Sample records for adaptive perceptual color-texture

  1. Natural texture retrieval based on perceptual similarity measurement

    NASA Astrophysics Data System (ADS)

    Gao, Ying; Dong, Junyu; Lou, Jianwen; Qi, Lin; Liu, Jun

    2018-04-01

    A typical texture retrieval system performs feature comparison and might not be able to make human-like judgments of image similarity. Meanwhile, it is commonly known that perceptual texture similarity is difficult to be described by traditional image features. In this paper, we propose a new texture retrieval scheme based on texture perceptual similarity. The key of the proposed scheme is that prediction of perceptual similarity is performed by learning a non-linear mapping from image features space to perceptual texture space by using Random Forest. We test the method on natural texture dataset and apply it on a new wallpapers dataset. Experimental results demonstrate that the proposed texture retrieval scheme with perceptual similarity improves the retrieval performance over traditional image features.

  2. Color adaptation induced from linguistic description of color

    PubMed Central

    Zheng, Liling; Huang, Ping; Zhong, Xiao; Li, Tianfeng; Mo, Lei

    2017-01-01

    Recent theories propose that language comprehension can influence perception at the low level of perceptual system. Here, we used an adaptation paradigm to test whether processing language caused color adaptation in the visual system. After prolonged exposure to a color linguistic context, which depicted red, green, or non-specific color scenes, participants immediately performed a color detection task, indicating whether they saw a green color square in the middle of a white screen or not. We found that participants were more likely to perceive the green color square after listening to discourses denoting red compared to discourses denoting green or conveying non-specific color information, revealing that language comprehension caused an adaptation aftereffect at the perceptual level. Therefore, semantic representation of color may have a common neural substrate with color perception. These results are in line with the simulation view of embodied language comprehension theory, which predicts that processing language reactivates the sensorimotor systems that are engaged during real experience. PMID:28358807

  3. Color adaptation induced from linguistic description of color.

    PubMed

    Zheng, Liling; Huang, Ping; Zhong, Xiao; Li, Tianfeng; Mo, Lei

    2017-01-01

    Recent theories propose that language comprehension can influence perception at the low level of perceptual system. Here, we used an adaptation paradigm to test whether processing language caused color adaptation in the visual system. After prolonged exposure to a color linguistic context, which depicted red, green, or non-specific color scenes, participants immediately performed a color detection task, indicating whether they saw a green color square in the middle of a white screen or not. We found that participants were more likely to perceive the green color square after listening to discourses denoting red compared to discourses denoting green or conveying non-specific color information, revealing that language comprehension caused an adaptation aftereffect at the perceptual level. Therefore, semantic representation of color may have a common neural substrate with color perception. These results are in line with the simulation view of embodied language comprehension theory, which predicts that processing language reactivates the sensorimotor systems that are engaged during real experience.

  4. Separate channels for processing form, texture, and color: evidence from FMRI adaptation and visual object agnosia.

    PubMed

    Cavina-Pratesi, C; Kentridge, R W; Heywood, C A; Milner, A D

    2010-10-01

    Previous neuroimaging research suggests that although object shape is analyzed in the lateral occipital cortex, surface properties of objects, such as color and texture, are dealt with in more medial areas, close to the collateral sulcus (CoS). The present study sought to determine whether there is a single medial region concerned with surface properties in general or whether instead there are multiple foci independently extracting different surface properties. We used stimuli varying in their shape, texture, or color, and tested healthy participants and 2 object-agnosic patients, in both a discrimination task and a functional MR adaptation paradigm. We found a double dissociation between medial and lateral occipitotemporal cortices in processing surface (texture or color) versus geometric (shape) properties, respectively. In Experiment 2, we found that the medial occipitotemporal cortex houses separate foci for color (within anterior CoS and lingual gyrus) and texture (caudally within posterior CoS). In addition, we found that areas selective for shape, texture, and color individually were quite distinct from those that respond to all of these features together (shape and texture and color). These latter areas appear to correspond to those associated with the perception of complex stimuli such as faces and places.

  5. Adaptation and perceptual norms

    NASA Astrophysics Data System (ADS)

    Webster, Michael A.; Yasuda, Maiko; Haber, Sara; Leonard, Deanne; Ballardini, Nicole

    2007-02-01

    We used adaptation to examine the relationship between perceptual norms--the stimuli observers describe as psychologically neutral, and response norms--the stimulus levels that leave visual sensitivity in a neutral or balanced state. Adapting to stimuli on opposite sides of a neutral point (e.g. redder or greener than white) biases appearance in opposite ways. Thus the adapting stimulus can be titrated to find the unique adapting level that does not bias appearance. We compared these response norms to subjectively defined neutral points both within the same observer (at different retinal eccentricities) and between observers. These comparisons were made for visual judgments of color, image focus, and human faces, stimuli that are very different and may depend on very different levels of processing, yet which share the property that for each there is a well defined and perceptually salient norm. In each case the adaptation aftereffects were consistent with an underlying sensitivity basis for the perceptual norm. Specifically, response norms were similar to and thus covaried with the perceptual norm, and under common adaptation differences between subjectively defined norms were reduced. These results are consistent with models of norm-based codes and suggest that these codes underlie an important link between visual coding and visual experience.

  6. Inference of segmented color and texture description by tensor voting.

    PubMed

    Jia, Jiaya; Tang, Chi-Keung

    2004-06-01

    A robust synthesis method is proposed to automatically infer missing color and texture information from a damaged 2D image by (N)D tensor voting (N > 3). The same approach is generalized to range and 3D data in the presence of occlusion, missing data and noise. Our method translates texture information into an adaptive (N)D tensor, followed by a voting process that infers noniteratively the optimal color values in the (N)D texture space. A two-step method is proposed. First, we perform segmentation based on insufficient geometry, color, and texture information in the input, and extrapolate partitioning boundaries by either 2D or 3D tensor voting to generate a complete segmentation for the input. Missing colors are synthesized using (N)D tensor voting in each segment. Different feature scales in the input are automatically adapted by our tensor scale analysis. Results on a variety of difficult inputs demonstrate the effectiveness of our tensor voting approach.

  7. Perceptual approach for unsupervised digital color restoration of cinematographic archives

    NASA Astrophysics Data System (ADS)

    Chambah, Majed; Rizzi, Alessandro; Gatta, Carlo; Besserer, Bernard; Marini, Daniele

    2003-01-01

    The cinematographic archives represent an important part of our collective memory. We present in this paper some advances in automating the color fading restoration process, especially with regard to the automatic color correction technique. The proposed color correction method is based on the ACE model, an unsupervised color equalization algorithm based on a perceptual approach and inspired by some adaptation mechanisms of the human visual system, in particular lightness constancy and color constancy. There are some advantages in a perceptual approach: mainly its robustness and its local filtering properties, that lead to more effective results. The resulting technique, is not just an application of ACE on movie images, but an enhancement of ACE principles to meet the requirements in the digital film restoration field. The presented preliminary results are satisfying and promising.

  8. Perceptual adaptation in the use of night vision goggles

    NASA Technical Reports Server (NTRS)

    Durgin, Frank H.; Proffitt, Dennis R.

    1992-01-01

    The image intensification (I sup 2) systems studied for this report were the biocular AN/PVS-7(NVG) and the binocular AN/AVS-6(ANVIS). Both are quite impressive for purposes of revealing the structure of the environment in a fairly straightforward way in extremely low-light conditions. But these systems represent an unusual viewing medium. The perceptual information available through I sup 2 systems is different in a variety of ways from the typical input of everyday vision, and extensive training and practice is required for optimal use. Using this sort of system involves a kind of perceptual skill learning, but is may also involve visual adaptations that are not simply an extension of normal vision. For example, the visual noise evident in the goggles in very low-light conditions results in unusual statistical properties in visual input. Because we had recently discovered a strong and enduring aftereffect of perceived texture density which seemed to be sensitive to precisely the sorts of statistical distortions introduced by I sup 2 systems, it occurred to use that visual noise of this sort might be a very adapting stimulus for texture density and produce an aftereffect that extended into normal vision once the goggles were removed. We have not found any experimental evidence that I sup 2 systems produce texture density aftereffects. The nature of the texture density aftereffect is briefly explained, followed by an accounting of our studies of I sup 2 systems and our most recent work on the texture density aftereffect. A test for spatial frequency adaptation after exposure to NVG's is also reported, as is a study of perceived depth from motion (motion parallax) while wearing the biocular goggles. We conclude with a summary of our findings.

  9. Color categories only affect post-perceptual processes when same- and different-category colors are equally discriminable.

    PubMed

    He, Xun; Witzel, Christoph; Forder, Lewis; Clifford, Alexandra; Franklin, Anna

    2014-04-01

    Prior claims that color categories affect color perception are confounded by inequalities in the color space used to equate same- and different-category colors. Here, we equate same- and different-category colors in the number of just-noticeable differences, and measure event-related potentials (ERPs) to these colors on a visual oddball task to establish if color categories affect perceptual or post-perceptual stages of processing. Category effects were found from 200 ms after color presentation, only in ERP components that reflect post-perceptual processes (e.g., N2, P3). The findings suggest that color categories affect post-perceptual processing, but do not affect the perceptual representation of color.

  10. Perceptual uniformity of commonly used color spaces

    NASA Astrophysics Data System (ADS)

    Avanaki, Ali; Espig, Kathryn; Kimpe, Tom; Xthona, Albert; Marchessoux, Cedric; Rostang, Johan; Piepers, Bastian

    2014-03-01

    Use of color images in medical imaging has increased significantly the last few years. Color information is essential for applications such as ophthalmology, dermatology and clinical photography. Use of color at least brings benefits for other applications such as endoscopy, laparoscopy and digital pathology. Remarkably, as of today, there is no agreed standard on how color information needs to be visualized for medical applications. This lack of standardization results in large variability of how color images are visualized and it makes quality assurance a challenge. For this reason FDA and ICC recently organized a joint summit on color in medical imaging (CMI). At this summit, one of the suggestions was that modalities such as digital pathology could benefit from using a perceptually uniform color space (T. Kimpe, "Color Behavior of Medical Displays," CMI presentation, May 2013). Perceptually uniform spaces have already been used for many years in the radiology community where the DICOM GSDF standard provides linearity in luminance but not in color behavior. In this paper we quantify perceptual uniformity, using CIE's ΔE2000 as a color distance metric, of several color spaces that are typically used for medical applications. We applied our method to theoretical color spaces Gamma 1.8, 2.0, & 2.2, standard sRGB, and DICOM (correction LUT for gray applied to all primaries). In addition, we also measured color spaces (i.e., native behavior) of a high-end medical display (Barco Coronis Fusion 6MP DL, MDCC-6130), and a consumer display (Dell 1907FP). Our results indicate that sRGB & the native color space on the Barco Coronis Fusion exhibit the least non-uniformity within their group. However, the remaining degree of perceptual non-uniformity is still significant and there is room for improvement.

  11. Color Constancy in Two-Dimensional and Three-Dimensional Scenes: Effects of Viewing Methods and Surface Texture.

    PubMed

    Morimoto, Takuma; Mizokami, Yoko; Yaguchi, Hirohisa; Buck, Steven L

    2017-01-01

    There has been debate about how and why color constancy may be better in three-dimensional (3-D) scenes than in two-dimensional (2-D) scenes. Although some studies have shown better color constancy for 3-D conditions, the role of specific cues remains unclear. In this study, we compared color constancy for a 3-D miniature room (a real scene consisting of actual objects) and 2-D still images of that room presented on a monitor using three viewing methods: binocular viewing, monocular viewing, and head movement. We found that color constancy was better for the 3-D room; however, color constancy for the 2-D image improved when the viewing method caused the scene to be perceived more like a 3-D scene. Separate measurements of the perceptual 3-D effect of each viewing method also supported these results. An additional experiment comparing a miniature room and its image with and without texture suggested that surface texture of scene objects contributes to color constancy.

  12. Perceptual distortion analysis of color image VQ-based coding

    NASA Astrophysics Data System (ADS)

    Charrier, Christophe; Knoblauch, Kenneth; Cherifi, Hocine

    1997-04-01

    It is generally accepted that a RGB color image can be easily encoded by using a gray-scale compression technique on each of the three color planes. Such an approach, however, fails to take into account correlations existing between color planes and perceptual factors. We evaluated several linear and non-linear color spaces, some introduced by the CIE, compressed with the vector quantization technique for minimum perceptual distortion. To study these distortions, we measured contrast and luminance of the video framebuffer, to precisely control color. We then obtained psychophysical judgements to measure how well these methods work to minimize perceptual distortion in a variety of color space.

  13. Detecting perceptual groupings in textures by continuity considerations

    NASA Technical Reports Server (NTRS)

    Greene, Richard J.

    1990-01-01

    A generalization is presented for the second derivative of a Gaussian D(sup 2)G operator to apply to problems of perceptual organization involving textures. Extensions to other problems of perceptual organization are evident and a new research direction can be established. The technique presented is theoretically pleasing since it has the potential of unifying the entire area of image segmentation under the mathematical notion of continuity and presents a single algorithm to form perceptual groupings where many algorithms existed previously. The eventual impact on both the approach and technique of image processing segmentation operations could be significant.

  14. Color Constancy in Two-Dimensional and Three-Dimensional Scenes: Effects of Viewing Methods and Surface Texture

    PubMed Central

    Morimoto, Takuma; Mizokami, Yoko; Yaguchi, Hirohisa; Buck, Steven L.

    2017-01-01

    There has been debate about how and why color constancy may be better in three-dimensional (3-D) scenes than in two-dimensional (2-D) scenes. Although some studies have shown better color constancy for 3-D conditions, the role of specific cues remains unclear. In this study, we compared color constancy for a 3-D miniature room (a real scene consisting of actual objects) and 2-D still images of that room presented on a monitor using three viewing methods: binocular viewing, monocular viewing, and head movement. We found that color constancy was better for the 3-D room; however, color constancy for the 2-D image improved when the viewing method caused the scene to be perceived more like a 3-D scene. Separate measurements of the perceptual 3-D effect of each viewing method also supported these results. An additional experiment comparing a miniature room and its image with and without texture suggested that surface texture of scene objects contributes to color constancy. PMID:29238513

  15. Automatic Perceptual Color Map Generation for Realistic Volume Visualization

    PubMed Central

    Silverstein, Jonathan C.; Parsad, Nigel M.; Tsirline, Victor

    2008-01-01

    Advances in computed tomography imaging technology and inexpensive high performance computer graphics hardware are making high-resolution, full color (24-bit) volume visualizations commonplace. However, many of the color maps used in volume rendering provide questionable value in knowledge representation and are non-perceptual thus biasing data analysis or even obscuring information. These drawbacks, coupled with our need for realistic anatomical volume rendering for teaching and surgical planning, has motivated us to explore the auto-generation of color maps that combine natural colorization with the perceptual discriminating capacity of grayscale. As evidenced by the examples shown that have been created by the algorithm described, the merging of perceptually accurate and realistically colorized virtual anatomy appears to insightfully interpret and impartially enhance volume rendered patient data. PMID:18430609

  16. [Perceptual sharpness metric for visible and infrared color fusion images].

    PubMed

    Gao, Shao-Shu; Jin, Wei-Qi; Wang, Xia; Wang, Ling-Xue; Luo, Yuan

    2012-12-01

    For visible and infrared color fusion images, objective sharpness assessment model is proposed to measure the clarity of detail and edge definition of the fusion image. Firstly, the contrast sensitivity functions (CSF) of the human visual system is used to reduce insensitive frequency components under certain viewing conditions. Secondly, perceptual contrast model, which takes human luminance masking effect into account, is proposed based on local band-limited contrast model. Finally, the perceptual contrast is calculated in the region of interest (contains image details and edges) in the fusion image to evaluate image perceptual sharpness. Experimental results show that the proposed perceptual sharpness metrics provides better predictions, which are more closely matched to human perceptual evaluations, than five existing sharpness (blur) metrics for color images. The proposed perceptual sharpness metrics can evaluate the perceptual sharpness for color fusion images effectively.

  17. Perceptual Pragmatism and the Naturalized Ontology of Color.

    PubMed

    Chirimuuta, Mazviita

    2017-01-01

    This paper considers whether there can be any such thing as a naturalized metaphysics of color-any distillation of the commitments of perceptual science with regard to color ontology. I first make some observations about the kinds of philosophical commitments that sometimes bubble to the surface in the psychology and neuroscience of color. Unsurprisingly, because of the range of opinions expressed, an ontology of color cannot simply be read off from scientists' definitions and theoretical statements. I next consider two alternative routes. First, conceptual pluralism inspired by Mark Wilson's analysis of scientific representation. I argue that these findings leave the prospects for a naturalized color ontology rather dim. Second, I outline a naturalized epistemology of perception. I ask how the correctness and informativeness of perceptual states is understood by contemporary perceptual science. I argue that the detectionist ideal of correspondence should be replaced by the pragmatic ideal of usefulness. I argue that this result has significant implications for the metaphysics of color. Copyright © 2016 Cognitive Science Society, Inc.

  18. Perceptual Color Characterization of Cameras

    PubMed Central

    Vazquez-Corral, Javier; Connah, David; Bertalmío, Marcelo

    2014-01-01

    Color camera characterization, mapping outputs from the camera sensors to an independent color space, such as XY Z, is an important step in the camera processing pipeline. Until now, this procedure has been primarily solved by using a 3 × 3 matrix obtained via a least-squares optimization. In this paper, we propose to use the spherical sampling method, recently published by Finlayson et al., to perform a perceptual color characterization. In particular, we search for the 3 × 3 matrix that minimizes three different perceptual errors, one pixel based and two spatially based. For the pixel-based case, we minimize the CIE ΔE error, while for the spatial-based case, we minimize both the S-CIELAB error and the CID error measure. Our results demonstrate an improvement of approximately 3% for the ΔE error, 7% for the S-CIELAB error and 13% for the CID error measures. PMID:25490586

  19. Building perceptual color maps for visualizing interval data

    NASA Astrophysics Data System (ADS)

    Kalvin, Alan D.; Rogowitz, Bernice E.; Pelah, Adar; Cohen, Aron

    2000-06-01

    In visualization, a 'color map' maps a range of data values onto a scale of colors. However, unless a color map is e carefully constructed, visual artifacts can be produced. This problem has stimulated considerable interest in creating perceptually based color maps, that is, color maps where equal steps in data value are perceived as equal steps in the color map [Robertson (1988); Pizer (1981); Green (1992); Lefkowitz and Herman, 1992)]. In Rogowitz and Treinish, (1996, 1998) and in Bergman, Treinish and Rogowitz, (1995), we demonstrated that color maps based on luminance or saturation could be good candidates for satisfying this requirement. This work is based on the seminal work of S.S. Stevens (1966), who measured the perceived magnitude of different magnitudes of physical stimuli. He found that for many physical scales, including luminance (cd/m2) and saturation (the 'redness' of a long-wavelength light source), equal ratios in stimulus value produced equal ratios in perceptual magnitude. He interpreted this as indicating that there exists in human cognition a common scale for representing magnitude, and we scale the effects of different physical stimuli to this internal scale. In Rogowitz, Kalvin, Pelahb and Cohen (1999), we used a psychophysical technique to test this hypothesis as it applies to the creation of perceptually uniform color maps. We constructed color maps as trajectories through three-color spaces, a common computer graphics standard (uncalibrated HSV), a common perceptually-based engineering standard for creating visual stimuli (L*a*b*), and a space commonly used in the graphic arts (Munsell). For each space, we created color scales that varied linearly in hue, saturation, or luminance and measured the detectability of increments in hue, saturation or luminance for each of these color scales. We measured the amplitude of the just-detectable Gaussian increments at 20 different values along the range of each color map. For all three color spaces

  20. Pet fur color and texture classification

    NASA Astrophysics Data System (ADS)

    Yen, Jonathan; Mukherjee, Debarghar; Lim, SukHwan; Tretter, Daniel

    2007-01-01

    Object segmentation is important in image analysis for imaging tasks such as image rendering and image retrieval. Pet owners have been known to be quite vocal about how important it is to render their pets perfectly. We present here an algorithm for pet (mammal) fur color classification and an algorithm for pet (animal) fur texture classification. Per fur color classification can be applied as a necessary condition for identifying the regions in an image that may contain pets much like the skin tone classification for human flesh detection. As a result of the evolution, fur coloration of all mammals is caused by a natural organic pigment called Melanin and Melanin has only very limited color ranges. We have conducted a statistical analysis and concluded that mammal fur colors can be only in levels of gray or in two colors after the proper color quantization. This pet fur color classification algorithm has been applied for peteye detection. We also present here an algorithm for animal fur texture classification using the recently developed multi-resolution directional sub-band Contourlet transform. The experimental results are very promising as these transforms can identify regions of an image that may contain fur of mammals, scale of reptiles and feather of birds, etc. Combining the color and texture classification, one can have a set of strong classifiers for identifying possible animals in an image.

  1. Number of perceptually distinct surface colors in natural scenes.

    PubMed

    Marín-Franch, Iván; Foster, David H

    2010-09-30

    The ability to perceptually identify distinct surfaces in natural scenes by virtue of their color depends not only on the relative frequency of surface colors but also on the probabilistic nature of observer judgments. Previous methods of estimating the number of discriminable surface colors, whether based on theoretical color gamuts or recorded from real scenes, have taken a deterministic approach. Thus, a three-dimensional representation of the gamut of colors is divided into elementary cells or points which are spaced at one discrimination-threshold unit intervals and which are then counted. In this study, information-theoretic methods were used to take into account both differing surface-color frequencies and observer response uncertainty. Spectral radiances were calculated from 50 hyperspectral images of natural scenes and were represented in a perceptually almost uniform color space. The average number of perceptually distinct surface colors was estimated as 7.3 × 10(3), much smaller than that based on counting methods. This number is also much smaller than the number of distinct points in a scene that are, in principle, available for reliable identification under illuminant changes, suggesting that color constancy, or the lack of it, does not generally determine the limit on the use of color for surface identification.

  2. Illusory color mixing upon perceptual fading and filling-in does not result in 'forbidden colors'.

    PubMed

    Hsieh, P-J; Tse, P U

    2006-07-01

    A retinally stabilized object readily undergoes perceptual fading. It is commonly believed that the color of the apparently vanished object is filled in with the color of the background because the features of the filled-in area are determined by features located outside the stabilized boundary. Crane, H. D., & Piantanida, T. P. (1983) (On seeing reddish green and yellowish blue. Science, 221, 1078-1080) reported that the colors that are perceived upon full or partial perceptual fading can be 'forbidden' in the sense that they violate color opponency theory. For example, they claimed that their subjects could perceive "reddish greens" and "yellowish blues." Here we use visual stimuli composed of spatially alternating stripes of two different colors to investigate the characteristics of color mixing during perceptual filling-in, and to determine whether 'forbidden colors' really occur. Our results show that (1) the filled-in color is not solely determined by the background color, but can be the mixture of the background and the foreground color; (2) apparent color mixing can occur even when the two colors are presented to different eyes, implying that color mixing during filling-in is in part a cortical phenomenon; and (3) perceived colors are not 'forbidden colors' at all, but rather intermediate colors.

  3. Clustering document fragments using background color and texture information

    NASA Astrophysics Data System (ADS)

    Chanda, Sukalpa; Franke, Katrin; Pal, Umapada

    2012-01-01

    Forensic analysis of questioned documents sometimes can be extensively data intensive. A forensic expert might need to analyze a heap of document fragments and in such cases to ensure reliability he/she should focus only on relevant evidences hidden in those document fragments. Relevant document retrieval needs finding of similar document fragments. One notion of obtaining such similar documents could be by using document fragment's physical characteristics like color, texture, etc. In this article we propose an automatic scheme to retrieve similar document fragments based on visual appearance of document paper and texture. Multispectral color characteristics using biologically inspired color differentiation techniques are implemented here. This is done by projecting document color characteristics to Lab color space. Gabor filter-based texture analysis is used to identify document texture. It is desired that document fragments from same source will have similar color and texture. For clustering similar document fragments of our test dataset we use a Self Organizing Map (SOM) of dimension 5×5, where the document color and texture information are used as features. We obtained an encouraging accuracy of 97.17% from 1063 test images.

  4. Combining multiple features for color texture classification

    NASA Astrophysics Data System (ADS)

    Cusano, Claudio; Napoletano, Paolo; Schettini, Raimondo

    2016-11-01

    The analysis of color and texture has a long history in image analysis and computer vision. These two properties are often considered as independent, even though they are strongly related in images of natural objects and materials. Correlation between color and texture information is especially relevant in the case of variable illumination, a condition that has a crucial impact on the effectiveness of most visual descriptors. We propose an ensemble of hand-crafted image descriptors designed to capture different aspects of color textures. We show that the use of these descriptors in a multiple classifiers framework makes it possible to achieve a very high classification accuracy in classifying texture images acquired under different lighting conditions. A powerful alternative to hand-crafted descriptors is represented by features obtained with deep learning methods. We also show how the proposed combining strategy hand-crafted and convolutional neural networks features can be used together to further improve the classification accuracy. Experimental results on a food database (raw food texture) demonstrate the effectiveness of the proposed strategy.

  5. Atypicalities in Perceptual Adaptation in Autism Do Not Extend to Perceptual Causality

    PubMed Central

    Karaminis, Themelis; Turi, Marco; Neil, Louise; Badcock, Nicholas A.; Burr, David; Pellicano, Elizabeth

    2015-01-01

    A recent study showed that adaptation to causal events (collisions) in adults caused subsequent events to be less likely perceived as causal. In this study, we examined if a similar negative adaptation effect for perceptual causality occurs in children, both typically developing and with autism. Previous studies have reported diminished adaptation for face identity, facial configuration and gaze direction in children with autism. To test whether diminished adaptive coding extends beyond high-level social stimuli (such as faces) and could be a general property of autistic perception, we developed a child-friendly paradigm for adaptation of perceptual causality. We compared the performance of 22 children with autism with 22 typically developing children, individually matched on age and ability (IQ scores). We found significant and equally robust adaptation aftereffects for perceptual causality in both groups. There were also no differences between the two groups in their attention, as revealed by reaction times and accuracy in a change-detection task. These findings suggest that adaptation to perceptual causality in autism is largely similar to typical development and, further, that diminished adaptive coding might not be a general characteristic of autism at low levels of the perceptual hierarchy, constraining existing theories of adaptation in autism. PMID:25774507

  6. The mere exposure effect is sensitive to color information: evidence for color effects in a perceptual implicit memory test.

    PubMed

    Hupbach, Almut; Melzer, André; Hardt, Oliver

    2006-01-01

    Priming effects in perceptual tests of implicit memory are assumed to be perceptually specific. Surprisingly, changing object colors from study to test did not diminish priming in most previous studies. However, these studies used implicit tests that are based on object identification, which mainly depends on the analysis of the object shape and therefore operates color-independently. The present study shows that color effects can be found in perceptual implicit tests when the test task requires the processing of color information. In Experiment 1, reliable color priming was found in a mere exposure design (preference test). In Experiment 2, the preference test was contrasted with a conceptually driven color-choice test. Altering the shape of object from study to test resulted in significant priming in the color-choice test but eliminated priming in the preference test. Preference judgments thus largely depend on perceptual processes. In Experiment 3, the preference and the color-choice test were studied under explicit test instructions. Differences in reaction times between the implicit and the explicit test suggest that the implicit test results were not an artifact of explicit retrieval attempts. In contrast with previous assumptions, it is therefore concluded that color is part of the representation that mediates perceptual priming.

  7. Texture and color features for tile classification

    NASA Astrophysics Data System (ADS)

    Baldrich, Ramon; Vanrell, Maria; Villanueva, Juan J.

    1999-09-01

    In this paper we present the results of a preliminary computer vision system to classify the production of a ceramic tile industry. We focus on the classification of a specific type of tiles whose production can be affected by external factors, such as humidity, temperature, origin of clays and pigments. Variations on these uncontrolled factors provoke small differences in the color and the texture of the tiles that force to classify all the production. A constant and non- subjective classification would allow avoiding devolution from customers and unnecessary stock fragmentation. The aim of this work is to simulate the human behavior on this classification task by extracting a set of features from tile images. These features are induced by definitions from experts. To compute them we need to mix color and texture information and to define global and local measures. In this work, we do not seek a general texture-color representation, we only deal with textures formed by non-oriented colored-blobs randomly distributed. New samples are classified using Discriminant Analysis functions derived from known class tile samples. The last part of the paper is devoted to explain the correction of acquired images in order to avoid time and geometry illumination changes.

  8. Perceptually-Based Adaptive JPEG Coding

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Rosenholtz, Ruth; Null, Cynthia H. (Technical Monitor)

    1996-01-01

    An extension to the JPEG standard (ISO/IEC DIS 10918-3) allows spatial adaptive coding of still images. As with baseline JPEG coding, one quantization matrix applies to an entire image channel, but in addition the user may specify a multiplier for each 8 x 8 block, which multiplies the quantization matrix, yielding the new matrix for the block. MPEG 1 and 2 use much the same scheme, except there the multiplier changes only on macroblock boundaries. We propose a method for perceptual optimization of the set of multipliers. We compute the perceptual error for each block based upon DCT quantization error adjusted according to contrast sensitivity, light adaptation, and contrast masking, and pick the set of multipliers which yield maximally flat perceptual error over the blocks of the image. We investigate the bitrate savings due to this adaptive coding scheme and the relative importance of the different sorts of masking on adaptive coding.

  9. Color appearance of familiar objects: effects of object shape, texture, and illumination changes.

    PubMed

    Olkkonen, Maria; Hansen, Thorsten; Gegenfurtner, Karl R

    2008-05-26

    People perceive roughly constant surface colors despite large changes in illumination. The familiarity of colors of some natural objects might help achieve this feat through direct modulation of the objects' color appearance. Research on memory colors and color appearance has yielded controversial results and due to the employed methods has often confounded perceptual with semantic effects. We studied the effect of memory colors on color appearance by presenting photographs of fruit on a monitor under various simulated illuminations and by asking observers to make either achromatic or typical color settings without placing demands on short-term memory or semantic processing. In a control condition, we presented photographs of 3D fruit shapes without texture and 2D outline shapes. We found that (1) achromatic settings for fruit were systematically biased away from the gray point toward the opposite direction of a fruit's memory color; (2) the strength of the effect depended on the degree of naturalness of the stimuli; and (3) the effect was evident under all tested illuminations, being strongest for illuminations whose chromaticity was closest to the stimulus chromaticity. We conclude that the visual identity of an object has a measurable effect on color perception, and that this effect is robust under illuminant changes, indicating its potential significance as an additional mechanism for color constancy.

  10. Live texturing of augmented reality characters from colored drawings.

    PubMed

    Magnenat, Stéphane; Ngo, Dat Tien; Zünd, Fabio; Ryffel, Mattia; Noris, Gioacchino; Rothlin, Gerhard; Marra, Alessia; Nitti, Maurizio; Fua, Pascal; Gross, Markus; Sumner, Robert W

    2015-11-01

    Coloring books capture the imagination of children and provide them with one of their earliest opportunities for creative expression. However, given the proliferation and popularity of digital devices, real-world activities like coloring can seem unexciting, and children become less engaged in them. Augmented reality holds unique potential to impact this situation by providing a bridge between real-world activities and digital enhancements. In this paper, we present an augmented reality coloring book App in which children color characters in a printed coloring book and inspect their work using a mobile device. The drawing is detected and tracked, and the video stream is augmented with an animated 3-D version of the character that is textured according to the child's coloring. This is possible thanks to several novel technical contributions. We present a texturing process that applies the captured texture from a 2-D colored drawing to both the visible and occluded regions of a 3-D character in real time. We develop a deformable surface tracking method designed for colored drawings that uses a new outlier rejection algorithm for real-time tracking and surface deformation recovery. We present a content creation pipeline to efficiently create the 2-D and 3-D content. And, finally, we validate our work with two user studies that examine the quality of our texturing algorithm and the overall App experience.

  11. Improved opponent color local binary patterns: an effective local image descriptor for color texture classification

    NASA Astrophysics Data System (ADS)

    Bianconi, Francesco; Bello-Cerezo, Raquel; Napoletano, Paolo

    2018-01-01

    Texture classification plays a major role in many computer vision applications. Local binary patterns (LBP) encoding schemes have largely been proven to be very effective for this task. Improved LBP (ILBP) are conceptually simple, easy to implement, and highly effective LBP variants based on a point-to-average thresholding scheme instead of a point-to-point one. We propose the use of this encoding scheme for extracting intra- and interchannel features for color texture classification. We experimentally evaluated the resulting improved opponent color LBP alone and in concatenation with the ILBP of the local color contrast map on a set of image classification tasks over 9 datasets of generic color textures and 11 datasets of biomedical textures. The proposed approach outperformed other grayscale and color LBP variants in nearly all the datasets considered and proved competitive even against image features from last generation convolutional neural networks, particularly for the classification of biomedical images.

  12. Perceptual learning in sensorimotor adaptation.

    PubMed

    Darainy, Mohammad; Vahdat, Shahabeddin; Ostry, David J

    2013-11-01

    Motor learning often involves situations in which the somatosensory targets of movement are, at least initially, poorly defined, as for example, in learning to speak or learning the feel of a proper tennis serve. Under these conditions, motor skill acquisition presumably requires perceptual as well as motor learning. That is, it engages both the progressive shaping of sensory targets and associated changes in motor performance. In the present study, we test the idea that perceptual learning alters somatosensory function and in so doing produces changes to human motor performance and sensorimotor adaptation. Subjects in these experiments undergo perceptual training in which a robotic device passively moves the subject's arm on one of a set of fan-shaped trajectories. Subjects are required to indicate whether the robot moved the limb to the right or the left and feedback is provided. Over the course of training both the perceptual boundary and acuity are altered. The perceptual learning is observed to improve both the rate and extent of learning in a subsequent sensorimotor adaptation task and the benefits persist for at least 24 h. The improvement in the present studies varies systematically with changes in perceptual acuity and is obtained regardless of whether the perceptual boundary shift serves to systematically increase or decrease error on subsequent movements. The beneficial effects of perceptual training are found to be substantially dependent on reinforced decision-making in the sensory domain. Passive-movement training on its own is less able to alter subsequent learning in the motor system. Overall, this study suggests perceptual learning plays an integral role in motor learning.

  13. Bayesian Fusion of Color and Texture Segmentations

    NASA Technical Reports Server (NTRS)

    Manduchi, Roberto

    2000-01-01

    In many applications one would like to use information from both color and texture features in order to segment an image. We propose a novel technique to combine "soft" segmentations computed for two or more features independently. Our algorithm merges models according to a mean entropy criterion, and allows to choose the appropriate number of classes for the final grouping. This technique also allows to improve the quality of supervised classification based on one feature (e.g. color) by merging information from unsupervised segmentation based on another feature (e.g., texture.)

  14. Prediction of textural attributes using color values of banana (Musa sapientum) during ripening.

    PubMed

    Jaiswal, Pranita; Jha, Shyam Narayan; Kaur, Poonam Preet; Bhardwaj, Rishi; Singh, Ashish Kumar; Wadhawan, Vishakha

    2014-06-01

    Banana is an important sub-tropical fruit in international trade. It undergoes significant textural and color transformations during ripening process, which in turn influence the eating quality of the fruit. In present study, color ('L', 'a' and 'b' value) and textural attributes of bananas (peel, fruit and pulp firmness; pulp toughness; stickiness) were studied simultaneously using Hunter Color Lab and Texture Analyser, respectively, during ripening period of 10 days at ambient atmosphere. There was significant effect of ripening period on all the considered textural characteristics and color properties of bananas except color value 'b'. In general, textural descriptors (peel, fruit and pulp firmness; and pulp toughness) decreased during ripening except stickiness, while color values viz 'a' and 'b' increased with ripening barring 'L' value. Among various textural attributes, peel toughness and pulp firmness showed highest correlation (r) with 'a' value of banana peel. In order to predict textural properties using color values of banana, five types of equations (linear/polynomial/exponential/logarithmic/power) were fitted. Among them, polynomial equation was found to be the best fit (highest coefficient of determination, R(2)) for prediction of texture using color properties for bananas. The pulp firmness, peel toughness and pulp toughness showed R(2) above 0.84 with indicating its potentiality of the fitted equations for prediction of textural profile of bananas non-destructively using 'a' value.

  15. Depth image enhancement using perceptual texture priors

    NASA Astrophysics Data System (ADS)

    Bang, Duhyeon; Shim, Hyunjung

    2015-03-01

    A depth camera is widely used in various applications because it provides a depth image of the scene in real time. However, due to the limited power consumption, the depth camera presents severe noises, incapable of providing the high quality 3D data. Although the smoothness prior is often employed to subside the depth noise, it discards the geometric details so to degrade the distance resolution and hinder achieving the realism in 3D contents. In this paper, we propose a perceptual-based depth image enhancement technique that automatically recovers the depth details of various textures, using a statistical framework inspired by human mechanism of perceiving surface details by texture priors. We construct the database composed of the high quality normals. Based on the recent studies in human visual perception (HVP), we select the pattern density as a primary feature to classify textures. Upon the classification results, we match and substitute the noisy input normals with high quality normals in the database. As a result, our method provides the high quality depth image preserving the surface details. We expect that our work is effective to enhance the details of depth image from 3D sensors and to provide a high-fidelity virtual reality experience.

  16. Investigation of the effects of color on judgments of sweetness using a taste adaptation method.

    PubMed

    Hidaka, Souta; Shimoda, Kazumasa

    2014-01-01

    It has been reported that color can affect the judgment of taste. For example, a dark red color enhances the subjective intensity of sweetness. However, the underlying mechanisms of the effect of color on taste have not been fully investigated; in particular, it remains unclear whether the effect is based on cognitive/decisional or perceptual processes. Here, we investigated the effect of color on sweetness judgments using a taste adaptation method. A sweet solution whose color was subjectively congruent with sweetness was judged as sweeter than an uncolored sweet solution both before and after adaptation to an uncolored sweet solution. In contrast, subjective judgment of sweetness for uncolored sweet solutions did not differ between the conditions following adaptation to a colored sweet solution and following adaptation to an uncolored one. Color affected sweetness judgment when the target solution was colored, but the colored sweet solution did not modulate the magnitude of taste adaptation. Therefore, it is concluded that the effect of color on the judgment of taste would occur mainly in cognitive/decisional domains.

  17. Color and texture associations in voice-induced synesthesia

    PubMed Central

    Moos, Anja; Simmons, David; Simner, Julia; Smith, Rachel

    2013-01-01

    Voice-induced synesthesia, a form of synesthesia in which synesthetic perceptions are induced by the sounds of people's voices, appears to be relatively rare and has not been systematically studied. In this study we investigated the synesthetic color and visual texture perceptions experienced in response to different types of “voice quality” (e.g., nasal, whisper, falsetto). Experiences of three different groups—self-reported voice synesthetes, phoneticians, and controls—were compared using both qualitative and quantitative analysis in a study conducted online. Whilst, in the qualitative analysis, synesthetes used more color and texture terms to describe voices than either phoneticians or controls, only weak differences, and many similarities, between groups were found in the quantitative analysis. Notable consistent results between groups were the matching of higher speech fundamental frequencies with lighter and redder colors, the matching of “whispery” voices with smoke-like textures, and the matching of “harsh” and “creaky” voices with textures resembling dry cracked soil. These data are discussed in the light of current thinking about definitions and categorizations of synesthesia, especially in cases where individuals apparently have a range of different synesthetic inducers. PMID:24032023

  18. Perceptual Optimization of DCT Color Quantization Matrices

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Many image compression schemes employ a block Discrete Cosine Transform (DCT) and uniform quantization. Acceptable rate/distortion performance depends upon proper design of the quantization matrix. In previous work, we showed how to use a model of the visibility of DCT basis functions to design quantization matrices for arbitrary display resolutions and color spaces. Subsequently, we showed how to optimize greyscale quantization matrices for individual images, for optimal rate/perceptual distortion performance. Here we describe extensions of this optimization algorithm to color images.

  19. Toward a perceptual image quality assessment of color quantized images

    NASA Astrophysics Data System (ADS)

    Frackiewicz, Mariusz; Palus, Henryk

    2018-04-01

    Color image quantization is an important operation in the field of color image processing. In this paper, we consider new perceptual image quality metrics for assessment of quantized images. These types of metrics, e.g. DSCSI, MDSIs, MDSIm and HPSI achieve the highest correlation coefficients with MOS during tests on the six publicly available image databases. Research was limited to images distorted by two types of compression: JPG and JPG2K. Statistical analysis of correlation coefficients based on the Friedman test and post-hoc procedures showed that the differences between the four new perceptual metrics are not statistically significant.

  20. Just Noticeable Distortion Model and Its Application in Color Image Watermarking

    NASA Astrophysics Data System (ADS)

    Liu, Kuo-Cheng

    In this paper, a perceptually adaptive watermarking scheme for color images is proposed in order to achieve robustness and transparency. A new just noticeable distortion (JND) estimator for color images is first designed in the wavelet domain. The key issue of the JND model is to effectively integrate visual masking effects. The estimator is an extension to the perceptual model that is used in image coding for grayscale images. Except for the visual masking effects given coefficient by coefficient by taking into account the luminance content and the texture of grayscale images, the crossed masking effect given by the interaction between luminance and chrominance components and the effect given by the variance within the local region of the target coefficient are investigated such that the visibility threshold for the human visual system (HVS) can be evaluated. In a locally adaptive fashion based on the wavelet decomposition, the estimator applies to all subbands of luminance and chrominance components of color images and is used to measure the visibility of wavelet quantization errors. The subband JND profiles are then incorporated into the proposed color image watermarking scheme. Performance in terms of robustness and transparency of the watermarking scheme is obtained by means of the proposed approach to embed the maximum strength watermark while maintaining the perceptually lossless quality of the watermarked color image. Simulation results show that the proposed scheme with inserting watermarks into luminance and chrominance components is more robust than the existing scheme while retaining the watermark transparency.

  1. Disentangling perceptual from motor implicit sequence learning with a serial color-matching task.

    PubMed

    Gheysen, Freja; Gevers, Wim; De Schutter, Erik; Van Waelvelde, Hilde; Fias, Wim

    2009-08-01

    This paper contributes to the domain of implicit sequence learning by presenting a new version of the serial reaction time (SRT) task that allows unambiguously separating perceptual from motor learning. Participants matched the colors of three small squares with the color of a subsequently presented large target square. An identical sequential structure was tied to the colors of the target square (perceptual version, Experiment 1) or to the manual responses (motor version, Experiment 2). Short blocks of sequenced and randomized trials alternated and hence provided a continuous monitoring of the learning process. Reaction time measurements demonstrated clear evidence of independently learning perceptual and motor serial information, though revealed different time courses between both learning processes. No explicit awareness of the serial structure was needed for either of the two types of learning to occur. The paradigm introduced in this paper evidenced that perceptual learning can occur with SRT measurements and opens important perspectives for future imaging studies to answer the ongoing question, which brain areas are involved in the implicit learning of modality specific (motor vs. perceptual) or general serial order.

  2. A perceptual learning deficit in Chinese developmental dyslexia as revealed by visual texture discrimination training.

