logs are available for a limited number of wells in a hydrocarbon field. In this paper, we suggest a model to estimate fracture density from the conventional well logs using an adaptive neuro-fuzzy inference system. Image logs from two wells of the Asmari formation in one of the SW Iranian oil fields are used to verify the results of the model. Statistical data analysis indicates good correlation between fracture density and well log data including sonic, deep resistivity, neutron porosity and bulk density. The results of this study show that there is good agreement (correlation coefficient of 98%) between the measured and neuro-fuzzy estimated fracture density.
Online Sequential Extreme Learning Machine With Kernels.
Scardapane, Simone; Comminiello, Danilo; Scarpiniti, Michele; Uncini, Aurelio
2015-09-01
The extreme learning machine (ELM) was recently proposed as a unifying framework for different families of learning algorithms. The classical ELM model consists of a linear combination of a fixed number of nonlinear expansions of the input vector. Learning in ELM is hence equivalent to finding the optimal weights that minimize the error on a dataset. The update works in batch mode, either with explicit feature mappings or with implicit mappings defined by kernels. Although an online version has been proposed for the former, no work has been done up to this point for the latter, and whether an efficient learning algorithm for online kernel-based ELM exists remains an open problem. By explicating some connections between nonlinear adaptive filtering and ELM theory, in this brief, we present an algorithm for this task. In particular, we propose a straightforward extension of the well-known kernel recursive least-squares, belonging to the kernel adaptive filtering (KAF) family, to the ELM framework. We call the resulting algorithm the kernel online sequential ELM (KOS-ELM). Moreover, we consider two different criteria used in the KAF field to obtain sparse filters and extend them to our context. We show that KOS-ELM, with their integration, can result in a highly efficient algorithm, both in terms of obtained generalization error and training time. Empirical evaluations demonstrate interesting results on some benchmarking datasets. PMID:25561597
KERNEL PHASE IN FIZEAU INTERFEROMETRY
Martinache, Frantz
2010-11-20
The detection of high contrast companions at small angular separation appears feasible in conventional direct images using the self-calibration properties of interferometric observable quantities. The friendly notion of closure phase, which is key to the recent observational successes of non-redundant aperture masking interferometry used with adaptive optics, appears to be one example of a wide family of observable quantities that are not contaminated by phase noise. In the high-Strehl regime, soon to be available thanks to the coming generation of extreme adaptive optics systems on ground-based telescopes, and already available from space, closure phase like information can be extracted from any direct image, even taken with a redundant aperture. These new phase-noise immune observable quantities, called kernel phases, are determined a priori from the knowledge of the geometry of the pupil only. Re-analysis of archive data acquired with the Hubble Space Telescope NICMOS instrument using this new kernel-phase algorithm demonstrates the power of the method as it clearly detects and locates with milliarcsecond precision a known companion to a star at angular separation less than the diffraction limit.
Robotic Intelligence Kernel: Communications
Walton, Mike C.
2009-09-16
The INL Robotic Intelligence Kernel-Comms is the communication server that transmits information between one or more robots using the RIK and one or more user interfaces. It supports event handling and multiple hardware communication protocols.
Robotic Intelligence Kernel: Driver
2009-09-16
The INL Robotic Intelligence Kernel-Driver is built on top of the RIK-A and implements a dynamic autonomy structure. The RIK-D is used to orchestrate hardware for sensing and action as well as software components for perception, communication, behavior and world modeling into a single cognitive behavior kernel that provides intrinsic intelligence for a wide variety of unmanned ground vehicle systems.
NASA Astrophysics Data System (ADS)
Pope, Benjamin; Tuthill, Peter; Hinkley, Sasha; Ireland, Michael J.; Greenbaum, Alexandra; Latyshev, Alexey; Monnier, John D.; Martinache, Frantz
2016-01-01
At present, the principal limitation on the resolution and contrast of astronomical imaging instruments comes from aberrations in the optical path, which may be imposed by the Earth's turbulent atmosphere or by variations in the alignment and shape of the telescope optics. These errors can be corrected physically, with active and adaptive optics, and in post-processing of the resulting image. A recently developed adaptive optics post-processing technique, called kernel-phase interferometry, uses linear combinations of phases that are self-calibrating with respect to small errors, with the goal of constructing observables that are robust against the residual optical aberrations in otherwise well-corrected imaging systems. Here, we present a direct comparison between kernel phase and the more established competing techniques, aperture masking interferometry, point spread function (PSF) fitting and bispectral analysis. We resolve the α Ophiuchi binary system near periastron, using the Palomar 200-Inch Telescope. This is the first case in which kernel phase has been used with a full aperture to resolve a system close to the diffraction limit with ground-based extreme adaptive optics observations. Excellent agreement in astrometric quantities is found between kernel phase and masking, and kernel phase significantly outperforms PSF fitting and bispectral analysis, demonstrating its viability as an alternative to conventional non-redundant masking under appropriate conditions.
Linearized Kernel Dictionary Learning
NASA Astrophysics Data System (ADS)
Golts, Alona; Elad, Michael
2016-06-01
In this paper we present a new approach of incorporating kernels into dictionary learning. The kernel K-SVD algorithm (KKSVD), which has been introduced recently, shows an improvement in classification performance, with relation to its linear counterpart K-SVD. However, this algorithm requires the storage and handling of a very large kernel matrix, which leads to high computational cost, while also limiting its use to setups with small number of training examples. We address these problems by combining two ideas: first we approximate the kernel matrix using a cleverly sampled subset of its columns using the Nystr\\"{o}m method; secondly, as we wish to avoid using this matrix altogether, we decompose it by SVD to form new "virtual samples," on which any linear dictionary learning can be employed. Our method, termed "Linearized Kernel Dictionary Learning" (LKDL) can be seamlessly applied as a pre-processing stage on top of any efficient off-the-shelf dictionary learning scheme, effectively "kernelizing" it. We demonstrate the effectiveness of our method on several tasks of both supervised and unsupervised classification and show the efficiency of the proposed scheme, its easy integration and performance boosting properties.
Higher-order adaptive finite-element methods for Kohn–Sham density functional theory
Motamarri, P.; Nowak, M.R.; Leiter, K.; Knap, J.; Gavini, V.
2013-11-15
We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn–Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss–Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100–200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn–Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000-fold—relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn–Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688
Higher-order adaptive finite-element methods for Kohn-Sham density functional theory
NASA Astrophysics Data System (ADS)
Motamarri, P.; Nowak, M. R.; Leiter, K.; Knap, J.; Gavini, V.
2013-11-01
We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn-Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss-Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100-200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn-Sham DFT problem. Our studies suggest that staggering computational savings-of the order of 1000-fold-relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn-Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688 atoms using
LeFebvre, W.
1994-08-01
For many years, the popular program top has aided system administrations in examination of process resource usage on their machines. Yet few are familiar with the techniques involved in obtaining this information. Most of what is displayed by top is available only in the dark recesses of kernel memory. Extracting this information requires familiarity not only with how bytes are read from the kernel, but also what data needs to be read. The wide variety of systems and variants of the Unix operating system in today`s marketplace makes writing such a program very challenging. This paper explores the tremendous diversity in kernel information across the many platforms and the solutions employed by top to achieve and maintain ease of portability in the presence of such divergent systems.
Pattern Recognition With Adaptive-Thresholds For Sleep Spindle In High Density EEG Signals
Gemignani, Jessica; Agrimi, Jacopo; Cheli, Enrico; Gemignani, Angelo; Laurino, Marco; Allegrini, Paolo; Landi, Alberto; Menicucci, Danilo
2016-01-01
Sleep spindles are electroencephalographic oscillations peculiar of non-REM sleep, related to neuronal mechanisms underlying sleep restoration and learning consolidation. Based on their very singular morphology, sleep spindles can be visually recognized and detected, even though this approach can lead to significant mis-detections. For this reason, many efforts have been put in developing a reliable algorithm for spindle automatic detection, and a number of methods, based on different techniques, have been tested via visual validation. This work aims at improving current pattern recognition procedures for sleep spindles detection by taking into account their physiological sources of variability. We provide a method as a synthesis of the current state of art that, improving dynamic threshold adaptation, is able to follow modification of spindle characteristics as a function of sleep depth and inter-subjects variability. The algorithm has been applied to physiological data recorded by a high density EEG in order to perform a validation based on visual inspection and on evaluation of expected results from normal night sleep in healthy subjects. PMID:26736332
NASA Astrophysics Data System (ADS)
Oehlert, A. M.; Hill, C. A.; Piggot, A. M.; Fouke, B. W.
2008-12-01
As one of the core reservoirs of primary production in the world's oceans, tropical coral reefs support a complex ecosystem that directly impacts over ninety percent of marine organisms at some point in their life cycle. Corals themselves are highly complex organisms and exhibit a range of growth forms that range from branching to massive, foliaceous, columnar, encrusting, free living and laminar coralla. Fierce competition over scarce resources available to each individual coral species creates niche specialization. Throughout the Phanerozic geological record, this has driven speciation events and created distinct skeletal growth morphologies that have differential abilities in feeding strategy. In turn, this has presumably led to the development of niche specialization that can be quantitatively measured through hierarchical morphological differences from the micrometer to the meter scale. Porter (1976) observed significant differences in skeletal morphology between Caribbean coral species that reflects an adaptive geometry based on feeding strategy. Within the Montastraea species complex there are four major morphologies; columnar, bouldering, irregular mounding, and skirted. Each morphotype can be found forming high abundance along the bathymetric gradient of coral reefs that grow along the leeward coast of Curacao, Netherlands Antilles. We have undertaken a study to determine the relative relationships amongst coral morphology, skeletal density and feeding strategy by comparing the morphometric measurements of individual polyps as well as the entire colony along spatial and bathymetric gradients. Polyp diameter, mouth size, interpolyp area, and interpolyp distance were measured from high-resolution images taken on a stereoscope, and evaluated with AxioVision image analysis software. These high-resolution optical analyses have also revealed new observations regarding folded tissue structures of the outer margin of polyps in the Montastrea complex. Skeletal
Calculates Thermal Neutron Scattering Kernel.
Energy Science and Technology Software Center (ESTSC)
1989-11-10
Version 00 THRUSH computes the thermal neutron scattering kernel by the phonon expansion method for both coherent and incoherent scattering processes. The calculation of the coherent part is suitable only for calculating the scattering kernel for heavy water.
Robotic Intelligence Kernel: Architecture
Energy Science and Technology Software Center (ESTSC)
2009-09-16
The INL Robotic Intelligence Kernel Architecture (RIK-A) is a multi-level architecture that supports a dynamic autonomy structure. The RIK-A is used to coalesce hardware for sensing and action as well as software components for perception, communication, behavior and world modeling into a framework that can be used to create behaviors for humans to interact with the robot.
NASA Technical Reports Server (NTRS)
Spafford, Eugene H.; Mckendry, Martin S.
1986-01-01
An overview of the internal structure of the Clouds kernel was presented. An indication of how these structures will interact in the prototype Clouds implementation is given. Many specific details have yet to be determined and await experimentation with an actual working system.
Robotic Intelligence Kernel: Visualization
Energy Science and Technology Software Center (ESTSC)
2009-09-16
The INL Robotic Intelligence Kernel-Visualization is the software that supports the user interface. It uses the RIK-C software to communicate information to and from the robot. The RIK-V illustrates the data in a 3D display and provides an operating picture wherein the user can task the robot.
Feng, Shu; Gale, Michael J.; Fay, Jonathan D.; Faridi, Ambar; Titus, Hope E.; Garg, Anupam K.; Michaels, Keith V.; Erker, Laura R.; Peters, Dawn; Smith, Travis B.; Pennesi, Mark E.
2015-01-01
Purpose To describe a standardized flood-illuminated adaptive optics (AO) imaging protocol suitable for the clinical setting and to assess sampling methods for measuring cone density. Methods Cone density was calculated following three measurement protocols: 50 × 50-μm sampling window values every 0.5° along the horizontal and vertical meridians (fixed-interval method), the mean density of expanding 0.5°-wide arcuate areas in the nasal, temporal, superior, and inferior quadrants (arcuate mean method), and the peak cone density of a 50 × 50-μm sampling window within expanding arcuate areas near the meridian (peak density method). Repeated imaging was performed in nine subjects to determine intersession repeatability of cone density. Results Cone density montages could be created for 67 of the 74 subjects. Image quality was determined to be adequate for automated cone counting for 35 (52%) of the 67 subjects. We found that cone density varied with different sampling methods and regions tested. In the nasal and temporal quadrants, peak density most closely resembled histological data, whereas the arcuate mean and fixed-interval methods tended to underestimate the density compared with histological data. However, in the inferior and superior quadrants, arcuate mean and fixed-interval methods most closely matched histological data, whereas the peak density method overestimated cone density compared with histological data. Intersession repeatability testing showed that repeatability was greatest when sampling by arcuate mean and lowest when sampling by fixed interval. Conclusions We show that different methods of sampling can significantly affect cone density measurements. Therefore, care must be taken when interpreting cone density results, even in a normal population. PMID:26325414
NASA Astrophysics Data System (ADS)
Parkinson, S. D.; Hill, J.; Piggott, M. D.; Allison, P. A.
2014-05-01
High resolution direct numerical simulations (DNS) are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier-Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE) DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two, and three-dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring mesh performance in capturing the range of dynamics. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. Use of discontinuous discretisations and adaptive unstructured meshing technologies, which reduce the required element count by approximately two orders of magnitude, results in high resolution DNS models of turbidity currents at a fraction of the cost of traditional FE models. The benefits of this technique will enable simulation of turbidity currents in complex and large domains where DNS modelling was previously unachievable.
Kernel optimization in discriminant analysis.
