Science.gov

Sample records for adaptive lattice notch

  1. Numb: "Adapting" notch for endocytosis.

    PubMed

    Jafar-Nejad, Hamed; Norga, Koenraad; Bellen, Hugo

    2002-08-01

    During sensory organ precursor divisions in Drosophila, the numb gene product segregates asymmetrically into one of the two daughter cells, to which it confers a specific fate by inhibiting Notch signaling. In this issue of Developmental Cell, Berdnik et al. show that Numb recruits alpha-Adaptin and that this physical interaction plays a role in downregulating Notch, presumably by stimulating endocytosis of Notch. PMID:12194846

  2. Automatic balancing of AMB systems using plural notch filter and adaptive synchronous compensation

    NASA Astrophysics Data System (ADS)

    Xu, Xiangbo; Chen, Shao; Zhang, Yanan

    2016-07-01

    To achieve automatic balancing in active magnetic bearing (AMB) system, a control method with notch filters and synchronous compensators is widely employed. However, the control precision is significantly affected by the synchronous compensation error, which is caused by parameter errors and variations of the power amplifiers. Furthermore, the computation effort may become intolerable if a 4-degree-of-freedom (dof) AMB system is studied. To solve these problems, an adaptive automatic balancing control method in the AMB system is presented in this study. Firstly, a 4-dof radial AMB system is described and analyzed. To simplify the controller design, the 4-dof dynamic equations are transferred into two plural functions related to translation and rotation, respectively. Next, to achieve automatic balancing of the AMB system, two synchronous equations are formed. Solution of them leads to a control strategy based on notch filters and feedforward controllers with an inverse function of the power amplifier. The feedforward controllers can be simplified as synchronous phases and amplitudes. Then, a plural phase-shift notch filter which can identify the synchronous components in 2-dof motions is formulated, and an adaptive compensation method that can form two closed-loop systems to tune the synchronous amplitude of the feedforward controller and the phase of the plural notch filter is proposed. Finally, the proposed control strategy is verified by both simulations and experiments on a test rig of magnetically suspended control moment gyro. The results indicate that this method can fulfill the automatic balancing of the AMB system with a light computational load.

  3. Adaptive control of large space structures using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Goglia, G. L.

    1985-01-01

    The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance.

  4. Two-dimensional lattice polymers: Adaptive windows simulations

    NASA Astrophysics Data System (ADS)

    Cunha-Netto, A. G.; Dickman, Ronald; Caparica, A. A.

    2009-04-01

    We report a numerical study of self-avoiding polymers on the square lattice, including an attractive potential between nonconsecutive monomers occupying neighboring lattice sites. Using Wang-Landau sampling (WLS) with adaptive windows, we obtain the density of states for chains of up to N=300 monomers and associated thermodynamic quantities. Finite size scaling analysis yields a transition temperature of Θ=1.505(18). WLS with adaptive windows enables one to simulate accurately the low-temperature regime, which is virtually inaccessible using traditional methods. Instead of defining fixed energy windows, as in usual WLS, this method uses windows with boundaries that depend on the set of energy values on which the histogram is flat at a given stage of the simulation. Shifting the windows each time the modification factor f is reduced, we eliminate border effects that arise in simulations using fixed windows.

  5. Adaptive control of large space structures using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.

    1985-01-01

    The use of recursive lattice filters for identification and adaptive control of large space structures was studied. Lattice filters are used widely in the areas of speech and signal processing. Herein, they are used to identify the structural dynamics model of the flexible structures. This identified model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures control is engaged. This type of validation scheme prevents instability when the overall loop is closed. The results obtained from simulation were compared to those obtained from experiments. In this regard, the flexible beam and grid apparatus at the Aerospace Control Research Lab (ACRL) of NASA Langley Research Center were used as the principal candidates for carrying out the above tasks. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods.

  6. Adaptive Multigrid Algorithm for the Lattice Wilson-Dirac Operator

    SciTech Connect

    Babich, R.; Brower, R. C.; Rebbi, C.; Brannick, J.; Clark, M. A.; Manteuffel, T. A.; McCormick, S. F.; Osborn, J. C.

    2010-11-12

    We present an adaptive multigrid solver for application to the non-Hermitian Wilson-Dirac system of QCD. The key components leading to the success of our proposed algorithm are the use of an adaptive projection onto coarse grids that preserves the near null space of the system matrix together with a simplified form of the correction based on the so-called {gamma}{sub 5}-Hermitian symmetry of the Dirac operator. We demonstrate that the algorithm nearly eliminates critical slowing down in the chiral limit and that it has weak dependence on the lattice volume.

  7. Adaptive multigrid algorithm for the lattice Wilson-Dirac operator.

    PubMed

    Babich, R; Brannick, J; Brower, R C; Clark, M A; Manteuffel, T A; McCormick, S F; Osborn, J C; Rebbi, C

    2010-11-12

    We present an adaptive multigrid solver for application to the non-Hermitian Wilson-Dirac system of QCD. The key components leading to the success of our proposed algorithm are the use of an adaptive projection onto coarse grids that preserves the near null space of the system matrix together with a simplified form of the correction based on the so-called γ5-Hermitian symmetry of the Dirac operator. We demonstrate that the algorithm nearly eliminates critical slowing down in the chiral limit and that it has weak dependence on the lattice volume. PMID:21231217

  8. Coordination of insulin and Notch pathway activities by microRNA miR-305 mediates adaptive homeostasis in the intestinal stem cells of the Drosophila gut

    PubMed Central

    Foronda, David; Weng, Ruifen; Verma, Pushpa; Chen, Ya-Wen

    2014-01-01

    Homeostasis of the intestine is maintained by dynamic regulation of a pool of intestinal stem cells. The balance between stem cell self-renewal and differentiation is regulated by the Notch and insulin signaling pathways. Dependence on the insulin pathway places the stem cell pool under nutritional control, allowing gut homeostasis to adapt to environmental conditions. Here we present evidence that miR-305 is required for adaptive homeostasis of the gut. miR-305 regulates the Notch and insulin pathways in the intestinal stem cells. Notably, miR-305 expression in the stem cells is itself under nutritional control via the insulin pathway. This link places regulation of Notch pathway activity under nutritional control. These findings provide a mechanism through which the insulin pathway controls the balance between stem cell self-renewal and differentiation that is required for adaptive homeostasis in the gut in response to changing environmental conditions. PMID:25367037

  9. Feedforward compensation control of rotor imbalance for high-speed magnetically suspended centrifugal compressors using a novel adaptive notch filter

    NASA Astrophysics Data System (ADS)

    Zheng, Shiqiang; Feng, Rui

    2016-03-01

    This paper introduces a feedforward control strategy combined with a novel adaptive notch filter to solve the problem of rotor imbalance in high-speed Magnetically Suspended Centrifugal Compressors (MSCCs). Unbalance vibration force of rotor in MSCC is mainly composed of current stiffness force and displacement stiffness force. In this paper, the mathematical model of the unbalance vibration with the proportional-integral-derivative (PID) control laws is presented. In order to reduce the unbalance vibration, a novel adaptive notch filter is proposed to identify the synchronous frequency displacement of the rotor as a compensation signal to eliminate the current stiffness force. In addition, a feedforward channel from position component to control output is introduced to compensate displacement stiffness force to achieve a better performance. A simplified inverse model of power amplifier is included in the feedforward channel to reject the degrade performance caused by its low-pass characteristic. Simulation and experimental results on a MSCC demonstrate a significant effect on the synchronous vibration suppression of the magnetically suspended rotor at a high speed.

  10. New Approach for IIR Adaptive Lattice Filter Structure Using Simultaneous Perturbation Algorithm

    NASA Astrophysics Data System (ADS)

    Martinez, Jorge Ivan Medina; Nakano, Kazushi; Higuchi, Kohji

    Adaptive infinite impulse response (IIR), or recursive, filters are less attractive mainly because of the stability and the difficulties associated with their adaptive algorithms. Therefore, in this paper the adaptive IIR lattice filters are studied in order to devise algorithms that preserve the stability of the corresponding direct-form schemes. We analyze the local properties of stationary points, a transformation achieving this goal is suggested, which gives algorithms that can be efficiently implemented. Application to the Steiglitz-McBride (SM) and Simple Hyperstable Adaptive Recursive Filter (SHARF) algorithms is presented. Also a modified version of Simultaneous Perturbation Stochastic Approximation (SPSA) is presented in order to get the coefficients in a lattice form more efficiently and with a lower computational cost and complexity. The results are compared with previous lattice versions of these algorithms. These previous lattice versions may fail to preserve the stability of stationary points.

  11. Adaptive identification and control of structural dynamics systems using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Montgomery, R. C.; Williams, J. P.

    1985-01-01

    A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.

  12. Notch Antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.

    2004-01-01

    Notch antennas, also known as the tapered slot antenna (TSA), have been the topics of research for decades. TSA has demonstrated multi-octave bandwidth, moderate gain (7 to 10 dB), and symmetric E- and H- plane beam patterns and can be used for many different applications. This chapter summarizes the research activities on notch antennas over the past decade with emphasis on their most recent advances and applications. This chapter begins with some discussions on the designs of single TSA; then follows with detailed discussions of issues associated with TSA designs and performance characteristics. To conclude the chapter, some recent developments in TSA arrays and their applications are highlighted.

  13. Vibration control of a flexible beam driven by a ball-screw stage with adaptive notch filters and a line enhancer

    NASA Astrophysics Data System (ADS)

    Wu, Shang-Teh; Lian, Sing-Han; Chen, Sheng-Han

    2015-07-01

    For a low-stiffness beam driven by a ball-screw stage, the lateral vibrations cannot be adequately controlled by a collocated compensator based on rotary-encoder feedback alone. Acceleration signals at the tip of the flexible beam are measured for active vibration control in addition to the collocated compensator. A second-order bandpass filter (a line enhancer) and two notch filters are included in the acceleration-feedback loop to raise modal dampings for the first and the second flexible modes without exciting higher-frequency resonances. A novel adaptation algorithm is devised to tune the center frequencies of the notch filters in real time. It consists of a second-order low-pass filter, a second-order bandpass filter and a phase detector. Improvement of the control system is elaborated progressively with the root-locus and bode-plot analyses, along with a physical interpretation. Extensive testings are conducted on an experimental device to verify the effectiveness of the control method.

  14. The Sequential Empirical Bayes Method: An Adaptive Constrained-Curve Fitting Algorithm for Lattice QCD

    SciTech Connect

    Ying Chen; Shao-Jing Dong; Terrence Draper; Ivan Horvath; Keh-Fei Liu; Nilmani Mathur; Sonali Tamhankar; Cidambi Srinivasan; Frank X. Lee; Jianbo Zhang

    2004-05-01

    We introduce the ''Sequential Empirical Bayes Method'', an adaptive constrained-curve fitting procedure for extracting reliable priors. These are then used in standard augmented-{chi}{sup 2} fits on separate data. This better stabilizes fits to lattice QCD overlap-fermion data at very low quark mass where a priori values are not otherwise known. Lessons learned (including caveats limiting the scope of the method) from studying artificial data are presented. As an illustration, from local-local two-point correlation functions, we obtain masses and spectral weights for ground and first-excited states of the pion, give preliminary fits for the a{sub 0} where ghost states (a quenched artifact) must be dealt with, and elaborate on the details of fits of the Roper resonance and S{sub 11}(N{sup 1/2-}) previously presented elsewhere. The data are from overlap fermions on a quenched 16{sup 3} x 28 lattice with spatial size La = 3.2 fm and pion mass as low as {approx}180 MeV.

  15. An adaptive lattice Boltzmann scheme for modeling two-fluid-phase flow in porous medium systems

    NASA Astrophysics Data System (ADS)

    Dye, Amanda L.; McClure, James E.; Adalsteinsson, David; Miller, Cass T.

    2016-04-01

    We formulate a multiple-relaxation-time (MRT) lattice-Boltzmann method (LBM) to simulate two-fluid-phase flow in porous medium systems. The MRT LBM is applied to simulate the displacement of a wetting fluid by a nonwetting fluid in a system corresponding to a microfluidic cell. Analysis of the simulation shows widely varying time scales for the dynamics of fluid pressures, fluid saturations, and interfacial curvatures that are typical characteristics of such systems. Displacement phenomena include Haines jumps, which are relatively short duration isolated events of rapid fluid displacement driven by capillary instability. An adaptive algorithm is advanced using a level-set method to locate interfaces and estimate their rate of advancement. Because the displacement dynamics are confined to the interfacial regions for a majority of the relaxation time, the computational effort is focused on these regions. The proposed algorithm is shown to reduce computational effort by an order of magnitude, while yielding essentially identical solutions to a conventional fully coupled approach. The challenges posed by Haines jumps are also resolved by the adaptive algorithm. Possible extensions to the advanced method are discussed.

  16. Adaptive pixel-selection using chaotic map lattices for image cryptography

    NASA Astrophysics Data System (ADS)

    Sittigorn, Jirasak; Paithoonwattanakij, Kitti; Surawatpunya, Charray

    2014-01-01

    Chaotic theory has been used in cryptography application for generating a sequence of data that is close to pseudorandom number based on an adjusted initial condition and a parameter. However, data recovery becomes a crucial problem due to the precision of the parameters. This difficulty leads to limited usage of Chaotic-based cryptography especially for error sensitive applications such as voice cryptography. In order to enhance the encryption security and overcome this limitation, an Adaptive Pixel-Selection using Chaotic Map Lattices (APCML) is proposed. In APCML, the encryption sequence has been adaptively selected based on chaos generator. Moreover, the chaotic transformation and normalization boundary have been revised to alleviate the rounding error and inappropriate normalization boundary problems. In the experiments, the measurement indices of originality preservation, visual inspection, and statistical analysis are used to evaluate the performance of the proposed APCML compared to that of the original CML. Consequently, the APCML algorithm offers greater performance with full recovery of the original message.

  17. Notch Signaling Components

    PubMed Central

    Liu, Zhi-Yan; Wu, Tao; Li, Qing; Wang, Min-Cong; Jing, Li; Ruan, Zhi-Ping; Yao, Yu; Nan, Ke-Jun; Guo, Hui

    2016-01-01

    Abstract Non-small-cell lung cancer (NSCLC) is a lethal and aggressive malignancy. Currently, the identities of prognostic and predictive makers of NSCLC have not been fully established. Dysregulated Notch signaling has been implicated in many human malignancies, including NSCLC. However, the prognostic value of measuring Notch signaling and the utility of developing Notch-targeted therapies in NSCLC remain inconclusive. The present study investigated the association of individual Notch receptor and ligand levels with lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) prognosis using the Kaplan-Meier plotte database. This online database encompasses 2437 lung cancer samples. Hazard ratios with 95% confidence intervals were calculated. The results showed that higher Notch1, Notch2, JAG1, and DLL1 mRNA expression predicted better overall survival (OS) in lung ADC, but showed no significance in SCC patients. Elevated Notch3, JAG2, and DLL3 mRNA expression was associated with poor OS of ADC patients, but not in SCC patients. There was no association between Notch4 and OS in either lung ADC or SCC patients. In conclusion, the set of Notch1, Notch2, JAG1, DLL1 and that of Notch3, JAG2, DLL3 played opposing prognostic roles in lung ADC patients. Neither set of Notch receptors and ligands was indicative of lung SCC prognosis. Notch signaling could serve as promising marker to predict outcomes in lung ADC patients. The distinct features of lung cancer subtypes and Notch components should be considered when developing future Notch-targeted therapies. PMID:27196489

  18. Massively parallel sampling of lattice proteins reveals foundations of thermal adaptation.

    PubMed

    Venev, Sergey V; Zeldovich, Konstantin B

    2015-08-01

    Evolution of proteins in bacteria and archaea living in different conditions leads to significant correlations between amino acid usage and environmental temperature. The origins of these correlations are poorly understood, and an important question of protein theory, physics-based prediction of types of amino acids overrepresented in highly thermostable proteins, remains largely unsolved. Here, we extend the random energy model of protein folding by weighting the interaction energies of amino acids by their frequencies in protein sequences and predict the energy gap of proteins designed to fold well at elevated temperatures. To test the model, we present a novel scalable algorithm for simultaneous energy calculation for many sequences in many structures, targeting massively parallel computing architectures such as graphics processing unit. The energy calculation is performed by multiplying two matrices, one representing the complete set of sequences, and the other describing the contact maps of all structural templates. An implementation of the algorithm for the CUDA platform is available at http://www.github.com/kzeldovich/galeprot and calculates protein folding energies over 250 times faster than a single central processing unit. Analysis of amino acid usage in 64-mer cubic lattice proteins designed to fold well at different temperatures demonstrates an excellent agreement between theoretical and simulated values of energy gap. The theoretical predictions of temperature trends of amino acid frequencies are significantly correlated with bioinformatics data on 191 bacteria and archaea, and highlight protein folding constraints as a fundamental selection pressure during thermal adaptation in biological evolution. PMID:26254668

  19. An adaptive lattice Boltzmann method for predicting turbulent wake fields in wind parks

    NASA Astrophysics Data System (ADS)

    Deiterding, Ralf; Wood, Stephen L.

    2014-11-01

    Wind turbines create large-scale wake structures that can affect downstream turbines considerably. Numerical simulation of the turbulent flow field is a viable approach in order to obtain a better understanding of these interactions and to optimize the turbine placement in wind parks. Yet, the development of effective computational methods for predictive wind farm simulation is challenging. As an alternative approach to presently employed vortex and actuator-based methods, we are currently developing a parallel adaptive lattice Boltzmann method for large eddy simulation of turbulent weakly compressible flows with embedded moving structures that shows good potential for effective wind turbine wake prediction. Since the method is formulated in an Eulerian frame of reference and on a dynamically changing nonuniform Cartesian grid, even moving boundaries can be considered rather easily. The presentation will describe all crucial components of the numerical method and discuss first verification computations. Among other configurations, simulations of the wake fields created by multiple Vesta V27 turbines will be shown.

  20. Predictive simulation of wind turbine wake interaction with an adaptive lattice Boltzmann method for moving boundaries

    NASA Astrophysics Data System (ADS)

    Deiterding, Ralf; Wood, Stephen L.

    2015-11-01

    Operating horizontal axis wind turbines create large-scale turbulent wake structures that affect the power output of downwind turbines considerably. The computational prediction of this phenomenon is challenging as efficient low dissipation schemes are necessary that represent the vorticity production by the moving structures accurately and are able to transport wakes without significant artificial decay over distances of several rotor diameters. We have developed the first version of a parallel adaptive lattice Boltzmann method for large eddy simulation of turbulent weakly compressible flows with embedded moving structures that considers these requirements rather naturally and enables first principle simulations of wake-turbine interaction phenomena at reasonable computational costs. The presentation will describe the employed algorithms and present relevant verification and validation computations. For instance, power and thrust coefficients of a Vestas V27 turbine are predicted within 5% of the manufacturer's specifications. Simulations of three Vestas V27-225kW turbines in triangular arrangement analyze the reduction in power production due to upstream wake generation for different inflow conditions.

  1. Notch and the Skeleton▿

    PubMed Central

    Zanotti, Stefano; Canalis, Ernesto

    2010-01-01

    Notch receptors are transmembrane receptors that regulate cell fate decisions. There are four Notch receptors in mammals. Upon binding to members of the Delta and Jagged family of transmembrane proteins, Notch is cleaved and the Notch intracellular domain (NICD) is released. NICD then translocates to the nucleus, where it associates with the CBF-1, Suppressor of Hairless, and Lag-2 (CSL) and Mastermind-Like (MAML) proteins. This complex activates the transcription of Notch target genes, such as Hairy Enhancer of Split (Hes) and Hes-related with YRPF motif (Hey). Notch signaling is critical for the regulation of mesenchymal stem cell differentiation. Misexpression of Notch in skeletal tissue indicates a role as an inhibitor of skeletal development and postnatal bone formation. Overexpression of Notch inhibits endochondral bone formation and osteoblastic differentiation, causing severe osteopenia. Conditional inactivation of Notch in the skeleton causes an increase in cancellous bone volume and enhanced osteoblastic differentiation. Notch ligands are expressed in the hematopoietic stem cell niche and are critical for the regulation of hematopoietic stem cell self-renewal. Dysregulation of Notch signaling is the underlying cause of diseases affecting the skeletal tissue, including Alagille syndrome, spondylocostal dysostosis, and possibly, osteosarcoma. PMID:19995916

  2. Massively parallel sampling of lattice proteins reveals foundations of thermal adaptation

    NASA Astrophysics Data System (ADS)

    Venev, Sergey V.; Zeldovich, Konstantin B.

    2015-08-01

    Evolution of proteins in bacteria and archaea living in different conditions leads to significant correlations between amino acid usage and environmental temperature. The origins of these correlations are poorly understood, and an important question of protein theory, physics-based prediction of types of amino acids overrepresented in highly thermostable proteins, remains largely unsolved. Here, we extend the random energy model of protein folding by weighting the interaction energies of amino acids by their frequencies in protein sequences and predict the energy gap of proteins designed to fold well at elevated temperatures. To test the model, we present a novel scalable algorithm for simultaneous energy calculation for many sequences in many structures, targeting massively parallel computing architectures such as graphics processing unit. The energy calculation is performed by multiplying two matrices, one representing the complete set of sequences, and the other describing the contact maps of all structural templates. An implementation of the algorithm for the CUDA platform is available at http://www.github.com/kzeldovich/galeprot and calculates protein folding energies over 250 times faster than a single central processing unit. Analysis of amino acid usage in 64-mer cubic lattice proteins designed to fold well at different temperatures demonstrates an excellent agreement between theoretical and simulated values of energy gap. The theoretical predictions of temperature trends of amino acid frequencies are significantly correlated with bioinformatics data on 191 bacteria and archaea, and highlight protein folding constraints as a fundamental selection pressure during thermal adaptation in biological evolution.

  3. Adaptive bimaterial lattices to mitigate thermal expansion mismatch stresses in satellite structures

    NASA Astrophysics Data System (ADS)

    Toropova, Marina M.; Steeves, Craig A.

    2015-08-01

    Earth-orbiting satellites regularly pass from sunlight to shade and back; these transitions are typically accompanied by significant temperature changes. When adjoining parts of a satellite that are made of different materials are subjected to large temperature changes, thermal mismatch stresses arise that are a function of the temperature change and the difference in coefficients of thermal expansion (CTEs) between the two materials. These thermal stresses are linked to undesirable deformation and, through long-term cycling, fatigue and failure of the structure. This paper describes a type of anisotropic lattice that can serve as a stress-free adaptor between two materials, eliminating thermal mismatch stresses and their concomitant consequences. The lattices consist of planar nonidentical anisotropic bimaterial cells, each designed based on a virtual triangle. Physically the cells consist of a triangle made of material with higher CTE surrounded by a hexagon made of material with lower CTE. Different skew angles of the hexagon make a particular cell and the whole lattice anisotropic. The cells can be designed and combined in a lattice in such a way that one edge of the lattice has CTE that coincides with the CTE of the first part of the structure (substrate 1), while the other edge of the lattice has CTE equal to the CTE of the second part of the structure (substrate 2). If all joints between the parts of each cell, neighbouring cells, and the lattice and the substrates are pinned, the whole structure will be free of thermal stresses. This paper will discuss the fundamental principles governing such lattices, their refinement for special circumstances, and opportunities for improving the structural performance of the lattices. This will be presented coupled to a rational strategy for lattice design.

  4. Notch Signaling and the Skeleton.

    PubMed

    Zanotti, Stefano; Canalis, Ernesto

    2016-06-01

    Notch 1 to 4 receptors are important determinants of cell fate and function, and Notch signaling plays an important role in skeletal development and bone remodeling. After direct interactions with ligands of the Jagged and Delta-like families, a series of cleavages release the Notch intracellular domain (NICD), which translocates to the nucleus where it induces transcription of Notch target genes. Classic gene targets of Notch are hairy and enhancer of split (Hes) and Hes-related with YRPW motif (Hey). In cells of the osteoblastic lineage, Notch activation inhibits cell differentiation and causes cancellous bone osteopenia because of impaired bone formation. In osteocytes, Notch1 has distinct effects that result in an inhibition of bone resorption secondary to an induction of osteoprotegerin and suppression of sclerostin with a consequent enhancement of Wnt signaling. Notch1 inhibits, whereas Notch2 enhances, osteoclastogenesis and bone resorption. Congenital disorders of loss- and gain-of-Notch function present with severe clinical manifestations, often affecting the skeleton. Enhanced Notch signaling is associated with osteosarcoma, and Notch can influence the invasive potential of carcinoma of the breast and prostate. Notch signaling can be controlled by the use of inhibitors of Notch activation, small peptides that interfere with the formation of a transcriptional complex, or antibodies to the extracellular domain of specific Notch receptors or to Notch ligands. In conclusion, Notch plays a critical role in skeletal development and homeostasis, and serious skeletal disorders can be attributed to alterations in Notch signaling. PMID:27074349

  5. Notch Signaling in Pancreatic Development

    PubMed Central

    Li, Xu-Yan; Zhai, Wen-Jun; Teng, Chun-Bo

    2015-01-01

    The Notch signaling pathway plays a significant role in embryonic cell fate determination and adult tissue homeostasis. Various studies have demonstrated the deep involvement of Notch signaling in the development of the pancreas and the lateral inhibition of Notch signaling in pancreatic progenitor differentiation and maintenance. The targeted inactivation of the Notch pathway components promotes premature differentiation of the endocrine pancreas. However, there is still the contrary opinion that Notch signaling specifies the endocrine lineage. Here, we review the current knowledge of the Notch signaling pathway in pancreatic development and its crosstalk with the Wingless and INT-1 (Wnt) and fibroblast growth factor (FGF) pathways. PMID:26729103

  6. Amoeboid migration mode adaption in quasi-3D spatial density gradients of varying lattice geometry

    NASA Astrophysics Data System (ADS)

    Gorelashvili, Mari; Emmert, Martin; Hodeck, Kai F.; Heinrich, Doris

    2014-07-01

    Cell migration processes are controlled by sensitive interaction with external cues such as topographic structures of the cell’s environment. Here, we present systematically controlled assays to investigate the specific effects of spatial density and local geometry of topographic structure on amoeboid migration of Dictyostelium discoideum cells. This is realized by well-controlled fabrication of quasi-3D pillar fields exhibiting a systematic variation of inter-pillar distance and pillar lattice geometry. By time-resolved local mean-squared displacement analysis of amoeboid migration, we can extract motility parameters in order to elucidate the details of amoeboid migration mechanisms and consolidate them in a two-state contact-controlled motility model, distinguishing directed and random phases. Specifically, we find that directed pillar-to-pillar runs are found preferably in high pillar density regions, and cells in directed motion states sense pillars as attractive topographic stimuli. In contrast, cell motion in random probing states is inhibited by high pillar density, where pillars act as obstacles for cell motion. In a gradient spatial density, these mechanisms lead to topographic guidance of cells, with a general trend towards a regime of inter-pillar spacing close to the cell diameter. In locally anisotropic pillar environments, cell migration is often found to be damped due to competing attraction by different pillars in close proximity and due to lack of other potential stimuli in the vicinity of the cell. Further, we demonstrate topographic cell guidance reflecting the lattice geometry of the quasi-3D environment by distinct preferences in migration direction. Our findings allow to specifically control amoeboid cell migration by purely topographic effects and thus, to induce active cell guidance. These tools hold prospects for medical applications like improved wound treatment, or invasion assays for immune cells.

  7. Total enthalpy-based lattice Boltzmann method with adaptive mesh refinement for solid-liquid phase change

    NASA Astrophysics Data System (ADS)

    Huang, Rongzong; Wu, Huiying

    2016-06-01

    A total enthalpy-based lattice Boltzmann (LB) method with adaptive mesh refinement (AMR) is developed in this paper to efficiently simulate solid-liquid phase change problem where variables vary significantly near the phase interface and thus finer grid is required. For the total enthalpy-based LB method, the velocity field is solved by an incompressible LB model with multiple-relaxation-time (MRT) collision scheme, and the temperature field is solved by a total enthalpy-based MRT LB model with the phase interface effects considered and the deviation term eliminated. With a kinetic assumption that the density distribution function for solid phase is at equilibrium state, a volumetric LB scheme is proposed to accurately realize the nonslip velocity condition on the diffusive phase interface and in the solid phase. As compared with the previous schemes, this scheme can avoid nonphysical flow in the solid phase. As for the AMR approach, it is developed based on multiblock grids. An indicator function is introduced to control the adaptive generation of multiblock grids, which can guarantee the existence of overlap area between adjacent blocks for information exchange. Since MRT collision schemes are used, the information exchange is directly carried out in the moment space. Numerical tests are firstly performed to validate the strict satisfaction of the nonslip velocity condition, and then melting problems in a square cavity with different Prandtl numbers and Rayleigh numbers are simulated, which demonstrate that the present method can handle solid-liquid phase change problem with high efficiency and accuracy.

  8. Large eddy simulation of a high speed train geometry under cross-wind with an adaptive lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Deiterding, Ralf; Fragner, Moritz M.

    2015-11-01

    Numerical investigations in order to determine the forces induced by side wind onto a train geometry are generally not sufficiently accurate to be used as a predictive tool for regulatory safety assessment. Especially for larger yaw angles, the turbulent cross-wind flow is characterized by highly instationary behavior, driven primarily by vortex shedding on the roof and underside geometric details, i.e., the bogie and wheel systems. While industry-typical Reynolds-averaged turbulence models are not well suited for this scenario, better results are obtained when large eddy simulation (LES) techniques are applied. Here, we employ a recently self-developed weakly compressible lattice Boltzmann method (LBM) with Smagorinsky LES model on hierarchically adaptive block-structured Cartesian meshes. Using a train front-car of 1:25 scale at yaw angle 30° and Re = 250 , 000 as main test case, we compare the LBM results with incompressible large eddy and detached eddy simulations on unstructured boundary-layer type meshes using the OpenFOAM package. It is found that time averaged force and moment predictions from our LBM code compare better to available wind tunnel data, while mesh adaptation and explicit nature of the LBM approach reduce the computational costs considerably.

  9. Kick it up a notch: Notch signaling and kidney fibrosis

    PubMed Central

    Sweetwyne, Mariya T; Tao, Jianling; Susztak, Katalin

    2014-01-01

    Notch is a critical regulator of kidney development, but the pathway is mostly silenced once kidney maturation is achieved. Recent reports demonstrated increased expression of Notch receptors and ligands both in acute and chronic kidney injury. In vivo studies indicated that Notch activation might contribute to regeneration after acute kidney injury; on the other hand, sustained Notch expression is causally associated with interstitial fibrosis and glomerulosclerosis. This review will summarize the current knowledge on the role of the Notch signaling with special focus on kidney fibrosis. PMID:26312157

  10. Notching on Cancer's Door: Notch Signaling in Brain Tumors.

    PubMed

    Teodorczyk, Marcin; Schmidt, Mirko H H

    2014-01-01

    Notch receptors play an essential role in the regulation of central cellular processes during embryonic and postnatal development. The mammalian genome encodes for four Notch paralogs (Notch 1-4), which are activated by three Delta-like (Dll1/3/4) and two Serrate-like (Jagged1/2) ligands. Further, non-canonical Notch ligands such as epidermal growth factor like protein 7 (EGFL7) have been identified and serve mostly as antagonists of Notch signaling. The Notch pathway prevents neuronal differentiation in the central nervous system by driving neural stem cell maintenance and commitment of neural progenitor cells into the glial lineage. Notch is therefore often implicated in the development of brain tumors, as tumor cells share various characteristics with neural stem and progenitor cells. Notch receptors are overexpressed in gliomas and their oncogenicity has been confirmed by gain- and loss-of-function studies in vitro and in vivo. To this end, special attention is paid to the impact of Notch signaling on stem-like brain tumor-propagating cells as these cells contribute to growth, survival, invasion, and recurrence of brain tumors. Based on the outcome of ongoing studies in vivo, Notch-directed therapies such as γ-secretase inhibitors and blocking antibodies have entered and completed various clinical trials. This review summarizes the current knowledge on Notch signaling in brain tumor formation and therapy. PMID:25601901

  11. Electrochemical polishing of notches

    DOEpatents

    Kephart, Alan R.; Alberts, Alfred H.

    1989-01-01

    An apparatus and method are disclosed for the selective electrochemical polishing of a lateral tip of a deep longitudinal notch in a work piece used to test crack initiation properties of materials. A DC power source is connected to the work piece and to an electrode disposed laterally along the distal end of an insulated body which is inserted in the longitudinal notch. The electrode and distal end of the body are disposed along the tip of the notch, but are spaced from the notch so as to provide a lateral passage for an electrolyte. The electrolyte is circulated through the passage so that the electrolyte only contacts the work piece adjacent the passage. Conveniently, the electrolyte is circulated by use of an inlet tube and an outlet tube provided at opposite ends of the passage. These tubes are preferably detachably located adjacent the ends of the passage and suitable seals are provided. A holding device including arms to which the tubes are attached is conveniently used to rapidly and easily locate the test specimen with the passage aligned with the tubes. The electrode is preferably a wire which is located in grooves along the distal end of the insulated body and up one side of the body or a plastic sheath insulated thin metal strip.

  12. Electrochemical polishing of notches

    DOEpatents

    Kephart, A.R.; Alberts, A.H.

    1989-02-21

    An apparatus and method are disclosed for the selective electrochemical polishing of a lateral tip of a deep longitudinal notch in a work piece used to test crack initiation properties of materials. A DC power source is connected to the work piece and to an electrode disposed laterally along the distal end of an insulated body which is inserted in the longitudinal notch. The electrode and distal end of the body are disposed along the tip of the notch, but are spaced from the notch so as to provide a lateral passage for an electrolyte. The electrolyte is circulated through the passage so that the electrolyte only contacts the work piece adjacent the passage. Conveniently, the electrolyte is circulated by use of an inlet tube and an outlet tube provided at opposite ends of the passage. These tubes are preferably detachably located adjacent the ends of the passage and suitable seals are provided. A holding device including arms to which the tubes are attached is conveniently used to rapidly and easily locate the test specimen with the passage aligned with the tubes. The electrode is preferably a wire which is located in grooves along the distal end of the insulated body and up one side of the body or a plastic sheath insulated thin metal strip. 4 figs.

  13. Notch strength of composites

    NASA Technical Reports Server (NTRS)

    Whitney, J. M.

    1983-01-01

    The notch strength of composites is discussed. The point stress and average stress criteria relate the notched strength of a laminate to the average strength of a relatively long tensile coupon. Tests of notched specimens in which microstrain gages have been placed at or near the edges of the holes have measured strains much larger that those measured in an unnotched tensile coupon. Orthotropic stress concentration analyses of failed notched laminates have also indicated that failure occurred at strains much larger than those experienced on tensile coupons with normal gage lengths. This suggests that the high strains at the edge of a hole can be related to the very short length of fiber subjected to these strains. Lockheed has attempted to correlate a series of tests of several laminates with holes ranging from 0.19 to 0.50 in. Although the average stress criterion correlated well with test results for hole sizes equal to or greater than 0.50 in., it over-estimated the laminate strength in the range of hole sizes from 0.19 to 0.38 in. It thus appears that a theory is needed that is based on the mechanics of failure and is more generally applicable to the range of hole sizes and the varieties of laminates found in aircraft construction.

  14. Notch-Mediated Cell Adhesion

    PubMed Central

    Murata, Akihiko; Hayashi, Shin-Ichi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms. PMID:26784245

  15. Notch-Mediated Cell Adhesion.

    PubMed

    Murata, Akihiko; Hayashi, Shin-Ichi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms. PMID:26784245

  16. Notch Signaling in Neuroendocrine Tumors

    PubMed Central

    Crabtree, Judy S.; Singleton, Ciera S.; Miele, Lucio

    2016-01-01

    Carcinoids and neuroendocrine tumors (NETs) are a heterogeneous group of tumors that arise from the neuroendocrine cells of the GI tract, endocrine pancreas, and the respiratory system. NETs remain significantly understudied with respect to molecular mechanisms of pathogenesis, particularly the role of cell fate signaling systems such as Notch. The abundance of literature on the Notch pathway is a testament to its complexity in different cellular environments. Notch receptors can function as oncogenes in some contexts and tumor suppressors in others. The genetic heterogeneity of NETs suggests that to fully understand the roles and the potential therapeutic implications of Notch signaling in NETs, a comprehensive analysis of Notch expression patterns and potential roles across all NET subtypes is required. PMID:27148486

  17. Nanoparticle optical notch filters

    NASA Astrophysics Data System (ADS)

    Kasinadhuni, Pradeep Kumar

    Developing novel light blocking products involves the design of a nanoparticle optical notch filter, working on the principle of localized surface plasmon resonance (LSPR). These light blocking products can be used in many applications. One such application is to naturally reduce migraine headaches and light sensitivity. Melanopsin ganglion cells present in the retina of the human eye, connect to the suprachiasmatic nucleus (SCN-the body's clock) in the brain, where they participate in the entrainment of the circadian rhythms. As the Melanopsin ganglion cells are involved in triggering the migraine headaches in photophobic patients, it is necessary to block the part of visible spectrum that activates these cells. It is observed from the action potential spectrum of the ganglion cells that they absorb light ranging from 450-500nm (blue-green part) of the visible spectrum with a λmax (peak sensitivity) of around 480nm (blue line). Currently prescribed for migraine patients is the FL-41 coating, which blocks a broad range of wavelengths, including wavelengths associated with melanopsin absorption. The nanoparticle optical notch filter is designed to block light only at 480nm, hence offering an effective prescription for the treatment of migraine headaches.

  18. Canonical and non-canonical Notch ligands

    PubMed Central

    D’SOUZA, BRENDAN; MELOTY-KAPELLA, LAURENCE; WEINMASTER, GERRY

    2015-01-01

    Notch signaling induced by canonical Notch ligands is critical for normal embryonic development and tissue homeostasis through the regulation of a variety of cell fate decisions and cellular processes. Activation of Notch signaling is normally tightly controlled by direct interactions with ligand-expressing cells and dysregulated Notch signaling is associated with developmental abnormalities and cancer. While canonical Notch ligands are responsible for the majority of Notch signaling, a diverse group of structurally unrelated non-canonical ligands has also been identified that activate Notch and likely contribute to the pleiotropic effects of Notch signaling. Soluble forms of both canonical and non-canonical ligands have been isolated, some of which block Notch signaling and could serve as natural inhibitors of this pathway. Ligand activity can also be indirectly regulated by other signaling pathways at the level of ligand expression, serving to spatio-temporally compartmentalize Notch signaling activity and integrate Notch signaling into a molecular network that orchestrates developmental events. Here, we review the molecular mechanisms underlying the dual role of Notch ligands as activators and inhibitors of Notch signaling. Additionally, evidence that Notch ligands function independent of Notch are presented. We also discuss how ligand post-translational modification, endocytosis, proteolysis and spatio-temporal expression regulate their signaling activity. PMID:20816393

  19. FOUR NOTCH ROADLESS AREA, TEXAS.

    USGS Publications Warehouse

    Houser, B.B.; Ryan, George S.