    PubMed

    Wang, Zhengke; Cheng-Lai, Alice; Song, Yan; Cutting, Laurie; Jiang, Yuzheng; Lin, Ou; Meng, Xiangzhi; Zhou, Xiaolin

    2014-08-01

    Learning to read involves discriminating between different written forms and establishing connections with phonology and semantics. This process may be partially built upon visual perceptual learning, during which the ability to process the attributes of visual stimuli progressively improves with practice. The present study investigated to what extent Chinese children with developmental dyslexia have deficits in perceptual learning by using a texture discrimination task, in which participants were asked to discriminate the orientation of target bars. Experiment l demonstrated that, when all of the participants started with the same initial stimulus-to-mask onset asynchrony (SOA) at 300 ms, the threshold SOA, adjusted according to response accuracy for reaching 80% accuracy, did not show a decrement over 5 days of training for children with dyslexia, whereas this threshold SOA steadily decreased over the training for the control group. Experiment 2 used an adaptive procedure to determine the threshold SOA for each participant during training. Results showed that both the group of dyslexia and the control group attained perceptual learning over the sessions in 5 days, although the threshold SOAs were significantly higher for the group of dyslexia than for the control group; moreover, over individual participants, the threshold SOA negatively correlated with their performance in Chinese character recognition. These findings suggest that deficits in visual perceptual processing and learning might, in part, underpin difficulty in reading Chinese. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Auditory-Perceptual Learning Improves Speech Motor Adaptation in Children

    PubMed Central

    Shiller, Douglas M.; Rochon, Marie-Lyne

    2015-01-01

    Auditory feedback plays an important role in children’s speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback, however it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5–7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children’s ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation. PMID:24842067

  4. On Adapting the Tensor Voting Framework to Robust Color Image Denoising

    NASA Astrophysics Data System (ADS)

    Moreno, Rodrigo; Garcia, Miguel Angel; Puig, Domenec; Julià, Carme

    This paper presents an adaptation of the tensor voting framework for color image denoising, while preserving edges. Tensors are used in order to encode the CIELAB color channels, the uniformity and the edginess of image pixels. A specific voting process is proposed in order to propagate color from a pixel to its neighbors by considering the distance between pixels, the perceptual color difference (by using an optimized version of CIEDE2000), a uniformity measurement and the likelihood of the pixels being impulse noise. The original colors are corrected with those encoded by the tensors obtained after the voting process. Peak to noise ratios and visual inspection show that the proposed methodology has a better performance than state-of-the-art techniques.

  5. Utilizing typical color appearance models to represent perceptual brightness and colorfulness for digital images

    NASA Astrophysics Data System (ADS)

    Gong, Rui; Wang, Qing; Shao, Xiaopeng; Zhou, Conghao

    2016-12-01

    This study aims to expand the applications of color appearance models to representing the perceptual attributes for digital images, which supplies more accurate methods for predicting image brightness and image colorfulness. Two typical models, i.e., the CIELAB model and the CIECAM02, were involved in developing algorithms to predict brightness and colorfulness for various images, in which three methods were designed to handle pixels of different color contents. Moreover, massive visual data were collected from psychophysical experiments on two mobile displays under three lighting conditions to analyze the characteristics of visual perception on these two attributes and to test the prediction accuracy of each algorithm. Afterward, detailed analyses revealed that image brightness and image colorfulness were predicted well by calculating the CIECAM02 parameters of lightness and chroma; thus, the suitable methods for dealing with different color pixels were determined for image brightness and image colorfulness, respectively. This study supplies an example of enlarging color appearance models to describe image perception.

  6. When product designers use perceptually based color tools

    NASA Astrophysics Data System (ADS)

    Bender, Walter R.

    1998-07-01

    Palette synthesis and analysis tools have been built based upon a model of color experience. This model adjusts formal compositional elements such as hue, value, chroma, and their contrasts, as well as size and proportion. Clothing and household product designers were given these tools to give guidance to their selection of seasonal palettes for use in production of the private-label merchandise of a large retail chain. The designers chose base palettes. Accents to these palettes were generated with and without the aid of the color tools. These palettes are compared by using perceptual metrics and interviews. The results are presented.

  7. When product designers use perceptually based color tools

    NASA Astrophysics Data System (ADS)

    Bender, Walter R.

    2001-01-01

    Palette synthesis and analysis tools have been built based upon a model of color experience. This model adjusts formal compositional elements such as hue, value, chroma, and their contrasts, as well as size and proportion. Clothing and household product designers were given these tools to guide their selection of seasonal palettes in the production of the private-label merchandise in a large retail chain. The designers chose base palettes. Accents to these palettes were generated with and without the aid of the color tools. These palettes are compared by using perceptual metrics and interviews. The results are presented.

  8. Perceptual issues for color helmet-mounted displays: luminance and color contrast requirements

    NASA Astrophysics Data System (ADS)

    Harding, Thomas H.; Rash, Clarence E.; Lattimore, Morris R.; Statz, Jonathan; Martin, John S.

    2016-05-01

    Color is one of the latest design characteristics of helmet-mounted displays (HMDs). It's inclusion in design specifications is based on two suppositions: 1) color provides an additional method of encoding information, and 2) color provides a more realistic, and hence more intuitive, presentation of information, especially pilotage imagery. To some degree, these two perceived advantages have been validated with head-down panel-mounted displays, although not without a few problems associated with visual physiology and perception. These problems become more prevalent when the user population expands beyond military aviators to a general user population, of which a significant portion may have color vision deficiencies. When color is implemented in HMDs, which are eyes-out, see-through displays, visual perception issues become an increased concern. A major confound with HMDs is their inherent see-through (transparent) property. The result is color in the displayed image combines with color from the outside (or in-cockpit) world, possibly producing a false perception of either or both images. While human-factors derived guidelines based on trial and error have been developed, color HMD systems still place more emphasis on colorimetric than perceptual standards. This paper identifies the luminance and color contrast requirements for see-through HMDs. Also included is a discussion of ambient scene metrics and the choice of symbology color.

  9. Towards representation of a perceptual color manifold using associative memory for color constancy.

    PubMed

    Seow, Ming-Jung; Asari, Vijayan K

    2009-01-01

    In this paper, we propose the concept of a manifold of color perception through empirical observation that the center-surround properties of images in a perceptually similar environment define a manifold in the high dimensional space. Such a manifold representation can be learned using a novel recurrent neural network based learning algorithm. Unlike the conventional recurrent neural network model in which the memory is stored in an attractive fixed point at discrete locations in the state space, the dynamics of the proposed learning algorithm represent memory as a nonlinear line of attraction. The region of convergence around the nonlinear line is defined by the statistical characteristics of the training data. This learned manifold can then be used as a basis for color correction of the images having different color perception to the learned color perception. Experimental results show that the proposed recurrent neural network learning algorithm is capable of color balance the lighting variations in images captured in different environments successfully.

  10. Iris texture traits show associations with iris color and genomic ancestry.

    PubMed

    Quillen, Ellen E; Guiltinan, Jenna S; Beleza, Sandra; Rocha, Jorge; Pereira, Rinaldo W; Shriver, Mark D

    2011-01-01

    This study seeks to identify associations among genomic biogeographic ancestry (BGA), quantitative iris color, and iris texture traits contributing to population-level variation in these phenotypes. DNA and iris photographs were collected from 300 individuals across three variably admixed populations (Portugal, Brazil, and Cape Verde). Two raters scored the photos for pigmentation spots, Fuchs' crypts, contraction furrows, and Wolflinn nodes. Iris color was quantified from RGB values. Maximum likelihood estimates of individual BGA were calculated from 176 ancestry informative markers. Pigmentation spots, Fuchs' crypts, contraction furrows, and iris color show significant positive correlation with increasing European BGA. Only contraction furrows are correlated with iris color. The relationship between BGA and iris texture illustrates a genetic contribution to this population-level variation. Copyright © 2011 Wiley-Liss, Inc.

  11. Effects of Perceptual and Contextual Enrichment on Visual Confrontation Naming in Adult Aging

    PubMed Central

    Rogalski, Yvonne; Peelle, Jonathan E.; Reilly, Jamie

    2013-01-01

    Purpose The purpose of this study was to determine the effects of enriching line drawings with color/texture and environmental context as a facilitator of naming speed and accuracy in older adults. Method Twenty young and 23 older adults named high-frequency picture stimuli from the Boston Naming Test (Kaplan, Goodglass, & Weintraub, 2001) under three conditions: (a) black-and-white items, (b) colorized-texturized items, and (c) scene-primed colored items (e.g., “hammock” preceded 1,000 ms by a backyard scene). Results With respect to speeded naming latencies, mixed-model analyses of variance revealed that young adults did not benefit from colorization-texturization but did show scene-priming effects. In contrast, older adults failed to show facilitation effects from either colorized-texturized or scene-primed items. Moreover, older adults were consistently slower to initiate naming than were their younger counterparts across all conditions. Conclusions Perceptual and contextual enrichment of sparse line drawings does not appear to facilitate visual confrontation naming in older adults, whereas younger adults do tend to show benefits of scene priming. We interpret these findings as generally supportive of a processing speed account of age-related object picture-naming difficulty. PMID:21498581

  12. High-speed sorting of grains by color and surface texture

    USDA-ARS?s Scientific Manuscript database

    A high-speed, low-cost, image-based sorting device was developed to detect and separate grains with different colors/textures. The device directly combines a complementary metal–oxide–semiconductor (CMOS) color image sensor with a field-programmable gate array (FPGA) that was programmed to execute ...

  13. Perceptual Fading without Retinal Adaptation

    ERIC Educational Resources Information Center

    Hsieh, Po-Jang; Colas, Jaron T.

    2012-01-01

    A retinally stabilized object readily undergoes perceptual fading and disappears from consciousness. This startling phenomenon is commonly believed to arise from local bottom-up sensory adaptation to edge information that occurs early in the visual pathway, such as in the lateral geniculate nucleus of the thalamus or retinal ganglion cells. Here…

  14. Memory color of natural familiar objects: effects of surface texture and 3-D shape.

    PubMed

    Vurro, Milena; Ling, Yazhu; Hurlbert, Anya C

    2013-06-28

    Natural objects typically possess characteristic contours, chromatic surface textures, and three-dimensional shapes. These diagnostic features aid object recognition, as does memory color, the color most associated in memory with a particular object. Here we aim to determine whether polychromatic surface texture, 3-D shape, and contour diagnosticity improve memory color for familiar objects, separately and in combination. We use solid three-dimensional familiar objects rendered with their natural texture, which participants adjust in real time to match their memory color for the object. We analyze mean, accuracy, and precision of the memory color settings relative to the natural color of the objects under the same conditions. We find that in all conditions, memory colors deviate slightly but significantly in the same direction from the natural color. Surface polychromaticity, shape diagnosticity, and three dimensionality each improve memory color accuracy, relative to uniformly colored, generic, or two-dimensional shapes, respectively. Shape diagnosticity improves the precision of memory color also, and there is a trend for polychromaticity to do so as well. Differently from other studies, we find that the object contour alone also improves memory color. Thus, enhancing the naturalness of the stimulus, in terms of either surface or shape properties, enhances the accuracy and precision of memory color. The results support the hypothesis that memory color representations are polychromatic and are synergistically linked with diagnostic shape representations.

  15. Perceptual load in sport and the heuristic value of the perceptual load paradigm in examining expertise-related perceptual-cognitive adaptations.

    PubMed

    Furley, Philip; Memmert, Daniel; Schmid, Simone

    2013-03-01

    In two experiments, we transferred perceptual load theory to the dynamic field of team sports and tested the predictions derived from the theory using a novel task and stimuli. We tested a group of college students (N = 33) and a group of expert team sport players (N = 32) on a general perceptual load task and a complex, soccer-specific perceptual load task in order to extend the understanding of the applicability of perceptual load theory and further investigate whether distractor interference may differ between the groups, as the sport-specific processing task may not exhaust the processing capacity of the expert participants. In both, the general and the specific task, the pattern of results supported perceptual load theory and demonstrates that the predictions of the theory also transfer to more complex, unstructured situations. Further, perceptual load was the only determinant of distractor processing, as we neither found expertise effects in the general perceptual load task nor the sport-specific task. We discuss the heuristic utility of using response-competition paradigms for studying both general and domain-specific perceptual-cognitive adaptations.

  16. Influence of Perceptual Saliency Hierarchy on Learning of Language Structures: An Artificial Language Learning Experiment

    PubMed Central

    Gong, Tao; Lam, Yau W.; Shuai, Lan

    2016-01-01

    Psychological experiments have revealed that in normal visual perception of humans, color cues are more salient than shape cues, which are more salient than textural patterns. We carried out an artificial language learning experiment to study whether such perceptual saliency hierarchy (color > shape > texture) influences the learning of orders regulating adjectives of involved visual features in a manner either congruent (expressing a salient feature in a salient part of the form) or incongruent (expressing a salient feature in a less salient part of the form) with that hierarchy. Results showed that within a few rounds of learning participants could learn the compositional segments encoding the visual features and the order between them, generalize the learned knowledge to unseen instances with the same or different orders, and show learning biases for orders that are congruent with the perceptual saliency hierarchy. Although the learning performances for both the biased and unbiased orders became similar given more learning trials, our study confirms that this type of individual perceptual constraint could contribute to the structural configuration of language, and points out that such constraint, as well as other factors, could collectively affect the structural diversity in languages. PMID:28066281

  17. Influence of Perceptual Saliency Hierarchy on Learning of Language Structures: An Artificial Language Learning Experiment.

    PubMed

    Gong, Tao; Lam, Yau W; Shuai, Lan

    2016-01-01

    Psychological experiments have revealed that in normal visual perception of humans, color cues are more salient than shape cues, which are more salient than textural patterns. We carried out an artificial language learning experiment to study whether such perceptual saliency hierarchy (color > shape > texture) influences the learning of orders regulating adjectives of involved visual features in a manner either congruent (expressing a salient feature in a salient part of the form) or incongruent (expressing a salient feature in a less salient part of the form) with that hierarchy. Results showed that within a few rounds of learning participants could learn the compositional segments encoding the visual features and the order between them, generalize the learned knowledge to unseen instances with the same or different orders, and show learning biases for orders that are congruent with the perceptual saliency hierarchy. Although the learning performances for both the biased and unbiased orders became similar given more learning trials, our study confirms that this type of individual perceptual constraint could contribute to the structural configuration of language, and points out that such constraint, as well as other factors, could collectively affect the structural diversity in languages.

  18. Adaptive and perceptual learning technologies in medical education and training.

    PubMed

    Kellman, Philip J

    2013-10-01

    Recent advances in the learning sciences offer remarkable potential to improve medical education and maximize the benefits of emerging medical technologies. This article describes 2 major innovation areas in the learning sciences that apply to simulation and other aspects of medical learning: Perceptual learning (PL) and adaptive learning technologies. PL technology offers, for the first time, systematic, computer-based methods for teaching pattern recognition, structural intuition, transfer, and fluency. Synergistic with PL are new adaptive learning technologies that optimize learning for each individual, embed objective assessment, and implement mastery criteria. The author describes the Adaptive Response-Time-based Sequencing (ARTS) system, which uses each learner's accuracy and speed in interactive learning to guide spacing, sequencing, and mastery. In recent efforts, these new technologies have been applied in medical learning contexts, including adaptive learning modules for initial medical diagnosis and perceptual/adaptive learning modules (PALMs) in dermatology, histology, and radiology. Results of all these efforts indicate the remarkable potential of perceptual and adaptive learning technologies, individually and in combination, to improve learning in a variety of medical domains. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  19. Cortical Double-Opponent Cells in Color Perception: Perceptual Scaling and Chromatic Visual Evoked Potentials.

    PubMed

    Nunez, Valerie; Shapley, Robert M; Gordon, James

    2018-01-01

    In the early visual cortex V1, there are currently only two known neural substrates for color perception: single-opponent and double-opponent cells. Our aim was to explore the relative contributions of these neurons to color perception. We measured the perceptual scaling of color saturation for equiluminant color checkerboard patterns (designed to stimulate double-opponent neurons preferentially) and uniformly colored squares (designed to stimulate only single-opponent neurons) at several cone contrasts. The spatially integrative responses of single-opponent neurons would produce the same response magnitude for checkerboards as for uniform squares of the same space-averaged cone contrast. However, perceived saturation of color checkerboards was higher than for the corresponding squares. The perceptual results therefore imply that double-opponent cells are involved in color perception of patterns. We also measured the chromatic visual evoked potential (cVEP) produced by the same stimuli; checkerboard cVEPs were much larger than those for corresponding squares, implying that double-opponent cells also contribute to the cVEP response. The total Fourier power of the cVEP grew sublinearly with cone contrast. However, the 6-Hz Fourier component's power grew linearly with contrast-like saturation perception. This may also indicate that cortical coding of color depends on response dynamics.

  20. Cortical Double-Opponent Cells in Color Perception: Perceptual Scaling and Chromatic Visual Evoked Potentials

    PubMed Central

    Shapley, Robert M.; Gordon, James

    2018-01-01

    In the early visual cortex V1, there are currently only two known neural substrates for color perception: single-opponent and double-opponent cells. Our aim was to explore the relative contributions of these neurons to color perception. We measured the perceptual scaling of color saturation for equiluminant color checkerboard patterns (designed to stimulate double-opponent neurons preferentially) and uniformly colored squares (designed to stimulate only single-opponent neurons) at several cone contrasts. The spatially integrative responses of single-opponent neurons would produce the same response magnitude for checkerboards as for uniform squares of the same space-averaged cone contrast. However, perceived saturation of color checkerboards was higher than for the corresponding squares. The perceptual results therefore imply that double-opponent cells are involved in color perception of patterns. We also measured the chromatic visual evoked potential (cVEP) produced by the same stimuli; checkerboard cVEPs were much larger than those for corresponding squares, implying that double-opponent cells also contribute to the cVEP response. The total Fourier power of the cVEP grew sublinearly with cone contrast. However, the 6-Hz Fourier component’s power grew linearly with contrast-like saturation perception. This may also indicate that cortical coding of color depends on response dynamics. PMID:29375753

  1. Interpretation of the rainbow color scale for quantitative medical imaging: perceptually linear color calibration (CSDF) versus DICOM GSDF

    NASA Astrophysics Data System (ADS)

    Chesterman, Frédérique; Manssens, Hannah; Morel, Céline; Serrell, Guillaume; Piepers, Bastian; Kimpe, Tom

    2017-03-01

    Medical displays for primary diagnosis are calibrated to the DICOM GSDF1 but there is no accepted standard today that describes how display systems for medical modalities involving color should be calibrated. Recently the Color Standard Display Function3,4 (CSDF), a calibration using the CIEDE2000 color difference metric to make a display as perceptually linear as possible has been proposed. In this work we present the results of a first observer study set up to investigate the interpretation accuracy of a rainbow color scale when a medical display is calibrated to CSDF versus DICOM GSDF and a second observer study set up to investigate the detectability of color differences when a medical display is calibrated to CSDF, DICOM GSDF and sRGB. The results of the first study indicate that the error when interpreting a rainbow color scale is lower for CSDF than for DICOM GSDF with statistically significant difference (Mann-Whitney U test) for eight out of twelve observers. The results correspond to what is expected based on CIEDE2000 color differences between consecutive colors along the rainbow color scale for both calibrations. The results of the second study indicate a statistical significant improvement in detecting color differences when a display is calibrated to CSDF compared to DICOM GSDF and a (non-significant) trend indicating improved detection for CSDF compared to sRGB. To our knowledge this is the first work that shows the added value of a perceptual color calibration method (CSDF) in interpreting medical color images using the rainbow color scale. Improved interpretation of the rainbow color scale may be beneficial in the area of quantitative medical imaging (e.g. PET SUV, quantitative MRI and CT and doppler US), where a medical specialist needs to interpret quantitative medical data based on a color scale and/or detect subtle color differences and where improved interpretation accuracy and improved detection of color differences may contribute to a better

  2. Transfer of perceptual-motor training and the space adaptation syndrome

    NASA Technical Reports Server (NTRS)

    Kennedy, R. S.; Berbaum, K. S.; Williams, M. C.; Brannan, J.; Welch, R. B.

    1987-01-01

    Perceptual cue conflict may be the basis for the symptoms which are experienced by space travelers in microgravity conditions. Recovery has been suggested to take place after perceptual modification or reinterpretation. To elucidate this process, 10 subjects who repeatedly experienced a visual/vestibular conflict over trials and days, were tested in a similar but not identical perceptual situation (pseudo-Coriolis) to determine whether any savings in perceptual adaptation had occurred as compared to an unpracticed control group (N = 40). The practiced subjects experienced lessening dizziness and ataxia within and over sessions.

  3. Perceptual asymmetry in texture perception.

    PubMed

    Williams, D; Julesz, B

    1992-07-15

    A fundamental property of human visual perception is our ability to distinguish between textures. A concerted effort has been made to account for texture segregation in terms of linear spatial filter models and their nonlinear extensions. However, for certain texture pairs the ease of discrimination changes when the role of figure and ground are reversed. This asymmetry poses a problem for both linear and nonlinear models. We have isolated a property of texture perception that can account for this asymmetry in discrimination: subjective closure. This property, which is also responsible for visual illusions, appears to be explainable by early visual processes alone. Our results force a reexamination of the process of human texture segregation and of some recent models that were introduced to explain it.

  4. Conjunction of color and form without attention: evidence from an orientation-contingent color aftereffect.

    PubMed

    Houck, M R; Hoffman, J E

    1986-05-01

    According to feature-integration theory (Treisman & Gelade, 1980), separable features such as color and shape exist in separate maps in preattentive vision and can be integrated only through the use of spatial attention. Many perceptual aftereffects, however, which are also assumed to reflect the features available in preattentive vision, are sensitive to conjunctions of features. One possible resolution of these views holds that adaptation to conjunctions depends on spatial attention. We tested this proposition by presenting observers with gratings varying in color and orientation. The resulting McCollough aftereffects were independent of whether the adaptation stimuli were presented inside or outside of the focus of spatial attention. Therefore, color and shape appear to be conjoined preattentively, when perceptual aftereffects are used as the measure. These same stimuli, however, appeared to be separable in two additional experiments that required observers to search for gratings of a specified color and orientation. These results show that different experimental procedures may be tapping into different stages of preattentive vision.

  5. Perceptual Learning of Time-Compressed Speech: More than Rapid Adaptation

    PubMed Central

    Banai, Karen; Lavner, Yizhar

    2012-01-01

    Background Time-compressed speech, a form of rapidly presented speech, is harder to comprehend than natural speech, especially for non-native speakers. Although it is possible to adapt to time-compressed speech after a brief exposure, it is not known whether additional perceptual learning occurs with further practice. Here, we ask whether multiday training on time-compressed speech yields more learning than that observed during the initial adaptation phase and whether the pattern of generalization following successful learning is different than that observed with initial adaptation only. Methodology/Principal Findings Two groups of non-native Hebrew speakers were tested on five different conditions of time-compressed speech identification in two assessments conducted 10–14 days apart. Between those assessments, one group of listeners received five practice sessions on one of the time-compressed conditions. Between the two assessments, trained listeners improved significantly more than untrained listeners on the trained condition. Furthermore, the trained group generalized its learning to two untrained conditions in which different talkers presented the trained speech materials. In addition, when the performance of the non-native speakers was compared to that of a group of naïve native Hebrew speakers, performance of the trained group was equivalent to that of the native speakers on all conditions on which learning occurred, whereas performance of the untrained non-native listeners was substantially poorer. Conclusions/Significance Multiday training on time-compressed speech results in significantly more perceptual learning than brief adaptation. Compared to previous studies of adaptation, the training induced learning is more stimulus specific. Taken together, the perceptual learning of time-compressed speech appears to progress from an initial, rapid adaptation phase to a subsequent prolonged and more stimulus specific phase. These findings are consistent with

  6. Relation between consumers' perceptions of color and texture of dairy desserts and instrumental measurements using a generalized procrustes analysis.

    PubMed

    González-Tomás, L; Costell, E

    2006-12-01

    Consumers' perceptions of the color and texture of 8 commercial vanilla dairy desserts were studied and related to color and rheological measurements. First, the 8 desserts were evaluated by a group of consumers by means of the Free Choice Profile. For both color and texture, a 2-dimensional solution was chosen, with dimension 1 highly related to yellow color intensity in the case of color and to thickness in the case of texture. Second, mechanical spectra, flow behavior, and instrumental color were determined. All the samples showed a time-dependent and shear-thinning flow and a mechanical spectrum typical of a weak gel. Differences were found in the flow index, in the apparent viscosity at 10 s(-1), and in the values of the storage modulus, the loss modulus, the loss angle tangent, and the complex viscosity at 1 Hz, as well as in the color parameters. Finally, sensory and instrumental relationships were investigated by a generalized Procrustes analysis. For both color and texture, a 3-dimensional solution explained a high percentage of the total variance (>80%). In these particular samples, the instrumental color parameters provided more accurate information on consumers' color perceptions than was provided by the rheological parameters of consumers' perceptions of texture.

  7. Perceptual asynchrony between color and motion with a single direction change.

    PubMed

    Linares, Daniel; López-Moliner, Joan

    2006-08-23

    When a stimulus repeatedly and rapidly changes color (e.g., between red and green) and motion direction (e.g., upwards and downwards) with the same frequency, it was found that observers were most likely to pair colors and motion directions when the direction changes lead the color changes by approximately 80 ms. This is the color-motion asynchrony illusion. According to the differential processing time model, the illusion is explained because the neural activity leading to the perceptual experience of motion requires more time than that of color. Alternatively, the time marker model attributes the misbinding to a failure in matching different sorts of changes at rapid alternations. Here, running counter to the time marker model, we demonstrate that the illusion can arise with a single direction change. Using this simplified version of the illusion we also show that, although some form of visual masking takes place between colors, the measured asynchrony genuinely reflects processing time differences.

  8. Working memory is related to perceptual processing: a case from color perception.

    PubMed

    Allen, Elizabeth C; Beilock, Sian L; Shevell, Steven K

    2011-07-01

    We explored the relation between individual differences in working memory (WM) and color constancy, the phenomenon of color perception that allows us to perceive the color of an object as relatively stable under changes in illumination. Successive color constancy (measured by first viewing a colored surface under a particular illumination and later recalling it under a new illumination) was better for higher WM individuals than for lower WM individuals. Moreover, the magnitude of this WM difference depended on how much contextual information was available in the scene, which typically improves color constancy. By contrast, simple color memory, measured by viewing and recalling a colored surface under the same illumination, showed no significant relation to WM. This study reveals a relation between WM and a low-level perceptual process not previously thought to operate within the confines of attentional control, and it provides a first account of the individual differences in color constancy known about for decades.

  9. Working memory is related to perceptual processing: A case from color perception

    PubMed Central

    Allen, Elizabeth C.; Beilock, Sian L.; Shevell, Steven K.

    2011-01-01

    We explored the relation between individual differences in working memory (WM) and color constancy, the phenomenon of color perception that allows us to perceive the color of an object as relatively stable under changes in illumination. Successive color constancy (measured by first viewing a colored surface under a particular illumination and later recalling it under a new illumination) was better for higher-WM individuals than for lower-WM individuals. Moreover, the magnitude of this WM difference depended on how much contextual information was available in the scene, which typically improves color constancy. By contrast, simple color memory, measured by viewing and recalling a colored surface under the same illumination, showed no significant relation to WM. This study reveals a relation between WM and a low-level perceptual process not previously thought to operate within the confines of attentional control, and provides a first account of the individual differences in color constancy known about for decades. PMID:21480748

  10. Audiovisual cues benefit recognition of accented speech in noise but not perceptual adaptation

    PubMed Central

    Banks, Briony; Gowen, Emma; Munro, Kevin J.; Adank, Patti

    2015-01-01

    Perceptual adaptation allows humans to recognize different varieties of accented speech. We investigated whether perceptual adaptation to accented speech is facilitated if listeners can see a speaker’s facial and mouth movements. In Study 1, participants listened to sentences in a novel accent and underwent a period of training with audiovisual or audio-only speech cues, presented in quiet or in background noise. A control group also underwent training with visual-only (speech-reading) cues. We observed no significant difference in perceptual adaptation between any of the groups. To address a number of remaining questions, we carried out a second study using a different accent, speaker and experimental design, in which participants listened to sentences in a non-native (Japanese) accent with audiovisual or audio-only cues, without separate training. Participants’ eye gaze was recorded to verify that they looked at the speaker’s face during audiovisual trials. Recognition accuracy was significantly better for audiovisual than for audio-only stimuli; however, no statistical difference in perceptual adaptation was observed between the two modalities. Furthermore, Bayesian analysis suggested that the data supported the null hypothesis. Our results suggest that although the availability of visual speech cues may be immediately beneficial for recognition of unfamiliar accented speech in noise, it does not improve perceptual adaptation. PMID:26283946

  11. Audiovisual cues benefit recognition of accented speech in noise but not perceptual adaptation.

    PubMed

    Banks, Briony; Gowen, Emma; Munro, Kevin J; Adank, Patti

    2015-01-01

    Perceptual adaptation allows humans to recognize different varieties of accented speech. We investigated whether perceptual adaptation to accented speech is facilitated if listeners can see a speaker's facial and mouth movements. In Study 1, participants listened to sentences in a novel accent and underwent a period of training with audiovisual or audio-only speech cues, presented in quiet or in background noise. A control group also underwent training with visual-only (speech-reading) cues. We observed no significant difference in perceptual adaptation between any of the groups. To address a number of remaining questions, we carried out a second study using a different accent, speaker and experimental design, in which participants listened to sentences in a non-native (Japanese) accent with audiovisual or audio-only cues, without separate training. Participants' eye gaze was recorded to verify that they looked at the speaker's face during audiovisual trials. Recognition accuracy was significantly better for audiovisual than for audio-only stimuli; however, no statistical difference in perceptual adaptation was observed between the two modalities. Furthermore, Bayesian analysis suggested that the data supported the null hypothesis. Our results suggest that although the availability of visual speech cues may be immediately beneficial for recognition of unfamiliar accented speech in noise, it does not improve perceptual adaptation.

  12. Reliable Adaptive Video Streaming Driven by Perceptual Semantics for Situational Awareness

    PubMed Central

    Pimentel-Niño, M. A.; Saxena, Paresh; Vazquez-Castro, M. A.

    2015-01-01

    A novel cross-layer optimized video adaptation driven by perceptual semantics is presented. The design target is streamed live video to enhance situational awareness in challenging communications conditions. Conventional solutions for recreational applications are inadequate and novel quality of experience (QoE) framework is proposed which allows fully controlled adaptation and enables perceptual semantic feedback. The framework relies on temporal/spatial abstraction for video applications serving beyond recreational purposes. An underlying cross-layer optimization technique takes into account feedback on network congestion (time) and erasures (space) to best distribute available (scarce) bandwidth. Systematic random linear network coding (SRNC) adds reliability while preserving perceptual semantics. Objective metrics of the perceptual features in QoE show homogeneous high performance when using the proposed scheme. Finally, the proposed scheme is in line with content-aware trends, by complying with information-centric-networking philosophy and architecture. PMID:26247057

  13. Visual texture perception via graph-based semi-supervised learning

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Dong, Junyu; Zhong, Guoqiang

    2018-04-01

    Perceptual features, for example direction, contrast and repetitiveness, are important visual factors for human to perceive a texture. However, it needs to perform psychophysical experiment to quantify these perceptual features' scale, which requires a large amount of human labor and time. This paper focuses on the task of obtaining perceptual features' scale of textures by small number of textures with perceptual scales through a rating psychophysical experiment (what we call labeled textures) and a mass of unlabeled textures. This is the scenario that the semi-supervised learning is naturally suitable for. This is meaningful for texture perception research, and really helpful for the perceptual texture database expansion. A graph-based semi-supervised learning method called random multi-graphs, RMG for short, is proposed to deal with this task. We evaluate different kinds of features including LBP, Gabor, and a kind of unsupervised deep features extracted by a PCA-based deep network. The experimental results show that our method can achieve satisfactory effects no matter what kind of texture features are used.

  14. FMRI-adaptation to highly-rendered color photographs of animals and manipulable artifacts during a classification task.

    PubMed

    Chouinard, Philippe A; Goodale, Melvyn A

    2012-02-01

    We used fMRI to identify brain areas that adapted to either animals or manipulable artifacts while participants classified highly-rendered color photographs into subcategories. Several key brain areas adapted more strongly to one class of objects compared to the other. Namely, we observed stronger adaptation for animals in the lingual gyrus bilaterally, which are known to analyze the color of objects, and in the right frontal operculum and in the anterior insular cortex bilaterally, which are known to process emotional content. In contrast, the left anterior intraparietal sulcus, which is important for configuring the hand to match the three-dimensional structure of objects during grasping, adapted more strongly to manipulable artifacts. Contrary to what a previous study has found using gray-scale photographs, we did not replicate categorical-specific adaptation in the lateral fusiform gyrus for animals and categorical-specific adaptation in the medial fusiform gyrus for manipulable artifacts. Both categories of objects adapted strongly in the fusiform gyrus without any clear preference in location along its medial-lateral axis. We think that this is because the fusiform gyrus has an important role to play in color processing and hence its responsiveness to color stimuli could be very different than its responsiveness to gray-scale photographs. Nevertheless, on the basis of what we found, we propose that the recognition and subsequent classification of animals may depend primarily on perceptual properties, such as their color, and on their emotional content whereas other factors, such as their function, may play a greater role for classifying manipulable artifacts. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Study of chromatic adaptation using memory color matches, Part II: colored illuminants.

    PubMed

    Smet, Kevin A G; Zhai, Qiyan; Luo, Ming R; Hanselaer, Peter

    2017-04-03

    In a previous paper, 12 corresponding color data sets were derived for 4 neutral illuminants using the long-term memory colours of five familiar objects. The data were used to test several linear (one-step and two-step von Kries, RLAB) and nonlinear (Hunt and Nayatani) chromatic adaptation transforms (CAT). This paper extends that study to a total of 156 corresponding color sets by including 9 more colored illuminants: 2 with low and 2 with high correlated color temperatures as well as 5 representing high chroma adaptive conditions. As in the previous study, a two-step von Kries transform whereby the degree of adaptation D is optimized to minimize the DEu'v' prediction errors outperformed all other tested models for both memory color and literature corresponding color sets, whereby prediction errors were lower for the memory color set. Most of the transforms tested, except the two- and one-step von Kries models with optimized D, showed large errors for corresponding color subsets that contained non-neutral adaptive conditions as all of them tended to overestimate the effective degree of adaptation in this study. An analysis of the impact of the sensor space primaries in which the adaptation is performed was found to have little impact compared to that of model choice. Finally, the effective degree of adaptation for the 13 illumination conditions (4 neutral + 9 colored) was successfully modelled using a bivariate Gaussian in a Macleod-Boyton like chromaticity diagram.

  16. Color, sensory and textural attributes of beef frankfurter, beef ham and meat-free sausage containing tomato pomace.

    PubMed

    Savadkoohi, Sobhan; Hoogenkamp, Henk; Shamsi, Kambiz; Farahnaky, Asgar

    2014-08-01

    The present investigation focuses on the textural properties, sensory attributes and color changes of beef frankfurter, beef ham and meat-free sausage produced by different levels of bleached tomato pomace. The texture and color profile were performed using an instrumental texture analyzer and colorimeter. The findings indicated that tomato pomace-added sausages had higher water holding capacity (WHC) compared to that of commercial samples. The frankfurters containing 5 and 7% (w/w) tomato pomace had the highest redness (a*), chroma (C*) and color differences (ΔE) values, while the meat-free sausages containing 7% (w/w) tomato pomace had significant (p<0.05) values for lightness (L*) and yellowness (b*). Furthermore, there were no significant (p>0.05) color differences between beef ham samples (with and without tomato pomace). A significant progression in the textural hardness and chewiness of systems containing tomato pomace was observed as well as higher sensory scores by panelists. According to sensorial evaluations, bleached tomato pomace improved the consumer acceptability and preference. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Representation of Perceptual Color Space in Macaque Posterior Inferior Temporal Cortex (the V4 Complex)

    PubMed Central

    Bohon, Kaitlin S.; Hermann, Katherine L.; Hansen, Thorsten

    2016-01-01

    Abstract The lateral geniculate nucleus is thought to represent color using two populations of cone-opponent neurons [L vs M; S vs (L + M)], which establish the cardinal directions in color space (reddish vs cyan; lavender vs lime). How is this representation transformed to bring about color perception? Prior work implicates populations of glob cells in posterior inferior temporal cortex (PIT; the V4 complex), but the correspondence between the neural representation of color in PIT/V4 complex and the organization of perceptual color space is unclear. We compared color-tuning data for populations of glob cells and interglob cells to predictions obtained using models that varied in the color-tuning narrowness of the cells, and the color preference distribution across the populations. Glob cells were best accounted for by simulated neurons that have nonlinear (narrow) tuning and, as a population, represent a color space designed to be perceptually uniform (CIELUV). Multidimensional scaling and representational similarity analyses showed that the color space representations in both glob and interglob populations were correlated with the organization of CIELUV space, but glob cells showed a stronger correlation. Hue could be classified invariant to luminance with high accuracy given glob responses and above-chance accuracy given interglob responses. Luminance could be read out invariant to changes in hue in both populations, but interglob cells tended to prefer stimuli having luminance contrast, regardless of hue, whereas glob cells typically retained hue tuning as luminance contrast was modulated. The combined luminance/hue sensitivity of glob cells is predicted for neurons that can distinguish two colors of the same hue at different luminance levels (orange/brown). PMID:27595132

  18. Preliminary evaluation of a fully automated quantitative framework for characterizing general breast tissue histology via color histogram and color texture analysis

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Gastounioti, Aimilia; Batiste, Rebecca C.; Kontos, Despina; Feldman, Michael D.

    2016-03-01

    Visual characterization of histologic specimens is known to suffer from intra- and inter-observer variability. To help address this, we developed an automated framework for characterizing digitized histology specimens based on a novel application of color histogram and color texture analysis. We perform a preliminary evaluation of this framework using a set of 73 trichrome-stained, digitized slides of normal breast tissue which were visually assessed by an expert pathologist in terms of the percentage of collagenous stroma, stromal collagen density, duct-lobular unit density and the presence of elastosis. For each slide, our algorithm automatically segments the tissue region based on the lightness channel in CIELAB colorspace. Within each tissue region, a color histogram feature vector is extracted using a common color palette for trichrome images generated with a previously described method. Then, using a whole-slide, lattice-based methodology, color texture maps are generated using a set of color co-occurrence matrix statistics: contrast, correlation, energy and homogeneity. The extracted features sets are compared to the visually assessed tissue characteristics. Overall, the extracted texture features have high correlations to both the percentage of collagenous stroma (r=0.95, p<0.001) and duct-lobular unit density (r=0.71, p<0.001) seen in the tissue samples, and several individual features were associated with either collagen density and/or the presence of elastosis (p<=0.05). This suggests that the proposed framework has promise as a means to quantitatively extract descriptors reflecting tissue-level characteristics and thus could be useful in detecting and characterizing histological processes in digitized histology specimens.

  19. Transfer of perceptual adaptation to space sickness: What enhances an individual's ability to adapt?

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The objectives of this project were to explore systematically the determiners of transfer of perceptual adaptation as these principles might apply to the space adaptation syndrome. The perceptual experience of an astronaut exposed to the altered gravitational forces involved in spaceflight shares much with that of the subject exposed in laboratory experiments to optically induced visual rearrangement with tilt and dynamic motion illusions such as vection; and experiences and symptoms reported by the trainee who is exposed to the compellingly realistic visual imagery of flight simulators and virtual reality systems. In both of these cases the observer is confronted with a variety of inter- and intrasensory conflicts that initially disrupt perception, as well as behavior, and also produce symptoms of motion sickness.

  20. Perceptual Adaptation of Voice Gender Discrimination with Spectrally Shifted Vowels

    ERIC Educational Resources Information Center

    Li, Tianhao; Fu, Qian-Jie

    2011-01-01

    Purpose: To determine whether perceptual adaptation improves voice gender discrimination of spectrally shifted vowels and, if so, which acoustic cues contribute to the improvement. Method: Voice gender discrimination was measured for 10 normal-hearing subjects, during 5 days of adaptation to spectrally shifted vowels, produced by processing the…

  1. New Colors for Histology: Optimized Bivariate Color Maps Increase Perceptual Contrast in Histological Images.

    PubMed

    Kather, Jakob Nikolas; Weis, Cleo-Aron; Marx, Alexander; Schuster, Alexander K; Schad, Lothar R; Zöllner, Frank Gerrit

    2015-01-01

    Accurate evaluation of immunostained histological images is required for reproducible research in many different areas and forms the basis of many clinical decisions. The quality and efficiency of histopathological evaluation is limited by the information content of a histological image, which is primarily encoded as perceivable contrast differences between objects in the image. However, the colors of chromogen and counterstain used for histological samples are not always optimally distinguishable, even under optimal conditions. In this study, we present a method to extract the bivariate color map inherent in a given histological image and to retrospectively optimize this color map. We use a novel, unsupervised approach based on color deconvolution and principal component analysis to show that the commonly used blue and brown color hues in Hematoxylin-3,3'-Diaminobenzidine (DAB) images are poorly suited for human observers. We then demonstrate that it is possible to construct improved color maps according to objective criteria and that these color maps can be used to digitally re-stain histological images. To validate whether this procedure improves distinguishability of objects and background in histological images, we re-stain phantom images and N = 596 large histological images of immunostained samples of human solid tumors. We show that perceptual contrast is improved by a factor of 2.56 in phantom images and up to a factor of 2.17 in sets of histological tumor images. Thus, we provide an objective and reliable approach to measure object distinguishability in a given histological image and to maximize visual information available to a human observer. This method could easily be incorporated in digital pathology image viewing systems to improve accuracy and efficiency in research and diagnostics.

  2. Adaptive texture filtering for defect inspection in ultrasound images

    NASA Astrophysics Data System (ADS)

    Zmola, Carl; Segal, Andrew C.; Lovewell, Brian; Nash, Charles

    1993-05-01

    The use of ultrasonic imaging to analyze defects and characterize materials is critical in the development of non-destructive testing and non-destructive evaluation (NDT/NDE) tools for manufacturing. To develop better quality control and reliability in the manufacturing environment advanced image processing techniques are useful. For example, through the use of texture filtering on ultrasound images, we have been able to filter characteristic textures from highly-textured C-scan images of materials. The materials have highly regular characteristic textures which are of the same resolution and dynamic range as other important features within the image. By applying texture filters and adaptively modifying their filter response, we have examined a family of filters for removing these textures.

  3. Biological versus electronic adaptive coloration: how can one inform the other?

    PubMed Central

    Kreit, Eric; Mäthger, Lydia M.; Hanlon, Roger T.; Dennis, Patrick B.; Naik, Rajesh R.; Forsythe, Eric; Heikenfeld, Jason

    2013-01-01

    Adaptive reflective surfaces have been a challenge for both electronic paper (e-paper) and biological organisms. Multiple colours, contrast, polarization, reflectance, diffusivity and texture must all be controlled simultaneously without optical losses in order to fully replicate the appearance of natural surfaces and vividly communicate information. This review merges the frontiers of knowledge for both biological adaptive coloration, with a focus on cephalopods, and synthetic reflective e-paper within a consistent framework of scientific metrics. Currently, the highest performance approach for both nature and technology uses colourant transposition. Three outcomes are envisioned from this review: reflective display engineers may gain new insights from millions of years of natural selection and evolution; biologists will benefit from understanding the types of mechanisms, characterization and metrics used in synthetic reflective e-paper; all scientists will gain a clearer picture of the long-term prospects for capabilities such as adaptive concealment and signalling. PMID:23015522

  4. Texture-adaptive hyperspectral video acquisition system with a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Fang, Xiaojing; Feng, Jiao; Wang, Yongjin

    2014-10-01

    We present a new hybrid camera system based on spatial light modulator (SLM) to capture texture-adaptive high-resolution hyperspectral video. The hybrid camera system records a hyperspectral video with low spatial resolution using a gray camera and a high-spatial resolution video using a RGB camera. The hyperspectral video is subsampled by the SLM. The subsampled points can be adaptively selected according to the texture characteristic of the scene by combining with digital imaging analysis and computational processing. In this paper, we propose an adaptive sampling method utilizing texture segmentation and wavelet transform (WT). We also demonstrate the effectiveness of the sampled pattern on the SLM with the proposed method.