You, Di; Hamsici, Onur C; Martinez, Aleix M
2011-03-01
Kernel mapping is one of the most used approaches to intrinsically derive nonlinear classifiers. The idea is to use a kernel function which maps the original nonlinearly separable problem to a space of intrinsically larger dimensionality where the classes are linearly separable. A major problem in the design of kernel methods is to find the kernel parameters that make the problem linear in the mapped representation. This paper derives the first criterion that specifically aims to find a kernel representation where the Bayes classifier becomes linear. We illustrate how this result can be successfully applied in several kernel discriminant analysis algorithms. Experimental results, using a large number of databases and classifiers, demonstrate the utility of the proposed approach. The paper also shows (theoretically and experimentally) that a kernel version of Subclass Discriminant Analysis yields the highest recognition rates. PMID:20820072
Lee, Myung Hee; Liu, Yufeng
2013-12-01
The continuum regression technique provides an appealing regression framework connecting ordinary least squares, partial least squares and principal component regression in one family. It offers some insight on the underlying regression model for a given application. Moreover, it helps to provide deep understanding of various regression techniques. Despite the useful framework, however, the current development on continuum regression is only for linear regression. In many applications, nonlinear regression is necessary. The extension of continuum regression from linear models to nonlinear models using kernel learning is considered. The proposed kernel continuum regression technique is quite general and can handle very flexible regression model estimation. An efficient algorithm is developed for fast implementation. Numerical examples have demonstrated the usefulness of the proposed technique. PMID:24058224
Broom, Donald M
2006-01-01
The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and
Effects of sample size on KERNEL home range estimates
Seaman, D.E.; Millspaugh, J.J.; Kernohan, Brian J.; Brundige, Gary C.; Raedeke, Kenneth J.; Gitzen, Robert A.
1999-01-01
Kernel methods for estimating home range are being used increasingly in wildlife research, but the effect of sample size on their accuracy is not known. We used computer simulations of 10-200 points/home range and compared accuracy of home range estimates produced by fixed and adaptive kernels with the reference (REF) and least-squares cross-validation (LSCV) methods for determining the amount of smoothing. Simulated home ranges varied from simple to complex shapes created by mixing bivariate normal distributions. We used the size of the 95% home range area and the relative mean squared error of the surface fit to assess the accuracy of the kernel home range estimates. For both measures, the bias and variance approached an asymptote at about 50 observations/home range. The fixed kernel with smoothing selected by LSCV provided the least-biased estimates of the 95% home range area. All kernel methods produced similar surface fit for most simulations, but the fixed kernel with LSCV had the lowest frequency and magnitude of very poor estimates. We reviewed 101 papers published in The Journal of Wildlife Management (JWM) between 1980 and 1997 that estimated animal home ranges. A minority of these papers used nonparametric utilization distribution (UD) estimators, and most did not adequately report sample sizes. We recommend that home range studies using kernel estimates use LSCV to determine the amount of smoothing, obtain a minimum of 30 observations per animal (but preferably a?Y50), and report sample sizes in published results.
Information geometric density estimation
NASA Astrophysics Data System (ADS)
Sun, Ke; Marchand-Maillet, Stéphane
2015-01-01
We investigate kernel density estimation where the kernel function varies from point to point. Density estimation in the input space means to find a set of coordinates on a statistical manifold. This novel perspective helps to combine efforts from information geometry and machine learning to spawn a family of density estimators. We present example models with simulations. We discuss the principle and theory of such density estimation.
NASA Astrophysics Data System (ADS)
Kajiwara, Yoshiyuki; Shiraishi, Junya; Kobayashi, Shoei; Yamagami, Tamotsu
2009-03-01
A digital phase-locked loop (PLL) with a linearly constrained adaptive filter (LCAF) has been studied for higher-linear-density optical discs. LCAF has been implemented before an interpolated timing recovery (ITR) PLL unit in order to improve the quality of phase error calculation by using an adaptively equalized partial response (PR) signal. Coefficient update of an asynchronous sampled adaptive FIR filter with a least-mean-square (LMS) algorithm has been constrained by a projection matrix in order to suppress the phase shift of the tap coefficients of the adaptive filter. We have developed projection matrices that are suitable for Blu-ray disc (BD) drive systems by numerical simulation. Results have shown the properties of the projection matrices. Then, we have designed the read channel system of the ITR PLL with an LCAF model on the FPGA board for experiments. Results have shown that the LCAF improves the tilt margins of 30 gigabytes (GB) recordable BD (BD-R) and 33 GB BD read-only memory (BD-ROM) with a sufficient LMS adaptation stability.
Adaptive Gaussian pattern classification. Final report
Priebe, C.E.; Marchette, D.J.
1988-08-01
A massively parallel architecture for pattern classification is described. The architecture is based on the field of density estimation. It makes use of a variant of the adaptive-kernel estimator to approximate the distributions of the classes as a sum of Gaussian distributions. These Gaussians are learned using a moved-mean, moving-covariance learning scheme. A temporal ordering scheme is implemented using decay at the input level, allowing the network to learn to recognize sequences. The learning scheme requires a single pass through the data, giving the architecture the capability of real-time learning. The first part of the paper develops the adaptive-kernel estimator. The parallel architecture is then described, and issues relevant to implementation are discussed. Finally, applications to robotic sensor fusion, intended word recognition, and vision are described.
Park, Sung Pyo; Chung, Jae Keun; Greenstein, Vivienne; Tsang, Stephen H.; Chang, Stanley
2015-01-01
To investigate the variation in human cone photoreceptor packing density with various demographic or clinical factors, cone packing density was measured using a Canon prototype adaptive optics scanning laser ophthalmoscope and compared as a function of retinal eccentricity, refractive error, axial length, age, gender, race/ethnicity and ocular dominance. We enrolled 192 eyes of 192 subjects with no ocular pathology. Cone packing density was measured at three different retinal eccentricities (0.5 mm, 1.0 mm, and 1.5 mm from the foveal center) along four meridians. Cone density decreased from 32,200 to 11,600 cells/mm2 with retinal eccentricity (0.5 mm to 1.5 mm from the fovea, P < 0.001). A trend towards a slightly negative correlation was observed between age and density (r = −0.117, P = 0.14). There was, however, a statistically significant negative correlation (r = −0.367, P = 0.003) between axial length and cone density. Gender, ocular dominance, and race/ethnicity were not important determinants of cone density (all, P > 0.05). In addition, to assess the spatial arrangement of the cone mosaics, the nearest-neighbor distances (NNDs) and the Voronoi domains were analyzed. The results of NND and Voronoi analysis were significantly correlated with the variation of the cone density. Average NND and Voronoi area were gradually increased (all, P ≤ 0.001) and the degree of regularity of the cone mosaics was decreased (P ≤ 0.001) with increasing retinal eccentricity. In conclusion, we demonstrated cone packing density decreases as a function of retinal eccentricity and axial length and the results of NND and Voronoi analysis is a useful index for cone mosaics arrangements. The results also serve as a reference for further studies designed to detect or monitor cone photoreceptors in patients with retinal diseases. PMID:23276813
Sliding Window Generalized Kernel Affine Projection Algorithm Using Projection Mappings
NASA Astrophysics Data System (ADS)
Slavakis, Konstantinos; Theodoridis, Sergios
2008-12-01
Very recently, a solution to the kernel-based online classification problem has been given by the adaptive projected subgradient method (APSM). The developed algorithm can be considered as a generalization of a kernel affine projection algorithm (APA) and the kernel normalized least mean squares (NLMS). Furthermore, sparsification of the resulting kernel series expansion was achieved by imposing a closed ball (convex set) constraint on the norm of the classifiers. This paper presents another sparsification method for the APSM approach to the online classification task by generating a sequence of linear subspaces in a reproducing kernel Hilbert space (RKHS). To cope with the inherent memory limitations of online systems and to embed tracking capabilities to the design, an upper bound on the dimension of the linear subspaces is imposed. The underlying principle of the design is the notion of projection mappings. Classification is performed by metric projection mappings, sparsification is achieved by orthogonal projections, while the online system's memory requirements and tracking are attained by oblique projections. The resulting sparsification scheme shows strong similarities with the classical sliding window adaptive schemes. The proposed design is validated by the adaptive equalization problem of a nonlinear communication channel, and is compared with classical and recent stochastic gradient descent techniques, as well as with the APSM's solution where sparsification is performed by a closed ball constraint on the norm of the classifiers.
Kercher, Andrew K; Hunn, John D
2005-08-01
This document is a compilation of characterization data obtained on the nominal 350 {micro}m low enrichment uranium oxide/uranium carbide kernels (LEUCO) produced by BWXT for the Advanced Gas Reactor Fuel Development and Qualification Program. A 4502 g composite of LEUCO kernels was produced at BWXT by combining kernels from 8 forming runs sintered in 6 separate lots. 2150 grams were shipped to ORNL. ORNL has performed size, shape, density, and microstructural analysis on riffled samples from the kernel composite.
NASA Astrophysics Data System (ADS)
Bargatze, L. F.
2015-12-01
Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted
Adaptive nest clustering and density-dependent nest survival in dabbling ducks
Ringelman, Kevin M.; Eadie, John M.; Ackerman, Joshua T.
2014-01-01
Density-dependent population regulation is observed in many taxa, and understanding the mechanisms that generate density dependence is especially important for the conservation of heavily-managed species. In one such system, North American waterfowl, density dependence is often observed at continental scales, and nest predation has long been implicated as a key factor driving this pattern. However, despite extensive research on this topic, it remains unclear if and how nest density influences predation rates. Part of this confusion may have arisen because previous studies have studied density-dependent predation at relatively large spatial and temporal scales. Because the spatial distribution of nests changes throughout the season, which potentially influences predator behavior, nest survival may vary through time at relatively small spatial scales. As such, density-dependent nest predation might be more detectable at a spatially- and temporally-refined scale and this may provide new insights into nest site selection and predator foraging behavior. Here, we used three years of data on nest survival of two species of waterfowl, mallards and gadwall, to more fully explore the relationship between local nest clustering and nest survival. Throughout the season, we found that the distribution of nests was consistently clustered at small spatial scales (˜50–400 m), especially for mallard nests, and that this pattern was robust to yearly variation in nest density and the intensity of predation. We demonstrated further that local nest clustering had positive fitness consequences – nests with closer nearest neighbors were more likely to be successful, a result that is counter to the general assumption that nest predation rates increase with nest density.
Andrade, Gizely N.; Butler, John S.; Mercier, Manuel R.; Molholm, Sophie; Foxe, John J.
2015-01-01
When sensory inputs are presented serially, response amplitudes to stimulus repetitions generally decrease as a function of presentation rate, diminishing rapidly as inter-stimulus-intervals (ISIs) fall below a second. This “adaptation” is believed to represent mechanisms by which sensory systems reduce responsivity to consistent environmental inputs, freeing resources to respond to potentially more relevant inputs. While auditory adaptation functions have been relatively well-characterized, considerably less is known about visual adaptation in humans. Here, high-density visual evoked potentials (VEPs) were recorded while two paradigms were used to interrogate visual adaptation. The first presented stimulus pairs with varying ISIs, comparing VEP amplitude to the second stimulus to that of the first (paired-presentation). The second involved blocks of stimulation (N=100) at various ISIs and comparison of VEP amplitude between blocks of differing ISIs (block-presentation). Robust VEP modulations were evident as a function of presentation rate in the block-paradigm with strongest modulations in the 130–150ms and 160–180ms visual processing phases. In paired-presentations, with ISIs of just 200–300 ms, an enhancement of VEP was evident when comparing S2 to S1, with no significant effect of presentation rate. Importantly, in block-presentations, adaptation effects were statistically robust at the individual participant level. These data suggest that a more taxing block-presentation paradigm is better suited to engage visual adaptation mechanisms than a paired-presentation design. The increased sensitivity of the visual processing metric obtained in the block-paradigm has implications for the examination of visual processing deficits in clinical populations. PMID:25688539
Apparatus for adapting a high-pressure light scattering cell to density measurement
NASA Astrophysics Data System (ADS)
Abebe, M.; Schoen, P. E.
1982-04-01
A new experimental method is presented here by which the density of water, glycerol, HIW (a mixture of isopropyl ammonium nitrate, hydroxyl ammonium nitrate, and water), and solithane 113 was measured at 25 °C and pressure up to 410 MPa.
Gomulkiewicz, R; Holt, R D; Barfield, M
1999-06-01
We examine the effects of density dependence and immigration on local adaptation in a "black-hole sink" habitat, i.e., a habitat in which isolated populations of a species would tend to extinction but where a population is demographically maintained by recurrent one-way migration from a separate source habitat in which the species persists. Using a diploid, one-locus model of a discrete-generation sink population maintained by immigration from a fixed source population, we show that a locally favored allele will spread when rare in the sink if the absolute fitness (or, in some cases, the geometric-mean absolute fitness) of heterozygotes with the favored allele is above one in the sink habitat. With density dependence, the criterion for spread can depend on the rate of immigration, because immigration affects local densities and, hence, absolute fitness. Given the successful establishment of a locally favored allele, it will be maintained by a migration-selection balance and the resulting polymorphic population will be sustained deterministically with either stable or unstable dynamics. The densities of stable polymorphic populations tend to exceed densities that would be maintained in the absence of the favored allele. With strong density regulation, spread of the favored allele may destabilize population dynamics. Our analyses show that polymorphic populations which form subsequent to the establishment of favorable alleles have the capacity to persist deterministically without immigration. Finally, we examined the probabilistic rate at which new favored alleles arise and become established in a sink population. Our results suggest that favored alleles are established most readily at intermediate levels of immigration. PMID:10366553
Potter, Kelsey A; Jorfi, Mehdi; Householder, Kyle T; Foster, E Johan; Weder, Christoph; Capadona, Jeffrey R
2014-05-01
The cellular and molecular mechanisms by which neuroinflammatory pathways respond to and propagate the reactive tissue response to intracortical microelectrodes remain active areas of research. We previously demonstrated that both the mechanical mismatch between rigid implants and the much softer brain tissue, as well as oxidative stress, contribute to the neurodegenerative reactive tissue response to intracortical implants. In this study, we utilize physiologically responsive, mechanically adaptive polymer implants based on poly(vinyl alcohol) (PVA), with the capability to also locally administer the antioxidant curcumin. The goal of this study is to investigate if the combination of two independently effective mechanisms - softening of the implant and antioxidant release - leads to synergistic effects in vivo. Over the first 4weeks of the implantation, curcumin-releasing, mechanically adaptive implants were associated with higher neuron survival and a more stable blood-brain barrier at the implant-tissue interface than the neat PVA controls. 12weeks post-implantation, the benefits of the curcumin release were lost, and both sets of compliant materials (with and without curcumin) had no statistically significant differences in neuronal density distribution profiles. Overall, however, the curcumin-releasing softening polymer implants cause minimal implant-mediated neuroinflammation, and embody the new concept of localized drug delivery from mechanically adaptive intracortical implants. PMID:24468582
Amoeboid migration mode adaption in quasi-3D spatial density gradients of varying lattice geometry
NASA Astrophysics Data System (ADS)
Gorelashvili, Mari; Emmert, Martin; Hodeck, Kai F.; Heinrich, Doris
2014-07-01
Cell migration processes are controlled by sensitive interaction with external cues such as topographic structures of the cell’s environment. Here, we present systematically controlled assays to investigate the specific effects of spatial density and local geometry of topographic structure on amoeboid migration of Dictyostelium discoideum cells. This is realized by well-controlled fabrication of quasi-3D pillar fields exhibiting a systematic variation of inter-pillar distance and pillar lattice geometry. By time-resolved local mean-squared displacement analysis of amoeboid migration, we can extract motility parameters in order to elucidate the details of amoeboid migration mechanisms and consolidate them in a two-state contact-controlled motility model, distinguishing directed and random phases. Specifically, we find that directed pillar-to-pillar runs are found preferably in high pillar density regions, and cells in directed motion states sense pillars as attractive topographic stimuli. In contrast, cell motion in random probing states is inhibited by high pillar density, where pillars act as obstacles for cell motion. In a gradient spatial density, these mechanisms lead to topographic guidance of cells, with a general trend towards a regime of inter-pillar spacing close to the cell diameter. In locally anisotropic pillar environments, cell migration is often found to be damped due to competing attraction by different pillars in close proximity and due to lack of other potential stimuli in the vicinity of the cell. Further, we demonstrate topographic cell guidance reflecting the lattice geometry of the quasi-3D environment by distinct preferences in migration direction. Our findings allow to specifically control amoeboid cell migration by purely topographic effects and thus, to induce active cell guidance. These tools hold prospects for medical applications like improved wound treatment, or invasion assays for immune cells.