    1984-01-01

    A geologic and geochemical investigation of the Four Notch Roadless Area, Texas, was conducted. The area has a probable resource potential for oil and gas. There is, however, little promise for the occurrence of metallic mineral resources or other energy resources. Acquisition of seismic data and detailed comparisons with logs from wells from the vicinity of the Four Notch Roadless Area is necessary to better determine if the subsurface stratigraphy and structures are favorable for the accumulation of oil or gas.

  20. Cardioprotective actions of Notch1 against myocardial infarction via LKB1-dependent AMPK signaling pathway.

    PubMed

    Yang, Hui; Sun, Wanqing; Quan, Nanhu; Wang, Lin; Chu, Dongyang; Cates, Courtney; Liu, Quan; Zheng, Yang; Li, Ji

    2016-05-15

    AMP-activated protein kinase (AMPK) signaling pathway plays a pivotal role in intracellular adaptation to energy stress during myocardial ischemia. Notch1 signaling in the adult myocardium is also activated in response to ischemic stress. However, the relationship between Notch1 and AMPK signaling pathways during ischemia remains unclear. We hypothesize that Notch1 as an adaptive signaling pathway protects the heart from ischemic injury via modulating the cardioprotective AMPK signaling pathway. C57BL/6J mice were subjected to an in vivo ligation of left anterior descending coronary artery and the hearts from C57BL/6J mice were subjected to an ex vivo globe ischemia and reperfusion in the Langendorff perfusion system. The Notch1 signaling was activated during myocardial ischemia. A Notch1 γ-secretase inhibitor, dibenzazepine (DBZ), was intraperitoneally injected into mice to inhibit Notch1 signaling pathway by ischemia. The inhibition of Notch1 signaling by DBZ significantly augmented cardiac dysfunctions caused by myocardial infarction. Intriguingly, DBZ treatment also significantly blunted the activation of AMPK signaling pathway. The immunoprecipitation experiments demonstrated that an interaction between Notch1 and liver kinase beta1 (LKB1) modulated AMPK activation during myocardial ischemia. Furthermore, a ligand of Notch1 Jagged1 can significantly reduce cardiac damage caused by ischemia via activation of AMPK signaling pathway and modulation of glucose oxidation and fatty acid oxidation during ischemia and reperfusion. But Jagged1 did not have any cardioprotections on AMPK kinase dead transgenic hearts. Taken together, the results indicate that the cardioprotective effect of Notch1 against ischemic damage is mediated by AMPK signaling via an interaction with upstream LKB1. PMID:27015742

  1. kuzbanian-mediated cleavage of Drosophila Notch

    PubMed Central

    Lieber, Toby; Kidd, Simon; Young, Michael W.

    2002-01-01

    Loss of Kuzbanian, a member of the ADAM family of metalloproteases, produces neurogenic phenotypes in Drosophila. It has been suggested that this results from a requirement for kuzbanian-mediated cleavage of the Notch ligand Delta. Using transgenic Drosophila expressing transmembrane Notch proteins, we show that kuzbanian, independent of any role in Delta processing, is required for the cleavage of Notch. We show that Kuzbanian can physically associate with Notch and that removal of kuzbanian activity by RNA-mediated interference in Drosophila tissue culture cells eliminates processing of ligand-independent transmembrane Notch molecules. Our data suggest that in Drosophila, kuzbanian can mediate S2 cleavage of Notch. PMID:11799064

  2. Notch signaling in skeletal health and disease.

    PubMed

    Zanotti, Stefano; Canalis, Ernesto

    2013-06-01

    Notch receptors are single-pass transmembrane proteins that determine cell fate. Upon Notch ligand interactions, proteolytic cleavages release the Notch intracellular domain, which translocates to the nucleus to regulate the transcription of target genes, including Hairy enhancer of split (Hes) and Hes related to YRPW motif (Hey). Notch is critical for skeletal development and activity of skeletal cells, and dysregulation of Notch signaling is associated with human diseases affecting the skeleton. Inherited or sporadic mutations in components of the Notch signaling pathway are associated with spondylocostal dysostosis, spondylothoracic dysostosis and recessive brachydactyly, diseases characterized by skeletal patterning defects. Inactivating mutations of the Notch ligand JAG1 or of NOTCH2 are associated with Alagille syndrome, and activating mutations in NOTCH2 are associated with Hajdu-Cheney syndrome (HCS). Individuals affected by HCS exhibit osteolysis in distal phalanges and osteoporosis. NOTCH is activated in selected tumors, such as osteosarcoma, and in breast cancer cells that form osteolytic bone metastases. In conclusion, Notch regulates skeletal development and bone remodeling, and gain- or loss-of-function mutations of Notch signaling result in important skeletal diseases. PMID:23554451

  3. Dissecting the mechanisms of Notch induced hyperplasia

    PubMed Central

    Djiane, Alexandre; Krejci, Alena; Bernard, Frédéric; Fexova, Silvie; Millen, Katherine; Bray, Sarah J

    2013-01-01

    The outcome of the Notch pathway on proliferation depends on cellular context, being growth promotion in some, including several cancers, and growth inhibition in others. Such disparate outcomes are evident in Drosophila wing discs, where Notch overactivation causes hyperplasia despite having localized inhibitory effects on proliferation. To understand the underlying mechanisms, we have used genomic strategies to identify the Notch-CSL target genes directly activated during wing disc hyperplasia. Among them were genes involved in both autonomous and non-autonomous regulation of proliferation, growth and cell death, providing molecular explanations for many characteristics of Notch induced wing disc hyperplasia previously reported. The Notch targets exhibit different response patterns, which are shaped by both positive and negative feed-forward regulation between the Notch targets themselves. We propose, therefore, that both the characteristics of the direct Notch targets and their cross-regulatory relationships are important in coordinating the pattern of hyperplasia. PMID:23232763

  4. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  5. Loss of Notch3 Signaling in Vascular Smooth Muscle Cells Promotes Severe Heart Failure Upon Hypertension.

    PubMed

    Ragot, Hélène; Monfort, Astrid; Baudet, Mathilde; Azibani, Fériel; Fazal, Loubina; Merval, Régine; Polidano, Evelyne; Cohen-Solal, Alain; Delcayre, Claude; Vodovar, Nicolas; Chatziantoniou, Christos; Samuel, Jane-Lise

    2016-08-01

    Hypertension, which is a risk factor of heart failure, provokes adaptive changes at the vasculature and cardiac levels. Notch3 signaling plays an important role in resistance arteries by controlling the maturation of vascular smooth muscle cells. Notch3 deletion is protective in pulmonary hypertension while deleterious in arterial hypertension. Although this latter phenotype was attributed to renal and cardiac alterations, the underlying mechanisms remained unknown. To investigate the role of Notch3 signaling in the cardiac adaptation to hypertension, we used mice with either constitutive Notch3 or smooth muscle cell-specific conditional RBPJκ knockout. At baseline, both genotypes exhibited a cardiac arteriolar rarefaction associated with oxidative stress. In response to angiotensin II-induced hypertension, the heart of Notch3 knockout and SM-RBPJκ knockout mice did not adapt to pressure overload and developed heart failure, which could lead to an early and fatal acute decompensation of heart failure. This cardiac maladaptation was characterized by an absence of media hypertrophy of the media arteries, the transition of smooth muscle cells toward a synthetic phenotype, and an alteration of angiogenic pathways. A subset of mice exhibited an early fatal acute decompensated heart failure, in which the same alterations were observed, although in a more rapid timeframe. Altogether, these observations indicate that Notch3 plays a major role in coronary adaptation to pressure overload. These data also show that the hypertrophy of coronary arterial media on pressure overload is mandatory to initially maintain a normal cardiac function and is regulated by the Notch3/RBPJκ pathway. PMID:27296994

  6. Notched strength of beryllium powder and ingot sheets.

    NASA Technical Reports Server (NTRS)

    Moss, R. G.

    1972-01-01

    The effects of notches in thin beryllium sheets were studied as functions of material variables and notch severity. Double edge notched samples having stress concentration factors of 1.0 to 15.4 were prepared by milling to size, etching, and electrical discharge machining the notches. Strength was not reduced greatly by sharp notches, and duller notches were more deleterious than sharp notches. The trend was for reduced strength for dull notches, increased strength for sharper notches, and reduced strength for very sharp notches. Differences in material purity or source of the sheet had little affect on notch sensitivity. The most important factors appear to be oxide content and directionality of the sheet microstructure; high oxide content and highly directional microstructure tend to give more notch sensitivity than low oxide content, and more bidirectional microstructure. Postulated causes of the change in notched/unnotched strength are given.

  7. Simulation of reflective notching with TEMPEST

    NASA Astrophysics Data System (ADS)

    Pistor, Thomas V.; Neureuther, Andrew R.

    1997-07-01

    Reflective notching from projection printing a narrow feature over a reflective topography was simulated with the 3D electro-magnetic simulation program TEMPEST. Various topographical and optical parameters were varied to determine their effect on the reflective notching and to gain insight into the mechanism of reflective notching. It was determined that corner angles in the topography and anti-reflection coating use are important parameters while resist surface angle and polarization are not.

  8. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  9. Autophagy Sustains Hematopoiesis Through Targeting Notch.

    PubMed

    Cao, Yan; Cai, Jinyang; Zhang, Suping; Yuan, Na; Fang, Yixuan; Wang, Zhijian; Li, Xin; Cao, Dan; Xu, Fei; Lin, Weiwei; Song, Lin; Wang, Zhen; Wang, Jian; Xu, Xiaoxiao; Zhang, Yi; Zhao, Wenli; Hu, Shaoyan; Zhang, Xueguang; Wang, Jianrong

    2015-11-15

    Autophagy is required for hematopoietic stem cell multilineage differentiation, but the underlying mechanism is unknown. Using a conditional mouse model and human leukemia cells, we uncovered a mechanistic link between autophagy and hematopoietic stem cell differentiation. Loss of autophagy in mouse hematopoietic stem cells diminished the bone marrow generation of functional blood cells, in particular lymphocytes, and resulted in a leukemic phenotype and elevated Notch signaling. Physiological autophagy activity in mice was inversely correlated with Notch signaling during adult hematopoietic stem cell differentiation, while pathologically low autophagy was associated with upregulated Notch signaling in dysfunctional hematopoietic stem cells of acute leukemia patients. Furthermore, we show that autophagy directly degraded intracellular Notch, the active form of Notch receptor cleaved from the full-length Notch molecule by γ-secretase. Finally, we show that hematopoietic multilineage differentiation potential was restored in autophagy defective hematopoietic stem and progenitor cells when their Notch signaling was abrogated either pharmacologically with γ-secretase inhibitor DAPT or genetically with RNA interference of Notch effector RBPJ. Hence, we propose that autophagy sustains hematopoiesis by direct targeting Notch. PMID:26178296

  10. PKCζ regulates Notch receptor routing and activity in a Notch signaling-dependent manner

    PubMed Central

    Sjöqvist, Marika; Antfolk, Daniel; Ferraris, Saima; Rraklli, Vilma; Haga, Cecilia; Antila, Christian; Mutvei, Anders; Imanishi, Susumu Y; Holmberg, Johan; Jin, Shaobo; Eriksson, John E; Lendahl, Urban; Sahlgren, Cecilia

    2014-01-01

    Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick central nervous system and in cultured myoblasts, Notch-stimulated cells were allowed to undergo differentiation. PKCζ phosphorylates membrane-tethered forms of Notch and regulates two distinct routing steps, depending on the Notch activation state. When Notch is activated, PKCζ promotes re-localization of Notch from late endosomes to the nucleus and enhances production of the Notch intracellular domain, which leads to increased Notch activity. In the non-activated state, PKCζ instead facilitates Notch receptor internalization, accompanied with increased ubiquitylation and interaction with the endosomal sorting protein Hrs. Collectively, these data identify PKCζ as a key regulator of Notch trafficking and demonstrate that distinct steps in intracellular routing are differentially modulated depending on Notch signaling status. PMID:24662486

  11. The Different Role of Notch1 and Notch2 in Astrocytic Gliomas

    PubMed Central

    Jiang, Rongcai; Qiu, Mingzhe; Kang, Chunsheng; Jia, Zhifan; Wang, Guangxiu; Han, Lei; Fan, Xing; Pu, Peiyu

    2013-01-01

    It is well known that Notch signaling plays either oncogenic or tumor suppressive role in a variety of tumors, depending on the cellular context. However, in our previous study, we found that Notch1 was overexpressed while Notch2 downregulated in the majority of astrocytic gliomas with different grades as well as in glioblastoma cell lines U251 and A172. We had knocked down Notch1 by siRNA in glioblastoma cells, and identified that the cell growth and invasion were inhibited, whereas cell apoptosis was induced either in vitro or in vivo. For further clarification of the role of Notch2 in pathogenesis of gliomas, enforced overexpression of Notch2 was carried out with transfection of Notch2 expression plasmid in glioma cells and the cell growth, invasion and apoptosis were examined in vitro and in vivo in the present study, and siRNA targeting Notch1 was used as a positive control in vivo. The results showed that upregulating Notch2 had the effect of suppressing cell growth and invasion as well as inducing apoptosis, just the same as the results of knocking down Notch1. Meanwhile, the activity of core signaling pathway–EGFR/PI3K/AKT in astrocytic glioma cells was repressed. Thus, the present study reveals, for the first time, that Notch1 and Notch2 play different roles in the biological processes of astrocytic gliomas. Knocking down the Notch1 or enforced overexpression of Notch2 both modulate the astrocytic glioma phenotype, and the mechanism by which Notch1 and 2 play different roles in the glioma growth should be further investigated. PMID:23349727

  12. Combined deficiency of Notch1 and Notch3 causes pericyte dysfunction, models CADASIL, and results in arteriovenous malformations

    PubMed Central

    Kofler, Natalie M.; Cuervo, Henar; Uh, Minji K.; Murtomäki, Aino; Kitajewski, Jan

    2015-01-01

    Pericytes regulate vessel stability and pericyte dysfunction contributes to retinopathies, stroke, and cancer. Here we define Notch as a key regulator of pericyte function during angiogenesis. In Notch1+/−; Notch3−/− mice, combined deficiency of Notch1 and Notch3 altered pericyte interaction with the endothelium and reduced pericyte coverage of the retinal vasculature. Notch1 and Notch3 were shown to cooperate to promote proper vascular basement membrane formation and contribute to endothelial cell quiescence. Accordingly, loss of pericyte function due to Notch deficiency exacerbates endothelial cell activation caused by Notch1 haploinsufficiency. Mice mutant for Notch1 and Notch3 develop arteriovenous malformations and display hallmarks of the ischemic stroke disease CADASIL. Thus, Notch deficiency compromises pericyte function and contributes to vascular pathologies. PMID:26563570

  13. Notching on Cancer’s Door: Notch Signaling in Brain Tumors

    PubMed Central

    Teodorczyk, Marcin; Schmidt, Mirko H. H.

    2015-01-01

    Notch receptors play an essential role in the regulation of central cellular processes during embryonic and postnatal development. The mammalian genome encodes for four Notch paralogs (Notch 1–4), which are activated by three Delta-like (Dll1/3/4) and two Serrate-like (Jagged1/2) ligands. Further, non-canonical Notch ligands such as epidermal growth factor like protein 7 (EGFL7) have been identified and serve mostly as antagonists of Notch signaling. The Notch pathway prevents neuronal differentiation in the central nervous system by driving neural stem cell maintenance and commitment of neural progenitor cells into the glial lineage. Notch is therefore often implicated in the development of brain tumors, as tumor cells share various characteristics with neural stem and progenitor cells. Notch receptors are overexpressed in gliomas and their oncogenicity has been confirmed by gain- and loss-of-function studies in vitro and in vivo. To this end, special attention is paid to the impact of Notch signaling on stem-like brain tumor-propagating cells as these cells contribute to growth, survival, invasion, and recurrence of brain tumors. Based on the outcome of ongoing studies in vivo, Notch-directed therapies such as γ-secretase inhibitors and blocking antibodies have entered and completed various clinical trials. This review summarizes the current knowledge on Notch signaling in brain tumor formation and therapy. PMID:25601901

  14. Targeting Notch to overcome radiation resistance

    PubMed Central

    Yahyanejad, Sanaz; Theys, Jan; Vooijs, Marc

    2016-01-01

    Radiotherapy represents an important therapeutic strategy in the treatment of cancer cells. However, it often fails to eliminate all tumor cells because of the intrinsic or acquired treatment resistance, which is the most common cause of tumor recurrence. Emerging evidences suggest that the Notch signaling pathway is an important pathway mediating radiation resistance in tumor cells. Successful targeting of Notch signaling requires a thorough understanding of Notch regulation and the context-dependent interactions between Notch and other therapeutically relevant pathways. Understanding these interactions will increase our ability to design rational combination regimens that are more likely to be safe and effective. Here we summarize the role of Notch in mediating resistance to radiotherapy, the different strategies to block Notch in cancer cells and how treatment scheduling can improve tumor response. Finally, we discuss a need for reliable Notch related biomarkers in specific tumors to measure pathway activity and to allow identification of a subset of patients who are likely to benefit from Notch targeted therapies. PMID:26713603

  15. Cigarette smoke induces the expression of Notch3, not Notch1, protein in lung adenocarcinoma

    PubMed Central

    CHENG, ZHENSHUN; TAN, QIUYUE; TAN, WEIJUN; ZHANG, LI

    2015-01-01

    The aim of the present study was to determine the effect of cigarette smoke on the expression of Notch proteins in lung adenocarcinoma (LAC). Protein expression levels of Notch1 and Notch3 were analyzed using immunohistochemistry in 102 human LAC specimens. Of these, 52 were obtained from smokers and 50 from non-smokers. In addition, cigarette smoke extract (CSE) at varying concentrations (1, 2.5 and 5%) was administered to A549 cells. The expression of Notch1 and Notch3 protein was then detected by western blot analysis at different time points (0, 8, 24 and 48 h). Of the 102 LAC specimens, 42 (41.2%) were positive for Notch1 and 63 (61.8%) were positive for Notch3. There was no significant difference in the level of Notch1 expression between smokers and non-smokers with LAC (P>0.05). The positive rate and staining intensity of Notch3 expression were increased in the smokers compared with the non-smokers (P<0.05). The expression of Notch3 protein in A549 cells increased in a time- and dose-dependent manner following treatment with CSE, whilst the expression of Notch1 protein appeared stable. The results suggested that cigarette smoke was able to induce the expression of Notch3, not Notch1, protein in LAC. The data revealed an upregulation of Notch3 in LAC following cigarette smoke exposure. Such findings may provide a novel therapeutic target for the treatment of LAC. PMID:26622547

  16. A novel reporter of notch signalling indicates regulated and random notch activation during vertebrate neurogenesis

    PubMed Central

    2011-01-01

    Background Building the complex vertebrate nervous system involves the regulated production of neurons and glia while maintaining a progenitor cell population. Neurogenesis starts asynchronously in different regions of the embryo and occurs over a long period of time, allowing progenitor cells to be exposed to multiple extrinsic signals that regulate the production of different cell types. Notch-mediated cell-cell signalling is one of the mechanisms that maintain the progenitor pool, however, little is known about how the timing of Notch activation is related to the cell cycle and the distinct modes of cell division that generate neurons. An essential tool with which to investigate the role of Notch signalling on cell by cell basis is the development a faithful reporter of Notch activity. Results Here we present a novel reporter for Notch activity based on the promoter of the well characterised Notch target chick Hes5-1, coupled with multiple elements that confer instability, including a destabilized nuclear Venus fluorescent protein and the 3' untranslated region (UTR) of Hes5-1. We demonstrate that this reporter faithfully recapitulates the endogenous expression of Hes5-1 and that it robustly responds to Notch activation in the chick neural tube. Analysis of the patterns of Notch activity revealed by this reporter indicates that although Notch is most frequently activated prior to mitosis it can be activated at any time within the cell cycle. Notch active progenitors undergoing mitosis generate two daughters that both continue to experience Notch signalling. However, cells lacking Notch activity before and during mitosis generate daughters with dissimilar Notch activity profiles. Conclusions A novel Notch reporter with multiple destabilisation elements provides a faithful read-out of endogenous Notch activity on a cell-by-cell basis, as neural progenitors progress through the cell cycle in the chick neural tube. Notch activity patterns in this cell population

  17. Targeting Notch Signaling in Colorectal Cancer

    PubMed Central

    Suman, Suman; Das, Trinath P.; Ankem, Murali K.; Damodaran, Chendil

    2014-01-01

    The activation of Notch signaling is implicated in tumorigenesis in the colon due to the induction of pro-survival signaling in colonic epithelial cells. Chemoresistance is a major obstacle for treatment and for the complete eradication of colorectal cancer (CRC), hence, the inhibition of Notch is an attractive target for CRC and several groups are working to identify small molecules or monoclonal antibodies that inhibit Notch or its downstream events; however, toxicity profiles in normal cells and organs often impede the clinical translation of these molecules. Dietary agents have gained momentum for targeting several pro-survival signaling cascades, and recent studies demonstrated that agents that inhibit Notch signaling result in growth inhibition in preclinical models of CRC. In this review, we focus on the importance of Notch as a preventive and therapeutic target for colon cancer and on the effect of WA on this signaling pathway in the context of colon cancer. PMID:25395896

  18. Targeting Notch Signaling in Colorectal Cancer.

    PubMed

    Suman, Suman; Das, Trinath P; Ankem, Murali K; Damodaran, Chendil

    2014-12-01

    The activation of Notch signaling is implicated in tumorigenesis in the colon due to the induction of pro-survival signaling in colonic epithelial cells. Chemoresistance is a major obstacle for treatment and for the complete eradication of colorectal cancer (CRC), hence, the inhibition of Notch is an attractive target for CRC and several groups are working to identify small molecules or monoclonal antibodies that inhibit Notch or its downstream events; however, toxicity profiles in normal cells and organs often impede the clinical translation of these molecules. Dietary agents have gained momentum for targeting several pro-survival signaling cascades, and recent studies demonstrated that agents that inhibit Notch signaling result in growth inhibition in preclinical models of CRC. In this review, we focus on the importance of Notch as a preventive and therapeutic target for colon cancer and on the effect of WA on this signaling pathway in the context of colon cancer. PMID:25395896

  19. Notched Fatigue Behavior of PEEK

    PubMed Central

    Murphy, JE; Brinkman, JG; Kurtz, SM; Rimnac, CM

    2013-01-01

    Poly(ether-ether-ketone) (PEEK) has been used as a load bearing orthopaedic implant material with clinical success. All of the orthopaedic applications contain stress concentrations (notches) in their design; however, little work has been done to examine the fatigue behavior of PEEK in the presence of a notch. This work examines both stress-life (SN) fatigue behavior and the fracture behavior of unfilled PEEK under tension tension loading in circumferentially grooved round bar specimens with different elastic stress concentration factors. It was found that the majority of the loading was elastic in nature, and that there was only a small portion on the lifetime where there was a detectable change in structural behavior prior to gross fracture. Fractographic analysis via SEM further elucidated the potential fracture micromechanisms. Additional analysis was conducted to estimate the percent of the lifetime spent in crack initiation vs propagation, and it was found that the specimens spent the majority of the time in the crack initiation phase. PMID:20864160

  20. Canonical Notch activation in osteocytes causes osteopetrosis.

    PubMed

    Canalis, Ernesto; Bridgewater, David; Schilling, Lauren; Zanotti, Stefano

    2016-01-15

    Activation of Notch1 in cells of the osteoblastic lineage inhibits osteoblast differentiation/function and causes osteopenia, whereas its activation in osteocytes causes a distinct osteopetrotic phenotype. To explore mechanisms responsible, we established the contributions of canonical Notch signaling (Rbpjκ dependent) to osteocyte function. Transgenics expressing Cre recombinase under the control of the dentin matrix protein-1 (Dmp1) promoter were crossed with Rbpjκ conditional mice to generate Dmp1-Cre(+/-);Rbpjκ(Δ/Δ) mice. These mice did not have a skeletal phenotype, indicating that Rbpjκ is dispensable for osteocyte function. To study the Rbpjκ contribution to Notch activation, Rosa(Notch) mice, where a loxP-flanked STOP cassette is placed between the Rosa26 promoter and the NICD coding sequence, were crossed with Dmp1-Cre transgenic mice and studied in the context (Dmp1-Cre(+/-);Rosa(Notch);Rbpjκ(Δ/Δ)) or not (Dmp1-Cre(+/-);Rosa(Notch)) of Rbpjκ inactivation. Dmp1-Cre(+/-);Rosa(Notch) mice exhibited increased femoral trabecular bone volume and decreased osteoclasts and bone resorption. The phenotype was reversed in the context of the Rbpjκ inactivation, demonstrating that Notch canonical signaling was accountable for the phenotype. Notch activation downregulated Sost and Dkk1 and upregulated Axin2, Tnfrsf11b, and Tnfsf11 mRNA expression, and these effects were not observed in the context of the Rbpjκ inactivation. In conclusion, Notch activation in osteocytes suppresses bone resorption and increases bone volume by utilization of canonical signals that also result in the inhibition of Sost and Dkk1 and upregulation of Wnt signaling. PMID:26578715

  1. Notch3/Jagged1 circuitry reinforces notch signaling and sustains T-ALL.

    PubMed

    Pelullo, Maria; Quaranta, Roberta; Talora, Claudio; Checquolo, Saula; Cialfi, Samantha; Felli, Maria Pia; te Kronnie, Geertruy; Borga, Chiara; Besharat, Zein Mersini; Palermo, Rocco; Di Marcotullio, Lucia; Capobianco, Anthony J; Gulino, Alberto; Screpanti, Isabella; Bellavia, Diana

    2014-12-01

    Deregulated Notch signaling has been extensively linked to T-cell acute lymphoblastic leukemia (T-ALL). Here, we show a direct relationship between Notch3 receptor and Jagged1 ligand in human cell lines and in a mouse model of T-ALL. We provide evidence that Notch-specific ligand Jagged1 is a new Notch3 signaling target gene. This essential event justifies an aberrant Notch3/Jagged1 cis-expression inside the same cell. Moreover, we demonstrate in Notch3-IC-overexpressing T lymphoma cells that Jagged1 undergoes a raft-associated constitutive processing. The proteolytic cleavage allows the Jagged1 intracellular domain to empower Notch signaling activity and to increase the transcriptional activation of Jagged1 itself (autocrine effect). On the other hand, the release of the soluble Jagged1 extracellular domain has a positive impact on activating Notch signaling in adjacent cells (paracrine effect), finally giving rise to a Notch3/Jagged1 auto-sustaining loop that supports the survival, proliferation, and invasion of lymphoma cells and contributes to the development and progression of Notch-dependent T-ALL. These observations are also supported by a study conducted on a cohort of patients in which Jagged1 expression is associated to adverse prognosis. PMID:25499214

  2. Origin and Evolution of Deep Plasmaspheric Notches

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Adrian, M. L.; Liemohn, M. W.

    2005-01-01

    Deep plasmaspheric notches can extend over more than 2 R(sub E) in radial distance and 3 hours MLT in the magnetic equatorial plane, as observed by the extreme ultraviolet (EUV) imager on the IMAGE mission. They are among the largest evacuated features in the exterior plasmaspheric boundary. They can last for days and exhibit a variety of shapes. It appears that weak convection and limited erosion precedes notch formation at the westward, near-Earth edge of the convection plume. Eighteen clear notch events were found and analyzed in 2000. Among these events, notches were found to drift as slowly as 44% of corotation. In only one case was a notch found to drift at the corotation rate within measurement error. On average, these notches drift at about 21.5 h d(sup -1) or 90% of the corotational rate. Notches sometimes exhibit an interior structure that appears as an extended prominence of dense plasma, which forms a W- or M-like feature in IMAGE/EUV images, depending on viewing perspective. Initial modeling suggests that notches and notch prominences may be caused in part by intense small-scale potential structures that result from the localized injection of ring current plasma. Plasma filling rates during recovery are examined in three L shell ranges from L = 2 to L = 3.5 with rates ranging from 5 to 140 cm(sup -3) d(sup -1). Plasma loss during a minor substorm is found to extend to surprisingly low L shell with rates ranging from 100 to 130 cm(sup -3) d(sup -1) across the L shells examined.

  3. Hepatitis B virus X protein activates Notch signaling by its effects on Notch1 and Notch4 in human hepatocellular carcinoma.

    PubMed

    Gao, Juan; Xiong, Yimin; Wang, Yan; Wang, Yiming; Zheng, Guorong; Xu, Hualin

    2016-01-01

    Deregulated expression of Notch receptors and abnormal activity of Notch signaling have been observed in a growing number of malignant tumors, however, the expression and activity of Notch in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) and their relationship with HBV X protein (HBx) are still not fully elucidated. To address this, we examined the overall expression of Notch receptors in HBV-associated HCC tissues, analyzed their relationship with HBx, and further investigated the role of Notch signaling in HBx stable transfected HepG2 cells (HepG2X). The results showed that Notch signaling could be activated by HBx in HepG2 cells. The expression of cytoplasmic Notch1 or nuclear Notch4 was correlated with the expression of HBx in HBV-associated HCC tissues. The expression of cytoplasmic Notch1 or nuclear Notch4 could also be upregulated by HBx in HepG2X cells. The upregulation of Notch1 by HBx was through p38 MAPK pathway. Moreover, HBx was found to directly interact with Notch1, whereas, not with Notch4 in HepG2X cells. Suppression of Notch signaling by γ-secretase inhibitor (GSI) decreased cell growth, blocked cell cycle progression and induced cell apoptosis in HepG2X cells. The present study indicates that HBx activates Notch signaling by its effects on Notch1 and Notch4, and therefore, recruits Notch signaling as a downstream pathway contributing to its carcinogenic role in HBV-associated HCC. PMID:26530164

  4. 76 FR 22745 - Three Notch Railway, LLC-Acquisition and Operation Exemption-Three Notch Railroad Co., Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... Surface Transportation Board Three Notch Railway, LLC--Acquisition and Operation Exemption-- Three Notch Railroad Co., Inc. Three Notch Railway, LLC (TNRW), a noncarrier, has filed a verified notice of exemption under 49 CFR 1150.31 to acquire from Three Notch Railroad Co., Inc. (TNHR) and to operate...

  5. Legless locomotion in lattices

    NASA Astrophysics Data System (ADS)

    Schiebel, Perrin; Dai, Jin; Gong, Chaohui; Serrano, Miguel M.; Mendelson, Joseph R., III; Choset, Howie; Goldman, Daniel I.

    2015-03-01

    By propagating waves from head to tail, limbless organisms like snakes can traverse terrain composed of rocks, foliage, soil and sand. Previous research elucidated how rigid obstacles influence snake locomotion by studying a model terrain-symmetric lattices of pegs placed in hard ground. We want to understand how different substrate-body interaction modes affect performance in desert-adapted snakes during transit of substrates composed of both rigid obstacles and granular media (GM). We tested Chionactis occipitalis, the Mojave shovel-nosed snake, in two laboratory treatments: lattices of 0 . 64 cm diameter obstacles arrayed on both a hard, slick substrate and in a GM of ~ 0 . 3 mm diameter glass particles. For all lattice spacings, d, speed through the hard ground lattices was less than that in GM lattices. However, maximal undulation efficiencies ηu (number of body lengths advanced per undulation cycle) in both treatments were comparable when d was intermediate. For other d, ηu was lower than this maximum in hard ground lattices, while on GM, ηu was insensitive to d. To systematically explore such locomotion, we tested a physical robot model of the snake; performance depended sensitively on base substrate, d and body wave parameters.

  6. Endosomal sorting of Notch receptors through COMMD9-dependent pathways modulates Notch signaling

    PubMed Central

    Li, Haiying; Koo, Yeon; Mao, Xicheng; Sifuentes-Dominguez, Luis; Morris, Lindsey L.; Jia, Da; Miyata, Naoteru; Faulkner, Rebecca A.; van Deursen, Jan M.; Vooijs, Marc; Billadeau, Daniel D.; van de Sluis, Bart; Cleaver, Ondine

    2015-01-01

    Notch family members are transmembrane receptors that mediate essential developmental programs. Upon ligand binding, a proteolytic event releases the intracellular domain of Notch, which translocates to the nucleus to regulate gene transcription. In addition, Notch trafficking across the endolysosomal system is critical in its regulation. In this study we report that Notch recycling to the cell surface is dependent on the COMMD–CCDC22–CCDC93 (CCC) complex, a recently identified regulator of endosomal trafficking. Disruption in this system leads to intracellular accumulation of Notch2 and concomitant reduction in Notch signaling. Interestingly, among the 10 copper metabolism MURR1 domain containing (COMMD) family members that can associate with the CCC complex, only COMMD9 and its binding partner, COMMD5, have substantial effects on Notch. Furthermore, Commd9 deletion in mice leads to embryonic lethality and complex cardiovascular alterations that bear hallmarks of Notch deficiency. Altogether, these studies highlight that the CCC complex controls Notch activation by modulating its intracellular trafficking and demonstrate cargo-specific effects for members of the COMMD protein family. PMID:26553930

  7. Xotch, the Xenopus homolog of Drosophila notch.

    PubMed

    Coffman, C; Harris, W; Kintner, C

    1990-09-21

    During the development of a vertebrate embryo, cell fate is determined by inductive signals passing between neighboring tissues. Such determinative interactions have been difficult to characterize fully without knowledge of the molecular mechanisms involved. Mutations of Drosophila and the nematode Caenorhabditis elegans have been isolated that define a family of related gene products involved in similar types of cellular inductions. One of these genes, the Notch gene from Drosophila, is involved with cell fate choices in the neurogenic region of the blastoderm, in the developing nervous system, and in the eye-antennal imaginal disc. Complementary DNA clones were isolated from Xenopus embryos with Notch DNA in order to investigate whether cell-cell interactions in vertebrate embryos also depend on Notch-like molecules. This approach identified a Xenopus molecule, Xotch, which is remarkably similar to Drosophila Notch in both structure and developmental expression. PMID:2402639

  8. Notch sensitivity of PEEK in monotonic tension.

    PubMed

    Sobieraj, Michael C; Kurtz, Steven M; Rimnac, Clare M

    2009-11-01

    Poly(ether-ether-ketone) (PEEK) has been used as a load bearing orthopaedic implant material with clinical success. All of the orthopaedic applications contain stress concentrations (notches) in their design; however, little work has been done to examine the stress-strain behavior of PEEK in the presence of a notch. This work examines both the stress-strain behavior and the fracture behavior of neat PEEK in a uniaxial loaded condition, and in circumferentially grooved round bar specimens with different elastic stress concentration factors. It was found that the material shows ductile necking in the smooth condition and that this is almost completely suppressed in the notched conditions. Additionally, the deformation and fracture micromechanisms changed drastically, from one of plastic deformation and void coalescence to one dominated by crazing and brittle fast fracture. This change in mechanism was explained via Neuber's theory of stresses at a notch. PMID:19733391

  9. Notch Sensitivity of PEEK in Monotonic Tension

    PubMed Central

    Sobieraj, MC; Kurtz, SM; Rimnac, CM

    2009-01-01

    Poly(ether-ether-ketone) (PEEK) has been used as a load bearing orthopaedic implant material with clinical success. All of the orthpaedic applications contain stress concentrations (notches) in their design; however, little work has been done to examine the stress-strain behavior of PEEK in the presence of a notch. This work examines both the stress-strain behavior and the fracture behavior of neat PEEK in a uniaxial loaded condition, and in circumferentially grooved round bar specimens with different elastic stress concentration factors. It was found that the material shows ductile necking in the smooth condition and that this is almost completely suppressed in the notched conditions. Additionally, the deformation and fracture micromechanisms changed drastically, from one of plastic deformation and void coalescence to one dominated by crazing and brittle fast fracture. This change in mechanism was explained via Neuber's theory of stresses at a notch. PMID:19733391

  10. Benchmark cyclic plastic notch strain measurements

    NASA Technical Reports Server (NTRS)

    Sharpe, W. N., Jr.; Ward, M.

    1983-01-01

    Plastic strains at the roots of notched specimens of Inconel 718 subjected to tension-compression cycling at 650 C are reported. These strains were measured with a laser-based technique over a gage length of 0.1 mm and are intended to serve as 'benchmark' data for further development of experimental, analytical, and computational approaches. The specimens were 250 mm by 2.5 mm in the test section with double notches of 4.9 mm radius subjected to axial loading sufficient to cause yielding at the notch root on the tensile portion of the first cycle. The tests were run for 1000 cycles at 10 cpm or until cracks initiated at the notch root. The experimental techniques are described, and then representative data for the various load spectra are presented. All the data for each cycle of every test are available on floppy disks from NASA.

  11. Vee-notching device. [with adjustable carriage

    NASA Technical Reports Server (NTRS)

    Spier, R. A. (Inventor)

    1973-01-01

    A device is described for forming vee-notches in tensile test specimens comprising a vertically reciprocating, triangular, triple-edged cutting tool guided in a corresponding triangular slot. The specimen to be vee-notched is mounted on a carriage that is movable toward and away from the cutting tool. The specimen is precisely positioned on the carriage by tapered studs that extend into holes in the specimen and are used to expand spring collets against the wall of the holes.

  12. Lattice QCD

    SciTech Connect

    Bornyakov, V.G.

    2005-06-01

    Possibilities that are provided by a lattice regularization of QCD for studying nonperturbative properties of QCD are discussed. A review of some recent results obtained from computer calculations in lattice QCD is given. In particular, the results for the QCD vacuum structure, the hadron mass spectrum, and the strong coupling constant are considered.

  13. Benchmark notch test for life prediction

    NASA Technical Reports Server (NTRS)

    Domas, P. A.; Sharpe, W. N.; Ward, M.; Yau, J. F.