  5. Color Afterimages in Autistic Adults

    ERIC Educational Resources Information Center

    Maule, John; Stanworth, Kirstie; Pellicano, Elizabeth; Franklin, Anna

    2018-01-01

    It has been suggested that attenuated adaptation to visual stimuli in autism is the result of atypical perceptual priors (e.g., Pellicano and Burr in "Trends Cogn Sci" 16(10):504-510, 2012. doi:10.1016/j.tics.2012.08.009). This study investigated adaptation to color in autistic adults, measuring both strength of afterimage and the…

  6. Perceptual color difference metric including a CSF based on the perception threshold

    NASA Astrophysics Data System (ADS)

    Rosselli, Vincent; Larabi, Mohamed-Chaker; Fernandez-Maloigne, Christine

    2008-01-01

    The study of the Human Visual System (HVS) is very interesting to quantify the quality of a picture, to predict which information will be perceived on it, to apply adapted tools ... The Contrast Sensitivity Function (CSF) is one of the major ways to integrate the HVS properties into an imaging system. It characterizes the sensitivity of the visual system to spatial and temporal frequencies and predicts the behavior for the three channels. Common constructions of the CSF have been performed by estimating the detection threshold beyond which it is possible to perceive a stimulus. In this work, we developed a novel approach for spatio-chromatic construction based on matching experiments to estimate the perception threshold. It consists in matching the contrast of a test stimulus with that of a reference one. The obtained results are quite different in comparison with the standard approaches as the chromatic CSFs have band-pass behavior and not low pass. The obtained model has been integrated in a perceptual color difference metric inspired by the s-CIELAB. The metric is then evaluated with both objective and subjective procedures.

  7. Human (Homo sapiens) facial attractiveness in relation to skin texture and color.

    PubMed

    Fink, B; Grammer, K; Thornhill, R

    2001-03-01

    The notion that surface texture may provide important information about the geometry of visible surfaces has attracted considerable attention for a long time. The present study shows that skin texture plays a significant role in the judgment of female facial beauty. Following research in clinical dermatology, the authors developed a computer program that implemented an algorithm based on co-occurrence matrices for the analysis of facial skin texture. Homogeneity and contrast features as well as color parameters were extracted out of stimulus faces. Attractiveness ratings of the images made by male participants relate positively to parameters of skin homogeneity. The authors propose that skin texture is a cue to fertility and health. In contrast to some previous studies, the authors found that dark skin, not light skin, was rated as most attractive.

  8. QBIC project: querying images by content, using color, texture, and shape

    NASA Astrophysics Data System (ADS)

    Niblack, Carlton W.; Barber, Ron; Equitz, Will; Flickner, Myron D.; Glasman, Eduardo H.; Petkovic, Dragutin; Yanker, Peter; Faloutsos, Christos; Taubin, Gabriel

    1993-04-01

    In the query by image content (QBIC) project we are studying methods to query large on-line image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, and shape of image objects and regions. Potential applications include medical (`Give me other images that contain a tumor with a texture like this one'), photo-journalism (`Give me images that have blue at the top and red at the bottom'), and many others in art, fashion, cataloging, retailing, and industry. Key issues include derivation and computation of attributes of images and objects that provide useful query functionality, retrieval methods based on similarity as opposed to exact match, query by image example or user drawn image, the user interfaces, query refinement and navigation, high dimensional database indexing, and automatic and semi-automatic database population. We currently have a prototype system written in X/Motif and C running on an RS/6000 that allows a variety of queries, and a test database of over 1000 images and 1000 objects populated from commercially available photo clip art images. In this paper we present the main algorithms for color texture, shape and sketch query that we use, show example query results, and discuss future directions.

  9. Prediction of troponin-T degradation using color image texture features in 10d aged beef longissimus steaks.

    PubMed

    Sun, X; Chen, K J; Berg, E P; Newman, D J; Schwartz, C A; Keller, W L; Maddock Carlin, K R

    2014-02-01

    The objective was to use digital color image texture features to predict troponin-T degradation in beef. Image texture features, including 88 gray level co-occurrence texture features, 81 two-dimension fast Fourier transformation texture features, and 48 Gabor wavelet filter texture features, were extracted from color images of beef strip steaks (longissimus dorsi, n = 102) aged for 10d obtained using a digital camera and additional lighting. Steaks were designated degraded or not-degraded based on troponin-T degradation determined on d 3 and d 10 postmortem by immunoblotting. Statistical analysis (STEPWISE regression model) and artificial neural network (support vector machine model, SVM) methods were designed to classify protein degradation. The d 3 and d 10 STEPWISE models were 94% and 86% accurate, respectively, while the d 3 and d 10 SVM models were 63% and 71%, respectively, in predicting protein degradation in aged meat. STEPWISE and SVM models based on image texture features show potential to predict troponin-T degradation in meat. © 2013.

  10. New Colors for Histology: Optimized Bivariate Color Maps Increase Perceptual Contrast in Histological Images

    PubMed Central

    Kather, Jakob Nikolas; Weis, Cleo-Aron; Marx, Alexander; Schuster, Alexander K.; Schad, Lothar R.; Zöllner, Frank Gerrit

    2015-01-01

    Background Accurate evaluation of immunostained histological images is required for reproducible research in many different areas and forms the basis of many clinical decisions. The quality and efficiency of histopathological evaluation is limited by the information content of a histological image, which is primarily encoded as perceivable contrast differences between objects in the image. However, the colors of chromogen and counterstain used for histological samples are not always optimally distinguishable, even under optimal conditions. Methods and Results In this study, we present a method to extract the bivariate color map inherent in a given histological image and to retrospectively optimize this color map. We use a novel, unsupervised approach based on color deconvolution and principal component analysis to show that the commonly used blue and brown color hues in Hematoxylin—3,3’-Diaminobenzidine (DAB) images are poorly suited for human observers. We then demonstrate that it is possible to construct improved color maps according to objective criteria and that these color maps can be used to digitally re-stain histological images. Validation To validate whether this procedure improves distinguishability of objects and background in histological images, we re-stain phantom images and N = 596 large histological images of immunostained samples of human solid tumors. We show that perceptual contrast is improved by a factor of 2.56 in phantom images and up to a factor of 2.17 in sets of histological tumor images. Context Thus, we provide an objective and reliable approach to measure object distinguishability in a given histological image and to maximize visual information available to a human observer. This method could easily be incorporated in digital pathology image viewing systems to improve accuracy and efficiency in research and diagnostics. PMID:26717571

  11. Development of an adaptive bilateral filter for evaluating color image difference

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui; Hardeberg, Jon Yngve

    2012-04-01

    Spatial filtering, which aims to mimic the contrast sensitivity function (CSF) of the human visual system (HVS), has previously been combined with color difference formulae for measuring color image reproduction errors. These spatial filters attenuate imperceptible information in images, unfortunately including high frequency edges, which are believed to be crucial in the process of scene analysis by the HVS. The adaptive bilateral filter represents a novel approach, which avoids the undesirable loss of edge information introduced by CSF-based filtering. The bilateral filter employs two Gaussian smoothing filters in different domains, i.e., spatial domain and intensity domain. We propose a method to decide the parameters, which are designed to be adaptive to the corresponding viewing conditions, and the quantity and homogeneity of information contained in an image. Experiments and discussions are given to support the proposal. A series of perceptual experiments were conducted to evaluate the performance of our approach. The experimental sample images were reproduced with variations in six image attributes: lightness, chroma, hue, compression, noise, and sharpness/blurriness. The Pearson's correlation values between the model-predicted image difference and the observed difference were employed to evaluate the performance, and compare it with that of spatial CIELAB and image appearance model.

  12. Perceptual Adaptation of Voice Gender Discrimination with Spectrally Shifted Vowels

    PubMed Central

    Li, Tianhao; Fu, Qian-Jie

    2013-01-01

    Purpose To determine whether perceptual adaptation improves voice gender discrimination of spectrally shifted vowels and, if so, which acoustic cues contribute to the improvement. Method Voice gender discrimination was measured for 10 normal-hearing subjects, during 5 days of adaptation to spectrally shifted vowels, produced by processing the speech of 5 male and 5 female talkers with 16-channel sine-wave vocoders. The subjects were randomly divided into 2 groups; one subjected to 50-Hz, and the other to 200-Hz, temporal envelope cutoff frequencies. No preview or feedback was provided. Results: There was significant adaptation in voice gender discrimination with the 200-Hz cutoff frequency, but significant improvement was observed only for 3 female talkers with F0 > 180 Hz and 3 male talkers with F0 < 170 Hz. There was no significant adaptation with the 50-Hz cutoff frequency. Conclusions Temporal envelope cues are important for voice gender discrimination under spectral shift conditions with perceptual adaptation, but spectral shift may limit the exclusive use of spectral information and/or the use of formant structure on voice gender discrimination. The results have implications for cochlear implant users and for understanding voice gender discrimination. PMID:21173392

  13. Perceptual adaptation of voice gender discrimination with spectrally shifted vowels.

    PubMed

    Li, Tianhao; Fu, Qian-Jie

    2011-08-01

    To determine whether perceptual adaptation improves voice gender discrimination of spectrally shifted vowels and, if so, which acoustic cues contribute to the improvement. Voice gender discrimination was measured for 10 normal-hearing subjects, during 5 days of adaptation to spectrally shifted vowels, produced by processing the speech of 5 male and 5 female talkers with 16-channel sine-wave vocoders. The subjects were randomly divided into 2 groups; one subjected to 50-Hz, and the other to 200-Hz, temporal envelope cutoff frequencies. No preview or feedback was provided. There was significant adaptation in voice gender discrimination with the 200-Hz cutoff frequency, but significant improvement was observed only for 3 female talkers with F(0) > 180 Hz and 3 male talkers with F(0) < 170 Hz. There was no significant adaptation with the 50-Hz cutoff frequency. Temporal envelope cues are important for voice gender discrimination under spectral shift conditions with perceptual adaptation, but spectral shift may limit the exclusive use of spectral information and/or the use of formant structure on voice gender discrimination. The results have implications for cochlear implant users and for understanding voice gender discrimination.

  14. An adaptive tensor voting algorithm combined with texture spectrum

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Su, Qing-tang; Lü, Gao-huan; Zhang, Xiao-feng; Liu, Yu-huan; He, An-zhi

    2015-01-01

    An adaptive tensor voting algorithm combined with texture spectrum is proposed. The image texture spectrum is used to get the adaptive scale parameter of voting field. Then the texture information modifies both the attenuation coefficient and the attenuation field so that we can use this algorithm to create more significant and correct structures in the original image according to the human visual perception. At the same time, the proposed method can improve the edge extraction quality, which includes decreasing the flocculent region efficiently and making image clear. In the experiment for extracting pavement cracks, the original pavement image is processed by the proposed method which is combined with the significant curve feature threshold procedure, and the resulted image displays the faint crack signals submerged in the complicated background efficiently and clearly.

  15. Adaptation of human skin color in various populations.

    PubMed

    Deng, Lian; Xu, Shuhua

    2018-01-01

    Skin color is a well-recognized adaptive trait and has been studied extensively in humans. Understanding the genetic basis of adaptation of skin color in various populations has many implications in human evolution and medicine. Impressive progress has been made recently to identify genes associated with skin color variation in a wide range of geographical and temporal populations. In this review, we discuss what is currently known about the genetics of skin color variation. We enumerated several cases of skin color adaptation in global modern humans and archaic hominins, and illustrated why, when, and how skin color adaptation occurred in different populations. Finally, we provided a summary of the candidate loci associated with pigmentation, which could be a valuable reference for further evolutionary and medical studies. Previous studies generally indicated a complex genetic mechanism underlying the skin color variation, expanding our understanding of the role of population demographic history and natural selection in shaping genetic and phenotypic diversity in humans. Future work is needed to dissect the genetic architecture of skin color adaptation in numerous ethnic minority groups around the world, which remains relatively obscure compared with that of major continental groups, and to unravel the exact genetic basis of skin color adaptation.

  16. Neural representation of form-contingent color filling-in in the early visual cortex.

    PubMed

    Hong, Sang Wook; Tong, Frank

    2017-11-01

    Perceptual filling-in exemplifies the constructive nature of visual processing. Color, a prominent surface property of visual objects, can appear to spread to neighboring areas that lack any color. We investigated cortical responses to a color filling-in illusion that effectively dissociates perceived color from the retinal input (van Lier, Vergeer, & Anstis, 2009). Observers adapted to a star-shaped stimulus with alternating red- and cyan-colored points to elicit a complementary afterimage. By presenting an achromatic outline that enclosed one of the two afterimage colors, perceptual filling-in of that color was induced in the unadapted central region. Visual cortical activity was monitored with fMRI, and analyzed using multivariate pattern analysis. Activity patterns in early visual areas (V1-V4) reliably distinguished between the two color-induced filled-in conditions, but only higher extrastriate visual areas showed the predicted correspondence with color perception. Activity patterns allowed for reliable generalization between filled-in colors and physical presentations of perceptually matched colors in areas V3 and V4, but not in earlier visual areas. These findings suggest that the perception of filled-in surface color likely requires more extensive processing by extrastriate visual areas, in order for the neural representation of surface color to become aligned with perceptually matched real colors.

  17. Real-time color-based texture analysis for sophisticated defect detection on wooden surfaces

    NASA Astrophysics Data System (ADS)

    Polzleitner, Wolfgang; Schwingshakl, Gert

    2004-10-01

    We describe a scanning system developed for the classification and grading of surfaces of wooden tiles. The system uses color imaging sensors to analyse the surfaces of either hard- or softwood material in terms of the texture formed by grain lines (orientation, spatial frequency, and color), various types of colorization, and other defects like knots, heart wood, cracks, holes, etc. The analysis requires two major tracks: the assignment of a tile to its texture class (like A, B, C, 1, 2, 3, Waste), and the detection of defects that decrease the commercial value of the tile (heart wood, knots, etc.). The system was initially developed under the international IMS program (Intelligent Manufacturing Systems) by an industry consortium. During the last two years it has been further developed, and several industrial systems have been installed, and are presently used in production of hardwood flooring. The methods implemented reflect some of the latest developments in the field of pattern recognition: genetic feature selection, two-dimensional second order statistics, special color space transforms, and classification by neural networks. In the industrial scenario we describe, many of the features defining a class cannot be described mathematically. Consequently a focus was the design of a learning architecture, where prototype texture samples are presented to the system, which then automatically finds the internal representation necessary for classification. The methods used in this approach have a wide applicability to problems of inspection, sorting, and optimization of high-value material typically used in the furniture, flooring, and related wood manufacturing industries.

  18. Do common mechanisms of adaptation mediate color discrimination and appearance? Contrast adaptation

    NASA Astrophysics Data System (ADS)

    Hillis, James M.; Brainard, David H.

    2007-08-01

    Are effects of background contrast on color appearance and sensitivity controlled by the same mechanism of adaptation? We examined the effects of background color contrast on color appearance and on color-difference sensitivity under well-matched conditions. We linked the data using Fechner's hypothesis that the rate of apparent stimulus change is proportional to sensitivity and examined a family of parametric models of adaptation. Our results show that both appearance and discrimination are consistent with the same mechanism of adaptation.

  19. Real-time Supervised Detection of Pink Areas in Dermoscopic Images of Melanoma: Importance of Color Shades, Texture and Location

    PubMed Central

    Kaur, Ravneet; Albano, Peter P.; Cole, Justin G.; Hagerty, Jason; LeAnder, Robert W.; Moss, Randy H.; Stoecker, William V.

    2015-01-01

    Background/Purpose Early detection of malignant melanoma is an important public health challenge. In the USA, dermatologists are seeing more melanomas at an early stage, before classic melanoma features have become apparent. Pink color is a feature of these early melanomas. If rapid and accurate automatic detection of pink color in these melanomas could be accomplished, there could be significant public health benefits. Methods Detection of three shades of pink (light pink, dark pink, and orange pink) was accomplished using color analysis techniques in five color planes (red, green, blue, hue and saturation). Color shade analysis was performed using a logistic regression model trained with an image set of 60 dermoscopic images of melanoma that contained pink areas. Detected pink shade areas were further analyzed with regard to the location within the lesion, average color parameters over the detected areas, and histogram texture features. Results Logistic regression analysis of a separate set of 128 melanomas and 128 benign images resulted in up to 87.9% accuracy in discriminating melanoma from benign lesions measured using area under the receiver operating characteristic curve. The accuracy in this model decreased when parameters for individual shades, texture, or shade location within the lesion were omitted. Conclusion Texture, color, and lesion location analysis applied to multiple shades of pink can assist in melanoma detection. When any of these three details: color location, shade analysis, or texture analysis were omitted from the model, accuracy in separating melanoma from benign lesions was lowered. Separation of colors into shades and further details that enhance the characterization of these color shades are needed for optimal discrimination of melanoma from benign lesions. PMID:25809473

  20. Attention during adaptation weakens negative afterimages of perceptually colour-spread surfaces.

    PubMed

    Lak, Armin

    2008-06-01

    The visual system can complete coloured surfaces from stimulus fragments, inducing the subjective perception of a colour-spread figure. Negative afterimages of these induced colours were first reported by S. Shimojo, Y. Kamitani, and S. Nishida (2001). Two experiments were conducted to examine the effect of attention on the duration of these afterimages. The results showed that shifting attention to the colour-spread figure during the adaptation phase weakened the subsequent afterimage. On the basis of previous findings that the duration of these afterimages is correlated with the strength of perceptual filling-in (grouping) among local inducers during the adaptation phase, it is proposed that attention weakens perceptual filling-in during the adaptation phase and thereby prevents the stimulus from being segmented into an illusory figure. (PsycINFO Database Record (c) 2008 APA, all rights reserved).

  1. Micro-Expression Recognition Using Color Spaces.

    PubMed

    Wang, Su-Jing; Yan, Wen-Jing; Li, Xiaobai; Zhao, Guoying; Zhou, Chun-Guang; Fu, Xiaolan; Yang, Minghao; Tao, Jianhua

    2015-12-01

    Micro-expressions are brief involuntary facial expressions that reveal genuine emotions and, thus, help detect lies. Because of their many promising applications, they have attracted the attention of researchers from various fields. Recent research reveals that two perceptual color spaces (CIELab and CIELuv) provide useful information for expression recognition. This paper is an extended version of our International Conference on Pattern Recognition paper, in which we propose a novel color space model, tensor independent color space (TICS), to help recognize micro-expressions. In this paper, we further show that CIELab and CIELuv are also helpful in recognizing micro-expressions, and we indicate why these three color spaces achieve better performance. A micro-expression color video clip is treated as a fourth-order tensor, i.e., a four-dimension array. The first two dimensions are the spatial information, the third is the temporal information, and the fourth is the color information. We transform the fourth dimension from RGB into TICS, in which the color components are as independent as possible. The combination of dynamic texture and independent color components achieves a higher accuracy than does that of RGB. In addition, we define a set of regions of interests (ROIs) based on the facial action coding system and calculated the dynamic texture histograms for each ROI. Experiments are conducted on two micro-expression databases, CASME and CASME 2, and the results show that the performances for TICS, CIELab, and CIELuv are better than those for RGB or gray.

  2. Reliability and dimensionality of judgments of visually textured materials.

    PubMed

    Cho, R Y; Yang, V; Hallett, P E

    2000-05-01

    We extended perceptual studies of the Brodatz set of textured materials. In the experiments, texture perception for different texture sets, viewing distances, or lighting intensities was examined. Subjects compared one pair of textures at a time. The main task was to rapidly rate all of the texture pairs on a number scale for their overall dissimilarities first and then for their dissimilarities according to six specified attributes (e.g., texture contrast). The implied dimensionality of perceptual texture space was usually at least four, rather than three. All six attributes proved to be useful predictors of overall dissimilarity, especially coarseness and regularity. The novel attribute texture lightness, an assessment of mean surface reflectance, was important when viewing conditions were wide-ranging. We were impressed by the general validity of texture judgments across subject, texture set, and comfortable viewing distances or lighting intensities. The attributes are nonorthogonal directions in four-dimensional perceptual space and are probably not narrow linear axes. In a supplementary experiment, we studied a completely different task: identifying textures from a distance. The dimensionality for this more refined task is similar to that for rating judgments, so our findings may have general application.

  3. Real-time supervised detection of pink areas in dermoscopic images of melanoma: importance of color shades, texture and location.

    PubMed

    Kaur, R; Albano, P P; Cole, J G; Hagerty, J; LeAnder, R W; Moss, R H; Stoecker, W V

    2015-11-01

    Early detection of malignant melanoma is an important public health challenge. In the USA, dermatologists are seeing more melanomas at an early stage, before classic melanoma features have become apparent. Pink color is a feature of these early melanomas. If rapid and accurate automatic detection of pink color in these melanomas could be accomplished, there could be significant public health benefits. Detection of three shades of pink (light pink, dark pink, and orange pink) was accomplished using color analysis techniques in five color planes (red, green, blue, hue, and saturation). Color shade analysis was performed using a logistic regression model trained with an image set of 60 dermoscopic images of melanoma that contained pink areas. Detected pink shade areas were further analyzed with regard to the location within the lesion, average color parameters over the detected areas, and histogram texture features. Logistic regression analysis of a separate set of 128 melanomas and 128 benign images resulted in up to 87.9% accuracy in discriminating melanoma from benign lesions measured using area under the receiver operating characteristic curve. The accuracy in this model decreased when parameters for individual shades, texture, or shade location within the lesion were omitted. Texture, color, and lesion location analysis applied to multiple shades of pink can assist in melanoma detection. When any of these three details: color location, shade analysis, or texture analysis were omitted from the model, accuracy in separating melanoma from benign lesions was lowered. Separation of colors into shades and further details that enhance the characterization of these color shades are needed for optimal discrimination of melanoma from benign lesions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Investigations of suprathreshold color-difference tolerances with different visual scales and different perceptual correlates using CRT colors.

    PubMed

    Wang, Zhehong; Xu, Haisong

    2008-12-01

    In order to investigate the performance of suprathreshold color-difference tolerances with different visual scales and different perceptual correlates, a psychophysical experiment was carried out by the method of constant stimuli using CRT colors. Five hue circles at three lightness (L*=30, 50, and 70) and chroma (C*ab=10, 20, and 30) levels were selected to ensure that the color-difference tolerances did not exceed the color gamut of the CRT display. Twelve color centers distributed evenly every 30 degrees along each hue circle were assessed by a panel of eight observers, and the corresponding color-difference tolerances were obtained. The hue circle with L*=50 and C*ab=20 was assessed with three different visual scales (DeltaV=3.06, 5.92, and 8.87 CIELAB units), which ranged from small to large visual scales, while the remaining hue circles were observed only with the small visual scale. The lightness tolerances had no significant correlation with the hue angles, while chroma and hue tolerances showed considerable hue angle dependences. The color-difference tolerances were linearly proportional to the visual scales but with different slopes. The lightness tolerances with different lightness levels but the same chroma showed the crispening effect to some extent, while the chroma and hue tolerances decreased with the increment of the lightness. For the color-difference tolerances with different chroma levels but the same lightness, there was no correlation between the lightness tolerances and the chroma levels, while the chroma and hue tolerances were nearly linearly proportional to the chroma levels.

  5. BlobContours: adapting Blobworld for supervised color- and texture-based image segmentation

    NASA Astrophysics Data System (ADS)

    Vogel, Thomas; Nguyen, Dinh Quyen; Dittmann, Jana

    2006-01-01

    Extracting features is the first and one of the most crucial steps in recent image retrieval process. While the color features and the texture features of digital images can be extracted rather easily, the shape features and the layout features depend on reliable image segmentation. Unsupervised image segmentation, often used in image analysis, works on merely syntactical basis. That is, what an unsupervised segmentation algorithm can segment is only regions, but not objects. To obtain high-level objects, which is desirable in image retrieval, human assistance is needed. Supervised image segmentations schemes can improve the reliability of segmentation and segmentation refinement. In this paper we propose a novel interactive image segmentation technique that combines the reliability of a human expert with the precision of automated image segmentation. The iterative procedure can be considered a variation on the Blobworld algorithm introduced by Carson et al. from EECS Department, University of California, Berkeley. Starting with an initial segmentation as provided by the Blobworld framework, our algorithm, namely BlobContours, gradually updates it by recalculating every blob, based on the original features and the updated number of Gaussians. Since the original algorithm has hardly been designed for interactive processing we had to consider additional requirements for realizing a supervised segmentation scheme on the basis of Blobworld. Increasing transparency of the algorithm by applying usercontrolled iterative segmentation, providing different types of visualization for displaying the segmented image and decreasing computational time of segmentation are three major requirements which are discussed in detail.

  6. Adaptive Texture Synthesis for Large Scale City Modeling

    NASA Astrophysics Data System (ADS)

    Despine, G.; Colleu, T.

    2015-02-01

    Large scale city models textured with aerial images are well suited for bird-eye navigation but generally the image resolution does not allow pedestrian navigation. One solution to face this problem is to use high resolution terrestrial photos but it requires huge amount of manual work to remove occlusions. Another solution is to synthesize generic textures with a set of procedural rules and elementary patterns like bricks, roof tiles, doors and windows. This solution may give realistic textures but with no correlation to the ground truth. Instead of using pure procedural modelling we present a method to extract information from aerial images and adapt the texture synthesis to each building. We describe a workflow allowing the user to drive the information extraction and to select the appropriate texture patterns. We also emphasize the importance to organize the knowledge about elementary pattern in a texture catalogue allowing attaching physical information, semantic attributes and to execute selection requests. Roofs are processed according to the detected building material. Façades are first described in terms of principal colours, then opening positions are detected and some window features are computed. These features allow selecting the most appropriate patterns from the texture catalogue. We experimented this workflow on two samples with 20 cm and 5 cm resolution images. The roof texture synthesis and opening detection were successfully conducted on hundreds of buildings. The window characterization is still sensitive to the distortions inherent to the projection of aerial images onto the facades.

  7. Microbial quality, instrumental texture, and color profile evaluation of edible by-products obtained from Barbari goats.

    PubMed

    Umaraw, Pramila; Pathak, V; Rajkumar, V; Verma, Arun K; Singh, V P; Verma, Akhilesh K

    2015-01-01

    The study was conducted to estimate the contribution of edible byproducts of Barbari kids to their live and carcass weight as well as to assess textural and color characteristics and microbiological status of these byproducts. Percent live weight, Percent carcass weight, Texture, color, and microbiological analysis was done for edible byproducts viz. liver, heart, kidney, spleen, brain and testicle and longissimus dorsi muscle was taken as a reference. The edible byproducts of Barbari kids constitute about 3% of the live weight of an animal of which liver contributed maximum (1.47%) followed by testicles (0.69%) and heart (0.41%). While the same constituted 3.57, 1.70, and 0.99%, respectively on carcass weight. There was significant (p<0.05) difference among all organs regarding textural properties. Liver required the maximum shear force and work of shear (121.48N and 32.19 kg-sec) followed by spleen and heart. All organs revealed characteristics color values (L*, a*, b*, chroma, and hue) which were significantly different (p<0.05) from muscle values. The total viable count, coliform count showed slight differences for all organs studied. The staphylococcus counts were low with little differences among organs. Edible byproducts have a significant contribution to carcass weight which could enhance total edible portion of the carcass. Efficient utilization of these by-products returns good source of revenue to the meat industries. Textural and color analysis give information for their incorporation in comminuted meat products, and microbial study tells about the storage study. However, study was in the preliminary and basic step forward toward better utilization of 3% of live animal which could increase the saleable cost of animal by 6.94%.

  8. Hierarchical image-based rendering using texture mapping hardware

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, N

    1999-01-15

    Multi-layered depth images containing color and normal information for subobjects in a hierarchical scene model are precomputed with standard z-buffer hardware for six orthogonal views. These are adaptively selected according to the proximity of the viewpoint, and combined using hardware texture mapping to create ''reprojected'' output images for new viewpoints. (If a subobject is too close to the viewpoint, the polygons in the original model are rendered.) Specific z-ranges are selected from the textures with the hardware alpha test to give accurate 3D reprojection. The OpenGL color matrix is used to transform the precomputed normals into their orientations in themore » final view, for hardware shading.« less

  9. Perceptual significance of colorimetric data for colors of plumes and haze

    NASA Astrophysics Data System (ADS)

    MacAdam, David L.

    Colorimetric reduction of spectroradiometric and spectral absorption and scattering data, by use of C.I.E. (Commission Internationale de l'Eclairage) data is appropriate for assessment of the color appearances of plumes and haze and of vistas seen through haze. Chromatic adaptation needs to be taken into account, however, because a wide variety of chromaticities (e.g., color temperatures from 4000 K to at least 7000 K) can be perceived as white under various circumstances. The perceptions of all other colors shift correspondingly. Natural clouds or snow appear white: they have the chromaticity relative to which the perceived hues of all other objects in the same scene (including plumes and haze layers) are perceived. Those hues can be determined by drawing the straight line from that white point through the point representing the plume or haze. The wavelength at which that line intersects the spectrum locus is the dominant wavelength of the plume or haze, or other feature in the vista, for the state of chromatic adaptation of the observer. The dominant wavelength identifies the hue. The percentage of the distance from that white point to the spectrum locus is the purity of the plume, haze, or haze-veiled color. The perceived amount of coloration (saturation) can be evaluated as a multiple of the just-noticeable difference from the adaptation white.

  10. Semantic attributes based texture generation

    NASA Astrophysics Data System (ADS)

    Chi, Huifang; Gan, Yanhai; Qi, Lin; Dong, Junyu; Madessa, Amanuel Hirpa

    2018-04-01

    Semantic attributes are commonly used for texture description. They can be used to describe the information of a texture, such as patterns, textons, distributions, brightness, and so on. Generally speaking, semantic attributes are more concrete descriptors than perceptual features. Therefore, it is practical to generate texture images from semantic attributes. In this paper, we propose to generate high-quality texture images from semantic attributes. Over the last two decades, several works have been done on texture synthesis and generation. Most of them focusing on example-based texture synthesis and procedural texture generation. Semantic attributes based texture generation still deserves more devotion. Gan et al. proposed a useful joint model for perception driven texture generation. However, perceptual features are nonobjective spatial statistics used by humans to distinguish different textures in pre-attentive situations. To give more describing information about texture appearance, semantic attributes which are more in line with human description habits are desired. In this paper, we use sigmoid cross entropy loss in an auxiliary model to provide enough information for a generator. Consequently, the discriminator is released from the relatively intractable mission of figuring out the joint distribution of condition vectors and samples. To demonstrate the validity of our method, we compare our method to Gan et al.'s method on generating textures by designing experiments on PTD and DTD. All experimental results show that our model can generate textures from semantic attributes.

  11. The Constancy of Colored After-Images

    PubMed Central

    Zeki, Semir; Cheadle, Samuel; Pepper, Joshua; Mylonas, Dimitris

    2017-01-01

    We undertook psychophysical experiments to determine whether the color of the after-image produced by viewing a colored patch which is part of a complex multi-colored scene depends on the wavelength-energy composition of the light reflected from that patch. Our results show that it does not. The after-image, just like the color itself, depends on the ratio of light of different wavebands reflected from it and its surrounds. Hence, traditional accounts of after-images as being the result of retinal adaptation or the perceptual result of physiological opponency, are inadequate. We propose instead that the color of after-images is generated after colors themselves are generated in the visual brain. PMID:28539878

  12. Multiple Auto-Adapting Color Balancing for Large Number of Images

    NASA Astrophysics Data System (ADS)

    Zhou, X.

    2015-04-01

    This paper presents a powerful technology of color balance between images. It does not only work for small number of images but also work for unlimited large number of images. Multiple adaptive methods are used. To obtain color seamless mosaic dataset, local color is adjusted adaptively towards the target color. Local statistics of the source images are computed based on the so-called adaptive dodging window. The adaptive target colors are statistically computed according to multiple target models. The gamma function is derived from the adaptive target and the adaptive source local stats. It is applied to the source images to obtain the color balanced output images. Five target color surface models are proposed. They are color point (or single color), color grid, 1st, 2nd and 3rd 2D polynomials. Least Square Fitting is used to obtain the polynomial target color surfaces. Target color surfaces are automatically computed based on all source images or based on an external target image. Some special objects such as water and snow are filtered by percentage cut or a given mask. Excellent results are achieved. The performance is extremely fast to support on-the-fly color balancing for large number of images (possible of hundreds of thousands images). Detailed algorithm and formulae are described. Rich examples including big mosaic datasets (e.g., contains 36,006 images) are given. Excellent results and performance are presented. The results show that this technology can be successfully used in various imagery to obtain color seamless mosaic. This algorithm has been successfully using in ESRI ArcGis.

  13. Lack of power enhances visual perceptual discrimination.

    PubMed

    Weick, Mario; Guinote, Ana; Wilkinson, David

    2011-09-01

    Powerless individuals face much challenge and uncertainty. As a consequence, they are highly vigilant and closely scrutinize their social environments. The aim of the present research was to determine whether these qualities enhance performance in more basic cognitive tasks involving simple visual feature discrimination. To test this hypothesis, participants performed a series of perceptual matching and search tasks involving colour, texture, and size discrimination. As predicted, those primed with powerlessness generated shorter reaction times and made fewer eye movements than either powerful or control participants. The results indicate that the heightened vigilance shown by powerless individuals is associated with an advantage in performing simple types of psychophysical discrimination. These findings highlight, for the first time, an underlying competency in perceptual cognition that sets powerless individuals above their powerful counterparts, an advantage that may reflect functional adaptation to the environmental challenge and uncertainty that they face. © 2011 Canadian Psychological Association

  14. Extending Color Psychology to the Personality Realm: Interpersonal Hostility Varies by Red Preferences and Perceptual Biases

    PubMed Central

    Fetterman, Adam K.; Liu, Tianwei; Robinson, Michael D.

    2014-01-01

    Objective The color psychology literature has made a convincing case that color is not just about aesthetics, but also about meaning. This work has involved situational manipulations of color, rendering it uncertain as to whether color-meaning associations can be used to characterize how people differ from each other. The present research focuses on the idea that the color red is linked to, or associated with, individual differences in interpersonal hostility. Method Across four studies (N = 376), red preferences and perceptual biases were measured along with individual differences in interpersonal hostility. Results It was found that: (a) a preference for the color red was higher as interpersonal hostility increased, (b) hostile people were biased to see the color red more frequently than non-hostile people, and (c) there was a relationship between a preference for the color red and hostile social decision-making. Conclusions These studies represent an important extension of the color psychology literature, highlighting the need to attend to person-based, as well as situation-based, factors. PMID:24393102

  15. Extending color psychology to the personality realm: interpersonal hostility varies by red preferences and perceptual biases.

    PubMed

    Fetterman, Adam K; Liu, Tianwei; Robinson, Michael D

    2015-02-01

    The color psychology literature has made a convincing case that color is not just about aesthetics, but also about meaning. This work has involved situational manipulations of color, rendering it uncertain as to whether color-meaning associations can be used to characterize how people differ from each other. The present research focuses on the idea that the color red is linked to, or associated with, individual differences in interpersonal hostility. Across four studies (N = 376 undergraduates), red preferences and perceptual biases were measured along with individual differences in interpersonal hostility. It was found that (a) a preference for the color red was higher as interpersonal hostility increased, (b) hostile people were biased to see the color red more frequently than nonhostile people, and (c) there was a relationship between a preference for the color red and hostile social decision making. These studies represent an important extension of the color psychology literature, highlighting the need to attend to person-based, as well as situation-based, factors. © 2014 Wiley Periodicals, Inc.

  16. Microbial quality, instrumental texture, and color profile evaluation of edible by-products obtained from Barbari goats

    PubMed Central

    Umaraw, Pramila; Pathak, V.; Rajkumar, V.; Verma, Arun K.; Singh, V. P.; Verma, Akhilesh K.

    2015-01-01

    Aim: The study was conducted to estimate the contribution of edible byproducts of Barbari kids to their live and carcass weight as well as to assess textural and color characteristics and microbiological status of these byproducts. Materials and Methods: Percent live weight, Percent carcass weight, Texture, color, and microbiological analysis was done for edible byproducts viz. liver, heart, kidney, spleen, brain and testicle and longissimus dorsi muscle was taken as a reference. Results: The edible byproducts of Barbari kids constitute about 3% of the live weight of an animal of which liver contributed maximum (1.47%) followed by testicles (0.69%) and heart (0.41%). While the same constituted 3.57, 1.70, and 0.99%, respectively on carcass weight. There was significant (p<0.05) difference among all organs regarding textural properties. Liver required the maximum shear force and work of shear (121.48N and 32.19 kg-sec) followed by spleen and heart. All organs revealed characteristics color values (L*, a*, b*, chroma, and hue) which were significantly different (p<0.05) from muscle values. The total viable count, coliform count showed slight differences for all organs studied. The staphylococcus counts were low with little differences among organs. Conclusion: Edible byproducts have a significant contribution to carcass weight which could enhance total edible portion of the carcass. Efficient utilization of these by-products returns good source of revenue to the meat industries. Textural and color analysis give information for their incorporation in comminuted meat products, and microbial study tells about the storage study. However, study was in the preliminary and basic step forward toward better utilization of 3% of live animal which could increase the saleable cost of animal by 6.94%. PMID:27047004

  17. Structural coloration of metallic surfaces with micro/nano-structures induced by elliptical vibration texturing

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Pan, Yayue; Guo, Ping

    2017-04-01

    Creating orderly periodic micro/nano-structures on metallic surfaces, or structural coloration, for control of surface apparent color and optical reflectivity has been an exciting research topic over the years. The direct applications of structural coloration include color marking, display devices, and invisibility cloak. This paper presents an efficient method to colorize metallic surfaces with periodic micro/nano-gratings using elliptical vibration texturing. When the tool vibration is coupled with a constant cutting velocity, controlled periodic ripples can be generated due to the overlapping tool trajectory. These periodic ripples with a wavelength near visible spectrum can act as micro-gratings to introduce iridescent colors. The proposed technique also provides a flexible method for color marking of metallic surfaces with arbitrary patterns and images by precise control of the spacing distance and orientation of induced micro/nano-ripples. Theoretical analysis and experimental results are given to demonstrate structural coloration of metals by a direct mechanical machining technique.

  18. Adaptable history biases in human perceptual decisions.

    PubMed

    Abrahamyan, Arman; Silva, Laura Luz; Dakin, Steven C; Carandini, Matteo; Gardner, Justin L

    2016-06-21

    When making choices under conditions of perceptual uncertainty, past experience can play a vital role. However, it can also lead to biases that worsen decisions. Consistent with previous observations, we found that human choices are influenced by the success or failure of past choices even in a standard two-alternative detection task, where choice history is irrelevant. The typical bias was one that made the subject switch choices after a failure. These choice history biases led to poorer performance and were similar for observers in different countries. They were well captured by a simple logistic regression model that had been previously applied to describe psychophysical performance in mice. Such irrational biases seem at odds with the principles of reinforcement learning, which would predict exquisite adaptability to choice history. We therefore asked whether subjects could adapt their irrational biases following changes in trial order statistics. Adaptability was strong in the direction that confirmed a subject's default biases, but weaker in the opposite direction, so that existing biases could not be eradicated. We conclude that humans can adapt choice history biases, but cannot easily overcome existing biases even if irrational in the current context: adaptation is more sensitive to confirmatory than contradictory statistics.

  19. Speech Adaptation to Kinematic Recording Sensors: Perceptual and Acoustic Findings

    ERIC Educational Resources Information Center

    Dromey, Christopher; Hunter, Elise; Nissen, Shawn L.

    2018-01-01

    Purpose: This study used perceptual and acoustic measures to examine the time course of speech adaptation after the attachment of electromagnetic sensor coils to the tongue, lips, and jaw. Method: Twenty native English speakers read aloud stimulus sentences before the attachment of the sensors, immediately after attachment, and again 5, 10, 15,…

  20. Brilliance, contrast, colorfulness, and the perceived volume of device color gamut

    NASA Astrophysics Data System (ADS)

    Heckaman, Rodney L.

    With the advent of digital video and cinema media technologies, much more is possible in achieving brighter and more vibrant colors, colors that transcend our experience. The challenge is in the realization of these possibilities in an industry rooted in 1950s technology where color gamut is represented with little or no insight into the way an observer perceives color as a complex mixture of the observer's intentions, desires, and interests. By today's standards, five perceptual attributes---brightness, lightness, colorfulness, chroma, and hue---are believed to be required for a complete specification. As a compelling case for such a representation, a display system is demonstrated that is capable of displaying color beyond the realm of object color, perceptually even beyond the spectrum locus of pure color. All this begs the question: Just what is meant by perceptual gamut? To this end, the attributes of perceptual gamut are identified through psychometric testing and the color appearance models CIELAB and CIECAM02. Then, by way of demonstration, these attributes were manipulated to test their application in wide gamut displays. In concert with these perceptual attributes and their manipulation, Ralph M. Evans' concept of brilliance as an attribute of perception that extends beyond the realm of everyday experience, and the theoretical studies of brilliance by Y. Nayatani, a method was developed for producing brighter, more colorful colors and deeper, darker colors with the aim of preserving object color perception---flesh tones in particular. The method was successfully demonstrated and tested in real images using psychophysical methods in the very real, practical application of expanding the gamut of sRGB into an emulation of the wide gamut, xvYCC encoding.

  1. Adaptive color demosaicing and false color removal

    NASA Astrophysics Data System (ADS)

    Guarnera, Mirko; Messina, Giuseppe; Tomaselli, Valeria

    2010-04-01

    Color interpolation solutions drastically influence the quality of the whole image generation pipeline, so they must guarantee the rendering of high quality pictures by avoiding typical artifacts such as blurring, zipper effects, and false colors. Moreover, demosaicing should avoid emphasizing typical artifacts of real sensors data, such as noise and green imbalance effect, which would be further accentuated by the subsequent steps of the processing pipeline. We propose a new adaptive algorithm that decides the interpolation technique to apply to each pixel, according to its neighborhood analysis. Edges are effectively interpolated through a directional filtering approach that interpolates the missing colors, selecting the suitable filter depending on edge orientation. Regions close to edges are interpolated through a simpler demosaicing approach. Thus flat regions are identified and low-pass filtered to eliminate some residual noise and to minimize the annoying green imbalance effect. Finally, an effective false color removal algorithm is used as a postprocessing step to eliminate residual color errors. The experimental results show how sharp edges are preserved, whereas undesired zipper effects are reduced, improving the edge resolution itself and obtaining superior image quality.

  2. Effect of high hydrostatic pressure on the color and texture parameters of refrigerated Caiman (Caiman crocodilus yacare) tail meat.

    PubMed

    Canto, A C V C S; Lima, B R C C; Cruz, A G; Lázaro, C A; Freitas, D G C; Faria, Jose A F; Torrezan, R; Freitas, M Q; Silva, T P J

    2012-07-01

    The effect of applying high hydrostatic pressure (HHP) on the instrumental parameters of color and texture and sensory characteristics of alligator meat were evaluated. Samples of alligator tail meat were sliced, vacuum-packed, pressurized and distributed into four groups: control, treated with 200 MPa/10 min, 300 MPa/10 min and 400 MPa/10 min, then stored at 4°C±1°C for 45 days. Instrumental color, texture profile and a sensory profiling using quantitative descriptive analysis were carried out on the 1st, 15th, 30th and 45th days of storage. HHP was shown to affect the color and texture of the product, and the sensory descriptors (p<0.05). The results suggest that high pressure is a promising technology for the processing of alligator meat, especially low pressures (200 MPa) which can have positive effects on the quality of the product. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Effect of perceptual load on conceptual processing: an extension of Vermeulen's theory.