Integrodifference equations in patchy landscapes : I. Dispersal Kernels.
Musgrave, Jeffrey; Lutscher, Frithjof
2014-09-01
What is the effect of individual movement behavior in patchy landscapes on redistribution kernels? To answer this question, we derive a number of redistribution kernels from a random walk model with patch dependent diffusion, settling, and mortality rates. At the interface of two patch types, we integrate recent results on individual behavior at the interface. In general, these interface conditions result in the probability density function of the random walker being discontinuous at an interface. We show that the dispersal kernel can be characterized as the Green's function of a second-order differential operator. Using this characterization, we illustrate the kind of (discontinuous) dispersal kernels that result from our approach, using three scenarios. First, we assume that dispersal distance is small compared to patch size, so that a typical disperser crosses at most one interface during the dispersal phase. Then we consider a single bounded patch and generate kernels that will be useful to study the critical patch size problem in our sequel paper. Finally, we explore dispersal kernels in a periodic landscape and study the dependence of certain dispersal characteristics on model parameters. PMID:23907527
Uppal, Neha; Foxe, John J; Butler, John S; Acluche, Frantzy; Molholm, Sophie
2016-03-01
Young children are often hyperreactive to somatosensory inputs hardly noticed by adults, as exemplified by irritation to seams or labels in clothing. The neurodevelopmental mechanisms underlying changes in sensory reactivity are not well understood. Based on the idea that neurodevelopmental changes in somatosensory processing and/or changes in sensory adaptation might underlie developmental differences in somatosensory reactivity, high-density electroencephalography was used to examine how the nervous system responds and adapts to repeated vibrotactile stimulation over childhood. Participants aged 6-18 yr old were presented with 50-ms vibrotactile stimuli to the right wrist over the median nerve at 5 blocked interstimulus intervals (ranging from ∼7 to ∼1 stimulus per second). Somatosensory evoked potentials (SEPs) revealed three major phases of activation within the first 200 ms, with scalp topographies suggestive of neural generators in contralateral somatosensory cortex. Although overall SEPs were highly similar for younger, middle, and older age groups (6.1-9.8, 10.0-12.9, and 13.0-17.8 yr old), there were significant age-related amplitude differences in initial and later phases of the SEP. In contrast, robust adaptation effects for fast vs. slow presentation rates were observed that did not differ as a function of age. A greater amplitude response in the later portion of the SEP was observed for the youngest group and may be related to developmental changes in responsivity to somatosensory stimuli. These data suggest the protracted development of the somatosensory system over childhood, whereas adaptation, as assayed in this study, is largely in place by ∼7 yr of age. PMID:26763781
Resummed memory kernels in generalized system-bath master equations
Mavros, Michael G.; Van Voorhis, Troy
2014-08-07
Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between the two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the “Landau-Zener resummation” of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics.
Resummed memory kernels in generalized system-bath master equations
NASA Astrophysics Data System (ADS)
Mavros, Michael G.; Van Voorhis, Troy
2014-08-01
Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between the two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the "Landau-Zener resummation" of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics.
Resummed memory kernels in generalized system-bath master equations.
Mavros, Michael G; Van Voorhis, Troy
2014-08-01
Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between the two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the "Landau-Zener resummation" of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics. PMID:25106575
Kernel Methods on Riemannian Manifolds with Gaussian RBF Kernels.
Jayasumana, Sadeep; Hartley, Richard; Salzmann, Mathieu; Li, Hongdong; Harandi, Mehrtash
2015-12-01
In this paper, we develop an approach to exploiting kernel methods with manifold-valued data. In many computer vision problems, the data can be naturally represented as points on a Riemannian manifold. Due to the non-Euclidean geometry of Riemannian manifolds, usual Euclidean computer vision and machine learning algorithms yield inferior results on such data. In this paper, we define Gaussian radial basis function (RBF)-based positive definite kernels on manifolds that permit us to embed a given manifold with a corresponding metric in a high dimensional reproducing kernel Hilbert space. These kernels make it possible to utilize algorithms developed for linear spaces on nonlinear manifold-valued data. Since the Gaussian RBF defined with any given metric is not always positive definite, we present a unified framework for analyzing the positive definiteness of the Gaussian RBF on a generic metric space. We then use the proposed framework to identify positive definite kernels on two specific manifolds commonly encountered in computer vision: the Riemannian manifold of symmetric positive definite matrices and the Grassmann manifold, i.e., the Riemannian manifold of linear subspaces of a Euclidean space. We show that many popular algorithms designed for Euclidean spaces, such as support vector machines, discriminant analysis and principal component analysis can be generalized to Riemannian manifolds with the help of such positive definite Gaussian kernels. PMID:26539851
DFT calculations of molecular excited states using an orbital-dependent nonadiabatic exchange kernel
Ipatov, A. N.
2010-02-15
A density functional method for computing molecular excitation spectra is presented that uses a frequency-dependent kernel and takes into account the nonlocality of exchange interaction. Owing to its high numerical stability and the use of a nonadiabatic (frequency-dependent) exchange kernel, the proposed approach provides a qualitatively correct description of the asymptotic behavior of charge-transfer excitation energies.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 8 2011-01-01 2011-01-01 false Kernel weight. 981.9 Section 981.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Definitions § 981.9 Kernel weight. Kernel weight means the weight of kernels,...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Kernel weight. 981.9 Section 981.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Definitions § 981.9 Kernel weight. Kernel weight means the weight of kernels,...
NASA Astrophysics Data System (ADS)
Hirthe, Eugenia M.; Graf, Thomas
2012-12-01
The automatic non-iterative second-order time-stepping scheme based on the temporal truncation error proposed by Kavetski et al. [Kavetski D, Binning P, Sloan SW. Non-iterative time-stepping schemes with adaptive truncation error control for the solution of Richards equation. Water Resour Res 2002;38(10):1211, http://dx.doi.org/10.1029/2001WR000720.] is implemented into the code of the HydroGeoSphere model. This time-stepping scheme is applied for the first time to the low-Rayleigh-number thermal Elder problem of free convection in porous media [van Reeuwijk M, Mathias SA, Simmons CT, Ward JD. Insights from a pseudospectral approach to the Elder problem. Water Resour Res 2009;45:W04416, http://dx.doi.org/10.1029/2008WR007421.], and to the solutal [Shikaze SG, Sudicky EA, Schwartz FW. Density-dependent solute transport in discretely-fractured geological media: is prediction possible? J Contam Hydrol 1998;34:273-91] problem of free convection in fractured-porous media. Numerical simulations demonstrate that the proposed scheme efficiently limits the temporal truncation error to a user-defined tolerance by controlling the time-step size. The non-iterative second-order time-stepping scheme can be applied to (i) thermal and solutal variable-density flow problems, (ii) linear and non-linear density functions, and (iii) problems including porous and fractured-porous media.
Cusp Kernels for Velocity-Changing Collisions
NASA Astrophysics Data System (ADS)
McGuyer, B. H.; Marsland, R., III; Olsen, B. A.; Happer, W.
2012-05-01
We introduce an analytical kernel, the “cusp” kernel, to model the effects of velocity-changing collisions on optically pumped atoms in low-pressure buffer gases. Like the widely used Keilson-Storer kernel [J. Keilson and J. E. Storer, Q. Appl. Math. 10, 243 (1952)QAMAAY0033-569X], cusp kernels are characterized by a single parameter and preserve a Maxwellian velocity distribution. Cusp kernels and their superpositions are more useful than Keilson-Storer kernels, because they are more similar to real kernels inferred from measurements or theory and are easier to invert to find steady-state velocity distributions.
Volcano clustering determination: Bivariate Gauss vs. Fisher kernels
NASA Astrophysics Data System (ADS)
Cañón-Tapia, Edgardo
2013-05-01
Underlying many studies of volcano clustering is the implicit assumption that vent distribution can be studied by using kernels originally devised for distribution in plane surfaces. Nevertheless, an important change in topology in the volcanic context is related to the distortion that is introduced when attempting to represent features found on the surface of a sphere that are being projected into a plane. This work explores the extent to which different topologies of the kernel used to study the spatial distribution of vents can introduce significant changes in the obtained density functions. To this end, a planar (Gauss) and a spherical (Fisher) kernels are mutually compared. The role of the smoothing factor in these two kernels is also explored with some detail. The results indicate that the topology of the kernel is not extremely influential, and that either type of kernel can be used to characterize a plane or a spherical distribution with exactly the same detail (provided that a suitable smoothing factor is selected in each case). It is also shown that there is a limitation on the resolution of the Fisher kernel relative to the typical separation between data that can be accurately described, because data sets with separations lower than 500 km are considered as a single cluster using this method. In contrast, the Gauss kernel can provide adequate resolutions for vent distributions at a wider range of separations. In addition, this study also shows that the numerical value of the smoothing factor (or bandwidth) of both the Gauss and Fisher kernels has no unique nor direct relationship with the relevant separation among data. In order to establish the relevant distance, it is necessary to take into consideration the value of the respective smoothing factor together with a level of statistical significance at which the contributions to the probability density function will be analyzed. Based on such reference level, it is possible to create a hierarchy of
Gergs, André; Preuss, Thomas G.; Palmqvist, Annemette
2014-01-01
Population size is often regulated by negative feedback between population density and individual fitness. At high population densities, animals run into double trouble: they might concurrently suffer from overexploitation of resources and also from negative interference among individuals regardless of resource availability, referred to as crowding. Animals are able to adapt to resource shortages by exhibiting a repertoire of life history and physiological plasticities. In addition to resource-related plasticity, crowding might lead to reduced fitness, with consequences for individual life history. We explored how different mechanisms behind resource-related plasticity and crowding-related fitness act independently or together, using the water flea Daphnia magna as a case study. For testing hypotheses related to mechanisms of plasticity and crowding stress across different biological levels, we used an individual-based population model that is based on dynamic energy budget theory. Each of the hypotheses, represented by a sub-model, is based on specific assumptions on how the uptake and allocation of energy are altered under conditions of resource shortage or crowding. For cross-level testing of different hypotheses, we explored how well the sub-models fit individual level data and also how well they predict population dynamics under different conditions of resource availability. Only operating resource-related and crowding-related hypotheses together enabled accurate model predictions of D. magna population dynamics and size structure. Whereas this study showed that various mechanisms might play a role in the negative feedback between population density and individual life history, it also indicated that different density levels might instigate the onset of the different mechanisms. This study provides an example of how the integration of dynamic energy budget theory and individual-based modelling can facilitate the exploration of mechanisms behind the regulation
Removing blur kernel noise via a hybrid ℓp norm
NASA Astrophysics Data System (ADS)
Yu, Xin; Zhang, Shunli; Zhao, Xiaolin; Zhang, Li
2015-01-01
When estimating a sharp image from a blurred one, blur kernel noise often leads to inaccurate recovery. We develop an effective method to estimate a blur kernel which is able to remove kernel noise and prevent the production of an overly sparse kernel. Our method is based on an iterative framework which alternatingly recovers the sharp image and estimates the blur kernel. In the image recovery step, we utilize the total variation (TV) regularization to recover latent images. In solving TV regularization, we propose a new criterion which adaptively terminates the iterations before convergence. While improving the efficiency, the quality of the final results is not degraded. In the kernel estimation step, we develop a metric to measure the usefulness of image edges, by which we can reduce the ambiguity of kernel estimation caused by small-scale edges. We also propose a hybrid ℓp norm, which is composed of ℓ2 norm and ℓp norm with 0.7≤p<1, to construct a sparsity constraint. Using the hybrid ℓp norm, we reduce a wider range of kernel noise and recover a more accurate blur kernel. The experiments show that the proposed method achieves promising results on both synthetic and real images.
NASA Astrophysics Data System (ADS)
Ardisana, R. N.; Miller, C. A.; Sivaguru, M.; Fouke, B. W.
2013-12-01
Corals are a key reservoir of biodiversity in coastal, shallow water tropical marine environments, and density banding in their aragonite skeletons is used as a sensitive record of paleoclimate. Therefore, the cellular response of corals to environmental change and its expression in skeletal structure is of significant importance. Chromatophores, pigment-bearing cells within the ectoderm of hermatypic corals, serve to both enhance the photosynthetic activity of zooxanthellae symbionts, as well as protect the coral animal from harmful UV radiation. Yet connections have not previously been drawn between chromatophore tissue density and the development of skeletal density bands. A histological analysis of the coral Montastrea faveolata has therefore been conducted across a bathymetric gradient of 1-20 m on the southern Caribbean island of Curaçao. A combination of field and laboratory photography, serial block face imaging (SBFI), two-photon laser scanning microscopy (TPLSM), and 3D image analysis has been applied to test whether M. faveolata adapts to increasing water depth and decreasing photosynthetically active radiation by shifting toward a more heterotrophic lifestyle (decreasing zooxanthellae tissue density, increasing mucocyte tissue density, and decreasing chromatophores density). This study is among the first to collect and evaluate histological data in the spatial context of an entire unprocessed coral polyp. TPLSM was used to optically thin section unprocessed tissue biopsies with quantitative image analysis to yield a nanometer-scale three-dimensional map of the quantity and distribution of the symbionts (zooxanthellae) and a host fluorescent pigments (chromatophores), which is thought to have photoprotective properties, within the context of an entire coral polyp. Preliminary results have offered new insight regarding the three-dimensional distribution and abundance of chromatophores and have identified: (1) M. faveolata tissue collected from 8M SWD do
Bivariate discrete beta Kernel graduation of mortality data.