    1982-01-01

    The laser Interferometric Strain Displacement Gage (ISDG) was used to measure local strains in notched Inconel 718 test bars subjected to six different load histories at 649 C (1200 F) and including effects of tensile and compressive hold periods. The measurements were compared to simplified Neuber notch analysis predictions of notch root stress and strain. The actual strains incurred at the root of a discontinuity in cyclically loaded test samples subjected to inelastic deformation at high temperature where creep deformations readily occur were determined. The steady state cyclic, stress-strain response at the root of the discontinuity was analyzed. Flat, double notched uniaxially loaded fatigue specimens manufactured from the nickel base, superalloy Inconel 718 were used. The ISDG was used to obtain cycle by cycle recordings of notch root strain during continuous and hold time cycling at 649 C. Comparisons to Neuber and finite element model analyses were made. The results obtained provide a benchmark data set in high technology design where notch fatigue life is the predominant component service life limitation.

  14. Notch1 Autoactivation via Transcriptional Regulation of Furin, Which Sustains Notch1 Signaling by Processing Notch1-Activating Proteases ADAM10 and Membrane Type 1 Matrix Metalloproteinase

    PubMed Central

    Qiu, Hong; Tang, Xiaoying; Ma, Jun; Shaverdashvili, Khvaramze; Zhang, Keman

    2015-01-01

    Notch1 is an evolutionarily conserved transmembrane receptor involved in melanoma growth. Notch1 is first cleaved by furin in the Golgi apparatus to produce the biologically active heterodimer. Following ligand binding, Notch1 is cleaved at the cell membrane by proteases such as ADAM10 and -17 and membrane type 1 matrix metalloproteinase (MT1-MMP), the latter of which we recently identified as a novel protease involved in Notch1 processing. The final cleavage is γ-secretase dependent and releases the active Notch intracellular domain (NIC). We now demonstrate that Notch1 directly regulates furin expression. Aside from activating Notch1, furin cleaves and activates several proteases, including MT1-MMP, ADAM10, and ADAM17. By chromatin immunoprecipitation and a reporter assay, we demonstrate that Notch1 binds at position −1236 of the furin promoter and drives furin expression. The Notch1-dependent enhancement of furin expression increases the activities of MT1-MMP and ADAM10 but not that of ADAM17, as demonstrated by short hairpin RNA (shRNA) knockdown of furin, and promotes the cleavage of Notch1 itself. These data highlight a novel positive-feedback loop whereby Notch1-dependent furin expression can induce Notch1 signaling by increasing Notch1 processing and by potentiating the activity of the proteases responsible for Notch1 activation. This leads to Notch1 signal amplification, which can promote melanoma tumor growth and progression, as demonstrated by the inhibition of cell migration and invasion upon furin inhibition downstream of Notch1. Disruption of such feedback signaling might represent an avenue for the treatment of melanoma. PMID:26283728

  15. Alteration of Notch signaling in skeletal development and disease

    PubMed Central

    Tao, Jianning; Chen, Shan; Lee, Brendan

    2010-01-01

    Notch signaling is an evolutionarily conserved mechanism for specifying and regulating organogenesis and tissue renewal. Human and mouse genetic studies have demonstrated mutations in many components of the Notch signaling pathway that cause skeletal patterning defects. More recently, the in vivo effects of Notch signaling on osteoblast specification, proliferation, and differentiation have been demonstrated, in addition to its regulation of osteoclast activity. However, while our understanding of canonical Notch signaling in skeletal biology is rapidly evolving, the role of non-canonical Notch signaling is still poorly understood. In a pathological context, aberration of Notch signaling is also associated with osteosarcoma. These studies raise the question of how Notch may interact with other signaling pathways like Wnt. Finally, manipulation of Notch signaling for bone-related diseases remains complex because of the temporal and context dependent nature of Notch signaling during mesenchymal stem cell and osteoblast differentiation. PMID:20392245

  16. The Role of Notch in the Cardiovascular System: Potential Adverse Effects of Investigational Notch Inhibitors

    PubMed Central

    Rizzo, Paola; Mele, Donato; Caliceti, Cristiana; Pannella, Micaela; Fortini, Cinzia; Clementz, Anthony George; Morelli, Marco Bruno; Aquila, Giorgio; Ameri, Pietro; Ferrari, Roberto

    2015-01-01

    Targeting the Notch pathway is a new promising therapeutic approach for cancer patients. Inhibition of Notch is effective in the oncology setting because it causes a reduction of highly proliferative tumor cells and it inhibits survival of cancer stem cells, which are considered responsible for tumor recurrence and metastasis. Additionally, since Delta-like ligand 4 (Dll4)-activated Notch signaling is a major modulator of angiogenesis, anti-Dll4 agents are being investigated to reduce vascularization of the tumor. Notch plays a major role in the heart during the development and, after birth, in response to cardiac damage. Therefore, agents used to inhibit Notch in the tumors (gamma secretase inhibitors and anti-Dll4 agents) could potentially affect myocardial repair. The past experience with trastuzumab and other tyrosine kinase inhibitors used for cancer therapy demonstrates that the possible cardiotoxicity of agents targeting shared pathways between cancer and heart and the vasculature should be considered. To date, Notch inhibition in cancer patients has resulted only in mild gastrointestinal toxicity. Little is known about the potential long-term cardiotoxicity associated to Notch inhibition in cancer patients. In this review, we will focus on mechanisms through which inhibition of Notch signaling could lead to cardiomyocytes and endothelial dysfunctions. These adverse effects could contrast with the benefits of therapeutic responses in cancer cells during times of increased cardiac stress and/or in the presence of cardiovascular risk factor. PMID:25629006

  17. The intracellular domains of Notch1 and Notch2 are functionally equivalent during development and carcinogenesis.

    PubMed

    Liu, Zhenyi; Brunskill, Eric; Varnum-Finney, Barbara; Zhang, Chi; Zhang, Andrew; Jay, Patrick Y; Bernstein, Irv; Morimoto, Mitsuru; Kopan, Raphael

    2015-07-15

    Although Notch1 and Notch2 are closely related paralogs and function through the same canonical signaling pathway, they contribute to different outcomes in some cell and disease contexts. To understand the basis for these differences, we examined in detail mice in which the Notch intracellular domains (N1ICD and N2ICD) were swapped. Our data indicate that strength (defined here as the ultimate number of intracellular domain molecules reaching the nucleus, integrating ligand-mediated release and nuclear translocation) and duration (half-life of NICD-RBPjk-MAML-DNA complexes, integrating cooperativity and stability dependent on shared sequence elements) are the factors that underlie many of the differences between Notch1 and Notch2 in all the contexts we examined, including T-cell development, skin differentiation and carcinogenesis, the inner ear, the lung and the retina. We were able to show that phenotypes in the heart, endothelium, and marginal zone B cells are attributed to haploinsufficiency but not to intracellular domain composition. Tissue-specific differences in NICD stability were most likely caused by alternative scissile bond choices by tissue-specific γ-secretase complexes following the intracellular domain swap. Reinterpretation of clinical findings based on our analyses suggests that differences in outcome segregating with Notch1 or Notch2 are likely to reflect outcomes dependent on the overall strength of Notch signals. PMID:26062937

  18. The intracellular domains of Notch1 and Notch2 are functionally equivalent during development and carcinogenesis

    PubMed Central

    Liu, Zhenyi; Brunskill, Eric; Varnum-Finney, Barbara; Zhang, Chi; Zhang, Andrew; Jay, Patrick Y.; Bernstein, Irv; Morimoto, Mitsuru; Kopan, Raphael

    2015-01-01

    Although Notch1 and Notch2 are closely related paralogs and function through the same canonical signaling pathway, they contribute to different outcomes in some cell and disease contexts. To understand the basis for these differences, we examined in detail mice in which the Notch intracellular domains (N1ICD and N2ICD) were swapped. Our data indicate that strength (defined here as the ultimate number of intracellular domain molecules reaching the nucleus, integrating ligand-mediated release and nuclear translocation) and duration (half-life of NICD-RBPjk-MAML-DNA complexes, integrating cooperativity and stability dependent on shared sequence elements) are the factors that underlie many of the differences between Notch1 and Notch2 in all the contexts we examined, including T-cell development, skin differentiation and carcinogenesis, the inner ear, the lung and the retina. We were able to show that phenotypes in the heart, endothelium, and marginal zone B cells are attributed to haploinsufficiency but not to intracellular domain composition. Tissue-specific differences in NICD stability were most likely caused by alternative scissile bond choices by tissue-specific γ-secretase complexes following the intracellular domain swap. Reinterpretation of clinical findings based on our analyses suggests that differences in outcome segregating with Notch1 or Notch2 are likely to reflect outcomes dependent on the overall strength of Notch signals. PMID:26062937

  19. Clinicopathological significance of aberrant Notch receptors in intrahepatic cholangiocarcinoma

    PubMed Central

    Wu, Wen-Rui; Shi, Xiang-De; Zhang, Rui; Zhu, Man-Sheng; Xu, Lei-Bo; Yu, Xian-Huan; Zeng, Hong; Wang, Jie; Liu, Chao

    2014-01-01

    Notch signaling has been reported to be activated to promote biliary epithelial cell differentiation and tubulogenesis during bile duct development. In this study, clinicopathological significance of aberrant expression of Notch receptors in intrahepatic cholangiocarcinoma (ICC) was investigated. Thus, forty-one ICC specimens were examined by immunohistochemistry using anti-Notch1-4 antibodies, respectively. Expression of Notch receptors was scored by percentage of positive tumor cells and intensity of immunostaining. Clinicopathological parameters and survival data were compared with the expression of Notch receptors, respectively. Expression of Notch receptors was identified in cancer cells, as well as in non-neoplastic cells. Compared with adjacent non-tumor liver tissues, Notch1 and 4 were up regulated, and Notch2 and 3 were relatively weaker. Positive immunostaining of Notch1 in ICC cells was detected in 34 cases (82.9%), Notch2 in 23 (56.1%), Notch3 in 16 (39.0%) and Notch4 in 14 (34.1%). Notch1 was overexpressed in cases with tumor size > 5 cm (P = 0.036). Expression of Notch2 was correlated inversely with histological grade (P = 0.016). Overexpression of Notch4 was more common in cases with serum CA125 > 35 U/ml than cases with CA125 ≤ 35 U/ml (P = 0.048). Expression of Notch3 was not correlated with any other clinicopathological parameters. Moreover, Notch4 was related to poor survival (P < 0.001). To conclude, this study reveals that aberrant expression of Notch receptors 1 and 4 might play important roles during ICC progression. PMID:25031748

  20. Notch signaling: an emerging therapeutic target for cancer treatment.

    PubMed

    Yuan, Xun; Wu, Hua; Xu, Hanxiao; Xiong, Huihua; Chu, Qian; Yu, Shiying; Wu, Gen Sheng; Wu, Kongming

    2015-12-01

    The Notch pathway is involved in cell proliferation, differentiation and survival. The Notch signaling pathway is one of the most commonly activated signaling pathways in cancer. Alterations include activating mutations and amplification of the Notch pathway, which play key roles in the progression of cancer. Accumulating evidence suggests that the pharmacological inhibition of this pathway can overcome chemoresistance. Efforts have been taken to develop Notch inhibitors as a single agent or in combination with clinically used chemotherapeutics to treat cancer. Some Notch inhibitors have been demonstrated to have therapeutic efficacy in preclinical studies. This review summarizes the recent studies and clinical evaluations of the Notch inhibitors in cancer. PMID:26341688

  1. The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism

    PubMed Central

    Kopan, Raphael; Ilagan, Ma. Xenia G.

    2009-01-01

    Notch signaling regulates many aspects of metazoan development and tissue renewal. Accordingly, misregulation or loss of Notch signaling underlies multiple human disorders, from developmental syndromes to adult onset diseases and cancer. Notch receptor activation is irreversible as it involves proteolysis-mediated release of the Notch intracellular domain, translocation to the nucleus, and association with a DNA-bound protein. Even though each Notch molecule signals only once without amplification by secondary messenger cascades, Notch signaling is remarkably robust in most tissues. In this review, we highlight the recent studies that reveal new molecular details involved in regulating ligand-mediated activation, receptor proteolysis and target selection. PMID:19379690

  2. Lattice Cubes

    ERIC Educational Resources Information Center

    Parris, Richard

    2011-01-01

    Given a segment that joins two lattice points in R[superscript 3], when is it possible to form a lattice cube that uses this segment as one of its twelve edges? A necessary and sufficient condition is that the length of the segment be an integer. This paper presents an algorithm for finding such a cube when the prime factors of the length are…

  3. Notch signaling in cardiovascular disease and calcification.

    PubMed

    Rusanescu, Gabriel; Weissleder, Ralph; Aikawa, Elena

    2008-08-01

    Recent increase in human lifespan has shifted the spectrum of aging-related disorders to an unprecedented upsurge in cardiovascular diseases, especially calcific aortic valve stenosis, which has an 80% risk of progression to heart failure and death. A current therapeutic option for calcified valves is surgical replacement, which provides only temporary relief. Recent progress in cardiovascular research has suggested that arterial and valve calcification are the result of an active process of osteogenic differentiation, induced by a pro-atherogenic inflammatory response. At molecular level, the calcification process is regulated by a network of signaling pathways, including Notch, Wnt and TGFbeta/BMP pathways, which control the master regulator of osteogenesis Cbfa1/Runx2. Genetic and in vitro studies have implicated Notch signaling in the regulation of macrophage activation and cardiovascular calcification. Individuals with inactivating Notch1 mutations have a high rate of cardiovascular disorders, including valve stenosis and calcification. This article reviews recent progress in the mechanism of cardiovascular calcification and discusses potential molecular mechanisms involved, focusing on Notch receptors. We propose a calcification model where extreme increases in vascular wall cell density due to inflammation-induced cell proliferation can trigger an osteogenic differentiation program mediated by Notch receptors. PMID:19936191

  4. Analysis of center-notched, unidirectional composites

    SciTech Connect

    Reedy, E.D. Jr.

    1982-01-01

    A method for calculating the stresses in a notched, unidirectional monolayer is described which permits the modeling of a finite-dimensioned monolayer containing a centered notch transverse to the fibers. Elastic-work hardening constitutive relationships may be specified for the fibers and/or matrix. Notch growth under increasing load can be analyzed. Calculations demonstrate the utility of this analysis in determining how constituent properties affect notch-tip fiber stress concentrations. Calculations for unidirectional boron/aluminum indicate that stress concentrations are reduced by a matrix with: (1) sufficiently high yield strength to prevent large-scale yielding (uniform traction loading can cause large fiber stress concentrations when global yielding occurs); and (2) a low rate of work-hardening (to reduce stress concentrations). The analysis has also been applied to Kevlar 49 plain weave fabric/epoxy monolayers. Predicted matrix and fiber stress concentrations are localized in this material with nonlinear material response limited to the notch-tip region. This is different from the widespread yielding in as-fabricated, unidirectional boron/aluminum. 6 figures.

  5. [Neural stem cells and Notch signalling].

    PubMed

    Traiffort, Elisabeth; Ferent, Julien

    2015-12-01

    Development and repair of the nervous system are based on the existence of neural stem cells (NSCs) able to generate neurons and glial cells. Among the mechanisms that are involved in the control of embryo or adult NSCs, the Notch signalling plays a major role. In embryo, the pathway participates in the maintenance of NSCs during all steps of development of the central nervous system which starts with the production of neurons also called neurogenesis and continues with gliogenesis giving rise to astrocytes and oligodendrocytes. During the postnatal and adult period, Notch signalling is still present in the major neurogenic areas, the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus. In these regions, Notch maintains NSC quiescence, contributes to the heterogeneity of these cells and displays pleiotropic effects during the regeneration process occurring after a lesion. PMID:26672665

  6. Notch Transmembrane Domain: Secondary Structure and Topology

    PubMed Central

    2016-01-01

    The Notch signaling pathway is critical in development, neuronal maintenance, and hematopoiesis. An obligate step in the activation of this pathway is cleavage of its transmembrane (TM) domain by γ-secretase. While the soluble domains have been extensively studied, little has been done to characterize its TM and flanking juxtamembrane (JM) segments. Here, we present the results of nuclear magnetic resonance (NMR) studies of the human Notch1 TM/JM domain. The TM domain is largely α-helical. While the flanking JM segments do not adopt regular secondary structure, they interact with the membrane surface, suggesting membrane interactions may play a role in modulating its cleavage by γ-secretase and subsequent NOTCH signaling function. PMID:26023825

  7. Sequential Notch activation regulates ventricular chamber development

    PubMed Central

    D'Amato, Gaetano; Luxán, Guillermo; del Monte-Nieto, Gonzalo; Martínez-Poveda, Beatriz; Torroja, Carlos; Walter, Wencke; Bochter, Matthew S.; Benedito, Rui; Cole, Susan; Martinez, Fernando; Hadjantonakis, Anna-Katerina; Uemura, Akiyoshi; Jiménez-Borreguero, Luis J.; de la Pompa, José Luis

    2016-01-01

    Ventricular chambers are essential for the rhythmic contraction and relaxation occurring in every heartbeat throughout life. Congenital abnormalities in ventricular chamber formation cause severe human heart defects. How the early trabecular meshwork of myocardial fibres forms and subsequently develops into mature chambers is poorly understood. We show that Notch signalling first connects chamber endocardium and myocardium to sustain trabeculation, and later coordinates ventricular patterning and compaction with coronary vessel development to generate the mature chamber, through a temporal sequence of ligand signalling determined by the glycosyltransferase manic fringe (MFng). Early endocardial expression of MFng promotes Dll4–Notch1 signalling, which induces trabeculation in the developing ventricle. Ventricular maturation and compaction require MFng and Dll4 downregulation in the endocardium, which allows myocardial Jag1 and Jag2 signalling to Notch1 in this tissue. Perturbation of this signalling equilibrium severely disrupts heart chamber formation. Our results open a new research avenue into the pathogenesis of cardiomyopathies. PMID:26641715

  8. Laser notching ceramics for reliable fracture toughness testing

    SciTech Connect

    Barth, Holly D.; Elmer, John W.; Freeman, Dennis C.; Schaefer, Ronald D.; Derkach, Oleg; Gallegos, Gilbert F.

    2015-09-19

    A new method for notching ceramics was developed using a picosecond laser for fracture toughness testing of alumina samples. The test geometry incorporated a single-edge-V-notch that was notched using picosecond laser micromachining. This method has been used in the past for cutting ceramics, and is known to remove material with little to no thermal effect on the surrounding material matrix. This study showed that laser-assisted-machining for fracture toughness testing of ceramics was reliable, quick, and cost effective. In order to assess the laser notched single-edge-V-notch beam method, fracture toughness results were compared to results from other more traditional methods, specifically surface-crack in flexure and the chevron notch bend tests. Lastly, the results showed that picosecond laser notching produced precise notches in post-failure measurements, and that the measured fracture toughness results showed improved consistency compared to traditional fracture toughness methods.

  9. Laser notching ceramics for reliable fracture toughness testing

    DOE PAGESBeta

    Barth, Holly D.; Elmer, John W.; Freeman, Dennis C.; Schaefer, Ronald D.; Derkach, Oleg; Gallegos, Gilbert F.

    2015-09-19

    A new method for notching ceramics was developed using a picosecond laser for fracture toughness testing of alumina samples. The test geometry incorporated a single-edge-V-notch that was notched using picosecond laser micromachining. This method has been used in the past for cutting ceramics, and is known to remove material with little to no thermal effect on the surrounding material matrix. This study showed that laser-assisted-machining for fracture toughness testing of ceramics was reliable, quick, and cost effective. In order to assess the laser notched single-edge-V-notch beam method, fracture toughness results were compared to results from other more traditional methods, specificallymore » surface-crack in flexure and the chevron notch bend tests. Lastly, the results showed that picosecond laser notching produced precise notches in post-failure measurements, and that the measured fracture toughness results showed improved consistency compared to traditional fracture toughness methods.« less

  10. Kinase active Misshapen regulates Notch signaling in Drosophila melanogaster.

    PubMed

    Mishra, Abhinava K; Sachan, Nalani; Mutsuddi, Mousumi; Mukherjee, Ashim

    2015-11-15

    Notch signaling pathway represents a principal cellular communication system that plays a pivotal role during development of metazoans. Drosophila misshapen (msn) encodes a protein kinase, which is related to the budding yeast Ste20p (sterile 20 protein) kinase. In a genetic screen, using candidate gene approach to identify novel kinases involved in Notch signaling, we identified msn as a novel regulator of Notch signaling. Data presented here suggest that overexpression of kinase active form of Msn exhibits phenotypes similar to Notch loss-of-function condition and msn genetically interacts with components of Notch signaling pathway. Kinase active form of Msn associates with Notch receptor and regulate its signaling activity. We further show that kinase active Misshapen leads to accumulation of membrane-tethered form of Notch. Moreover, activated Msn also depletes Armadillo and DE-Cadherin from adherens junctions. Thus, this study provides a yet unknown mode of regulation of Notch signaling by Misshapen. PMID:26431585

  11. The Notch meeting: an odyssey from structure to function.

    PubMed

    Chitnis, Ajay; Balle-Cuif, Laure

    2016-02-15

    The Notch signaling pathway plays fundamental roles in diverse developmental processes. Studies of the basic biology of Notch function have provided insights into how its dysfunction contributes to multi-systemic diseases and cancer. In addition, our understanding of Notch signaling in maintaining stem/progenitor cell populations is revealing new avenues for rekindling regeneration. The Notch IX meeting, which was held in Athens, Greece in October 2015, brought together scientists working on different model systems and studying Notch signaling in various contexts. Here, we provide a summary of the key points that were presented at the meeting. Although we focus on the molecular mechanisms that determine Notch signaling and its role in development, we also cover talks describing roles for Notch in adulthood. Together, the talks revealed how interactions between adjacent cells mediated by Notch regulate development and physiology at multiple levels. PMID:26884393

  12. The Role of Notch Receptors in Transcriptional Regulation

    PubMed Central

    WANG, HONGFANG; ZANG, CHONGZHI; LIU, X. SHIRLEY; ASTER, JON C.

    2015-01-01

    Notch signaling has pleiotropic context-specific functions that have essential roles in many processes, including embryonic development and maintenance and homeostasis of adult tissues. Aberrant Notch signaling (both hyper- and hypoactive) is implicated in a number of human developmental disorders and many cancers. Notch receptor signaling is mediated by tightly regulated proteolytic cleavages that lead to the assembly of a nuclear Notch transcription complex, which drives the expression of downstream target genes and thereby executes Notch’s functions. Thus, understanding regulation of gene expression by Notch is central to deciphering how Notch carries out its many activities. Here, we summarize the recent findings pertaining to the complex interplay between the Notch transcriptional complex and interacting factors involved in transcriptional regulation, including co-activators, cooperating transcription factors, and chromatin regulators, and discuss emerging data pertaining to the role of Notch-regulated noncoding RNAs in transcription. PMID:25418913

  13. Solution notches, earthquakes, and sea level, Haiti

    NASA Astrophysics Data System (ADS)

    Schiffman, C. R.; Mildor, B. S.; Bilham, R. G.

    2010-12-01

    Shortly after the 12 January 2010 Haiti earthquake, we installed an array of five tide gauges to determine sea level and its variability in the region of uplifted corals on the coast SW of Leogane, Haiti, that had been uplift ≤30 cm during the earthquake. Each gauge consists of a pressure transducer bolted 50-80 cm below mean sea level, which samples the difference between atmospheric pressure and sea pressure every 10 minutes. The data are transmitted via the Iridium satellite and are publically available with a latency of 10 minutes to 2 hours. The measurements reveal a maximum tidal range of ≈50 cm with 2-4 week oscillations in mean sea level of several cm. Sea slope, revealed by differences between adjacent gauges, varies 2-5 cm per 10 km at periods of 2-5 weeks, which imposes a disappointing limit to the utility of the gauges in estimating post seismic vertical motions. A parallel study of the form and elevation of coastal notches and mushroom rocks (rocks notched on all sides, hence forming a mushroom shape), along the coast west of Petit Goave suggests that these notches may provide an uplift history of the region over the past several hundreds of years. Notch sections in two areas were contoured, digitized, and compared to mean sea level. The notches mimic the histogram of sea level, suggesting that they are formed by dissolution by acidic surface waters. Notches formed two distinct levels, one approximately 58 cm above mean sea level, and the other approximately 157 cm above mean sea level. Several landslide blocks fell into the sea during the 2010 earthquake, and we anticipate these are destined for conversion to future mushroom rocks. Surfaces have been prepared on these blocks to study the rate of notch formation in situ, and samples are being subjected to acid corrosion in laboratory conditions, with the hope that the depth of notches may provide an estimate of the time of fall of previous rocks to help constrain the earthquake history of this area

  14. Power-Tool Adapter For T-Handle Screws

    NASA Technical Reports Server (NTRS)

    Deloach, Stephen R.

    1992-01-01

    Proposed adapter enables use of pneumatic drill, electric drill, electric screwdriver, or similar power tool to tighten or loosen T-handled screws. Notched tube with perpendicular rod welded to it inserted in chuck of tool. Notched end of tube slipped over screw handle.

  15. Activation of Notch-Mediated Protective Signaling in the Myocardium

    PubMed Central

    Gude, Natalie A.; Emmanuel, Gregory; Wu, Weitao; Cottage, Christopher T.; Fischer, Kimberlee; Quijada, Pearl; Muraski, John A.; Alvarez, Roberto; Rubio, Marta; Schaefer, Eric; Sussman, Mark A.

    2013-01-01

    The Notch network regulates multiple cellular processes, including cell fate determination, development, differentiation, proliferation, apoptosis, and regeneration. These processes are regulated via Notch-mediated activity that involves hepatocyte growth factor (HGF)/c-Met receptor and phosphatidylinositol 3-kinase/Akt signaling cascades. The impact of HGF on Notch signaling was assessed following myocardial infarction as well as in cultured cardiomyocytes. Notch1 is activated in border zone cardiomyocytes coincident with nuclear c-Met following infarction. Intramyocardial injection of HGF enhances Notch1 and Akt activation in adult mouse myocardium. Corroborating evidence in cultured cardiomyocytes shows treatment with HGF or insulin increases levels of Notch effector Hes1 in immunoblots, whereas overexpression of activated Notch intracellular domain prompts a 3-fold increase in phosphorylated Akt. Infarcted hearts injected with adenoviral vector expressing Notch intracellular domain treatment exhibit improved hemodynamic function in comparison with control mice after 4 weeks, implicating Notch signaling in a cardioprotective role following cardiac injury. These results indicate Notch activation in cardiomyocytes is mediated through c-Met and Akt survival signaling pathways, and Notch1 signaling in turn enhances Akt activity. This mutually supportive crosstalk suggests a positive survival feedback mechanism between Notch and Akt signaling in adult myocardium following injury. PMID:18369158

  16. Tidal notches in Mediterranean Sea: a comprehensive analysis

    NASA Astrophysics Data System (ADS)

    Antonioli, Fabrizio; Lo Presti, Valeria; Rovere, Alessio; Ferranti, Luigi; Anzidei, Marco; Furlani, Stefano; Mastronuzzi, Giuseppe; Orru, Paolo E.; Scicchitano, Giovanni; Sannino, Gianmaria; Spampinato, Cecilia R.; Pagliarulo, Rossella; Deiana, Giacomo; de Sabata, Eleonora; Sansò, Paolo; Vacchi, Matteo; Vecchio, Antonio

    2015-07-01

    Recent works (Evelpidou et al., 2012) suggest that the modern tidal notch is disappearing worldwide due sea level rise over the last century. In order to assess this hypothesis, we measured modern tidal notches in several of sites along the Mediterranean coasts. We report observations on tidal notches cut along carbonate coasts from 73 sites from Italy, France, Croatia, Montenegro, Greece, Malta and Spain, plus additional observations carried outside the Mediterranean. At each site, we measured notch width and depth, and we described the characteristics of the biological rim at the base of the notch. We correlated these parameters with wave energy, tide gauge datasets and rock lithology. Our results suggest that, considering 'the development of tidal notches the consequence of midlittoral bioerosion' (as done in Evelpidou et al., 2012) is a simplification that can lead to misleading results, such as stating that notches are disappearing. Important roles in notch formation can be also played by wave action, rate of karst dissolution, salt weathering and wetting and drying cycles. Of course notch formation can be augmented and favoured also by bioerosion which can, in particular cases, be the main process of notch formation and development. Our dataset shows that notches are carved by an ensemble rather than by a single process, both today and in the past, and that it is difficult, if not impossible, to disentangle them and establish which one is prevailing. We therefore show that tidal notches are still forming, challenging the hypothesis that sea level rise has drowned them.

  17. Notch as a Possible Cell Differentiation Factor in Pleomorphic Adenomas

    PubMed Central

    Takamine, Keisuke; Ueda, Yukiko; Nakano, Keisuke; Ochiai, Takanaga; Sugita, Yoshihiko; Kubo, Katsutoshi; Maeda, Hatsuhiko; Hasegawa, Hiromasa; Kawakami, Toshiyuki

    2015-01-01

    The expression of Notch in 30 cases of pleomorphic adenoma was examined by immunohistochemistry. Comparing the results of our study with previous literatures, from the partial CK7 expression and substantial Notch expression in ductal epithelial cells as well as the Notch expression in solid tumor nests, it can be inferred that Notch is involved in cell differentiation. CK13 expression was observed in cells undergoing squamous metaplasia and Notch expression was seen in the nucleus of basal and squamous cells. The intense Notch expression in basal cells and weak expression in squamous cells suggests that Notch is involved in the differentiation from basal to squamous cell. Moreover, the loss of nuclear expression on the inner layer would signify that differentiation is about to end or has been terminated. Notch was expressed in the cytoplasm of cartilage cells and in the cell membrane of mucous cells but not in the nucleus indicating that differentiation has been concluded. Notch involvement is suspected in cell differentiation in areas showing ductal structures and squamous metaplasia. In summary, Notch is involved in cell differentiation of ductal cells in PA. Nuclear expression was shown in tumor cells in solid nests and surrounding structures. Moreover, Notch is expressed by basal cells undergoing squamous metaplasia suggesting the participation of Notch in cell differentiation in PA. PMID:26516303

  18. The Notch signaling pathway as a mediator of tumor survival

    PubMed Central

    Pine, Sharon R.

    2013-01-01

    The Notch signaling pathway is evolutionarily conserved and responsible for cell fate determination in the developing embryo and mature tissue. At the molecular level, ligand binding activates Notch signaling by liberating the Notch intracellular domain, which then translocates into the nucleus and activates gene transcription. Despite the elegant simplicity of this pathway, which lacks secondary messengers or a signaling cascade, Notch regulates gene expression in a highly context- and cell-type-dependent manner. Notch signaling is frequently dysregulated, most commonly by overactivation, across many cancers and confers a survival advantage on tumors, leading to poorer outcomes for patients. Recent studies demonstrate how Notch signaling increases tumor cell proliferation and provide evidence that active Notch signaling maintains the cancer stem-cell pool, induces epithelial–mesenchymal transition and promotes chemoresistance. These studies imply that pharmacological inhibition of Notch signaling may refine control of cancer therapy and improve patient survival. Gamma secretase inhibitors (GSIs) are drugs that inhibit Notch signaling and may be successful in controlling cancer cell growth in conjunction with standard chemotherapy, but substantial side effects have hampered their widespread use. Recent efforts have been aimed at the development of antibodies against specific Notch receptors and ligands with the hope of limiting side effects while providing the same therapeutic benefit as GSIs. Together, studies characterizing Notch signaling and modulation have offered hope that refined methods targeting Notch may become powerful tools in anticancer therapeutics. PMID:23585460

  19. Notch Signaling Components: Diverging Prognostic Indicators in Lung Adenocarcinoma.

    PubMed

    Liu, Zhi-Yan; Wu, Tao; Li, Qing; Wang, Min-Cong; Jing, Li; Ruan, Zhi-Ping; Yao, Yu; Nan, Ke-Jun; Guo, Hui

    2016-05-01

    Non-small-cell lung cancer (NSCLC) is a lethal and aggressive malignancy. Currently, the identities of prognostic and predictive makers of NSCLC have not been fully established. Dysregulated Notch signaling has been implicated in many human malignancies, including NSCLC. However, the prognostic value of measuring Notch signaling and the utility of developing Notch-targeted therapies in NSCLC remain inconclusive. The present study investigated the association of individual Notch receptor and ligand levels with lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) prognosis using the Kaplan-Meier plotte database. This online database encompasses 2437 lung cancer samples. Hazard ratios with 95% confidence intervals were calculated. The results showed that higher Notch1, Notch2, JAG1, and DLL1 mRNA expression predicted better overall survival (OS) in lung ADC, but showed no significance in SCC patients. Elevated Notch3, JAG2, and DLL3 mRNA expression was associated with poor OS of ADC patients, but not in SCC patients. There was no association between Notch4 and OS in either lung ADC or SCC patients. In conclusion, the set of Notch1, Notch2, JAG1, DLL1 and that of Notch3, JAG2, DLL3 played opposing prognostic roles in lung ADC patients. Neither set of Notch receptors and ligands was indicative of lung SCC prognosis. Notch signaling could serve as promising marker to predict outcomes in lung ADC patients. The distinct features of lung cancer subtypes and Notch components should be considered when developing future Notch-targeted therapies. PMID:27196489

  20. Vee-notch tool cuts specimens

    NASA Technical Reports Server (NTRS)

    Spier, R. A.

    1970-01-01

    Triangular cutting tool uses carbide tips for notching heat-treated or abrasive materials, and alloys subjected to high structural stresses. The tool is rigidly mounted in a slot of mating contour to prevent deflection during cutting of tensile specimens. No other expensive machine equipment is required.

  1. New Insights into the Mechanism of Notch Signalling in Fibrosis

    PubMed Central

    Kavian, Niloufar; Servettaz, Amélie; Weill, Bernard; Batteux, Frédéric

    2012-01-01

    The Notch pathway is an evolutionary conserved signalling mechanism that regulates cellular fate and development in various types of cells. The full spectrum of Notch effects has been well studied over the last decade in the fields of development and embryogenesis. But only recently several studies emphasized the involvement of the Notch signalling pathway in fibrosis. This review summarizes the structure and activation of the Notch family members, and focuses on recent findings regarding the role of Notch in organ fibrogenesis, in humans and in animal models. PMID:22802907

  2. Notch regulates the angiogenic response via induction of VEGFR-1

    PubMed Central

    2010-01-01

    Notch is a critical regulator of angiogenesis and arterial specification. We show that ectopic expression of activated Notch1 induces endothelial morphogenesis in human umbilical vein endothelial cells (HUVEC) in a VEGFR-1-dependent manner. Notch1-mediated upregulation of VEGFR-1 in HUVEC increased their responsiveness to the VEGFR-1 specific ligand, Placental Growth Factor (PlGF). In mice and human endothelial cells, inhibition of Notch signaling resulted in decreased VEGFR-1 expression during VEGF-A-induced neovascularization. In summary, we show that Notch1 plays a role in endothelial cells by regulating VEGFR-1, a function that may be important for physiological and pathological angiogenesis. PMID:20298529

  3. Notch Signaling Maintains Neural Rosette Polarity

    PubMed Central

    Main, Heather; Radenkovic, Jelena; Jin, Shao-bo; Lendahl, Urban; Andersson, Emma R.

    2013-01-01

    Formation of the metazoan body plan requires a complex interplay of morphological changes and patterning, and central to these processes is the establishment of apical/basal cell polarity. In the developing nervous system, apical/basal cell polarity is essential for neural tube closure and maintenance of the neural stem cell population. In this report we explore how a signaling pathway important for nervous system development, Notch signaling, impacts on apical/basal cell polarity in neural differentiation. CSL−/− mouse embryos, which are devoid of canonical Notch signaling, demonstrated a neural tube phenotype consistent with cell polarity and convergent extension defects, including deficiencies in the restricted expression of apical polarity markers in the neuroepithelium. CSL−/− mouse embryonic stem (ES) cells, cultured at low density, behaved as wild-type in the establishment of neural progenitors and apical specification, though progression through rosette formation, an in vitro correlate of neurulation, required CSL for correct maintenance of rosette structure and regulation of neuronal differentiation. Similarly, acute pharmacological inhibition of Notch signaling led to the breakdown of neural rosettes and accelerated neuronal differentiation. In addition to functional Notch signaling, rosette integrity was found to require actin polymerization and Rho kinase (ROCK) activity. Disruption of rosettes through inhibition of actin polymerization or ROCK activity, however, had no effect on neuronal differentiation, indicating that rosette maintenance is not a prerequisite for normal neuronal differentiation. In conclusion, our data indicate that Notch signaling plays a role not only in differentiation, but also in organization and maintenance of polarity during development of the early nervous system. PMID:23675446

  4. Notch Signaling in Meibomian Gland Epithelial Cell Differentiation

    PubMed Central

    Gidfar, Sanaz; Afsharkhamseh, Neda; Sanjari, Sara; Djalilian, Ali R.