    PubMed

    Xie, Jiushu; Wang, Ruiming; Sun, Xun; Chang, Song

    2013-10-01

    The effect of color and shape load on conceptual processing was studied. Perceptual load effects have been found in visual and auditory conceptual processing, supporting the theory of embodied cognition. However, whether different types of visual concepts, such as color and shape, share the same perceptual load effects is unknown. In the current experiment, 32 participants were administered simultaneous perceptual and conceptual tasks to assess the relation between perceptual load and conceptual processing. Keeping color load in mind obstructed color conceptual processing. Hence, perceptual processing and conceptual load shared the same resources, suggesting embodied cognition. Color conceptual processing was not affected by shape pictures, indicating that different types of properties within vision were separate.

  4. Habitual wearers of colored lenses adapt more rapidly to the color changes the lenses produce.

    PubMed

    Engel, Stephen A; Wilkins, Arnold J; Mand, Shivraj; Helwig, Nathaniel E; Allen, Peter M

    2016-08-01

    The visual system continuously adapts to the environment, allowing it to perform optimally in a changing visual world. One large change occurs every time one takes off or puts on a pair of spectacles. It would be advantageous for the visual system to learn to adapt particularly rapidly to such large, commonly occurring events, but whether it can do so remains unknown. Here, we tested whether people who routinely wear spectacles with colored lenses increase how rapidly they adapt to the color shifts their lenses produce. Adaptation to a global color shift causes the appearance of a test color to change. We measured changes in the color that appeared "unique yellow", that is neither reddish nor greenish, as subjects donned and removed their spectacles. Nine habitual wearers and nine age-matched control subjects judged the color of a small monochromatic test light presented with a large, uniform, whitish surround every 5s. Red lenses shifted unique yellow to more reddish colors (longer wavelengths), and greenish lenses shifted it to more greenish colors (shorter wavelengths), consistent with adaptation "normalizing" the appearance of the world. In controls, the time course of this adaptation contained a large, rapid component and a smaller gradual one, in agreement with prior results. Critically, in habitual wearers the rapid component was significantly larger, and the gradual component significantly smaller than in controls. The total amount of adaptation was also larger in habitual wearers than in controls. These data suggest strongly that the visual system adapts with increasing rapidity and strength as environments are encountered repeatedly over time. An additional unexpected finding was that baseline unique yellow shifted in a direction opposite to that produced by the habitually worn lenses. Overall, our results represent one of the first formal reports that adjusting to putting on or taking off spectacles becomes easier over time, and may have important

  5. The brain dynamics of rapid perceptual adaptation to adverse listening conditions.

    PubMed

    Erb, Julia; Henry, Molly J; Eisner, Frank; Obleser, Jonas

    2013-06-26

    Listeners show a remarkable ability to quickly adjust to degraded speech input. Here, we aimed to identify the neural mechanisms of such short-term perceptual adaptation. In a sparse-sampling, cardiac-gated functional magnetic resonance imaging (fMRI) acquisition, human listeners heard and repeated back 4-band-vocoded sentences (in which the temporal envelope of the acoustic signal is preserved, while spectral information is highly degraded). Clear-speech trials were included as baseline. An additional fMRI experiment on amplitude modulation rate discrimination quantified the convergence of neural mechanisms that subserve coping with challenging listening conditions for speech and non-speech. First, the degraded speech task revealed an "executive" network (comprising the anterior insula and anterior cingulate cortex), parts of which were also activated in the non-speech discrimination task. Second, trial-by-trial fluctuations in successful comprehension of degraded speech drove hemodynamic signal change in classic "language" areas (bilateral temporal cortices). Third, as listeners perceptually adapted to degraded speech, downregulation in a cortico-striato-thalamo-cortical circuit was observable. The present data highlight differential upregulation and downregulation in auditory-language and executive networks, respectively, with important subcortical contributions when successfully adapting to a challenging listening situation.

  6. Regional Changes in Earths Color and Texture as Observed From Space Over a 15-Year Period

    NASA Technical Reports Server (NTRS)

    Zhao, Guangyu; Di Girolamo, Larry; Diner, David J.; Bruegge, Carol J.; Mueller, Kevin J.; Wu, Dong L.

    2016-01-01

    Earth-observing satellites provide global observations of many geophysical variables. As these variables are derived from measured radiances, the underlying radiance data are the most reliable sources of information for change detection. Here, we identify statistically significant trends in the color and spatial texture of the Earth as viewed from multiple directions from the Multi-angle Imaging SpectroRadiometer (MISR), which has been sampling the angular distribution of scattered sunlight since 2000. Globally, our results show that the Earth has been appearing relatively bluer (up to 1.6 % per decade from both nadir and oblique views) and smoother (up to 1.5 % per decade only from oblique views) over the past 15 years. The magnitude of the global blueing trends is comparable to that of uncertainties in radiometric calibration stability. Regional shifts in color and texture, which are significantly larger than global means, are observed, particularly over polar regions, along the boundaries of the subtropical highs, the tropical western Pacific, Southwestern Asia, and Australia. We demonstrate that the large regional trends cannot be explained either by uncertainties in radiometric calibration or variability in total or spectral solar irradiance; hence, they reflect changes internal to the Earths climate system. The 15-year-mean true color composites and texture images of the Earth at both nadir and oblique views are also presented for the first time.

  7. Polarization-color mapping strategies: catching up with color theory

    NASA Astrophysics Data System (ADS)

    Kruse, Andrew W.; Alenin, Andrey S.; Vaughn, Israel J.; Tyo, J. Scott

    2017-09-01

    Current visualization techniques for mapping polarization data to a color coordinates defined by the Hue, Saturation, Value (HSV) color representation are analyzed in the context of perceptual uniformity. Since HSV is not designed to be perceptually uniform, the extent of non-uniformity should be evaluated by using robust color difference formulae and by comparison to the state-of-the-art uniform color space CAM02-UCS. For mapping just angle of polarization with HSV hue, the results show clear non-uniformity and implications for how this can misrepresent the data. UCS can be used to create alternative mapping techniques that are perceptually uniform. Implementing variation in lightness may increase shape discrimination within the scene. Future work will be dedicated to measuring performance of both current and proposed methods using psychophysical analysis.

  8. Perceptual compression of magnitude-detected synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Gorman, John D.; Werness, Susan A.

    1994-01-01

    A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp.

  9. Prism adaptation magnitude has differential influences on perceptual versus manual responses.

    PubMed

    Striemer, Christopher L; Russell, Karyn; Nath, Priya

    2016-10-01

    Previous research has indicated that rightward prism adaptation can reduce symptoms of spatial neglect following right brain damage. In addition, leftward prism adaptation can create "neglect-like" patterns of performance in healthy adults on tasks that measure attention and spatial biases. Although a great deal of research has focused on which behaviors are influenced by prism adaptation, very few studies have focused directly on how the magnitude of visual shift induced by prisms might be related to the observed aftereffects, or the effects of prisms on measures of attentional and spatial biases. In the current study, we examined these questions by having groups of healthy adult participants complete manual line bisection and landmark tasks prior to and following adaptation to either 8.5° (15 diopter; n = 22) or 17° (30 diopter; n = 25) leftward shifting prisms. Our results demonstrated a significantly larger rightward shift in straight-ahead pointing (a measure of prism aftereffect) following adaptation to 17°, compared to 8.5° leftward shifting prisms. In addition, only 17° leftward shifting prisms resulted in a significant rightward shift in line bisection following adaptation. However, there was a significant change in performance on the landmark task pre- versus post-adaptation in both the 8.5° and 17° leftward shifting prism groups. Interestingly, correlation analyses indicated that changes in straight-ahead pointing pre- versus post-adaptation were positively correlated with changes in performance on the manual line bisection task, but not the landmark task. These data suggest that larger magnitudes of prism adaptation seem to have a greater influence on tasks that require a response with the adapted hand (i.e., line bisection), compared to tasks that only require a perceptual judgment (i.e., the landmark task). In addition, these data provide further evidence that the effects of prisms on manual and perceptual responses are not related to one

  10. Video quality pooling adaptive to perceptual distortion severity.

    PubMed

    Park, Jincheol; Seshadrinathan, Kalpana; Lee, Sanghoon; Bovik, Alan Conrad

    2013-02-01

    It is generally recognized that severe video distortions that are transient in space and/or time have a large effect on overall perceived video quality. In order to understand this phenomena, we study the distribution of spatio-temporally local quality scores obtained from several video quality assessment (VQA) algorithms on videos suffering from compression and lossy transmission over communication channels. We propose a content adaptive spatial and temporal pooling strategy based on the observed distribution. Our method adaptively emphasizes "worst" scores along both the spatial and temporal dimensions of a video sequence and also considers the perceptual effect of large-area cohesive motion flow such as egomotion. We demonstrate the efficacy of the method by testing it using three different VQA algorithms on the LIVE Video Quality database and the EPFL-PoliMI video quality database.

  11. Experimental Study on the Perception Characteristics of Haptic Texture by Multidimensional Scaling.

    PubMed

    Wu, Juan; Li, Na; Liu, Wei; Song, Guangming; Zhang, Jun

    2015-01-01

    Recent works regarding real texture perception demonstrate that physical factors such as stiffness and spatial period play a fundamental role in texture perception. This research used a multidimensional scaling (MDS) analysis to further characterize and quantify the effects of the simulation parameters on haptic texture rendering and perception. In a pilot experiment, 12 haptic texture samples were generated by using a 3-degrees-of-freedom (3-DOF) force-feedback device with varying spatial period, height, and stiffness coefficient parameter values. The subjects' perceptions of the virtual textures indicate that roughness, denseness, flatness and hardness are distinguishing characteristics of texture. In the main experiment, 19 participants rated the dissimilarities of the textures and estimated the magnitudes of their characteristics. The MDS method was used to recover the underlying perceptual space and reveal the significance of the space from the recorded data. The physical parameters and their combinations have significant effects on the perceptual characteristics. A regression model was used to quantitatively analyze the parameters and their effects on the perceptual characteristics. This paper is to illustrate that haptic texture perception based on force feedback can be modeled in two- or three-dimensional space and provide suggestions on improving perception-based haptic texture rendering.

  12. Human preference for individual colors

    NASA Astrophysics Data System (ADS)

    Palmer, Stephen E.; Schloss, Karen B.

    2010-02-01

    Color preference is an important aspect of human behavior, but little is known about why people like some colors more than others. Recent results from the Berkeley Color Project (BCP) provide detailed measurements of preferences among 32 chromatic colors as well as other relevant aspects of color perception. We describe the fit of several color preference models, including ones based on cone outputs, color-emotion associations, and Palmer and Schloss's ecological valence theory. The ecological valence theory postulates that color serves an adaptive "steering' function, analogous to taste preferences, biasing organisms to approach advantageous objects and avoid disadvantageous ones. It predicts that people will tend to like colors to the extent that they like the objects that are characteristically that color, averaged over all such objects. The ecological valence theory predicts 80% of the variance in average color preference ratings from the Weighted Affective Valence Estimates (WAVEs) of correspondingly colored objects, much more variance than any of the other models. We also describe how hue preferences for single colors differ as a function of gender, expertise, culture, social institutions, and perceptual experience.

  13. The human factors of color in environmental design: A critical review

    NASA Technical Reports Server (NTRS)

    Wise, Barbara K.; Wise, James A.

    1988-01-01

    The literature on environmental color to enhance habitability in the design of Space Station interiors is reviewed. Some 200 studies were examined to determine the relative contributions of the three dimensions of color (hue, saturation, and brightness or lightness) to responses to environmental colorations. Implications of the study for color usage in novel settings and locales include: (1) There are no hard-wired linkages between environmental colors and particular judgmental or emotional states; (2) Perceptual impressions of color applications can, however, affect experiences and performances in settings; (3) Color behavior studies cannot yet specify an optimal color scheme, but instead must consider differing objectives, the relative importance of each, and design features such as the coordination of geometry, color, texture, etc.; (4) Some color-behavior effects are governed by low-level retinal and limbal mechanisms as well as by cognitive processes; and (5) Colors should first be specified in terms of what they are to do instead of what they are. Some exercise of choice is therefore needed to establish a sense of personal competence in the setting, since color must be ultimately be accepted by the people who are to live with it.

  14. Holistic face perception is modulated by experience-dependent perceptual grouping.

    PubMed

    Curby, Kim M; Entenman, Robert J; Fleming, Justin T

    2016-07-01

    What role do general-purpose, experience-sensitive perceptual mechanisms play in producing characteristic features of face perception? We previously demonstrated that different-colored, misaligned framing backgrounds, designed to disrupt perceptual grouping of face parts appearing upon them, disrupt holistic face perception. In the current experiments, a similar part-judgment task with composite faces was performed: face parts appeared in either misaligned, different-colored rectangles or aligned, same-colored rectangles. To investigate whether experience can shape impacts of perceptual grouping on holistic face perception, a pre-task fostered the perception of either (a) the misaligned, differently colored rectangle frames as parts of a single, multicolored polygon or (b) the aligned, same-colored rectangle frames as a single square shape. Faces appearing in the misaligned, differently colored rectangles were processed more holistically by those in the polygon-, compared with the square-, pre-task group. Holistic effects for faces appearing in aligned, same-colored rectangles showed the opposite pattern. Experiment 2, which included a pre-task condition fostering the perception of the aligned, same-colored frames as pairs of independent rectangles, provided converging evidence that experience can modulate impacts of perceptual grouping on holistic face perception. These results are surprising given the proposed impenetrability of holistic face perception and provide insights into the elusive mechanisms underlying holistic perception.

  15. Color Categories and Color Appearance

    ERIC Educational Resources Information Center

    Webster, Michael A.; Kay, Paul

    2012-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue-green boundary, to test whether chromatic differences across the boundary…

  16. Ecological model of glittering texture

    NASA Astrophysics Data System (ADS)

    Vallet, Matthieu; Paille, Damien; Monot, Annie; Kemeny, Andras

    2003-06-01

    The perceptual effects of changes of texture luminance either between the eyes or over time have been studied in several experiments and have led to a better comprehension of phenomenons such as sieve effect, binocular and monocular lustre and rivaldepth. In this paper, we propose an ecological model of glittering texture and analyze glitter perception in terms of variations of texture luminance and animation frequency, in dynamic illumination conditions. Our approach is based on randomly oriented mirrors that are computed according to the specular term of Phong's image rendering formula. The sparkling effect is thus correlated to the relative movements of the resulting textured object, the light array and the observer's point of view. The perceptual effect obtained with this model depends on several parameters: mirrors' density, the Phong specular exponent and the statistical properties of the mirrors' normal vectors. The ability to independently set these properties offers a way to explore a characterization space of glitter. A rating procedure provided a first approximation of the numerical values that lead to the best feeling of typical sparkling surfaces such as metallic paint, granite or sea shore.

  17. Histogram-based adaptive gray level scaling for texture feature classification of colorectal polyps

    NASA Astrophysics Data System (ADS)

    Pomeroy, Marc; Lu, Hongbing; Pickhardt, Perry J.; Liang, Zhengrong

    2018-02-01

    Texture features have played an ever increasing role in computer aided detection (CADe) and diagnosis (CADx) methods since their inception. Texture features are often used as a method of false positive reduction for CADe packages, especially for detecting colorectal polyps and distinguishing them from falsely tagged residual stool and healthy colon wall folds. While texture features have shown great success there, the performance of texture features for CADx have lagged behind primarily because of the more similar features among different polyps types. In this paper, we present an adaptive gray level scaling and compare it to the conventional equal-spacing of gray level bins. We use a dataset taken from computed tomography colonography patients, with 392 polyp regions of interest (ROIs) identified and have a confirmed diagnosis through pathology. Using the histogram information from the entire ROI dataset, we generate the gray level bins such that each bin contains roughly the same number of voxels Each image ROI is the scaled down to two different numbers of gray levels, using both an equal spacing of Hounsfield units for each bin, and our adaptive method. We compute a set of texture features from the scaled images including 30 gray level co-occurrence matrix (GLCM) features and 11 gray level run length matrix (GLRLM) features. Using a random forest classifier to distinguish between hyperplastic polyps and all others (adenomas and adenocarcinomas), we find that the adaptive gray level scaling can improve performance based on the area under the receiver operating characteristic curve by up to 4.6%.

  18. Perceptual dimensions differentiate emotions.

    PubMed

    Cavanaugh, Lisa A; MacInnis, Deborah J; Weiss, Allen M

    2015-08-26

    Individuals often describe objects in their world in terms of perceptual dimensions that span a variety of modalities; the visual (e.g., brightness: dark-bright), the auditory (e.g., loudness: quiet-loud), the gustatory (e.g., taste: sour-sweet), the tactile (e.g., hardness: soft vs. hard) and the kinaesthetic (e.g., speed: slow-fast). We ask whether individuals use perceptual dimensions to differentiate emotions from one another. Participants in two studies (one where respondents reported on abstract emotion concepts and a second where they reported on specific emotion episodes) rated the extent to which features anchoring 29 perceptual dimensions (e.g., temperature, texture and taste) are associated with 8 emotions (anger, fear, sadness, guilt, contentment, gratitude, pride and excitement). Results revealed that in both studies perceptual dimensions differentiate positive from negative emotions and high arousal from low arousal emotions. They also differentiate among emotions that are similar in arousal and valence (e.g., high arousal negative emotions such as anger and fear). Specific features that anchor particular perceptual dimensions (e.g., hot vs. cold) are also differentially associated with emotions.

  19. Color Processing in Synesthesia: What Synesthesia Can and Cannot Tell Us About Mechanisms of Color Processing.

    PubMed

    Janik McErlean, Agnieszka B; Banissy, Michael J

    2017-01-01

    Synesthetic experiences of color have been traditionally conceptualized as a perceptual phenomenon. However, recent evidence suggests a role of higher order cognition in the formation of synesthetic experiences. Here, we discuss how synesthetic experiences of color differ from and influence veridical color processing, and how non-perceptual processes such as imagery and color memory might play a role in eliciting synesthetic color experience. Copyright © 2016 Cognitive Science Society, Inc.

  20. Local adaptive contrast enhancement for color images

    NASA Astrophysics Data System (ADS)

    Dijk, Judith; den Hollander, Richard J. M.; Schavemaker, John G. M.; Schutte, Klamer

    2007-04-01

    A camera or display usually has a smaller dynamic range than the human eye. For this reason, objects that can be detected by the naked eye may not be visible in recorded images. Lighting is here an important factor; improper local lighting impairs visibility of details or even entire objects. When a human is observing a scene with different kinds of lighting, such as shadows, he will need to see details in both the dark and light parts of the scene. For grey value images such as IR imagery, algorithms have been developed in which the local contrast of the image is enhanced using local adaptive techniques. In this paper, we present how such algorithms can be adapted so that details in color images are enhanced while color information is retained. We propose to apply the contrast enhancement on color images by applying a grey value contrast enhancement algorithm to the luminance channel of the color signal. The color coordinates of the signal will remain the same. Care is taken that the saturation change is not too high. Gamut mapping is performed so that the output can be displayed on a monitor. The proposed technique can for instance be used by operators monitoring movements of people in order to detect suspicious behavior. To do this effectively, specific individuals should both be easy to recognize and track. This requires optimal local contrast, and is sometimes much helped by color when tracking a person with colored clothes. In such applications, enhanced local contrast in color images leads to more effective monitoring.

  1. Color categories and color appearance

    PubMed Central

    Webster, Michael A.; Kay, Paul

    2011-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue–green boundary, to test whether chromatic differences across the boundary were perceptually exaggerated. This task did not require overt judgments of the perceived colors, and the tendency to group showed only a weak and inconsistent categorical bias. In a second case, we analyzed results from two prior studies of hue scaling of chromatic stimuli (De Valois, De Valois, Switkes, & Mahon, 1997; Malkoc, Kay, & Webster, 2005), to test whether color appearance changed more rapidly around the blue–green boundary. In this task observers directly judge the perceived color of the stimuli and these judgments tended to show much stronger categorical effects. The differences between these tasks could arise either because different signals mediate color grouping and color appearance, or because linguistic categories might differentially intrude on the response to color and/or on the perception of color. Our results suggest that the interaction between language and color processing may be highly dependent on the specific task and cognitive demands and strategies of the observer, and also highlight pronounced individual differences in the tendency to exhibit categorical responses. PMID:22176751

  2. Adaptive reliance on the most stable sensory predictions enhances perceptual feature extraction of moving stimuli.

    PubMed

    Kumar, Neeraj; Mutha, Pratik K

    2016-03-01

    The prediction of the sensory outcomes of action is thought to be useful for distinguishing self- vs. externally generated sensations, correcting movements when sensory feedback is delayed, and learning predictive models for motor behavior. Here, we show that aspects of another fundamental function-perception-are enhanced when they entail the contribution of predicted sensory outcomes and that this enhancement relies on the adaptive use of the most stable predictions available. We combined a motor-learning paradigm that imposes new sensory predictions with a dynamic visual search task to first show that perceptual feature extraction of a moving stimulus is poorer when it is based on sensory feedback that is misaligned with those predictions. This was possible because our novel experimental design allowed us to override the "natural" sensory predictions present when any action is performed and separately examine the influence of these two sources on perceptual feature extraction. We then show that if the new predictions induced via motor learning are unreliable, rather than just relying on sensory information for perceptual judgments, as is conventionally thought, then subjects adaptively transition to using other stable sensory predictions to maintain greater accuracy in their perceptual judgments. Finally, we show that when sensory predictions are not modified at all, these judgments are sharper when subjects combine their natural predictions with sensory feedback. Collectively, our results highlight the crucial contribution of sensory predictions to perception and also suggest that the brain intelligently integrates the most stable predictions available with sensory information to maintain high fidelity in perceptual decisions. Copyright © 2016 the American Physiological Society.

  3. Adaptive Residual Interpolation for Color and Multispectral Image Demosaicking.

    PubMed

    Monno, Yusuke; Kiku, Daisuke; Tanaka, Masayuki; Okutomi, Masatoshi

    2017-12-01

    Color image demosaicking for the Bayer color filter array is an essential image processing operation for acquiring high-quality color images. Recently, residual interpolation (RI)-based algorithms have demonstrated superior demosaicking performance over conventional color difference interpolation-based algorithms. In this paper, we propose adaptive residual interpolation (ARI) that improves existing RI-based algorithms by adaptively combining two RI-based algorithms and selecting a suitable iteration number at each pixel. These are performed based on a unified criterion that evaluates the validity of an RI-based algorithm. Experimental comparisons using standard color image datasets demonstrate that ARI can improve existing RI-based algorithms by more than 0.6 dB in the color peak signal-to-noise ratio and can outperform state-of-the-art algorithms based on training images. We further extend ARI for a multispectral filter array, in which more than three spectral bands are arrayed, and demonstrate that ARI can achieve state-of-the-art performance also for the task of multispectral image demosaicking.

  4. Local binary pattern variants-based adaptive texture features analysis for posed and nonposed facial expression recognition

    NASA Astrophysics Data System (ADS)

    Sultana, Maryam; Bhatti, Naeem; Javed, Sajid; Jung, Soon Ki

    2017-09-01

    Facial expression recognition (FER) is an important task for various computer vision applications. The task becomes challenging when it requires the detection and encoding of macro- and micropatterns of facial expressions. We present a two-stage texture feature extraction framework based on the local binary pattern (LBP) variants and evaluate its significance in recognizing posed and nonposed facial expressions. We focus on the parametric limitations of the LBP variants and investigate their effects for optimal FER. The size of the local neighborhood is an important parameter of the LBP technique for its extraction in images. To make the LBP adaptive, we exploit the granulometric information of the facial images to find the local neighborhood size for the extraction of center-symmetric LBP (CS-LBP) features. Our two-stage texture representations consist of an LBP variant and the adaptive CS-LBP features. Among the presented two-stage texture feature extractions, the binarized statistical image features and adaptive CS-LBP features were found showing high FER rates. Evaluation of the adaptive texture features shows competitive and higher performance than the nonadaptive features and other state-of-the-art approaches, respectively.

  5. Human Perceptual Performance With Nonliteral Imagery: Region Recognition and Texture-Based Segmentation

    ERIC Educational Resources Information Center

    Essock, Edward A.; Sinai, Michael J.; DeFord, Kevin; Hansen, Bruce C.; Srinivasan, Narayanan

    2004-01-01

    In this study the authors address the issue of how the perceptual usefulness of nonliteral imagery should be evaluated. Perceptual performance with nonliteral imagery of natural scenes obtained at night from infrared and image-intensified sensors and from multisensor fusion methods was assessed to relate performance on 2 basic perceptual tasks to…

  6. Adaptive optics without altering visual perception

    PubMed Central

    DE, Koenig; NW, Hart; HJ, Hofer

    2014-01-01

    Adaptive optics combined with visual psychophysics creates the potential to study the relationship between visual function and the retina at the cellular scale. This potential is hampered, however, by visual interference from the wavefront-sensing beacon used during correction. For example, we have previously shown that even a dim, visible beacon can alter stimulus perception (Hofer, H. J., Blaschke, J., Patolia, J., & Koenig, D. E. (2012). Fixation light hue bias revisited: Implications for using adaptive optics to study color vision. Vision Research, 56, 49-56). Here we describe a simple strategy employing a longer wavelength (980nm) beacon that, in conjunction with appropriate restriction on timing and placement, allowed us to perform psychophysics when dark adapted without altering visual perception. The method was verified by comparing detection and color appearance of foveally presented small spot stimuli with and without the wavefront beacon present in 5 subjects. As an important caution, we found that significant perceptual interference can occur even with a subliminal beacon when additional measures are not taken to limit exposure. Consequently, the lack of perceptual interference should be verified for a given system, and not assumed based on invisibility of the beacon. PMID:24607992

  7. ColorMoves: Optimizing Color's Potential for Exploration and Communication of Data

    NASA Astrophysics Data System (ADS)

    Samsel, F.

    2017-12-01

    Color is the most powerful perceptual channel available for exposing and communicating data. Most visualizations are rendered in one of a handful of common colormaps - the rainbow, cool-warm, heat map and viridis. These maps meet the basic criteria for encoding data - perceptual uniformity and reasonable discriminatory power. However, as the size and complexity of data grows, our need to optimize the potential of color grows. The ability to expose greater detail and differentiate between multiple variables becomes ever more important. To meet this need we have created ColorMoves, an interactive colormap construction tool that enables scientists to quickly and easily align a concentration contrast with the data ranges of interest. Perceptual research tells us that luminance is the strongest contrast and thus provides the highest degree of perceptual discrimination. However, the most commonly used colormaps contain a limited range of luminance contrast. ColorMoves enables interactive constructing colormaps enabling one to distribute the luminance where is it most needed. The interactive interface enables optimal placement of the color scales. The ability to watch the changes on ones data, in real time makes precision adjustment quick and easy. By enabling more precise placement and multiple ranges of luminance one can construct colomaps containing greater discriminatory power. By selecting from the wide range of color scale hues scientists can create colormaps intuitive to their subject. ColorMoves is comprised of four main components: a set of 40 color scales; a histogram of the data distribution; a viewing area showing the colormap on your data; and the controls section. The 40 color scales span the spectrum of hues, saturation levels and value distributions. The histogram of the data distribution enables placement of the color scales in precise locations. The viewing area show is the impact of changes on the data in real time. The controls section enables export

  8. Acceleration of color computer-generated hologram from three-dimensional scenes with texture and depth information

    NASA Astrophysics Data System (ADS)

    Shimobaba, Tomoyoshi; Kakue, Takashi; Ito, Tomoyoshi

    2014-06-01

    We propose acceleration of color computer-generated holograms (CGHs) from three-dimensional (3D) scenes that are expressed as texture (RGB) and depth (D) images. These images are obtained by 3D graphics libraries and RGB-D cameras: for example, OpenGL and Kinect, respectively. We can regard them as two-dimensional (2D) cross-sectional images along the depth direction. The generation of CGHs from the 2D cross-sectional images requires multiple diffraction calculations. If we use convolution-based diffraction such as the angular spectrum method, the diffraction calculation takes a long time and requires large memory usage because the convolution diffraction calculation requires the expansion of the 2D cross-sectional images to avoid the wraparound noise. In this paper, we first describe the acceleration of the diffraction calculation using "Band-limited double-step Fresnel diffraction," which does not require the expansion. Next, we describe color CGH acceleration using color space conversion. In general, color CGHs are generated on RGB color space; however, we need to repeat the same calculation for each color component, so that the computational burden of the color CGH generation increases three-fold, compared with monochrome CGH generation. We can reduce the computational burden by using YCbCr color space because the 2D cross-sectional images on YCbCr color space can be down-sampled without the impairing of the image quality.

  9. Shifts in color discrimination during early pregnancy.

    PubMed

    Orbán, Levente L; Dastur, Farhad N

    2012-05-25

    The present study explores two hypotheses: a) women during early pregnancy should experience increased color discrimination ability, and b) women during early pregnancy should experience shifts in subjective preference away from images of foods that appear either unripe or spoiled. Both of these hypotheses derive from an adaptive view of pregnancy sickness that proposes the function of pregnancy sickness is to decrease the likelihood of ingestion of foods with toxins or teratogens. Changes to color discrimination could be part of a network of perceptual and physiological defenses (e.g., changes to olfaction, nausea, vomiting) that support such a function. Participants included 13 pregnant women and 18 non-pregnant women. Pregnant women scored significantly higher than non-pregnant controls on the Farnsworth-Munsell (FM) 100 Hue Test, an objective test of color discrimination, although no difference was found between groups in preferences for food images at different stages of ripeness or spoilage. These results are the first indication that changes to color discrimination may occur during early pregnancy, and is consistent with the view that pregnancy sickness may function as an adaptive defense mechanism.

  10. Biological versus Electronic Adaptive Coloration: How Can One Inform the Other?

    DTIC Science & Technology

    2012-01-01

    Hyperspectral imaging of cuttlefish camouflage indicates good color match in the eyes of fish predators. Proc. Natl Acad. Sci. USA 108, 9148–9153. (doi...Patrick B. Dennis, Rajesh R. Naik, Eric Forsythe and inform the other? Biological versus electronic adaptive coloration : how can one References...TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Biological versus electronic adaptive coloration : how can one inform the

  11. Memory texture as a mechanism of improvement in preference by adding noise

    NASA Astrophysics Data System (ADS)

    Zhao, Yinzhu; Aoki, Naokazu; Kobayashi, Hiroyuki

    2014-02-01

    According to color research, people have memory colors for familiar objects, which correlate with high color preference. As a similar concept to this, we propose memory texture as a mechanism of texture preference by adding image noise (1/f noise or white noise) to photographs of seven familiar objects. Our results showed that (1) memory texture differed from real-life texture; (2) no consistency was found between memory texture and real-life texture; (3) correlation existed between memory texture and preferred texture; and (4) the type of image noise which is more appropriate to texture reproduction differed by object.

  12. Entropy-Based Adaptive Nuclear Texture Features are Independent Prognostic Markers in a Total Population of Uterine Sarcomas

    PubMed Central

    Nielsen, Birgitte; Hveem, Tarjei Sveinsgjerd; Kildal, Wanja; Abeler, Vera M; Kristensen, Gunnar B; Albregtsen, Fritz; Danielsen, Håvard E; Rohde, Gustavo K

    2015-01-01

    Nuclear texture analysis measures the spatial arrangement of the pixel gray levels in a digitized microscopic nuclear image and is a promising quantitative tool for prognosis of cancer. The aim of this study was to evaluate the prognostic value of entropy-based adaptive nuclear texture features in a total population of 354 uterine sarcomas. Isolated nuclei (monolayers) were prepared from 50 µm tissue sections and stained with Feulgen-Schiff. Local gray level entropy was measured within small windows of each nuclear image and stored in gray level entropy matrices, and two superior adaptive texture features were calculated from each matrix. The 5-year crude survival was significantly higher (P < 0.001) for patients with high texture feature values (72%) than for patients with low feature values (36%). When combining DNA ploidy classification (diploid/nondiploid) and texture (high/low feature value), the patients could be stratified into three risk groups with 5-year crude survival of 77, 57, and 34% (Hazard Ratios (HR) of 1, 2.3, and 4.1, P < 0.001). Entropy-based adaptive nuclear texture was an independent prognostic marker for crude survival in multivariate analysis including relevant clinicopathological features (HR = 2.1, P = 0.001), and should therefore be considered as a potential prognostic marker in uterine sarcomas. © The Authors. Published 2014 International Society for Advancement of Cytometry PMID:25483227

  13. Nonuniform multiview color texture mapping of image sequence and three-dimensional model for faded cultural relics with sift feature points

    NASA Astrophysics Data System (ADS)

    Li, Na; Gong, Xingyu; Li, Hongan; Jia, Pengtao

    2018-01-01

    For faded relics, such as Terracotta Army, the 2D-3D registration between an optical camera and point cloud model is an important part for color texture reconstruction and further applications. This paper proposes a nonuniform multiview color texture mapping for the image sequence and the three-dimensional (3D) model of point cloud collected by Handyscan3D. We first introduce nonuniform multiview calibration, including the explanation of its algorithm principle and the analysis of its advantages. We then establish transformation equations based on sift feature points for the multiview image sequence. At the same time, the selection of nonuniform multiview sift feature points is introduced in detail. Finally, the solving process of the collinear equations based on multiview perspective projection is given with three steps and the flowchart. In the experiment, this method is applied to the color reconstruction of the kneeling figurine, Tangsancai lady, and general figurine. These results demonstrate that the proposed method provides an effective support for the color reconstruction of the faded cultural relics and be able to improve the accuracy of 2D-3D registration between the image sequence and the point cloud model.

  14. Classification of Weed Species Using Artificial Neural Networks Based on Color Leaf Texture Feature

    NASA Astrophysics Data System (ADS)

    Li, Zhichen; An, Qiu; Ji, Changying

    The potential impact of herbicide utilization compel people to use new method of weed control. Selective herbicide application is optimal method to reduce herbicide usage while maintain weed control. The key of selective herbicide is how to discriminate weed exactly. The HIS color co-occurrence method (CCM) texture analysis techniques was used to extract four texture parameters: Angular second moment (ASM), Entropy(E), Inertia quadrature (IQ), and Inverse difference moment or local homogeneity (IDM).The weed species selected for studying were Arthraxon hispidus, Digitaria sanguinalis, Petunia, Cyperus, Alternanthera Philoxeroides and Corchoropsis psilocarpa. The software of neuroshell2 was used for designing the structure of the neural network, training and test the data. It was found that the 8-40-1 artificial neural network provided the best classification performance and was capable of classification accuracies of 78%.

  15. Study of chromatic adaptation using memory color matches, Part I: neutral illuminants.

    PubMed

    Smet, Kevin A G; Zhai, Qiyan; Luo, Ming R; Hanselaer, Peter

    2017-04-03

    Twelve corresponding color data sets have been obtained using the long-term memory colors of familiar objects as target stimuli. Data were collected for familiar objects with neutral, red, yellow, green and blue hues under 4 approximately neutral illumination conditions on or near the blackbody locus. The advantages of the memory color matching method are discussed in light of other more traditional asymmetric matching techniques. Results were compared to eight corresponding color data sets available in literature. The corresponding color data was used to test several linear (von Kries, RLAB, etc.) and nonlinear (Hunt & Nayatani) chromatic adaptation transforms (CAT). It was found that a simple two-step von Kries, whereby the degree of adaptation D is optimized to minimize the DEu'v' prediction errors, outperformed all other tested models for both memory color and literature corresponding color sets, whereby prediction errors were lower for the memory color sets. The predictive errors were substantially smaller than the standard uncertainty on the average observer and were comparable to what are considered just-noticeable-differences in the CIE u'v' chromaticity diagram, supporting the use of memory color based internal references to study chromatic adaptation mechanisms.

  16. Short-Term Memory Affects Color Perception in Context

    PubMed Central

    Olkkonen, Maria; Allred, Sarah R.

    2014-01-01

    Color-based object selection — for instance, looking for ripe tomatoes in the market — places demands on both perceptual and memory processes: it is necessary to form a stable perceptual estimate of surface color from a variable visual signal, as well as to retain multiple perceptual estimates in memory while comparing objects. Nevertheless, perceptual and memory processes in the color domain are generally studied in separate research programs with the assumption that they are independent. Here, we demonstrate a strong failure of independence between color perception and memory: the effect of context on color appearance is substantially weakened by a short retention interval between a reference and test stimulus. This somewhat counterintuitive result is consistent with Bayesian estimation: as the precision of the representation of the reference surface and its context decays in memory, prior information gains more weight, causing the retained percepts to be drawn toward prior information about surface and context color. This interaction implies that to fully understand information processing in real-world color tasks, perception and memory need to be considered jointly. PMID:24475131

  17. Short-term memory affects color perception in context.

    PubMed

    Olkkonen, Maria; Allred, Sarah R

    2014-01-01

    Color-based object selection - for instance, looking for ripe tomatoes in the market - places demands on both perceptual and memory processes: it is necessary to form a stable perceptual estimate of surface color from a variable visual signal, as well as to retain multiple perceptual estimates in memory while comparing objects. Nevertheless, perceptual and memory processes in the color domain are generally studied in separate research programs with the assumption that they are independent. Here, we demonstrate a strong failure of independence between color perception and memory: the effect of context on color appearance is substantially weakened by a short retention interval between a reference and test stimulus. This somewhat counterintuitive result is consistent with Bayesian estimation: as the precision of the representation of the reference surface and its context decays in memory, prior information gains more weight, causing the retained percepts to be drawn toward prior information about surface and context color. This interaction implies that to fully understand information processing in real-world color tasks, perception and memory need to be considered jointly.

  18. Separate processing of texture and form in the ventral stream: evidence from FMRI and visual agnosia.

    PubMed

    Cavina-Pratesi, C; Kentridge, R W; Heywood, C A; Milner, A D

    2010-02-01

    Real-life visual object recognition requires the processing of more than just geometric (shape, size, and orientation) properties. Surface properties such as color and texture are equally important, particularly for providing information about the material properties of objects. Recent neuroimaging research suggests that geometric and surface properties are dealt with separately within the lateral occipital cortex (LOC) and the collateral sulcus (CoS), respectively. Here we compared objects that differed either in aspect ratio or in surface texture only, keeping all other visual properties constant. Results on brain-intact participants confirmed that surface texture activates an area in the posterior CoS, quite distinct from the area activated by shape within LOC. We also tested 2 patients with visual object agnosia, one of whom (DF) performed well on the texture task but at chance on the shape task, whereas the other (MS) showed the converse pattern. This behavioral double dissociation was matched by a parallel neuroimaging dissociation, with activation in CoS but not LOC in patient DF and activation in LOC but not CoS in patient MS. These data provide presumptive evidence that the areas respectively activated by shape and texture play a causally necessary role in the perceptual discrimination of these features.

  19. Basic perceptual changes that alter meaning and neural correlates of recognition memory

    PubMed Central

    Gao, Chuanji; Hermiller, Molly S.; Voss, Joel L.; Guo, Chunyan

    2015-01-01

    It is difficult to pinpoint the border between perceptual and conceptual processing, despite their treatment as distinct entities in many studies of recognition memory. For instance, alteration of simple perceptual characteristics of a stimulus can radically change meaning, such as the color of bread changing from white to green. We sought to better understand the role of perceptual and conceptual processing in memory by identifying the effects of changing a basic perceptual feature (color) on behavioral and neural correlates of memory in circumstances when this change would be expected to either change the meaning of a stimulus or to have no effect on meaning (i.e., to influence conceptual processing or not). Abstract visual shapes (“squiggles”) were colorized during study and presented during test in either the same color or a different color. Those squiggles that subjects found to resemble meaningful objects supported behavioral measures of conceptual priming, whereas meaningless squiggles did not. Further, changing color from study to test had a selective effect on behavioral correlates of priming for meaningful squiggles, indicating that color change altered conceptual processing. During a recognition memory test, color change altered event-related brain potential (ERP) correlates of memory for meaningful squiggles but not for meaningless squiggles. Specifically, color change reduced the amplitude of frontally distributed N400 potentials (FN400), implying that these potentials indicated conceptual processing during recognition memory that was sensitive to color change. In contrast, color change had no effect on FN400 correlates of recognition for meaningless squiggles, which were overall smaller in amplitude than for meaningful squiggles (further indicating that these potentials signal conceptual processing during recognition). Thus, merely changing the color of abstract visual shapes can alter their meaning, changing behavioral and neural correlates of

  20. Postharvest color and texture retention in organic Chinese red raspberry and sea-buckthorn fruit during modified atmosphere storage

    USDA-ARS?s Scientific Manuscript database

    Color and texture are among the key quality attributes for small fruit. Postharvest approaches such as modified atmosphere packaging (MAP) along with cold chain management have been shown to support retention of fruit quality during handling and distribution. The objective of this study was to inves...

  1. Corresponding color datasets and a chromatic adaptation model based on the OSA-UCS system.

    PubMed

    Oleari, Claudio

    2014-07-01

    Today chromatic adaptation transforms (CATs) are reconsidered, since their mathematical inconsistency has been shown in Color Res. Appl.38, 188 (2013) and by the CIE technical committee TC 8-11: CIECAM02 Mathematics. In 2004-2005 the author proposed an adaptation transform based on the uniform color scale system of the Optical Society of America (OSA-UCS) [J. Opt. Soc. Am. A21, 677 (2004); Color Res. Appl. 30, 31 (2005)] that transforms the cone-activation stimuli into adapted stimuli. The present work considers all the 37 available corresponding color (CC) datasets selected by CIE and (1) shows that the adapted stimuli obtained from CC data are defined up to an unknown transformation, and an unambiguous definition of the adapted stimuli requires additional hypotheses or suitable experimental data (as it is in the OSA-UCS system); (2) produces a CAT, represented by a linear transformation between CCs, associated with any CC dataset, whose high quality measured in ΔE units discards the possibility of nonlinear transformations; (3) analyzes these color-conversion matrices in a heuristic way with a reference adaptation that is approximately that of the OSA-UCS adapted colors for the D65 illuminant and particularly shows accordance with the Hunt effect and the Bezold-Brücke hue shift; (4) proposes the measurements of CC stimuli with a reference adaptation equal to that of the visual situation of the OSA-UCS system for defining adapted colors for any considered illumination adaptation and therefore for defining a general CAT formula.

  2. Perceptual suppression revealed by adaptive multi-scale entropy analysis of local field potential in monkey visual cortex.

    PubMed

    Hu, Meng; Liang, Hualou

    2013-04-01

    Generalized flash suppression (GFS), in which a salient visual stimulus can be rendered invisible despite continuous retinal input, provides a rare opportunity to directly study the neural mechanism of visual perception. Previous work based on linear methods, such as spectral analysis, on local field potential (LFP) during GFS has shown that the LFP power at distinctive frequency bands are differentially modulated by perceptual suppression. Yet, the linear method alone may be insufficient for the full assessment of neural dynamic due to the fundamentally nonlinear nature of neural signals. In this study, we set forth to analyze the LFP data collected from multiple visual areas in V1, V2 and V4 of macaque monkeys while performing the GFS task using a nonlinear method - adaptive multi-scale entropy (AME) - to reveal the neural dynamic of perceptual suppression. In addition, we propose a new cross-entropy measure at multiple scales, namely adaptive multi-scale cross-entropy (AMCE), to assess the nonlinear functional connectivity between two cortical areas. We show that: (1) multi-scale entropy exhibits percept-related changes in all three areas, with higher entropy observed during perceptual suppression; (2) the magnitude of the perception-related entropy changes increases systematically over successive hierarchical stages (i.e. from lower areas V1 to V2, up to higher area V4); and (3) cross-entropy between any two cortical areas reveals higher degree of asynchrony or dissimilarity during perceptual suppression, indicating a decreased functional connectivity between cortical areas. These results, taken together, suggest that perceptual suppression is related to a reduced functional connectivity and increased uncertainty of neural responses, and the modulation of perceptual suppression is more effective at higher visual cortical areas. AME is demonstrated to be a useful technique in revealing the underlying dynamic of nonlinear/nonstationary neural signal.