Mazza, Angelo; Punzo, Antonio
2015-07-01
Various parametric/nonparametric techniques have been proposed in literature to graduate mortality data as a function of age. Nonparametric approaches, as for example kernel smoothing regression, are often preferred because they do not assume any particular mortality law. Among the existing kernel smoothing approaches, the recently proposed (univariate) discrete beta kernel smoother has been shown to provide some benefits. Bivariate graduation, over age and calendar years or durations, is common practice in demography and actuarial sciences. In this paper, we generalize the discrete beta kernel smoother to the bivariate case, and we introduce an adaptive bandwidth variant that may provide additional benefits when data on exposures to the risk of death are available; furthermore, we outline a cross-validation procedure for bandwidths selection. Using simulations studies, we compare the bivariate approach proposed here with its corresponding univariate formulation and with two popular nonparametric bivariate graduation techniques, based on Epanechnikov kernels and on P-splines. To make simulations realistic, a bivariate dataset, based on probabilities of dying recorded for the US males, is used. Simulations have confirmed the gain in performance of the new bivariate approach with respect to both the univariate and the bivariate competitors. PMID:25084764
Chebyshev moment problems: Maximum entropy and kernel polynomial methods
Silver, R.N.; Roeder, H.; Voter, A.F.; Kress, J.D.
1995-12-31
Two Chebyshev recursion methods are presented for calculations with very large sparse Hamiltonians, the kernel polynomial method (KPM) and the maximum entropy method (MEM). They are applicable to physical properties involving large numbers of eigenstates such as densities of states, spectral functions, thermodynamics, total energies for Monte Carlo simulations and forces for tight binding molecular dynamics. this paper emphasizes efficient algorithms.
Kernel approximate Bayesian computation in population genetic inferences.
Nakagome, Shigeki; Fukumizu, Kenji; Mano, Shuhei
2013-12-01
Approximate Bayesian computation (ABC) is a likelihood-free approach for Bayesian inferences based on a rejection algorithm method that applies a tolerance of dissimilarity between summary statistics from observed and simulated data. Although several improvements to the algorithm have been proposed, none of these improvements avoid the following two sources of approximation: 1) lack of sufficient statistics: sampling is not from the true posterior density given data but from an approximate posterior density given summary statistics; and 2) non-zero tolerance: sampling from the posterior density given summary statistics is achieved only in the limit of zero tolerance. The first source of approximation can be improved by adding a summary statistic, but an increase in the number of summary statistics could introduce additional variance caused by the low acceptance rate. Consequently, many researchers have attempted to develop techniques to choose informative summary statistics. The present study evaluated the utility of a kernel-based ABC method [Fukumizu, K., L. Song and A. Gretton (2010): "Kernel Bayes' rule: Bayesian inference with positive definite kernels," arXiv, 1009.5736 and Fukumizu, K., L. Song and A. Gretton (2011): "Kernel Bayes' rule. Advances in Neural Information Processing Systems 24." In: J. Shawe-Taylor and R. S. Zemel and P. Bartlett and F. Pereira and K. Q. Weinberger, (Eds.), pp. 1549-1557., NIPS 24: 1549-1557] for complex problems that demand many summary statistics. Specifically, kernel ABC was applied to population genetic inference. We demonstrate that, in contrast to conventional ABCs, kernel ABC can incorporate a large number of summary statistics while maintaining high performance of the inference. PMID:24150124
Iris Image Blur Detection with Multiple Kernel Learning
NASA Astrophysics Data System (ADS)
Pan, Lili; Xie, Mei; Mao, Ling
In this letter, we analyze the influence of motion and out-of-focus blur on both frequency spectrum and cepstrum of an iris image. Based on their characteristics, we define two new discriminative blur features represented by Energy Spectral Density Distribution (ESDD) and Singular Cepstrum Histogram (SCH). To merge the two features for blur detection, a merging kernel which is a linear combination of two kernels is proposed when employing Support Vector Machine. Extensive experiments demonstrate the validity of our method by showing the improved blur detection performance on both synthetic and real datasets.
Silva, P R B; Lobeck-Luchterhand, K M; Cerri, R L A; Haines, D M; Ballou, M A; Endres, M I; Chebel, R C
2016-01-01
Objectives were to evaluate the effects of prepartum stocking density on innate and adaptive leukocyte responses, serum cortisol and haptoglobin concentrations and hair cortisol concentration of Jersey cows. The cows (254 ± 3d of gestation) were balanced for parity (nulliparous vs. parous) and previous lactation projected 305-d mature equivalent milk yield and assigned to one of two treatments: 80SD=80% stocking density (38 animals/48 headlocks) and 100SD=100% stocking density (48 animals/48 headlocks). Pens (n=4) were identical in size and design and each pen received each treatment a total of 2 times (4 replicates; 80SD: n=338; 100SD: n=418). A sub-group of cows (n=48/treatment per parity) was randomly selected on week 1 of each replicate from which blood was sampled weekly from d -14 to 14 (d 0=calving) to determine polymorphonuclear leukocyte (PMNL) phagocytosis, oxidative burst, and expression of CD18 and L-selectin, and hemogram. The same sub-group of cows was treated with chicken egg ovalbumin on d -21, -7, and 7 and had blood sampled weekly from d -21 to 21 for determination of serum IgG anti-ovalbumin concentration. Blood was sampled weekly from d -21 to 21 to determine glucose, cortisol, and haptoglobin concentrations in serum. Hair samples collected at enrollment and within 24h of calving were analyzed for cortisol concentration. The percentage of leukocytes classified as granulocyte and the granulocyte to the lymphocyte ratio were not affected by treatment. Treatment did not affect the percentage of PMNL positive for phagocytosis and oxidative burst or the intensity of phagocytosis and oxidative burst. Similarly, treatment did not affect the percentage of PMNL expressing CD18 and L-selectin or the intensity of expression of CD18 and L-selectin. Concentration of IgG anti-ovalbumin was not affected by treatment. Serum concentrations of haptoglobin and cortisol were not affected by treatment. Similarly, hair cortisol concentration at calving was not
Huang, Jessie Y.; Howell, Rebecca M.; Mirkovic, Dragan; Followill, David S.; Kry, Stephen F.; Eklund, David; Childress, Nathan L.
2013-12-15
Purpose: Several simplifications used in clinical implementations of the convolution/superposition (C/S) method, specifically, density scaling of water kernels for heterogeneous media and use of a single polyenergetic kernel, lead to dose calculation inaccuracies. Although these weaknesses of the C/S method are known, it is not well known which of these simplifications has the largest effect on dose calculation accuracy in clinical situations. The purpose of this study was to generate and characterize high-resolution, polyenergetic, and material-specific energy deposition kernels (EDKs), as well as to investigate the dosimetric impact of implementing spatially variant polyenergetic and material-specific kernels in a collapsed cone C/S algorithm.Methods: High-resolution, monoenergetic water EDKs and various material-specific EDKs were simulated using the EGSnrc Monte Carlo code. Polyenergetic kernels, reflecting the primary spectrum of a clinical 6 MV photon beam at different locations in a water phantom, were calculated for different depths, field sizes, and off-axis distances. To investigate the dosimetric impact of implementing spatially variant polyenergetic kernels, depth dose curves in water were calculated using two different implementations of the collapsed cone C/S method. The first method uses a single polyenergetic kernel, while the second method fully takes into account spectral changes in the convolution calculation. To investigate the dosimetric impact of implementing material-specific kernels, depth dose curves were calculated for a simplified titanium implant geometry using both a traditional C/S implementation that performs density scaling of water kernels and a novel implementation using material-specific kernels.Results: For our high-resolution kernels, we found good agreement with the Mackie et al. kernels, with some differences near the interaction site for low photon energies (<500 keV). For our spatially variant polyenergetic kernels, we found
A method of smoothed particle hydrodynamics using spheroidal kernels
NASA Technical Reports Server (NTRS)
Fulbright, Michael S.; Benz, Willy; Davies, Melvyn B.
1995-01-01
We present a new method of three-dimensional smoothed particle hydrodynamics (SPH) designed to model systems dominated by deformation along a preferential axis. These systems cause severe problems for SPH codes using spherical kernels, which are best suited for modeling systems which retain rough spherical symmetry. Our method allows the smoothing length in the direction of the deformation to evolve independently of the smoothing length in the perpendicular plane, resulting in a kernel with a spheroidal shape. As a result the spatial resolution in the direction of deformation is significantly improved. As a test case we present the one-dimensional homologous collapse of a zero-temperature, uniform-density cloud, which serves to demonstrate the advantages of spheroidal kernels. We also present new results on the problem of the tidal disruption of a star by a massive black hole.
RTOS kernel in portable electrocardiograph
NASA Astrophysics Data System (ADS)
Centeno, C. A.; Voos, J. A.; Riva, G. G.; Zerbini, C.; Gonzalez, E. A.
2011-12-01
This paper presents the use of a Real Time Operating System (RTOS) on a portable electrocardiograph based on a microcontroller platform. All medical device digital functions are performed by the microcontroller. The electrocardiograph CPU is based on the 18F4550 microcontroller, in which an uCOS-II RTOS can be embedded. The decision associated with the kernel use is based on its benefits, the license for educational use and its intrinsic time control and peripherals management. The feasibility of its use on the electrocardiograph is evaluated based on the minimum memory requirements due to the kernel structure. The kernel's own tools were used for time estimation and evaluation of resources used by each process. After this feasibility analysis, the migration from cyclic code to a structure based on separate processes or tasks able to synchronize events is used; resulting in an electrocardiograph running on one Central Processing Unit (CPU) based on RTOS.
Technology Transfer Automated Retrieval System (TEKTRAN)
A new adaptive time-frequency (t-f) analysis and classification procedure is applied to impact acoustic signals for detecting hazelnuts with cracked shells and three types of damaged wheat kernels. Kernels were dropped onto a steel plate, and the resulting impact acoustic signals were recorded with ...
Boundary conditions for gas flow problems from anisotropic scattering kernels
NASA Astrophysics Data System (ADS)
To, Quy-Dong; Vu, Van-Huyen; Lauriat, Guy; Léonard, Céline
2015-10-01
The paper presents an interface model for gas flowing through a channel constituted of anisotropic wall surfaces. Using anisotropic scattering kernels and Chapman Enskog phase density, the boundary conditions (BCs) for velocity, temperature, and discontinuities including velocity slip and temperature jump at the wall are obtained. Two scattering kernels, Dadzie and Méolans (DM) kernel, and generalized anisotropic Cercignani-Lampis (ACL) are examined in the present paper, yielding simple BCs at the wall fluid interface. With these two kernels, we rigorously recover the analytical expression for orientation dependent slip shown in our previous works [Pham et al., Phys. Rev. E 86, 051201 (2012) and To et al., J. Heat Transfer 137, 091002 (2015)] which is in good agreement with molecular dynamics simulation results. More important, our models include both thermal transpiration effect and new equations for the temperature jump. While the same expression depending on the two tangential accommodation coefficients is obtained for slip velocity, the DM and ACL temperature equations are significantly different. The derived BC equations associated with these two kernels are of interest for the gas simulations since they are able to capture the direction dependent slip behavior of anisotropic interfaces.
An adaptive SPH method for strong shocks
NASA Astrophysics Data System (ADS)
Sigalotti, Leonardo Di G.; López, Hender; Trujillo, Leonardo
2009-09-01
We propose an alternative SPH scheme to usual SPH Godunov-type methods for simulating supersonic compressible flows with sharp discontinuities. The method relies on an adaptive density kernel estimation (ADKE) algorithm, which allows the width of the kernel interpolant to vary locally in space and time so that the minimum necessary smoothing is applied in regions of low density. We have performed a von Neumann stability analysis of the SPH equations for an ideal gas and derived the corresponding dispersion relation in terms of the local width of the kernel. Solution of the dispersion relation in the short wavelength limit shows that stability is achieved for a wide range of the ADKE parameters. Application of the method to high Mach number shocks confirms the predictions of the linear analysis. Examples of the resolving power of the method are given for a set of difficult problems, involving the collision of two strong shocks, the strong shock-tube test, and the interaction of two blast waves.
Point-Kernel Shielding Code System.
Energy Science and Technology Software Center (ESTSC)
1982-02-17
Version 00 QAD-BSA is a three-dimensional, point-kernel shielding code system based upon the CCC-48/QAD series. It is designed to calculate photon dose rates and heating rates using exponential attenuation and infinite medium buildup factors. Calculational provisions include estimates of fast neutron penetration using data computed by the moments method. Included geometry routines can describe complicated source and shield geometries. An internal library contains data for many frequently used structural and shielding materials, enabling the codemore » to solve most problems with only source strengths and problem geometry required as input. This code system adapts especially well to problems requiring multiple sources and sources with asymmetrical geometry. In addition to being edited separately, the total interaction rates from many sources may be edited at each detector point. Calculated photon interaction rates agree closely with those obtained using QAD-P5A.« less
Broadband Waveform Sensitivity Kernels for Large-Scale Seismic Tomography
NASA Astrophysics Data System (ADS)
Nissen-Meyer, T.; Stähler, S. C.; van Driel, M.; Hosseini, K.; Auer, L.; Sigloch, K.
2015-12-01
Seismic sensitivity kernels, i.e. the basis for mapping misfit functionals to structural parameters in seismic inversions, have received much attention in recent years. Their computation has been conducted via ray-theory based approaches (Dahlen et al., 2000) or fully numerical solutions based on the adjoint-state formulation (e.g. Tromp et al., 2005). The core problem is the exuberant computational cost due to the large number of source-receiver pairs, each of which require solutions to the forward problem. This is exacerbated in the high-frequency regime where numerical solutions become prohibitively expensive. We present a methodology to compute accurate sensitivity kernels for global tomography across the observable seismic frequency band. These kernels rely on wavefield databases computed via AxiSEM (abstract ID# 77891, www.axisem.info), and thus on spherically symmetric models. As a consequence of this method's numerical efficiency even in high-frequency regimes, kernels can be computed in a time- and frequency-dependent manner, thus providing the full generic mapping from perturbed waveform to perturbed structure. Such waveform kernels can then be used for a variety of misfit functions, structural parameters and refiltered into bandpasses without recomputing any wavefields. A core component of the kernel method presented here is the mapping from numerical wavefields to inversion meshes. This is achieved by a Monte-Carlo approach, allowing for convergent and controllable accuracy on arbitrarily shaped tetrahedral and hexahedral meshes. We test and validate this accuracy by comparing to reference traveltimes, show the projection onto various locally adaptive inversion meshes and discuss computational efficiency for ongoing tomographic applications in the range of millions of observed body-wave data between periods of 2-30s.