    2016-01-01

    Purpose Notch1 was previously shown to play a critical role in murine meibomian gland function and maintenance. In this study, we have examined the expression and activation of Notch pathway in human meibomian gland epithelial cells in vitro. Methods An immortalized human meibomian gland epithelial cell (HMGEC) line was cultured under proliferative and differentiative conditions. Expression of Notch receptors and ligands were evaluated by quantitative PCR and Western blot. The effect of Notch inhibition and induction on oil production was also assessed. Results Human meibomian gland epithelial cell expressed Notch1, Notch2, Notch3, Jagged1, Jagged2, Delta-like 1, and Delta-like 3. The level of cleaved (activated) Notch1 strongly increased with differentiation. The expression of Notch3 was inversely correlated with proliferation. Induction and inhibition of Notch1 led to an increase and decrease in the amount of oil production, respectively. Conclusions Notch signaling appears to play an important role in human meibomian gland epithelial differentiation and oil production. This may provide a potential therapeutic pathway for treating meibomian gland dysfunction. PMID:26943148

  5. NOTCHing the bone: Insights into multi-functionality

    PubMed Central

    Engin, Feyza; Lee, Brendan

    2010-01-01

    Evolutionarily conserved Notch signaling plays a critical role during embryonic and postnatal life. The importance of Notch signaling in the determination of cell fate, and the spatio-temporal regulation of proliferation, differentiation and apoptosis has been demonstrated in various different organ systems. However, how Notch signaling affects the bone development was unknown until now. The in vivo effects of Notch signaling in lineage commitment, bone formation and bone resorption were demonstrated in recent studies. In addition to regulation of osteoblastogenesis, osteoblast directed osteoclastogenesis by Notch signaling revealed a dimorphic effect for this signaling pathway providing another example of such in bone development. Moreover, identification of the cross-talk between the hematopoietic stem cell niche and osteoblasts through Notch signaling also suggested another important role for Notch signaling, i.e., the coupling of cellular components of the bone microenvironment. The association between the gain and loss of function of Notch activity in bone pathology highlights Notch as a potentially novel therapeutic target for the treatment of metabolic bone disease and bone cancer. In this review, we will focus primarily on the regulation of bone cells, i.e., osteoblasts and osteoclasts by Notch signaling. We will also review the importance of Notch in specifying bone-hematopoietic stem cell niche interactions within the bone microenvironment. Finally, we will discuss potential clinical implications and future directions for this field. PMID:19520195

  6. Identification of novel Notch target genes in T cell leukaemia

    PubMed Central

    Chadwick, Nicholas; Zeef, Leo; Portillo, Virginia; Fennessy, Carl; Warrander, Fiona; Hoyle, Sarah; Buckle, Anne-Marie

    2009-01-01

    Background Dysregulated Notch signalling is believed to play an important role in the development and maintenance of T cell leukaemia. At a cellular level, Notch signalling promotes proliferation and inhibits apoptosis of T cell acute lymphoblastic leukaemia (T-ALL) cells. In this study we aimed to identify novel transcriptional targets of Notch signalling in the T-ALL cell line, Jurkat. Results RNA was prepared from Jurkat cells retrovirally transduced with an empty vector (GFP-alone) or vectors containing constitutively active forms of Notch (N1ΔE or N3ΔE), and used for Affymetrix microarray analysis. A subset of genes found to be regulated by Notch was chosen for real-time PCR validation and in some cases, validation at the protein level, using several Notch-transduced T-ALL and non-T-ALL leukaemic cell lines. As expected, several known transcriptional target of Notch, such as HES1 and Deltex, were found to be overexpressed in Notch-transduced cells, however, many novel transcriptional targets of Notch signalling were identified using this approach. These included the T cell costimulatory molecule CD28, the anti-apoptotic protein GIMAP5, and inhibitor of DNA binding 1 (1D1). Conclusion The identification of such downstream Notch target genes provides insights into the mechanisms of Notch function in T cell leukaemia, and may help identify novel therapeutic targets in this disease. PMID:19508709

  7. Targeting Notch degradation system provides promise for breast cancer therapeutics.

    PubMed

    Liu, Jing; Shen, Jia-Xin; Wen, Xiao-Fen; Guo, Yu-Xian; Zhang, Guo-Jun

    2016-08-01

    Notch receptor signaling pathways play an important role, not only in normal breast development but also in breast cancer development and progression. As a group of ligand-induced proteins, different subtypes of mammalian Notch (Notch1-4) are sensitive to subtle changes in protein levels. Thus, a clear understanding of mechanisms of Notch protein turnover is essential for understanding normal and pathological mechanisms of Notch functions. It has been suggested that there is a close relationship between the carcinogenesis and the dysregulation of Notch degradation. However, this relationship remains mostly undefined in the context of breast cancer, as protein degradation is mediated by numerous signaling pathways as well as certain molecule modulators (activators/inhibitors). In this review, we summarize the published data regarding the regulation of Notch family member degradation in breast cancer, while emphasizing areas that are likely to provide new therapeutic modalities for mechanism-based anti-cancer drugs. PMID:27263934

  8. Notch -- a goldilocks signaling pathway in disease and cancer therapy.

    PubMed

    Braune, Eike-Benjamin; Lendahl, Urban

    2016-03-01

    The Notch signaling pathway is a fundamental signaling mechanism operating in most, if not all, multicellular organisms and in most cell types in the body. Like other "ivy league" pathways such as Wnt, PI3K, Sonic Hedgehog, Receptor Tyrosine Kinases (RTKs), and JAK/STAT signaling, the Notch pathway is a linear signaling mechanism, i.e., an extracellular ligand activates a receptor, which ultimately leads to transcriptional alterations in the cell nucleus, but Notch signaling is a strict cell-cell communication mechanism and lacks built-in amplification steps in the signaling pathway. Dysregulated Notch signaling, either by direct mutations in the pathway or by altered signaling output, is increasingly linked to disease, and Notch can act as an oncogene or tumor suppressor depending on the cellular context. This underscores that appropriate level of Notch signaling is important for differentiation and tissue homeostasis, a notion supported also by genetic data indicating that Notch signaling is very gene dosage-sensitive. Thus, too much or too little signaling can lead to disease and Notch can therefore be considered a Goldilocks signaling pathway. Given the emerging role of dysregulated Notch signaling in disease, there is increasing interest in developing therapeutic approaches to modulate Notch signaling. In this review we discuss recent findings on how signal transduction is tuned in the Notch pathway and how Notch signaling is dysregulated in disease. We also discuss different strategies to modulate Notch signaling for clinical use, for example by novel antibody-based tools and by taking advantage of the cross-talk between Notch and other signaling mechanisms. PMID:27115169

  9. Notch Ankyrin Repeat Domain Variation Influences Leukemogenesis and Myc Transactivation

    PubMed Central

    Aster, Jon C.; Bodnar, Nick; Xu, Lanwei; Karnell, Fredrick; Milholland, John M.; Maillard, Ivan; Histen, Gavin; Nam, Yunsun; Blacklow, Stephen C.; Pear, Warren S.

    2011-01-01

    Background The functional interchangeability of mammalian Notch receptors (Notch1-4) in normal and pathophysiologic contexts such as cancer is unsettled. We used complementary in vivo, cell-based and structural analyses to compare the abilities of activated Notch1-4 to support T cell development, induce T cell acute lymphoblastic leukemia/lymphoma (T-ALL), and maintain T-ALL cell growth and survival. Principal Findings We find that the activated intracellular domains of Notch1-4 (ICN1-4) all support T cell development in mice and thymic organ culture. However, unlike ICN1-3, ICN4 fails to induce T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and is unable to rescue the growth of Notch1-dependent T-ALL cell lines. The ICN4 phenotype is mimicked by weak gain-of-function forms of Notch1, suggesting that it stems from a failure to transactivate one or more critical target genes above a necessary threshold. Experiments with chimeric receptors demonstrate that the Notch ankyrin repeat domains differ in their leukemogenic potential, and that this difference correlates with activation of Myc, a direct Notch target that has an important role in Notch-associated T-ALL. Conclusions/Significance We conclude that the leukemogenic potentials of Notch receptors vary, and that this functional difference stems in part from divergence among the highly conserved ankyrin repeats, which influence the transactivation of specific target genes involved in leukemogenesis. PMID:22022427

  10. Phototunable reflection notches of cholesteric liquid crystals

    SciTech Connect

    Hrozhyk, Uladzimir A.; Serak, Svetlana V.; Tabiryan, Nelson V.; Bunning, Timothy J.

    2008-09-15

    The reflection notch of cholesteric liquid crystals (CLCs) formed from highly photosenstive azobenzene nematic liquid crystals doped with light-insensitive, large helical twisting power chiral dopants is shown to be widely phototunable by green laser beams. The nonlinear transmission properties of these materials were studied. We have shown that the relative shift in Bragg wavelength is independent of the chiral dopant concentration and develop a predictive theory of such behavior. The theory describes the dynamics of phototuning as well. Reflection shifts greater than 150 nm were driven with low power, cw of 532 nm in these photosensitive CLCs, previously attainable only through UV pre-exposure. A nonlinear feedback mechanism was demonstrated for CLCs of left, right, and both handedness upon laser-induced blueshifting of the reflection notch from a red wavelength using a green cw laser.

  11. The viscoelastic behavior of notched glassy polymers

    NASA Technical Reports Server (NTRS)

    Crook, R. A.; Letton, Alan

    1993-01-01

    In the bulk, glassy polymers exhibit a nonlinear viscoelastic response during deformation. Stress or strain induced damage (i.e. crazing, microshear banding) results in the production of nonrecoverable work and observed nonlinearity. Stress or strain dependent shift factors have been used to mathematically model the mechanical behavior of these polymers. Glassy polymers that have been notched, may exhibit very different load displacement response compared to the same material under bulk deformation. If a sharp notch is introduced into the body then loaded, the load displacement trace may appear to be single-valued in the absence of viscoelasticity and crack growth. This suggests the volume of damaged material is small compared to the overall dimensions of the specimen. The ability to produce a single-valued load-load-line displacement trace through the use of the Correspondence Principle may prove to be useful for fracture of viscoelastic materials.

  12. Ectopic Premolar Tooth in the Sigmoid Notch.

    PubMed

    Törenek, K; Akgül, H M; Bayrakdar, I S

    2016-01-01

    Impaction of a mandibular premolar is relatively uncommon. Ectopic placement is more unusual and there has been no discussion in the literature of an ectopic mandibular premolar in the coronoid process. In this case report, we present an impacted ectopic mandibular permanent premolar in the sigmoid notch (incisura mandibulae) region. Etiology of the tooth and treatment options are discussed and illustrated by Cone Beam Computed Tomography (CBCT) images. PMID:27547475

  13. Ectopic Premolar Tooth in the Sigmoid Notch

    PubMed Central

    Akgül, H. M.; Bayrakdar, I. S.

    2016-01-01

    Impaction of a mandibular premolar is relatively uncommon. Ectopic placement is more unusual and there has been no discussion in the literature of an ectopic mandibular premolar in the coronoid process. In this case report, we present an impacted ectopic mandibular permanent premolar in the sigmoid notch (incisura mandibulae) region. Etiology of the tooth and treatment options are discussed and illustrated by Cone Beam Computed Tomography (CBCT) images. PMID:27547475

  14. Formation of strained ring-shaped islands around square notches.

    PubMed

    Colin, Jérôme

    2012-06-01

    The location and morphology of a two-dimensional island has been studied theoretically as a function of the misfit stress in the neighbourhood of a square notch present on the free surface of an epitaxially stressed film deposited on a substrate. From a static energy calculation, it has been shown that the notches can drive the motion of the islands towards the notches. It was then found that, depending on the side length and depth of the notch, self-organized formation at constant volume of a two-dimensional ring-shaped island can be favoured along the periphery of the pre-existing notch with respect to the notch shrinking. PMID:22565196

  15. Notched strength of composite laminates: Predictions and experiments - A review

    NASA Technical Reports Server (NTRS)

    Awerbuch, J.; Madhukar, M. S.

    1985-01-01

    A self-contained review of several semiempirical fracture models for predicting notched strength of composite laminates is presented, based on notched strength data on 70 different laminate configurations of graphite/epoxy, boron/aluminum, and graphite/polyimide. Emphasis is placed on experimental results concerning such failure factors as delamination, splitting, and size of damage zone. Moreover, the fracture model parameters are correlated with the notch sensitivity of composite laminates, and the applicability of the correlations in describing the material notch sensitivity is evaluated. The predictions provided by the different models were found to be identical for all practical purposes.

  16. Small molecule activation of NOTCH signaling inhibits acute myeloid leukemia

    PubMed Central

    Ye, Qi; Jiang, Jue; Zhan, Guanqun; Yan, Wanyao; Huang, Liang; Hu, Yufeng; Su, Hexiu; Tong, Qingyi; Yue, Ming; Li, Hua; Yao, Guangmin; Zhang, Yonghui; Liu, Hudan

    2016-01-01

    Aberrant activation of the NOTCH signaling pathway is crucial for the onset and progression of T cell leukemia. Yet recent studies also suggest a tumor suppressive role of NOTCH signaling in acute myeloid leukemia (AML) and reactivation of this pathway offers an attractive opportunity for anti-AML therapies. N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid that we previously isolated from Zephyranthes candida, exhibiting inhibitory activities in a variety of cancer cells, particularly those from AML. Here, we report NMHC not only selectively inhibits AML cell proliferation in vitro but also hampers tumor development in a human AML xenograft model. Genome-wide gene expression profiling reveals that NMHC activates the NOTCH signaling. Combination of NMHC and recombinant human NOTCH ligand DLL4 achieves a remarkable synergistic effect on NOTCH activation. Moreover, pre-inhibition of NOTCH by overexpression of dominant negative MAML alleviates NMHC-mediated cytotoxicity in AML. Further mechanistic analysis using structure-based molecular modeling as well as biochemical assays demonstrates that NMHC docks in the hydrophobic cavity within the NOTCH1 negative regulatory region (NRR), thus promoting NOTCH1 proteolytic cleavage. Our findings thus establish NMHC as a potential NOTCH agonist that holds great promises for future development as a novel agent beneficial to patients with AML. PMID:27211848

  17. Notch signaling deregulation in multiple myeloma: A rational molecular target

    PubMed Central

    Garavelli, Silvia; Platonova, Natalia; Paoli, Alessandro; Basile, Andrea; Taiana, Elisa; Neri, Antonino; Chiaramonte, Raffaella

    2015-01-01

    Despite recent therapeutic advances, multiple myeloma (MM) is still an incurable neoplasia due to intrinsic or acquired resistance to therapy. Myeloma cell localization in the bone marrow milieu allows direct interactions between tumor cells and non-tumor bone marrow cells which promote neoplastic cell growth, survival, bone disease, acquisition of drug resistance and consequent relapse. Twenty percent of MM patients are at high-risk of treatment failure as defined by tumor markers or presentation as plasma cell leukemia. Cumulative evidences indicate a key role of Notch signaling in multiple myeloma onset and progression. Unlike other Notch-related malignancies, where the majority of patients carry gain-of-function mutations in Notch pathway members, in MM cell Notch signaling is aberrantly activated due to an increased expression of Notch receptors and ligands; notably, this also results in the activation of Notch signaling in surrounding stromal cells which contributes to myeloma cell proliferation, survival and migration, as well as to bone disease and intrinsic and acquired pharmacological resistance. Here we review the last findings on the mechanisms and the effects of Notch signaling dysregulation in MM and provide a rationale for a therapeutic strategy aiming at inhibiting Notch signaling, along with a complete overview on the currently available Notch-directed approaches. PMID:26308486

  18. Origin of anomalous inverse notch effect in bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Pan, J.; Zhou, H. F.; Wang, Z. T.; Li, Y.; Gao, H. J.

    2015-11-01

    Understanding notch-related failure is crucial for the design of reliable engineering structures. However, substantial controversies exist in the literature on the notch effect in bulk metallic glasses (BMGs), and the underlying physical mechanism responsible for the apparent confusion is still poorly understood. Here we investigate the physical origin of an inverse notch effect in a Zr-based metallic glass, where the tensile strength of the material is dramatically enhanced, rather than decreased (as expected from the stress concentration point of view), by introduction of a notch. Our experiments and molecular dynamics simulations show that the seemingly anomalous inverse notch effect is in fact caused by a transition in failure mechanism from shear banding at the notch tip to cavitation and void coalescence. Based on our theoretical analysis, the transition occurs as the stress triaxiality in the notched sample exceeds a material-dependent threshold value. Our results fill the gap in the current understanding of BMG strength and failure mechanism by resolving the conflicts on notch effects and may inspire re-interpretation of previous reports on BMG fracture toughness where pre-existing notches were routinely adopted.

  19. Involvement of Notch signaling in early chick ovarian follicle development.

    PubMed

    Li, Jun; Zhao, Dan; Guo, Changquan; Li, Jian; Mi, Yuling; Zhang, Caiqiao

    2016-01-01

    The formation of primordial follicles is a crucial process in the establishment of follicle pools required for the female's reproductive life span. For laying hens, ample follicles are a prerequisite for high laying performance. Notch signaling plays critical roles in germ cell cysts breakdown and in the formation of primordial follicles. Here, we investigated the role of Notch signaling in the ovarian development of post-hatch chicks. Results showed that around post-hatch day 4 (H4), the germ cell cysts broke apart, oocytes became surrounded by squamous pregranulosa cells, and the primordial follicles were then formed. Subsequently, we detected the expression of Notch signaling-related genes including Notch receptors (Notch1, 2), ligands (Jag1, 2 and Dll1, 4), and target genes (Hes1, Hey1). These genes all showed expression at H4 and some of these genes were up-regulated during primordial follicle formation. To evaluate the Notch signaling requirement for early follicular development, we adopted an in vitro ovary culture system. Suppression of Notch signaling by γ-secretase inhibitor induced a decrease of primordial follicles and an increase of germ cells in cysts. Attenuating Notch signaling also inhibited the phosphatidylinositol 3-kinase/protein kinase B pathways and suppressed cadherin expression. These results suggest that Notch signaling is endowed with an indispensable role in primordial follicle formation in post-hatch chicks. PMID:26289531

  20. Non-Canonical Notch Signaling in Cancer and Immunity

    PubMed Central

    Ayaz, Furkan; Osborne, Barbara A.

    2014-01-01

    Canonical Notch signaling is initiated by γ-secretase-mediated cleavage of the Notch receptor, leading to the release of the active intra-cellular domain of Notch that migrates to the nucleus and interacts with RBP-Jκ, resulting in the activation of downstream target genes. While canonical Notch signaling is well known to play an active role in several steps during development as well in multiple cell fate decisions, recent evidence from both invertebrate and vertebrate systems indicates that non-canonical, RBP-Jκ-independent signaling is important in several cellular processes including oncogenesis and activation of T lymphocytes. These observations raise the possibility that, through an understanding of non-canonical Notch signaling, novel strategies for inhibiting Notch signaling may prove useful in the design of therapies targeted to block aberrant Notch activity. In this mini-review, we will examine the current data demonstrating a non-canonical role for Notch signaling in both cancer and the immune system and suggest a better understanding of non-canonical signaling may reveal novel strategies to block Notch signaling in disease. PMID:25538890

  1. The potential role of impaired Notch signalling in atopic dermatitis.

    PubMed

    Melnik, Bodo C

    2015-01-01

    This review presents recent evidence of impaired Notch signalling in atopic dermatitis (AD), which is proposed to represent the "a-topic" defect linking both epidermal and immunological barrier dysfunctions in AD. AD epidermis exhibits a marked deficiency of Notch receptors. Mouse models with genetically suppressed Notch signalling exhibit dry skin, signs of scratching, skin barrier abnormalities, increased transepidermal water loss and TH2 cell-mediated immunological changes closely resembling human AD. Notch signals are critically involved in the differentiation of regulatory T cells, in the feedback inhibition of activated innate immunity, in late epidermal differentiation associated with filaggrin- and stratum corneum barrier lipid processing. Most importantly, Notch deficiency induces keratinocyte-mediated release of thymic stromal lymphopoietin (TSLP). TSLP promotes TH2 cell-driven immune responses associated with enhanced production of interleukin (IL)-4 and IL-31. Both TSLP and IL-31 stimulate sensory cutaneous neurons involved in the induction of itch. Notably, Notch1 is a repressor of activator protein-1 (AP-1), which is upregulated in AD epidermis. Without Notch-mediated suppression of AP-1 this transcription factor promotes excess expression of TH2 cell-related cytokines. Impaired Notch signalling negatively affects the homeostasis of aquaporin 3 and of the tight junction component claudin-1, thus explains disturbed skin barrier function with increased transepidermal water loss and Staphylococcus aureus colonisation as well as increased cutaneous susceptibility for viral infections. Thus, accumulating evidence links deficient Notch signalling to key pathological features of AD. PMID:24853951

  2. Small molecule activation of NOTCH signaling inhibits acute myeloid leukemia.

    PubMed

    Ye, Qi; Jiang, Jue; Zhan, Guanqun; Yan, Wanyao; Huang, Liang; Hu, Yufeng; Su, Hexiu; Tong, Qingyi; Yue, Ming; Li, Hua; Yao, Guangmin; Zhang, Yonghui; Liu, Hudan

    2016-01-01

    Aberrant activation of the NOTCH signaling pathway is crucial for the onset and progression of T cell leukemia. Yet recent studies also suggest a tumor suppressive role of NOTCH signaling in acute myeloid leukemia (AML) and reactivation of this pathway offers an attractive opportunity for anti-AML therapies. N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid that we previously isolated from Zephyranthes candida, exhibiting inhibitory activities in a variety of cancer cells, particularly those from AML. Here, we report NMHC not only selectively inhibits AML cell proliferation in vitro but also hampers tumor development in a human AML xenograft model. Genome-wide gene expression profiling reveals that NMHC activates the NOTCH signaling. Combination of NMHC and recombinant human NOTCH ligand DLL4 achieves a remarkable synergistic effect on NOTCH activation. Moreover, pre-inhibition of NOTCH by overexpression of dominant negative MAML alleviates NMHC-mediated cytotoxicity in AML. Further mechanistic analysis using structure-based molecular modeling as well as biochemical assays demonstrates that NMHC docks in the hydrophobic cavity within the NOTCH1 negative regulatory region (NRR), thus promoting NOTCH1 proteolytic cleavage. Our findings thus establish NMHC as a potential NOTCH agonist that holds great promises for future development as a novel agent beneficial to patients with AML. PMID:27211848

  3. Lattice gas and lattice Boltzmann computational physics

    SciTech Connect

    Chen, S.

    1993-05-01

    Recent developments of the lattice gas automata method and its extension to the lattice Boltzmann method have provided new computational schemes for solving a variety of partial differential equations and modeling different physics systems. The lattice gas method, regarded as the simplest microscopic and kinetic approach which generates meaningful macroscopic dynamics, is fully parallel and can be easily programmed on parallel machines. In this talk, the author will review basic principles of the lattice gas and lattice Boltzmann method, its mathematical foundation and its numerical implementation. A detailed comparison of the lattice Boltzmann method with the lattice gas technique and other traditional numerical schemes, including the finite-difference scheme and the pseudo-spectral method, for solving the Navier-Stokes hydrodynamic fluid flows, will be discussed. Recent achievements of the lattice gas and the the lattice Boltzmann method and their applications in surface phenomena, spinodal decomposition and pattern formation in chemical reaction-diffusion systems will be presented.

  4. Area of Lattice Polygons

    ERIC Educational Resources Information Center

    Scott, Paul

    2006-01-01

    A lattice is a (rectangular) grid of points, usually pictured as occurring at the intersections of two orthogonal sets of parallel, equally spaced lines. Polygons that have lattice points as vertices are called lattice polygons. It is clear that lattice polygons come in various shapes and sizes. A very small lattice triangle may cover just 3…

  5. Homozygous NOTCH3 null mutation and impaired NOTCH3 signaling in recessive early-onset arteriopathy and cavitating leukoencephalopathy

    PubMed Central

    Pippucci, Tommaso; Maresca, Alessandra; Magini, Pamela; Cenacchi, Giovanna; Donadio, Vincenzo; Palombo, Flavia; Papa, Valentina; Incensi, Alex; Gasparre, Giuseppe; Valentino, Maria Lucia; Preziuso, Carmela; Pisano, Annalinda; Ragno, Michele; Liguori, Rocco; Giordano, Carla; Tonon, Caterina; Lodi, Raffaele; Parmeggiani, Antonia; Carelli, Valerio; Seri, Marco

    2015-01-01

    Notch signaling is essential for vascular physiology. Neomorphic heterozygous mutations in NOTCH3, one of the four human NOTCH receptors, cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Hypomorphic heterozygous alleles have been occasionally described in association with a spectrum of cerebrovascular phenotypes overlapping CADASIL, but their pathogenic potential is unclear. We describe a patient with childhood-onset arteriopathy, cavitating leukoencephalopathy with cerebral white matter abnormalities presented as diffuse cavitations, multiple lacunar infarctions and disseminated microbleeds. We identified a novel homozygous c.C2898A (p.C966*) null mutation in NOTCH3 abolishing NOTCH3 expression and causing NOTCH3 signaling impairment. NOTCH3 targets acting in the regulation of arterial tone (KCNA5) or expressed in the vasculature (CDH6) were downregulated. Patient's vessels were characterized by smooth muscle degeneration as in CADASIL, but without deposition of granular osmiophilic material (GOM), the CADASIL hallmark. The heterozygous parents displayed similar but less dramatic trends in decrease in the expression of NOTCH3 and its targets, as well as in vessel degeneration. This study suggests a functional link between NOTCH3 deficiency and pathogenesis of vascular leukoencephalopathies. PMID:25870235

  6. Effects of S1 Cleavage on the Structure, Surface Export, and Signaling Activity of Human Notch1 and Notch2

    PubMed Central

    Gordon, Wendy R.; Vardar-Ulu, Didem; L'Heureux, Sarah; Ashworth, Todd; Malecki, Michael J.; Sanchez-Irizarry, Cheryll; McArthur, Debbie G.; Histen, Gavin; Mitchell, Jennifer L.; Aster, Jon C.; Blacklow, Stephen C.

    2009-01-01

    Background Notch receptors are normally cleaved during maturation by a furin-like protease at an extracellular site termed S1, creating a heterodimer of non-covalently associated subunits. The S1 site lies within a key negative regulatory region (NRR) of the receptor, which contains three highly conserved Lin12/Notch repeats and a heterodimerization domain (HD) that interact to prevent premature signaling in the absence of ligands. Because the role of S1 cleavage in Notch signaling remains unresolved, we investigated the effect of S1 cleavage on the structure, surface trafficking and ligand-mediated activation of human Notch1 and Notch2, as well as on ligand-independent activation of Notch1 by mutations found in human leukemia. Principal Findings The X-ray structure of the Notch1 NRR after furin cleavage shows little change when compared with that of an engineered Notch1 NRR lacking the S1-cleavage loop. Likewise, NMR studies of the Notch2 HD domain show that the loop containing the S1 site can be removed or cleaved without causing a substantial change in its structure. However, Notch1 and Notch2 receptors engineered to resist S1 cleavage exhibit unexpected differences in surface delivery and signaling competence: S1-resistant Notch1 receptors exhibit decreased, but detectable, surface expression and ligand-mediated receptor activation, whereas S1-resistant Notch2 receptors are fully competent for cell surface delivery and for activation by ligands. Variable dependence on S1 cleavage also extends to T-ALL-associated NRR mutations, as common class 1 mutations display variable decrements in ligand-independent activation when introduced into furin-resistant receptors, whereas a class 2 mutation exhibits increased signaling activity. Conclusions/Significance S1 cleavage has distinct effects on the surface expression of Notch1 and Notch2, but is not generally required for physiologic or pathophysiologic activation of Notch proteins. These findings are consistent with

  7. Effects of S1 Cleavage on the Structure, Surface Export, and Signaling Activity of Human Notch1 and Notch2

    SciTech Connect

    Gordon, Wendy R.; Vardar-Ulu, Didem; L'Heureux, Sarah; Ashworth, Todd; Malecki, Michael J.; Sanchez-Irizarry, Cheryll; McArthur, Debbie G.; Histen, Gavin; Mitchell, Jennifer L.; Aster, Jon C.; Blacklow, Stephen C.

    2009-09-25

    Notch receptors are normally cleaved during maturation by a furin-like protease at an extracellular site termed S1, creating a heterodimer of non-covalently associated subunits. The S1 site lies within a key negative regulatory region (NRR) of the receptor, which contains three highly conserved Lin12/Notch repeats and a heterodimerization domain (HD) that interact to prevent premature signaling in the absence of ligands. Because the role of S1 cleavage in Notch signaling remains unresolved, we investigated the effect of S1 cleavage on the structure, surface trafficking and ligand-mediated activation of human Notch1 and Notch2, as well as on ligand-independent activation of Notch1 by mutations found in human leukemia. The X-ray structure of the Notch1 NRR after furin cleavage shows little change when compared with that of an engineered Notch1 NRR lacking the S1-cleavage loop. Likewise, NMR studies of the Notch2 HD domain show that the loop containing the S1 site can be removed or cleaved without causing a substantial change in its structure. However, Notch1 and Notch2 receptors engineered to resist S1 cleavage exhibit unexpected differences in surface delivery and signaling competence: S1-resistant Notch1 receptors exhibit decreased, but detectable, surface expression and ligand-mediated receptor activation, whereas S1-resistant Notch2 receptors are fully competent for cell surface delivery and for activation by ligands. Variable dependence on S1 cleavage also extends to T-ALL-associated NRR mutations, as common class 1 mutations display variable decrements in ligand-independent activation when introduced into furin-resistant receptors, whereas a class 2 mutation exhibits increased signaling activity. S1 cleavage has distinct effects on the surface expression of Notch1 and Notch2, but is not generally required for physiologic or pathophysiologic activation of Notch proteins. These findings are consistent with models for receptor activation in which ligand-binding or

  8. Notch signaling promotes airway mucous metaplasia and inhibits alveolar development.

    PubMed

    Guseh, J Sawalla; Bores, Sam A; Stanger, Ben Z; Zhou, Qiao; Anderson, William J; Melton, Douglas A; Rajagopal, Jayaraj

    2009-05-01

    The airways are conduits that transport atmospheric oxygen to the distal alveolus. Normally, airway mucous cells are rare. However, diseases of the airway are often characterized by mucous metaplasia, in which there are dramatic increases in mucous cell numbers. As the Notch pathway is known to regulate cell fate in many contexts, we misexpressed the active intracellular domain of the mouse Notch1 receptor in lung epithelium. Notch misexpression resulted in an increase in mucous cells and a decrease in ciliated cells in the airway. Similarly, mouse embryonic tracheal explants and adult human airway epithelium treated with Notch agonists displayed increased mucous cell numbers and decreased ciliated cell numbers. Notch antagonists had the opposite effect. Notably, Notch antagonists blocked IL13-induced mucous metaplasia. IL13 has a well-established role as an inflammatory mediator of mucous metaplasia and functions through Stat6-mediated gene transcription. We found that Notch ligands, however, are able to cause mucous metaplasia in Stat6-null cultured trachea, thus identifying a novel pathway that stimulates mucous metaplasia. Notch signaling may therefore play an important role in airway disease and, by extension, Notch antagonists may have therapeutic value. Conversely, in the distal lung, Notch misexpression prevented the differentiation of alveolar cell types. Instead, the distal lung formed cysts composed of cells that were devoid of alveolar markers but that expressed some, but not all, markers of proximal airway epithelium. Occasional distal cystic cells appeared to differentiate into normal proximal airway cells, suggesting that ectopic Notch signaling arrests the normal differentiation of distal lung progenitors before they initiate an alveolar program. PMID:19369400

  9. Notch Signaling in Inflammation-Induced Preterm Labor

    PubMed Central

    Jaiswal, Mukesh K.; Agrawal, Varkha; Pamarthy, Sahithi; Katara, Gajendra K.; Kulshrestha, Arpita; Gilman-Sachs, Alice; Beaman, Kenneth D.; Hirsch, Emmet

    2015-01-01

    Notch signaling plays an important role in regulation of innate immune responses and trophoblast function during pregnancy. To identify the role of Notch signaling in preterm labor, Notch receptors (Notch1-4), its ligands (DLL (Delta-like protein)-1/3/4), Jagged 1/2) and Notch-induced transcription factor Hes1 were assessed during preterm labor. Preterm labor was initiated on gestation day 14.5 by intrauterine (IU) injection of peptidoglycan (PGN) and polyinosinic:cytidylic acid (poly(I:C). Notch1, Notch2, Notch4, DLL-1 and nuclear localization of Hes1 were significantly elevated in uterus and placenta during PGN+poly(I:C)-induced preterm labor. Ex vivo, Gamma secretase inhibitor (GSI) (inhibitor of Notch receptor processing) significantly diminished the PGN+poly(I:C)-induced secretion of M1- and M2-associated cytokines in decidual macrophages, and of proinflammatory cytokines (IFN-γ, TNF-α and IL-6) and chemokines (MIP-1β) in decidual and placental cells. Conversely, angiogenesis factors including Notch ligands Jagged 1/2 and DLL-4 and VEGF were significantly reduced in uterus and placenta during PGN+poly(I:C)-induced preterm labor. In vivo GSI treatment prevents PGN+poly(I:C)-induced preterm delivery by 55.5% and increased the number of live fetuses in-utero significantly compared to respective controls 48 hrs after injections. In summary, Notch signaling is activated during PGN+poly(I:C)-induced preterm labor, resulting in upregulation of pro-inflammatory responses, and its inhibition improves in-utero survival of live fetuses. PMID:26472156

  10. Notch Signaling in Inflammation-Induced Preterm Labor.

    PubMed

    Jaiswal, Mukesh K; Agrawal, Varkha; Pamarthy, Sahithi; Katara, Gajendra K; Kulshrestha, Arpita; Gilman-Sachs, Alice; Beaman, Kenneth D; Hirsch, Emmet

    2015-01-01

    Notch signaling plays an important role in regulation of innate immune responses and trophoblast function during pregnancy. To identify the role of Notch signaling in preterm labor, Notch receptors (Notch1-4), its ligands (DLL (Delta-like protein)-1/3/4), Jagged 1/2) and Notch-induced transcription factor Hes1 were assessed during preterm labor. Preterm labor was initiated on gestation day 14.5 by intrauterine (IU) injection of peptidoglycan (PGN) and polyinosinic:cytidylic acid (poly(I:C). Notch1, Notch2, Notch4, DLL-1 and nuclear localization of Hes1 were significantly elevated in uterus and placenta during PGN+poly(I:C)-induced preterm labor. Ex vivo, Gamma secretase inhibitor (GSI) (inhibitor of Notch receptor processing) significantly diminished the PGN+poly(I:C)-induced secretion of M1- and M2-associated cytokines in decidual macrophages, and of proinflammatory cytokines (IFN-γ, TNF-α and IL-6) and chemokines (MIP-1β) in decidual and placental cells. Conversely, angiogenesis factors including Notch ligands Jagged 1/2 and DLL-4 and VEGF were significantly reduced in uterus and placenta during PGN+poly(I:C)-induced preterm labor. In vivo GSI treatment prevents PGN+poly(I:C)-induced preterm delivery by 55.5% and increased the number of live fetuses in-utero significantly compared to respective controls 48 hrs after injections. In summary, Notch signaling is activated during PGN+poly(I:C)-induced preterm labor, resulting in upregulation of pro-inflammatory responses, and its inhibition improves in-utero survival of live fetuses. PMID:26472156

  11. Mechanics of dynamic fracture in notched polycarbonate

    NASA Astrophysics Data System (ADS)

    Faye, Anshul; Parmeswaran, Venkitanarayanan; Basu, Sumit

    2015-04-01

    Fracture toughness of brittle amorphous polymers (e.g. polymethyl methacrylate (PMMA)) has been reported to decrease with loading rate at moderate rates and increase abruptly thereafter to close to 5 times the static value at very high loading rates. Dynamic fracture toughness that is much higher than the static values has attractive technological possibilities. However, the reasons for the sharp increase remain unclear. Motivated by these observations, the present work focuses on the dynamic fracture behavior of polycarbonate (PC), which is also an amorphous polymer but unlike PMMA, is ductile at room temperature. Towards this end, a combined experimental and numerical approach is adopted. Dynamic fracture experiments at various loading rates are conducted on single edge notched (SEN) specimens with a notch of radius 150 μm, using a Hopkinson bar setup equipped with ultra high-speed imaging (>105 fps) for real-time observation of dynamic processes during fracture. Concurrently, 3D dynamic finite element simulations are performed using a well calibrated material model for PC. Experimentally, we were able to clearly capture the intricate details of the process, for both slowly and dynamically loaded samples, of damage nucleation and growth ahead of the notch tip followed by unstable crack propagation. These observations coupled with fractography and computer simulations led us to conclude that in PC, the fracture toughness remains invariant with loading rate at Jfrac = 12 ± 3 kN / m for the entire range of loading rates (J ˙) from static to 1 ×106 kN / m - s. However, the damage initiation toughness is significantly higher in dynamic loading compared to static situations. In dynamic situations, damage nucleation is quickly followed by initiation of radial crazes from around the void periphery that initiate and quickly bridge the ligament between the initial damaged region and the notch. Thus for PC, two criteria for two major stages in the failure process emerge

  12. Coronagraphic Notch Filter for Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Cohen, David; Stirbl, Robert

    2004-01-01

    A modified coronagraph has been proposed as a prototype of improved notch filters in Raman spectrometers. Coronagraphic notch filters could offer alternatives to both (1) the large and expensive double or triple monochromators in older Raman spectrometers and (2) holographic notch filters, which are less expensive but are subject to environmental degradation as well as to limitations of geometry and spectral range. Measurement of a Raman spectrum is an exercise in measuring and resolving faint spectral lines close to a bright peak: In Raman spectroscopy, a monochromatic beam of light (the pump beam) excites a sample of material that one seeks to analyze. The pump beam generates a small flux of scattered light at wavelengths slightly greater than that of the pump beam. The shift in wavelength of the scattered light from the pump wavelength is known in the art as the Stokes shift. Typically, the flux of scattered light is of the order of 10 7 that of the pump beam and the Stokes shift lies in the wave-number range of 100 to 3,000 cm 1. A notch filter can be used to suppress the pump-beam spectral peak while passing the nearby faint Raman spectral lines. The basic principles of design and operation of a coronagraph offer an opportunity for engineering the spectral transmittance of the optics in a Raman spectrometer. A classical coronagraph may be understood as two imaging systems placed end to end, such that the first system forms an intermediate real image of a nominally infinitely distant object and the second system forms a final real image of the intermediate real image. If the light incident on the first telescope is collimated, then the intermediate image is a point-spread function (PSF). If an appropriately tailored occulting spot (e.g., a Gaussian-apodized spot with maximum absorption on axis) is placed on the intermediate image plane, then the instrument inhibits transmission of light from an on-axis source. However, the PSFs of off-axis light sources are

  13. The contribution of Notch1 to nephron segmentation in the developing kidney is revealed in a sensitized Notch2 background and can be augmented by reducing Mint dosage

    PubMed Central

    Surendran, Kameswaran; Boyle, Scott; Barak, Hila; Kim, Mijin; Stromberski, Colin; McCright, Brent; Kopan, Raphael

    2009-01-01

    We previously determined that Notch2, and not Notch1 was required for forming proximal nephron segments. The dominance of Notch2 may be conserved in humans, since Notch2 mutations occur in Alagille syndrome (ALGS) 2 patients, which includes renal complications. To test whether mutations in Notch1 could increase the severity of renal complications in ALGS, we inactivated conditional Notch1 and Notch2 alleles in mice using a Six2-GFP∷Cre. This BAC transgene is expressed mosaically in renal epithelial progenitors but uniformly in cells exiting the progenitor pool to undergo mesenchymal to epithelial transition. Although delaying Notch2 inactivation had a marginal effect on nephron numbers, it created a sensitized background in which the inactivation of Notch1 severely compromised nephron formation, function and survival. These and additional observations indicate that Notch1 in concert with Notch2 contributes to the morphogenesis of renal vesicles into S-shaped bodies in a RBP-J dependent manner. A significant implication is that elevating Notch1 activity could improve renal functions in ALGS2 patients. As proof of principle, we determined that conditional inactivation of Mint, an inhibitor of Notch-RBP-J interaction, resulted in a moderate rescue of Notch2 null kidneys, implying that temporal blockage of Notch signaling inhibitors downstream of receptor activation may have therapeutic benefits for ALGS patients. PMID:19914235

  14. Notch signaling contributes to the pathogenesis of human osteosarcomas

    PubMed Central

    Engin, Feyza; Bertin, Terry; Ma, Ou; Jiang, Ming Ming; Wang, Lisa; Sutton, Richard E.; Donehower, Lawrence A.; Lee, Brendan

    2009-01-01

    Notch signaling plays an important role in developmental processes and adult tissue homeostasis. Altered Notch signaling has been associated with various diseases including cancer. While the importance of altered Notch signaling in cancers of hematopoietic and epithelial origins has been established, its role in tumors of mesenchymal origin is less clear. Here, we report that human osteosarcoma cell lines and primary human osteosarcoma tumor samples show significant up-regulation of Notch, its target genes and Osterix. Notch inhibition by γ-secretase inhibitors or by using lentiviral mediated expression of dominant negative Mastermind-like protein (DN-MAML) decreases osteosarcoma cell proliferation in vitro. In vivo, established human tumor xenografts in nude mice show decreased tumor growth after chemical or genetic inhibition of Notch signaling. Finally, transcriptional profiling of osteosarcomas from p53 mutant mice confirmed up-regulation of Notch1 target genes Hes1, Hey1 and its ligand Dll4. Our data suggest that activation of Notch signaling contributes to the pathogenesis of human osteosarcomas and its inhibition may be a therapeutic approach for the treatment of this mesenchymal tumor. PMID:19228774

  15. Notch Signaling Activation in Pediatric Low-Grade Astrocytoma

    PubMed Central

    Brandt, William D.; Schreck, Karisa C.; Bar, Eli E.; Taylor, Isabella; Marchionni, Luigi; Raabe, Eric; Eberhart, Charles G.; Rodriguez, Fausto J.