  3. Selective attention to perceptual dimensions and switching between dimensions.

    PubMed

    Meiran, Nachshon; Dimov, Eduard; Ganel, Tzvi

    2013-02-01

    In the present experiments, the question being addressed was whether switching attention between perceptual dimensions and selective attention to dimensions are processes that compete over a common resource? Attention to perceptual dimensions is usually studied by requiring participants to ignore a never-relevant dimension. Selection failure (Garner's Interference, GI) is indicated by poorer performance in the filtering condition (when this dimension varies) as compared with baseline (when it is fixed). Switching between perceptual dimensions is usually studied with the task switching paradigm. In the present experiments, attention switching was manipulated by using single-task blocks and blocks in which participants switched between tasks or dimensions in reaction to task cues, and attention to dimensions was assessed by including a third, never-relevant dimension that was either fixed or varied randomly. In Experiments 1 (long cue-target interval, CTI) and 2 (short CTI), the tasks involved shape and color and the never-relevant dimension (texture) was chosen to be separable from them. In Experiments 3 (long CTI) and 4 (short CTI), the tasks involved shape and brightness and the never-relevant dimension, saturation, was chosen to be separable from shape and integral with brightness. Task switching did not generate GI but a short CTI did. Thus, switching and filtering generally do not compete over central limited resources unless under tight time pressure. Experiment 3 shows GI in the brightness task but not in the shape task, suggesting that participants switched their attention between brightness and shape when they switched tasks. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  4. Adaptive Residual Interpolation for Color and Multispectral Image Demosaicking †

    PubMed Central

    Kiku, Daisuke; Okutomi, Masatoshi

    2017-01-01

    Color image demosaicking for the Bayer color filter array is an essential image processing operation for acquiring high-quality color images. Recently, residual interpolation (RI)-based algorithms have demonstrated superior demosaicking performance over conventional color difference interpolation-based algorithms. In this paper, we propose adaptive residual interpolation (ARI) that improves existing RI-based algorithms by adaptively combining two RI-based algorithms and selecting a suitable iteration number at each pixel. These are performed based on a unified criterion that evaluates the validity of an RI-based algorithm. Experimental comparisons using standard color image datasets demonstrate that ARI can improve existing RI-based algorithms by more than 0.6 dB in the color peak signal-to-noise ratio and can outperform state-of-the-art algorithms based on training images. We further extend ARI for a multispectral filter array, in which more than three spectral bands are arrayed, and demonstrate that ARI can achieve state-of-the-art performance also for the task of multispectral image demosaicking. PMID:29194407

  5. Continuously Adaptive vs. Discrete Changes of Task Difficulty in the Training of a Complex Perceptual-Motor Task.

    ERIC Educational Resources Information Center

    Wood, Milton E.

    The purpose of the effort was to determine the benefits to be derived from the adaptive training technique of automatically adjusting task difficulty as a function of a student skill during early learning of a complex perceptual motor task. A digital computer provided the task dynamics, scoring, and adaptive control of a second-order, two-axis,…

  6. Mid-level perceptual features distinguish objects of different real-world sizes.

    PubMed

    Long, Bria; Konkle, Talia; Cohen, Michael A; Alvarez, George A

    2016-01-01

    Understanding how perceptual and conceptual representations are connected is a fundamental goal of cognitive science. Here, we focus on a broad conceptual distinction that constrains how we interact with objects--real-world size. Although there appear to be clear perceptual correlates for basic-level categories (apples look like other apples, oranges look like other oranges), the perceptual correlates of broader categorical distinctions are largely unexplored, i.e., do small objects look like other small objects? Because there are many kinds of small objects (e.g., cups, keys), there may be no reliable perceptual features that distinguish them from big objects (e.g., cars, tables). Contrary to this intuition, we demonstrated that big and small objects have reliable perceptual differences that can be extracted by early stages of visual processing. In a series of visual search studies, participants found target objects faster when the distractor objects differed in real-world size. These results held when we broadly sampled big and small objects, when we controlled for low-level features and image statistics, and when we reduced objects to texforms--unrecognizable textures that loosely preserve an object's form. However, this effect was absent when we used more basic textures. These results demonstrate that big and small objects have reliably different mid-level perceptual features, and suggest that early perceptual information about broad-category membership may influence downstream object perception, recognition, and categorization processes. (c) 2015 APA, all rights reserved).

  7. Object detection approach using generative sparse, hierarchical networks with top-down and lateral connections for combining texture/color detection and shape/contour detection

    DOEpatents

    Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.; Schultz, Peter F.; George, John S.

    2015-07-28

    An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using a combinatorial algorithm.

  8. A New Method for Calibrating Perceptual Salience across Dimensions in Infants: The Case of Color vs. Luminance

    ERIC Educational Resources Information Center

    Kaldy, Zsuzsa; Blaser, Erik A.; Leslie, Alan M.

    2006-01-01

    We report a new method for calibrating differences in perceptual salience across feature dimensions, in infants. The problem of inter-dimensional salience arises in many areas of infant studies, but a general method for addressing the problem has not previously been described. Our method is based on a preferential looking paradigm, adapted to…

  9. Fixation light hue bias revisited: implications for using adaptive optics to study color vision.

    PubMed

    Hofer, H J; Blaschke, J; Patolia, J; Koenig, D E

    2012-03-01

    Current vision science adaptive optics systems use near infrared wavefront sensor 'beacons' that appear as red spots in the visual field. Colored fixation targets are known to influence the perceived color of macroscopic visual stimuli (Jameson, D., & Hurvich, L. M. (1967). Fixation-light bias: An unwanted by-product of fixation control. Vision Research, 7, 805-809.), suggesting that the wavefront sensor beacon may also influence perceived color for stimuli displayed with adaptive optics. Despite its importance for proper interpretation of adaptive optics experiments on the fine scale interaction of the retinal mosaic and spatial and color vision, this potential bias has not yet been quantified or addressed. Here we measure the impact of the wavefront sensor beacon on color appearance for dim, monochromatic point sources in five subjects. The presence of the beacon altered color reports both when used as a fixation target as well as when displaced in the visual field with a chromatically neutral fixation target. This influence must be taken into account when interpreting previous experiments and new methods of adaptive correction should be used in future experiments using adaptive optics to study color. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Coincident disruptive coloration

    PubMed Central

    Cuthill, Innes C.; Székely, Aron

    2008-01-01

    Even if an animal matches its surroundings perfectly in colour and texture, any mismatch between the spatial phase of its pattern and that of the background, or shadow created by its three-dimensional relief, is potentially revealing. Nevertheless, for camouflage to be fully broken, the shape must be recognizable. Disruptive coloration acts against object recognition by the use of high-contrast internal colour boundaries to break up shape and form. As well as the general outline, characteristic features such as eyes and limbs must also be concealed; this can be achieved by having the colour patterns on different, but adjacent, body parts aligned to match each other (i.e. in phase). Such ‘coincident disruptive coloration’ ensures that there is no phase disjunction where body parts meet, and causes different sections of the body to blend perceptually. We tested this theory using field experiments with predation by wild birds on artificial moth-like targets, whose wings and (edible pastry) bodies had colour patterns that were variously coincident or not. We also carried out an experiment with humans searching for analogous targets on a computer screen. Both experiments show that coincident disruptive coloration is an effective mechanism for concealing an otherwise revealing body form. PMID:18990668

  11. Adaptive color halftoning for minimum perceived error using the blue noise mask

    NASA Astrophysics Data System (ADS)

    Yu, Qing; Parker, Kevin J.

    1997-04-01

    Color halftoning using a conventional screen requires careful selection of screen angles to avoid Moire patterns. An obvious advantage of halftoning using a blue noise mask (BNM) is that there are no conventional screen angle or Moire patterns produced. However, a simple strategy of employing the same BNM on all color planes is unacceptable in case where a small registration error can cause objectionable color shifts. In a previous paper by Yao and Parker, strategies were presented for shifting or inverting the BNM as well as using mutually exclusive BNMs for different color planes. In this paper, the above schemes will be studied in CIE-LAB color space in terms of root mean square error and variance for luminance channel and chrominance channel respectively. We will demonstrate that the dot-on-dot scheme results in minimum chrominance error, but maximum luminance error and the 4-mask scheme results in minimum luminance error but maximum chrominance error, while the shift scheme falls in between. Based on this study, we proposed a new adaptive color halftoning algorithm that takes colorimetric color reproduction into account by applying 2-mutually exclusive BNMs on two different color planes and applying an adaptive scheme on other planes to reduce color error. We will show that by having one adaptive color channel, we obtain increased flexibility to manipulate the output so as to reduce colorimetric error while permitting customization to specific printing hardware.

  12. Adapting Choral Singing Experiences for Older Adults: The Implications of Sensory, Perceptual, and Cognitive Changes

    ERIC Educational Resources Information Center

    Yinger, Olivia Swedberg

    2014-01-01

    As people age, they naturally experience sensory, perceptual, and cognitive changes. Many of these changes necessitate adaptations in designing programs for older adults. Choral singing is an activity that has many potential benefits for older adults, yet the rehearsal environment, presentation style, and content of material presented may need to…

  13. Geometry of the perceptual space

    NASA Astrophysics Data System (ADS)

    Assadi, Amir H.; Palmer, Stephen; Eghbalnia, Hamid; Carew, John

    1999-09-01

    The concept of space and geometry varies across the subjects. Following Poincare, we consider the construction of the perceptual space as a continuum equipped with a notion of magnitude. The study of the relationships of objects in the perceptual space gives rise to what we may call perceptual geometry. Computational modeling of objects and investigation of their deeper perceptual geometrical properties (beyond qualitative arguments) require a mathematical representation of the perceptual space. Within the realm of such a mathematical/computational representation, visual perception can be studied as in the well-understood logic-based geometry. This, however, does not mean that one could reduce all problems of visual perception to their geometric counterparts. Rather, visual perception as reported by a human observer, has a subjective factor that could be analytically quantified only through statistical reasoning and in the course of repetitive experiments. Thus, the desire to experimentally verify the statements in perceptual geometry leads to an additional probabilistic structure imposed on the perceptual space, whose amplitudes are measured through intervention by human observers. We propose a model for the perceptual space and the case of perception of textured surfaces as a starting point for object recognition. To rigorously present these ideas and propose computational simulations for testing the theory, we present the model of the perceptual geometry of surfaces through an amplification of theory of Riemannian foliation in differential topology, augmented by statistical learning theory. When we refer to the perceptual geometry of a human observer, the theory takes into account the Bayesian formulation of the prior state of the knowledge of the observer and Hebbian learning. We use a Parallel Distributed Connectionist paradigm for computational modeling and experimental verification of our theory.

  14. Computer-aided diagnosis of psoriasis skin images with HOS, texture and color features: A first comparative study of its kind.

    PubMed

    Shrivastava, Vimal K; Londhe, Narendra D; Sonawane, Rajendra S; Suri, Jasjit S

    2016-04-01

    Psoriasis is an autoimmune skin disease with red and scaly plaques on skin and affecting about 125 million people worldwide. Currently, dermatologist use visual and haptic methods for diagnosis the disease severity. This does not help them in stratification and risk assessment of the lesion stage and grade. Further, current methods add complexity during monitoring and follow-up phase. The current diagnostic tools lead to subjectivity in decision making and are unreliable and laborious. This paper presents a first comparative performance study of its kind using principal component analysis (PCA) based CADx system for psoriasis risk stratification and image classification utilizing: (i) 11 higher order spectra (HOS) features, (ii) 60 texture features, and (iii) 86 color feature sets and their seven combinations. Aggregate 540 image samples (270 healthy and 270 diseased) from 30 psoriasis patients of Indian ethnic origin are used in our database. Machine learning using PCA is used for dominant feature selection which is then fed to support vector machine classifier (SVM) to obtain optimized performance. Three different protocols are implemented using three kinds of feature sets. Reliability index of the CADx is computed. Among all feature combinations, the CADx system shows optimal performance of 100% accuracy, 100% sensitivity and specificity, when all three sets of feature are combined. Further, our experimental result with increasing data size shows that all feature combinations yield high reliability index throughout the PCA-cutoffs except color feature set and combination of color and texture feature sets. HOS features are powerful in psoriasis disease classification and stratification. Even though, independently, all three set of features HOS, texture, and color perform competitively, but when combined, the machine learning system performs the best. The system is fully automated, reliable and accurate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. The fate of task-irrelevant visual motion: perceptual load versus feature-based attention.

    PubMed

    Taya, Shuichiro; Adams, Wendy J; Graf, Erich W; Lavie, Nilli

    2009-11-18

    We tested contrasting predictions derived from perceptual load theory and from recent feature-based selection accounts. Observers viewed moving, colored stimuli and performed low or high load tasks associated with one stimulus feature, either color or motion. The resultant motion aftereffect (MAE) was used to evaluate attentional allocation. We found that task-irrelevant visual features received less attention than co-localized task-relevant features of the same objects. Moreover, when color and motion features were co-localized yet perceived to belong to two distinct surfaces, feature-based selection was further increased at the expense of object-based co-selection. Load theory predicts that the MAE for task-irrelevant motion would be reduced with a higher load color task. However, this was not seen for co-localized features; perceptual load only modulated the MAE for task-irrelevant motion when this was spatially separated from the attended color location. Our results suggest that perceptual load effects are mediated by spatial selection and do not generalize to the feature domain. Feature-based selection operates to suppress processing of task-irrelevant, co-localized features, irrespective of perceptual load.

  16. Game theory-based visual tracking approach focusing on color and texture features.

    PubMed

    Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Chen, Chuanhua; Wang, Xin

    2017-07-20

    It is difficult for a single-feature tracking algorithm to achieve strong robustness under a complex environment. To solve this problem, we proposed a multifeature fusion tracking algorithm that is based on game theory. By focusing on color and texture features as two gamers, this algorithm accomplishes tracking by using a mean shift iterative formula to search for the Nash equilibrium of the game. The contribution of different features is always keeping the state of optical balance, so that the algorithm can fully take advantage of feature fusion. According to the experiment results, this algorithm proves to possess good performance, especially under the condition of scene variation, target occlusion, and similar interference.

  17. Evaluation of color encodings for high dynamic range pixels

    NASA Astrophysics Data System (ADS)

    Boitard, Ronan; Mantiuk, Rafal K.; Pouli, Tania

    2015-03-01

    Traditional Low Dynamic Range (LDR) color spaces encode a small fraction of the visible color gamut, which does not encompass the range of colors produced on upcoming High Dynamic Range (HDR) displays. Future imaging systems will require encoding much wider color gamut and luminance range. Such wide color gamut can be represented using floating point HDR pixel values but those are inefficient to encode. They also lack perceptual uniformity of the luminance and color distribution, which is provided (in approximation) by most LDR color spaces. Therefore, there is a need to devise an efficient, perceptually uniform and integer valued representation for high dynamic range pixel values. In this paper we evaluate several methods for encoding colour HDR pixel values, in particular for use in image and video compression. Unlike other studies we test both luminance and color difference encoding in a rigorous 4AFC threshold experiments to determine the minimum bit-depth required. Results show that the Perceptual Quantizer (PQ) encoding provides the best perceptual uniformity in the considered luminance range, however the gain in bit-depth is rather modest. More significant difference can be observed between color difference encoding schemes, from which YDuDv encoding seems to be the most efficient.

  18. Object detection approach using generative sparse, hierarchical networks with top-down and lateral connections for combining texture/color detection and shape/contour detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.

    An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using amore » combinatorial algorithm.« less

  19. Graduated profiling: enumerating and generating perceptual colormaps for uncalibrated computer displays

    NASA Astrophysics Data System (ADS)

    Kalvin, Alan D.

    2002-06-01

    The importance of using perceptual colormaps for visualizing numerical data is well established in the fields of scientific visualization, computer graphics and color science and related areas of research. In practice however, the use of perceptual colormaps tends to be the exception rather than the rule. In general it is difficult for end-users to find suitable colormaps. In addition, even when such colormaps are available, the inherent variability in color reproduction among computer displays makes it very difficult for the users to verify that these colormaps do indeed preserve their perceptual characteristics when used on different displays. Generally, verification requires display profiling (evaluating the display's color reproduction characteristics), using a colorimeter or a similar type of measuring device. With the growth of the Internet, and the resulting proliferation of remote, client-based displays, the profiling problem has become even more difficult, and in many cases, impossible. We present a method for enumerating and generating perceptual colormaps in such a way that ensures that the perceptual characteristics of the colormaps are maintained for over a wide range of different displays. This method constructs colormaps that are guaranteed to be 'perceptually correct' for a given display by using whatever partial profile information of the display is available. We use the term 'graduated profiling' to describe this method of partial profiling.

  20. Quality assessment of color images based on the measure of just noticeable color difference

    NASA Astrophysics Data System (ADS)

    Chou, Chun-Hsien; Hsu, Yun-Hsiang

    2014-01-01

    Accurate assessment on the quality of color images is an important step to many image processing systems that convey visual information of the reproduced images. An accurate objective image quality assessment (IQA) method is expected to give the assessment result highly agreeing with the subjective assessment. To assess the quality of color images, many approaches simply apply the metric for assessing the quality of gray scale images to each of three color channels of the color image, neglecting the correlation among three color channels. In this paper, a metric for assessing color images' quality is proposed, in which the model of variable just-noticeable color difference (VJNCD) is employed to estimate the visibility thresholds of distortion inherent in each color pixel. With the estimated visibility thresholds of distortion, the proposed metric measures the average perceptible distortion in terms of the quantized distortion according to the perceptual error map similar to that defined by National Bureau of Standards (NBS) for converting the color difference enumerated by CIEDE2000 to the objective score of perceptual quality assessment. The perceptual error map in this case is designed for each pixel according to the visibility threshold estimated by the VJNCD model. The performance of the proposed metric is verified by assessing the test images in the LIVE database, and is compared with those of many well-know IQA metrics. Experimental results indicate that the proposed metric is an effective IQA method that can accurately predict the image quality of color images in terms of the correlation between objective scores and subjective evaluation.

  1. Adaptation, perceptual learning, and plasticity of brain functions.

    PubMed

    Horton, Jonathan C; Fahle, Manfred; Mulder, Theo; Trauzettel-Klosinski, Susanne

    2017-03-01

    The capacity for functional restitution after brain damage is quite different in the sensory and motor systems. This series of presentations highlights the potential for adaptation, plasticity, and perceptual learning from an interdisciplinary perspective. The chances for restitution in the primary visual cortex are limited. Some patterns of visual field loss and recovery after stroke are common, whereas others are impossible, which can be explained by the arrangement and plasticity of the cortical map. On the other hand, compensatory mechanisms are effective, can occur spontaneously, and can be enhanced by training. In contrast to the human visual system, the motor system is highly flexible. This is based on special relationships between perception and action and between cognition and action. In addition, the healthy adult brain can learn new functions, e.g. increasing resolution above the retinal one. The significance of these studies for rehabilitation after brain damage will be discussed.

  2. Distance preservation in color image transforms

    NASA Astrophysics Data System (ADS)

    Santini, Simone

    1999-12-01

    Most current image processing systems work on color images, and color is a precious perceptual clue for determining image similarity. Working with color images, however, is not the sam thing as working with images taking values in a 3D Euclidean space. Not only are color spaces bounded, but the characteristics of the observer endow the space with a 'perceptual' metric that in general does not correspond to the metric naturally inherited from R3. This paper studies the problem of filtering color images abstractly. It begins by determining the properties of the color sum and color product operations such that he desirable properties of orthonormal bases will be preserved. The paper then defines a general scheme, based on the action of the additive group on the color space, by which operations that satisfy the required properties can be defined.

  3. Relationship between neural response and adaptation selectivity to form and color: an ERP study.

    PubMed

    Rentzeperis, Ilias; Nikolaev, Andrey R; Kiper, Daniel C; van Leeuwen, Cees

    2012-01-01

    Adaptation is widely used as a tool for studying selectivity to visual features. In these studies it is usually assumed that the loci of feature selective neural responses and adaptation coincide. We used an adaptation paradigm to investigate the relationship between response and adaptation selectivity in event-related potentials (ERPs). ERPs were evoked by the presentation of colored Glass patterns in a form discrimination task. Response selectivities to form and, to some extent, color of the patterns were reflected in the C1 and N1 ERP components. Adaptation selectivity to color was reflected in N1 and was followed by a late (300-500 ms after stimulus onset) effect of form adaptation. Thus for form, response and adaptation selectivity were manifested in non-overlapping intervals. These results indicate that adaptation and response selectivity can be associated with different processes. Therefore, inferring selectivity from an adaptation paradigm requires analysis of both adaptation and neural response data.

  4. Attention without awareness: Attentional modulation of perceptual grouping without awareness.

    PubMed

    Lo, Shih-Yu

    2018-04-01

    Perceptual grouping is the process through which the perceptual system combines local stimuli into a more global perceptual unit. Previous studies have shown attention to be a modulatory factor for perceptual grouping. However, these studies mainly used explicit measurements, and, thus, whether attention can modulate perceptual grouping without awareness is still relatively unexplored. To clarify the relationship between attention and perceptual grouping, the present study aims to explore how attention interacts with perceptual grouping without awareness. The task was to judge the relative lengths of two centrally presented horizontal bars while a railway-shaped pattern defined by color similarity was presented in the background. Although the observers were unaware of the railway-shaped pattern, their line-length judgment was biased by that pattern, which induced a Ponzo illusion, indicating grouping without awareness. More importantly, an attentional modulatory effect without awareness was manifested as evident by the observer's performance being more often biased when the railway-shaped pattern was formed by an attended color than when it was formed by an unattended one. Also, the attentional modulation effect was shown to be dynamic, being more pronounced with a short presentation time than a longer one. The results of the present study not only clarify the relationship between attention and perceptual grouping but also further contribute to our understanding of attention and awareness by corroborating the dissociation between attention and awareness.

  5. Adaptive typography for dynamic mapping environments

    NASA Astrophysics Data System (ADS)

    Bardon, Didier

    1991-08-01

    When typography moves across a map, it passes over areas of different colors, densities, and textures. In such a dynamic environment, the aspect of typography must be constantly adapted to provide disernibility for every new background. Adaptive typography undergoes two adaptive operations: background control and contrast control. The background control prevents the features of the map (edges, lines, abrupt changes of densities) from destroying the integrity of the letterform. This is achieved by smoothing the features of the map in the area where a text label is displayed. The modified area is limited to the space covered by the characters of the label. Dispositions are taken to insure that the smoothing operation does not introduce any new visual noise. The contrast control assures that there are sufficient lightness differences between the typography and its ever-changing background. For every new situation, background color and foreground color are compared and the foreground color lightness is adjusted according to a chosen contrast value. Criteria and methods of choosing the appropriate contrast value are presented as well as the experiments that led to them.

  6. Visual generalization in honeybees: evidence of peak shift in color discrimination.

    PubMed

    Martínez-Harms, J; Márquez, N; Menzel, R; Vorobyev, M

    2014-04-01

    In the present study, we investigated color generalization in the honeybee Apis mellifera after differential conditioning. In particular, we evaluated the effect of varying the position of a novel color along a perceptual continuum relative to familiar colors on response biases. Honeybee foragers were differentially trained to discriminate between rewarded (S+) and unrewarded (S-) colors and tested on responses toward the former S+ when presented against a novel color. A color space based on the receptor noise-limited model was used to evaluate the relationship between colors and to characterize a perceptual continuum. When S+ was tested against a novel color occupying a locus in the color space located in the same direction from S- as S+, but further away, the bees shifted their stronger response away from S- toward the novel color. These results reveal the occurrence of peak shift in the color vision of honeybees and indicate that honeybees can learn color stimuli in relational terms based on chromatic perceptual differences.

  7. Shape from texture: an evaluation of visual cues

    NASA Astrophysics Data System (ADS)

    Mueller, Wolfgang; Hildebrand, Axel

    1994-05-01

    In this paper an integrated approach is presented to understand and control the influence of texture on shape perception. Following Gibson's hypotheses, which states that texture is a mathematically and psychological sufficient stimulus for surface perception, we evaluate different perceptual cues. Starting out from a perception-based texture classification introduced by Tamura et al., we build up a uniform sampled parameter space. For the synthesis of some of our textures we use the texture description language HiLDTe. To acquire the desired texture specification we take advantage of a genetic algorithm. Employing these textures we practice a number of psychological tests to evaluate the significance of the different texture features. A comprehension of the results derived from the psychological tests is done to constitute new shape analyzing techniques. Since the vanishing point seems to be an important visual cue we introduce the Hough transform. A prospective of future work within the field of visual computing is provided within the final section.

  8. Similarly shaped letters evoke similar colors in grapheme-color synesthesia.

    PubMed

    Brang, David; Rouw, Romke; Ramachandran, V S; Coulson, Seana

    2011-04-01

    Grapheme-color synesthesia is a neurological condition in which viewing numbers or letters (graphemes) results in the concurrent sensation of color. While the anatomical substrates underlying this experience are well understood, little research to date has investigated factors influencing the particular colors associated with particular graphemes or how synesthesia occurs developmentally. A recent suggestion of such an interaction has been proposed in the cascaded cross-tuning (CCT) model of synesthesia, which posits that in synesthetes connections between grapheme regions and color area V4 participate in a competitive activation process, with synesthetic colors arising during the component-stage of grapheme processing. This model more directly suggests that graphemes sharing similar component features (lines, curves, etc.) should accordingly activate more similar synesthetic colors. To test this proposal, we created and regressed synesthetic color-similarity matrices for each of 52 synesthetes against a letter-confusability matrix, an unbiased measure of visual similarity among graphemes. Results of synesthetes' grapheme-color correspondences indeed revealed that more similarly shaped graphemes corresponded with more similar synesthetic colors, with stronger effects observed in individuals with more intense synesthetic experiences (projector synesthetes). These results support the CCT model of synesthesia, implicate early perceptual mechanisms as driving factors in the elicitation of synesthetic hues, and further highlight the relationship between conceptual and perceptual factors in this phenomenon. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. An assessment of the impact of pulsed electric fields processing factors on oxidation, color, texture, and sensory attributes of turkey breast meat.

    PubMed

    Arroyo, Cristina; Eslami, Sara; Brunton, Nigel P; Arimi, Joshua M; Noci, Francesco; Lyng, James G

    2015-05-01

    Pulsed electric fields (PEF) is a novel nonthermal technology that has the potential to cause physical disruption to muscle tissue which in turn could alter the sensorial aspects of meat in both a positive (e.g., enhanced tenderization) and a negative way (e.g., off-flavor development). If there is a risk of off-flavor development it should be identified prior to embarking on an extensive investigation on PEF in meat tenderization and turkey meat was chosen for this purpose as it is particularly prone to oxidation. The objective of this study was to investigate the effect of various PEF treatments on the quality attributes of turkey breast meat. Turkey breast meat obtained 1 d postslaughter was treated in a batch PEF chamber with increasing electric field strength up to 3 kV/cm and analyzed for lipid oxidation by thiobarbituric acid reactive substances assay (TBARS) with up to 5 d storage at 4°C in aerobic conditions. In a separate experiment, turkey breast meat samples were exposed to PEF under various combinations of pulse number, frequency, and voltage. Following PEF treatments weight loss, cook loss, lipid oxidation, texture, and color were assessed by instrumental methods. A sensory analysis was also performed to determine consumer acceptability for color, texture, and odor of the samples. Lipid oxidation in all PEF-treated samples progressed at the same rate with storage as the untreated samples and was not found to be significantly different to the control. Under the conditions examined PEF treatments did not induce differences in instrumentally measured weight loss, cook loss, lipid oxidation, texture, and color (raw and cooked) either on fresh or frozen samples. However, the sensory evaluation suggested that panelists could detect slight differences between the PEF-treated samples and the controls in terms of texture and odor. © 2015 Poultry Science Association Inc.

  10. Finding out about filling-in: a guide to perceptual completion for visual science and the philosophy of perception.

    PubMed

    Pessoa, L; Thompson, E; Noë, A

    1998-12-01

    In visual science the term filling-in is used in different ways, which often leads to confusion. This target article presents a taxonomy of perceptual completion phenomena to organize and clarify theoretical and empirical discussion. Examples of boundary completion (illusory contours) and featural completion (color, brightness, motion, texture, and depth) are examined, and single-cell studies relevant to filling-in are reviewed and assessed. Filling-in issues must be understood in relation to theoretical issues about neural-perceptual isomorphism and linking propositions. Six main conclusions are drawn: (1) visual filling-in comprises a multitude of different perceptual completion phenomena; (2) certain forms of visual completion seem to involve spatially propagating neural activity (neural filling-in) and so, contrary to Dennett's (1991; 1992) recent discussion of filling-in, cannot be described as results of the brain's "ignoring an absence" or "jumping to a conclusion"; (3) in certain cases perceptual completion seems to have measurable effects that depend on neural signals representing a presence rather than ignoring an absence; (4) neural filling-in does not imply either "analytic isomorphism" or "Cartesian materialism," and thus the notion of the bridge locus--a particular neural stage that forms the immediate substrate of perceptual experience--is problematic and should be abandoned; (5) to reject the representational conception of vision in favor of an "enactive" or "animate" conception reduces the importance of filling-in as a theoretical category in the explanation of vision; and (6) the evaluation of perceptual content should not be determined by "subpersonal" considerations about internal processing, but rather by considerations about the task of vision at the level of the animal or person interacting with the world.

  11. Perceptual evaluation of color transformed multispectral imagery

    NASA Astrophysics Data System (ADS)

    Toet, Alexander; de Jong, Michael J.; Hogervorst, Maarten A.; Hooge, Ignace T. C.

    2014-04-01

    Color remapping can give multispectral imagery a realistic appearance. We assessed the practical value of this technique in two observer experiments using monochrome intensified (II) and long-wave infrared (IR) imagery, and color daylight (REF) and fused multispectral (CF) imagery. First, we investigated the amount of detail observers perceive in a short timespan. REF and CF imagery yielded the highest precision and recall measures, while II and IR imagery yielded significantly lower values. This suggests that observers have more difficulty in extracting information from monochrome than from color imagery. Next, we measured eye fixations during free image exploration. Although the overall fixation behavior was similar across image modalities, the order in which certain details were fixated varied. Persons and vehicles were typically fixated first in REF, CF, and IR imagery, while they were fixated later in II imagery. In some cases, color remapping II imagery and fusion with IR imagery restored the fixation order of these image details. We conclude that color remapping can yield enhanced scene perception compared to conventional monochrome nighttime imagery, and may be deployed to tune multispectral image representations such that the resulting fixation behavior resembles the fixation behavior corresponding to daylight color imagery.

  12. Color encryption scheme based on adapted quantum logistic map

    NASA Astrophysics Data System (ADS)

    Zaghloul, Alaa; Zhang, Tiejun; Amin, Mohamed; Abd El-Latif, Ahmed A.

    2014-04-01

    This paper presents a new color image encryption scheme based on quantum chaotic system. In this scheme, a new encryption scheme is accomplished by generating an intermediate chaotic key stream with the help of quantum chaotic logistic map. Then, each pixel is encrypted by the cipher value of the previous pixel and the adapted quantum logistic map. The results show that the proposed scheme has adequate security for the confidentiality of color images.

  13. Color constancy: enhancing von Kries adaption via sensor transformations

    NASA Astrophysics Data System (ADS)

    Finlayson, Graham D.; Drew, Mark S.; Funt, Brian V.

    1993-09-01

    Von Kries adaptation has long been considered a reasonable vehicle for color constancy. Since the color constancy performance attainable via the von Kries rule strongly depends on the spectral response characteristics of the human cones, we consider the possibility of enhancing von Kries performance by constructing new `sensors' as linear combinations of the fixed cone sensitivity functions. We show that if surface reflectances are well-modeled by 3 basis functions and illuminants by 2 basis functions then there exists a set of new sensors for which von Kries adaptation can yield perfect color constancy. These new sensors can (like the cones) be described as long-, medium-, and short-wave sensitive; however, both the new long- and medium-wave sensors have sharpened sensitivities -- their support is more concentrated. The new short-wave sensor remains relatively unchanged. A similar sharpening of cone sensitivities has previously been observed in test and field spectral sensitivities measured for the human eye. We present simulation results demonstrating improved von Kries performance using the new sensors even when the restrictions on the illumination and reflectance are relaxed.

  14. Detecting PHG frames in wireless capsule endoscopy video by integrating rough global dominate-color with fine local texture features

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqi; Wang, Chengliang; Bai, Jianying; Liao, Guobin

    2018-02-01

    Portal hypertensive gastropathy (PHG) is common in gastrointestinal (GI) diseases, and a severe stage of PHG (S-PHG) is a source of gastrointestinal active bleeding. Generally, the diagnosis of PHG is made visually during endoscopic examination; compared with traditional endoscopy, (wireless capsule endoscopy) WCE with noninvasive and painless is chosen as a prevalent tool for visual observation of PHG. However, accurate measurement of WCE images with PHG is a difficult task due to faint contrast and confusing variations in background gastric mucosal tissue for physicians. Therefore, this paper proposes a comprehensive methodology to automatically detect S-PHG images in WCE video to help physicians accurately diagnose S-PHG. Firstly, a rough dominatecolor-tone extraction approach is proposed for better describing global color distribution information of gastric mucosa. Secondly, a hybrid two-layer texture acquisition model is designed by integrating co-occurrence matrix into local binary pattern to depict complex and unique gastric mucosal microstructure local variation. Finally, features of mucosal color and microstructure texture are merged into linear support vector machine to accomplish this automatic classification task. Experiments were implemented on an annotated data set including 1,050 SPHG and 1,370 normal images collected from 36 real patients of different nationalities, ages and genders. By comparison with three traditional texture extraction methods, our method, combined with experimental results, performs best in detection of S-PHG images in WCE video: the maximum of accuracy, sensitivity and specificity reach 0.90, 0.92 and 0.92 respectively.

  15. Chromostereopsis in "virtual reality" adapters with electrically tuneable liquid lens oculars

    NASA Astrophysics Data System (ADS)

    Ozolinsh, Maris; Muizniece, Kristine; Berzinsh, Janis

    2016-10-01

    Chromostereopsis can be sight and feel in "Virtual Reality" adapters, that induces the appearance of color dependant depth sense and, finally, combines this sense with the source conceived depth scenario. Present studies are devoted to investigation the induced chromastereopsis when using adapted "Virtual Reality" frame together with mobile devices as smartphones. We did observation of composite visual stimuli presented on the high spatial resolution screen of the mobile phone placed inside a portable "Virtual Reality" adapter. Separated for the left and right eyes stimuli consisted of two areas: a) identical for both eyes color chromostereopsis part, and b) additional conventional color neutral random-dot stereopsis part with a stereodisparity based on the horizontal shift of a random-dot segment in images for the left and right eyes, correspondingly. The observer task was to equalize the depth sense for neutral and colored stimuli areas. Such scheme allows to determine actual observed chromostereopsis disparity value versus eye stimuli color difference. At standard observation conditions for adapter with +2D ocular lenses for mobile red-blue stimuli, the perceptual chromostereopsis depth sensitivity on color difference was linearly approximated with a slope SChS ≈ 2.1[arcmin/(Labcolor difference)] for red-blue pairs. Additional to standard application in adapter the tuneable "Varioptic" liquid lens oculars were incorporated, that allowed stimuli eye magnification, vergence and disparity values control electrically.

  16. A Neural Model of Chromatic Induction in Uniform and Textured Images and Psychophysical Detection of Non-Opponent Chromatic Qualia

    ERIC Educational Resources Information Center

    Livitz, Gennady

    2011-01-01

    Color is a complex and rich perceptual phenomenon that relates physical properties of light to certain perceptual qualia associated with vision. Hering's opponent color theory, widely regarded as capturing the most fundamental aspects of color phenomenology, suggests that certain unique hues are mutually exclusive as components of a single color.…

  17. Sweetpotato Color Analyses

    USDA-ARS?s Scientific Manuscript database

    Color is an important attribute that contributes to the appearance of a sweetpotato genotype. A consumer uses color, along with geometric attributes (e.g., gloss, luster, sheen, texture, opaqueness, shape), to subjectively evaluate the appearance of a sweetpotato root. Color can be quantified by t...

  18. Texture-Based Correspondence Display

    NASA Technical Reports Server (NTRS)

    Gerald-Yamasaki, Michael

    2004-01-01

    Texture-based correspondence display is a methodology to display corresponding data elements in visual representations of complex multidimensional, multivariate data. Texture is utilized as a persistent medium to contain a visual representation model and as a means to create multiple renditions of data where color is used to identify correspondence. Corresponding data elements are displayed over a variety of visual metaphors in a normal rendering process without adding extraneous linking metadata creation and maintenance. The effectiveness of visual representation for understanding data is extended to the expression of the visual representation model in texture.

  19. Attention and perceptual implicit memory: effects of selective versus divided attention and number of visual objects.

    PubMed

    Mulligan, Neil W

    2002-08-01

    Extant research presents conflicting results on whether manipulations of attention during encoding affect perceptual priming. Two suggested mediating factors are type of manipulation (selective vs divided) and whether attention is manipulated across multiple objects or within a single object. Words printed in different colors (Experiment 1) or flanked by colored blocks (Experiment 2) were presented at encoding. In the full-attention condition, participants always read the word, in the unattended condition they always identified the color, and in the divided-attention conditions, participants attended to both word identity and color. Perceptual priming was assessed with perceptual identification and explicit memory with recognition. Relative to the full-attention condition, attending to color always reduced priming. Dividing attention between word identity and color, however, only disrupted priming when these attributes were presented as multiple objects (Experiment 2) but not when they were dimensions of a common object (Experiment 1). On the explicit test, manipulations of attention always affected recognition accuracy.

  20. Do different perceptual task sets modulate electrophysiological correlates of masked visuomotor priming? Attention to shape and color put to the test.

    PubMed

    Zovko, Monika; Kiefer, Markus

    2013-02-01

    According to classical theories, automatic processes operate independently of attention. Recent evidence, however, shows that masked visuomotor priming, an example of an automatic process, depends on attention to visual form versus semantics. In a continuation of this approach, we probed feature-specific attention within the perceptual domain and tested in two event-related potential (ERP) studies whether masked visuomotor priming in a shape decision task specifically depends on attentional sensitization of visual pathways for shape in contrast to color. Prior to the masked priming procedure, a shape or a color decision task served to induce corresponding task sets. ERP analyses revealed visuomotor priming effects over the occipitoparietal scalp only after the shape, but not after the color induction task. Thus, top-down control coordinates automatic processing streams in congruency with higher-level goals even at a fine-grained level. Copyright © 2012 Society for Psychophysiological Research.

  1. Beauty in abstract paintings: perceptual contrast and statistical properties

    PubMed Central

    Mallon, Birgit; Redies, Christoph; Hayn-Leichsenring, Gregor U.

    2014-01-01

    In this study, we combined the behavioral and objective approach in the field of empirical aesthetics. First, we studied the perception of beauty by investigating shifts in evaluation on perceived beauty of abstract artworks (Experiment 1). Because the participants showed heterogeneous individual preferences for the paintings, we divided them into seven clusters for the test. The experiment revealed a clear pattern of perceptual contrast. The perceived beauty of abstract paintings increased after exposure to paintings that were rated as less beautiful, and it decreased after exposure to paintings that were rated as more beautiful. Next, we searched for correlations of beauty ratings and perceptual contrast with statistical properties of abstract artworks (Experiment 2). The participants showed significant preferences for particular image properties. These preferences differed between the clusters of participants. Strikingly, next to color measures like hue, saturation, value and lightness, the recently described Pyramid of Histograms of Orientation Gradients (PHOG) self-similarity value seems to be a predictor for aesthetic appreciation of abstract artworks. We speculate that the shift in evaluation in Experiment 1 was, at least in part, based on low-level adaptation to some of the statistical image properties analyzed in Experiment 2. In conclusion, our findings demonstrate that the perception of beauty in abstract artworks is altered after exposure to beautiful or non-beautiful images and correlates with particular image properties, especially color measures and self-similarity. PMID:24711791

  2. Color Space and Its Divisions: Color Order from Antiquity to the Present

    NASA Astrophysics Data System (ADS)

    Kuehni, Rolf G.

    2003-03-01

    It has been postulated that humans can differentiate between millions of gradations in color. Not surprisingly, no completely adequate, detailed catalog of colors has yet been devised, however the quest to understand, record, and depict color is as old as the quest to understand the fundamentals of the physical world and the nature of human consciousness. Rolf Kuehni's Color Space and Its Divisions: Color Order from Antiquity to the Present represents an ambitious and unprecedented history of man's inquiry into color order, focusing on the practical applications of the most contemporary developments in the field. Kuehni devotes much of his study to geometric, three-dimensional arrangements of color experiences, a type of system developed only in the mid-nineteenth century. Color spaces are of particular interest for color quality-control purposes in the manufacturing and graphics industries. The author analyzes three major color order systems in detail: Munsell, OSA-UCS, and NCS. He presents historical and current information on color space developments in color vision, psychology, psychophysics, and color technology. Chapter topics include: A historical account of color order systems Fundamentals of psychophysics and the relationship between stimuli and experience Results of perceptual scaling of colors according to attributes History of the development of mathematical color space and difference formulas Analysis of the agreements and discrepancies in psychophysical data describing color differences An experimental plan for the reliable, replicated perceptual data necessary to make progress in the field Experts in academia and industry, neuroscientists, designers, art historians, and anyone interested in the nature of color will find Color Space and Its Divisions to be the authoritative reference in its field.

  3. Adaptive color artwork

    NASA Astrophysics Data System (ADS)

    Beretta, Giordano

    2007-01-01

    The words in a document are often supported, illustrated, and enriched by visuals. When color is used, some of it is used to define the document's identity and is therefore strictly controlled in the design process. The result of this design process is a "color specification sheet," which must be created for every background color. While in traditional publishing there are only a few backgrounds, in variable data publishing a larger number of backgrounds can be used. We present an algorithm that nudges the colors in a visual to be distinct from a background while preserving the visual's general color character.

  4. Aural analysis of image texture via cepstral filtering and sonification

    NASA Astrophysics Data System (ADS)

    Rangayyan, Rangaraj M.; Martins, Antonio C. G.; Ruschioni, Ruggero A.

    1996-03-01

    Texture plays an important role in image analysis and understanding, with many applications in medical imaging and computer vision. However, analysis of texture by image processing is a rather difficult issue, with most techniques being oriented towards statistical analysis which may not have readily comprehensible perceptual correlates. We propose new methods for auditory display (AD) and sonification of (quasi-) periodic texture (where a basic texture element or `texton' is repeated over the image field) and random texture (which could be modeled as filtered or `spot' noise). Although the AD designed is not intended to be speech- like or musical, we draw analogies between the two types of texture mentioned above and voiced/unvoiced speech, and design a sonification algorithm which incorporates physical and perceptual concepts of texture and speech. More specifically, we present a method for AD of texture where the projections of the image at various angles (Radon transforms or integrals) are mapped to audible signals and played in sequence. In the case of random texture, the spectral envelopes of the projections are related to the filter spot characteristics, and convey the essential information for texture discrimination. In the case of periodic texture, the AD provides timber and pitch related to the texton and periodicity. In another procedure for sonification of periodic texture, we propose to first deconvolve the image using cepstral analysis to extract information about the texton and horizontal and vertical periodicities. The projections of individual textons at various angles are used to create a voiced-speech-like signal with each projection mapped to a basic wavelet, the horizontal period to pitch, and the vertical period to rhythm on a longer time scale. The sound pattern then consists of a serial, melody-like sonification of the patterns for each projection. We believe that our approaches provide the much-desired `natural' connection between the image

  5. Tree Colors: Color Schemes for Tree-Structured Data.

    PubMed

    Tennekes, Martijn; de Jonge, Edwin

    2014-12-01

    We present a method to map tree structures to colors from the Hue-Chroma-Luminance color model, which is known for its well balanced perceptual properties. The Tree Colors method can be tuned with several parameters, whose effect on the resulting color schemes is discussed in detail. We provide a free and open source implementation with sensible parameter defaults. Categorical data are very common in statistical graphics, and often these categories form a classification tree. We evaluate applying Tree Colors to tree structured data with a survey on a large group of users from a national statistical institute. Our user study suggests that Tree Colors are useful, not only for improving node-link diagrams, but also for unveiling tree structure in non-hierarchical visualizations.