Lind, B K; Brahme, A
1992-04-01
The problem of choosing radiation quantities and units for energy deposition kernels and their associated kernel densities is treated with the aim of making them consistent with related classical radiation quantities and units such as restricted mass stopping powers and mass attenuation coefficients. It is shown that it is very useful to define the kernels h(r), in terms of the quotient of the mean specific energy imparted to the medium by the radiant energy incident on a volume element centred at the origin of the kernel. The basic building block used to generate these kernels is the point energy deposition kernel, h(p), describing the spatial distribution of the energy imparted by a photon interacting at a point in a medium. This will allow the kernels to be regarded as generalizations of the traditional mass stopping and attenuation coefficients, which in detail describe the spatial distribution of the mean energy deposition around an interaction site. As a consequence, the irradiation or kernel density, f(r) should be expressed in terms of the radiant energy incident per unit volume of the medium. It is shown that the kernel density is equal to minus the divergence of the incident unattenuated vectorial energy fluence, and it therefore acts as an irradiation density for the incident vectorial energy fluence. The microscopic kernels or the irradiation density may thus be viewed as a perfect 'sink' distribution to the required incident photon energy fluence which is totally absorbed at f(r), and instead replaced by the kernels which describe the detailed energy deposition in the medium in coordinates centred at the sinks. From these definitions the required incident energy fluence from an external radiation source used for treatment realization can be determined directly by projecting the irradiation density on the relevant positions of the radiation source. This procedure has the valuable property that maximal calculational accuracy is achieved in the tumour
Wu, Wei; Wan, Xuejie; Shah, Farooq; Fahad, Shah; Huang, Jianliang
2014-01-01
Sheath blight of rice, caused by Rhizoctonia solani, is one of the most devastating rice diseases worldwide. No rice cultivar has been found to be completely resistant to this fungus. Identifying antioxidant enzymes activities (activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)) and malondialdehyde content (MDA) responding to sheath blight infestation is imperative to understand the defensive mechanism systems of rice. In the present study, two inoculation methods (toothpick and agar block method) were tested in double-season rice. Toothpick method had greater lesion length than agar block method in late season. A higher MDA content was found under toothpick method compared with agar block method, which led to greater POD and SOD activities. Dense planting caused higher lesion length resulting in a higher MDA content, which also subsequently stimulated higher POD and SOD activity. Sheath blight severity was significantly related to the activity of antioxidant enzyme during both seasons. The present study implies that rice plants possess a system of antioxidant protective enzymes which helps them in adaptation to sheath blight infection stresses. Several agronomic practices, such as rational use of fertilizers and optimum planting density, involved in regulating antioxidant protective enzyme systems can be regarded as promising strategy to suppress the sheath blight development. PMID:25136671
Technology Transfer Automated Retrieval System (TEKTRAN)
Oat (Avena sativa L.) kernels appear to contain much higher polar lipid concentrations than other plant tissues. We have extracted, identified, and quantified polar lipids from 18 oat genotypes grown in replicated plots in three environments in order to determine genotypic or environmental variation...
Accelerating the Original Profile Kernel
Hamp, Tobias; Goldberg, Tatyana; Rost, Burkhard
2013-01-01
One of the most accurate multi-class protein classification systems continues to be the profile-based SVM kernel introduced by the Leslie group. Unfortunately, its CPU requirements render it too slow for practical applications of large-scale classification tasks. Here, we introduce several software improvements that enable significant acceleration. Using various non-redundant data sets, we demonstrate that our new implementation reaches a maximal speed-up as high as 14-fold for calculating the same kernel matrix. Some predictions are over 200 times faster and render the kernel as possibly the top contender in a low ratio of speed/performance. Additionally, we explain how to parallelize various computations and provide an integrative program that reduces creating a production-quality classifier to a single program call. The new implementation is available as a Debian package under a free academic license and does not depend on commercial software. For non-Debian based distributions, the source package ships with a traditional Makefile-based installer. Download and installation instructions can be found at https://rostlab.org/owiki/index.php/Fast_Profile_Kernel. Bugs and other issues may be reported at https://rostlab.org/bugzilla3/enter_bug.cgi?product=fastprofkernel. PMID:23825697
Local Observed-Score Kernel Equating
ERIC Educational Resources Information Center
Wiberg, Marie; van der Linden, Wim J.; von Davier, Alina A.
2014-01-01
Three local observed-score kernel equating methods that integrate methods from the local equating and kernel equating frameworks are proposed. The new methods were compared with their earlier counterparts with respect to such measures as bias--as defined by Lord's criterion of equity--and percent relative error. The local kernel item response…
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... Standards for Shelled Almonds, or which has embedded dirt or other foreign material not easily removed...
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... Standards for Shelled Almonds, or which has embedded dirt or other foreign material not easily removed...
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... Standards for Shelled Almonds, or which has embedded dirt or other foreign material not easily removed...
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2011 CFR
2011-01-01
... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... Standards for Shelled Almonds, or which has embedded dirt or other foreign material not easily removed...
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2012 CFR
2012-01-01
... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... Standards for Shelled Almonds, or which has embedded dirt or other foreign material not easily removed...
NASA Astrophysics Data System (ADS)
Schaeck, S.; Karspeck, T.; Ott, C.; Weckler, M.; Stoermer, A. O.
2011-03-01
In March 2007 the BMW Group has launched the micro-hybrid functions brake energy regeneration (BER) and automatic start and stop function (ASSF). Valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology are applied in vehicles with micro-hybrid power system (MHPS). In both part I and part II of this publication vehicles with MHPS and AGM batteries are subject to a field operational test (FOT). Test vehicles with conventional power system (CPS) and flooded batteries were used as a reference. In the FOT sample batteries were mounted several times and electrically tested in the laboratory intermediately. Vehicle- and battery-related diagnosis data were read out for each test run and were matched with laboratory data in a data base. The FOT data were analyzed by the use of two-dimensional, nonparametric kernel estimation for clear data presentation. The data show that capacity loss in the MHPS is comparable to the CPS. However, the influence of mileage performance, which cannot be separated, suggests that battery stress is enhanced in the MHPS although a battery refresh function is applied. Anyway, the FOT demonstrates the unsuitability of flooded batteries for the MHPS because of high early capacity loss due to acid stratification and because of vanishing cranking performance due to increasing internal resistance. Furthermore, the lack of dynamic charge acceptance for high energy regeneration efficiency is illustrated. Under the presented FOT conditions charge acceptance of lead-acid (LA) batteries decreases to less than one third for about half of the sample batteries compared to new battery condition. In part II of this publication FOT data are presented by multiple regression analysis (Schaeck et al., submitted for publication [1]).
Smith, D.R.; Rogala, J.T.; Gray, B.R.; Zigler, S.J.; Newton, T.J.
2011-01-01
Reliable estimates of abundance are needed to assess consequences of proposed habitat restoration and enhancement projects on freshwater mussels in the Upper Mississippi River (UMR). Although there is general guidance on sampling techniques for population assessment of freshwater mussels, the actual performance of sampling designs can depend critically on the population density and spatial distribution at the project site. To evaluate various sampling designs, we simulated sampling of populations, which varied in density and degree of spatial clustering. Because of logistics and costs of large river sampling and spatial clustering of freshwater mussels, we focused on adaptive and non-adaptive versions of single and two-stage sampling. The candidate designs performed similarly in terms of precision (CV) and probability of species detection for fixed sample size. Both CV and species detection were determined largely by density, spatial distribution and sample size. However, designs did differ in the rate that occupied quadrats were encountered. Occupied units had a higher probability of selection using adaptive designs than conventional designs. We used two measures of cost: sample size (i.e. number of quadrats) and distance travelled between the quadrats. Adaptive and two-stage designs tended to reduce distance between sampling units, and thus performed better when distance travelled was considered. Based on the comparisons, we provide general recommendations on the sampling designs for the freshwater mussels in the UMR, and presumably other large rivers.
A model for the behavior of thorium uranium mixed oxide kernels in the pelletizing process
NASA Astrophysics Data System (ADS)
Ferreira, R. A. N.; Jordão, E.
2006-05-01
A behavior model of nuclear fuel kernels in the pelletizing process was developed to predict the microstructure of (Th,5%U)O 2 sintered pellets. Methods, equipments and components were developed in order to measure the density, the specific surface area and the crushing strength of the kernels and produce fuel pellets. It enables a correlation between the kernels properties and the microstructure, density and open porosity that were obtained in the fuel pellet produced with these kernels. It was possible to obtain a mathematical expression that allows one to calculate, from the kernel density and specific surface, the density that will be obtained in the fuel pellet for each compactation pressure value. The investigation showed which kernels properties are desired to obtain fuel pellets that satisfy the quality requirements for a stable performance in a power reactor. This model has been validated by experimental results and fuel pellets were obtained with an optimized microstructure that satisfies the fuel specification for an in-pile stable behavior.
NASA Astrophysics Data System (ADS)
Pan, Xiaolong; Liu, Bo; Zheng, Jianglong; Tian, Qinghua
2016-08-01
We propose and demonstrate a low complexity Reed-Solomon-based low-density parity-check (RS-LDPC) code with adaptive puncturing decoding algorithm for elastic optical transmission system. Partial received codes and the relevant column in parity-check matrix can be punctured to reduce the calculation complexity by adaptive parity-check matrix during decoding process. The results show that the complexity of the proposed decoding algorithm is reduced by 30% compared with the regular RS-LDPC system. The optimized code rate of the RS-LDPC code can be obtained after five times iteration.
Kernel Near Principal Component Analysis
MARTIN, SHAWN B.
2002-07-01
We propose a novel algorithm based on Principal Component Analysis (PCA). First, we present an interesting approximation of PCA using Gram-Schmidt orthonormalization. Next, we combine our approximation with the kernel functions from Support Vector Machines (SVMs) to provide a nonlinear generalization of PCA. After benchmarking our algorithm in the linear case, we explore its use in both the linear and nonlinear cases. We include applications to face data analysis, handwritten digit recognition, and fluid flow.
Derivation of aerodynamic kernel functions
NASA Technical Reports Server (NTRS)
Dowell, E. H.; Ventres, C. S.
1973-01-01
The method of Fourier transforms is used to determine the kernel function which relates the pressure on a lifting surface to the prescribed downwash within the framework of Dowell's (1971) shear flow model. This model is intended to improve upon the potential flow aerodynamic model by allowing for the aerodynamic boundary layer effects neglected in the potential flow model. For simplicity, incompressible, steady flow is considered. The proposed method is illustrated by deriving known results from potential flow theory.
Kernel CMAC with improved capability.
Horváth, Gábor; Szabó, Tamás
2007-02-01
The cerebellar model articulation controller (CMAC) has some attractive features, namely fast learning capability and the possibility of efficient digital hardware implementation. Although CMAC was proposed many years ago, several open questions have been left even for today. The most important ones are about its modeling and generalization capabilities. The limits of its modeling capability were addressed in the literature, and recently, certain questions of its generalization property were also investigated. This paper deals with both the modeling and the generalization properties of CMAC. First, a new interpolation model is introduced. Then, a detailed analysis of the generalization error is given, and an analytical expression of this error for some special cases is presented. It is shown that this generalization error can be rather significant, and a simple regularized training algorithm to reduce this error is proposed. The results related to the modeling capability show that there are differences between the one-dimensional (1-D) and the multidimensional versions of CMAC. This paper discusses the reasons of this difference and suggests a new kernel-based interpretation of CMAC. The kernel interpretation gives a unified framework. Applying this approach, both the 1-D and the multidimensional CMACs can be constructed with similar modeling capability. Finally, this paper shows that the regularized training algorithm can be applied for the kernel interpretations too, which results in a network with significantly improved approximation capabilities. PMID:17278566
RKRD: Runtime Kernel Rootkit Detection
NASA Astrophysics Data System (ADS)
Grover, Satyajit; Khosravi, Hormuzd; Kolar, Divya; Moffat, Samuel; Kounavis, Michael E.
In this paper we address the problem of protecting computer systems against stealth malware. The problem is important because the number of known types of stealth malware increases exponentially. Existing approaches have some advantages for ensuring system integrity but sophisticated techniques utilized by stealthy malware can thwart them. We propose Runtime Kernel Rootkit Detection (RKRD), a hardware-based, event-driven, secure and inclusionary approach to kernel integrity that addresses some of the limitations of the state of the art. Our solution is based on the principles of using virtualization hardware for isolation, verifying signatures coming from trusted code as opposed to malware for scalability and performing system checks driven by events. Our RKRD implementation is guided by our goals of strong isolation, no modifications to target guest OS kernels, easy deployment, minimal infra-structure impact, and minimal performance overhead. We developed a system prototype and conducted a number of experiments which show that the per-formance impact of our solution is negligible.
Zhang, Zhanhui; Wu, Xiangyuan; Shi, Chaonan; Wang, Rongna; Li, Shengfei; Wang, Zhaohui; Liu, Zonghua; Xue, Yadong; Tang, Guiliang; Tang, Jihua
2016-02-01
Kernel development is an important dynamic trait that determines the final grain yield in maize. To dissect the genetic basis of maize kernel development process, a conditional quantitative trait locus (QTL) analysis was conducted using an immortalized F2 (IF2) population comprising 243 single crosses at two locations over 2 years. Volume (KV) and density (KD) of dried developing kernels, together with kernel weight (KW) at different developmental stages, were used to describe dynamic changes during kernel development. Phenotypic analysis revealed that final KW and KD were determined at DAP22 and KV at DAP29. Unconditional QTL mapping for KW, KV and KD uncovered 97 QTLs at different kernel development stages, of which qKW6b, qKW7a, qKW7b, qKW10b, qKW10c, qKV10a, qKV10b and qKV7 were identified under multiple kernel developmental stages and environments. Among the 26 QTLs detected by conditional QTL mapping, conqKW7a, conqKV7a, conqKV10a, conqKD2, conqKD7 and conqKD8a were conserved between the two mapping methodologies. Furthermore, most of these QTLs were consistent with QTLs and genes for kernel development/grain filling reported in previous studies. These QTLs probably contain major genes associated with the kernel development process, and can be used to improve grain yield and quality through marker-assisted selection. PMID:26420507
Some physical properties of ginkgo nuts and kernels
NASA Astrophysics Data System (ADS)
Ch'ng, P. E.; Abdullah, M. H. R. O.; Mathai, E. J.; Yunus, N. A.