    2014-01-01

    Pilocytic astrocytoma (PA) is the most common primary brain tumor in children; various signaling pathways have been implicated in its biology. The Notch signaling pathway has been found to play a role in development, stem cell biology, and the pathogenesis of several cancers but its role in PA has not been investigated. We studied alterations in Notch signaling components in tumor tissue from 18 patients with PA and 4 with other low-grade astrocytomas to identify much needed therapeutic targets. We found that Notch pathway members were overexpressed at the mRNA (NOTCH1, NOTCH2, HEY1, HEY2) and protein (HES1) levels in PAs at various anatomical sites compared to non-neoplastic brain samples. These changes were not associated with specific BRAF alterations. Inhibiting the Notch pathway in the pediatric low-grade astrocytoma cell lines Res 186 and Res 259 using either RNA interference or a γ-secretase inhibitor resulted in variable but significant reduction in cell growth and migration. This study suggests a potential role for Notch signaling in pediatric low-grade astrocytoma tumorigenesis and that Notch signaling may be a viable pathway therapeutic target. PMID:25575134

  16. Notch signaling activation in pediatric low-grade astrocytoma.

    PubMed

    Brandt, William D; Schreck, Karisa C; Bar, Eli E; Taylor, Isabella; Marchionni, Luigi; Raabe, Eric; Eberhart, Charles G; Rodriguez, Fausto J

    2015-02-01

    Pilocytic astrocytoma (PA) is the most common primary brain tumor in children; various signaling pathways have been implicated in its biology. The Notch signaling pathway has been found to play a role in the development, stem cell biology, and pathogenesis of several cancers, but its role in PA has not been investigated. We studied alterations in Notch signaling components in tumor tissue from 18 patients with PA and 4 with other low-grade astrocytomas to identify much needed therapeutic targets. We found that Notch pathway members were overexpressed at the mRNA (NOTCH1, NOTCH2, HEY1, HEY2) and protein (HES1) levels in PAs at various anatomic sites compared with non-neoplastic brain samples. These changes were not associated with specific BRAF alterations. Inhibiting the Notch pathway in the pediatric low-grade astrocytoma cell lines Res186 and Res259 using either RNA interference or a γ-secretase inhibitor resulted in variable, but significant, reduction in cell growth and migration. This study suggests a potential role for Notch signaling in pediatric low-grade astrocytoma tumorigenesis and that Notch signaling may be a viable pathway therapeutic target. PMID:25575134

  17. The Origin and Evolution of Deep Plasmaspheric Notches

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Adrian, M. L.; Liemohn, M.

    2004-01-01

    Deep plasmaspheric notches can extend over more than 2 RE in radial distance and 3 hours MLT in the magnetic equatorial plane. They appear to be among the largest evacuated features in the exterior plasmaspheric boundary. They can last for days and exhibit varying structure. It appears that low-density channels resulting from the entrainment of the plasmaspheric convection plume during storm-time recovery share the same origin as notches. Notches rather than channels result from differences in storm- time conditions. Strong convection tends to result in low-density channels, while weaker convection and limited erosion results in notches. Eighteen events in 2000 have been analyzed. Among these events, notches were found to drift as slowly as 72% of corotation. In only one case was a notch found to drift at the corotation rate within measurement error. On average, notches drift at about 2 1.5 hours per day or 90% of the co-rotational rate. Notches also sometimes exhibit an interior structure that appears as an extended prominence of dense plasma, which forms a W-like feature in IMAGEEUV images when viewed from Earth-center. Modeling suggests such features may be caused by small-scale potential structures that result from the localized injection of ring current plasma. Plasma filling rates during recovery and drainage during a minor storm are reported.

  18. The Notch ligand delta-1 is a hematopoietic development cofactor for plasmacytoid dendritic cells.

    PubMed

    Olivier, Aurélie; Lauret, Evelyne; Gonin, Patrick; Galy, Anne

    2006-04-01

    Plasmacytoid dendritic cells (pDCs) play an important role in innate and adaptive immunity, prompting interest in mechanisms controlling the production of this lineage of cells. Notch signaling via one of the Notch ligands, delta-like 1 (delta-1), influences the hematopoietic development of several lymphoid and myeloid lineages, but whether or not delta-1 affects the formation of pDCs is unknown and was tested here. Human CD34+ progenitor cells were cultured onto delta-1-expressing OP9 stroma in the presence of flt-3 ligand and IL-7, and this efficiently generated BDCA-2+ CD123+ CD4+ CD11c- cells with the characteristic morphology of pDCs, expressing toll-like receptor-9 (TLR9), pre-Talpha mRNAs, and secreting CpG-induced IFN-alpha. Delta-1 augmented the numbers of BDCA-2+ cells produced without affecting their proliferation, and the effect was blocked by gamma-secretase inhibition. The development of pDCs was stroma-, delta-1-, and cytokine-dependent and could be induced from committed lymphoid progenitor cells, which responded to delta-1 by opposite changes in pDC- and B-cell production. Our results identify delta-1 as a novel factor enhancing pDC hematopoiesis and delineate a new role for Notch signaling in lymphopoiesis by showing its opposite effect on pDC and B lineage determination. PMID:16357328

  19. Oncogenic role of the Notch pathway in primary liver cancer

    PubMed Central

    LU, JIE; XIA, YUJING; CHEN, KAN; ZHENG, YUANYUAN; WANG, JIANRONG; LU, WENXIA; YIN, QIN; WANG, FAN; ZHOU, YINGQUN; GUO, CHUANYONG

    2016-01-01

    Primary liver cancer, which includes hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) and fibrolamellar HCC, is one of the most common malignancies and the third leading cause of cancer-associated mortality, worldwide. Despite the development of novel therapies, the prognosis of liver cancer patients remains extremely poor. Thus, investigation of the genetic background and molecular mechanisms underlying the development and progression of this disease has gained significant attention. The Notch signaling pathway is a crucial determinant of cell fate during development and disease in several organs. In the liver, Notch signaling is involved in biliary tree development and tubulogenesis, and is also significant in the development of HCC and ICC. These findings suggest that the modulation of Notch pathway activity may have therapeutic relevance. The present review summarizes Notch signaling during HCC and ICC development and discusses the findings of recent studies regarding Notch expression, which reveal novel insights into its function in liver cancer progression. PMID:27347091

  20. Notch in the intestine: regulation of homeostasis and pathogenesis.

    PubMed

    Noah, Taeko K; Shroyer, Noah F

    2013-01-01

    The small and large intestines are tubular organs composed of several tissue types. The columnar epithelium that lines the inner surface of the intestines distinguishes the digestive physiology of each region of the intestine and consists of several distinct cell types that are rapidly and continually renewed by intestinal stem cells that reside near the base of the crypts of Lieberkühn. Notch signaling controls the fate of intestinal stem cells by regulating the expression of Hes genes and by repressing Atoh1. Alternate models of Notch pathway control of cell fate determination are presented. Roles for Notch signaling in development of the intestine, including mesenchymal and neural cells, are discussed. The oncogenic activities of Notch in colorectal cancer, as well as the tumor suppressive activities of Atoh1, are reviewed. Therapeutic targeting of the Notch pathway in colorectal cancers is discussed, along with potential caveats. PMID:23190077

  1. Luminance measurement to evaluate the damage of notched FRP plates in static load

    SciTech Connect

    Hyakutake, H.; Yamamoto, T.

    1995-11-01

    The validity of the damage criterion for notched FRP plates based on the concept of severity near the notch root is subjected to further experimental scrutiny. An experimental program is presented which examines the effect of notch geometry on the damage near the notch root of FRP plates. This is accomplished by obtaining experimental data on the notched specimens of a glass cloth/epoxy laminate for a wide range of notch geometries in tension and bending. The process of initiation and growth of damage near the notch root was measured by means of the luminance measurement technique with a CCD camera. The experiment shows that the growth of damage zone near the notch root was governed predominantly by both the notch-root radius and the maximum elastic stress at the notch root, while it was independent of notch depth and type of loading. On the basis of the concept of severity, the experimental results can be clearly elucidated.

  2. Role of Notch signaling during lipopolysaccharide-induced preterm labor.

    PubMed

    Agrawal, Varkha; Jaiswal, Mukesh K; Pamarthy, Sahithi; Katara, Gajendra K; Kulshrestha, Arpita; Gilman-Sachs, Alice; Hirsch, Emmet; Beaman, Kenneth D

    2016-08-01

    Notch signaling pathways exert effects throughout pregnancy and are activated in response to TLR ligands. To investigate the role of Notch signaling in preterm labor, Notch receptors (Notch1-4), its ligand Delta-like protein-1, transcriptional repressor hairy and enhancer of split-1, and Notch deregulator Numb were assessed. Preterm labor was initiated on gestation d 14.5 by 1 of 2 methods: 1) inflammation-induced preterm labor: intrauterine injection of LPS (a TLR4 agonist) and 2) hormonally induced preterm labor: subcutaneous injection of mifepristone. Delta-like protein-1, Notch1, and hairy and enhancer of split-1 were elevated significantly, and Numb was decreased in the uterus and placenta of inflammation-induced preterm labor mice but remained unchanged in hormonally induced preterm labor compared with their respective controls. F4/80(+) macrophage polarization was skewed in the uterus of inflammation-induced preterm labor toward M1-positive (CD11c(+)) and double-positive [CD11c(+) (M1) and CD206(+) (M2)] cells. This process is dependent on activation of Notch signaling, as shown by suppression of M1 and M2 macrophage-associated cytokines in decidual macrophages in response to γ-secretase inhibitor (an inhibitor of Notch receptor processing) treatment ex vivo. γ-Secretase inhibitor treatment also diminished the LPS-induced secretion of proinflammatory cytokines and chemokines in decidual and placental cells cultured ex vivo. Furthermore, treatment with recombinant Delta-like protein-1 ligand enhanced the LPS-induced proinflammatory response. Notch ligands (Jagged 1 and 2 and Delta-like protein-4) and vascular endothelial growth factor and its receptor involved in angiogenesis were reduced significantly in the uterus and placenta during inflammation-induced preterm labor. These results suggest that up-regulation of Notch-related inflammation and down-regulation of angiogenesis factors may be associated with inflammation-induced preterm labor but not with

  3. Gauging NOTCH1 Activation in Cancer Using Immunohistochemistry

    PubMed Central

    Kluk, Michael J.; Ashworth, Todd; Wang, Hongfang; Knoechel, Birgit; Mason, Emily F.; Morgan, Elizabeth A.; Dorfman, David; Pinkus, Geraldine; Weigert, Oliver; Hornick, Jason L.; Chirieac, Lucian R.; Hirsch, Michelle; Oh, David J.; South, Andrew P.; Leigh, Irene M.; Pourreyron, Celine; Cassidy, Andrew J.; DeAngelo, Daniel J.; Weinstock, David M.; Krop, Ian E.; Dillon, Deborah; Brock, Jane E.; Lazar, Alexander J. F.; Peto, Myron; Cho, Raymond J.; Stoeck, Alexander; Haines, Brian B.; Sathayanrayanan, Sriram; Rodig, Scott; Aster, Jon C.

    2013-01-01

    Fixed, paraffin-embedded (FPE) tissues are a potentially rich resource for studying the role of NOTCH1 in cancer and other pathologies, but tests that reliably detect activated NOTCH1 (NICD1) in FPE samples have been lacking. Here, we bridge this gap by developing an immunohistochemical (IHC) stain that detects a neoepitope created by the proteolytic cleavage event that activates NOTCH1. Following validation using xenografted cancers and normal tissues with known patterns of NOTCH1 activation, we applied this test to tumors linked to dysregulated Notch signaling by mutational studies. As expected, frequent NICD1 staining was observed in T lymphoblastic leukemia/lymphoma, a tumor in which activating NOTCH1 mutations are common. However, when IHC was used to gauge NOTCH1 activation in other human cancers, several unexpected findings emerged. Among B cell tumors, NICD1 staining was much more frequent in chronic lymphocytic leukemia than would be predicted based on the frequency of NOTCH1 mutations, while mantle cell lymphoma and diffuse large B cell lymphoma showed no evidence of NOTCH1 activation. NICD1 was also detected in 38% of peripheral T cell lymphomas. Of interest, NICD1 staining in chronic lymphocytic leukemia cells and in angioimmunoblastic lymphoma was consistently more pronounced in lymph nodes than in surrounding soft tissues, implicating factors in the nodal microenvironment in NOTCH1 activation in these diseases. Among carcinomas, diffuse strong NICD1 staining was observed in 3.8% of cases of triple negative breast cancer (3 of 78 tumors), but was absent from 151 non-small cell lung carcinomas and 147 ovarian carcinomas. Frequent staining of normal endothelium was also observed; in line with this observation, strong NICD1 staining was also seen in 77% of angiosarcomas. These findings complement insights from genomic sequencing studies and suggest that IHC staining is a valuable experimental tool that may be useful in selection of patients for clinical

  4. Association of transcription factor YY1 with the high molecular weight Notch complex suppresses the transactivation activity of Notch.

    PubMed

    Yeh, Tien-Shun; Lin, Yu-Min; Hsieh, Rong-Hong; Tseng, Min-Jen

    2003-10-24

    Notch receptors are evolutionarily conserved from Drosophila to human and play important roles in cell fate decisions. After ligand binding, Notch receptors are cleaved to release their intracellular domains. The intracellular domains, the activated form of Notch receptors, are then translocated into the nucleus where they interact with other transcriptional machinery to regulate the expression of cellular genes. To dissect the molecular mechanisms of Notch signaling, the cellular targets that interact with Notch1 receptor intracellular domain (N1IC) were screened. In this study, we found that endogenous transcription factor Ying Yang 1 (YY1) was associated with exogenous N1IC in human K562 erythroleukemic cells. The ankyrin (ANK) domain of N1IC and zinc finger domains of YY1 were essential for the association of N1IC and YY1 according to the pull-down assay of glutathione S-transferase fusion proteins. Furthermore, both YY1 and N1IC were present in a large complex of the nucleus to suppress the luciferase reporter activity transactivated by Notch signaling. The transcription factor YY1 indirectly regulated the transcriptional activity of the wild-type CBF1-response elements via the direct interaction of N1IC and CBF1. We also demonstrated the association between endogenous N1IC and intrinsic YY1 in human acute T-cell lymphoblastic leukemia cell lines. Taken together, these results indicate that transcription factor YY1 may modulate Notch signaling via association with the high molecular weight Notch complex. PMID:12913000

  5. Application of equalization notch to improve synthetic aperture radar coherent data products

    NASA Astrophysics Data System (ADS)

    Musgrove, Cameron; West, James C.

    2015-05-01

    Interference and interference mitigation techniques degrade synthetic aperture radar (SAR) coherent data products. Radars utilizing stretch processing present a unique challenge for many mitigation techniques because the interference signal itself is modified through stretch processing from its original signal characteristics. Many sources of interference, including constant tones, are only present within the fast-time sample data for a limited number of samples, depending on the radar and interference bandwidth. Adaptive filtering algorithms to estimate and remove the interference signal that rely upon assuming stationary interference signal characteristics can be ineffective. An effective mitigation method, called notching, forces the value of the data samples containing interference to zero. However, as the number of data samples set to zero increases, image distortion and loss of resolution degrade both the image product and any second order image products. Techniques to repair image distortions,1 are effective for point-like targets. However, these techniques are not designed to model and repair distortions in SAR image terrain. Good terrain coherence is important for SAR second order image products because terrain occupies the majority of many scenes. For the case of coherent change detection it is the terrain coherence itself that determines the quality of the change detection image. This paper proposes an unique equalization technique that improves coherence over existing notching techniques. First, the proposed algorithm limits mitigation to only the samples containing interference, unlike adaptive filtering algorithms, so the remaining samples are not modified. Additionally, the mitigation adapts to changing interference power such that the resulting correction equalizes the power across the data samples. The result is reduced distortion and improved coherence for the terrain. SAR data demonstrates improved coherence from the proposed equalization

  6. Differential effects of targeting Notch receptors in a mouse model of liver cancer

    PubMed Central

    Huntzicker, Erik G.; Hötzel, Kathy; Choy, Lisa; Che, Li; Ross, Jed; Pau, Gregoire; Sharma, Neeraj; Siebel, Christian W.; Chen, Xin; French, Dorothy M.

    2015-01-01

    Primary liver cancer encompasses both hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC). The Notch signaling pathway, known to be important for the proper development of liver architecture, is also a potential driver of primary liver cancer. However, with four known Notch receptors and several Notch ligands, it is not clear which Notch pathway members play the predominant role in liver cancer. To address this question we utilized antibodies to specifically target Notch1, Notch2, Notch3 or Jag1 in a mouse model of primary liver cancer driven by AKT and NRas. We show that inhibition of Notch2 reduces tumor burden by eliminating highly malignant hepatocellular carcinoma- and cholangiocarcinoma-like tumors. Inhibition of the Notch ligand Jag 1 had a similar effect, consistent with Jag1 acting in cooperation with Notch2. This effect was specific to Notch2, as Notch3 inhibition did not decrease tumor burden. Unexpectedly, Notch1 inhibition altered the relative proportion of tumor types, reducing HCC-like tumors but dramatically increasing CC-like tumors. Finally, we show that Notch2 and Jag1 are expressed in, and Notch2 signaling is activated in, a subset of human HCC samples. Conclusions: These findings underscore the distinct roles of different Notch receptors in the liver and suggest that inhibition of Notch2 signaling represents a novel therapeutic option in the treatment of liver cancer. PMID:25311838

  7. Dual Roles of O-Glucose Glycans Redundant with Monosaccharide O-Fucose on Notch in Notch Trafficking.

    PubMed

    Matsumoto, Kenjiroo; Ayukawa, Tomonori; Ishio, Akira; Sasamura, Takeshi; Yamakawa, Tomoko; Matsuno, Kenji

    2016-06-24

    Notch is a transmembrane receptor that mediates cell-cell interactions and controls various cell-fate specifications in metazoans. The extracellular domain of Notch contains multiple epidermal growth factor (EGF)-like repeats. At least five different glycans are found in distinct sites within these EGF-like repeats. The function of these individual glycans in Notch signaling has been investigated, primarily by disrupting their individual glycosyltransferases. However, we are just beginning to understand the potential functional interactions between these glycans. Monosaccharide O-fucose and O-glucose trisaccharide (O-glucose-xylose-xylose) are added to many of the Notch EGF-like repeats. In Drosophila, Shams adds a xylose specifically to the monosaccharide O-glucose. We found that loss of the terminal dixylose of O-glucose-linked saccharides had little effect on Notch signaling. However, our analyses of double mutants of shams and other genes required for glycan modifications revealed that both the monosaccharide O-glucose and the terminal dixylose of O-glucose-linked saccharides function redundantly with the monosaccharide O-fucose in Notch activation and trafficking. The terminal dixylose of O-glucose-linked saccharides and the monosaccharide O-glucose were required in distinct Notch trafficking processes: Notch transport from the apical plasma membrane to adherens junctions, and Notch export from the endoplasmic reticulum, respectively. Therefore, the monosaccharide O-glucose and terminal dixylose of O-glucose-linked saccharides have distinct activities in Notch trafficking, although a loss of these activities is compensated for by the presence of monosaccharide O-fucose. Given that various glycans attached to a protein motif may have redundant functions, our results suggest that these potential redundancies may lead to a serious underestimation of glycan functions. PMID:27129198

  8. Notch signaling promotes osteoclast maturation and resorptive activity.

    PubMed

    Ashley, Jason W; Ahn, Jaimo; Hankenson, Kurt D

    2015-11-01

    The role of Notch signaling in osteoclast differentiation is controversial with conflicting experimental evidence indicating both stimulatory and inhibitory roles. Differences in experimental protocols and in vivo versus in vitro models may explain the discrepancies between studies. In this study, we investigated cell autonomous roles of Notch signaling in osteoclast differentiation and function by altering Notch signaling during osteoclast differentiation using stimulation with immobilized ligands Jagged1 or Delta-like1 or by suppression with γ-secretase inhibitor DAPT or transcriptional inhibitor SAHM1. Stimulation of Notch signaling in committed osteoclast precursors resulted in larger osteoclasts with a greater number of nuclei and resorptive activity whereas suppression resulted in smaller osteoclasts with fewer nuclei and suppressed resorptive activity. Conversely, stimulation of Notch signaling in osteoclast precursors prior to induction of osteoclastogenesis resulted in fewer osteoclasts. Our data support a mechanism of context-specific Notch signaling effects wherein Notch stimulation inhibits commitment to osteoclast differentiation, but enhances the maturation and function of committed precursors. PMID:25914241

  9. Stability and performance of notch filter control for unbalance response

    NASA Technical Reports Server (NTRS)

    Knospe, C. R.

    1992-01-01

    Many current applications of magnetic bearings for rotating machinery employ notch filters in the feedback control loop to reduce the synchronous forces transmitted through the bearings. The capabilities and limitations of notch filter control are investigated. First, a rigid rotor is examined with some classical root locus techniques. Notch filter control is shown to result in conditional stability whenever complete synchronous attenuation is required. Next, a nondimensional parametric symmetric flexible three mass rotor model is constructed. An examination of this model for several test cases illustrates the limited attenuation possible with notch filters at and near the system critical speeds when the bearing damping is low. The notch filter's alteration of the feedback loop is shown to cause stability problems which limits performance. Poor transient response may also result. A high speed compressor is then examined as a candidate for notch filter control. A collocated 22 mass station model with lead-lag control is used. The analysis confirms the reduction in stability robustness that can occur with notch filter control. It is concluded that other methods of synchronous vibration control yield greater performance without compromising stability.

  10. Notch-EGFR/HER2 Bidirectional Crosstalk in Breast Cancer

    PubMed Central

    Baker, Andrew T.; Zlobin, Andrei; Osipo, Clodia

    2014-01-01

    The Notch pathway is a well-established mediator of cell–cell communication that plays a critical role in stem cell survival, self-renewal, cell fate decisions, tumorigenesis, invasion, metastasis, and drug resistance in a variety of cancers. An interesting form of crosstalk exists between the Notch receptor and the Epidermal Growth Factor Receptor Tyrosine Kinase family, which consists of HER-1, -2, -3, and -4. Overexpression of HER and/or Notch occurs in several human cancers including brain, lung, breast, ovary, and skin making them potent oncogenes capable of advancing malignant disease. Continued assessment of interplay between these two critical signaling networks uncovers new insight into mechanisms used by HER-driven cancer cells to exploit Notch as a compensatory pathway. The compensatory Notch pathway maintains HER-induced downstream signals transmitted to pathways such as Mitogen Activated Protein Kinase and Phosphatidylinositol 3-Kinase (PI3K), thereby allowing cancer cells to survive molecular targeted therapies, undergo epithelial to mesenchymal transitioning, and increase cellular invasion. Uncovering the critical crosstalk between the HER and Notch pathways can lead to improved screening for the expression of these oncogenes enabling patients to optimize their personal treatment options and predict potential treatment resistance. This review will focus on the current state of crosstalk between the HER and Notch receptors and the effectiveness of current therapies targeting HER-driven cancers. PMID:25566499

  11. SEPT4 is regulated by the Notch signaling pathway.

    PubMed

    Liu, Wenbin

    2012-04-01

    Notch receptor-mediated signaling is an evolutionarily conserved pathway that regulates diverse developmental processes and its dysregulation has been implicated in a variety of developmental disorders and cancers. Notch functions in these processes by activating expression of its target genes. Septin 4 (SEPT4) is a polymerizing GTP-binding protein that serves as scaffold for diverse molecules and is involved in cell proliferation and apoptosis. After activation of the Notch signal, the expression of SEPT4 is up-regulated and cell proliferation is inhibited. When the Notch signal is inhibited by the CSL (CBF1/Su(H)/Lag-1)-binding-domain-negative Mastermind-like protein 1, the expression of SEPT4 is down-regulated, proliferation and colony formation of cells are promoted, but cell adhesion ability is decreased. Nevertheless, the SEPT4 expression is not affected after knock-down of CSL. Meanwhile, if SEPT4 activity is inhibited through RNA interference, the protein level and activity of NOTCH1 remains unchanged, but cell proliferation is dysregulated. This indicates that SEPT4 is a Notch target gene. This relationship between Notch signaling pathway and SEPT4 offers a potential basis for further study of developmental control and carcinogenesis. PMID:21938432

  12. Notch signaling in hematopoietic cell transplantation and T cell alloimmunity

    PubMed Central

    Ebens, Christen; Maillard, Ivan

    2013-01-01

    Notch signaling can regulate both hematopoietic progenitors and alloimmune T cells in the setting of allogeneic bone marrow or hematopoietic cell transplantation (allo-HCT). Ex vivo culture of multipotent blood progenitors with immobilized Delta-like ligands induces supraphysiological Notch signals and can markedly enhance progenitor expansion. Infusion of Notch-expanded progenitors shortened myelosuppression in preclinical and early clinical studies, while accelerating T cell reconstitution in preclinical models. Notch also plays an essential role in vivo to regulate pathogenic alloimmune T cells that mediate graft-versus-host disease (GVHD), the most severe complication of allo-HCT. In mouse allo-HCT models, Notch inhibition in donor-derived T cells or transient blockade of Delta-like ligands after transplantation profoundly decreased GVHD incidence and severity, without causing global immunosuppression. These findings identify Notch in T cells as an attractive therapeutic target to control GVHD. In this review, we discuss these contrasting functions of Notch signaling with high translational significance in allo-HCT patients. PMID:24050990

  13. Tunable high-q superconducting notch filter

    DOEpatents

    Pang, C.S.; Falco, C.M.; Kampwirth, R.T.; Schuller, I.K.

    1979-11-29

    A superconducting notch filter is made of three substrates disposed in a cryogenic environment. A superconducting material is disposed on one substrate in a pattern of a circle and an annular ring connected together. The second substrate has a corresponding pattern to form a parallel plate capacitor and the second substrate has the circle and annular ring connected by a superconducting spiral that forms an inductor. The third substrate has a superconducting spiral that is placed parallel to the first superconducting spiral to form a transformer. Relative motion of the first substrate with respect to the second is effected from outside the cryogenic environment to vary the capacitance and hence the frequency of the resonant circuit formed by the superconducting devices.

  14. Infraspinatus paralysis due to spinoglenoid notch ganglion.

    PubMed

    Skirving, A P; Kozak, T K; Davis, S J

    1994-07-01

    We describe five patients, seen since 1984, with posterior shoulder pain and isolated wasting and weakness of the infraspinatus. In four of these a ganglion in the spinoglenoid notch was demonstrated by MRI and in one recent case ultrasound scans were positive. Three patients have been treated by operation, but there was recurrence in one after five years. In each confirmed case, the ganglion straddled the base of the spine of the scapula, extending into both supraspinatus and infraspinatus fossae. The nerve was either compressed against the spine or stretched over the posterior aspect of the ganglion. Adequate surgical exposure is essential to preserve the nerve to the infraspinatus and to allow complete removal of the ganglion. This is difficult because of the location and thin-walled nature of the cysts. PMID:8027146

  15. Cyclosporin A Disrupts Notch Signaling and Vascular Lumen Maintenance

    PubMed Central

    Pandey, Raghav; Botros, Mark A.; Nacev, Benjamin A.; Albig, Allan R.

    2015-01-01

    Cyclosporin A (CSA) suppresses immune function by blocking the cyclophilin A and calcineurin/NFAT signaling pathways. In addition to immunosuppression, CSA has also been shown to have a wide range of effects in the cardiovascular system including disruption of heart valve development, smooth muscle cell proliferation, and angiogenesis inhibition. Circumstantial evidence has suggested that CSA might control Notch signaling which is also a potent regulator of cardiovascular function. Therefore, the goal of this project was to determine if CSA controls Notch and to dissect the molecular mechanism(s) by which CSA impacts cardiovascular homeostasis. We found that CSA blocked JAG1, but not Dll4 mediated Notch1 NICD cleavage in transfected 293T cells and decreased Notch signaling in zebrafish embryos. CSA suppression of Notch was linked to cyclophilin A but not calcineurin/NFAT inhibition since N-MeVal-4-CsA but not FK506 decreased Notch1 NICD cleavage. To examine the effect of CSA on vascular development and function, double transgenic Fli1-GFP/Gata1-RFP zebrafish embryos were treated with CSA and monitored for vasculogenesis, angiogenesis, and overall cardiovascular function. Vascular patterning was not obviously impacted by CSA treatment and contrary to the anti-angiogenic activity ascribed to CSA, angiogenic sprouting of ISV vessels was normal in CSA treated embryos. Most strikingly, CSA treated embryos exhibited a progressive decline in blood flow that was associated with eventual collapse of vascular luminal structures. Vascular collapse in zebrafish embryos was partially rescued by global Notch inhibition with DAPT suggesting that disruption of normal Notch signaling by CSA may be linked to vascular collapse. However, multiple signaling pathways likely cause the vascular collapse phenotype since both cyclophilin A and calcineurin/NFAT were required for normal vascular function. Collectively, these results show that CSA is a novel inhibitor of Notch signaling and

  16. Mutations in NOTCH1 cause Adams-Oliver syndrome.

    PubMed

    Stittrich, Anna-Barbara; Lehman, Anna; Bodian, Dale L; Ashworth, Justin; Zong, Zheyuan; Li, Hong; Lam, Patricia; Khromykh, Alina; Iyer, Ramaswamy K; Vockley, Joseph G; Baveja, Rajiv; Silva, Ermelinda Santos; Dixon, Joanne; Leon, Eyby L; Solomon, Benjamin D; Glusman, Gustavo; Niederhuber, John E; Roach, Jared C; Patel, Millan S

    2014-09-01

    Notch signaling determines and reinforces cell fate in bilaterally symmetric multicellular eukaryotes. Despite the involvement of Notch in many key developmental systems, human mutations in Notch signaling components have mainly been described in disorders with vascular and bone effects. Here, we report five heterozygous NOTCH1 variants in unrelated individuals with Adams-Oliver syndrome (AOS), a rare disease with major features of aplasia cutis of the scalp and terminal transverse limb defects. Using whole-genome sequencing in a cohort of 11 families lacking mutations in the four genes with known roles in AOS pathology (ARHGAP31, RBPJ, DOCK6, and EOGT), we found a heterozygous de novo 85 kb deletion spanning the NOTCH1 5' region and three coding variants (c.1285T>C [p.Cys429Arg], c.4487G>A [p.Cys1496Tyr], and c.5965G>A [p.Asp1989Asn]), two of which are de novo, in four unrelated probands. In a fifth family, we identified a heterozygous canonical splice-site variant (c.743-1 G>T) in an affected father and daughter. These variants were not present in 5,077 in-house control genomes or in public databases. In keeping with the prominent developmental role described for Notch1 in mouse vasculature, we observed cardiac and multiple vascular defects in four of the five families. We propose that the limb and scalp defects might also be due to a vasculopathy in NOTCH1-related AOS. Our results suggest that mutations in NOTCH1 are the most common cause of AOS and add to a growing list of human diseases that have a vascular and/or bony component and are caused by alterations in the Notch signaling pathway. PMID:25132448

  17. NUMB is a break of WNT-Notch signaling cycle.

    PubMed

    Katoh, Masuko; Katoh, Masaru

    2006-09-01

    Notch, FGF and WNT signaling pathways cross-talk during embryogenesis, tissue regeneration and carcinogenesis. Notch-ligand binding to Notch receptors leads to the cleavage of Notch receptors and the following nuclear translocation of Notch intracellular domain (NICD) to induce transcriptional activation of Notch target genes. Notch signaling inhibitors, NUMB and NUMB-like (NUMBL), are docking proteins with PTB domain. We searched for the TCF/LEF-binding site within the promoter region of NUMB and NUMBL genes. Because two TCF/LEF-binding sites were identified within human NUMB promoter based on bioinformatics and human intelligence (Humint), comparative integromics analyses on NUMB orthologs were further performed. Chimpanzee NUBM gene, consisting of 13 exons, was identified within NW_115880.1 genome sequence. XM_510045.1 was not the correct coding sequence for chimpanzee NUMB. Chimpanzee NUMB gene was found to encode a 651-amino-acid protein showing 99.5, 93.9 and 82.6% total-amino-acid identity with human NUMB, mouse Numb and chicken numb, respectively. Human NUMB mRNA was expressed in placenta, ES cells, neural tissues, trachea, testis, uterus, thymus, coronary artery as well as in a variety of tumors, such as cervical cancer, tong tumor, brain tumor, colorectal and breast cancer. Although distal TCF/LEF-binding site within human NUMB promoter was conserved only among primate NUMB orthologs, proximal TCF/LEF-binding site was conserved among primate and rodent NUMB orthologs. NUMB, JAG1, FGF18, FGF20 and SPRY4 are potent targets of the canonical WNT signaling pathway in progenitor cells. NUMB inhibits Notch signaling in progenitor cells to induce differentiation, while JAG1 activates Notch signaling in stem cells to maintain self-renewal potential. Because Notch signaling inhibitor NUMB was identified as the safe apparatus for the WNT - Notch signaling cycle, epigenetic silencing, deletion and loss-of-function mutation of NUMB gene could lead to carcinogenesis

  18. Band-notched reconfigurable CPW-fed UWB antenna

    NASA Astrophysics Data System (ADS)

    Majid, H. A.; Rahim, M. K. A.; Hamid, M. R.; Murad, N. A.; Samsuri, N. A.; Yusof, M. F. M.; Kamarudin, M. R.

    2016-04-01

    A reconfigurable band-notched CPW-fed UWB antenna using electromagnetic bandgap (EBG) structure is proposed. Two structures are positioned adjacent to the transmission line of the UWB antenna. The band-notched characteristic can be disabled by switching the state of switch place at the strip line. The EBG structure produces reconfigurable band notched at 4.0 GHz, which covers C-band satellite communication (3.625-4.2 GHz) systems. The proposed antenna is suitable for UWB systems, which requires reconfigurable band reject function.

  19. Synchronized Targeting of Notch and ERBB Signaling Suppresses Melanoma Tumor Growth through Inhibition of Notch1 and ERBB3.