  6. pH shift protein recovery with organic acids on texture and color of cooked gels.

    PubMed

    Paker, Ilgin; Beamer, Sarah; Jaczynski, Jacek; Matak, Kristen E

    2015-01-01

    Isoelectric solubilization and precipitation (ISP) processing uses pH shifts to separate protein from fish frames, which may increase commercial interest for silver carp. Texture and color properties of gels made from silver carp protein recovered at different pH strategies and organic acid types were compared. ISP was applied to headed gutted silver carp using 10 mol L(-1) sodium hydroxide (NaOH) and either glacial acetic acid (AA) or a (1:1) formic and lactic acid combination (F&L). Protein gels were made with recovered protein and standard functional additives. Texture profile analysis and the Kramer shear test showed that protein gels made from protein solubilized at basic pH values were firmer, harder, more cohesive, gummier and chewier (P < 0.05) than proteins solubilized under acidic conditions. Acidic solubilization led to whiter (P < 0.05) gels, and using F&L during ISP yielded whiter gels under all treatments (P < 0.05). Gels made from ISP-recovered silver carp protein using organic acids show potential for use as a functional ingredient in restructured foods. © 2014 Society of Chemical Industry.

  7. Aerial images visual localization on a vector map using color-texture segmentation

    NASA Astrophysics Data System (ADS)

    Kunina, I. A.; Teplyakov, L. M.; Gladkov, A. P.; Khanipov, T. M.; Nikolaev, D. P.

    2018-04-01

    In this paper we study the problem of combining UAV obtained optical data and a coastal vector map in absence of satellite navigation data. The method is based on presenting the territory as a set of segments produced by color-texture image segmentation. We then find such geometric transform which gives the best match between these segments and land and water areas of the georeferenced vector map. We calculate transform consisting of an arbitrary shift relatively to the vector map and bound rotation and scaling. These parameters are estimated using the RANSAC algorithm which matches the segments contours and the contours of land and water areas of the vector map. To implement this matching we suggest computing shape descriptors robust to rotation and scaling. We performed numerical experiments demonstrating the practical applicability of the proposed method.

  8. Color and luminance in the perception of 1- and 2-dimensional motion.

    PubMed

    Farell, B

    1999-08-01

    An isoluminant color grating usually appears to move more slowly than a luminance grating that has the same physical speed. Yet a grating defined by both color and luminance is seen as perceptually unified and moving at a single intermediate speed. In experiments measuring perceived speed and direction, it was found that color- and luminance-based motion signals are combined differently in the perception of 1-D motion than they are in the perception of 2-D motion. Adding color to a moving 1-D luminance pattern, a grating, slows its perceived speed. Adding color to a moving 2-D luminance pattern, a plaid made of orthogonal gratings, leaves its perceived speed unchanged. Analogous results occur for the perception of the direction of 2-D motion. The visual system appears to discount color when analyzing the motion of luminance-bearing 2-D patterns. This strategy has adaptive advantages, making the sensing of object motion more veridical without sacrificing the ability to see motion at isoluminance.

  9. Adaptive pseudo-color enhancement method of weld radiographic images based on HSI color space and self-transformation of pixels.

    PubMed

    Jiang, Hongquan; Zhao, Yalin; Gao, Jianmin; Gao, Zhiyong

    2017-06-01

    The radiographic testing (RT) image of a steam turbine manufacturing enterprise has the characteristics of low gray level, low contrast, and blurriness, which lead to a substandard image quality. Moreover, it is not conducive for human eyes to detect and evaluate defects. This study proposes an adaptive pseudo-color enhancement method for weld radiographic images based on the hue, saturation, and intensity (HSI) color space and the self-transformation of pixels to solve these problems. First, the pixel's self-transformation is performed to the pixel value of the original RT image. The function value after the pixel's self-transformation is assigned to the HSI components in the HSI color space. Thereafter, the average intensity of the enhanced image is adaptively adjusted to 0.5 according to the intensity of the original image. Moreover, the hue range and interval can be adjusted according to personal habits. Finally, the HSI components after the adaptive adjustment can be transformed to display in the red, green, and blue color space. Numerous weld radiographic images from a steam turbine manufacturing enterprise are used to validate the proposed method. The experimental results show that the proposed pseudo-color enhancement method can improve image definition and make the target and background areas distinct in weld radiographic images. The enhanced images will be more conducive for defect recognition. Moreover, the image enhanced using the proposed method conforms to the human eye visual properties, and the effectiveness of defect recognition and evaluation can be ensured.

  10. Adaptive pseudo-color enhancement method of weld radiographic images based on HSI color space and self-transformation of pixels

    NASA Astrophysics Data System (ADS)

    Jiang, Hongquan; Zhao, Yalin; Gao, Jianmin; Gao, Zhiyong

    2017-06-01

    The radiographic testing (RT) image of a steam turbine manufacturing enterprise has the characteristics of low gray level, low contrast, and blurriness, which lead to a substandard image quality. Moreover, it is not conducive for human eyes to detect and evaluate defects. This study proposes an adaptive pseudo-color enhancement method for weld radiographic images based on the hue, saturation, and intensity (HSI) color space and the self-transformation of pixels to solve these problems. First, the pixel's self-transformation is performed to the pixel value of the original RT image. The function value after the pixel's self-transformation is assigned to the HSI components in the HSI color space. Thereafter, the average intensity of the enhanced image is adaptively adjusted to 0.5 according to the intensity of the original image. Moreover, the hue range and interval can be adjusted according to personal habits. Finally, the HSI components after the adaptive adjustment can be transformed to display in the red, green, and blue color space. Numerous weld radiographic images from a steam turbine manufacturing enterprise are used to validate the proposed method. The experimental results show that the proposed pseudo-color enhancement method can improve image definition and make the target and background areas distinct in weld radiographic images. The enhanced images will be more conducive for defect recognition. Moreover, the image enhanced using the proposed method conforms to the human eye visual properties, and the effectiveness of defect recognition and evaluation can be ensured.

  11. Color group selection for computer interfaces

    NASA Astrophysics Data System (ADS)

    Lyons, Paul; Moretti, Giovanni; Wilson, Mark

    2000-06-01

    We describe a low-impact method for coloring interfaces harmoniously. The method uses a model that characterizes the overall image including the need for distinguishability between interface components. The degree of visual distinction between one component and other components, and its color strength (which increases with its importance and decreases with its size and longevity), are used in generating a rigid ball-and-stick 'color molecule,' which represents the color relationships between the interface components. The shape of the color molecule is chosen to conform to standard principles of color harmony (like colors harmonize, complementary colors harmonize, cycles in the color space harmonize, and so on). The color molecule's shape is fixed, but its position and orientation within the perceptually uniform color solid are not. The end user of the application chooses a new color scheme for the complete interface by repositioning the molecule within the color space. The molecule's shape and rigidity, and the space's perceptual uniformity, ensures the distinguishability and color harmony of the components are maintained. The system produces a selection of color schemes which often include subtle 'nameless' colors that people rarely choose using conventional color controls, but which blend smoothly into a harmonious color scheme. A new set of equally harmonious color schemes only requires repositioning the color molecule within the space.

  12. Theoretical aspects of color vision

    NASA Technical Reports Server (NTRS)

    Wolbarsht, M. L.

    1972-01-01

    The three color receptors of Young-Helmholtz and the opponent colors type of information processing postulated by Hering are both present in the human visual system. This mixture accounts for both the phenomena of color matching or hue discrimination and such perceptual qualities of color as the division of the spectrum into color bands. The functioning of the cells in the visual system, especially within the retina, and the relation of this function to color perception are discussed.

  13. Color filter array design based on a human visual model

    NASA Astrophysics Data System (ADS)

    Parmar, Manu; Reeves, Stanley J.

    2004-05-01

    To reduce cost and complexity associated with registering multiple color sensors, most consumer digital color cameras employ a single sensor. A mosaic of color filters is overlaid on a sensor array such that only one color channel is sampled per pixel location. The missing color values must be reconstructed from available data before the image is displayed. The quality of the reconstructed image depends fundamentally on the array pattern and the reconstruction technique. We present a design method for color filter array patterns that use red, green, and blue color channels in an RGB array. A model of the human visual response for luminance and opponent chrominance channels is used to characterize the perceptual error between a fully sampled and a reconstructed sparsely-sampled image. Demosaicking is accomplished using Wiener reconstruction. To ensure that the error criterion reflects perceptual effects, reconstruction is done in a perceptually uniform color space. A sequential backward selection algorithm is used to optimize the error criterion to obtain the sampling arrangement. Two different types of array patterns are designed: non-periodic and periodic arrays. The resulting array patterns outperform commonly used color filter arrays in terms of the error criterion.

  14. Anger as Seeing Red: Perceptual Sources of Evidence

    PubMed Central

    Fetterman, Adam K.; Robinson, Michael D.; Gordon, Robert D.; Elliot, Andrew J.

    2012-01-01

    A class of metaphors links the experience of anger to perceptions of redness. Whether such metaphors have significant implications for understanding perception is not known. In Experiment 1, anger (versus sadness) concepts were primed and it was found that priming anger concepts led individuals to be more likely to perceive the color red. In Experiment 2, anger states were directly manipulated, and it was found that evoking anger led individuals to be more likely to perceive red. Both experiments showed that the observed effects were independent of the actual color presented. These findings extend the New Look, perceptual, metaphoric, and social cognitive literatures. Most importantly, the results suggest that emotion representation processes of a metaphoric type can be extended to the perceptual realm. PMID:22822418

  15. Anger as Seeing Red: Perceptual Sources of Evidence.

    PubMed

    Fetterman, Adam K; Robinson, Michael D; Gordon, Robert D; Elliot, Andrew J

    2011-05-01

    A class of metaphors links the experience of anger to perceptions of redness. Whether such metaphors have significant implications for understanding perception is not known. In Experiment 1, anger (versus sadness) concepts were primed and it was found that priming anger concepts led individuals to be more likely to perceive the color red. In Experiment 2, anger states were directly manipulated, and it was found that evoking anger led individuals to be more likely to perceive red. Both experiments showed that the observed effects were independent of the actual color presented. These findings extend the New Look, perceptual, metaphoric, and social cognitive literatures. Most importantly, the results suggest that emotion representation processes of a metaphoric type can be extended to the perceptual realm.

  16. Seeing Colors: Cultural and Environmental Influences on Episodic Memory.

    PubMed

    Persaud, Kimele; Hemmer, Pernille; Kidd, Celeste; Piantadosi, Steven

    2017-01-01

    Expectations learned from our perceptual experiences, culture, and language can shape how we perceive, interact with, and remember features of the past. Here, we questioned whether environment also plays a role. We tested recognition memory for color in Bolivia's indigenous Tsimanè people, who experience a different color environment than standard U.S. We found that memory regressed differently between the groups, lending credence to the idea that environmental variations engender differences in expectations, and in turn perceptual memory for color.

  17. Color machine vision system for process control in the ceramics industry

    NASA Astrophysics Data System (ADS)

    Penaranda Marques, Jose A.; Briones, Leoncio; Florez, Julian

    1997-08-01

    This paper is focused on the design of a machine vision system to solve a problem found in the manufacturing process of high quality polished porcelain tiles. This consists of sorting the tiles according to the criteria 'same appearance to the human eye' or in other words, by color and visual texture. In 1994 this problem was tackled and led to a prototype which became fully operational at production scale in a manufacturing plant, named Porcelanatto, S.A. The system has evolved and has been adapted to meet the particular needs of this manufacturing company. Among the main issues that have been improved, it is worth pointing out: (1) improvement to discern subtle variations in color or texture, which are the main features of the visual appearance; (2) inspection time reduction, as a result of algorithm optimization and the increasing computing power. Thus, 100 percent of the production can be inspected, reaching a maximum of 120 tiles/sec.; (3) adaptation to the different types and models of tiles manufactured. The tiles vary not only in their visible patterns but also in dimensions, formats, thickness and allowances. In this sense, one major problem has been reaching an optimal compromise: The system must be sensitive enough to discern subtle variations in color, but at the same time insensitive thickness variations in the tiles. The following parts have been used to build the system: RGB color line scan camera, 12 bits per channel, PCI frame grabber, PC, fiber optic based illumination and the algorithm which will be explained in section 4.

  18. Impact of storage on dark chocolate: texture and polymorphic changes.

    PubMed

    Nightingale, Lia M; Lee, Soo-Yeun; Engeseth, Nicki J

    2011-01-01

    Chocolate storage is critical to final product quality. Inadequate storage, especially with temperature fluctuations, may lead to rearrangement of triglycerides that make up the bulk of the chocolate matrix; this rearrangement may lead to fat bloom. Bloom is the main cause of quality loss in the chocolate industry. The effect of storage conditions leading to bloom formation on texture and flavor attributes by human and instrumental measures has yet to be reported. Therefore, the impact of storage conditions on the quality of dark chocolate by sensory and instrumental measurements was determined. Dark chocolate was kept under various conditions and analyzed at 0, 4, and 8 wk of storage. Ten members of a descriptive panel analyzed texture and flavor. Instrumental methods included texture analysis, color measurement, lipid polymorphism by X-ray diffraction and differential scanning calorimetry, triglyceride concentration by gas chromatography, and surface properties by atomic force microscopy. Results were treated by analysis of variance, cluster analysis, principal component analysis, and linear partial least squares regression analysis. Chocolate stored 8 wk at high temperature without fluctuations and 4 wk with fluctuations transitioned from form V to VI. Chocolates stored at high temperature with and without fluctuations were harder, more fracturable, more toothpacking, had longer melt time, were less sweet, and had less cream flavor. These samples had rougher surfaces, fewer but larger grains, and a heterogeneous surface. Overall, all stored dark chocolate experienced instrumental or perceptual changes attributed to storage condition. Chocolates stored at high temperature with and without fluctuations were most visually and texturally compromised. Practical Application: Many large chocolate companies do their own "in-house" unpublished research and smaller confectionery facilities do not have the means to conduct their own research. Therefore, this study relating

  19. Incorporation of perceptually adaptive QIM with singular value decomposition for blind audio watermarking

    NASA Astrophysics Data System (ADS)

    Hu, Hwai-Tsu; Chou, Hsien-Hsin; Yu, Chu; Hsu, Ling-Yuan

    2014-12-01

    This paper presents a novel approach for blind audio watermarking. The proposed scheme utilizes the flexibility of discrete wavelet packet transformation (DWPT) to approximate the critical bands and adaptively determines suitable embedding strengths for carrying out quantization index modulation (QIM). The singular value decomposition (SVD) is employed to analyze the matrix formed by the DWPT coefficients and embed watermark bits by manipulating singular values subject to perceptual criteria. To achieve even better performance, two auxiliary enhancement measures are attached to the developed scheme. Performance evaluation and comparison are demonstrated with the presence of common digital signal processing attacks. Experimental results confirm that the combination of the DWPT, SVD, and adaptive QIM achieves imperceptible data hiding with satisfying robustness and payload capacity. Moreover, the inclusion of self-synchronization capability allows the developed watermarking system to withstand time-shifting and cropping attacks.

  20. Frequent video game players resist perceptual interference.

    PubMed

    Berard, Aaron V; Cain, Matthew S; Watanabe, Takeo; Sasaki, Yuka

    2015-01-01

    Playing certain types of video games for a long time can improve a wide range of mental processes, from visual acuity to cognitive control. Frequent gamers have also displayed generalized improvements in perceptual learning. In the Texture Discrimination Task (TDT), a widely used perceptual learning paradigm, participants report the orientation of a target embedded in a field of lines and demonstrate robust over-night improvement. However, changing the orientation of the background lines midway through TDT training interferes with overnight improvements in overall performance on TDT. Interestingly, prior research has suggested that this effect will not occur if a one-hour break is allowed in between the changes. These results have suggested that after training is over, it may take some time for learning to become stabilized and resilient against interference. Here, we tested whether frequent gamers have faster stabilization of perceptual learning compared to non-gamers and examined the effect of daily video game playing on interference of training of TDT with one background orientation on perceptual learning of TDT with a different background orientation. As a result, we found that non-gamers showed overnight performance improvement only on one background orientation, replicating previous results with the interference in TDT. In contrast, frequent gamers demonstrated overnight improvements in performance with both background orientations, suggesting that they are better able to overcome interference in perceptual learning. This resistance to interference suggests that video game playing not only enhances the amplitude and speed of perceptual learning but also leads to faster and/or more robust stabilization of perceptual learning.

  1. Exploring the use of memory colors for image enhancement

    NASA Astrophysics Data System (ADS)

    Xue, Su; Tan, Minghui; McNamara, Ann; Dorsey, Julie; Rushmeier, Holly

    2014-02-01

    Memory colors refer to those colors recalled in association with familiar objects. While some previous work introduces this concept to assist digital image enhancement, their basis, i.e., on-screen memory colors, are not appropriately investigated. In addition, the resulting adjustment methods developed are not evaluated from a perceptual view of point. In this paper, we first perform a context-free perceptual experiment to establish the overall distributions of screen memory colors for three pervasive objects. Then, we use a context-based experiment to locate the most representative memory colors; at the same time, we investigate the interactions of memory colors between different objects. Finally, we show a simple yet effective application using representative memory colors to enhance digital images. A user study is performed to evaluate the performance of our technique.

  2. Relating color working memory and color perception.

    PubMed

    Allred, Sarah R; Flombaum, Jonathan I

    2014-11-01

    Color is the most frequently studied feature in visual working memory (VWM). Oddly, much of this work de-emphasizes perception, instead making simplifying assumptions about the inputs served to memory. We question these assumptions in light of perception research, and we identify important points of contact between perception and working memory in the case of color. Better characterization of its perceptual inputs will be crucial for elucidating the structure and function of VWM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Thickness related textural properties of retinal nerve fiber layer in color fundus images.

    PubMed

    Odstrcilik, Jan; Kolar, Radim; Tornow, Ralf-Peter; Jan, Jiri; Budai, Attila; Mayer, Markus; Vodakova, Martina; Laemmer, Robert; Lamos, Martin; Kuna, Zdenek; Gazarek, Jiri; Kubena, Tomas; Cernosek, Pavel; Ronzhina, Marina

    2014-09-01

    Images of ocular fundus are routinely utilized in ophthalmology. Since an examination using fundus camera is relatively fast and cheap procedure, it can be used as a proper diagnostic tool for screening of retinal diseases such as the glaucoma. One of the glaucoma symptoms is progressive atrophy of the retinal nerve fiber layer (RNFL) resulting in variations of the RNFL thickness. Here, we introduce a novel approach to capture these variations using computer-aided analysis of the RNFL textural appearance in standard and easily available color fundus images. The proposed method uses the features based on Gaussian Markov random fields and local binary patterns, together with various regression models for prediction of the RNFL thickness. The approach allows description of the changes in RNFL texture, directly reflecting variations in the RNFL thickness. Evaluation of the method is carried out on 16 normal ("healthy") and 8 glaucomatous eyes. We achieved significant correlation (normals: ρ=0.72±0.14; p≪0.05, glaucomatous: ρ=0.58±0.10; p≪0.05) between values of the model predicted output and the RNFL thickness measured by optical coherence tomography, which is currently regarded as a standard glaucoma assessment device. The evaluation thus revealed good applicability of the proposed approach to measure possible RNFL thinning. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. New adaptive color quantization method based on self-organizing maps.

    PubMed

    Chang, Chip-Hong; Xu, Pengfei; Xiao, Rui; Srikanthan, Thambipillai

    2005-01-01

    Color quantization (CQ) is an image processing task popularly used to convert true color images to palletized images for limited color display devices. To minimize the contouring artifacts introduced by the reduction of colors, a new competitive learning (CL) based scheme called the frequency sensitive self-organizing maps (FS-SOMs) is proposed to optimize the color palette design for CQ. FS-SOM harmonically blends the neighborhood adaptation of the well-known self-organizing maps (SOMs) with the neuron dependent frequency sensitive learning model, the global butterfly permutation sequence for input randomization, and the reinitialization of dead neurons to harness effective utilization of neurons. The net effect is an improvement in adaptation, a well-ordered color palette, and the alleviation of underutilization problem, which is the main cause of visually perceivable artifacts of CQ. Extensive simulations have been performed to analyze and compare the learning behavior and performance of FS-SOM against other vector quantization (VQ) algorithms. The results show that the proposed FS-SOM outperforms classical CL, Linde, Buzo, and Gray (LBG), and SOM algorithms. More importantly, FS-SOM achieves its superiority in reconstruction quality and topological ordering with a much greater robustness against variations in network parameters than the current art SOM algorithm for CQ. A most significant bit (MSB) biased encoding scheme is also introduced to reduce the number of parallel processing units. By mapping the pixel values as sign-magnitude numbers and biasing the magnitudes according to their sign bits, eight lattice points in the color space are condensed into one common point density function. Consequently, the same processing element can be used to map several color clusters and the entire FS-SOM network can be substantially scaled down without severely scarifying the quality of the displayed image. The drawback of this encoding scheme is the additional storage

  5. Novel Perceptually Uniform Chromatic Space.

    PubMed

    da Fonseca, María; Samengo, Inés

    2018-06-01

    Chromatically perceptive observers are endowed with a sense of similarity between colors. For example, two shades of green that are only slightly discriminable are perceived as similar, whereas other pairs of colors, for example, blue and yellow, typically elicit markedly different sensations. The notion of similarity need not be shared by different observers. Dichromat and trichromat subjects perceive colors differently, and two dichromats (or two trichromats, for that matter) may judge chromatic differences inconsistently. Moreover, there is ample evidence that different animal species sense colors diversely. To capture the subjective metric of color perception, here we construct a notion of distance in color space based on the physiology of the retina, and is thereby individually tailored for different observers. By applying the Fisher metric to an analytical model of color representation, we construct a notion of distance that reproduces behavioral experiments of classical discrimination tasks. We then derive a coordinate transformation that defines a new chromatic space in which the Euclidean distance between any two colors is equal to the perceptual distance, as seen by one individual subject, endowed with an arbitrary number of color-sensitive photoreceptors, each with arbitrary absorption probability curves and appearing in arbitrary proportions.

  6. Appearance and characterization of fruit image textures for quality sorting using wavelet transform and genetic algorithms.

    PubMed

    Khoje, Suchitra

    2018-02-01

    Images of four qualities of mangoes and guavas are evaluated for color and textural features to characterize and classify them, and to model the fruit appearance grading. The paper discusses three approaches to identify most discriminating texture features of both the fruits. In the first approach, fruit's color and texture features are selected using Mahalanobis distance. A total of 20 color features and 40 textural features are extracted for analysis. Using Mahalanobis distance and feature intercorrelation analyses, one best color feature (mean of a* [L*a*b* color space]) and two textural features (energy a*, contrast of H*) are selected as features for Guava while two best color features (R std, H std) and one textural features (energy b*) are selected as features for mangoes with the highest discriminate power. The second approach studies some common wavelet families for searching the best classification model for fruit quality grading. The wavelet features extracted from five basic mother wavelets (db, bior, rbior, Coif, Sym) are explored to characterize fruits texture appearance. In third approach, genetic algorithm is used to select only those color and wavelet texture features that are relevant to the separation of the class, from a large universe of features. The study shows that image color and texture features which were identified using a genetic algorithm can distinguish between various qualities classes of fruits. The experimental results showed that support vector machine classifier is elected for Guava grading with an accuracy of 97.61% and artificial neural network is elected from Mango grading with an accuracy of 95.65%. The proposed method is nondestructive fruit quality assessment method. The experimental results has proven that Genetic algorithm along with wavelet textures feature has potential to discriminate fruit quality. Finally, it can be concluded that discussed method is an accurate, reliable, and objective tool to determine fruit

  7. The adaptive value of primate color vision for predator detection.

    PubMed

    Pessoa, Daniel Marques Almeida; Maia, Rafael; de Albuquerque Ajuz, Rafael Cavalcanti; De Moraes, Pedro Zurvaino Palmeira Melo Rosa; Spyrides, Maria Helena Constantino; Pessoa, Valdir Filgueiras

    2014-08-01

    The complex evolution of primate color vision has puzzled biologists for decades. Primates are the only eutherian mammals that evolved an enhanced capacity for discriminating colors in the green-red part of the spectrum (trichromatism). However, while Old World primates present three types of cone pigments and are routinely trichromatic, most New World primates exhibit a color vision polymorphism, characterized by the occurrence of trichromatic and dichromatic females and obligatory dichromatic males. Even though this has stimulated a prolific line of inquiry, the selective forces and relative benefits influencing color vision evolution in primates are still under debate, with current explanations focusing almost exclusively at the advantages in finding food and detecting socio-sexual signals. Here, we evaluate a previously untested possibility, the adaptive value of primate color vision for predator detection. By combining color vision modeling data on New World and Old World primates, as well as behavioral information from human subjects, we demonstrate that primates exhibiting better color discrimination (trichromats) excel those displaying poorer color visions (dichromats) at detecting carnivoran predators against the green foliage background. The distribution of color vision found in extant anthropoid primates agrees with our results, and may be explained by the advantages of trichromats and dichromats in detecting predators and insects, respectively. © 2014 Wiley Periodicals, Inc.

  8. Simultaneous contrast and gamut relativity in achromatic color perception.

    PubMed

    Vladusich, Tony

    2012-09-15

    Simultaneous contrast refers to the respective whitening or blackening of physically identical image regions surrounded by regions of low or high luminance, respectively. A common method of measuring the strength of this effect is achromatic color matching, in which subjects adjust the luminance of a target region to achieve an achromatic color match with another region. Here I present psychophysical data questioning the assumption--built into many models of achromatic color perception--that achromatic colors are represented as points in a one-dimensional (1D) perceptual space, or an absolute achromatic color gamut. I present an alternative model in which the achromatic color gamut corresponding to a target region is defined relatively, with respect to surround luminance. Different achromatic color gamuts in this model correspond to different 1D lines through a 2D perceptual space composed of blackness and whiteness dimensions. Each such line represents a unique gamut of achromatic colors ranging from black to white. I term this concept gamut relativity. Achromatic color matches made between targets surrounded by regions of different luminance are shown to reflect the relative perceptual distances between points lying on different gamut lines. The model suggests a novel geometrical approach to simultaneous contrast and achromatic color matching in terms of the vector summation of local luminance and contrast components, and sets the stage for a unified computational theory of achromatic color perception. 2012 Elsevier Ltd. All rights reserved

  9. Decoding and reconstructing color from responses in human visual cortex.

    PubMed

    Brouwer, Gijs Joost; Heeger, David J

    2009-11-04

    How is color represented by spatially distributed patterns of activity in visual cortex? Functional magnetic resonance imaging responses to several stimulus colors were analyzed with multivariate techniques: conventional pattern classification, a forward model of idealized color tuning, and principal component analysis (PCA). Stimulus color was accurately decoded from activity in V1, V2, V3, V4, and VO1 but not LO1, LO2, V3A/B, or MT+. The conventional classifier and forward model yielded similar accuracies, but the forward model (unlike the classifier) also reliably reconstructed novel stimulus colors not used to train (specify parameters of) the model. The mean responses, averaged across voxels in each visual area, were not reliably distinguishable for the different stimulus colors. Hence, each stimulus color was associated with a unique spatially distributed pattern of activity, presumably reflecting the color selectivity of cortical neurons. Using PCA, a color space was derived from the covariation, across voxels, in the responses to different colors. In V4 and VO1, the first two principal component scores (main source of variation) of the responses revealed a progression through perceptual color space, with perceptually similar colors evoking the most similar responses. This was not the case for any of the other visual cortical areas, including V1, although decoding was most accurate in V1. This dissociation implies a transformation from the color representation in V1 to reflect perceptual color space in V4 and VO1.

  10. Optical devices featuring textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC

    2011-10-11

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  11. Optical devices featuring textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC

    2012-08-07

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  12. Image Data Compression Having Minimum Perceptual Error

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1997-01-01

    A method is presented for performing color or grayscale image compression that eliminates redundant and invisible image components. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The quantization matrix comprises visual masking by luminance and contrast technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  13. Adaptive Wiener filter super-resolution of color filter array images.

    PubMed

    Karch, Barry K; Hardie, Russell C

    2013-08-12

    Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method for CFA cameras that is based on the AWF SR algorithm and uses global channel-to-channel statistical models. We apply this new method as a stand-alone algorithm and also as an initialization image for a variational SR algorithm. This paper presents the theoretical development of the color AWF SR approach and applies it in performance comparisons to other SR techniques for both simulated and real data.

  14. The use of computer-assisted image analysis in the evaluation of the effect of management systems on changes in the color, chemical composition and texture of m. longissimus dorsi in pigs.

    PubMed

    Zapotoczny, Piotr; Kozera, Wojciech; Karpiesiuk, Krzysztof; Pawłowski, Rodian

    2014-08-01

    The effect of management systems on selected physical properties and chemical composition of m. longissimus dorsi was studied in pigs. Muscle texture parameters were determined by computer-assisted image analysis, and the color of muscle samples was evaluated using a spectrophotometer. Highly significant correlations were observed between chemical composition and selected texture variables in the analyzed images. Chemical composition was not correlated with color or spectral distribution. Subject to the applied classification methods and groups of variables included in the classification model, the experimental groups were identified correctly in 35-95%. No significant differences in the chemical composition of m. longissimus dorsi were observed between experimental groups. Significant differences were noted in color lightness (L*) and redness (a*). Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Validation of the Spanish adaptation of the Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V).

    PubMed

    Núñez-Batalla, Faustino; Morato-Galán, Marta; García-López, Isabel; Ávila-Menéndez, Arántzazu

    2015-01-01

    The Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V) was developed.to promote a standardised approach to evaluating and documenting auditory perceptual judgments of vocal quality. This tool was originally developed in English language and its Spanish version is still inexistent. The aim of this study was to develop a Spanish adaptation of CAPE-V and to examine the reliability and empirical validity of this Spanish version. To adapt the CAPE-V protocol to the Spanish language, we proposed 6 phrases phonetically designed according to the CAPE-V requirements. Prospective instrument validation was performed. The validity of the Spanish version of the CAPE-V was examined in 4 ways: intra-rater reliability, inter-rater reliability and CAPE-V versus GRABS judgments. Inter-rater reliability coefficients for the CAPE-V ranged from 0.93 for overall severity to 0.54 for intensity; intra-rater reliability ranged from 0.98 for overall severity to 0.85 for intensity. The comparison of judgments between GRABS and CAPE-V ranged from 0.86 for overall severity to 0.61 for breathiness. The present study supports the use of the Spanish version of CAPE-V because of its validity and reliability. Copyright © 2014 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  16. Adaptive optics without altering visual perception.

    PubMed

    Koenig, D E; Hart, N W; Hofer, H J

    2014-04-01

    Adaptive optics combined with visual psychophysics creates the potential to study the relationship between visual function and the retina at the cellular scale. This potential is hampered, however, by visual interference from the wavefront-sensing beacon used during correction. For example, we have previously shown that even a dim, visible beacon can alter stimulus perception (Hofer et al., 2012). Here we describe a simple strategy employing a longer wavelength (980nm) beacon that, in conjunction with appropriate restriction on timing and placement, allowed us to perform psychophysics when dark adapted without altering visual perception. The method was verified by comparing detection and color appearance of foveally presented small spot stimuli with and without the wavefront beacon present in 5 subjects. As an important caution, we found that significant perceptual interference can occur even with a subliminal beacon when additional measures are not taken to limit exposure. Consequently, the lack of perceptual interference should be verified for a given system, and not assumed based on invisibility of the beacon. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Progressive low-bitrate digital color/monochrome image coding by neuro-fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Mitra, Sunanda; Meadows, Steven

    1997-10-01

    Color image coding at low bit rates is an area of research that is just being addressed in recent literature since the problems of storage and transmission of color images are becoming more prominent in many applications. Current trends in image coding exploit the advantage of subband/wavelet decompositions in reducing the complexity in optimal scalar/vector quantizer (SQ/VQ) design. Compression ratios (CRs) of the order of 10:1 to 20:1 with high visual quality have been achieved by using vector quantization of subband decomposed color images in perceptually weighted color spaces. We report the performance of a recently developed adaptive vector quantizer, namely, AFLC-VQ for effective reduction in bit rates while maintaining high visual quality of reconstructed color as well as monochrome images. For 24 bit color images, excellent visual quality is maintained upto a bit rate reduction to approximately 0.48 bpp (for each color plane or monochrome 0.16 bpp, CR 50:1) by using the RGB color space. Further tuning of the AFLC-VQ, and addition of an entropy coder module after the VQ stage results in extremely low bit rates (CR 80:1) for good quality, reconstructed images. Our recent study also reveals that for similar visual quality, RGB color space requires less bits/pixel than either the YIQ, or HIS color space for storing the same information when entropy coding is applied. AFLC-VQ outperforms other standard VQ and adaptive SQ techniques in retaining visual fidelity at similar bit rate reduction.

  18. Context cue-dependent saccadic adaptation in rhesus macaques cannot be elicited using color

    PubMed Central

    Smalianchuk, Ivan; Khanna, Sanjeev B.; Smith, Matthew A.; Gandhi, Neeraj J.

    2015-01-01

    When the head does not move, rapid movements of the eyes called saccades are used to redirect the line of sight. Saccades are defined by a series of metrical and kinematic (evolution of a movement as a function of time) relationships. For example, the amplitude of a saccade made from one visual target to another is roughly 90% of the distance between the initial fixation point (T0) and the peripheral target (T1). However, this stereotypical relationship between saccade amplitude and initial retinal error (T1-T0) may be altered, either increased or decreased, by surreptitiously displacing a visual target during an ongoing saccade. This form of motor learning (called saccadic adaptation) has been described in both humans and monkeys. Recent experiments in humans and monkeys have suggested that internal (proprioceptive) and external (target shape, color, and/or motion) cues may be used to produce context-dependent adaptation. We tested the hypothesis that an external contextual cue (target color) could be used to evoke differential gain (actual saccade/initial retinal error) states in rhesus monkeys. We did not observe differential gain states correlated with target color regardless of whether targets were displaced along the same vector as the primary saccade or perpendicular to it. Furthermore, this observation held true regardless of whether adaptation trials using various colors and intrasaccade target displacements were randomly intermixed or presented in short or long blocks of trials. These results are consistent with hypotheses that state that color cannot be used as a contextual cue and are interpreted in light of previous studies of saccadic adaptation in both humans and monkeys. PMID:25995353

  19. Perceptual learning and adult cortical plasticity.

    PubMed

    Gilbert, Charles D; Li, Wu; Piech, Valentin

    2009-06-15

    The visual cortex retains the capacity for experience-dependent changes, or plasticity, of cortical function and cortical circuitry, throughout life. These changes constitute the mechanism of perceptual learning in normal visual experience and in recovery of function after CNS damage. Such plasticity can be seen at multiple stages in the visual pathway, including primary visual cortex. The manifestation of the functional changes associated with perceptual learning involve both long term modification of cortical circuits during the course of learning, and short term dynamics in the functional properties of cortical neurons. These dynamics are subject to top-down influences of attention, expectation and perceptual task. As a consequence, each cortical area is an adaptive processor, altering its function in accordance to immediate perceptual demands.

  20. Steady-state signatures of visual perceptual load, multimodal distractor filtering, and neural competition.

    PubMed

    Parks, Nathan A; Hilimire, Matthew R; Corballis, Paul M

    2011-05-01

    The perceptual load theory of attention posits that attentional selection occurs early in processing when a task is perceptually demanding but occurs late in processing otherwise. We used a frequency-tagged steady-state evoked potential paradigm to investigate the modality specificity of perceptual load-induced distractor filtering and the nature of neural-competitive interactions between task and distractor stimuli. EEG data were recorded while participants monitored a stream of stimuli occurring in rapid serial visual presentation (RSVP) for the appearance of previously assigned targets. Perceptual load was manipulated by assigning targets that were identifiable by color alone (low load) or by the conjunction of color and orientation (high load). The RSVP task was performed alone and in the presence of task-irrelevant visual and auditory distractors. The RSVP stimuli, visual distractors, and auditory distractors were "tagged" by modulating each at a unique frequency (2.5, 8.5, and 40.0 Hz, respectively), which allowed each to be analyzed separately in the frequency domain. We report three important findings regarding the neural mechanisms of perceptual load. First, we replicated previous findings of within-modality distractor filtering and demonstrated a reduction in visual distractor signals with high perceptual load. Second, auditory steady-state distractor signals were unaffected by manipulations of visual perceptual load, consistent with the idea that perceptual load-induced distractor filtering is modality specific. Third, analysis of task-related signals revealed that visual distractors competed with task stimuli for representation and that increased perceptual load appeared to resolve this competition in favor of the task stimulus.

  1. Infant Memory for Primitive Perceptual Features.

    ERIC Educational Resources Information Center

    Adler, Scott A.

    Textons are elongated blobs of specific color, angular orientation, ends of lines, and crossings of line segments that are proposed to be the perceptual building blocks of the visual system. A study was conducted to explore the relative memorability of different types and arrangements of textons, exploring the time course for the discrimination…

  2. Asymmetrical color filling-in from the nasal to the temporal side of the blind spot

    PubMed Central

    Li, Hui; Luo, Junxiang; Lu, Yiliang; Kan, Janis; Spillmann, Lothar; Wang, Wei

    2014-01-01

    The physiological blind spot, corresponding to the optic disk in the retina, is a relatively large (6 × 8°) area in the visual field that receives no retinal input. However, we rarely notice the existence of it in daily life. This is because the blind spot fills in with the brightness, color, texture, and motion of the surround. The study of filling-in enables us to better understand the creative nature of the visual system, which generates perceptual information where there is none. Is there any retinotopic rule in the color filling-in of the blind spot? To find out, we used mono-colored and bi-colored annuli hugging the boundary of the blind spot. We found that mono-colored annuli filled in the blind spot uniformly. By contrast, bi-colored annuli, where one half had a given color, while the other half had a different one, filled in the blind spot asymmetrically. Specifically, the color surrounding the nasal half typically filled in about 75% of the blind spot area, whereas the color surrounding the temporal half filled in only about 25%. This asymmetry was dependent on the relative size of the half rings, but not the two colors used, and was absent when the bi-colored annulus was rotated by 90°. Here, the two colors on the upper and lower sides of the blind spot filled in the enclosed area equally. These results suggest that the strength of filling-in decreases with distance from the fovea consistent with the decrease of the cortical magnification factor. PMID:25100977

  3. Asymmetrical color filling-in from the nasal to the temporal side of the blind spot.

    PubMed

    Li, Hui; Luo, Junxiang; Lu, Yiliang; Kan, Janis; Spillmann, Lothar; Wang, Wei

    2014-01-01

    The physiological blind spot, corresponding to the optic disk in the retina, is a relatively large (6 × 8°) area in the visual field that receives no retinal input. However, we rarely notice the existence of it in daily life. This is because the blind spot fills in with the brightness, color, texture, and motion of the surround. The study of filling-in enables us to better understand the creative nature of the visual system, which generates perceptual information where there is none. Is there any retinotopic rule in the color filling-in of the blind spot? To find out, we used mono-colored and bi-colored annuli hugging the boundary of the blind spot. We found that mono-colored annuli filled in the blind spot uniformly. By contrast, bi-colored annuli, where one half had a given color, while the other half had a different one, filled in the blind spot asymmetrically. Specifically, the color surrounding the nasal half typically filled in about 75% of the blind spot area, whereas the color surrounding the temporal half filled in only about 25%. This asymmetry was dependent on the relative size of the half rings, but not the two colors used, and was absent when the bi-colored annulus was rotated by 90°. Here, the two colors on the upper and lower sides of the blind spot filled in the enclosed area equally. These results suggest that the strength of filling-in decreases with distance from the fovea consistent with the decrease of the cortical magnification factor.

  4. Illuminant-adaptive color reproduction for mobile display

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Man; Park, Kee-Hyon; Kwon, Oh-Seol; Cho, Yang-Ho; Ha, Yeong-Ho

    2006-01-01

    This paper proposes an illuminant-adaptive reproduction method using light adaptation and flare conditions for a mobile display. Mobile displays, such as PDAs and cellular phones, are viewed under various lighting conditions. In particular, images displayed in daylight are perceived as quite dark due to the light adaptation of the human visual system, as the luminance of a mobile display is considerably lower than that of an outdoor environment. In addition, flare phenomena decrease the color gamut of a mobile display by increasing the luminance of dark areas and de-saturating the chroma. Therefore, this paper presents an enhancement method composed of lightness enhancement and chroma compensation. First, the ambient light intensity is measured using a lux-sensor, then the flare is calculated based on the reflection ratio of the display device and the ambient light intensity. The relative cone response is nonlinear to the input luminance. This is also changed by the ambient light intensity. Thus, to improve the perceived image, the displayed luminance is enhanced by lightness linearization. In this paper, the image's luminance is transformed by linearization of the response to the input luminance according to the ambient light intensity. Next, the displayed image is compensated according to the physically reduced chroma, resulting from flare phenomena. The reduced chroma value is calculated according to the flare for each intensity. The chroma compensation method to maintain the original image's chroma is applied differently for each hue plane, as the flare affects each hue plane differently. At this time, the enhanced chroma also considers the gamut boundary. Based on experimental observations, the outer luminance-intensity generally ranges from 1,000 lux to 30,000 lux. Thus, in the case of an outdoor environment, i.e. greater than 1,000 lux, this study presents a color reproduction method based on an inverse cone response curve and flare condition. Consequently

  5. Visual training improves perceptual grouping based on basic stimulus features.

    PubMed

    Kurylo, Daniel D; Waxman, Richard; Kidron, Rachel; Silverstein, Steven M

    2017-10-01

    Training on visual tasks improves performance on basic and higher order visual capacities. Such improvement has been linked to changes in connectivity among mediating neurons. We investigated whether training effects occur for perceptual grouping. It was hypothesized that repeated engagement of integration mechanisms would enhance grouping processes. Thirty-six participants underwent 15 sessions of training on a visual discrimination task that required perceptual grouping. Participants viewed 20 × 20 arrays of dots or Gabor patches and indicated whether the array appeared grouped as vertical or horizontal lines. Across trials stimuli became progressively disorganized, contingent upon successful discrimination. Four visual dimensions were examined, in which grouping was based on similarity in luminance, color, orientation, and motion. Psychophysical thresholds of grouping were assessed before and after training. Results indicate that performance in all four dimensions improved with training. Training on a control condition, which paralleled the discrimination task but without a grouping component, produced no improvement. In addition, training on only the luminance and orientation dimensions improved performance for those conditions as well as for grouping by color, on which training had not occurred. However, improvement from partial training did not generalize to motion. Results demonstrate that a training protocol emphasizing stimulus integration enhanced perceptual grouping. Results suggest that neural mechanisms mediating grouping by common luminance and/or orientation contribute to those mediating grouping by color but do not share resources for grouping by common motion. Results are consistent with theories of perceptual learning emphasizing plasticity in early visual processing regions.