2013-12-01
Some data of the physical properties of ginkgo nuts at a moisture content of 45.53% (±2.07) (wet basis) and of their kernels at 60.13% (± 2.00) (wet basis) are presented in this paper. It consists of the estimation of the mean length, width, thickness, the geometric mean diameter, sphericity, aspect ratio, unit mass, surface area, volume, true density, bulk density, and porosity measures. The coefficient of static friction for nuts and kernels was determined by using plywood, glass, rubber, and galvanized steel sheet. The data are essential in the field of food engineering especially dealing with design and development of machines, and equipment for processing and handling agriculture products.
Kernel-based least squares policy iteration for reinforcement learning.
Xu, Xin; Hu, Dewen; Lu, Xicheng
2007-07-01
In this paper, we present a kernel-based least squares policy iteration (KLSPI) algorithm for reinforcement learning (RL) in large or continuous state spaces, which can be used to realize adaptive feedback control of uncertain dynamic systems. By using KLSPI, near-optimal control policies can be obtained without much a priori knowledge on dynamic models of control plants. In KLSPI, Mercer kernels are used in the policy evaluation of a policy iteration process, where a new kernel-based least squares temporal-difference algorithm called KLSTD-Q is proposed for efficient policy evaluation. To keep the sparsity and improve the generalization ability of KLSTD-Q solutions, a kernel sparsification procedure based on approximate linear dependency (ALD) is performed. Compared to the previous works on approximate RL methods, KLSPI makes two progresses to eliminate the main difficulties of existing results. One is the better convergence and (near) optimality guarantee by using the KLSTD-Q algorithm for policy evaluation with high precision. The other is the automatic feature selection using the ALD-based kernel sparsification. Therefore, the KLSPI algorithm provides a general RL method with generalization performance and convergence guarantee for large-scale Markov decision problems (MDPs). Experimental results on a typical RL task for a stochastic chain problem demonstrate that KLSPI can consistently achieve better learning efficiency and policy quality than the previous least squares policy iteration (LSPI) algorithm. Furthermore, the KLSPI method was also evaluated on two nonlinear feedback control problems, including a ship heading control problem and the swing up control of a double-link underactuated pendulum called acrobot. Simulation results illustrate that the proposed method can optimize controller performance using little a priori information of uncertain dynamic systems. It is also demonstrated that KLSPI can be applied to online learning control by incorporating
Visualizing and Interacting with Kernelized Data.
Barbosa, A; Paulovich, F V; Paiva, A; Goldenstein, S; Petronetto, F; Nonato, L G
2016-03-01
Kernel-based methods have experienced a substantial progress in the last years, tuning out an essential mechanism for data classification, clustering and pattern recognition. The effectiveness of kernel-based techniques, though, depends largely on the capability of the underlying kernel to properly embed data in the feature space associated to the kernel. However, visualizing how a kernel embeds the data in a feature space is not so straightforward, as the embedding map and the feature space are implicitly defined by the kernel. In this work, we present a novel technique to visualize the action of a kernel, that is, how the kernel embeds data into a high-dimensional feature space. The proposed methodology relies on a solid mathematical formulation to map kernelized data onto a visual space. Our approach is faster and more accurate than most existing methods while still allowing interactive manipulation of the projection layout, a game-changing trait that other kernel-based projection techniques do not have. PMID:26829242
On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo.
Filippi, Sarah; Barnes, Chris P; Cornebise, Julien; Stumpf, Michael P H
2013-03-01
Approximate Bayesian computation (ABC) has gained popularity over the past few years for the analysis of complex models arising in population genetics, epidemiology and system biology. Sequential Monte Carlo (SMC) approaches have become work-horses in ABC. Here we discuss how to construct the perturbation kernels that are required in ABC SMC approaches, in order to construct a sequence of distributions that start out from a suitably defined prior and converge towards the unknown posterior. We derive optimality criteria for different kernels, which are based on the Kullback-Leibler divergence between a distribution and the distribution of the perturbed particles. We will show that for many complicated posterior distributions, locally adapted kernels tend to show the best performance. We find that the added moderate cost of adapting kernel functions is easily regained in terms of the higher acceptance rate. We demonstrate the computational efficiency gains in a range of toy examples which illustrate some of the challenges faced in real-world applications of ABC, before turning to two demanding parameter inference problems in molecular biology, which highlight the huge increases in efficiency that can be gained from choice of optimal kernels. We conclude with a general discussion of the rational choice of perturbation kernels in ABC SMC settings. PMID:23502346
Modeling reactive transport with particle tracking and kernel estimators
NASA Astrophysics Data System (ADS)
Rahbaralam, Maryam; Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier
2015-04-01
Groundwater reactive transport models are useful to assess and quantify the fate and transport of contaminants in subsurface media and are an essential tool for the analysis of coupled physical, chemical, and biological processes in Earth Systems. Particle Tracking Method (PTM) provides a computationally efficient and adaptable approach to solve the solute transport partial differential equation. On a molecular level, chemical reactions are the result of collisions, combinations, and/or decay of different species. For a well-mixed system, the chem- ical reactions are controlled by the classical thermodynamic rate coefficient. Each of these actions occurs with some probability that is a function of solute concentrations. PTM is based on considering that each particle actually represents a group of molecules. To properly simulate this system, an infinite number of particles is required, which is computationally unfeasible. On the other hand, a finite number of particles lead to a poor-mixed system which is limited by diffusion. Recent works have used this effect to actually model incomplete mix- ing in naturally occurring porous media. In this work, we demonstrate that this effect in most cases should be attributed to a defficient estimation of the concentrations and not to the occurrence of true incomplete mixing processes in porous media. To illustrate this, we show that a Kernel Density Estimation (KDE) of the concentrations can approach the well-mixed solution with a limited number of particles. KDEs provide weighting functions of each particle mass that expands its region of influence, hence providing a wider region for chemical reactions with time. Simulation results show that KDEs are powerful tools to improve state-of-the-art simulations of chemical reactions and indicates that incomplete mixing in diluted systems should be modeled based on alternative conceptual models and not on a limited number of particles.
Nonlinear projection trick in kernel methods: an alternative to the kernel trick.
Kwak, Nojun
2013-12-01
In kernel methods such as kernel principal component analysis (PCA) and support vector machines, the so called kernel trick is used to avoid direct calculations in a high (virtually infinite) dimensional kernel space. In this brief, based on the fact that the effective dimensionality of a kernel space is less than the number of training samples, we propose an alternative to the kernel trick that explicitly maps the input data into a reduced dimensional kernel space. This is easily obtained by the eigenvalue decomposition of the kernel matrix. The proposed method is named as the nonlinear projection trick in contrast to the kernel trick. With this technique, the applicability of the kernel methods is widened to arbitrary algorithms that do not use the dot product. The equivalence between the kernel trick and the nonlinear projection trick is shown for several conventional kernel methods. In addition, we extend PCA-L1, which uses L1-norm instead of L2-norm (or dot product), into a kernel version and show the effectiveness of the proposed approach. PMID:24805227
Results from ORNL Characterization of Nominal 350 ?m NUCO Kernels from the BWXT 69300 Composite
Hunn, John D
2004-06-01
This document is a compilation of characterization data obtained on the nominal 350 {micro}m natural enrichment uranium oxide/uranium carbide kernels (NUCO) produced by BWXT for the Advanced Gas Reactor Fuel dEvelopment and Qualification Program. 5 kg of kernels were produced. G73B-NU-69300R was a 4.9 kg composite. G73B-NU-69301 was a 100 g composite. Size, shape, density, and microstructural analysis were performed on samples riffled from a 100 g sublot (69300R-38) riffled by BWXT from the 69300 composite. Measurements were made using optical microscopy to determine the size and shape of the kernels. Hg porosimetry was performed to measure density. The results are summarized in Table 1-1. Values in the table are for the composite and are calculated at 95% confidence from the measured values of a random sample taken from the 69300R-38 sublot. The NUCO kernel composite met all the specifications in Table 1-1 except the aspect ratio specification. This failure was due in part to broken kernels and in part to very irregularly shaped (bumpy) kernels which apparently came from one batch used for the composite. This abnormally shaped batch made up about 1/4 of the composite. The average open porosity of the kernels was fairly low (0.34 {+-} 0.14%). There appeared to be some closed porosity throughout the kernels but a quantitative measure was not obtained. A brief study of the microstructure of the kernels in the composite showed an oxide outer layer of varying thickness related to the process batch surrounding a center region of carbide and oxide zones. X-ray diffraction showed a phase distribution of around 69-74 wt% oxide versus 26-31 wt% carbide. Most of the carbide was in the form of uranium monocarbide (UC).
NASA Astrophysics Data System (ADS)
van Dijk, A. I. J. M.; Bruijnzeel, L. A.
2001-07-01
To improve the description of rainfall partitioning by a vegetation canopy that changes in time a number of adaptations to the revised analytical model for rainfall interception by sparse canopies [J. Hydrol., 170 (1995) 79] was proposed in the first of two papers. The current paper presents an application of this adapted analytical model to simulate throughfall, stemflow and interception as measured in a mixed agricultural cropping system involving cassava, maize and rice during two seasons of growth and serial harvesting in upland West Java, Indonesia. Measured interception losses were 18 and 8% during the two measuring periods, while stemflow fractions were estimated at 2 and 4%, respectively. The main reasons for these discrepancies were differences in vegetation density and composition, as well as differences in the exposure of the two sites used in the two respective years. Functions describing the development of the leaf area index of each of the component crops in time were developed. Leaf area index (ranging between 0.7 and 3.8) was related to canopy cover fraction (0.41-0.94). Using average values and time series of the respective parameters, interception losses were modelled using both the revised analytical model and the presently adapted version. The results indicate that the proposed model adaptations substantially improve the performance of the analytical model and provide a more solid base for parameterisation of the analytical model in vegetation of variable density.
Image texture analysis of crushed wheat kernels
NASA Astrophysics Data System (ADS)
Zayas, Inna Y.; Martin, C. R.; Steele, James L.; Dempster, Richard E.
1992-03-01
The development of new approaches for wheat hardness assessment may impact the grain industry in marketing, milling, and breeding. This study used image texture features for wheat hardness evaluation. Application of digital imaging to grain for grading purposes is principally based on morphometrical (shape and size) characteristics of the kernels. A composite sample of 320 kernels for 17 wheat varieties were collected after testing and crushing with a single kernel hardness characterization meter. Six wheat classes where represented: HRW, HRS, SRW, SWW, Durum, and Club. In this study, parameters which characterize texture or spatial distribution of gray levels of an image were determined and used to classify images of crushed wheat kernels. The texture parameters of crushed wheat kernel images were different depending on class, hardness and variety of the wheat. Image texture analysis of crushed wheat kernels showed promise for use in class, hardness, milling quality, and variety discrimination.
In-Shell Bulk Density as an Estimator of Farmers Stock Grade Factors
Technology Transfer Automated Retrieval System (TEKTRAN)
The objective of this research was to determine whether or not bulk density can be used to accurately estimate farmer stock grade factors such as total sound mature kernels and other kernels. Physical properties including bulk density, pod size and kernel size distributions are measured as part of t...
Molecular Hydrodynamics from Memory Kernels.
Lesnicki, Dominika; Vuilleumier, Rodolphe; Carof, Antoine; Rotenberg, Benjamin
2016-04-01
The memory kernel for a tagged particle in a fluid, computed from molecular dynamics simulations, decays algebraically as t^{-3/2}. We show how the hydrodynamic Basset-Boussinesq force naturally emerges from this long-time tail and generalize the concept of hydrodynamic added mass. This mass term is negative in the present case of a molecular solute, which is at odds with incompressible hydrodynamics predictions. Lastly, we discuss the various contributions to the friction, the associated time scales, and the crossover between the molecular and hydrodynamic regimes upon increasing the solute radius. PMID:27104730
Carrillo, Snaider; Harkin, Jim; McDaid, Liam; Pande, Sandeep; Cawley, Seamus; McGinley, Brian; Morgan, Fearghal
2012-09-01
The brain is highly efficient in how it processes information and tolerates faults. Arguably, the basic processing units are neurons and synapses that are interconnected in a complex pattern. Computer scientists and engineers aim to harness this efficiency and build artificial neural systems that can emulate the key information processing principles of the brain. However, existing approaches cannot provide the dense interconnect for the billions of neurons and synapses that are required. Recently a reconfigurable and biologically inspired paradigm based on network-on-chip (NoC) and spiking neural networks (SNNs) has been proposed as a new method of realising an efficient, robust computing platform. However, the use of the NoC as an interconnection fabric for large-scale SNNs demands a good trade-off between scalability, throughput, neuron/synapse ratio and power consumption. This paper presents a novel traffic-aware, adaptive NoC router, which forms part of a proposed embedded mixed-signal SNN architecture called EMBRACE (EMulating Biologically-inspiRed ArChitectures in hardwarE). The proposed adaptive NoC router provides the inter-neuron connectivity for EMBRACE, maintaining router communication and avoiding dropped router packets by adapting to router traffic congestion. Results are presented on throughput, power and area performance analysis of the adaptive router using a 90 nm CMOS technology which outperforms existing NoCs in this domain. The adaptive behaviour of the router is also verified on a Stratix II FPGA implementation of a 4 × 2 router array with real-time traffic congestion. The presented results demonstrate the feasibility of using the proposed adaptive NoC router within the EMBRACE architecture to realise large-scale SNNs on embedded hardware. PMID:22561008
Cross-person activity recognition using reduced kernel extreme learning machine.