    PubMed

    Zhang, Keman; Wong, Poki; Salvaggio, Christine; Salhi, Amel; Osman, Iman; Bedogni, Barbara

    2016-02-01

    Despite significant advances in melanoma therapy, melanoma remains the deadliest form of skin cancer, with a 5-year survival rate of only 15%. Thus, novel treatments are required to address this disease. Notch and ERBB are evolutionarily conserved signaling cascades required for the maintenance of melanocyte precursors. We show that active Notch1 (Notch1(NIC)) and active (phosphorylated) ERBB3 and ERBB2 correlate significantly and are similarly expressed in both mutated and wild-type BRAF melanomas, suggesting these receptors are co-reactivated in melanoma to promote survival. Whereas blocking either pathway triggers modest effects, combining a ?-secretase inhibitor to block Notch activation and a tyrosine kinase inhibitor to inhibit ERBB3/2 elicits synergistic effects, reducing cell viability by 90% and hampering melanoma tumor growth. Specific inhibition of Notch1 and ERBB3 mimics these results, suggesting these are the critical factors triggering melanoma tumor expansion. Notch and ERBB inhibition blunts AKT and NF?B signaling. Constitutive expression of NF?B partially rescues cell death. Blockade of both Notch and ERBB signaling inhibits the slow cycling JARID1B-positive cell population, which is critical for long-term maintenance of melanoma growth. We propose that blocking these pathways is an effective approach to treatment of melanoma patients regardless of whether they carry mutated or wild-type BRAF. PMID:26967479

  20. Synchronized targeting of Notch and ERBB signaling suppresses melanoma tumor growth through inhibition of Notch1 and ERBB3*

    PubMed Central

    Zhang, Keman; Wong, Poki; Salvaggio, Christine; Salhi, Amel; Osman, Iman; Bedogni, Barbara

    2015-01-01

    Despite significant advances in melanoma therapy, melanoma remains the deadliest form of skin cancer, with a five-year survival of only 15%. Novel treatments are therefore required to address this disease. Notch and ERBB are evolutionarily conserved signaling cascades required for the maintenance of melanocyte precursors. We show that active Notch1 (Notch1NIC) and active (phosphorylated) ERBB3 and ERBB2 correlate significantly and are similarly expressed in both mutated and wild type BRAF melanomas, suggesting these receptors are co-reactivated in melanoma to promote survival. Indeed, while blocking either pathway triggers modest effects, combining a γ-secretase inhibitor to block Notch activation, and a tyrosine kinase inhibitor to inhibit ERBB3/2 elicits synergistic effects, reducing cell viability by 90% and by hampering melanoma tumor growth. Specific inhibition of Notch1 and ERBB3 mimics these results, suggesting these are the critical factors triggering melanoma tumor expansion. Notch and ERBB inhibition blunts AKT and NFκB signaling; Constitutive expression of NFκB partially rescues cell death. Finally, blockade of both Notch and ERBB signaling inhibits the slow cycling JARID1B positive cell population, which is critical for long-term maintenance of melanoma growth. We propose that blocking these pathways is an effective approach to treat melanoma patients regardless of whether they carry mutated or wild type BRAF. PMID:26967479

  1. Loss of Notch1-dependent p21Waf1/Cip1 expression influences the Notch1 outcome in tumorigenesis

    PubMed Central

    Cialfi, Samantha; Palermo, Rocco; Manca, Sonia; De Blasio, Carlo; Vargas Romero, Paula; Checquolo, Saula; Bellavia, Diana; Uccelletti, Daniela; Saliola, Michele; D'Alessandro, Angelo; Zolla, Lello; Gulino, Alberto; Screpanti, Isabella; Talora, Claudio

    2014-01-01

    Notch signaling plays a complex role in carcinogenesis, and its signaling pathway has both tumor-suppressor and oncogenic components. In this study we investigated the effects of reactive oxygen species (ROS) on Notch1 signaling outcome in keratinocyte biology. We demonstrate that Notch1 function contributes to the arsenic-induced keratinocyte transformation. We found that acute exposure to arsenite increases oxidative stress and inhibits proliferation of keratinocyte cells by upregulation of p21waf1/Cip1. The necessity of p21waf1/Cip1 for arsenite-induced cell death was demonstrated by targeted downregulation of p21waf1/Cip1 by using RNA interference. We further demonstrated that on acute exposure to arsenite, p21waf1/Cip1 is upregulated and Notch1 downmodulated, whereas on chronic exposure to arsenite, malignant progression of arsenite-treated keratinocytes cells was accompanied by regained expression and activity of Notch1. Notch1 activity in arsenite-transformed keratinocytes inhibits arsenite-induced upregulation of p21waf1/Cip1 by sustaining c-myc expression. We further demonstrated that c-myc collaborates with Nrf2, a key regulator for the maintenance of redox homeostasis, to promote metabolic activities that support cell proliferation and cytoprotection. Therefore, Notch1-mediated repression of p21waf1/Cip1 expression results in the inhibition of cell death and keratinocytes transformation. Our results not only demonstrate that sustained Notch1 expression is at least one key event implicated in the arsenite human skin carcinogenic effect, but also may provide mechanistic insights into the molecular aspects that determine whether Notch signaling will be either oncogenic or tumor suppressive. PMID:24801890

  2. NOTCH4 signaling controls EFNB2-induced endothelial progenitor cell dysfunction in preeclampsia.

    PubMed

    Liu, Xiaoxia; Luo, Qingqing; Zheng, Yanfang; Liu, Xiaoping; Hu, Ying; Liu, Weifang; Luo, Minglian; Zhao, Yin; Zou, Li

    2016-07-01

    Preeclampsia is a serious complication of pregnancy and is closely related to endothelial dysfunction, which can be repaired by endothelial progenitor cells (EPCs). The DLL4/NOTCH-EFNB2 (ephrinB2) cascade may be involved in the pathogenesis of preeclampsia by inhibiting the biological activity of EPCs. In addition, both NOTCH1 and NOTCH4, which are specific receptors for DLL4/NOTCH, play critical roles in the various steps of angiogenesis. However, it has not been determined which receptor (NOTCH1, NOTCH4, or both) is specific for the DLL4/NOTCH-EFNB2 cascade. Accordingly, we performed a series of investigations to evaluate it. EFNB2 expression was examined when NOTCH4 or NOTCH1 was downregulated, with or without DLL4 treatment. Then, the effects of NOTCH4 on EPC function were detected. Additionally, we analyzed NOTCH4 and EFNB2 expression in the EPCs from preeclampsia and normal pregnancies. Results showed that NOTCH4 downregulation led to decreased expression of EFNB2, which maintained the same level in the presence of DLL4/NOTCH activation. By contrast, NOTCH1 silencing resulted in a moderate increase in EFNB2 expression, which further increased in the presence of DLL4/NOTCH activation. The downregulation of NOTCH4 resulted in an increase of EPC biological activity, which was similar to EFNB2 silencing. NOTCH4 expression, consistent with the EFNB2 level, increased notably in preeclampsia EPCs compared with the controls. These findings suggest that NOTCH4, not NOTCH1, is the specific receptor for the DLL4/NOTCH-EFNB2 cascade. Blockade of this cascade may enhance the angiogenic property of EPCs, and act as a potential target to promote angiogenesis in patients with preeclampsia. PMID:27069008

  3. Femoral intercondylar notch shape and dimensions in ACL-injured patients.

    PubMed

    van Eck, Carola F; Martins, Cesar A Q; Vyas, Shail M; Celentano, Umberto; van Dijk, C Niek; Fu, Freddie H

    2010-09-01

    The femoral intercondylar notch has been an anatomic site of interest as it houses the anterior cruciate ligament (ACL). The objective of this study was to arthroscopically evaluate the femoral notch in patients with known ACL injury. This evaluation included establishing a classification for notch shapes, identifying the shape frequency, measuring notch dimensions, and determining correlation between notch shape, notch dimensions, and demographic patient data. In this clinical cohort study, 102 consecutive patients underwent diagnostic arthroscopic evaluation of the notch. Several intra-operative photos, videos, and measurements were taken of the notch. Demographic data for each patient were recorded including age, gender, height, weight, and BMI. Three categories of notch shape were established: 1. A-shaped; 2. U-shaped; and 3. W-shaped. Two blinded independent orthopedic surgeons were asked to categorize the recorded notches. Notch shape, dimensions, and demographic factors were correlated. Of the 102 notches evaluated, 55 notches were found to be "A-shaped," 42 "U-shaped," and 5 "W-shaped." "A-shaped" notches were narrower in all width dimensions than "U-shaped" notches. Only patient height was found to influence notch shape with a positive association between taller patients and "U-shaped" and "W-shaped" notches (P = 0.011). Women had a smaller notch width at the base and middle of the notch. With this data, surgeons who enter the knee and appreciate an "A-shaped" notch should consider placing the arthroscope in the anteromedial portal and drill the femoral tunnel through an accessory medial portal to improve visualization and accuracy in anatomic femoral tunnel creation. PMID:20390246

  4. Notch signalling mediates reproductive constraint in the adult worker honeybee.

    PubMed

    Duncan, Elizabeth J; Hyink, Otto; Dearden, Peter K

    2016-01-01

    The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen. PMID:27485026

  5. Lock 1 View northwest of lock entrance. Notch for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Lock 1 - View northwest of lock entrance. Notch for flash boards can be seen near center, gate pocket at left. - Savannah & Ogeechee Barge Canal, Between Ogeechee & Savannah Rivers, Savannah, Chatham County, GA

  6. 8. DETAIL OF NOTCHED CONSTRUCTION ELEMENT IN GRILLAGE AT WESTERN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL OF NOTCHED CONSTRUCTION ELEMENT IN GRILLAGE AT WESTERN EDGE OF SOUTHEASTERN LEG OF SEA WALL. TIDE APPROACHING. - Fort Delaware, Sea Wall, Pea Patch Island, Delaware City, New Castle County, DE

  7. Detail section of guardrail configuration, showing notched steel post (typical) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail section of guardrail configuration, showing notched steel post (typical) with stock steel tubing and chain link; view is to east - Mather Point Overlook, South Entrance Road, Grand Canyon Village, Coconino County, AZ

  8. Notch signalling mediates reproductive constraint in the adult worker honeybee

    PubMed Central

    Duncan, Elizabeth J.; Hyink, Otto; Dearden, Peter K.

    2016-01-01

    The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen. PMID:27485026

  9. 7. DETAIL, NOTCHED ROUGH HEWN JOINTS AND BEAMS PLUS WINDOW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL, NOTCHED ROUGH HEWN JOINTS AND BEAMS PLUS WINDOW UNDER 1ST FLOOR PORCH, SOUTH ELEVATION, LOOKING NORTH-NORTHWEST. - Fort Leavenworth, Building No. 17, 20-22 Sumner Place, Leavenworth, Leavenworth County, KS

  10. Iterative Role of Notch Signaling in Spinal Motor Neuron Diversification.

    PubMed

    Tan, G Christopher; Mazzoni, Esteban O; Wichterle, Hynek

    2016-07-26

    The motor neuron progenitor domain in the ventral spinal cord gives rise to multiple subtypes of motor neurons and glial cells. Here, we examine whether progenitors found in this domain are multipotent and which signals contribute to their cell-type-specific differentiation. Using an in vitro neural differentiation model, we demonstrate that motor neuron progenitor differentiation is iteratively controlled by Notch signaling. First, Notch controls the timing of motor neuron genesis by repressing Neurogenin 2 (Ngn2) and maintaining Olig2-positive progenitors in a proliferative state. Second, in an Ngn2-independent manner, Notch contributes to the specification of median versus hypaxial motor column identity and lateral versus medial divisional identity of limb-innervating motor neurons. Thus, motor neuron progenitors are multipotent, and their diversification is controlled by Notch signaling that iteratively increases cellular diversity arising from a single neural progenitor domain. PMID:27425621

  11. 29. RECYCLED ATTIC JOISTS SHOWING SHINGLE LATH NOTCHING ON TOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. RECYCLED ATTIC JOISTS SHOWING SHINGLE LATH NOTCHING ON TOP SURFACE (Note shadow of plaster lath on bottom surface. See also PA-1440-28.) - James McCrea Houses, 108-110 Sansom Street, Philadelphia, Philadelphia County, PA

  12. A Novel UWB Antenna with Dual Band-Notched Characteristics

    NASA Astrophysics Data System (ADS)

    Lin, Yongfan; Liang, Jiangang; Wu, Goucheng; Xu, Zhiyong; Niu, Xuebin

    2015-11-01

    In this article, started from analyzing the basic principle of band-notched characteristics, a feasibly method used for band-notched antenna is demonstrated and the equivalent circuit for this method is designed. A novel UWB antenna is designed. Based on this method, two stubs which can be equivalent to shorted stubs in parallel configuration are added to realize dual band-notched characteristics. Simulated and measured results all show that the UWB antenna yields an impendence bandwidth of 2.0-10.6 GHz by defining VSWR ≦ 2, and two obvious band-notched functions (3.27-3.83 GHz, 4.60-5.90 GHz) occur at the working bandwidth of WIMAX (3.3-3.7 GHz) and HiperLAN/2 (5.15-5.35 GHz, 5.47-5.725 GHz), so the electromagnetic interference between UWB application and WIMAX, HiperLAN/2 can be suppressed.

  13. A Dual Role for NOTCH Signaling in Joint Cartilage Maintenance and Osteoarthritis

    PubMed Central

    Liu, Zhaoyang; Chen, Jianquan; Mirando, Anthony; Wang, Cuicui; Zuscik, Michael J.; O’Keefe, Regis J.; Hilton, Matthew J.

    2015-01-01

    Loss of NOTCH signaling in postnatal murine joints results in osteoarthritis (OA), indicating a requirement for NOTCH during joint cartilage maintenance. Unexpectedly, NOTCH components are significantly up-regulated in human and murine post-traumatic OA, suggesting either a reparative or pathological role for NOTCH activation in OA. Here we investigated the potential dual role for NOTCH in joint maintenance and OA by generating two mouse models overexpressing the NOTCH1 intracellular domain within postnatal joint cartilage; one with sustained NOTCH activation that likely resembles pathological NOTCH signaling and one with transient NOTCH activation that more closely reflects physiological NOTCH signaling. Sustained NOTCH signaling in joint cartilage leads to an early and progressive OA pathology, while on the contrary, transient NOTCH activation enhances cartilage matrix synthesis and promotes joint maintenance under normal physiological conditions. Using RNA-seq, immunohistochemical, and biochemical approaches we identified several novel targets potentially responsible for NOTCH-mediated cartilage degradation, fibrosis, and OA progression, including components of the IL6/STAT3 and ERK/p38 MAPK pathways; factors that may also contribute to post-traumatic OA development. Collectively, these data demonstrate a dual role for the NOTCH pathway in joint cartilage and identify important downstream NOTCH effectors as potential targets for disease modifying osteoarthritis drugs (DMOADs). PMID:26198357

  14. Decidual vascular endothelial cells promote maternal-fetal immune tolerance by inducing regulatory T cells through canonical Notch1 signaling.

    PubMed

    Yao, Yanyi; Song, Jieping; Wang, Weipeng; Liu, Nian

    2016-05-01

    Adaptation of the maternal immune response to accommodate the semiallogeneic fetus is necessary for pregnancy success. However, the mechanisms by which the fetus avoids rejection despite expression of paternal alloantigens remain incompletely understood. Regulatory T cells (Treg cells) are pivotal for maintaining immune homeostasis, preventing autoimmune disease and fetus rejection. In this study, we found that maternal decidual vascular endothelial cells (DVECs) sustained Foxp3 expression in resting Treg cells in vitro. Moreover, under in vitro Treg cell induction condition with agonistic antibodies and transforming growth factor (TGF)-β, DVECs promoted Treg cell differentiation from non-Treg conventional T cells. Consistent with the promotion of Treg cell maintenance and differentiation, Treg cell-associated gene expression such as TGF-β, Epstein-Barr-induced gene-3, CD39 and glucocorticoid-induced tumor necrosis factor receptor was also increased in the presence of DVECs. Further study revealed that DVECs expressed Notch ligands such as Jagged-1, Delta-like protein 1 (DLL-1) and DLL-4, while Treg cells expressed Notch1 on their surface. The effects of DVECs on Treg cells was inhibited by siRNA-induced knockdown of expression of Jagged-1 and DLL-1 in DVECs. Downregulation of Notch1 in Treg cells using lentiviral shRNA transduction decreased Foxp3 expression in Treg cells. Adoptive transfer of Notch1-deficient Treg cells increased abortion rate in a murine semiallogeneic pregnancy model. Taken together, our study suggests that maternal DVECs are able to maintain decidual Treg cell identity and promote Treg cell differentiation through activation of Notch1 signal pathway in Treg cells and subsequently inhibit the immune response against semiallogeneic fetuses and preventing spontaneous abortion. PMID:26714886

  15. 42. GARRET, SOUTHWEST CORNER. The roof rafters have been notched ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. GARRET, SOUTHWEST CORNER. The roof rafters have been notched for shingle lath. In some places the notches and lath do not align. Attached to each joist are furring strips for the 1812 ceiling, allowing it to be lowered about one inch below the under surfaces of the joists. Note that the 1851 shingles were left in place when the 1873-74 tin roof was added. - Twelfth Street Meeting House, 20 South Twelfth Street, Philadelphia, Philadelphia County, PA

  16. Uncommon Cause of Trigeminal Neuralgia: Tentorial Ossification over Trigeminal Notch

    PubMed Central

    Bang, Sun Woo; Han, Kyung Ream; Kim, Seung Ho; Jeong, Won Ho; Kim, Eun Jin; Choi, Jin Wook; Kim, Chan

    2015-01-01

    Ossification of the tentorium cerebelli over the trigeminal notch is rare, but it may cause compression of the trigeminal nerve, leading to trigeminal neuralgia (TN). We were unable to find any previously reported cases with radiological evaluation, although we did find one case with surgically proven ossification of the tentorium cerebelli. Here, we present a case of TN caused by tentorial ossification over the trigeminal notch depicted on magnetic resonance imaging (MRI) and computed tomography (CT). PMID:26380124

  17. SAR imaging in the presence of spectrum notches via fast missing data IAA

    NASA Astrophysics Data System (ADS)

    Rowe, William; Karlsson, Johan; Xu, Luzhou; Glentis, George-Othon; Li, Jian

    2013-05-01

    A synthetic aperture radar system operating in congested frequency bands suffers from radio frequency inter­ ference (RFI) from narrowband sources. When RFI interference is suppressed by frequency notching, gaps are introduced into the fast time phase history. This results in a missing data spectral estimation problem, where the missing data increases sidelobe energy and degrades image quality. The adaptive spectral estimation method Iterative Adaptive Approach (IAA) has been shown to provide higher resolution and lower sidelobes than comparable methods, but at the cost of higher computationally complexity. Current fast IAA algorithms reduce the computational complexity using Toeplitz /Vandermonde structures, but are not applicable for missing data cases because these structures are lost. When the number of missing data samples is small, which often is the case in SAR with RFI, we use a low rank completion to restore the Toeplitz/ Vandermonde structures. We show that the computational complexity of the proposed algorithm is considerably lower than the state-of-the-art and demonstrate the utility on a simulated frequency notched SAR imaging problem.

  18. Why does necking ignore notches in dynamic tension?

    NASA Astrophysics Data System (ADS)

    Rotbaum, Y.; Osovski, S.; Rittel, D.

    2015-05-01

    Recent experimental work has revealed that notched tensile specimens, subjected to dynamic loading, may fail by growing a neck outside of the notched region. This apparent lack of sensitivity to a classical stress concentration case was reported but not explained or modeled. The present paper combines experimental and numerical work to address this issue. Specifically, it is shown that the dynamic tensile failure locus is dictated by both the applied velocity boundary condition and the material mechanical properties, specifically strain-rate sensitivity and strain-rate hardening. It is shown that at sufficiently high impact velocities, the flows stress in the notch vicinity becomes quite higher than in the rest of the specimen, so that while the former resists deformation, it transfers the load to the latter. The result will be the formation of a local neck and failure away from the notch. This effect is shown to be active when the material properties are perturbed only at the local level, as in the case of machining of the notch, which in itself may again be sufficient to stabilize the structure under local failure until a neck forms elsewhere. While the physical observations are quite counterintuitive with respect to the engineering views of stress concentrator's effect, the present work rationalizes those observations and also provides information for the designers of dynamically tensioned structures that may contain notches or similar flaws.

  19. LKB1 and Notch Pathways Interact and Control Biliary Morphogenesis

    PubMed Central

    Just, Pierre-Alexandre; Poncy, Alexis; Charawi, Sara; Dahmani, Rajae; Traore, Massiré; Dumontet, Typhanie; Drouet, Valérie; Dumont, Florent; Gilgenkrantz, Hélène; Colnot, Sabine; Terris, Benoit; Coulouarn, Cédric; Lemaigre, Frédéric; Perret, Christine

    2015-01-01

    Background LKB1 is an evolutionary conserved kinase implicated in a wide range of cellular functions including inhibition of cell proliferation, regulation of cell polarity and metabolism. When Lkb1 is inactivated in the liver, glucose homeostasis is perturbed, cellular polarity is affected and cholestasis develops. Cholestasis occurs as a result from deficient bile duct development, yet how LKB1 impacts on biliary morphogenesis is unknown. Methodology/Principal Findings We characterized the phenotype of mice in which deletion of the Lkb1 gene has been specifically targeted to the hepatoblasts. Our results confirmed that lack of LKB1 in the liver results in bile duct paucity leading to cholestasis. Immunostaining analysis at a prenatal stage showed that LKB1 is not required for differentiation of hepatoblasts to cholangiocyte precursors but promotes maturation of the primitive ductal structures to mature bile ducts. This phenotype is similar to that obtained upon inactivation of Notch signaling in the liver. We tested the hypothesis of a functional overlap between the LKB1 and Notch pathways by gene expression profiling of livers deficient in Lkb1 or in the Notch mediator RbpJκ and identified a mutual cross-talk between LKB1 and Notch signaling. In vitro experiments confirmed that Notch activity was deficient upon LKB1 loss. Conclusion LKB1 and Notch share a common genetic program in the liver, and regulate bile duct morphogenesis. PMID:26689699

  20. Mechanical Behavior of Notched SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Gyekenyesi, John Z.; Gyekenyesi, Andrew L.; Levine, Stanley (Technical Monitor)

    2001-01-01

    Gas turbine components such as combustor liners or turbine vanes are subject to regions of high stress-concentration, e.g., attachment to the frame or at cooling holes. Ceramic matrix composites (CMCs) are potential materials for high temperature applications in gas turbines. They offer some capability to relieve stress at regions of high stress-concentration via matrix damage accumulation. In this study notch sensitivity was examined for woven SiC fiber reinforced, melt-infiltrated SiC matrix composites with a BN interphase, utilizing either Hi-Nicalo(TM) fibers or the stiffer Sylramic fibers. The double-edge notched tensile test approach was used for a wide range of notch sizes and specimen widths. Both composite systems exhibited mild notch sensitivity similar to other CMC systems. Acoustic emission, detected during the tensile tests, indicated that matrix cracking occurred around notches at net-section stresses below the stress where matrix cracking first occurs in unnotched specimens. However, thermoelastic stress analysis did not show any measurable stress relief around notches after the specimens were preloaded.

  1. Radiation-Induced Notch Signaling in Breast Cancer Stem Cells

    SciTech Connect

    Lagadec, Chann; Vlashi, Erina; Alhiyari, Yazeed; Phillips, Tiffany M.; Bochkur Dratver, Milana; Pajonk, Frank

    2013-11-01

    Purpose: To explore patterns of Notch receptor and ligand expression in response to radiation that could be crucial in defining optimal dosing schemes for γ-secretase inhibitors if combined with radiation. Methods and Materials: Using MCF-7 and T47D breast cancer cell lines, we used real-time reverse transcription–polymerase chain reaction to study the Notch pathway in response to radiation. Results: We show that Notch receptor and ligand expression during the first 48 hours after irradiation followed a complex radiation dose–dependent pattern and was most pronounced in mammospheres, enriched for breast cancer stem cells. Additionally, radiation activated the Notch pathway. Treatment with a γ-secretase inhibitor prevented radiation-induced Notch family gene expression and led to a significant reduction in the size of the breast cancer stem cell pool. Conclusions: Our results indicate that, if combined with radiation, γ-secretase inhibitors may prevent up-regulation of Notch receptor and ligand family members and thus reduce the number of surviving breast cancer stem cells.

  2. Notch signal strength controls cell fate in the haemogenic endothelium.

    PubMed

    Gama-Norton, Leonor; Ferrando, Eva; Ruiz-Herguido, Cristina; Liu, Zhenyi; Liu, Zenhy; Guiu, Jordi; Islam, Abul B M M K; Lee, Sung-Uk; Yan, Minhong; Guidos, Cynthia J; López-Bigas, Nuria; Maeda, Takahiro; Espinosa, Lluis; Kopan, Raphael; Bigas, Anna

    2015-01-01

    Acquisition of the arterial and haemogenic endothelium fates concurrently occur in the aorta-gonad-mesonephros (AGM) region prior to haematopoietic stem cell (HSC) generation. The arterial programme depends on Dll4 and the haemogenic endothelium/HSC on Jag1-mediated Notch1 signalling. How Notch1 distinguishes and executes these different programmes in response to particular ligands is poorly understood. By using two Notch1 activation trap mouse models with different sensitivity, here we show that arterial endothelial cells and HSCs originate from distinct precursors, characterized by different Notch1 signal strengths. Microarray analysis on AGM subpopulations demonstrates that the Jag1 ligand stimulates low Notch strength, inhibits the endothelial programme and is permissive for HSC specification. In the absence of Jag1, endothelial cells experience high Dll4-induced Notch activity and select the endothelial programme, thus precluding HSC formation. Interference with the Dll4 signal by ligand-specific blocking antibodies is sufficient to inhibit the endothelial programme and favour specification of the haematopoietic lineage. PMID:26465397

  3. NOTCH signaling in skeletal progenitors is critical for fracture repair.

    PubMed

    Wang, Cuicui; Inzana, Jason A; Mirando, Anthony J; Ren, Yinshi; Liu, Zhaoyang; Shen, Jie; O'Keefe, Regis J; Awad, Hani A; Hilton, Matthew J

    2016-04-01

    Fracture nonunions develop in 10%-20% of patients with fractures, resulting in prolonged disability. Current data suggest that bone union during fracture repair is achieved via proliferation and differentiation of skeletal progenitors within periosteal and soft tissues surrounding bone, while bone marrow stromal/stem cells (BMSCs) and other skeletal progenitors may also contribute. The NOTCH signaling pathway is a critical maintenance factor for BMSCs during skeletal development, although the precise role for NOTCH and the requisite nature of BMSCs following fracture is unknown. Here, we evaluated whether NOTCH and/or BMSCs are required for fracture repair by performing nonstabilized and stabilized fractures on NOTCH-deficient mice with targeted deletion of RBPjk in skeletal progenitors, maturing osteoblasts, and committed chondrocytes. We determined that removal of NOTCH signaling in BMSCs and subsequent depletion of this population result in fracture nonunion, as the fracture repair process was normal in animals harboring either osteoblast- or chondrocyte-specific deletion of RBPjk. Together, this work provides a genetic model of a fracture nonunion and demonstrates the requirement for NOTCH and BMSCs in fracture repair, irrespective of fracture stability and vascularity. PMID:26950423

  4. Notch signaling: switching an oncogene to a tumor suppressor

    PubMed Central

    Lobry, Camille; Oh, Philmo; Mansour, Marc R.; Look, A. Thomas

    2014-01-01

    The Notch signaling pathway is a regulator of self-renewal and differentiation in several tissues and cell types. Notch is a binary cell-fate determinant, and its hyperactivation has been implicated as oncogenic in several cancers including breast cancer and T-cell acute lymphoblastic leukemia (T-ALL). Recently, several studies also unraveled tumor-suppressor roles for Notch signaling in different tissues, including tissues where it was before recognized as an oncogene in specific lineages. Whereas involvement of Notch as an oncogene in several lymphoid malignancies (T-ALL, B-chronic lymphocytic leukemia, splenic marginal zone lymphoma) is well characterized, there is growing evidence involving Notch signaling as a tumor suppressor in myeloid malignancies. It therefore appears that Notch signaling pathway’s oncogenic or tumor-suppressor abilities are highly context dependent. In this review, we summarize and discuss latest advances in the understanding of this dual role in hematopoiesis and the possible consequences for the treatment of hematologic malignancies. PMID:24608975

  5. Notch Fatigue Strength of a PM Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gayda, John; Gabb, Timothy P.; Telesman, Jack

    2007-01-01

    New powder metallurgy (PM) disk superalloys, such as ME3, LSHR, and Alloy 10, have been developed in recent years which enable rim temperatures in turbine disk applications to approach 1300 F. Before these alloys can be utilized at 1300 F their long term durability must be ensured. One of the key requirements for disk rims is notch fatigue strength. This issue is extremely important and is a direct result of the blade attachment geometry employed at the disk rim. Further, the imposition of a dwell at maximum load, associated with take off and landing, can also affect notch fatigue strength. For these reasons a study has been undertaken to assess the notch dwell fatigue strength of a modern PM disk alloy through spin pit evaluation of a prototypical disk. The first element of this program involves screening potential heat treatments with respect to notch fatigue strength at 1300 F utilizing a conventional notch fatigue specimen with a stress concentration factor (K(sub t)) of 2 and a 90 sec dwell at peak load. The results of this effort are reported in this paper including the downselect of an optimal heat treatment, from a notch fatigue standpoint.

  6. NOTCH signaling in skeletal progenitors is critical for fracture repair

    PubMed Central

    Wang, Cuicui; Inzana, Jason A.; Mirando, Anthony J.; Liu, Zhaoyang; Shen, Jie; O’Keefe, Regis J.; Awad, Hani A.; Hilton, Matthew J.

    2016-01-01

    Fracture nonunions develop in 10%–20% of patients with fractures, resulting in prolonged disability. Current data suggest that bone union during fracture repair is achieved via proliferation and differentiation of skeletal progenitors within periosteal and soft tissues surrounding bone, while bone marrow stromal/stem cells (BMSCs) and other skeletal progenitors may also contribute. The NOTCH signaling pathway is a critical maintenance factor for BMSCs during skeletal development, although the precise role for NOTCH and the requisite nature of BMSCs following fracture is unknown. Here, we evaluated whether NOTCH and/or BMSCs are required for fracture repair by performing nonstabilized and stabilized fractures on NOTCH-deficient mice with targeted deletion of RBPjk in skeletal progenitors, maturing osteoblasts, and committed chondrocytes. We determined that removal of NOTCH signaling in BMSCs and subsequent depletion of this population result in fracture nonunion, as the fracture repair process was normal in animals harboring either osteoblast- or chondrocyte-specific deletion of RBPjk. Together, this work provides a genetic model of a fracture nonunion and demonstrates the requirement for NOTCH and BMSCs in fracture repair, irrespective of fracture stability and vascularity. PMID:26950423

  7. Notch3 Activation Promotes Invasive Glioma Formation in a Tissue Site-Specific Manner

    PubMed Central

    Pierfelice, Tarran J.; Schreck, Karisa C.; Dang, Louis; Asnaghi, Laura; Gaiano, Nicholas; Eberhart, Charles G.

    2010-01-01

    While Notch signaling has been widely implicated in neoplastic growth, direct evidence for in vivo initiation of neoplasia by the pathway in murine models has been limited to tumors of lymphoid, breast, and choroid plexus cells. To examine tumorigenic potential in the eye and brain, we injected retroviruses encoding activated forms of Notch1, Notch2, or Notch3 into embryonic mice. Interestingly, the majority of animals infected with active Notch3 developed proliferative lesions comprised of pigmented ocular choroid cells, retinal and optic nerve glia, and lens epithelium. Notch3-induced lesions in the choroid, retina, and optic nerve were capable of invading adjacent tissues, suggesting that they were malignant tumors. While Notch3 activation induced choroidal tumors in up to 67% of eyes, Notch1 or Notch2 activation never resulted in such tumors. Active forms of Notch1 and Notch2 did generate a few small proliferative glial nodules in the retina and optic nerve, while Notch3 was ten-fold more efficient at generating growths, many of which were large invasive gliomas. Expression of active Notch1/Notch3 chimeric receptors implicated the RAM (RBPjk-association molecule) and transactivation domains (TAD) of Notch3 in generating choroidal and glial tumors, respectively. In contrast to our findings in the optic nerve and retina, introduction of active Notch receptors, including Notch3, into the brain never caused glial tumors. Our results highlight the differential ability of Notch receptor paralogs to initiate malignant tumor formation, and suggest that glial precursors of the optic nerve, but not the brain, are susceptible to transformation by Notch3. PMID:21245095

  8. Exotic damping ring lattices

    SciTech Connect

    Palmer, R.B.

    1987-05-01

    This paper looks at, and compares three types of damping ring lattices: conventional, wiggler lattice with finite ..cap alpha.., wiggler lattice with ..cap alpha.. = 0, and observes the attainable equilibrium emittances for the three cases assuming a constraint on the attainable longitudinal impedance of 0.2 ohms. The emittance obtained are roughly in the ratio 4:2:1 for these cases.

  9. The History of the Kernohan Notch Revisited.

    PubMed

    Dammers, Ruben; Volovici, Victor; Kompanje, Erwin J O

    2016-04-01

    The history of false localizing signs is intimately linked to the birth of modern neurology and the unraveling of the mysteries of localization through neurological examination at the end of the 19th century. This phenomenon has attracted much attention but has not been properly explained, even in the authoritative handbooks such as that by Oppenheim. A scholarly article written by Kernohan and Woltman in 1929 is considered to be a landmark in the history of neurology and neurosurgery in that it provided the definitive answer and an exhaustive explanation of the problem, leading some neurologists to conclude that the localization of a lesion is not an exact science. However, despite the professional manner in which Kernohan and Woltman presented their case, they did not offer an explanation. In another article published 2 years earlier in 1927, Groeneveld and Schaltenbrand provided a pathophysiological and anatomical explanation of the phenomenon, described in detail. Although Kernohan and Woltman themselves refer to that previous article, it was this article that provided the first logical, clear, indubitable explanation of the phenomenon that we today refer to as the Kernohan notch. PMID:26528671

  10. Botch is a γ-glutamyl Cyclotransferase that Deglycinates and Antagonizes Notch

    PubMed Central

    Chi, Zhikai; Byrne, Sean T.; Dolinko, Andrew; Harraz, Maged M.; Kim, Min-Sik; Umanah, George; Zhong, Jun; Chen, Rong; Zhang, Jianmin; Xu, Jinchong; Chen, Li; Pandey, Akhilesh; Dawson, Ted M.; Dawson, Valina L.

    2014-01-01

    SUMMARY Botch promotes embryonic neurogenesis through inhibition of Notch-1 signaling through inhibition of the initial S1 furin-like cleavage step of Notch maturation. The biochemical process by which Botch inhibits Notch maturation is not known. Here we show that Botch has γ-glutamyl cyclotransferase (GGCT) activity that deglycinates Notch, which prevents the S1 furin-like cleavage. Moreover, Notch is mono-glycinated on the γ-glutamyl carbon of glutamate 1669. The deglycinase activity of Botch is required for inhibition of Notch signaling, both in vitro and in vivo. When the γ-glutamyl-glycine at position 1669 of Notch is degylcinated it is replaced by 5-oxy-proline. These results reveal that Botch regulates Notch signaling through deglycination and identify a novel posttranslational modification of Notch that plays an important role in neurogenesis. PMID:24767995

  11. Notched Audiograms and Noise Exposure History in Older Adults

    PubMed Central

    Nondahl, DM; Shi, X; Cruickshanks, KJ; Dalton, DS; Tweed, TS; Wiley, TL; Carmichael, LL

    2009-01-01

    OBJECTIVE Using data from a population-based cohort study, we compared four published algorithms for identifying notched audiograms, along with how their resulting classifications compare with noise exposure history. DESIGN Four algorithms: 1) Coles, Lutman & Buffin (2000), 2) McBride & Williams (2001), 3) Dobie & Rabinowitz (2002), and 4) Hoffman et al. (2006) were used to identify notched audiograms. Audiometric evaluations were collected as part of the Epidemiology of Hearing Loss Study 10-year follow-up examinations, in Beaver Dam, WI (2003–2005, n=2395). Detailed noise exposure histories were collected by interview at the baseline examination (1993–95) and updated at subsequent visits. An extensive history of occupational noise exposure, participation in noisy hobbies, and firearm usage were used to evaluate consistency of the notch classifications with history of noise exposure. RESULTS The prevalence of notched audiograms varied greatly by definition (31.7%, 25.9%, 47.2%, and 11.7% for methods 1, 2, 3, and 4, respectively). In this cohort, a history of noise exposure was common (56.2% for occupational noise, 71.7% for noisy hobbies, 13.4% for firearms, 81.2% for any of these three sources). Among participants with a notched audiogram, almost one third did not have a history of occupational noise exposure (31.4%, 33.0%, 32.5%, and 28.1% for methods 1, 2, 3, and 4, respectively) and approximately 11% did not have a history of exposure to any of the three sources of noise (11.5%, 13.6%, 10.3%, and 7.6%). Discordance was greater among women than men. CONCLUSIONS These results suggest that there is poor agreement across existing algorithms for audiometric notches. In addition, notches can occur in the absence of a positive noise history. In the absence of an objective consensus definition of a notched audiogram, and in light of the degree of discordance in women between noise history and notches by each of these algorithms, researchers should be cautious

  12. Notch regulation of bone development and remodeling and related skeletal disorders.

    PubMed

    Zanotti, Stefano; Canalis, Ernesto

    2012-02-01

    Notch signaling mediates cell-to-cell interactions that are critical for embryonic development and tissue renewal. In the canonical signaling pathway, the Notch receptor is cleaved following ligand binding, resulting in the release and nuclear translocation of the Notch intracellular domain (NICD). NICD induces gene expression by forming a ternary complex with the DNA binding protein CBF1/Rbp-Jk, Suppressor of Hairless, Lag1, and Mastermind-Like (Maml). Hairy Enhancer of Split (Hes) and Hes related with YRPW motif (Hey) are classic Notch targets. Notch canonical signaling plays a central role in skeletal development and bone remodeling by suppressing the differentiation of skeletal cells. The skeletal phenotype of mice misexpressing Hes1 phenocopies partially the effects of Notch misexpression, suggesting that Hey proteins mediate most of the skeletal effects of Notch. Dysregulation of Notch signaling is associated with diseases affecting human skeletal development, such as Alagille syndrome, brachydactyly and spondylocostal dysostosis. Somatic mutations in Notch receptors and ligands are found in tumors of the skeletal system. Overexpression of NOTCH1 is associated with osteosarcoma, and overexpression of NOTCH3 or JAGGED1 in breast cancer cells favors the formation of osteolytic bone metastasis. Activating mutations in NOTCH2 cause Hajdu-Cheney syndrome, which is characterized by skeletal defects and fractures, and JAG1 polymorphisms, are associated with variations in bone mineral density. In conclusion, Notch is a regulator of skeletal development and bone remodeling, and abnormal Notch signaling is associated with developmental and postnatal skeletal disorders. PMID:22002679

  13. Hepatitis B Virus HBx Activates Notch Signaling via Delta-Like 4/Notch1 in Hepatocellular Carcinoma

    PubMed Central

    Kongkavitoon, Pornrat; Tangkijvanich, Pisit; Hirankarn, Nattiya; Palaga, Tanapat

    2016-01-01

    Hepatitis virus B (HBV) infection is one of the major causes of hepatocellular carcinomas (HCC). HBx protein encoded in HBV genome is one of the key viral factors leading to malignant transformation of infected cells. HBx functions by interfering with cellular functions, causing aberration in cellular behaviour and transformation. Notch signalling is a well-conserved pathway involved in cellular differentiation, cell survival and cell death operating in various types of cells. Aberration in the Notch signalling pathways is linked to various tumors, including HCC. The role of HBx on the Notch signalling in HCC, however, is still controversial. In this study, we reported that HBV genome-containing HCC cell line HepG2 (HepG2.2.15) expressed higher Notch1 and Delta-like 4 (Dll4), compared to the control HepG2 without HBV genome. This upregulation coincided with increased appearance of the cleavage of Notch1, indicating constitutively activated Notch signalling. Silencing of HBx specifically reduced the level of Dll4 and cleaved Notch1. The increase in Dll4 level was confirmed in clinical specimens of HCC lesion, in comparison with non-tumor lesions. Using specific signalling pathway inhibitors, we found that MEK1/2, PI3K/AKT and NF-κB pathways are critical for HBx-mediated Dll4 upregulation. Silencing of HBx clearly decreased the level of phosphorylation of Akt and Erk1/2. Upon silencing of Dll4 in HepG2.2.15, decreased cleaved Notch1, increased apoptosis and cell cycle arrest were observed, suggesting a critical role of HBx-Dll4-Notch1 axis in regulating cell survival in HCC. Furthermore, clonogenic assay confirmed the important role of Dll4 in regulating cell survival of HBV-genome containing HCC cell line. Taken together, we reported a link between HBx and the Notch signalling in HCC that affects cell survival of HCC, which can be a potential target for therapy. PMID:26766040

  14. A NOTCH1 gene copy number gain is a prognostic indicator of worse survival and a predictive biomarker to a Notch1 targeting antibody in colorectal cancer

    PubMed Central

    Arcaroli, John J.; Tai, W.M.; McWilliams, Ryan; Bagby, Stacey; Blatchford, Patrick J.; Varella-Garcia, Marileila; Purkey, Alicia; Quackenbush, Kevin S.; Song, Eun-Kee; Pitts, Todd M.; Gao, Dexiang; Lieu, Chris; McManus, Martine; Tan, Aik Choon; Zheng, Xianxian; Zhang, Qin; Ozeck, Mark; Olson, Peter; Jiang, Zhi-Qin; Kopetz, Scott; Jimeno, Antonio; Keysar, Stephen; Eckhardt, Gail; Messersmith, Wells A.