  6. Electrophysiological evidence for effects of color knowledge in object recognition.

    PubMed

    Lu, Aitao; Xu, Guiping; Jin, Hua; Mo, Lei; Zhang, Jijia; Zhang, John X

    2010-01-29

    Knowledge about the typical colors associated with familiar everyday objects (i.e., strawberries are red) is well-known to be represented in the conceptual semantic system. Evidence that such knowledge may also play a role in early perceptual processes for object recognition is scant. In the present ERP study, participants viewed a list of object pictures and detected infrequent stimulus repetitions. Results show that shortly after stimulus onset, ERP components indexing early perceptual processes, including N1, P2, and N2, differentiated between objects in their appropriate or congruent color from these objects in an inappropriate or incongruent color. Such congruence effect also occurred in N3 associated with semantic processing of pictures but not in N4 for domain-general semantic processing. Our results demonstrate a clear effect of color knowledge in early object recognition stages and support the following proposal-color as a surface property is stored in a multiple-memory system where pre-semantic perceptual and semantic conceptual representations interact during object recognition. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  7. Competition between color and luminance for target selection in smooth pursuit and saccadic eye movements.

    PubMed

    Spering, Miriam; Montagnini, Anna; Gegenfurtner, Karl R

    2008-11-24

    Visual processing of color and luminance for smooth pursuit and saccadic eye movements was investigated using a target selection paradigm. In two experiments, stimuli were varied along the dimensions color and luminance, and selection of the more salient target was compared in pursuit and saccades. Initial pursuit was biased in the direction of the luminance component whereas saccades showed a relative preference for color. An early pursuit response toward luminance was often reversed to color by a later saccade. Observers' perceptual judgments of stimulus salience, obtained in two control experiments, were clearly biased toward luminance. This choice bias in perceptual data implies that the initial short-latency pursuit response agrees with perceptual judgments. In contrast, saccades, which have a longer latency than pursuit, do not seem to follow the perceptual judgment of salience but instead show a stronger relative preference for color. These substantial differences in target selection imply that target selection processes for pursuit and saccadic eye movements use distinctly different weights for color and luminance stimuli.

  8. Adaptation of mastication mechanics and eating behaviour to small differences in food texture.

    PubMed

    Le Révérend, Benjamin; Saucy, Françoise; Moser, Mireille; Loret, Chrystel

    2016-10-15

    Eating behaviour is significantly modified with the consumption of soft or hard textures. However, it is of interest to describe how adaptive is mastication to a narrow range of texture. ElectroMyoGraphy (EMG) and Kinematics of Jaw Movements (KJM) techniques were used simultaneously to follow mastication muscle activity and jaw motion during mastication of seven cereal products. We show that parameters such as the time of chewing activity, the number of chewing cycles, the chewing muscle EMG activity and the volume occupied for each chewing cycle are amongst others significantly different depending on products tested, even though the textural product space investigated is quite narrow (cereal finger foods). In addition, through a time/chewing cycle dependent analysis of the chewing patterns, we demonstrate that different foods follow different breakdown pathways during oral processing, depending on their initial structural properties, as dictated by their formulation and manufacturing process. In particular, we show that mastication behaviour of cereal foods can be partly classified based on the process that is used to generate product internal structure (e.g. baking vs extrusion). To the best of our knowledge, such time dependent analyses have not yet been reported. Those results suggest that it is possible to influence the chewing behaviour by modifying food textures within the same "food family". This opens new possibilities to design foods for specific populations that cannot accomplish specific oral processing tasks. Copyright © 2016. Published by Elsevier Inc.

  9. Sensory Drive, Color, and Color Vision.

    PubMed

    Price, Trevor D

    2017-08-01

    Colors often appear to differ in arbitrary ways among related species. However, a fraction of color diversity may be explained because some signals are more easily perceived in one environment rather than another. Models show that not only signals but also the perception of signals should regularly evolve in response to different environments, whether these primarily involve detection of conspecifics or detection of predators and prey. Thus, a deeper understanding of how perception of color correlates with environmental attributes should help generate more predictive models of color divergence. Here, I briefly review our understanding of color vision in vertebrates. Then I focus on opsin spectral tuning and opsin expression, two traits involved in color perception that have become amenable to study. I ask how opsin tuning is correlated with ecological differences, notably the light environment, and how this potentially affects perception of conspecific colors. Although opsin tuning appears to evolve slowly, opsin expression levels are more evolutionarily labile but have been difficult to connect to color perception. The challenge going forward will be to identify how physiological differences involved in color vision, such as opsin expression levels, translate into perceptual differences, the selection pressures that have driven those differences, and ultimately how this may drive evolution of conspecific colors.

  10. [Visual Texture Agnosia in Humans].

    PubMed

    Suzuki, Kyoko

    2015-06-01

    Visual object recognition requires the processing of both geometric and surface properties. Patients with occipital lesions may have visual agnosia, which is impairment in the recognition and identification of visually presented objects primarily through their geometric features. An analogous condition involving the failure to recognize an object by its texture may exist, which can be called visual texture agnosia. Here we present two cases with visual texture agnosia. Case 1 had left homonymous hemianopia and right upper quadrantanopia, along with achromatopsia, prosopagnosia, and texture agnosia, because of damage to his left ventromedial occipitotemporal cortex and right lateral occipito-temporo-parietal cortex due to multiple cerebral embolisms. Although he showed difficulty matching and naming textures of real materials, he could readily name visually presented objects by their contours. Case 2 had right lower quadrantanopia, along with impairment in stereopsis and recognition of texture in 2D images, because of subcortical hemorrhage in the left occipitotemporal region. He failed to recognize shapes based on texture information, whereas shape recognition based on contours was well preserved. Our findings, along with those of three reported cases with texture agnosia, indicate that there are separate channels for processing texture, color, and geometric features, and that the regions around the left collateral sulcus are crucial for texture processing.

  11. Adaptive optics vision simulation and perceptual learning system based on a 35-element bimorph deformable mirror.

    PubMed

    Dai, Yun; Zhao, Lina; Xiao, Fei; Zhao, Haoxin; Bao, Hua; Zhou, Hong; Zhou, Yifeng; Zhang, Yudong

    2015-02-10

    An adaptive optics visual simulation combined with a perceptual learning (PL) system based on a 35-element bimorph deformable mirror (DM) was established. The larger stroke and smaller size of the bimorph DM made the system have larger aberration correction or superposition ability and be more compact. By simply modifying the control matrix or the reference matrix, select correction or superposition of aberrations was realized in real time similar to a conventional adaptive optics closed-loop correction. PL function was first integrated in addition to conventional adaptive optics visual simulation. PL training undertaken with high-order aberrations correction obviously improved the visual function of adult anisometropic amblyopia. The preliminary application of high-order aberrations correction with PL training on amblyopia treatment was being validated with a large scale population, which might have great potential in amblyopia treatment and visual performance maintenance.

  12. Effect of Particular Breed on the Chemical Composition, Texture, Color, and Sensorial Characteristics of Dry-cured Ham

    PubMed Central

    Seong, Pil Nam; Park, Kuyng Mi; Kang, Sun Moon; Kang, Geun Ho; Cho, Soo Hyun; Park, Beom Young; Van Ba, Hoa

    2014-01-01

    The present study demonstrates the impact of specific breed on the characteristics of dry-cured ham. Eighty thighs from Korean native pig (KNP), crossbreed (Landrace×Yorkshire)♀×Duroc♂ (LYD), Berkshire (Ber), and Duroc (Du) pig breeds (n = 10 for each breed) were used for processing of dry-cured ham. The thighs were salted with 6% NaCl (w/w) and 100 ppm NaNO2, and total processing time was 413 days. The effects of breed on the physicochemical composition, texture, color and sensory characteristics were assessed on the biceps femoris muscle of the hams. The results revealed that the highest weight loss was found in the dry-cured ham of LYD breed and the lowest weight loss was found in Ber dry-cured ham. The KNP dry-cured ham contain higher intramuscular fat level than other breed hams (p<0.05). It was observed that the dry-cured ham made from KNP breed had the lowest water activity value and highest salt content, while the LYD dry-cure ham had higher total volatile basic nitrogen content than the Ber and Du hams (p<0.05). Zinc, iron and total monounsaturated fatty acids levels were higher in KNP ham while polyunsaturated fatty acids levels were higher in Du ham when compared to other breed hams (p<0.05). Additionally, the KNP dry-cured ham possessed higher Commission International de l’Eclairage (CIE) a* value, while the Du dry-cured ham had higher L*, CIE b* and hue angle values (p<0.05). Furthermore, breed significantly affected the sensory attributes of dry-cured hams with higher scores for color, aroma and taste found in KNP dry-cured ham as compared to other breed hams (p<0.05). The overall outcome of the study is that the breed has a potential effect on the specific chemical composition, texture, color and sensorial properties of dry-cured hams. These data could be useful for meat processors to select the suitable breeds for economical manufacturing of high quality dry-cured hams. PMID:25083111

  13. Effect of Particular Breed on the Chemical Composition, Texture, Color, and Sensorial Characteristics of Dry-cured Ham.

    PubMed

    Seong, Pil Nam; Park, Kuyng Mi; Kang, Sun Moon; Kang, Geun Ho; Cho, Soo Hyun; Park, Beom Young; Van Ba, Hoa

    2014-08-01

    The present study demonstrates the impact of specific breed on the characteristics of dry-cured ham. Eighty thighs from Korean native pig (KNP), crossbreed (Landrace×Yorkshire)♀×Duroc♂ (LYD), Berkshire (Ber), and Duroc (Du) pig breeds (n = 10 for each breed) were used for processing of dry-cured ham. The thighs were salted with 6% NaCl (w/w) and 100 ppm NaNO2, and total processing time was 413 days. The effects of breed on the physicochemical composition, texture, color and sensory characteristics were assessed on the biceps femoris muscle of the hams. The results revealed that the highest weight loss was found in the dry-cured ham of LYD breed and the lowest weight loss was found in Ber dry-cured ham. The KNP dry-cured ham contain higher intramuscular fat level than other breed hams (p<0.05). It was observed that the dry-cured ham made from KNP breed had the lowest water activity value and highest salt content, while the LYD dry-cure ham had higher total volatile basic nitrogen content than the Ber and Du hams (p<0.05). Zinc, iron and total monounsaturated fatty acids levels were higher in KNP ham while polyunsaturated fatty acids levels were higher in Du ham when compared to other breed hams (p<0.05). Additionally, the KNP dry-cured ham possessed higher Commission International de l'Eclairage (CIE) a* value, while the Du dry-cured ham had higher L*, CIE b* and hue angle values (p<0.05). Furthermore, breed significantly affected the sensory attributes of dry-cured hams with higher scores for color, aroma and taste found in KNP dry-cured ham as compared to other breed hams (p<0.05). The overall outcome of the study is that the breed has a potential effect on the specific chemical composition, texture, color and sensorial properties of dry-cured hams. These data could be useful for meat processors to select the suitable breeds for economical manufacturing of high quality dry-cured hams.

  14. Genomic architecture of adaptive color pattern divergence and convergence in Heliconius butterflies

    PubMed Central

    Supple, Megan A.; Hines, Heather M.; Dasmahapatra, Kanchon K.; Lewis, James J.; Nielsen, Dahlia M.; Lavoie, Christine; Ray, David A.; Salazar, Camilo; McMillan, W. Owen; Counterman, Brian A.

    2013-01-01

    Identifying the genetic changes driving adaptive variation in natural populations is key to understanding the origins of biodiversity. The mosaic of mimetic wing patterns in Heliconius butterflies makes an excellent system for exploring adaptive variation using next-generation sequencing. In this study, we use a combination of techniques to annotate the genomic interval modulating red color pattern variation, identify a narrow region responsible for adaptive divergence and convergence in Heliconius wing color patterns, and explore the evolutionary history of these adaptive alleles. We use whole genome resequencing from four hybrid zones between divergent color pattern races of Heliconius erato and two hybrid zones of the co-mimic Heliconius melpomene to examine genetic variation across 2.2 Mb of a partial reference sequence. In the intergenic region near optix, the gene previously shown to be responsible for the complex red pattern variation in Heliconius, population genetic analyses identify a shared 65-kb region of divergence that includes several sites perfectly associated with phenotype within each species. This region likely contains multiple cis-regulatory elements that control discrete expression domains of optix. The parallel signatures of genetic differentiation in H. erato and H. melpomene support a shared genetic architecture between the two distantly related co-mimics; however, phylogenetic analysis suggests mimetic patterns in each species evolved independently. Using a combination of next-generation sequencing analyses, we have refined our understanding of the genetic architecture of wing pattern variation in Heliconius and gained important insights into the evolution of novel adaptive phenotypes in natural populations. PMID:23674305

  15. Colorful Success: Preschoolers' Use of Perceptual Color Cues to Solve a Spatial Reasoning Problem

    ERIC Educational Resources Information Center

    Joh, Amy S.; Spivey, Leigh A.

    2012-01-01

    Spatial reasoning, a crucial skill for everyday actions, develops gradually during the first several years of childhood. Previous studies have shown that perceptual information and problem solving strategies are critical for successful spatial reasoning in young children. Here, we sought to link these two factors by examining children's use of…

  16. A plastic corticostriatal circuit model of adaptation in perceptual decision making

    PubMed Central

    Hsiao, Pao-Yueh; Lo, Chung-Chuan

    2013-01-01

    The ability to optimize decisions and adapt them to changing environments is a crucial brain function that increase survivability. Although much has been learned about the neuronal activity in various brain regions that are associated with decision making, and about how the nervous systems may learn to achieve optimization, the underlying neuronal mechanisms of how the nervous systems optimize decision strategies with preference given to speed or accuracy, and how the systems adapt to changes in the environment, remain unclear. Based on extensive empirical observations, we addressed the question by extending a previously described cortico-basal ganglia circuit model of perceptual decisions with the inclusion of a dynamic dopamine (DA) system that modulates spike-timing dependent plasticity (STDP). We found that, once an optimal model setting that maximized the reward rate was selected, the same setting automatically optimized decisions across different task environments through dynamic balancing between the facilitating and depressing components of the DA dynamics. Interestingly, other model parameters were also optimal if we considered the reward rate that was weighted by the subject's preferences for speed or accuracy. Specifically, the circuit model favored speed if we increased the phasic DA response to the reward prediction error, whereas the model favored accuracy if we reduced the tonic DA activity or the phasic DA responses to the estimated reward probability. The proposed model provides insight into the roles of different components of DA responses in decision adaptation and optimization in a changing environment. PMID:24339814

  17. Infrared actuation-induced simultaneous reconfiguration of surface color and morphology for soft robotics.

    PubMed

    Banisadr, Seyedali; Chen, Jian

    2017-12-13

    Cephalopods, such as cuttlefish, demonstrate remarkable adaptability to the coloration and texture of their surroundings by modulating their skin color and surface morphology simultaneously, for the purpose of adaptive camouflage and signal communication. Inspired by this unique feature of cuttlefish skins, we present a general approach to remote-controlled, smart films that undergo simultaneous changes of surface color and morphology upon infrared (IR) actuation. The smart film has a reconfigurable laminated structure that comprises an IR-responsive nanocomposite actuator layer and a mechanochromic elastomeric photonic crystal layer. Upon global or localized IR irradiation, the actuator layer exhibits fast, large, and reversible strain in the irradiated region, which causes a synergistically coupled change in the shape of the laminated film and color of the mechanochromic elastomeric photonic crystal layer in the same region. Bending and twisting deformations can be created under IR irradiation, through modulating the strain direction in the actuator layer of the laminated film. Furthermore, the laminated film has been used in a remote-controlled inchworm walker that can directly couple a color-changing skin with the robotic movements. Such remote-controlled, smart films may open up new application possibilities in soft robotics and wearable devices.

  18. Neurophysiological Evidence for Categorical Perception of Color

    ERIC Educational Resources Information Center

    Holmes, Amanda; Franklin, Anna; Clifford, Alexandra; Davies, Ian

    2009-01-01

    The aim of this investigation was to examine the time course and the relative contributions of perceptual and post-perceptual processes to categorical perception (CP) of color. A visual oddball task was used with standard and deviant stimuli from same (within-category) or different (between-category) categories, with chromatic separations for…

  19. Using Japanese Onomatopoeias to Explore Perceptual Dimensions in Visual Material Perception.

    PubMed

    Hanada, Mitsuhiko

    2016-01-28

    This study examined the perceptual dimensions of visual material properties. Photographs of 50 objects were presented to the participants, and they reported a suitable onomatopoeia (mimetic word) for describing the material of the object in each photograph, based on visual appearance. The participants' responses were collated into a contingency table of photographs × onomatopoeias. After removing some items from the table, correspondence analysis was applied to the contingency table, and a six-dimensional biplot was obtained. By rotating the axes to maximize sparseness of the coordinates for the items in the biplot, three meaningful perceptual dimensions were derived: wetness/stickiness, fluffiness/softness, and smoothness-roughness/gloss-dullness. Two additional possible dimensions were obtained: crumbliness and coldness. These dimensions, except gloss-dullness, were paid little attention to in vision science, though they were suggested as perceptual dimensions of tactile texture. This suggests that the perceptual dimensions that are considered to be primarily related to haptics are also important in visual material perception. © The Author(s) 2016.

  20. An Evaluation of Color Sets for CRT Displays

    DTIC Science & Technology

    1985-12-31

    color sets covered a wide range in color difference values (AE* in CIELUV , 1976). Performance with some color sets was significantly better than that...difference value, AE*. This value, Part of the 1976 CIELUV system, is an estimate of the perceptual color difference between any two colors of known...1:* in CIELUV , 1976). Performance with some color sets was significantly better than that with others on a task where color discrimination was

  1. Conditioning procedure and color discrimination in the honeybee Apis mellifera

    NASA Astrophysics Data System (ADS)

    Giurfa, Martin

    We studied the influence of the conditioning procedure on color discrimination by free-flying honeybees. We asked whether absolute and differential conditioning result in different discrimination capabilities for the same pairs of colored targets. In absolute conditioning, bees were rewarded on a single color; in differential conditioning, bees were rewarded on the same color but an alternative, non-rewarding, similar color was also visible. In both conditioning procedures, bees learned their respective task and could also discriminate the training stimulus from a novel stimulus that was perceptually different from the trained one. Discrimination between perceptually closer stimuli was possible after differential conditioning but not after absolute conditioning. Differences in attention inculcated by these training procedures may underlie the different discrimination performances of the bees.

  2. Influence of infrared final cooking on color, texture and cooking characteristics of ohmically pre-cooked meatball.

    PubMed

    Yildiz Turp, Gulen; Icier, Filiz; Kor, Gamze

    2016-04-01

    The objective of the current study was to improve the quality characteristics of ohmically pre-cooked beef meatballs via infrared cooking as a final stage. Samples were pre-cooked in a specially designed-continuous type ohmic cooker at a voltage gradient of 15.26 V/cm for 92 s. Infrared cooking was then applied to the pre-cooked samples at different combinations of heat fluxes (3.706, 5.678, and 8.475 kW/m(2)), application distances (10.5, 13.5, and 16.5 cm) and application durations (4, 8, and 12min). Effects of these parameters on color, texture and cooking characteristics of ohmically pre-cooked beef meatballs were investigated. The appearance of ohmically pre-cooked meatball samples was improved via infrared heating. A dark brown layer desired in cooked meatballs formed on the surface of the meatballs with lowest application distance (10.5 cm) and longest application duration (12 min). The texture of the samples was also improved with these parameters. However the cooking yield of the samples decreased at the longest application duration of infrared heating. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Color Richness in Cephalopod Chromatophores Originating from High Refractive Index Biomolecules.

    PubMed

    Dinneen, Sean R; Osgood, Richard M; Greenslade, Margaret E; Deravi, Leila F

    2017-01-05

    Cephalopods are arguably one of the most photonically sophisticated marine animals, as they can rapidly adapt their dermal color and texture to their surroundings using both structural and pigmentary coloration. Their chromatophore organs facilitate this process, but the molecular mechanism potentiating color change is not well understood. We hypothesize that the pigments, which are localized within nanostructured granules in the chromatophore, enhance the scattering of light within the dermal tissue. To test this, we extracted the phenoxazone-based pigments from the chromatophore and extrapolated their complex refractive index (RI) from experimentally determined real and approximated imaginary portions of the RI. Mie theory was used to calculate the absorbance and scattering cross sections (cm 2 /particle) across a broad diameter range at λ = 589 nm. We observed that the pigments were more likely to scatter attenuated light than absorb it and that these characteristics may contribute to the color richness of cephalopods.

  4. Improvement to the scanning electron microscope image adaptive Canny optimization colorization by pseudo-mapping.

    PubMed

    Lo, T Y; Sim, K S; Tso, C P; Nia, M E

    2014-01-01

    An improvement to the previously proposed adaptive Canny optimization technique for scanning electron microscope image colorization is reported. The additional feature, called pseudo-mapping technique, is that the grayscale markings are temporarily mapped to a set of pre-defined pseudo-color map as a mean to instill color information for grayscale colors in chrominance channels. This allows the presence of grayscale markings to be identified; hence optimization colorization of grayscale colors is made possible. This additional feature enhances the flexibility of scanning electron microscope image colorization by providing wider range of possible color enhancement. Furthermore, the nature of this technique also allows users to adjust the luminance intensities of selected region from the original image within certain extent. © 2014 Wiley Periodicals, Inc.

  5. Is a bear white in the woods? Parallel representation of implied object color during language comprehension.

    PubMed

    Connell, Louise; Lynott, Dermot

    2009-06-01

    Color is undeniably important to object representations, but so too is the ability of context to alter the color of an object. The present study examined how implied perceptual information about typical and atypical colors is represented during language comprehension. Participants read sentences that implied a (typical or atypical) color for a target object and then performed a modified Stroop task in which they named the ink color of the target word (typical, atypical, or unrelated). Results showed that color naming was facilitated both when ink color was typical for that object (e.g., bear in brown ink) and when it matched the color implied by the previous sentence (e.g., bear in white ink following Joe was excited to see a bear at the North Pole). These findings suggest that unusual contexts cause people to represent in parallel both typical and scenario-specific perceptual information, and these types of information are discussed in relation to the specialization of perceptual simulations.

  6. Adaptive Criterion Setting in Perceptual Decision Making

    ERIC Educational Resources Information Center

    Stuttgen, Maik C.; Yildiz, Ali; Gunturkun, Onur

    2011-01-01

    Pigeons responded in a perceptual categorization task with six different stimuli (shades of gray), three of which were to be classified as "light" or "dark", respectively. Reinforcement probability for correct responses was varied from 0.2 to 0.6 across blocks of sessions and was unequal for correct light and dark responses. Introduction of a new…

  7. Color-tuned neurons are spatially clustered according to color preference within alert macaque posterior inferior temporal cortex

    PubMed Central

    Conway, Bevil R.; Tsao, Doris Y.

    2009-01-01

    Large islands of extrastriate cortex that are enriched for color-tuned neurons have recently been described in alert macaque using a combination of functional magnetic resonance imaging (fMRI) and single-unit recording. These millimeter-sized islands, dubbed “globs,” are scattered throughout the posterior inferior temporal cortex (PIT), a swath of brain anterior to area V3, including areas V4, PITd, and posterior TEO. We investigated the micro-organization of neurons within the globs. We used fMRI to identify the globs and then used MRI-guided microelectrodes to test the color properties of single glob cells. We used color stimuli that sample the CIELUV perceptual color space at regular intervals to test the color tuning of single units, and make two observations. First, color-tuned neurons of various color preferences were found within single globs. Second, adjacent glob cells tended to have the same color tuning, demonstrating that glob cells are clustered by color preference and suggesting that they are arranged in color columns. Neurons separated by 50 μm, measured parallel to the cortical sheet, had more similar color tuning than neurons separated by 100 μm, suggesting that the scale of the color columns is <100 μm. These results show that color-tuned neurons in PIT are organized by color preference on a finer scale than the scale of single globs. Moreover, the color preferences of neurons recorded sequentially along a given electrode penetration shifted gradually in many penetrations, suggesting that the color columns are arranged according to a chromotopic map reflecting perceptual color space. PMID:19805195

  8. Nicotine facilitates memory consolidation in perceptual learning.

    PubMed

    Beer, Anton L; Vartak, Devavrat; Greenlee, Mark W

    2013-01-01

    Perceptual learning is a special type of non-declarative learning that involves experience-dependent plasticity in sensory cortices. The cholinergic system is known to modulate declarative learning. In particular, reduced levels or efficacy of the neurotransmitter acetylcholine were found to facilitate declarative memory consolidation. However, little is known about the role of the cholinergic system in memory consolidation of non-declarative learning. Here we compared two groups of non-smoking men who learned a visual texture discrimination task (TDT). One group received chewing tobacco containing nicotine for 1 h directly following the TDT training. The other group received a similar tasting control substance without nicotine. Electroencephalographic recordings during substance consumption showed reduced alpha activity and P300 latencies in the nicotine group compared to the control group. When re-tested on the TDT the following day, both groups responded more accurately and more rapidly than during training. These improvements were specific to the retinal location and orientation of the texture elements of the TDT suggesting that learning involved early visual cortex. A group comparison showed that learning effects were more pronounced in the nicotine group than in the control group. These findings suggest that oral consumption of nicotine enhances the efficacy of nicotinic acetylcholine receptors. Our findings further suggest that enhanced efficacy of the cholinergic system facilitates memory consolidation in perceptual learning (and possibly other types of non-declarative learning). In that regard acetylcholine seems to affect consolidation processes in perceptual learning in a different manner than in declarative learning. Alternatively, our findings might reflect dose-dependent cholinergic modulation of memory consolidation. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. The neural response in short-term visual recognition memory for perceptual conjunctions.

    PubMed

    Elliott, R; Dolan, R J

    1998-01-01

    Short-term visual memory has been widely studied in humans and animals using delayed matching paradigms. The present study used positron emission tomography (PET) to determine the neural substrates of delayed matching to sample for complex abstract patterns over a 5-s delay. More specifically, the study assessed any differential neural response associated with remembering individual perceptual properties (color only and shape only) compared to conjunction between these properties. Significant activations associated with short-term visual memory (all memory conditions compared to perceptuomotor control) were observed in extrastriate cortex, medial and lateral parietal cortex, anterior cingulate, inferior frontal gyrus, and the thalamus. Significant deactivations were observed throughout the temporal cortex. Although the requirement to remember color compared to shape was associated with subtly different patterns of blood flow, the requirement to remember perceptual conjunctions between these features was not associated with additional specific activations. These data suggest that visual memory over a delay of the order of 5 s is mainly dependent on posterior perceptual regions of the cortex, with the exact regions depending on the perceptual aspect of the stimuli to be remembered.

  10. Uncertainty of sensory signal explains variation of color constancy.

    PubMed

    Witzel, Christoph; van Alphen, Carlijn; Godau, Christoph; O'Regan, J Kevin

    2016-12-01

    Color constancy is the ability to recognize the color of an object (or more generally of a surface) under different illuminations. Without color constancy, surface color as a perceptual attribute would not be meaningful in the visual environment, where illumination changes all the time. Nevertheless, it is not obvious how color constancy is possible in the light of metamer mismatching. Surfaces that produce exactly the same sensory color signal under one illumination (metamerism) may produce utterly different sensory signals under another illumination (metamer mismatching). Here we show that this phenomenon explains to a large extent the variation of color constancy across different colors. For this purpose, color constancy was measured for different colors in an asymmetric matching task with photorealistic images. Color constancy performance was strongly correlated to the size of metamer mismatch volumes, which describe the uncertainty of the sensory signal due to metamer mismatching for a given color. The higher the uncertainty of the sensory signal, the lower the observers' color constancy. At the same time, sensory singularities, color categories, and cone ratios did not affect color constancy. The present findings do not only provide considerable insight into the determinants of color constancy, they also show that metamer mismatch volumes must be taken into account when investigating color as a perceptual property of objects and surfaces.

  11. Graphemes Sharing Phonetic Features Tend to Induce Similar Synesthetic Colors.

    PubMed

    Kang, Mi-Jeong; Kim, Yeseul; Shin, Ji-Young; Kim, Chai-Youn

    2017-01-01

    Individuals with grapheme-color synesthesia experience idiosyncratic colors when viewing achromatic letters or digits. Despite large individual differences in grapheme-color association, synesthetes tend to associate graphemes sharing a perceptual feature with similar synesthetic colors. Sound has been suggested as one such feature. In the present study, we investigated whether graphemes of which representative phonemes have similar phonetic features tend to be associated with analogous synesthetic colors. We tested five Korean multilingual synesthetes on a color-matching task using graphemes from Korean, English, and Japanese orthography. We then compared the similarity of synesthetic colors induced by those characters sharing a phonetic feature. Results showed that graphemes associated with the same phonetic feature tend to induce synesthetic color in both within- and cross-script analyses. Moreover, this tendency was consistent for graphemes that are not transliterable into each other as well as graphemes that are. These results suggest that it is the perceptual-i.e., phonetic-properties associated with graphemes, not just conceptual associations such as transliteration, that determine synesthetic color.

  12. Chameleons: Reptilian Texture

    ERIC Educational Resources Information Center

    Petersen, Hugh

    2009-01-01

    This article presents an art project inspired by a drawing of a chameleon the author saw in an art-supply catalog. Chameleons prove to be a good subject to highlight shape, color and texture with eigth-graders. In this project, middle- and high-school students draw a chameleon, learn how to use shapes to add to their chameleon drawing, learn how…

  13. Color-quality control using color-difference formulas: progress and problems

    NASA Astrophysics Data System (ADS)

    Melgosa, M.; Gómez-Robledo, L.; García, P. A.; Morillas, S.; Fernández-Maloigne, C.; Richard, N.; Huang, M.; Li, C.; Cui, G.

    2017-08-01

    We report on some recent advances in industrial color-difference evaluation focused in three main fields: Development of reliable experimental visual datasets; proposal of new color spaces and color-difference formulas; tools to evaluate the merits of color-difference formulas. The use of fuzzy techniques to assign consistency degrees to color pairs in combined visual datasets is described. The CIE/ISO joint proposal of the CIEDE2000 color-difference formula as a standard will facilitate the communication among companies and users. The CIE recommendation of the STRESS index to assess observers' variability and relative merits of different color-difference formulas is reported. Power functions are an efficient method to improve the performance of modern color-difference formulas. We need of advanced color-difference formulas accounting for new materials with different kind of textures and gonioapparent effects.

  14. Color constancy of color-deficient observers under illuminations defined by individual color discrimination ellipsoids.

    PubMed

    Ma, Ruiqing; Kawamoto, Ken-Ichiro; Shinomori, Keizo

    2016-03-01

    We explored the color constancy mechanisms of color-deficient observers under red, green, blue, and yellow illuminations. The red and green illuminations were defined individually by the longer axis of the color discrimination ellipsoid measured by the Cambridge Colour Test. Four dichromats (3 protanopes and 1 deuteranope), two anomalous trichromats (2 deuteranomalous observers), and five color-normal observers were asked to complete the color constancy task by making a simultaneous paper match under asymmetrical illuminations in haploscopic view on a monitor. The von Kries adaptation model was applied to estimate the cone responses. The model fits showed that for all color-deficient observers under all illuminations, the adjustment of the S-cone response or blue-yellow chromatically opponent responses modeled with the simple assumption of cone deletion in a certain type (S-M, S-L or S-(L+M)) was consistent with the principle of the von Kries model. The degree of adaptation was similar to that of color-normal observers. The results indicate that the color constancy of color-deficient observers is mediated by the simplified blue-yellow color system with a von Kries-type adaptation effect, even in the case of brightness match, as well as by a possible cone-level adaptation to the S-cone when the illumination produces a strong S-cone stimulation, such as blue illumination.

  15. Color appearance in stereoscopy

    NASA Astrophysics Data System (ADS)

    Gadia, Davide; Rizzi, Alessandro; Bonanomi, Cristian; Marini, Daniele; Galmonte, Alessandra; Agostini, Tiziano

    2011-03-01

    The relationship between color and lightness appearance and the perception of depth has been studied since a while in the field of perceptual psychology and psycho-physiology. It has been found that depth perception affects the final object color and lightness appearance. In the stereoscopy research field, many studies have been proposed on human physiological effects, considering e.g. geometry, motion sickness, etc., but few has been done considering lightness and color information. Goal of this paper is to realize some preliminar experiments in Virtual Reality in order to determine the effects of depth perception on object color and lightness appearance. We have created a virtual test scene with a simple 3D simultaneous contrast configuration. We have created three different versions of this scene, each with different choices of relative positions and apparent size of the objects. We have collected the perceptual responses of several users after the observation of the test scene in the Virtual Theater of the University of Milan, a VR immersive installation characterized by a semi-cylindrical screen that covers 120° of horizontal field of view from an observation distance of 3.5 m. We present a description of the experiments setup and procedure, and we discuss the obtained results.

  16. Luminance contours can gate afterimage colors and "real" colors.

    PubMed

    Anstis, Stuart; Vergeer, Mark; Van Lier, Rob

    2012-09-06

    It has long been known that colored images may elicit afterimages in complementary colors. We have already shown (Van Lier, Vergeer, & Anstis, 2009) that one and the same adapting image may result in different afterimage colors, depending on the test contours presented after the colored image. The color of the afterimage depends on two adapting colors, those both inside and outside the test. Here, we further explore this phenomenon and show that the color-contour interactions shown for afterimage colors also occur for "real" colors. We argue that similar mechanisms apply for both types of stimulation.

  17. Prediction of HDR quality by combining perceptually transformed display measurements with machine learning

    NASA Astrophysics Data System (ADS)

    Choudhury, Anustup; Farrell, Suzanne; Atkins, Robin; Daly, Scott

    2017-09-01

    We present an approach to predict overall HDR display quality as a function of key HDR display parameters. We first performed subjective experiments on a high quality HDR display that explored five key HDR display parameters: maximum luminance, minimum luminance, color gamut, bit-depth and local contrast. Subjects rated overall quality for different combinations of these display parameters. We explored two models | a physical model solely based on physically measured display characteristics and a perceptual model that transforms physical parameters using human vision system models. For the perceptual model, we use a family of metrics based on a recently published color volume model (ICT-CP), which consists of the PQ luminance non-linearity (ST2084) and LMS-based opponent color, as well as an estimate of the display point spread function. To predict overall visual quality, we apply linear regression and machine learning techniques such as Multilayer Perceptron, RBF and SVM networks. We use RMSE and Pearson/Spearman correlation coefficients to quantify performance. We found that the perceptual model is better at predicting subjective quality than the physical model and that SVM is better at prediction than linear regression. The significance and contribution of each display parameter was investigated. In addition, we found that combined parameters such as contrast do not improve prediction. Traditional perceptual models were also evaluated and we found that models based on the PQ non-linearity performed better.

  18. The role of selective attention in perceptual and affective priming

    NASA Technical Reports Server (NTRS)

    Stone, M.; Ladd, S. L.; Gabrieli, J. D.

    2000-01-01

    Two kinds of perceptual priming (word identification and word fragment completion), as well as preference priming (that may rely on special affective mechanisms) were examined after participants either read or named the colors of words and nonwords at study. Participants named the colors of words more slowly than the colors of nonwords, indicating that lexical processing of the words occurred at study. Nonetheless, priming on all three tests was lower after color naming than after reading, despite evidence of lexical processing during color naming shown by slower responses to words than to nonwords. These results indicate that selective attention to (rather than the mere processing of) letter string identity at study is important for subsequent repetition priming.

  19. Chromaticity of color perception and object color knowledge.

    PubMed

    Hsu, Nina S; Frankland, Steven M; Thompson-Schill, Sharon L

    2012-01-01

    Sensorimotor theories of semantic memory require overlap between conceptual and perceptual representations. One source of evidence for such overlap comes from neuroimaging reports of co-activation during memory retrieval and perception; for example, regions involved in color perception (i.e., regions that respond more to colored than grayscale stimuli) are activated by retrieval of object color. One unanswered question from these studies is whether distinctions that are observed during perception are likewise observed during memory retrieval. That is, are regions defined by a chromaticity effect in perception similarly modulated by the chromaticity of remembered objects (e.g., lemons more than coal)? Subjects performed color perception and color retrieval tasks while undergoing fMRI. We observed increased activation during both perception and memory retrieval of chromatic compared to achromatic stimuli in overlapping areas of the left lingual gyrus, but not in dorsal or anterior regions activated during color perception. These results support sensorimotor theories but suggest important distinctions within the conceptual system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Perceptual Averaging in Individuals with Autism Spectrum Disorder.

    PubMed

    Corbett, Jennifer E; Venuti, Paola; Melcher, David

    2016-01-01

    There is mounting evidence that observers rely on statistical summaries of visual information to maintain stable and coherent perception. Sensitivity to the mean (or other prototypical value) of a visual feature (e.g., mean size) appears to be a pervasive process in human visual perception. Previous studies in individuals diagnosed with Autism Spectrum Disorder (ASD) have uncovered characteristic patterns of visual processing that suggest they may rely more on enhanced local representations of individual objects instead of computing such perceptual averages. To further explore the fundamental nature of abstract statistical representation in visual perception, we investigated perceptual averaging of mean size in a group of 12 high-functioning individuals diagnosed with ASD using simplified versions of two identification and adaptation tasks that elicited characteristic perceptual averaging effects in a control group of neurotypical participants. In Experiment 1, participants performed with above chance accuracy in recalling the mean size of a set of circles ( mean task ) despite poor accuracy in recalling individual circle sizes ( member task ). In Experiment 2, their judgments of single circle size were biased by mean size adaptation. Overall, these results suggest that individuals with ASD perceptually average information about sets of objects in the surrounding environment. Our results underscore the fundamental nature of perceptual averaging in vision, and further our understanding of how autistic individuals make sense of the external environment.

  1. A standardised protocol for texture feature analysis of endoscopic images in gynaecological cancer.

    PubMed

    Neofytou, Marios S; Tanos, Vasilis; Pattichis, Marios S; Pattichis, Constantinos S; Kyriacou, Efthyvoulos C; Koutsouris, Dimitris D

    2007-11-29

    In the development of tissue classification methods, classifiers rely on significant differences between texture features extracted from normal and abnormal regions. Yet, significant differences can arise due to variations in the image acquisition method. For endoscopic imaging of the endometrium, we propose a standardized image acquisition protocol to eliminate significant statistical differences due to variations in: (i) the distance from the tissue (panoramic vs close up), (ii) difference in viewing angles and (iii) color correction. We investigate texture feature variability for a variety of targets encountered in clinical endoscopy. All images were captured at clinically optimum illumination and focus using 720 x 576 pixels and 24 bits color for: (i) a variety of testing targets from a color palette with a known color distribution, (ii) different viewing angles, (iv) two different distances from a calf endometrial and from a chicken cavity. Also, human images from the endometrium were captured and analysed. For texture feature analysis, three different sets were considered: (i) Statistical Features (SF), (ii) Spatial Gray Level Dependence Matrices (SGLDM), and (iii) Gray Level Difference Statistics (GLDS). All images were gamma corrected and the extracted texture feature values were compared against the texture feature values extracted from the uncorrected images. Statistical tests were applied to compare images from different viewing conditions so as to determine any significant differences. For the proposed acquisition procedure, results indicate that there is no significant difference in texture features between the panoramic and close up views and between angles. For a calibrated target image, gamma correction provided an acquired image that was a significantly better approximation to the original target image. In turn, this implies that the texture features extracted from the corrected images provided for better approximations to the original images

  2. Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness.

    PubMed

    Carroll, Joseph; Neitz, Maureen; Hofer, Heidi; Neitz, Jay; Williams, David R

    2004-06-01

    There is enormous variation in the X-linked L/M (long/middle wavelength sensitive) gene array underlying "normal" color vision in humans. This variability has been shown to underlie individual variation in color matching behavior. Recently, red-green color blindness has also been shown to be associated with distinctly different genotypes. This has opened the possibility that there may be important phenotypic differences within classically defined groups of color blind individuals. Here, adaptive optics retinal imaging has revealed a mechanism for producing dichromatic color vision in which the expression of a mutant cone photopigment gene leads to the loss of the entire corresponding class of cone photoreceptor cells. Previously, the theory that common forms of inherited color blindness could be caused by the loss of photoreceptor cells had been discounted. We confirm that remarkably, this loss of one-third of the cones does not impair any aspect of vision other than color.

  3. Working Memory Capacity is Associated with Optimal Adaptation of Response Bias to Perceptual Sensitivity in Emotion Perception

    PubMed Central

    Lynn, Spencer K.; Ibagon, Camila; Bui, Eric; Palitz, Sophie A.; Simon, Naomi M.; Barrett, Lisa Feldman

    2017-01-01

    Emotion perception, inferring the emotional state of another person, is a frequent judgment made under perceptual uncertainty (e.g., a scowling facial expression can indicate anger or concentration) and behavioral risk (e.g., incorrect judgment can be costly to the perceiver). Working memory capacity (WMC), the ability to maintain controlled processing in the face of competing demands, is an important component of many decisions. We investigated the association of WMC and anger perception in a task in which “angry” and “not angry” categories comprised overlapping ranges of scowl intensity, and correct and incorrect responses earned and lost points, respectively. Participants attempted to earn as many points as they could; adopting an optimal response bias would maximize decision utility. Participants with higher WMC more optimally tuned their anger perception response bias to accommodate their perceptual sensitivity (their ability to discriminate the categories) than did participants with lower WMC. Other factors that influence response bias (i.e., the relative base rate of angry vs. not angry faces and the decision costs & benefits) were ruled out as contributors to the WMC-bias relationship. Our results suggest that WMC optimizes emotion perception by contributing to perceivers’ ability to adjust their response bias to account for their level of perceptual sensitivity, likely an important component of adapting emotion perception to dynamic social interactions and changing circumstances. PMID:26461251

  4. Cell type classifiers for breast cancer microscopic images based on fractal dimension texture analysis of image color layers.

    PubMed

    Jitaree, Sirinapa; Phinyomark, Angkoon; Boonyaphiphat, Pleumjit; Phukpattaranont, Pornchai

    2015-01-01

    Having a classifier of cell types in a breast cancer microscopic image (BCMI), obtained with immunohistochemical staining, is required as part of a computer-aided system that counts the cancer cells in such BCMI. Such quantitation by cell counting is very useful in supporting decisions and planning of the medical treatment of breast cancer. This study proposes and evaluates features based on texture analysis by fractal dimension (FD), for the classification of histological structures in a BCMI into either cancer cells or non-cancer cells. The cancer cells include positive cells (PC) and negative cells (NC), while the normal cells comprise stromal cells (SC) and lymphocyte cells (LC). The FD feature values were calculated with the box-counting method from binarized images, obtained by automatic thresholding with Otsu's method of the grayscale images for various color channels. A total of 12 color channels from four color spaces (RGB, CIE-L*a*b*, HSV, and YCbCr) were investigated, and the FD feature values from them were used with decision tree classifiers. The BCMI data consisted of 1,400, 1,200, and 800 images with pixel resolutions 128 × 128, 192 × 192, and 256 × 256, respectively. The best cross-validated classification accuracy was 93.87%, for distinguishing between cancer and non-cancer cells, obtained using the Cr color channel with window size 256. The results indicate that the proposed algorithm, based on fractal dimension features extracted from a color channel, performs well in the automatic classification of the histology in a BCMI. This might support accurate automatic cell counting in a computer-assisted system for breast cancer diagnosis. © Wiley Periodicals, Inc.