Deng, Wan-Yu; Zheng, Qing-Hua; Wang, Zhong-Min
2014-05-01
Activity recognition based on mobile embedded accelerometer is very important for developing human-centric pervasive applications such as healthcare, personalized recommendation and so on. However, the distribution of accelerometer data is heavily affected by varying users. The performance will degrade when the model trained on one person is used to others. To solve this problem, we propose a fast and accurate cross-person activity recognition model, known as TransRKELM (Transfer learning Reduced Kernel Extreme Learning Machine) which uses RKELM (Reduced Kernel Extreme Learning Machine) to realize initial activity recognition model. In the online phase OS-RKELM (Online Sequential Reduced Kernel Extreme Learning Machine) is applied to update the initial model and adapt the recognition model to new device users based on recognition results with high confidence level efficiently. Experimental results show that, the proposed model can adapt the classifier to new device users quickly and obtain good recognition performance. PMID:24513850
Code of Federal Regulations, 2011 CFR
2011-01-01
... Standards for Grades of Shelled Pecans Definitions § 51.1441 Half-kernel. Half-kernel means one of the separated halves of an entire pecan kernel with not more than one-eighth of its original volume...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Standards for Grades of Shelled Pecans Definitions § 51.1441 Half-kernel. Half-kernel means one of the separated halves of an entire pecan kernel with not more than one-eighth of its original volume...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Pecans Definitions § 51.1441 Half-kernel. Half-kernel means one of the separated halves of an entire pecan kernel with not more than...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Standards for Grades of Shelled Pecans Definitions § 51.1441 Half-kernel. Half-kernel means one of the separated halves of an entire pecan kernel with not more than one-eighth of its original volume...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Pecans Definitions § 51.1441 Half-kernel. Half-kernel means one of the separated halves of an entire pecan kernel with not more than...
Corn kernel oil and corn fiber oil
Technology Transfer Automated Retrieval System (TEKTRAN)
Unlike most edible plant oils that are obtained directly from oil-rich seeds by either pressing or solvent extraction, corn seeds (kernels) have low levels of oil (4%) and commercial corn oil is obtained from the corn germ (embryo) which is an oil-rich portion of the kernel. Commercial corn oil cou...
Phylodynamic Inference with Kernel ABC and Its Application to HIV Epidemiology
Poon, Art F.Y.
2015-01-01
The shapes of phylogenetic trees relating virus populations are determined by the adaptation of viruses within each host, and by the transmission of viruses among hosts. Phylodynamic inference attempts to reverse this flow of information, estimating parameters of these processes from the shape of a virus phylogeny reconstructed from a sample of genetic sequences from the epidemic. A key challenge to phylodynamic inference is quantifying the similarity between two trees in an efficient and comprehensive way. In this study, I demonstrate that a new distance measure, based on a subset tree kernel function from computational linguistics, confers a significant improvement over previous measures of tree shape for classifying trees generated under different epidemiological scenarios. Next, I incorporate this kernel-based distance measure into an approximate Bayesian computation (ABC) framework for phylodynamic inference. ABC bypasses the need for an analytical solution of model likelihood, as it only requires the ability to simulate data from the model. I validate this “kernel-ABC” method for phylodynamic inference by estimating parameters from data simulated under a simple epidemiological model. Results indicate that kernel-ABC attained greater accuracy for parameters associated with virus transmission than leading software on the same data sets. Finally, I apply the kernel-ABC framework to study a recent outbreak of a recombinant HIV subtype in China. Kernel-ABC provides a versatile framework for phylodynamic inference because it can fit a broader range of models than methods that rely on the computation of exact likelihoods. PMID:26006189
Bayesian Kernel Mixtures for Counts
Canale, Antonio; Dunson, David B.
2011-01-01
Although Bayesian nonparametric mixture models for continuous data are well developed, there is a limited literature on related approaches for count data. A common strategy is to use a mixture of Poissons, which unfortunately is quite restrictive in not accounting for distributions having variance less than the mean. Other approaches include mixing multinomials, which requires finite support, and using a Dirichlet process prior with a Poisson base measure, which does not allow smooth deviations from the Poisson. As a broad class of alternative models, we propose to use nonparametric mixtures of rounded continuous kernels. An efficient Gibbs sampler is developed for posterior computation, and a simulation study is performed to assess performance. Focusing on the rounded Gaussian case, we generalize the modeling framework to account for multivariate count data, joint modeling with continuous and categorical variables, and other complications. The methods are illustrated through applications to a developmental toxicity study and marketing data. This article has supplementary material online. PMID:22523437
Bayesian Kernel Mixtures for Counts.
Canale, Antonio; Dunson, David B
2011-12-01
Although Bayesian nonparametric mixture models for continuous data are well developed, there is a limited literature on related approaches for count data. A common strategy is to use a mixture of Poissons, which unfortunately is quite restrictive in not accounting for distributions having variance less than the mean. Other approaches include mixing multinomials, which requires finite support, and using a Dirichlet process prior with a Poisson base measure, which does not allow smooth deviations from the Poisson. As a broad class of alternative models, we propose to use nonparametric mixtures of rounded continuous kernels. An efficient Gibbs sampler is developed for posterior computation, and a simulation study is performed to assess performance. Focusing on the rounded Gaussian case, we generalize the modeling framework to account for multivariate count data, joint modeling with continuous and categorical variables, and other complications. The methods are illustrated through applications to a developmental toxicity study and marketing data. This article has supplementary material online. PMID:22523437
LoCoH: Non-parameteric kernel methods for constructing home ranges and utilization distributions
Getz, Wayne M.; Fortmann-Roe, Scott; Cross, Paul C.; Lyons, Andrew J.; Ryan, Sadie J.; Wilmers, Christopher C.
2007-01-01
Parametric kernel methods currently dominate the literature regarding the construction of animal home ranges (HRs) and utilization distributions (UDs). These methods frequently fail to capture the kinds of hard boundaries common to many natural systems. Recently a local convex hull (LoCoH) nonparametric kernel method, which generalizes the minimum convex polygon (MCP) method, was shown to be more appropriate than parametric kernel methods for constructing HRs and UDs, because of its ability to identify hard boundaries (e.g., rivers, cliff edges) and convergence to the true distribution as sample size increases. Here we extend the LoCoH in two ways: ‘‘fixed sphere-of-influence,’’ or r -LoCoH (kernels constructed from all points within a fixed radius r of each reference point), and an ‘‘adaptive sphere-of-influence,’’ or a -LoCoH (kernels constructed from all points within a radius a such that the distances of all points within the radius to the reference point sum to a value less than or equal to a ), and compare them to the original ‘‘fixed-number-of-points,’’ or k -LoCoH (all kernels constructed from k -1 nearest neighbors of root points). We also compare these nonparametric LoCoH to parametric kernel methods using manufactured data and data collected from GPS collars on African buffalo in the Kruger National Park, South Africa. Our results demonstrate that LoCoH methods are superior to parametric kernel methods in estimating areas used by animals, excluding unused areas (holes) and, generally, in constructing UDs and HRs arising from the movement of animals influenced by hard boundaries and irregular structures (e.g., rocky outcrops). We also demonstrate that a -LoCoH is generally superior to k - and r -LoCoH (with software for all three methods available at http://locoh.cnr.berkeley.edu).
LoCoH: Nonparameteric Kernel Methods for Constructing Home Ranges and Utilization Distributions
Getz, Wayne M.; Fortmann-Roe, Scott; Wilmers, Christopher C.
2007-01-01
Parametric kernel methods currently dominate the literature regarding the construction of animal home ranges (HRs) and utilization distributions (UDs). These methods frequently fail to capture the kinds of hard boundaries common to many natural systems. Recently a local convex hull (LoCoH) nonparametric kernel method, which generalizes the minimum convex polygon (MCP) method, was shown to be more appropriate than parametric kernel methods for constructing HRs and UDs, because of its ability to identify hard boundaries (e.g., rivers, cliff edges) and convergence to the true distribution as sample size increases. Here we extend the LoCoH in two ways: “fixed sphere-of-influence,” or r-LoCoH (kernels constructed from all points within a fixed radius r of each reference point), and an “adaptive sphere-of-influence,” or a-LoCoH (kernels constructed from all points within a radius a such that the distances of all points within the radius to the reference point sum to a value less than or equal to a), and compare them to the original “fixed-number-of-points,” or k-LoCoH (all kernels constructed from k-1 nearest neighbors of root points). We also compare these nonparametric LoCoH to parametric kernel methods using manufactured data and data collected from GPS collars on African buffalo in the Kruger National Park, South Africa. Our results demonstrate that LoCoH methods are superior to parametric kernel methods in estimating areas used by animals, excluding unused areas (holes) and, generally, in constructing UDs and HRs arising from the movement of animals influenced by hard boundaries and irregular structures (e.g., rocky outcrops). We also demonstrate that a-LoCoH is generally superior to k- and r-LoCoH (with software for all three methods available at http://locoh.cnr.berkeley.edu). PMID:17299587
Asymmetric scatter kernels for software-based scatter correction of gridless mammography
NASA Astrophysics Data System (ADS)
Wang, Adam; Shapiro, Edward; Yoon, Sungwon; Ganguly, Arundhuti; Proano, Cesar; Colbeth, Rick; Lehto, Erkki; Star-Lack, Josh
2015-03-01
Scattered radiation remains one of the primary challenges for digital mammography, resulting in decreased image contrast and visualization of key features. While anti-scatter grids are commonly used to reduce scattered radiation in digital mammography, they are an incomplete solution that can add radiation dose, cost, and complexity. Instead, a software-based scatter correction method utilizing asymmetric scatter kernels is developed and evaluated in this work, which improves upon conventional symmetric kernels by adapting to local variations in object thickness and attenuation that result from the heterogeneous nature of breast tissue. This fast adaptive scatter kernel superposition (fASKS) method was applied to mammography by generating scatter kernels specific to the object size, x-ray energy, and system geometry of the projection data. The method was first validated with Monte Carlo simulation of a statistically-defined digital breast phantom, which was followed by initial validation on phantom studies conducted on a clinical mammography system. Results from the Monte Carlo simulation demonstrate excellent agreement between the estimated and true scatter signal, resulting in accurate scatter correction and recovery of 87% of the image contrast originally lost to scatter. Additionally, the asymmetric kernel provided more accurate scatter correction than the conventional symmetric kernel, especially at the edge of the breast. Results from the phantom studies on a clinical system further validate the ability of the asymmetric kernel correction method to accurately subtract the scatter signal and improve image quality. In conclusion, software-based scatter correction for mammography is a promising alternative to hardware-based approaches such as anti-scatter grids.
Cross-domain question classification in community question answering via kernel mapping
NASA Astrophysics Data System (ADS)
Su, Lei; Hu, Zuoliang; Yang, Bin; Li, Yiyang; Chen, Jun
2015-10-01
An increasingly popular method for retrieving information is via the community question answering (CQA) systems such as Yahoo! Answers and Baidu Knows. In CQA, question classification plays an important role to find the answers. However, the labeled training examples for statistical question classifier are fairly expensive to obtain, as they require the experienced human efforts. Meanwhile, unlabeled data are readily available. This paper employs the method of domain adaptation via kernel mapping to solve this problem. In detail, the kernel approach is utilized to map the target-domain data and the source-domain data into a common space, where the question classifiers are trained under the closer conditional probabilities. The kernel mapping function is constructed by domain knowledge. Therefore, domain knowledge could be transferred from the labeled examples in the source domain to the unlabeled ones in the targeted domain. The statistical training model can be improved by using a large number of unlabeled data. Meanwhile, the Hadoop Platform is used to construct the mapping mechanism to reduce the time complexity. Map/Reduce enable kernel mapping for domain adaptation in parallel in the Hadoop Platform. Experimental results show that the accuracy of question classification could be improved by the method of kernel mapping. Furthermore, the parallel method in the Hadoop Platform could effective schedule the computing resources to reduce the running time.
Technology Transfer Automated Retrieval System (TEKTRAN)
The plant density at which Zea mays L. hybrids achieve maximum grain yield has increased throughout the hybrid era while grain yield on a per plant basis has increased little. Changes in plant traits including grain yield, moisture, test weight, and stalk and root lodging have been well characterize...
Kandianis, Catherine B.; Michenfelder, Abigail S.; Simmons, Susan J.; Grusak, Michael A.; Stapleton, Ann E.
2013-01-01
The improvement of grain nutrient profiles for essential minerals and vitamins through breeding strategies is a target important for agricultural regions where nutrient poor crops like maize contribute a large proportion of the daily caloric intake. Kernel iron concentration in maize exhibits a broad range. However, the magnitude of genotype by environment (GxE) effects on this trait reduces the efficacy and predictability of selection programs, particularly when challenged with abiotic stress such as water and nitrogen limitations. Selection has also been limited by an inverse correlation between kernel iron concentration and the yield component of kernel size in target environments. Using 25 maize inbred lines for which extensive genome sequence data is publicly available, we evaluated the response of kernel iron density and kernel mass to water and nitrogen limitation in a managed field stress experiment using a factorial design. To further understand GxE interactions we used partition analysis to characterize response of kernel iron and weight to abiotic stressors among all genotypes, and observed two patterns: one characterized by higher kernel iron concentrations in control over stress conditions, and another with higher kernel iron concentration under drought and combined stress conditions. Breeding efforts for this nutritional trait could exploit these complementary responses through combinations of favorable allelic variation from these already well-characterized genetic stocks. PMID:24363659
Huang, Lulu; Massa, Lou
2010-01-01
The Kernel Energy Method (KEM) provides a way to calculate the ab-initio energy of very large biological molecules. The results are accurate, and the computational time reduced. However, by use of a list of double kernel interactions a significant additional reduction of computational effort may be achieved, still retaining ab-initio accuracy. A numerical comparison of the indices that name the known double interactions in question, allow one to list higher order interactions having the property of topological continuity within the full molecule of interest. When, that list of interactions is unpacked, as a kernel expansion, which weights the relative importance of each kernel in an expression for the total molecular energy, high accuracy, and a further significant reduction in computational effort results. A KEM molecular energy calculation based upon the HF/STO3G chemical model, is applied to the protein insulin, as an illustration. PMID:21243065
NASA Astrophysics Data System (ADS)
Rajagopal, A. K.; Mochena, Mogus
2000-12-01
The group-theory framework developed by Fukutome for a systematic analysis of the various broken-symmetry types of Hartree-Fock solution exhibiting spin structures is here extended to the general many-body context using spinor Green function formalism for describing magnetic systems. Consequences of this theory are discussed for examining the magnetism of itinerant electrons in nanometric systems of current interest as well as bulk systems where a vector spin-density form is required, by specializing our work to spin-density-functional formalism. We also formulate the linear-response theory for such a system and compare and contrast our results with the recent results obtained for localized electron systems. The various phenomenological treatments of itinerant magnetic systems are here unified in this group-theoretical description. We apply this theory to the one-band Hubbard model to illustrate the usefulness of this approach.