    2015-01-01

    Dysregulation of the Notch1 receptor has been shown to facilitate the development and progression of colorectal cancer (CRC) and has been identified as an independent predictor of disease progression and worse survival. Although mutations in the NOTCH1 receptor have not been described in CRC, we have previously discovered a NOTCH1 gene copy number gain in a portion of CRC tumor samples. Here, we demonstrated that a NOTCH1 gene copy number gain is significantly associated with worse survival and a high percentage of gene duplication in a cohort of patients with advanced CRC. In our CRC patient-derived tumor xenograft (PDTX) model, tumors harboring a NOTCH1 gain exhibited significant elevation of the Notch1 receptor, JAG1 ligand and cleaved Notch1 activity. In addition, a significant association was identified between a gain in NOTCH1 gene copy number and sensitivity to a Notch1-targeting antibody. These findings suggest that patients with metastatic CRC that harbor a gain in NOTCH1 gene copy number have worse survival and that targeting this patient population with a Notch1 antibody may yield improved outcomes. PMID:26152787

  15. A NOTCH1 gene copy number gain is a prognostic indicator of worse survival and a predictive biomarker to a Notch1 targeting antibody in colorectal cancer.

    PubMed

    Arcaroli, John J; Tai, W M; McWilliams, Ryan; Bagby, Stacey; Blatchford, Patrick J; Varella-Garcia, Marileila; Purkey, Alicia; Quackenbush, Kevin S; Song, Eun-Kee; Pitts, Todd M; Gao, Dexiang; Lieu, Chris; McManus, Martine; Tan, Aik Choon; Zheng, Xianxian; Zhang, Qin; Ozeck, Mark; Olson, Peter; Jiang, Zhi-Qin; Kopetz, Scott; Jimeno, Antonio; Keysar, Stephen; Eckhardt, Gail; Messersmith, Wells A

    2016-01-01

    Dysregulation of the Notch1 receptor has been shown to facilitate the development and progression of colorectal cancer (CRC) and has been identified as an independent predictor of disease progression and worse survival. Although mutations in the NOTCH1 receptor have not been described in CRC, we have previously discovered a NOTCH1 gene copy number gain in a portion of CRC tumor samples. Here, we demonstrated that a NOTCH1 gene copy number gain is significantly associated with worse survival and a high percentage of gene duplication in a cohort of patients with advanced CRC. In our CRC patient-derived tumor xenograft (PDTX) model, tumors harboring a NOTCH1 gain exhibited significant elevation of the Notch1 receptor, JAG1 ligand and cleaved Notch1 activity. In addition, a significant association was identified between a gain in NOTCH1 gene copy number and sensitivity to a Notch1-targeting antibody. These findings suggest that patients with metastatic CRC that harbor a gain in NOTCH1 gene copy number have worse survival and that targeting this patient population with a Notch1 antibody may yield improved outcomes. PMID:26152787

  16. Risk of Anterior Femoral Notching in Navigated Total Knee Arthroplasty

    PubMed Central

    Lee, Ju Hong

    2015-01-01

    Background We retrospectively investigated the prevalence of femoral anterior notching and risk factors after total knee arthroplasty (TKA) using an image-free navigation system. Methods We retrospectively reviewed 148 consecutive TKAs in 130 patients beginning in July 2005. Seventy knees (62 patients) underwent conventional TKA, and 78 knees (68 patients) received navigated TKA. We investigated the prevalence of femoral anterior notching and measured notching depth by conventional and navigated TKA. Additionally, the navigated TKA group was categorized into two subgroups according to whether anterior femoral notching had occurred. The degree of preoperative varus deformity, femoral bowing, and mediolateral suitability of the size of the femoral component were determined by reviewing preoperative and postoperative radiographs. The resection angle on the sagittal plane and the angle of external rotation that was set by the navigation system were checked when resecting the distal femur. Clinical outcomes were compared using range of motion (ROM) and the Hospital for Special Surgery (HSS) and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAX) scores between the two groups. Results The prevalence of anterior femoral notching by conventional TKA was 5.7%, and that for navigated TKA was 16.7% (p = 0.037). Mean notching depth by conventional TKA was 2.92 ± 1.18 mm (range, 1.8 to 4.5 mm) and 3.32 ± 1.54 mm (range, 1.55 to 6.93 mm) by navigated TKA. Preoperative anterior femoral bowing was observed in 61.5% (p = 0.047) and both anterior and lateral femoral bowing in five cases in notching group during navigated TKA (p = 0.021). Oversized femoral components were inserted in 53.8% of cases (p = 0.035). No differences in clinical outcomes for ROM or the HSS and WOMAX scores were observed between the groups. A periprosthetic fracture, which was considered a notching-related side effect, occurred in one case each in the conventional and navigated TKA groups

  17. Why does necking ignore notches in dynamic tension?

    NASA Astrophysics Data System (ADS)

    Rotbaum, Y.; Osovski, S.; Rittel, D.

    2015-09-01

    Recent experimental work has revealed that necking of tensile specimens, subjected to dynamic loading, is a deterministic phenomenon, governed by the applied boundary conditions. Furthermore it was shown that the potential sited, dictated by the boundary conditions, may prevail even in the presence of a notch, thus necking may occur away of the notched region. The present paper combines experimental and numerical work to address this issue. Specifically, it is shown that the dynamic tensile failure locus is dictated by both the applied velocity boundary condition and the material mechanical properties, specifically strain-rate sensitivity and strain-rate hardening. It is shown that at sufficiently high impact velocities, the flows stress in the notch vicinity becomes quite higher than in the rest of the specimen, so that while the former resists deformation, it transfers the load to the latter, resulting in the formation of a local neck and failure away from the notch. Small local perturbations in the material properties are shown to be sufficient to stabilize the structure under local failure until a neck forms elsewhere. While the physical observations are quite counterintuitive with respect to the engineering views of stress concentrator's effect, the present work rationalizes those observations and also provides information for the designers of dynamically tensioned structures that may contain notches or similar flaws.

  18. Parallel Helmholtz resonators for a planar acoustic notch filter

    NASA Astrophysics Data System (ADS)

    Isozaki, Akihiro; Takahashi, Hidetoshi; Tamura, Hiroto; Takahata, Tomoyuki; Matsumoto, Kiyoshi; Shimoyama, Isao

    2014-12-01

    This paper reports on an acoustic planar notch filter with a sub-wavelength thickness at the notch frequency. The developed notch filter consists of a number of spherical Helmholtz resonators (HRs) connected to a hole created in a plate. The HRs were placed at the in-plane vertices of a regular polygon. A simulated pressure distribution revealed that this uniform arrangement of HRs improves the silencing effect because the uniform applied waves emitted from the HRs act as canceling waves to the cross-section of the short hole (in this case, the length of the hole is sub-wavelength). The total pressure emitted from the HRs is equal regardless of the number of HRs connected to the hole. Therefore, the arrangement of HRs is essential for realizing a planar notch filter. Simulated transmittance spectra showed that the depth of the dip in the transmittance increased with the number of uniformly arranged HRs. We confirmed that the experimental transmittance spectra of fabricated notch filters, which consisted of between one and six HRs, agreed with the simulated transmittance spectra. The design of the acoustic filter presented in this study and the corresponding analysis should motivate further development of thin acoustic filters.

  19. The dicrotic notch analyzed by a numerical model.

    PubMed

    Politi, María Teresa; Ghigo, Arthur; Fernández, Juan Manuel; Khelifa, Ismaïl; Gaudric, Julien; Fullana, José María; Lagrée, Pierre-Yves

    2016-05-01

    Divergent concepts on the origin of the dicrotic notch are widespread in medical literature and education. Since most medical textbooks explain the origin of the dicrotic notch as caused by the aortic valve closure itself, this is commonly transmitted in medical physiology courses. We present clinical data and numerical simulations to demonstrate that reflected pressure waves could participate as one of the causes of the dicrotic notch. Our experimental data from continuous arterial pressure measurements from adult patients undergoing vascular surgery suggest that isolated changes in peripheral vascular resistance using an intravenous bolus of phenylephrine (a selective alpha 1-receptor agonist and thus a potent vasoconstrictor) modify the dicrotic notch. We then explore the mechanisms behind this phenomenon by using a numerical model based on integrated axisymmetric Navier-Stokes equations to compute the hemodynamic flow. Our model illustrates clearly how modifications in peripheral artery resistance may result in changes in the amplitude of the dicrotic notch by modifying reflected pressure waves. We believe that this could be a useful tool in teaching medical physiology courses. PMID:27016670

  20. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone

    PubMed Central

    Wang, Lin; Adams, Ralf H.

    2016-01-01

    Blood vessel growth in the skeletal system and osteogenesis appear coupled suggesting the existence of molecular crosstalk between endothelial and osteoblastic cells1,2. Understanding the nature of the mechanisms linking angiogenesis and bone formation should be of great relevance for improved fracture healing or prevention of bone mass loss. Here, we show that vascular growth in bone involves a specialised, tissue-specific form of angiogenesis. Notch signalling promotes endothelial cell proliferation and vessel growth in postnatal long bone, which is the opposite of the well-established function of Notch and its ligand Dll4 in the endothelium of other organs and tumours3,4. Endothelial cell-specific and inducible genetic disruption of Notch signalling in mice not only impaired bone vessel morphology and growth, but also led to reduced osteogenesis, shortening of long bones, chondrocyte defects, loss of trabeculae, and decreased bone mass. Based on a series of genetic experiments, we conclude that skeletal defects in these mutants involved defective angiocrine release of Noggin from endothelial cells, which is positively regulated by Notch. Administration of recombinant Noggin, a secreted antagonist of bone morphogenetic proteins, restored bone growth and mineralisation, chondrocyte maturation, the formation of trabeculae, and osteoprogenitor numbers in endothelial cell-specific Notch pathway mutants. These findings establish a molecular framework coupling angiogenesis, angiocrine signals and osteogenesis, which may prove significant for the development of future therapeutic applications. PMID:24647000

  1. Suprascapular Notch Asymmetry: A Study on 311 Patients

    PubMed Central

    Polguj, Michał; Sibiński, Marcin; Grzegorzewski, Andrzej; Grzelak, Piotr; Stefańczyk, Ludomir; Topol, Mirosław

    2014-01-01

    The most important risk factor of suprascapular nerve entrapment is probably the shape of the suprascapular notch (SSN). The aim of the study was to perform a radiological study of the symmetry of SSN. Included in the study were 311 patients (137 women and 174 men) who underwent standard computed tomography investigation of the chest. A total of 622 computed tomography scans of scapulae were retrospectively analyzed to classify suprascapular notches into five types. Suprascapular notch was recognized as a symmetrical feature in 53.45% of the patients. Symmetry was more frequently seen in females (54.0% versus 52.9%), but not to any significant degree (P = 0.8413). Type III was the most commonly noted symmetrical feature (66.9%) and type II was less common (0.6%). Type III was the most symmetrical type of suprascapular notch, occurring significantly more often as a symmetrical feature in comparison with type I (P < 0.0001), type II (P = 0.00137), or type IV (P = 0.001). Our investigation did not show that the suprascapular notch is a symmetrical feature. However, symmetry was recognized more frequently in the case of type III SSN. No significant differences in symmetry were found with regard to sex. PMID:24949427

  2. Does therapeutic intervention in atopic dermatitis normalize epidermal Notch deficiency?

    PubMed

    Melnik, Bodo C

    2014-10-01

    This viewpoint presents a unifying concept for the treatment of atopic dermatitis (AD) that is based on the improvement of deficient Notch signalling, which appears to represent the fundamental epithelial defect of AD resulting in epidermal and immunological barrier dysfunction. One study of AD patients demonstrated a marked epidermal deficiency of Notch receptors and several mouse models with genetically suppressed Notch signalling exhibit dry skin, signs of scratching, skin barrier abnormalities, increased transepidermal water loss and Th2 cell-mediated immunological changes closely resembling human AD. Notch signalling is critically involved in the differentiation of regulatory T cells, in the feedback inhibition of activated innate immunity, in the repression of activating protein-1 (AP-1), the regulation of late epidermal differentiation associated with filaggrin- and stratum corneum barrier lipid processing, in aquaporin 3- and claudin-1 expression and in keratinocyte-mediated release of thymic stromal lymphopoietin (TSLP), which promotes Th2-driven immune responses with TSLP- and IL-31-mediated stimulation of cutaneous sensory neurons involved in the induction of itch. Translational evidence will be provided that all major therapeutic regimens employed for the treatment of AD such as glucocorticoids, calcineurin inhibitors and UV radiation may converge in the upregulation of impaired Notch signalling, the proposed pathogenic defect of AD. PMID:24889007

  3. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone

    NASA Astrophysics Data System (ADS)

    Ramasamy, Saravana K.; Kusumbe, Anjali P.; Wang, Lin; Adams, Ralf H.

    2014-03-01

    Blood vessel growth in the skeletal system and osteogenesis seem to be coupled, suggesting the existence of molecular crosstalk between endothelial and osteoblastic cells. Understanding the nature of the mechanisms linking angiogenesis and bone formation should be of great relevance for improved fracture healing or prevention of bone mass loss. Here we show that vascular growth in bone involves a specialized, tissue-specific form of angiogenesis. Notch signalling promotes endothelial cell proliferation and vessel growth in postnatal long bone, which is the opposite of the well-established function of Notch and its ligand Dll4 in the endothelium of other organs and tumours. Endothelial-cell-specific and inducible genetic disruption of Notch signalling in mice not only impaired bone vessel morphology and growth, but also led to reduced osteogenesis, shortening of long bones, chondrocyte defects, loss of trabeculae and decreased bone mass. On the basis of a series of genetic experiments, we conclude that skeletal defects in these mutants involved defective angiocrine release of Noggin from endothelial cells, which is positively regulated by Notch. Administration of recombinant Noggin, a secreted antagonist of bone morphogenetic proteins, restored bone growth and mineralization, chondrocyte maturation, the formation of trabeculae and osteoprogenitor numbers in endothelial-cell-specific Notch pathway mutants. These findings establish a molecular framework coupling angiogenesis, angiocrine signals and osteogenesis, which may prove significant for the development of future therapeutic applications.

  4. Oncogenic programmes and Notch activity: an 'organized crime'?

    PubMed

    Dominguez, Maria

    2014-04-01

    The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'. PMID:24780858

  5. Loss of the Notch effector RBPJ promotes tumorigenesis

    PubMed Central

    Kulic, Iva; Robertson, Gordon; Chang, Linda; Baker, Jennifer H.E.; Lockwood, William W.; Mok, Winnie; Fuller, Megan; Fournier, Michèle; Wong, Nelson; Chou, Vennie; Robinson, Mark D.; Chun, Hye-Jung; Gilks, Blake; Kempkes, Bettina; Thomson, Thomas A.; Hirst, Martin; Minchinton, Andrew I.; Lam, Wan L.; Jones, Steven; Marra, Marco

    2015-01-01

    Aberrant Notch activity is oncogenic in several malignancies, but it is unclear how expression or function of downstream elements in the Notch pathway affects tumor growth. Transcriptional regulation by Notch is dependent on interaction with the DNA-binding transcriptional repressor, RBPJ, and consequent derepression or activation of associated gene promoters. We show here that RBPJ is frequently depleted in human tumors. Depletion of RBPJ in human cancer cell lines xenografted into immunodeficient mice resulted in activation of canonical Notch target genes, and accelerated tumor growth secondary to reduced cell death. Global analysis of activated regions of the genome, as defined by differential acetylation of histone H4 (H4ac), revealed that the cell death pathway was significantly dysregulated in RBPJ-depleted tumors. Analysis of transcription factor binding data identified several transcriptional activators that bind promoters with differential H4ac in RBPJ-depleted cells. Functional studies demonstrated that NF-κB and MYC were essential for survival of RBPJ-depleted cells. Thus, loss of RBPJ derepresses target gene promoters, allowing Notch-independent activation by alternate transcription factors that promote tumorigenesis. PMID:25512468

  6. Characterization of Notch Signaling During Osteogenic Differentiation in Human Osteosarcoma Cell Line MG63.

    PubMed

    Ongaro, Alessia; Pellati, Agnese; Bagheri, Leila; Rizzo, Paola; Caliceti, Cristiana; Massari, Leo; De Mattei, Monica

    2016-12-01

    Osteogenic differentiation is a multi-step process controlled by a complex molecular framework. Notch is an evolutionarily conserved intercellular signaling pathway playing a prominent role in cell fate and differentiation, although the mechanisms by which this pathway regulates osteogenesis remain controversial. This study aimed to investigate, in vitro, the involvement of Notch pathway during all the developmental stages of osteogenic differentiation in human osteosarcoma cell line MG63. Cells were cultured in basal condition (control) and in osteoinductive medium (OM). Notch inhibitors were also added in OM to block Notch pathway. During osteogenic differentiation, early (alkaline phosphatase activity and collagen type I) and late osteogenic markers (osteocalcin levels and matrix mineralization), as well as the gene expression of the main osteogenic transcription factors (Runx2, Osterix, and Dlx5) increased. Time dependent changes in the expression of specific Notch receptors were identified in OM versus control with a significant reduction in the expression of Notch1 and Notch3 receptors in the early phase of differentiation, and an increase of Notch2 and Notch4 receptors in the late phase. Among Notch nuclear target genes, Hey1 expression was significantly higher in OM than control, while Hes5 expression decreased. Osteogenic markers were reduced and Hey1 was significantly inhibited by Notch inhibitors, suggesting a role for Notch through the canonical pathway. In conclusion, Notch pathway might be involved with a dual role in osteogenesis of MG63, through the activation of Notch2, Notch4, and Hey1, inducing osteoblast differentiation and the depression of Notch1, Notch3, and Hes5, maintaining an undifferentiated status. J. Cell. Physiol. 231: 2652-2663, 2016. © 2016 Wiley Periodicals, Inc. PMID:26946465

  7. Discrete Notch signaling requirements in the specification of hematopoietic stem cells

    PubMed Central

    Kim, Albert D; Melick, Chase H; Clements, Wilson K; Stachura, David L; Distel, Martin; Panáková, Daniela; MacRae, Calum; Mork, Lindsey A; Crump, J Gage; Traver, David

    2014-01-01

    Hematopoietic stem cells (HSCs) require multiple molecular inputs for proper specification, including activity of the Notch signaling pathway. A requirement for the Notch1 and dispensability of the Notch2 receptor has been demonstrated in mice, but the role of the remaining Notch receptors has not been investigated. Here, we demonstrate that three of the four Notch receptors are independently required for the specification of HSCs in the zebrafish. The orthologues of the murine Notch1 receptor, Notch1a and Notch1b, are each required intrinsically to fate HSCs, just prior to their emergence from aortic hemogenic endothelium. By contrast, the Notch3 receptor is required earlier within the developing somite to regulate HSC emergence in a non-cell-autonomous manner. Epistatic analyses demonstrate that Notch3 function lies downstream of Wnt16, which is required for HSC specification through its regulation of two Notch ligands, dlc and dld. Collectively, these findings demonstrate for the first time that multiple Notch signaling inputs are required to specify HSCs and that Notch3 performs a novel role within the somite to regulate the neighboring precursors of hemogenic endothelium. PMID:25230933

  8. Opposing role of Notch1 and Notch2 in a Kras(G12D)-driven murine non-small cell lung cancer model.

    PubMed

    Baumgart, A; Mazur, P K; Anton, M; Rudelius, M; Schwamborn, K; Feuchtinger, A; Behnke, K; Walch, A; Braren, R; Peschel, C; Duyster, J; Siveke, J T; Dechow, T

    2015-01-29

    Lung cancer is the leading cause of cancer-related deaths worldwide. Recently, we have shown that Notch1 inhibition resulted in substantial cell death of non-small cell lung cancer (NSCLC) cells in vitro. New compounds targeting Notch signal transduction have been developed and are now being tested in clinical trials. However, the tumorigenic role of individual Notch receptors in vivo remains largely unclear. Using a Kras(G12D)-driven endogenous NSCLC mouse model, we analyzed the effect of conditional Notch1 and Notch2 receptor deletion on NSCLC tumorigenesis. Notch1 deficiency led to a reduced early tumor formation and lower activity of MAPK compared with the controls. Unexpectedly, Notch2 deletion resulted in a dramatically increased carcinogenesis and increased MAPK activity. These mice died significantly earlier due to rapidly growing tumor burden. We found that Notch1 regulates Ras/MAPK pathway via HES1-induced repression of the DUSP1 promoter encoding a phosphatase specifically suppressing pERK1/2. Interestingly, Notch1 but not Notch2 ablation leads to decreased HES1 and DUSP1 expression. However, Notch2-depleted tumors showed an appreciable increase in β-catenin expression, a known activator of HES1 and important lung cancer oncogene. Characteristically for β-catenin upregulation, we found that the majority of Notch2-deficient tumors revealed an undifferentiated phenotype as determined by their morphology, E-Cadherin and TTF1 expression levels. In addition, these carcinomas showed aggressive growth patterns with bronchus invasion and obstruction. Together, we show that Notch2 mediates differentiation and has tumor suppressor functions during lung carcinogenesis, whereas Notch1 promotes tumor initiation and progression. These data are further supported by immunohistochemical analysis of human NSCLC samples showing loss or downregulation of Notch2 compared with normal lung tissue. In conclusion, this is the first study characterizing the in vivo functions of

  9. Characterization and developmental expression of the amphioxus homolog of Notch (AmphiNotch): evolutionary conservation of multiple expression domains in amphioxus and vertebrates.

    PubMed

    Holland, L Z; Rached, L A; Tamme, R; Holland, N D; Kortschak, D; Inoko, H; Shiina, T; Burgtorf, C; Lardelli, M

    2001-04-15

    Notch encodes a transmembrane protein that functions in intercellular signaling. Although there is one Notch gene in Drosophila, vertebrates have three or more with overlapping patterns of embryonic expression. We cloned the entire 7575-bp coding region of an amphioxus Notch gene (AmphiNotch), encoding 2524 amino acids, and obtained the exon/intron organization from a genomic cosmid clone. Southern blot and PCR data indicate that AmphiNotch is the only Notch gene in amphioxus. AmphiNotch, like Drosophila Notch and vertebrate Notch1 and Notch2, has 36 EGF repeats, 3 Notch/lin-12 repeats, a transmembrane region, and 6 ankyrin repeats. Phylogenetic analysis places it at the base of all the vertebrate genes, suggesting it is similar to the ancestral gene from which the vertebrate Notch family genes evolved. AmphiNotch is expressed in all three embryonic germ layers in spatiotemporal patterns strikingly similar to those of all the vertebrate homologs combined. In the developing nerve cord, AmphiNotch is first expressed in the posteriormost part of the neural plate, then it becomes more broadly expressed and later is localized dorsally in the anteriormost part of the nerve cord corresponding to the diencephalon. In late embryos and larvae, AmphiNotch is also expressed in parts of the pharyngeal endoderm, in the anterior gut diverticulum, and, like AmphiPax2/5/8, in the rudiment of Hatschek's kidney. A comparison with Notch1 and Pax5 and Pax8 expression in the embryonic mouse kidney helps support homology of the amphioxus and vertebrate kidneys. AmphiNotch is also an early marker for presumptive mesoderm, transcripts first being detectable at the gastrula stage in a ring of mesendoderm just inside the blastopore and subsequently in the posterior mesoderm, notochord, and somites. As in sea urchins and vertebrates, these domains of AmphiNotch expression overlap with those of several Wnt genes and brachyury. These relationships suggest that amphioxus shares with other

  10. Broadband notch filter design for millimeter-wave plasma diagnosticsa)

    NASA Astrophysics Data System (ADS)

    Furtula, V.; Michelsen, P. K.; Leipold, F.; Salewski, M.; Korsholm, S. B.; Meo, F.; Nielsen, S. K.; Stejner, M.; Moseev, D.; Johansen, T.

    2010-10-01

    Notch filters are integrated in plasma diagnostic systems to protect millimeter-wave receivers from intensive stray radiation. Here we present a design of a notch filter with a center frequency of 140 GHz, a rejection bandwidth of ˜900 MHz, and a typical insertion loss below 2 dB in the passband of ±9 GHz. The design is based on a fundamental rectangular waveguide with eight cylindrical cavities coupled by T-junction apertures formed as thin slits. Parameters that affect the notch performance such as physical lengths and conductor materials are discussed. The excited resonance mode in the cylindrical cavities is the fundamental TE11. The performance of the constructed filter is measured using a vector network analyzer monitoring a total bandwidth of 30 GHz. We compare the measurements with numerical simulations.

  11. Notch activation as a driver of osteogenic sarcoma.

    PubMed

    Tao, Jianning; Jiang, Ming-Ming; Jiang, Lichun; Salvo, Jason S; Zeng, Huan-Chang; Dawson, Brian; Bertin, Terry K; Rao, Pulivarthi H; Chen, Rui; Donehower, Lawrence A; Gannon, Francis; Lee, Brendan H

    2014-09-01

    Osteogenic sarcoma (OS) is a deadly skeletal malignancy whose cause is unknown. We report here a mouse model of OS based on conditional expression of the intracellular domain of Notch1 (NICD). Expression of the NICD in immature osteoblasts was sufficient to drive the formation of bone tumors, including OS, with complete penetrance. These tumors display features of human OS; namely, histopathology, cytogenetic complexity, and metastatic potential. We show that Notch activation combined with loss of p53 synergistically accelerates OS development in mice, although p53-driven OS is not Rbpj dependent, which demonstrates a dual dominance of the Notch oncogene and p53 mutation in the development of OS. Using this model, we also reveal the osteoblasts as the potential sources of OS. PMID:25203324

  12. Notch Activation as a Driver of Osteogenic Sarcoma

    PubMed Central

    Tao, Jianning; Jiang, Ming-Ming; Jiang, Lichun; Salvo, Jason S.; Zeng, Huan-Chang; Dawson, Brian; Bertin, Terry K.; Rao, Pulivarthi H.; Chen, Rui; Donehower, Lawrence A.; Gannon, Francis; Lee, Brendan H.

    2014-01-01

    Summary Osteogenic sarcoma (OS) is a deadly skeletal malignancy whose cause is unknown. We report here a mouse model of OS based on conditional expression of the intracellular domain of Notch1 (NICD). Expression of the NICD in immature osteoblasts was sufficient to drive the formation of bone tumors, including OS, with complete penetrance. These tumors display features of human OS, namely histopathology, cytogenetic complexity, and metastatic potential. We show that Notch activation combined with loss of p53 synergistically accelerates OS development in mice although p53-driven OS is not Rbpj-dependent, which demonstrates a dual dominance of the Notch oncogene and p53 mutation in the development of OS. Using this model, we also reveal the osteoblasts as the potential sources of OS. PMID:25203324

  13. Failure mechanics of fiber composite notched charpy specimens. [stress analysis

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1976-01-01

    A finite element stress analysis was performed to determine the stress variation in the vicinity of the notch and far field of fiber composites Charpy specimens (ASTM Standard). NASTRAN was used for the finite element analysis assuming linear behavior and equivalent static load. The unidirectional composites investigated ranged from Thornel 75 Epoxy to S-Glass/Epoxy with the fiber direction parallel to the long dimension of the specimen. The results indicate a biaxial stress state exists in (1) the notch vicinity which is dominated by transverse tensile and interlaminar shear and (2) near the load application point which is dominated by transverse compression and interlaminar shear. The results also lead to the postulation of hypotheses for the predominant failure modes, the fracture initiation, and the fracture process. Finally, the results indicate that the notched Charpy test specimen is not suitable for assessing the impact resistance of nonmetallic fiber composites directly.

  14. Structural basis for Notch1 engagement of Delta-like 4

    SciTech Connect

    Luca, Vincent C.; Jude, Kevin M.; Pierce, Nathan W.; Nachury, Maxence V.; Fischer, Suzanne; Garcia, K. Christopher

    2015-02-20

    Notch receptors guide mammalian cell fate decisions by engaging the proteins Jagged and Delta-like (DLL). The 2.3 angstrom resolution crystal structure of the interacting regions of the Notch1-DLL4 complex reveals a two-site, antiparallel binding orientation assisted by Notch1 O-linked glycosylation. Notch1 epidermal growth factor–like repeats 11 and 12 interact with the DLL4 Delta/Serrate/Lag-2 (DSL) domain and module at the N-terminus of Notch ligands (MNNL) domains, respectively. Threonine and serine residues on Notch1 are functionalized with O-fucose and O-glucose, which act as surrogate amino acids by making specific, and essential, contacts to residues on DLL4. Lastly, the elucidation of a direct chemical role for O-glycans in Notch1 ligand engagement demonstrates how, by relying on posttranslational modifications of their ligand binding sites, Notch proteins have linked their functional capacity to developmentally regulated biosynthetic pathways.

  15. In Vivo Notch Signaling Blockade Induces Abnormal Spermatogenesis in the Mouse

    PubMed Central

    Murta, Daniel; Batista, Marta; Trindade, Alexandre; Silva, Elisabete; Henrique, Domingos; Duarte, António; Lopes-da-Costa, Luís

    2014-01-01

    In a previous study we identified active Notch signaling in key cellular events occurring at adult spermatogenesis. In this study, we evaluated the function of Notch signaling in spermatogenesis through the effects of in vivo Notch blockade. Adult CD1 male mice were either submitted to a long term DAPT (?-secretase inhibitor) or vehicle treatment. Treatment duration was designed to attain one half the time (25 days) or the time (43 days) required to accomplish a complete cycle of spermatogenesis. Blockade of Notch signaling was depicted from decreased transcription of Notch effector genes. Notch signaling blockade disrupted the expression patterns of Notch components in the testis, induced male germ cell fate aberrations, and significantly increased germ cell apoptosis, mainly in the last stages of the spermatogenic cycle, and epididymis spermatozoa morphological defects. These effects were more pronounced following the 43 day than the 25 day DAPT treatment schedule. These results indicate a relevant regulatory role of Notch signaling in mammalian spermatogenesis. PMID:25412258

  16. Lattice invariants for knots

    SciTech Connect

    Janse Van Rensburg, E.J.

    1996-12-31

    The geometry of polygonal knots in the cubic lattice may be used to define some knot invariants. One such invariant is the minimal edge number, which is the minimum number of edges necessary (and sufficient) to construct a lattice knot of given type. In addition, one may also define the minimal (unfolded) surface number, and the minimal (unfolded) boundary number; these are the minimum number of 2-cells necessary to construct an unfolded lattice Seifert surface of a given knot type in the lattice, and the minimum number of edges necessary in a lattice knot to guarantee the existence of an unfolded lattice Seifert surface. In addition, I derive some relations amongst these invariants. 8 refs., 5 figs., 2 tabs.

  17. Endothelial-to-hematopoietic transition: Notch-ing vessels into blood.

    PubMed

    Kanz, Dirk; Konantz, Martina; Alghisi, Elisa; North, Trista E; Lengerke, Claudia

    2016-04-01

    During development, hematopoietic stem cells (HSCs) are formed in a temporally and spatially restricted manner, arising from specialized endothelial cells (ECs) in the ventral wall of the dorsal aorta within the evolutionary conserved aorta-gonad-mesonephros region. Our understanding of the processes regulating the birth of HSCs from ECs has been recently advanced by comprehensive molecular analyses of developing murine hematopoietic cell populations complemented by studies in the zebrafish model, with the latter offering unique advantages for genetic studies and direct in vivo visualization of HSC emergence. Here, we provide a concise review of the current knowledge and recent advances regarding the cellular origin and molecular regulation of HSC development, with particular focus on the process of endothelial-to-hematopoietic transition and its primary regulator, the Notch signaling pathway. PMID:27015586

  18. Honokiol inhibits melanoma stem cells by targeting notch signaling.

    PubMed

    Kaushik, Gaurav; Venugopal, Anand; Ramamoorthy, Prabhu; Standing, David; Subramaniam, Dharmalingam; Umar, Shahid; Jensen, Roy A; Anant, Shrikant; Mammen, Joshua M V

    2015-12-01

    Melanoma is an aggressive disease with limited therapeutic options. Here, we determined the effects of honokiol (HNK), a biphenolic natural compound on melanoma cells and stemness. HNK significantly inhibited melanoma cell proliferation, viability, clonogenicity and induced autophagy. In addition, HNK significantly inhibited melanosphere formation in a dose dependent manner. Western blot analyses also demonstrated reduction in stem cell markers CD271, CD166, Jarid1b, and ABCB5. We next examined the effect of HNK on Notch signaling, a pathway involved in stem cell self-renewal. Four different Notch receptors exist in cells, which when cleaved by a series of enzymatic reactions catalyzed by Tumor Necrosis Factor-α-Converting Enzyme (TACE) and γ-secretase protein complex, results in the release of the Notch intracellular domain (NICD), which then translocates to the nucleus and induces target gene expression. Western blot analyses demonstrated that in HNK treated cells there is a significant reduction in the expression of cleaved Notch-2. In addition, there was a reduction in the expression of downstream target proteins, Hes-1 and cyclin D1. Moreover, HNK treatment suppressed the expression of TACE and γ-secretase complex proteins in melanoma cells. To confirm that suppression of Notch-2 activation is critical for HNK activity, we overexpressed NICD1, NICD2, and performed HNK treatment. NICD2, but not NICD1, partially restored the expression of Hes-1 and cyclin D1, and increased melanosphere formation. Taken together, these data suggest that HNK is a potent inhibitor of melanoma cells, in part, through the targeting of melanoma stem cells by suppressing Notch-2 signaling. PMID:25491779

  19. Molecular Characterization of Notch1 Positive Progenitor Cells in the Developing Retina

    PubMed Central

    Dvoriantchikova, Galina; Perea-Martinez, Isabel; Pappas, Steve; Barry, Ariel Faye; Danek, Dagmara; Dvoriantchikova, Xenia; Pelaez, Daniel; Ivanov, Dmitry

    2015-01-01

    The oscillatory expression of Notch signaling in neural progenitors suggests that both repressors and activators of neural fate specification are expressed in the same progenitors. Since Notch1 regulates photoreceptor differentiation and contributes (together with Notch3) to ganglion cell fate specification, we hypothesized that genes encoding photoreceptor and ganglion cell fate activators would be highly expressed in Notch1 receptor-bearing (Notch1+) progenitors, directing these cells to differentiate into photoreceptors or into ganglion cells when Notch1 activity is diminished. To identify these genes, we used microarray analysis to study expression profiles of whole retinas and isolated from them Notch1+ cells at embryonic day 14 (E14) and postnatal day 0 (P0). To isolate Notch1+ cells, we utilized immunomagnetic cell separation. We also used Notch3 knockout (Notch3KO) animals to evaluate the contribution of Notch3 signaling in ganglion cell differentiation. Hierarchical clustering of 6,301 differentially expressed genes showed that Notch1+ cells grouped near the same developmental stage retina cluster. At E14, we found higher expression of repressors (Notch1, Hes5) and activators (Dll3, Atoh7, Otx2) of neuronal differentiation in Notch1+ cells compared to whole retinal cell populations. At P0, Notch1, Hes5, and Dll1 expression was significantly higher in Notch1+ cells than in whole retinas. Otx2 expression was more than thirty times higher than Atoh7 expression in Notch1+ cells at P0. We also observed that retinas of wild type animals had only 14% (P < 0.05) more ganglion cells compared to Notch3KO mice. Since this number is relatively small and Notch1 has been shown to contribute to ganglion cell fate specification, we suggested that Notch1 signaling may play a more significant role in RGC development than the Notch3 signaling cascade. Finally, our findings suggest that Notch1+ progenitors—since they heavily express both pro-ganglion cell (Atoh7) and pro

  20. Deformation characteristics and time-dependent notch sensitivity of Udimet 700 at intermediate temperatures

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.

    1974-01-01

    Time dependent notch sensitivity was observed in Udimet 700 sheet, bar, and investment castings between 1000 and 1400 F (538 -760 C), but not at 1600 F (871 C). As was the case for modified Waspaloy, Waspaloy and Inconel 718, it occurred in notched specimens loaded below the yield strength when the creep deformation was localized. For each alloy and notched specimen geometry, a stress-average particle size zone can be defined that characterizes the notch sensitive behavior.