Gocha, Timothy P; Agnew, Amanda M
2016-05-01
Intracortical remodeling, and the osteons it produces, is one aspect of the bone microstructure that is influenced by and, in turn, can influence its mechanical properties. Previous research examining the spatial distribution of intracortical remodeling density across the femoral midshaft has been limited to either considering only small regions of the cortex or, when looking at the entirety of the cortex, considering only a single individual. This study examined the spatial distribution of all remodeling events (intact osteons, fragmentary osteons, and resorptive bays) across the entirety of the femoral midshaft in a sample of 30 modern cadaveric donors. The sample consisted of 15 males and 15 females, aged 21-97 years at time of death. Using geographic information systems software, the femoral cortex was subdivided radially into thirds and circumferentially into octants, and the spatial location of all remodeling events was marked. Density maps and calculation of osteon population density in cortical regions of interest revealed that remodeling density is typically highest in the periosteal third of the bone, particularly in the lateral and anterolateral regions of the cortex. Due to modeling drift, this area of the midshaft femur has some of the youngest primary tissue, which consequently reveals that the lateral and anterolateral regions of the femoral midshaft have higher remodeling rates than elsewhere in the cortex. This is likely the result of tension/shear forces and/or greater strain magnitudes acting upon the anterolateral femur, which results in a greater amount of microdamage in need of repair than is seen in the medial and posterior regions of the femoral midshaft, which are more subject to compressive forces and/or lesser strain magnitudes. PMID:26708961
Uys, Joachim D; McGuier, Natalie S; Gass, Justin T; Griffin, William C; Ball, Lauren E; Mulholland, Patrick J
2016-05-01
Alcohol use disorder is a chronic relapsing brain disease characterized by the loss of ability to control alcohol (ethanol) intake despite knowledge of detrimental health or personal consequences. Clinical and pre-clinical models provide strong evidence for chronic ethanol-associated alterations in glutamatergic signaling and impaired synaptic plasticity in the nucleus accumbens (NAc). However, the neural mechanisms that contribute to aberrant glutamatergic signaling in ethanol-dependent individuals in this critical brain structure remain unknown. Using an unbiased proteomic approach, we investigated the effects of chronic intermittent ethanol (CIE) exposure on neuroadaptations in postsynaptic density (PSD)-enriched proteins in the NAc of ethanol-dependent mice. Compared with controls, CIE exposure significantly changed expression levels of 50 proteins in the PSD-enriched fraction. Systems biology and functional annotation analyses demonstrated that the dysregulated proteins are expressed at tetrapartite synapses and critically regulate cellular morphology. To confirm this latter finding, the density and morphology of dendritic spines were examined in the NAc core of ethanol-dependent mice. We found that CIE exposure and withdrawal differentially altered dendrite diameter and dendritic spine density and morphology. Through the use of quantitative proteomics and functional annotation, these series of experiments demonstrate that ethanol dependence produces neuroadaptations in proteins that modify dendritic spine morphology. In addition, these studies identified novel PSD-related proteins that contribute to the neurobiological mechanisms of ethanol dependence that drive maladaptive structural plasticity of NAc neurons. PMID:25787124
Kernel map compression for speeding the execution of kernel-based methods.
Arif, Omar; Vela, Patricio A
2011-06-01
The use of Mercer kernel methods in statistical learning theory provides for strong learning capabilities, as seen in kernel principal component analysis and support vector machines. Unfortunately, after learning, the computational complexity of execution through a kernel is of the order of the size of the training set, which is quite large for many applications. This paper proposes a two-step procedure for arriving at a compact and computationally efficient execution procedure. After learning in the kernel space, the proposed extension exploits the universal approximation capabilities of generalized radial basis function neural networks to efficiently approximate and replace the projections onto the empirical kernel map used during execution. Sample applications demonstrate significant compression of the kernel representation with graceful performance loss. PMID:21550884
Nonlocal energy-optimized kernel: Recovering second-order exchange in the homogeneous electron gas
NASA Astrophysics Data System (ADS)
Bates, Jefferson E.; Laricchia, Savio; Ruzsinszky, Adrienn
2016-01-01
In order to remedy some of the shortcomings of the random phase approximation (RPA) within adiabatic connection fluctuation-dissipation (ACFD) density functional theory, we introduce a short-ranged, exchange-like kernel that is one-electron self-correlation free and exact for two-electron systems in the high-density limit. By tuning a free parameter in our model to recover an exact limit of the homogeneous electron gas correlation energy, we obtain a nonlocal, energy-optimized kernel that reduces the errors of RPA for both homogeneous and inhomogeneous solids. Using wave-vector symmetrization for the kernel, we also implement RPA renormalized perturbation theory for extended systems, and demonstrate its capability to describe the dominant correlation effects with a low-order expansion in both metallic and nonmetallic systems. The comparison of ACFD structural properties with experiment is also shown to be limited by the choice of norm-conserving pseudopotential.
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2013 CFR
2013-01-01
... weight of delivery 10,000 10,000 2. Percent of edible kernel weight 53.0 84.0 3. Less weight loss in... 7 Agriculture 8 2013-01-01 2013-01-01 false Adjusted kernel weight. 981.401 Section 981.401... Administrative Rules and Regulations § 981.401 Adjusted kernel weight. (a) Definition. Adjusted kernel...
7 CFR 51.2296 - Three-fourths half kernel.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Three-fourths half kernel. 51.2296 Section 51.2296... STANDARDS) United States Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2296 Three-fourths half kernel. Three-fourths half kernel means a portion of a half of a kernel which has more...
UPDATE OF GRAY KERNEL DISEASE OF MACADAMIA - 2006
Technology Transfer Automated Retrieval System (TEKTRAN)
Gray kernel is an important disease of macadamia that affects the quality of kernels with gray discoloration and a permeating, foul odor that can render entire batches of nuts unmarketable. We report on the successful production of gray kernel in raw macadamia kernels artificially inoculated with s...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2011 CFR
2011-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams;...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2010 CFR
2010-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams;...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2014 CFR
2014-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams;...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2012 CFR
2012-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams;...
7 CFR 51.2125 - Split or broken kernels.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Split or broken kernels. 51.2125 Section 51.2125... STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2125 Split or broken kernels. Split or broken kernels means seven-eighths or less of complete whole kernels but which will...
7 CFR 51.2125 - Split or broken kernels.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Split or broken kernels. 51.2125 Section 51.2125... STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2125 Split or broken kernels. Split or broken kernels means seven-eighths or less of complete whole kernels but which will...
KITTEN Lightweight Kernel 0.1 Beta
Energy Science and Technology Software Center (ESTSC)
2007-12-12
The Kitten Lightweight Kernel is a simplified OS (operating system) kernel that is intended to manage a compute node's hardware resources. It provides a set of mechanisms to user-level applications for utilizing hardware resources (e.g., allocating memory, creating processes, accessing the network). Kitten is much simpler than general-purpose OS kernels, such as Linux or Windows, but includes all of the esssential functionality needed to support HPC (high-performance computing) MPI, PGAS and OpenMP applications. Kitten providesmore » unique capabilities such as physically contiguous application memory, transparent large page support, and noise-free tick-less operation, which enable HPC applications to obtain greater efficiency and scalability than with general purpose OS kernels.« less
Biological sequence classification with multivariate string kernels.
Kuksa, Pavel P
2013-01-01
String kernel-based machine learning methods have yielded great success in practical tasks of structured/sequential data analysis. They often exhibit state-of-the-art performance on many practical tasks of sequence analysis such as biological sequence classification, remote homology detection, or protein superfamily and fold prediction. However, typical string kernel methods rely on the analysis of discrete 1D string data (e.g., DNA or amino acid sequences). In this paper, we address the multiclass biological sequence classification problems using multivariate representations in the form of sequences of features vectors (as in biological sequence profiles, or sequences of individual amino acid physicochemical descriptors) and a class of multivariate string kernels that exploit these representations. On three protein sequence classification tasks, the proposed multivariate representations and kernels show significant 15-20 percent improvements compared to existing state-of-the-art sequence classification methods. PMID:24384708
Biological Sequence Analysis with Multivariate String Kernels.
Kuksa, Pavel P
2013-03-01
String kernel-based machine learning methods have yielded great success in practical tasks of structured/sequential data analysis. They often exhibit state-of-the-art performance on many practical tasks of sequence analysis such as biological sequence classification, remote homology detection, or protein superfamily and fold prediction. However, typical string kernel methods rely on analysis of discrete one-dimensional (1D) string data (e.g., DNA or amino acid sequences). In this work we address the multi-class biological sequence classification problems using multivariate representations in the form of sequences of features vectors (as in biological sequence profiles, or sequences of individual amino acid physico-chemical descriptors) and a class of multivariate string kernels that exploit these representations. On a number of protein sequence classification tasks proposed multivariate representations and kernels show significant 15-20\\% improvements compared to existing state-of-the-art sequence classification methods. PMID:23509193
Variational Dirichlet Blur Kernel Estimation.
Zhou, Xu; Mateos, Javier; Zhou, Fugen; Molina, Rafael; Katsaggelos, Aggelos K
2015-12-01
Blind image deconvolution involves two key objectives: 1) latent image and 2) blur estimation. For latent image estimation, we propose a fast deconvolution algorithm, which uses an image prior of nondimensional Gaussianity measure to enforce sparsity and an undetermined boundary condition methodology to reduce boundary artifacts. For blur estimation, a linear inverse problem with normalization and nonnegative constraints must be solved. However, the normalization constraint is ignored in many blind image deblurring methods, mainly because it makes the problem less tractable. In this paper, we show that the normalization constraint can be very naturally incorporated into the estimation process by using a Dirichlet distribution to approximate the posterior distribution of the blur. Making use of variational Dirichlet approximation, we provide a blur posterior approximation that considers the uncertainty of the estimate and removes noise in the estimated kernel. Experiments with synthetic and real data demonstrate that the proposed method is very competitive to the state-of-the-art blind image restoration methods. PMID:26390458
Weighted Bergman Kernels and Quantization}
NASA Astrophysics Data System (ADS)
Engliš, Miroslav
Let Ω be a bounded pseudoconvex domain in CN, φ, ψ two positive functions on Ω such that - log ψ, - log φ are plurisubharmonic, and z∈Ω a point at which - log φ is smooth and strictly plurisubharmonic. We show that as k-->∞, the Bergman kernels with respect to the weights φkψ have an asymptotic expansion
TICK: Transparent Incremental Checkpointing at Kernel Level
Energy Science and Technology Software Center (ESTSC)
2004-10-25
TICK is a software package implemented in Linux 2.6 that allows the save and restore of user processes, without any change to the user code or binary. With TICK a process can be suspended by the Linux kernel upon receiving an interrupt and saved in a file. This file can be later thawed in another computer running Linux (potentially the same computer). TICK is implemented as a Linux kernel module, in the Linux version 2.6.5
Dowling, Jason A.; Lambert, Jonathan; Parker, Joel; Salvado, Olivier; Fripp, Jurgen; Capp, Anne; Wratten, Chris; Denham, James W.; Greer, Peter B.
2012-05-01
Purpose: Prostate radiation therapy dose planning directly on magnetic resonance imaging (MRI) scans would reduce costs and uncertainties due to multimodality image registration. Adaptive planning using a combined MRI-linear accelerator approach will also require dose calculations to be performed using MRI data. The aim of this work was to develop an atlas-based method to map realistic electron densities to MRI scans for dose calculations and digitally reconstructed radiograph (DRR) generation. Methods and Materials: Whole-pelvis MRI and CT scan data were collected from 39 prostate patients. Scans from 2 patients showed significantly different anatomy from that of the remaining patient population, and these patients were excluded. A whole-pelvis MRI atlas was generated based on the manually delineated MRI scans. In addition, a conjugate electron-density atlas was generated from the coregistered computed tomography (CT)-MRI scans. Pseudo-CT scans for each patient were automatically generated by global and nonrigid registration of the MRI atlas to the patient MRI scan, followed by application of the same transformations to the electron-density atlas. Comparisons were made between organ segmentations by using the Dice similarity coefficient (DSC) and point dose calculations for 26 patients on planning CT and pseudo-CT scans. Results: The agreement between pseudo-CT and planning CT was quantified by differences in the point dose at isocenter and distance to agreement in corresponding voxels. Dose differences were found to be less than 2%. Chi-squared values indicated that the planning CT and pseudo-CT dose distributions were equivalent. No significant differences (p > 0.9) were found between CT and pseudo-CT Hounsfield units for organs of interest. Mean {+-} standard deviation DSC scores for the atlas-based segmentation of the pelvic bones were 0.79 {+-} 0.12, 0.70 {+-} 0.14 for the prostate, 0.64 {+-} 0.16 for the bladder, and 0.63 {+-} 0.16 for the rectum
PET Image Reconstruction Using Kernel Method
Wang, Guobao; Qi, Jinyi
2014-01-01
Image reconstruction from low-count PET projection data is challenging because the inverse problem is ill-posed. Prior information can be used to improve image quality. Inspired by the kernel methods in machine learning, this paper proposes a kernel based method that models PET image intensity in each pixel as a function of a set of features obtained from prior information. The kernel-based image model is incorporated into the forward model of PET projection data and the coefficients can be readily estimated by the maximum likelihood (ML) or penalized likelihood image reconstruction. A kernelized expectation-maximization (EM) algorithm is presented to obtain the ML estimate. Computer simulations show that the proposed approach can achieve better bias versus variance trade-off and higher contrast recovery for dynamic PET image reconstruction than the conventional maximum likelihood method with and without post-reconstruction denoising. Compared with other regularization-based methods, the kernel method is easier to implement and provides better image quality for low-count data. Application of the proposed kernel method to a 4D dynamic PET patient dataset showed promising results. PMID:25095249
PET image reconstruction using kernel method.
Wang, Guobao; Qi, Jinyi
2015-01-01
Image reconstruction from low-count positron emission tomography (PET) projection data is challenging because the inverse problem is ill-posed. Prior information can be used to improve image quality. Inspired by the kernel methods in machine learning, this paper proposes a kernel based method that models PET image intensity in each pixel as a function of a set of features obtained from prior information. The kernel-based image model is incorporated into the forward model of PET projection data and the coefficients can be readily estimated by the maximum likelihood (ML) or penalized likelihood image reconstruction. A kernelized expectation-maximization algorithm is presented to obtain the ML estimate. Computer simulations show that the proposed approach can achieve better bias versus variance trade-off and higher contrast recovery for dynamic PET image reconstruction than the conventional maximum likelihood method with and without post-reconstruction denoising. Compared with other regularization-based methods, the kernel method is easier to implement and provides better image quality for low-count data. Application of the proposed kernel method to a 4-D dynamic PET patient dataset showed promising results. PMID:25095249