  1. Notch Receptor Expression in Neurogenic Regions of the Adult Zebrafish Brain

    PubMed Central

    de Oliveira-Carlos, Vanessa; Ganz, Julia; Hans, Stefan; Kaslin, Jan; Brand, Michael

    2013-01-01

    The adult zebrash brain has a remarkable constitutive neurogenic capacity. The regulation and maintenance of its adult neurogenic niches are poorly understood. In mammals, Notch signaling is involved in stem cell maintenance both in embryonic and adult CNS. To better understand how Notch signaling is involved in stem cell maintenance during adult neurogenesis in zebrafish we analysed Notch receptor expression in five neurogenic zones of the adult zebrafish brain. Combining proliferation and glial markers we identified several subsets of Notch receptor expressing cells. We found that 90 of proliferating radial glia express notch1a, notch1b and notch3. In contrast, the proliferating non-glial populations of the dorsal telencephalon and hypothalamus rarely express notch3 and about half express notch1a/1b. In the non-proliferating radial glia notch3 is the predominant receptor throughout the brain. In the ventral telencephalon and in the mitotic area of the optic tectum, where cells have neuroepithelial properties, notch1a/1b/3 are expressed in most proliferating cells. However, in the cerebellar niche, although progenitors also have neuroepithelial properties, only notch1a/1b are expressed in a high number of PCNA cells. In this region notch3 expression is mostly in Bergmann glia and at low levels in few PCNA cells. Additionally, we found that in the proliferation zone of the ventral telencephalon, Notch receptors display an apical high to basal low gradient of expression. Notch receptors are also expressed in subpopulations of oligodendrocytes, neurons and endothelial cells. We suggest that the partial regional heterogeneity observed for Notch expression in progenitor cells might be related to the cellular diversity present in each of these neurogenic niches. PMID:24039926

  2. Kicking it up a Notch for the best in show: Scalloped leads Yorkie into the haematopoietic arena

    PubMed Central

    Ferguson, Gabriel B; Martinez-Agosto, Julian A

    2014-01-01

    Maintenance and differentiation of progenitor cells is essential for proper organ development and adaptation to environmental stress and injury. In Drosophila melanogaster, the haematopietic system serves as an ideal model for interrogating the function of signaling pathways required for progenitor maintenance and cell fate determination. Here we focus on the role of the Hippo pathway effectors Yorkie and Scalloped in mediating and facilitating Notch signaling-mediated lineage specification in the lymph gland, the primary center for haematopoiesis within the developing larva. We discuss the regulatory mechanisms which promote Notch activity during normal haematopoiesis and its modulation during immune challenge conditions. We provide additional evidence establishing the hierarchy of signaling events during crystal cell formation, highlighting the relationship between Yorkie, Scalloped and Lozenge, while expanding on the role of Yorkie in promoting hemocyte survival and the developmental regulation of Notch and its ligand, Serrate, within the lymph gland. Finally, we propose additional areas of exploration that may provide mechanistic insight into the environmental and non-cell autonomous regulation of cell fate in the blood system. PMID:26151599

  3. Use of notched beams to establish fracture criteria for beryllium

    SciTech Connect

    Mayville, R.A.

    1980-01-04

    The fracture of an improved form of pure beryllium was studied under triaxial tensile stresses. This state of stress was produced by testing notched beams, which were thick enough to be in a state of plane strain at the center. A plane strain, elastic-incremental plasticity finite element program was then used to determine the stress and strain distributions at fracture. A four-point bend fixture was used to load the specimens. It was carefully designed and manufactured to eliminate virtually all of the shear stresses at the reduced section of the notched beams. The unixial properties were obtained.

  4. Nonlinear acoustic measurements ahead of a notch during fatigue

    NASA Astrophysics Data System (ADS)

    Martin, R. W.; Mooers, R. D.; Hutson, A. L.; Sathish, S.; Blodgett, M. P.

    2013-01-01

    This paper presents measurements of relative nonlinear acoustic parameter (βrel), ahead of a notch in Al 7075-T651 dog bone samples, subjected to fatigue. It is compared with crack growth measurements on the same samples. Measurements performed on two samples subjected to identical fatigue conditions that failed at vastly different number of fatigue cycles are described. The βrel measurement for both samples as a function of fatigue cycles was fit a Boltzmann curve. The role of changing βrel ahead of a notch is explored as a possible approach for remain life evaluation.

  5. Audiometric notch as a sign of noise induced hearing loss

    PubMed Central

    McBride, D; Williams, S

    2001-01-01

    OBJECTIVES—To investigate the relation between different types of exposure to noise and a classic sign of noise induced hearing loss (NIHL), the audiometric notch.
METHODS—The study sample had exposure to both continuous and impulse noise and was drawn from a population of electrical transmission workers. Audiograms, taken as part of a hearing conservation programme, were read by three clinicians experienced in the assessment of NIHL. Working independently and using their clinical judgment, they were asked to identify localised increases in the threshold of hearing (audiometric notches) which they would attribute to noise, had a suitable history of exposure been elicited. Prevalent cases of NIHL were identified by the presence of a notch in either ear. Risk factors for NIHL were assessed by a questionnaire which sought information about exposure to air blast circuit breaker noise; firearms; explosions, and continuous noise. The odds of exposure to these factors in those with and without hearing loss were calculated, and odds ratios (ORs) and 95% confidence intervals (95% CIs) were estimated by logistic regression.
RESULTS—Of the 648 questionnaires sent out 357 were returned, a response rate of 55%. Of these, at least two out of the three assessors identified 175 (49%) people with a notch at any audiometric frequency. There was no association between these cases and the NIHL risk factors identified by the questionnaire, but a further frequency specific analysis showed a small proportion of people (15 (4%)) with notches at 4 kHz who had the expected associations with exposure to noise and a significant OR for firearms of 4.25 (95% CI 1.28 to 14.1). The much larger proportion of people with 6 kHz notches (110 (31%)) did not show these associations.
CONCLUSIONS—To diagnose NIHL it is important to elicit a detailed and accurate history of exposure to noise: although the notch at 4 kHz is a well established clinical sign and may be valuable in

  6. Notch1 endocytosis is induced by ligand and is required for signal transduction.

    PubMed

    Chapman, G; Major, J A; Iyer, K; James, A C; Pursglove, S E; Moreau, J L M; Dunwoodie, S L

    2016-01-01

    The Notch signalling pathway is widely utilised during embryogenesis in situations where cell-cell interactions are important for cell fate specification and differentiation. DSL ligand endocytosis into the ligand-expressing cell is an important aspect of Notch signalling because it is thought to supply the force needed to separate the Notch heterodimer to initiate signal transduction. A functional role for receptor endocytosis during Notch signal transduction is more controversial. Here we have used live-cell imaging to examine trafficking of the Notch1 receptor in response to ligand binding. Contact with cells expressing ligands induced internalisation and intracellular trafficking of Notch1. Notch1 endocytosis was accompanied by transendocytosis of ligand into the Notch1-expressing signal-receiving cell. Ligand caused Notch1 endocytosis into SARA-positive endosomes in a manner dependent on clathrin and dynamin function. Moreover, inhibition of endocytosis in the receptor-expressing cell impaired ligand-induced Notch1 signalling. Our findings resolve conflicting observations from mammalian and Drosophila studies by demonstrating that ligand-dependent activation of Notch1 signalling requires receptor endocytosis. Endocytosis of Notch1 may provide a force on the ligand:receptor complex that is important for potent signal transduction. PMID:26522918

  7. High NOTCH activity induces radiation resistance in non small cell lung cancer

    PubMed Central

    Habets, Roger; Span, Paul; Dubois, Ludwig; Paesmans, Kim; Kattenbeld, Bo; Cleutjens, Jack; Groot, Arjan J.; Schuurbiers, Olga C.J.; Lambin, Philippe; Bussink, Jan; Vooijs, Marc

    2016-01-01

    Background and purpose Patients with advanced NSCLC have survival rates <15%. The NOTCH pathway plays an important role during lung development and physiology but is often deregulated in lung cancer, making it a potential therapeutic target. We investigated NOTCH signaling in NSCLC and hypothesized that high NOTCH activity contributes to radiation resistance. Materials and methods NOTCH signaling in NSCLC patient samples was investigated using quantitative RT-PCR. H460 NSCLC cells with either high or blocked NOTCH activity were generated and their radiation sensitivity monitored using clonogenic assays. In vivo, xenograft tumors were irradiated and response assessed using growth delay. Microenvironmental parameters were analyzed by immunohistochemistry. Results Patients with high NOTCH activity in tumors showed significantly worse disease-free survival. In vitro, NOTCH activity did not affect the proliferation or intrinsic radiosensitivity of NSCLC cells. In contrast, xenografts with blocked NOTCH activity grew slower than wild type tumors. Tumors with high NOTCH activity grew significantly faster, were more hypoxic and showed a radioresistant phenotype. Conclusions We demonstrate an important role for NOTCH in tumor growth and correlate high NOTCH activity with poor prognosis and radioresistance. Blocking NOTCH activity in NSCLC might be a promising intervention to improve outcome after radiotherapy. PMID:23891097

  8. Tension Strength, Failure Prediction and Damage Mechanisms in 2D Triaxial Braided Composites with Notch

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Anglin, Colin

    1995-01-01

    The unnotched and notched (open hole) tensile strength and failure mechanisms of two-dimensional (2D) triaxial braided composites were examined. The effect of notch size and notch position were investigated. Damage initiation and propagation in notched and unnotched coupons were also examined. Theory developed to predict the normal stress distribution near an open hole and failure for tape laminated composites was evaluated for its applicability to 2D triaxial braided textile composite materials. Four different fiber architectures were considered; braid angle, yarn and braider size, percentage of longitudinal yarns and braider angle varied. Tape laminates equivalent to textile composites were also constructed for comparison. Unnotched tape equivalents were stronger than braided textiles but exhibited greater notch sensitivity. Notched textiles and tape equivalents have roughly the same strength at large notch sizes. Two common damage mechanisms were found: braider yarn cracking and near notch longitudinal yarn splitting. Cracking was found to initiate in braider yarns in unnotched and notched coupons, and propagate in the direction of the braider yarns until failure. Damage initiation stress decreased with increasing braid angle. No significant differences in prediction of near notch strain between textile and tape equivalents could be detected for small braid angle, but the correlations were weak for textiles with large braid angle. Notch strength could not be predicted using existing anisotropic theory for braided textiles due to their insensitivity to notch.

  9. Tumor suppressor role of Notch3 in Medullary Thyroid Carcinoma revealed by genetic and pharmacological induction

    PubMed Central

    Jaskula-Sztul, Renata; Eide, Jacob; Tesfazghi, Sara; Dammalapati, Ajitha; Harrison, April D.; Yu, Xiao-Min; Scheinebeck, Casi; Winston-McPherson, Gabrielle; Kupcho, Kevin R.; Robers, Matthew B.; Hundal, Amrit K.; Tang, Weiping; Chen, Herbert

    2014-01-01

    Notch1-3 are transmembrane receptors that appear to be absent in Medullary Thyroid Cancer (MTC). Previous research has shown that induction of Notch1 has a tumor suppressor effect in MTC cell lines, but little is known about the biological consequences of Notch3 activation for the progression of the disease. We elucidate the role of Notch3 in MTC by genetic (doxycycline inducible Notch3 intracellular domain) and pharmacological (AB3, novel HDAC inhibitor) approaches. We find that overexpression of Notch3 leads to the dose dependent reduction of neuroendocrine tumor markers. In addition, Notch3 activity is required to suppress MTC cell proliferation, and the extent of growth repression depends on the amount of Notch3 protein expressed. Moreover, activation of Notch3 induces apoptosis. The translational significance of this finding is highlighted by our observation that MTC tumors lack active Notch3 protein and reinstitution of this isoform could be a therapeutic strategy to treat patients with MTC. We demonstrate, for the first time, that overexpression of Notch3 in MTC cells can alter malignant neuroendocrine phenotype in both in vitro and in vivo models. In addition, our study provides a strong rationale for using Notch3 as a therapeutic target to provide novel pharmacological treatment options for MTC. PMID:25512616

  10. Impact of Spectral Notch Width on Neurophysiological Plasticity and Clinical Effectiveness of the Tailor-Made Notched Music Training

    PubMed Central

    Wunderlich, Robert; Lau, Pia; Stein, Alwina; Engell, Alva; Wollbrink, Andreas; Rudack, Claudia; Pantev, Christo

    2015-01-01

    Tinnitus, the ringing in the ears that is unrelated to any external source, causes a significant loss in quality of life, involving sleep disturbance and depression for 1 to 3% of the general population. While in the first place tinnitus may be triggered by damage to the inner ear cells, the neural generators of subjective tinnitus are located in central regions of the nervous system. A loss of lateral inhibition, tonotopical reorganization and a gain-increase in response to the sensory deprivation result in hypersensitivity and hyperactivity in certain regions of the auditory cortex. In the tailor-made notched music training (TMNMT) patients listen to music from which the frequency spectrum of the tinnitus has been removed. This evokes strong lateral inhibition from neurons tuned to adjacent frequencies onto the neurons involved in the tinnitus percept. A reduction of tinnitus loudness and tinnitus-related neural activity was achieved with TMNMT in previous studies. As the effect of lateral inhibition depends on the bandwidth of the notch, in the current study we altered the notch width to find the most effective notch width for TMNMT. We compared 1-octave notch width with ½-octave and ¼-octave. Participants chose their favorite music for the training that included three month of two hours daily listening. The outcome was measured by means of standardized questionnaires and magnetoencephalography. We found a general reduction of tinnitus distress in all administered tinnitus questionnaires after the training. Additionally, tinnitus-related neural activity was reduced after the training. Nevertheless, notch width did not have an influence on the behavioral or neural effects of TMNMT. This could be due to a non-linear resolution of lateral inhibition in high frequencies. PMID:26406446

  11. Impact of Spectral Notch Width on Neurophysiological Plasticity and Clinical Effectiveness of the Tailor-Made Notched Music Training.

    PubMed

    Wunderlich, Robert; Lau, Pia; Stein, Alwina; Engell, Alva; Wollbrink, Andreas; Rudack, Claudia; Pantev, Christo

    2015-01-01

    Tinnitus, the ringing in the ears that is unrelated to any external source, causes a significant loss in quality of life, involving sleep disturbance and depression for 1 to 3% of the general population. While in the first place tinnitus may be triggered by damage to the inner ear cells, the neural generators of subjective tinnitus are located in central regions of the nervous system. A loss of lateral inhibition, tonotopical reorganization and a gain-increase in response to the sensory deprivation result in hypersensitivity and hyperactivity in certain regions of the auditory cortex. In the tailor-made notched music training (TMNMT) patients listen to music from which the frequency spectrum of the tinnitus has been removed. This evokes strong lateral inhibition from neurons tuned to adjacent frequencies onto the neurons involved in the tinnitus percept. A reduction of tinnitus loudness and tinnitus-related neural activity was achieved with TMNMT in previous studies. As the effect of lateral inhibition depends on the bandwidth of the notch, in the current study we altered the notch width to find the most effective notch width for TMNMT. We compared 1-octave notch width with ½-octave and ¼-octave. Participants chose their favorite music for the training that included three month of two hours daily listening. The outcome was measured by means of standardized questionnaires and magnetoencephalography. We found a general reduction of tinnitus distress in all administered tinnitus questionnaires after the training. Additionally, tinnitus-related neural activity was reduced after the training. Nevertheless, notch width did not have an influence on the behavioral or neural effects of TMNMT. This could be due to a non-linear resolution of lateral inhibition in high frequencies. PMID:26406446

  12. Oncogenic activation of the Notch1 gene by deletion of its promoter in Ikaros-deficient T-ALL

    PubMed Central

    Jeannet, Robin; Mastio, Jérôme; Macias-Garcia, Alejandra; Oravecz, Attila; Ashworth, Todd; Geimer Le Lay, Anne-Solen; Jost, Bernard; Le Gras, Stéphanie; Ghysdael, Jacques; Gridley, Thomas; Honjo, Tasuku; Radtke, Freddy; Aster, Jon C.; Kastner, Philippe

    2010-01-01

    The Notch pathway is frequently activated in T-cell acute lymphoblastic leukemias (T-ALLs). Of the Notch receptors, Notch1 is a recurrent target of gain-of-function mutations and Notch3 is expressed in all T-ALLs, but it is currently unclear how these receptors contribute to T-cell transformation in vivo. We investigated the role of Notch1 and Notch3 in T-ALL progression by a genetic approach, in mice bearing a knockdown mutation in the Ikaros gene that spontaneously develop Notch-dependent T-ALL. While deletion of Notch3 has little effect, T cell–specific deletion of floxed Notch1 promoter/exon 1 sequences significantly accelerates leukemogenesis. Notch1-deleted tumors lack surface Notch1 but express γ-secretase–cleaved intracellular Notch1 proteins. In addition, these tumors accumulate high levels of truncated Notch1 transcripts that are caused by aberrant transcription from cryptic initiation sites in the 3′ part of the gene. Deletion of the floxed sequences directly reprograms the Notch1 locus to begin transcription from these 3′ promoters and is accompanied by an epigenetic reorganization of the Notch1 locus that is consistent with transcriptional activation. Further, spontaneous deletion of 5′ Notch1 sequences occurs in approximately 75% of Ikaros-deficient T-ALLs. These results reveal a novel mechanism for the oncogenic activation of the Notch1 gene after deletion of its main promoter. PMID:20829372

  13. Flat Band Quastiperiodic Lattices

    NASA Astrophysics Data System (ADS)

    Bodyfelt, Joshua; Flach, Sergej; Danieli, Carlo

    2014-03-01

    Translationally invariant lattices with flat bands (FB) in their band structure possess irreducible compact localized flat band states, which can be understood through local rotation to a Fano structure. We present extension of these quasi-1D FB structures under incommensurate lattices, reporting on the FB effects to the Metal-Insulator Transition.

  14. Laterally closed lattice homomorphisms

    NASA Astrophysics Data System (ADS)

    Toumi, Mohamed Ali; Toumi, Nedra

    2006-12-01

    Let A and B be two Archimedean vector lattices and let be a lattice homomorphism. We call that T is laterally closed if T(D) is a maximal orthogonal system in the band generated by T(A) in B, for each maximal orthogonal system D of A. In this paper we prove that any laterally closed lattice homomorphism T of an Archimedean vector lattice A with universal completion Au into a universally complete vector lattice B can be extended to a lattice homomorphism of Au into B, which is an improvement of a result of M. Duhoux and M. Meyer [M. Duhoux and M. Meyer, Extended orthomorphisms and lateral completion of Archimedean Riesz spaces, Ann. Soc. Sci. Bruxelles 98 (1984) 3-18], who established it for the order continuous lattice homomorphism case. Moreover, if in addition Au and B are with point separating order duals (Au)' and B' respectively, then the laterally closedness property becomes a necessary and sufficient condition for any lattice homomorphism to have a similar extension to the whole Au. As an application, we give a new representation theorem for laterally closed d-algebras from which we infer the existence of d-algebra multiplications on the universal completions of d-algebras.

  15. Supersymmetry on the lattice

    NASA Astrophysics Data System (ADS)

    Bergner, Georg; Catterall, Simon

    2016-08-01

    We discuss the motivations, difficulties and progress in the study of supersymmetric lattice gauge theories focusing in particular on 𝒩 = 1 and 𝒩 = 4 super-Yang-Mills in four dimensions. Brief reviews of the corresponding lattice formalisms are given and current results are presented and discussed. We conclude with a summary of the main aspects of current work and prospects for the future.

  16. Continuous partition lattice

    PubMed Central

    Björner, Anders

    1987-01-01

    A continuous analogue to the partition lattices is presented. This is the metric completion of the direct limit of a system of embeddings of the finite partition lattices. The construction is analogous to von Neumann's construction of a continuous geometry over a field F from the finite-dimensional projective geometries over F. PMID:16593874

  17. Notch gain of function inhibits chondrocyte differentiation via Rbpj-dependent suppression of Sox9

    PubMed Central

    Chen, Shan; Tao, Jianning; Bae, Yangjin; Jiang, Ming-Ming; Bertin, Terry; Chen, Yuqing; Yang, Tao; Lee, Brendan

    2013-01-01

    Abstract Notch signaling plays a critical role during development by directing the binary cell fate decision between progenitors and differentiated cells. Previous studies have shown sustained Notch activation in cartilage leads to chondrodysplasia. Genetic evidence indicates that Notch regulates limb bud mesenchymal stem cell differentiation into chondrocytes via an Rbpj-dependent Notch pathway. However, it is still unknown how Notch governs chondrogenesis in the axial skeleton where Notch serves a primary patterning function. We hypothesized that both Rbpj-dependent and Rbpj-independent Notch signaling mechanisms might be involved. Cartilage-specific Notch gain-of-function (GOF) mutant mice display chondrodysplasia accompanied by loss of Sox9 expression in vertebrae. To evaluate the contribution of an Rbpj-dependent Notch signaling to this phenotype, we deleted Rbpj on the Notch GOF background. These mice showed persistent spine abnormalities characterized by “butterfly” vertebrae suggesting that removal of Rbpj does not fully rescue the axial skeleton deformities caused by Notch GOF. However, Sox9 protein level was restored in Rbpj-deficient Notch GOF mice compared with Notch GOF mutants, demonstrating that regulation of Sox9 expression is canonical or Rbpj-dependent. To further understand the molecular basis of this regulation, we performed chromatin immunoprecipitation (ChIP) assays and detected the recruitment of the Rbpj/NICD transcription complex to Rbpj-binding sites upstream of the Sox9 promoter. The association of the Rbpj/NICD complex with the Sox9 promoter is associated with transcriptional repression of Sox9 in a cellular model of chondrocyte differentiation. Hence, Notch negatively regulates chondrocyte differentiation in the axial skeleton by suppressing Sox9 transcription, and Rbpj-independent Notch signaling mechanisms may also contribute to axial skeletogenesis. PMID:22991339

  18. TSG attenuates LPC-induced endothelial cells inflammatory damage through notch signaling inhibition.

    PubMed

    Zhao, Jing; Liang, Yuan; Song, Fan; Xu, Shouzhu; Nian, Lun; Zhou, Xuanxuan; Wang, Siwang

    2016-01-01

    Lysophosphatidylcholine (LPC) induces inflammation in endothelial cells (ECs) but the mechanism is not fully understood. The Notch signaling pathway is involved in chronic EC inflammation, but its functions in LPC-induced endothelial inflammatory damage and 2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside's (TSG) protective effect during LPC-induced inflammatory damage in human umbilical vein endothelial cells (HUVECs) is largely unknown. We report that Notch signaling activation contributed to LPC-induced injury in HUVECs, and that TSG protected HUVECs from LPC-induced injury by antagonizing Notch signaling activation by LPC. γ-secretase inhibitor (DAPT), a specific inhibitor of the Notch signaling pathway, and Notch1 siRNA were used to inhibit Notch activity. HUVECs were exposed to LPC in the presence or absence of TSG, DAPT, and Notch1 siRNA. LPC treatment of HUVECs resulted in reduced cell viability, and Notch1 and Hes1 upregulation. Either silencing of Notch1 by siRNA or pharmacological inhibition of Notch signaling by DAPT prevented the loss of cell viability, and induction of apoptosis, and enhanced expression Notch1, Hes1 and MCP-1 by LPC in HUVECs. Similarly, TSG reduced LPC stimulation of Notch1, Hes1, and MCP-1 expression, prevented the release of IL-6 and CRP and rescued HUVECs from LPC-induced cell damage. Our data indicate that the Notch signaling pathway is a crucial mediator of endothelial inflammatory damage and that TSG protects against endothelial inflammatory damage by inhibiting the Notch signaling pathway. Our findings suggest that targeting Notch signaling by natural products such as TSG is a promising strategy for the prevention and treatment of chronic inflammation associated diseases, including atherosclerosis. © 2015 IUBMB Life, 68(1):37-50, 2016. PMID:26662286

  19. Notch gain of function inhibits chondrocyte differentiation via Rbpj-dependent suppression of Sox9.

    PubMed

    Chen, Shan; Tao, Jianning; Bae, Yangjin; Jiang, Ming-Ming; Bertin, Terry; Chen, Yuqing; Yang, Tao; Lee, Brendan

    2013-03-01

    Notch signaling plays a critical role during development by directing the binary cell fate decision between progenitors and differentiated cells. Previous studies have shown sustained Notch activation in cartilage leads to chondrodysplasia. Genetic evidence indicates that Notch regulates limb bud mesenchymal stem cell differentiation into chondrocytes via an Rbpj-dependent Notch pathway. However, it is still unknown how Notch governs chondrogenesis in the axial skeleton where Notch serves a primary patterning function. We hypothesized that both Rbpj-dependent and Rbpj-independent Notch signaling mechanisms might be involved. Cartilage-specific Notch gain-of-function (GOF) mutant mice display chondrodysplasia accompanied by loss of Sox9 expression in vertebrae. To evaluate the contribution of an Rbpj-dependent Notch signaling to this phenotype, we deleted Rbpj on the Notch GOF background. These mice showed persistent spine abnormalities characterized by "butterfly" vertebrae suggesting that removal of Rbpj does not fully rescue the axial skeleton deformities caused by Notch GOF. However, Sox9 protein level was restored in Rbpj-deficient Notch GOF mice compared with Notch GOF mutants, demonstrating that regulation of Sox9 expression is canonical or Rbpj-dependent. To further understand the molecular basis of this regulation, we performed chromatin immunoprecipitation (ChIP) assays and detected the recruitment of the Rbpj/NICD transcription complex to Rbpj-binding sites upstream of the Sox9 promoter. The association of the Rbpj/NICD complex with the Sox9 promoter is associated with transcriptional repression of Sox9 in a cellular model of chondrocyte differentiation. Hence, Notch negatively regulates chondrocyte differentiation in the axial skeleton by suppressing Sox9 transcription, and Rbpj-independent Notch signaling mechanisms may also contribute to axial skeletogenesis. PMID:22991339

  20. Honeycomb lattices with defects

    NASA Astrophysics Data System (ADS)

    Spencer, Meryl A.; Ziff, Robert M.

    2016-04-01

    In this paper, we introduce a variant of the honeycomb lattice in which we create defects by randomly exchanging adjacent bonds, producing a random tiling with a distribution of polygon edges. We study the percolation properties on these lattices as a function of the number of exchanged bonds using an alternative computational method. We find the site and bond percolation thresholds are consistent with other three-coordinated lattices with the same standard deviation in the degree distribution of the dual; here we can produce a continuum of lattices with a range of standard deviations in the distribution. These lattices should be useful for modeling other properties of random systems as well as percolation.

  1. Formation of fast ``notched'' current waveforms through a high inductance

    NASA Astrophysics Data System (ADS)

    Spanjers, G.; Nelson, B. A.; Ribe, F. L.

    1991-10-01

    A fast ``notch'' current has been produced on the (4 μH) hardcore central conductor [C. M. Greenfield, M. E. Koepke, and F. L. Ribe, Phys. Fluids B 2, 133 (1990)] of the high beta Q machine, a 2.6 m theta pinch [S. O. Knox, H. Meuth, E. Sevillano, and F. L. Ribe, 3rd IEEE International Pulsed Power Conf., 1981, IEEE Publ. 81 CH1662/6, paper 3.1]. With the notch circuitry, the current can be slowly (τ1/4 = 14 μs) brought to a crowbarred dc value (20 kA) and then quickly (τ1/4 = 1.3 μs) ``notched'' to a different value (typically either 0 kA or twice the dc value) and then quickly returned to the dc value. The use of a new inductively loaded spark gap switch eliminates extraneous ringing in the final crowbarred current waveform. As described here, by driving the hardcore circuit with two isolated capacitor banks, and a voltage stepup transformer, the notch current is created using spark gaps and ignitrons for switching, resulting in an inexpensive and technically simple circuit.

  2. Syndecan-3 and Notch cooperate in regulating adult myogenesis

    PubMed Central

    Pisconti, Addolorata; Cornelison, D.D.W.; Olguín, Hugo C.; Antwine, Tiffany L.

    2010-01-01

    Skeletal muscle postnatal growth and repair depend on satellite cells and are regulated by molecular signals within the satellite cell niche. We investigated the molecular and cellular events that lead to altered myogenesis upon genetic ablation of Syndecan-3, a component of the satellite cell niche. In the absence of Syndecan-3, satellite cells stall in S phase, leading to reduced proliferation, increased cell death, delayed onset of differentiation, and markedly reduced numbers of Pax7+ satellite cells accompanied by myofiber hypertrophy and an increased number of centrally nucleated myofibers. We show that the aberrant cell cycle and impaired self-renewal of explanted Syndecan-3–null satellite cells are rescued by ectopic expression of the constitutively active Notch intracellular domain. Furthermore, we show that Syndecan-3 interacts with Notch and is required for Notch processing by ADAM17/tumor necrosis factor-α–converting enzyme (TACE) and signal transduction. Together, our data support the conclusion that Syndecan-3 and Notch cooperate in regulating homeostasis of the satellite cell population and myofiber size. PMID:20696709

  3. Syndecan-3 and Notch cooperate in regulating adult myogenesis.

    PubMed

    Pisconti, Addolorata; Cornelison, D D W; Olguín, Hugo C; Antwine, Tiffany L; Olwin, Bradley B

    2010-08-01

    Skeletal muscle postnatal growth and repair depend on satellite cells and are regulated by molecular signals within the satellite cell niche. We investigated the molecular and cellular events that lead to altered myogenesis upon genetic ablation of Syndecan-3, a component of the satellite cell niche. In the absence of Syndecan-3, satellite cells stall in S phase, leading to reduced proliferation, increased cell death, delayed onset of differentiation, and markedly reduced numbers of Pax7(+) satellite cells accompanied by myofiber hypertrophy and an increased number of centrally nucleated myofibers. We show that the aberrant cell cycle and impaired self-renewal of explanted Syndecan-3-null satellite cells are rescued by ectopic expression of the constitutively active Notch intracellular domain. Furthermore, we show that Syndecan-3 interacts with Notch and is required for Notch processing by ADAM17/tumor necrosis factor-alpha-converting enzyme (TACE) and signal transduction. Together, our data support the conclusion that Syndecan-3 and Notch cooperate in regulating homeostasis of the satellite cell population and myofiber size. PMID:20696709

  4. Galectin-3 Inhibits Osteoblast Differentiation through Notch Signaling12

    PubMed Central

    Nakajima, Kosei; Kho, Dhong Hyo; Yanagawa, Takashi; Harazono, Yosuke; Gao, Xiaoge; Hogan, Victor; Raz, Avraham

    2014-01-01

    Patients with bone cancer metastasis suffer from unbearable pain and bone fractures due to bone remodeling. This is caused by tumor cells that disturb the bone microenvironment. Here, we have investigated the role of tumor-secreted sugar-binding protein, i.e., galectin-3, on osteoblast differentiation and report that it downregulates the expression of osteoblast differentiation markers, e.g., RUNX2, SP7, ALPL, COL1A1, IBSP, and BGLAP, of treated human fetal osteoblast (hFOB) cells. Co-culturing of hFOB cells with human breast cancer BT-549 and prostate cancer LNCaP cells harboring galectin-3 has resulted in inhibition of osteoblast differentiation by the secreted galectin-3 into culture medium. The inhibitory effect of galectin-3 was found to be through its binding to Notch1 in a sugar-dependent manner that has led to accelerated Notch1 cleavage and activation of Notch signaling. Taken together, our findings show that soluble galectin-3 in the bone microenvironment niche regulates bone remodeling through Notch signaling, suggesting a novel bone metastasis therapeutic target. PMID:25425968

  5. Depinning of domain walls in permalloy nanowires with asymmetric notches

    PubMed Central

    Gao, Y.; You, B.; Ruan, X. Z.; Liu, M. Y.; Yang, H. L.; Zhan, Q. F.; Li, Z.; Lei, N.; Zhao, W. S.; Pan, D. F.; Wan, J. G.; Wu, J.; Tu, H. Q.; Wang, J.; Zhang, W.; Xu, Y. B.; Du, J.

    2016-01-01

    Effective control of the domain wall (DW) motion along the magnetic nanowires is of great importance for fundamental research and potential application in spintronic devices. In this work, a series of permalloy nanowires with an asymmetric notch in the middle were fabricated with only varying the width (d) of the right arm from 200 nm to 1000 nm. The detailed pinning and depinning processes of DWs in these nanowires have been studied by using focused magneto-optic Kerr effect (FMOKE) magnetometer, magnetic force microscopy (MFM) and micromagnetic simulation. The experimental results unambiguously exhibit the presence of a DW pinned at the notch in a typical sample with d equal to 500 nm. At a certain range of 200 nm < d < 500 nm, both the experimental and simulated results show that the DW can maintain or change its chirality randomly during passing through the notch, resulting in two DW depinning fields. Those two depinning fields have opposite d dependences, which may be originated from different potential well/barrier generated by the asymmetric notch with varying d. PMID:27600627

  6. Rnd3 regulates lung cancer cell proliferation through notch signaling.

    PubMed

    Tang, Yongjun; Hu, Chengping; Yang, Huaping; Cao, Liming; Li, Yuanyuan; Deng, Pengbo; Huang, Li

    2014-01-01

    Rnd3/RhoE is a small Rho GTPase involved in the regulation of different cell behaviors. Dysregulation of Rnd3 has been linked to tumorigenesis and metastasis. Lung cancers are the leading cause of cancer-related death in the West and around the world. The expression of Rnd3 and its ectopic role in non-small cell lung cancer (NSCLC) remain to be explored. Here, we reported that Rnd3 was down-regulated in three NSCLC cell lines: H358, H520 and A549. The down-regulation of Rnd3 led to hyper-activation of Rho Kinase and Notch signaling. The reintroduction of Rnd3 or selective inhibition of Notch signaling, but not Rho Kinase signaling, blocked the proliferation of H358 and H520 cells. Mechanistically, Notch intracellular domain (NICD) protein abundance in H358 cells was regulated by Rnd3-mediated NICD proteasome degradation. Rnd3 regulated H358 and H520 cell proliferation through a Notch1/NICD/Hes1 signaling axis independent of Rho Kinase. PMID:25372032

  7. Rnd3 Regulates Lung Cancer Cell Proliferation through Notch Signaling

    PubMed Central

    Tang, Yongjun; Hu, Chengping; Yang, Huaping; Cao, Liming; Li, Yuanyuan; Deng, Pengbo; Huang, Li

    2014-01-01

    Rnd3/RhoE is a small Rho GTPase involved in the regulation of different cell behaviors. Dysregulation of Rnd3 has been linked to tumorigenesis and metastasis. Lung cancers are the leading cause of cancer-related death in the West and around the world. The expression of Rnd3 and its ectopic role in non-small cell lung cancer (NSCLC) remain to be explored. Here, we reported that Rnd3 was down-regulated in three NSCLC cell lines: H358, H520 and A549. The down-regulation of Rnd3 led to hyper-activation of Rho Kinase and Notch signaling. The reintroduction of Rnd3 or selective inhibition of Notch signaling, but not Rho Kinase signaling, blocked the proliferation of H358 and H520 cells. Mechanistically, Notch intracellular domain (NICD) protein abundance in H358 cells was regulated by Rnd3-mediated NICD proteasome degradation. Rnd3 regulated H358 and H520 cell proliferation through a Notch1/NICD/Hes1 signaling axis independent of Rho Kinase. PMID:25372032

  8. Experimental and Numerical Analysis of Notched Composites Under Tension Loading

    NASA Astrophysics Data System (ADS)

    Aidi, Bilel; Case, Scott W.

    2015-12-01

    Experimental quasi-static tests were performed on center notched carbon fiber reinforced polymer (CFRP) composites having different stacking sequences made of G40-600/5245C prepreg. The three-dimensional Digital Image Correlation (DIC) technique was used during quasi-static tests conducted on quasi-isotropic notched samples to obtain the distribution of strains as a function of applied stress. A finite element model was built within Abaqus to predict the notched strength and the strain profiles for comparison with measured results. A user-material subroutine using the multi-continuum theory (MCT) as a failure initiation criterion and an energy-based damage evolution law as implemented by Autodesk Simulation Composite Analysis (ASCA) was used to conduct a quantitative comparison of strain components predicted by the analysis and obtained in the experiments. Good agreement between experimental data and numerical analyses results are observed. Modal analysis was carried out to investigate the effect of static damage on the dominant frequencies of the notched structure using the resulted degraded material elements. The first in-plane mode was found to be a good candidate for tracking the level of damage.

  9. Depinning of domain walls in permalloy nanowires with asymmetric notches.

    PubMed

    Gao, Y; You, B; Ruan, X Z; Liu, M Y; Yang, H L; Zhan, Q F; Li, Z; Lei, N; Zhao, W S; Pan, D F; Wan, J G; Wu, J; Tu, H Q; Wang, J; Zhang, W; Xu, Y B; Du, J

    2016-01-01

    Effective control of the domain wall (DW) motion along the magnetic nanowires is of great importance for fundamental research and potential application in spintronic devices. In this work, a series of permalloy nanowires with an asymmetric notch in the middle were fabricated with only varying the width (d) of the right arm from 200 nm to 1000 nm. The detailed pinning and depinning processes of DWs in these nanowires have been studied by using focused magneto-optic Kerr effect (FMOKE) magnetometer, magnetic force microscopy (MFM) and micromagnetic simulation. The experimental results unambiguously exhibit the presence of a DW pinned at the notch in a typical sample with d equal to 500 nm. At a certain range of 200 nm < d < 500 nm, both the experimental and simulated results show that the DW can maintain or change its chirality randomly during passing through the notch, resulting in two DW depinning fields. Those two depinning fields have opposite d dependences, which may be originated from different potential well/barrier generated by the asymmetric notch with varying d. PMID:27600627

  10. Surface Fatigue Crack Growth Behavior from Small Notch in Waspaloy

    NASA Astrophysics Data System (ADS)

    Suh, Chang-Min; Kim, Seon-Gab

    We investigated the surface fatigue crack behaviors including initial surface crack appearances depend on three artificial notch lengths applied with the axle load level of the maximum load, 1,103 MPa and minimum load 55.3 MPa at the stress ratio of 0.05. This load level is the F100 engine's maximum operation condition of Waspaloy. The initial cracking site in depth is started from multi-origin. The effectiveness of crack growth rate by ductile striation space measurement on the fractured surface is confirmed by the working load and the stress intensity factor range. The surface cracks of Waspaloy at room temperature in air follow the ΔK vs da/dN and db/dN relation, even though the crack length initiated early in notch size 1 mm and initiated very late in notch size 4 mm. And the ΔK vs da/dN and db/dN relation have similar slope at 3 kinds of notches.