  5. Luminance- and Texture-Defined Information Processing in School-Aged Children with Autism

    PubMed Central

    Rivest, Jessica B.; Jemel, Boutheina; Bertone, Armando; McKerral, Michelle; Mottron, Laurent

    2013-01-01

    According to the complexity-specific hypothesis, the efficacy with which individuals with autism spectrum disorder (ASD) process visual information varies according to the extensiveness of the neural network required to process stimuli. Specifically, adults with ASD are less sensitive to texture-defined (or second-order) information, which necessitates the implication of several cortical visual areas. Conversely, the sensitivity to simple, luminance-defined (or first-order) information, which mainly relies on primary visual cortex (V1) activity, has been found to be either superior (static material) or intact (dynamic material) in ASD. It is currently unknown if these autistic perceptual alterations are present in childhood. In the present study, behavioural (threshold) and electrophysiological measures were obtained for static luminance- and texture-defined gratings presented to school-aged children with ASD and compared to those of typically developing children. Our behavioural and electrophysiological (P140) results indicate that luminance processing is likely unremarkable in autistic children. With respect to texture processing, there was no significant threshold difference between groups. However, unlike typical children, autistic children did not show reliable enhancements of brain activity (N230 and P340) in response to texture-defined gratings relative to luminance-defined gratings. This suggests reduced efficiency of neuro-integrative mechanisms operating at a perceptual level in autism. These results are in line with the idea that visual atypicalities mediated by intermediate-scale neural networks emerge before or during the school-age period in autism. PMID:24205355

  6. Luminance- and texture-defined information processing in school-aged children with autism.

    PubMed

    Rivest, Jessica B; Jemel, Boutheina; Bertone, Armando; McKerral, Michelle; Mottron, Laurent

    2013-01-01

    According to the complexity-specific hypothesis, the efficacy with which individuals with autism spectrum disorder (ASD) process visual information varies according to the extensiveness of the neural network required to process stimuli. Specifically, adults with ASD are less sensitive to texture-defined (or second-order) information, which necessitates the implication of several cortical visual areas. Conversely, the sensitivity to simple, luminance-defined (or first-order) information, which mainly relies on primary visual cortex (V1) activity, has been found to be either superior (static material) or intact (dynamic material) in ASD. It is currently unknown if these autistic perceptual alterations are present in childhood. In the present study, behavioural (threshold) and electrophysiological measures were obtained for static luminance- and texture-defined gratings presented to school-aged children with ASD and compared to those of typically developing children. Our behavioural and electrophysiological (P140) results indicate that luminance processing is likely unremarkable in autistic children. With respect to texture processing, there was no significant threshold difference between groups. However, unlike typical children, autistic children did not show reliable enhancements of brain activity (N230 and P340) in response to texture-defined gratings relative to luminance-defined gratings. This suggests reduced efficiency of neuro-integrative mechanisms operating at a perceptual level in autism. These results are in line with the idea that visual atypicalities mediated by intermediate-scale neural networks emerge before or during the school-age period in autism.

  7. Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds.

    PubMed

    Borges, Rui; Khan, Imran; Johnson, Warren E; Gilbert, M Thomas P; Zhang, Guojie; Jarvis, Erich D; O'Brien, Stephen J; Antunes, Agostinho

    2015-10-06

    The wide range of complex photic systems observed in birds exemplifies one of their key evolutionary adaptions, a well-developed visual system. However, genomic approaches have yet to be used to disentangle the evolutionary mechanisms that govern evolution of avian visual systems. We performed comparative genomic analyses across 48 avian genomes that span extant bird phylogenetic diversity to assess evolutionary changes in the 17 representatives of the opsin gene family and five plumage coloration genes. Our analyses suggest modern birds have maintained a repertoire of up to 15 opsins. Synteny analyses indicate that PARA and PARIE pineal opsins were lost, probably in conjunction with the degeneration of the parietal organ. Eleven of the 15 avian opsins evolved in a non-neutral pattern, confirming the adaptive importance of vision in birds. Visual conopsins sw1, sw2 and lw evolved under negative selection, while the dim-light RH1 photopigment diversified. The evolutionary patterns of sw1 and of violet/ultraviolet sensitivity in birds suggest that avian ancestors had violet-sensitive vision. Additionally, we demonstrate an adaptive association between the RH2 opsin and the MC1R plumage color gene, suggesting that plumage coloration has been photic mediated. At the intra-avian level we observed some unique adaptive patterns. For example, barn owl showed early signs of pseudogenization in RH2, perhaps in response to nocturnal behavior, and penguins had amino acid deletions in RH2 sites responsible for the red shift and retinal binding. These patterns in the barn owl and penguins were convergent with adaptive strategies in nocturnal and aquatic mammals, respectively. We conclude that birds have evolved diverse opsin adaptations through gene loss, adaptive selection and coevolution with plumage coloration, and that differentiated selective patterns at the species level suggest novel photic pressures to influence evolutionary patterns of more-recent lineages.

  8. Color object detection using spatial-color joint probability functions.

    PubMed

    Luo, Jiebo; Crandall, David

    2006-06-01

    Object detection in unconstrained images is an important image understanding problem with many potential applications. There has been little success in creating a single algorithm that can detect arbitrary objects in unconstrained images; instead, algorithms typically must be customized for each specific object. Consequently, it typically requires a large number of exemplars (for rigid objects) or a large amount of human intuition (for nonrigid objects) to develop a robust algorithm. We present a robust algorithm designed to detect a class of compound color objects given a single model image. A compound color object is defined as having a set of multiple, particular colors arranged spatially in a particular way, including flags, logos, cartoon characters, people in uniforms, etc. Our approach is based on a particular type of spatial-color joint probability function called the color edge co-occurrence histogram. In addition, our algorithm employs perceptual color naming to handle color variation, and prescreening to limit the search scope (i.e., size and location) for the object. Experimental results demonstrated that the proposed algorithm is insensitive to object rotation, scaling, partial occlusion, and folding, outperforming a closely related algorithm based on color co-occurrence histograms by a decisive margin.

  9. Color Analysis

    NASA Astrophysics Data System (ADS)

    Wrolstad, Ronald E.; Smith, Daniel E.

    Color, flavor, and texture are the three principal quality attributes that determine food acceptance, and color has a far greater influence on our judgment than most of us appreciate. We use color to determine if a banana is at our preferred ripeness level, and a discolored meat product can warn us that the product may be spoiled. The marketing departments of our food corporations know that, for their customers, the color must be "right." The University of California Davis scorecard for wine quality designates four points out of 20, or 20% of the total score, for color and appearance (1). Food scientists who establish quality control specifications for their product are very aware of the importance of color and appearance. While subjective visual assessment and use of visual color standards are still used in the food industry, instrumental color measurements are extensively employed. Objective measurement of color is desirable for both research and industrial applications, and the ruggedness, stability, and ease of use of today's color measurement instruments have resulted in their widespread adoption.

  10. Hierarchical colorant-based direct binary search halftoning.

    PubMed

    He, Zhen

    2010-07-01

    Colorant-based direct binary search (CB-DBS) halftoning proposed in provides an image quality benchmark for dispersed-dot halftoning algorithms. The objective of this paper is to further push the image quality limit. An algorithm called hierarchical colorant-based direct binary search (HCB-DBS) is developed in this paper. By appropriately integrating yellow colorant into dot-overlapping and dot-positioning controls, it is demonstrated that HCB-DBS can achieve better halftone texture of both individual and joint dot-color planes, without compromising the dot distribution of more visible halftone of cyan and magenta colorants. The input color specification is first converted from colorant space to dot-color space with minimum brightness variation principle for full dot-overlapping control. The dot-colors are then split into groups based upon dot visibility. Hierarchical monochrome DBS halftoning is applied to make dot-positioning decision for each group, constrained on the already generated halftone of the groups with higher priority. And dot-coloring is decided recursively with joint monochrome DBS halftoning constrained on the related total dot distribution. Experiments show HCB-DBS improves halftone texture for both individual and joint dot-color planes. And it reduces the halftone graininess and free of color mottle artifacts, comparing to CB-DBS.

  11. Large Scale Textured Mesh Reconstruction from Mobile Mapping Images and LIDAR Scans

    NASA Astrophysics Data System (ADS)

    Boussaha, M.; Vallet, B.; Rives, P.

    2018-05-01

    The representation of 3D geometric and photometric information of the real world is one of the most challenging and extensively studied research topics in the photogrammetry and robotics communities. In this paper, we present a fully automatic framework for 3D high quality large scale urban texture mapping using oriented images and LiDAR scans acquired by a terrestrial Mobile Mapping System (MMS). First, the acquired points and images are sliced into temporal chunks ensuring a reasonable size and time consistency between geometry (points) and photometry (images). Then, a simple, fast and scalable 3D surface reconstruction relying on the sensor space topology is performed on each chunk after an isotropic sampling of the point cloud obtained from the raw LiDAR scans. Finally, the algorithm proposed in (Waechter et al., 2014) is adapted to texture the reconstructed surface with the images acquired simultaneously, ensuring a high quality texture with no seams and global color adjustment. We evaluate our full pipeline on a dataset of 17 km of acquisition in Rouen, France resulting in nearly 2 billion points and 40000 full HD images. We are able to reconstruct and texture the whole acquisition in less than 30 computing hours, the entire process being highly parallel as each chunk can be processed independently in a separate thread or computer.

  12. Color Algebras

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.

  13. Synesthesia and Memory: Color Congruency, Von Restorff, and False Memory Effects

    ERIC Educational Resources Information Center

    Radvansky, Gabriel A.; Gibson, Bradley S.; McNerney, M. Windy

    2011-01-01

    In the current study, we explored the influence of synesthesia on memory for word lists. We tested 10 grapheme-color synesthetes who reported an experience of color when reading letters or words. We replicated a previous finding that memory is compromised when synesthetic color is incongruent with perceptual color. Beyond this, we found that,…

  14. Performance of the JPEG Estimated Spectrum Adaptive Postfilter (JPEG-ESAP) for Low Bit Rates

    NASA Technical Reports Server (NTRS)

    Linares, Irving (Inventor)

    2016-01-01

    Frequency-based, pixel-adaptive filtering using the JPEG-ESAP algorithm for low bit rate JPEG formatted color images may allow for more compressed images while maintaining equivalent quality at a smaller file size or bitrate. For RGB, an image is decomposed into three color bands--red, green, and blue. The JPEG-ESAP algorithm is then applied to each band (e.g., once for red, once for green, and once for blue) and the output of each application of the algorithm is rebuilt as a single color image. The ESAP algorithm may be repeatedly applied to MPEG-2 video frames to reduce their bit rate by a factor of 2 or 3, while maintaining equivalent video quality, both perceptually, and objectively, as recorded in the computed PSNR values.

  15. Adaptive sampling of information in perceptual decision-making.

    PubMed

    Cassey, Thomas C; Evens, David R; Bogacz, Rafal; Marshall, James A R; Ludwig, Casimir J H

    2013-01-01

    In many perceptual and cognitive decision-making problems, humans sample multiple noisy information sources serially, and integrate the sampled information to make an overall decision. We derive the optimal decision procedure for two-alternative choice tasks in which the different options are sampled one at a time, sources vary in the quality of the information they provide, and the available time is fixed. To maximize accuracy, the optimal observer allocates time to sampling different information sources in proportion to their noise levels. We tested human observers in a corresponding perceptual decision-making task. Observers compared the direction of two random dot motion patterns that were triggered only when fixated. Observers allocated more time to the noisier pattern, in a manner that correlated with their sensory uncertainty about the direction of the patterns. There were several differences between the optimal observer predictions and human behaviour. These differences point to a number of other factors, beyond the quality of the currently available sources of information, that influences the sampling strategy.

  16. What drives the perceptual change resulting from speech motor adaptation? Evaluation of hypotheses in a Bayesian modeling framework

    PubMed Central

    Perrier, Pascal; Schwartz, Jean-Luc; Diard, Julien

    2018-01-01

    Shifts in perceptual boundaries resulting from speech motor learning induced by perturbations of the auditory feedback were taken as evidence for the involvement of motor functions in auditory speech perception. Beyond this general statement, the precise mechanisms underlying this involvement are not yet fully understood. In this paper we propose a quantitative evaluation of some hypotheses concerning the motor and auditory updates that could result from motor learning, in the context of various assumptions about the roles of the auditory and somatosensory pathways in speech perception. This analysis was made possible thanks to the use of a Bayesian model that implements these hypotheses by expressing the relationships between speech production and speech perception in a joint probability distribution. The evaluation focuses on how the hypotheses can (1) predict the location of perceptual boundary shifts once the perturbation has been removed, (2) account for the magnitude of the compensation in presence of the perturbation, and (3) describe the correlation between these two behavioral characteristics. Experimental findings about changes in speech perception following adaptation to auditory feedback perturbations serve as reference. Simulations suggest that they are compatible with a framework in which motor adaptation updates both the auditory-motor internal model and the auditory characterization of the perturbed phoneme, and where perception involves both auditory and somatosensory pathways. PMID:29357357

  17. Three dimensional range geometry and texture data compression with space-filling curves.

    PubMed

    Chen, Xia; Zhang, Song

    2017-10-16

    This paper presents a novel method to effectively store three-dimensional (3D) data and 2D texture data into a regular 24-bit image. The proposed method uses the Hilbert space-filling curve to map the normalized unwrapped phase map to two 8-bit color channels, and saves the third color channel for 2D texture storage. By further leveraging existing 2D image and video compression techniques, the proposed method can achieve high compression ratios while effectively preserving data quality. Since the encoding and decoding processes can be applied to most of the current 2D media platforms, this proposed compression method can make 3D data storage and transmission available for many electrical devices without requiring special hardware changes. Experiments demonstrate that if a lossless 2D image/video format is used, both original 3D geometry and 2D color texture can be accurately recovered; if lossy image/video compression is used, only black-and-white or grayscale texture can be properly recovered, but much higher compression ratios (e.g., 1543:1 against the ASCII OBJ format) are achieved with slight loss of 3D geometry quality.

  18. The Effect of Illumination on Gray Color

    ERIC Educational Resources Information Center

    Da Pos, Osvaldo; Baratella, Linda; Sperandio, Gabriele

    2010-01-01

    The present study explored the perceptual process of integration of luminance information in the production of the gray color of an object placed in an environment viewed from a window. The mean luminance of the object was varied for each mean luminance of the environment. Participants matched the gray color of the object with that of Munsell…

  19. No-Reference Image Quality Assessment by Wide-Perceptual-Domain Scorer Ensemble Method.

    PubMed

    Liu, Tsung-Jung; Liu, Kuan-Hsien

    2018-03-01

    A no-reference (NR) learning-based approach to assess image quality is presented in this paper. The devised features are extracted from wide perceptual domains, including brightness, contrast, color, distortion, and texture. These features are used to train a model (scorer) which can predict scores. The scorer selection algorithms are utilized to help simplify the proposed system. In the final stage, the ensemble method is used to combine the prediction results from selected scorers. Two multiple-scale versions of the proposed approach are also presented along with the single-scale one. They turn out to have better performances than the original single-scale method. Because of having features from five different domains at multiple image scales and using the outputs (scores) from selected score prediction models as features for multi-scale or cross-scale fusion (i.e., ensemble), the proposed NR image quality assessment models are robust with respect to more than 24 image distortion types. They also can be used on the evaluation of images with authentic distortions. The extensive experiments on three well-known and representative databases confirm the performance robustness of our proposed model.

  20. Responding to a Challenging Perceptual-Motor Task as a Function of Level of Experiential Avoidance

    ERIC Educational Resources Information Center

    Zettle, Robert D.; Petersen, Connie L.; Hocker, Tanya R.; Provines, Jessica L.

    2007-01-01

    Participants displaying high versus low levels of experiential avoidance as assessed by the Acceptance and Action Questionnaire (Hayes, Strosahl, et al., 2004) were compared in their reactions to and performance on a challenging perceptual-motor task. Participants were offered incentives for sorting colored straws into different colored containers…

  1. Searching through synaesthetic colors.

    PubMed

    Laeng, Bruno

    2009-10-01

    Synaesthesia can be characterized by illusory colors being elicited automatically when one reads an alphanumeric symbol. These colors can affect attention; synaesthetes can show advantages in visual search of achromatic symbols that normally cause slow searches. However, some studies have failed to find these advantages, challenging the conclusion that synaesthetic colors influence attention in a manner similar to the influence of perceptual colors. In the present study, we investigated 2 synaesthetes who reported colors localized in space over alphanumeric symbols' shapes. The Euclidian distance in CIE xyY color space between two synaesthetic colors was computed for each specific visual search, so that the relationship between color distance (CD) and efficiency of search could be explored with simple regression analyses. Target-to-distractors color salience systematically predicted the speed of search, but the CD between a target or distractors and the physically presented achromatic color did not. When the synaesthetic colors of a target and distractors were nearly complementary, searches resembled popout performance with real colors. Control participants who performed searches for the same symbols (which were colored according to the synaesthetic colors) showed search functions very similar to those shown by the synaesthetes for the physically achromatic symbols.

  2. Visual Search Asymmetries within Color-Coded and Intensity-Coded Displays

    ERIC Educational Resources Information Center

    Yamani, Yusuke; McCarley, Jason S.

    2010-01-01

    Color and intensity coding provide perceptual cues to segregate categories of objects within a visual display, allowing operators to search more efficiently for needed information. Even within a perceptually distinct subset of display elements, however, it may often be useful to prioritize items representing urgent or task-critical information.…

  3. The Cognitive, Perceptual, and Neural Bases of Skilled Performance

    DTIC Science & Technology

    1994-02-01

    technical report 3/15/90-3/14/93 4. TITLE AND SUBTITLE S. FUNDING NUMBERS The Cognitive , Perceptual, and Neural Bases AFOSR 90-0175 of Skilled... COGNITIVE , PERCEPTUAL, AND NEURAL BASES OF SKILLED PERFORMANCE March 15, 1990-March 14, 1993 Principal Investigator: Stephen Grossberg Wang Professor of... Cognitive and Neural Systems Professor of Mathematics, Psychology, and Biomedical Engineering Director, Center for Adaptive Systems Chairman, Department

  4. Color Vision in Color Display Night Vision Goggles.

    PubMed

    Liggins, Eric P; Serle, William P

    2017-05-01

    Aircrew viewing eyepiece-injected symbology on color display night vision goggles (CDNVGs) are performing a visual task involving color under highly unnatural viewing conditions. Their performance in discriminating different colors and responding to color cues is unknown. Experimental laboratory measurements of 1) color discrimination and 2) visual search performance are reported under adaptation conditions representative of a CDNVG. Color discrimination was measured using a two-alternative forced choice (2AFC) paradigm that probes color space uniformly around a white point. Search times in the presence of different degrees of clutter (distractors in the scene) are measured for different potential symbology colors. The discrimination data support previous data suggesting that discrimination is best for colors close to the adapting point in color space (P43 phosphor in this case). There were highly significant effects of background adaptation (white or green) and test color. The search time data show that saturated colors with the greatest chromatic contrast with respect to the background lead to the shortest search times, associated with the greatest saliency. Search times for the green background were around 150 ms longer than for the white. Desaturated colors, along with those close to a typical CDNVG display phosphor in color space, should be avoided by CDNVG designers if the greatest conspicuity of symbology is desired. The results can be used by CDNVG symbology designers to optimize aircrew performance subject to wider constraints arising from the way color is used in the existing conventional cockpit instruments and displays.Liggins EP, Serle WP. Color vision in color display night vision goggles. Aerosp Med Hum Perform. 2017; 88(5):448-456.

  5. Color normalization of histology slides using graph regularized sparse NMF

    NASA Astrophysics Data System (ADS)

    Sha, Lingdao; Schonfeld, Dan; Sethi, Amit

    2017-03-01

    Computer based automatic medical image processing and quantification are becoming popular in digital pathology. However, preparation of histology slides can vary widely due to differences in staining equipment, procedures and reagents, which can reduce the accuracy of algorithms that analyze their color and texture information. To re- duce the unwanted color variations, various supervised and unsupervised color normalization methods have been proposed. Compared with supervised color normalization methods, unsupervised color normalization methods have advantages of time and cost efficient and universal applicability. Most of the unsupervised color normaliza- tion methods for histology are based on stain separation. Based on the fact that stain concentration cannot be negative and different parts of the tissue absorb different stains, nonnegative matrix factorization (NMF), and particular its sparse version (SNMF), are good candidates for stain separation. However, most of the existing unsupervised color normalization method like PCA, ICA, NMF and SNMF fail to consider important information about sparse manifolds that its pixels occupy, which could potentially result in loss of texture information during color normalization. Manifold learning methods like Graph Laplacian have proven to be very effective in interpreting high-dimensional data. In this paper, we propose a novel unsupervised stain separation method called graph regularized sparse nonnegative matrix factorization (GSNMF). By considering the sparse prior of stain concentration together with manifold information from high-dimensional image data, our method shows better performance in stain color deconvolution than existing unsupervised color deconvolution methods, especially in keeping connected texture information. To utilized the texture information, we construct a nearest neighbor graph between pixels within a spatial area of an image based on their distances using heat kernal in lαβ space. The

  6. A Quantitative Theory of Human Color Choices

    PubMed Central

    Komarova, Natalia L.; Jameson, Kimberly A.

    2013-01-01

    The system for colorimetry adopted by the Commission Internationale de l’Eclairage (CIE) in 1931, along with its subsequent improvements, represents a family of light mixture models that has served well for many decades for stimulus specification and reproduction when highly controlled color standards are important. Still, with regard to color appearance many perceptual and cognitive factors are known to contribute to color similarity, and, in general, to all cognitive judgments of color. Using experimentally obtained odd-one-out triad similarity judgments from 52 observers, we demonstrate that CIE-based models can explain a good portion (but not all) of the color similarity data. Color difference quantified by CIELAB ΔE explained behavior at levels of 81% (across all colors), 79% (across red colors), and 66% (across blue colors). We show that the unexplained variation cannot be ascribed to inter- or intra-individual variations among the observers, and points to the presence of additional factors shared by the majority of responders. Based on this, we create a quantitative model of a lexicographic semiorder type, which shows how different perceptual and cognitive influences can trade-off when making color similarity judgments. We show that by incorporating additional influences related to categorical and lightness and saturation factors, the model explains more of the triad similarity behavior, namely, 91% (all colors), 90% (reds), and 87% (blues). We conclude that distance in a CIE model is but the first of several layers in a hierarchy of higher-order cognitive influences that shape color triad choices. We further discuss additional mitigating influences outside the scope of CIE modeling, which can be incorporated in this framework, including well-known influences from language, stimulus set effects, and color preference bias. We also discuss universal and cultural aspects of the model as well as non-uniformity of the color space with respect to different

  7. Generalization of color-difference formulas for any illuminant and any observer by assuming perfect color constancy in a color-vision model based on the OSA-UCS system.

    PubMed

    Oleari, Claudio; Melgosa, Manuel; Huertas, Rafael

    2011-11-01

    The most widely used color-difference formulas are based on color-difference data obtained under D65 illumination or similar and for a 10° visual field; i.e., these formulas hold true for the CIE 1964 observer adapted to D65 illuminant. This work considers the psychometric color-vision model based on the Optical Society of America-Uniform Color Scales (OSA-UCS) system previously published by the first author [J. Opt. Soc. Am. A 21, 677 (2004); Color Res. Appl. 30, 31 (2005)] with the additional hypothesis that complete illuminant adaptation with perfect color constancy exists in the visual evaluation of color differences. In this way a computational procedure is defined for color conversion between different illuminant adaptations, which is an alternative to the current chromatic adaptation transforms. This color conversion allows the passage between different observers, e.g., CIE 1964 and CIE 1931. An application of this color conversion is here made in the color-difference evaluation for any observer and in any illuminant adaptation: these transformations convert tristimulus values related to any observer and illuminant adaptation to those related to the observer and illuminant adaptation of the definition of the color-difference formulas, i.e., to the CIE 1964 observer adapted to the D65 illuminant, and then the known color-difference formulas can be applied. The adaptations to the illuminants A, C, F11, D50, Planckian and daylight at any color temperature and for CIE 1931 and CIE 1964 observers are considered as examples, and all the corresponding transformations are given for practical use.

  8. Perceptual transparency from image deformation.

    PubMed

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya

    2015-08-18

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation.

  9. High-dynamic range imaging techniques based on both color-separation algorithms used in conventional graphic arts and the human visual perception modeling

    NASA Astrophysics Data System (ADS)

    Lo, Mei-Chun; Hsieh, Tsung-Hsien; Perng, Ruey-Kuen; Chen, Jiong-Qiao

    2010-01-01

    The aim of this research is to derive illuminant-independent type of HDR imaging modules which can optimally multispectrally reconstruct of every color concerned in high-dynamic-range of original images for preferable cross-media color reproduction applications. Each module, based on either of broadband and multispectral approach, would be incorporated models of perceptual HDR tone-mapping, device characterization. In this study, an xvYCC format of HDR digital camera was used to capture HDR scene images for test. A tone-mapping module was derived based on a multiscale representation of the human visual system and used equations similar to a photoreceptor adaptation equation, proposed by Michaelis-Menten. Additionally, an adaptive bilateral type of gamut mapping algorithm, using approach of a multiple conversing-points (previously derived), was incorporated with or without adaptive Un-sharp Masking (USM) to carry out the optimization of HDR image rendering. An LCD with standard color space of Adobe RGB (D65) was used as a soft-proofing platform to display/represent HDR original RGB images, and also evaluate both renditionquality and prediction-performance of modules derived. Also, another LCD with standard color space of sRGB was used to test gamut-mapping algorithms, used to be integrated with tone-mapping module derived.

  10. Intentional forgetting reduces color-naming interference: evidence from item-method directed forgetting.

    PubMed

    Lee, Yuh-Shiow; Lee, Huang-Mou; Fawcett, Jonathan M

    2013-01-01

    In an item-method-directed forgetting task, Chinese words were presented individually, each followed by an instruction to remember or forget. Colored probe items were presented following each memory instruction requiring a speeded color-naming response. Half of the probe items were novel and unrelated to the preceding study item, whereas the remaining half of the probe items were a repetition of the preceding study item. Repeated probe items were either identical to the preceding study item (E1, E2), a phonetic reproduction of the preceding study item (E3), or perceptually matched to the preceding study item (E4). Color-naming interference was calculated by subtracting color-naming reaction times made in response to a string of meaningless symbols from that of the novel and repeated conditions. Across all experiments, participants recalled more to-be-remembered (TBR) than to-be-forgotten (TBF) study words. More importantly, Experiments 1 and 2 found that color-naming interference was reduced for repeated TBF words relative to repeated TBR words. Experiments 3 and 4 further found that this effect occurred at the perceptual rather than semantic level. These findings suggest that participants may bias processing resources away from the perceptual representation of to-be-forgotten information.

  11. Generalized Adaptation to Dysarthric Speech

    ERIC Educational Resources Information Center

    Borrie, Stephanie A.; Lansford, Kaitlin L.; Barrett, Tyson S.

    2017-01-01

    Purpose: Generalization of perceptual learning has received limited attention in listener adaptation studies with dysarthric speech. This study investigated whether adaptation to a talker with dysarthria could be predicted by the nature of the listener's prior familiarization experience, specifically similarity of perceptual features, and level of…

  12. Spatial attention facilitates assembly of the briefest percepts: Electrophysiological evidence from color fusion.

    PubMed

    Akyürek, Elkan G; van Asselt, E Manon

    2015-12-01

    When two different color stimuli are presented in rapid succession, the resulting percept is sometimes that of a mixture of both colors, due to a perceptual process called color fusion. Although color fusion might seem to occur very early in the visual pathway, and only happens across the briefest of stimulus presentation intervals (< 50 ms), the present study showed that spatial attention can alter the fusion process. In a series of experiments, spatial cues were presented that either validly indicated the location of a pair of (different) color stimuli in successive stimulus arrays, or did not, pointing toward isoluminant gray distractors in the other visual hemifield. Increased color fusion was observed for valid cues across a range of stimulus durations, at the expense of individual color reports. By contrast, perception of repeated, same-color stimulus pairs did not change, suggesting that the enhancement was specific to fusion, not color discrimination per se. Electrophysiological measures furthermore showed that the amplitude of the N1, N2pc, and P3 components of the ERP were differentially modulated during the perception of individual and fused colors, as a function of cueing and stimulus duration. Fusion itself, collapsed across cueing conditions, was reflected uniquely in N1 amplitude. Overall, the results suggest that spatial attention enhances color fusion and decreases competition between stimuli, constituting an adaptive slowdown in service of temporal integration. © 2015 Society for Psychophysiological Research.

  13. Mid-level perceptual features contain early cues to animacy.

    PubMed

    Long, Bria; Störmer, Viola S; Alvarez, George A

    2017-06-01

    While substantial work has focused on how the visual system achieves basic-level recognition, less work has asked about how it supports large-scale distinctions between objects, such as animacy and real-world size. Previous work has shown that these dimensions are reflected in our neural object representations (Konkle & Caramazza, 2013), and that objects of different real-world sizes have different mid-level perceptual features (Long, Konkle, Cohen, & Alvarez, 2016). Here, we test the hypothesis that animates and manmade objects also differ in mid-level perceptual features. To do so, we generated synthetic images of animals and objects that preserve some texture and form information ("texforms"), but are not identifiable at the basic level. We used visual search efficiency as an index of perceptual similarity, as search is slower when targets are perceptually similar to distractors. Across three experiments, we find that observers can find animals faster among objects than among other animals, and vice versa, and that these results hold when stimuli are reduced to unrecognizable texforms. Electrophysiological evidence revealed that this mixed-animacy search advantage emerges during early stages of target individuation, and not during later stages associated with semantic processing. Lastly, we find that perceived curvature explains part of the mixed-animacy search advantage and that observers use perceived curvature to classify texforms as animate/inanimate. Taken together, these findings suggest that mid-level perceptual features, including curvature, contain cues to whether an object may be animate versus manmade. We propose that the visual system capitalizes on these early cues to facilitate object detection, recognition, and classification.

  14. Adaptive reptile color variation and the evolution of the Mc1r gene.

    PubMed

    Rosenblum, Erica Bree; Hoekstra, Hopi E; Nachman, Michael W

    2004-08-01

    The wealth of information on the genetics of pigmentation and the clear fitness consequences of many pigmentation phenotypes provide an opportunity to study the molecular basis of an ecologically important trait. The melanocortin-1 receptor (Mc1r) is responsible for intraspecific color variation in mammals and birds. Here, we study the molecular evolution of Mc1r and investigate its role in adaptive intraspecific color differences in reptiles. We sequenced the complete Mc1r locus in seven phylogenetically diverse squamate species with melanic or blanched forms associated with different colored substrates or thermal environments. We found that patterns of amino acid substitution across different regions of the receptor are similar to the patterns seen in mammals, suggesting comparable levels of constraint and probably a conserved function for Mc1r in mammals and reptiles. We also found high levels of silent-site heterozygosity in all species, consistent with a high mutation rate or large long-term effective population size. Mc1r polymorphisms were strongly associated with color differences in Holbrookia maculata and Aspidoscelis inornata. In A. inornata, several observations suggest that Mc1r mutations may contribute to differences in color: (1) a strong association is observed between one Mc1r amino acid substitution and dorsal color; (2) no significant population structure was detected among individuals from these populations at the mitochondrial ND4 gene; (3) the distribution of allele frequencies at Mc1r deviates from neutral expectations; and (4) patterns of linkage disequilibrium at Mc1r are consistent with recent selection. This study provides comparative data on a nuclear gene in reptiles and highlights the utility of a candidate-gene approach for understanding the evolution of genes involved in vertebrate adaptation.

  15. The watercolor illusion and neon color spreading: a unified analysis of new cases and neural mechanisms

    NASA Astrophysics Data System (ADS)

    Pinna, Baingio; Grossberg, Stephen

    2005-10-01

    Coloration and figural properties of neon color spreading and the watercolor illusion are studied using phenomenal and psychophysical observations. Coloration properties of both effects can be reduced to a common limiting condition, a nearby color transition called the two-dot limiting case, which clarifies their perceptual similarities and dissimilarities. The results are explained by the FACADE neural model of biological vision. The model proposes how local properties of color transitions activate spatial competition among nearby perceptual boundaries, with boundaries of lower-contrast edges weakened by competition more than boundaries of higher-contrast edges. This asymmetry induces spreading of more color across these boundaries than conversely. The model also predicts how depth and figure-ground effects are generated in these illusions.

  16. Can grapheme-color synesthesia be induced by hypnosis?

    PubMed Central

    Anderson, Hazel P.; Seth, Anil K.; Dienes, Zoltan; Ward, Jamie

    2014-01-01

    Grapheme-color synesthesia is a perceptual experience where graphemes, letters or words evoke a specific color, which are experienced either as spatially coincident with the grapheme inducer (projector sub-type) or elsewhere, perhaps without a definite spatial location (associator sub-type). Here, we address the question of whether synesthesia can be rapidly produced using a hypnotic color suggestion to examine the possibility of “hypnotic synesthesia”, i.e., subjectively experienced color hallucinations similar to those experienced by projector synesthetes. We assess the efficacy of this intervention using an “embedded figures” test, in which participants are required to detect a shape (e.g., a square) composed of local graphemic elements. For grapheme-color synesthetes, better performance on the task has been linked to a higher proportion of graphemes perceived as colored. We found no performance benefits on this test when using a hypnotic suggestion, as compared to a no-suggestion control condition. The same result was found when participants were separated according to the degree to which they were susceptible to the suggestion (number of colored trials perceived). However, we found a relationship between accuracy and subjective reports of color in those participants who reported a large proportion of colored trials: trials in which the embedded figure was accurately recognized (relative to trials in which it was not) were associated with reports of more intense colors occupying a greater spatial extent. Collectively, this implies that hypnotic color was only perceived after shape detection rather than aiding in shape detection via color-based perceptual grouping. The results suggest that hypnotically induced colors are not directly comparable to synesthetic ones. PMID:24829555

  17. Cortical mechanisms for the segregation and representation of acoustic textures.

    PubMed

    Overath, Tobias; Kumar, Sukhbinder; Stewart, Lauren; von Kriegstein, Katharina; Cusack, Rhodri; Rees, Adrian; Griffiths, Timothy D

    2010-02-10

    Auditory object analysis requires two fundamental perceptual processes: the definition of the boundaries between objects, and the abstraction and maintenance of an object's characteristic features. Although it is intuitive to assume that the detection of the discontinuities at an object's boundaries precedes the subsequent precise representation of the object, the specific underlying cortical mechanisms for segregating and representing auditory objects within the auditory scene are unknown. We investigated the cortical bases of these two processes for one type of auditory object, an "acoustic texture," composed of multiple frequency-modulated ramps. In these stimuli, we independently manipulated the statistical rules governing (1) the frequency-time space within individual textures (comprising ramps with a given spectrotemporal coherence) and (2) the boundaries between textures (adjacent textures with different spectrotemporal coherences). Using functional magnetic resonance imaging, we show mechanisms defining boundaries between textures with different coherences in primary and association auditory cortices, whereas texture coherence is represented only in association cortex. Furthermore, participants' superior detection of boundaries across which texture coherence increased (as opposed to decreased) was reflected in a greater neural response in auditory association cortex at these boundaries. The results suggest a hierarchical mechanism for processing acoustic textures that is relevant to auditory object analysis: boundaries between objects are first detected as a change in statistical rules over frequency-time space, before a representation that corresponds to the characteristics of the perceived object is formed.

  18. The retention and disruption of color information in human short-term visual memory.

    PubMed

    Nemes, Vanda A; Parry, Neil R A; Whitaker, David; McKeefry, Declan J

    2012-01-27

    Previous studies have demonstrated that the retention of information in short-term visual perceptual memory can be disrupted by the presentation of masking stimuli during interstimulus intervals (ISIs) in delayed discrimination tasks (S. Magnussen & W. W. Greenlee, 1999). We have exploited this effect in order to determine to what extent short-term perceptual memory is selective for stimulus color. We employed a delayed hue discrimination paradigm to measure the fidelity with which color information was retained in short-term memory. The task required 5 color normal observers to discriminate between spatially non-overlapping colored reference and test stimuli that were temporally separated by an ISI of 5 s. The points of subjective equality (PSEs) on the resultant psychometric matching functions provided an index of performance. Measurements were made in the presence and absence of mask stimuli presented during the ISI, which varied in hue around the equiluminant plane in DKL color space. For all reference stimuli, we found a consistent mask-induced, hue-dependent shift in PSE compared to the "no mask" conditions. These shifts were found to be tuned in color space, only occurring for a range of mask hues that fell within bandwidths of 29-37 deg. Outside this range, masking stimuli had little or no effect on measured PSEs. The results demonstrate that memory masking for color exhibits selectivity similar to that which has already been demonstrated for other visual attributes. The relatively narrow tuning of these interference effects suggests that short-term perceptual memory for color is based on higher order, non-linear color coding. © ARVO

  19. Dynamic modulation of the perceptual load on microsaccades during a selective spatial attention task.

    PubMed

    Xue, Linyan; Huang, Dan; Wang, Tong; Hu, Qiyi; Chai, Xinyu; Li, Liming; Chen, Yao

    2017-11-28

    Selective spatial attention enhances task performance at restricted regions within the visual field. The magnitude of this effect depends on the level of attentional load, which determines the efficiency of distractor rejection. Mechanisms of attentional load include perceptual selection and/or cognitive control involving working memory. Recent studies have provided evidence that microsaccades are influenced by spatial attention. Therefore, microsaccade activities may be exploited to help understand the dynamic control of selective attention under different load levels. However, previous reports in humans on the effect of attentional load on microsaccades are inconsistent, and it is not clear to what extent these results and the dynamic changes of microsaccade activities are similar in monkeys. We trained monkeys to perform a color detection task in which the perceptual load was manipulated by task difficulty with limited involvement of working memory. Our results indicate that during the task with high perceptual load, the rate and amplitude of microsaccades immediately before the target color change were significantly suppressed. We also found that the occurrence of microsaccades before the monkeys' detection response deteriorated their performance, especially in the hard task. We propose that the activity of microsaccades might be an efficacious indicator of the perceptual load.

  20. The cerebellum and visual perceptual learning: evidence from a motion extrapolation task.

    PubMed

    Deluca, Cristina; Golzar, Ashkan; Santandrea, Elisa; Lo Gerfo, Emanuele; Eštočinová, Jana; Moretto, Giuseppe; Fiaschi, Antonio; Panzeri, Marta; Mariotti, Caterina; Tinazzi, Michele; Chelazzi, Leonardo

    2014-09-01

    Visual perceptual learning is widely assumed to reflect plastic changes occurring along the cerebro-cortical visual pathways, including at the earliest stages of processing, though increasing evidence indicates that higher-level brain areas are also involved. Here we addressed the possibility that the cerebellum plays an important role in visual perceptual learning. Within the realm of motor control, the cerebellum supports learning of new skills and recalibration of motor commands when movement execution is consistently perturbed (adaptation). Growing evidence indicates that the cerebellum is also involved in cognition and mediates forms of cognitive learning. Therefore, the obvious question arises whether the cerebellum might play a similar role in learning and adaptation within the perceptual domain. We explored a possible deficit in visual perceptual learning (and adaptation) in patients with cerebellar damage using variants of a novel motion extrapolation, psychophysical paradigm. Compared to their age- and gender-matched controls, patients with focal damage to the posterior (but not the anterior) cerebellum showed strongly diminished learning, in terms of both rate and amount of improvement over time. Consistent with a double-dissociation pattern, patients with focal damage to the anterior cerebellum instead showed more severe clinical motor deficits, indicative of a distinct role of the anterior cerebellum in the motor domain. The collected evidence demonstrates that a pure form of slow-incremental visual perceptual learning is crucially dependent on the intact cerebellum, bearing the notion that the human cerebellum acts as a learning device for motor, cognitive and perceptual functions. We interpret the deficit in terms of an inability to fine-tune predictive models of the incoming flow of visual perceptual input over time. Moreover, our results suggest a strong dissociation between the role of different portions of the cerebellum in motor versus

  1. Working Memory Is Related to Perceptual Processing: A Case from Color Perception

    ERIC Educational Resources Information Center

    Allen, Elizabeth C.; Beilock, Sian L.; Shevell, Steven K.

    2011-01-01

    We explored the relation between individual differences in working memory (WM) and color constancy, the phenomenon of color perception that allows us to perceive the color of an object as relatively stable under changes in illumination. Successive color constancy (measured by first viewing a colored surface under a particular illumination and…

  2. Grapheme-color synesthesia influences overt visual attention.

    PubMed

    Carriere, Jonathan S A; Eaton, Daniel; Reynolds, Michael G; Dixon, Mike J; Smilek, Daniel

    2009-02-01

    For individuals with grapheme-color synesthesia, achromatic letters and digits elicit vivid perceptual experiences of color. We report two experiments that evaluate whether synesthesia influences overt visual attention. In these experiments, two grapheme-color synesthetes viewed colored letters while their eye movements were monitored. Letters were presented in colors that were either congruent or incongruent with the synesthetes' colors. Eye tracking analysis showed that synesthetes exhibited a color congruity bias-a propensity to fixate congruently colored letters more often and for longer durations than incongruently colored letters-in a naturalistic free-viewing task. In a more structured visual search task, this congruity bias caused synesthetes to rapidly fixate and identify congruently colored target letters, but led to problems in identifying incongruently colored target letters. The results are discussed in terms of their implications for perception in synesthesia.

  3. Reading Performance Is Enhanced by Visual Texture Discrimination Training in Chinese-Speaking Children with Developmental Dyslexia

    PubMed Central

    Meng, Xiangzhi; Lin, Ou; Wang, Fang; Jiang, Yuzheng; Song, Yan

    2014-01-01

    Background High order cognitive processing and learning, such as reading, interact with lower-level sensory processing and learning. Previous studies have reported that visual perceptual training enlarges visual span and, consequently, improves reading speed in young and old people with amblyopia. Recently, a visual perceptual training study in Chinese-speaking children with dyslexia found that the visual texture discrimination thresholds of these children in visual perceptual training significantly correlated with their performance in Chinese character recognition, suggesting that deficits in visual perceptual processing/learning might partly underpin the difficulty in reading Chinese. Methodology/Principal Findings To further clarify whether visual perceptual training improves the measures of reading performance, eighteen children with dyslexia and eighteen typically developed readers that were age- and IQ-matched completed a series of reading measures before and after visual texture discrimination task (TDT) training. Prior to the TDT training, each group of children was split into two equivalent training and non-training groups in terms of all reading measures, IQ, and TDT. The results revealed that the discrimination threshold SOAs of TDT were significantly higher for the children with dyslexia than for the control children before training. Interestingly, training significantly decreased the discrimination threshold SOAs of TDT for both the typically developed readers and the children with dyslexia. More importantly, the training group with dyslexia exhibited significant enhancement in reading fluency, while the non-training group with dyslexia did not show this improvement. Additional follow-up tests showed that the improvement in reading fluency is a long-lasting effect and could be maintained for up to two months in the training group with dyslexia. Conclusion/Significance These results suggest that basic visual perceptual processing/learning and reading

  4. Independent priming of location and color in identification of briefly presented letters.

    PubMed

    Ásgeirsson, Árni Gunnar; Kristjánsson, Árni; Bundesen, Claus

    2014-01-01

    Attention shifts are facilitated if the items to be attended remain the same across trials. Some researchers argue that this priming effect is perceptual, whereas others propose that priming is postperceptual, involving facilitated response selection. The experimental findings have not been consistent regarding the roles of variables such as task difficulty, response repetition, expectancies, and decision-making. Position priming, when repetition of a target position facilitates responses on a subsequent trial, is another source of disagreement among researchers. Experimental results have likewise been inconsistent as to whether position priming is dependent on the repetition of target features or has an independent effect on attention shifts. We attempted to isolate the perceptual components of priming by presenting brief (10-180 ms) search arrays to eight healthy observers. The task was to identify a color-singleton letter among distractors. All stimulus presentation contingencies were randomized, and responses were unspeeded, to avoid effects of observer expectation and postperceptual effects. Repeating target color and/or position strongly improved performance. The effects of color and position repetition were independent of one another and were stable across participants. The results argue for a strong perceptual component in priming, which biases selection toward recent target features and positions, showing that perceptual mechanisms are sufficient to produce priming in visual search and that such effects can be elicited with limited sensory evidence. The results are the first to demonstrate independent priming of color and position in the identification of briefly presented, postmasked stimuli.

  5. Influence of pre-cooking protein paste gelation conditions and post-cooking gel storage conditions on gel texture.

    PubMed

    Paker, Ilgin; Matak, Kristen E

    2016-01-15

    Gelation conditions affect the setting of myofibrillar fish protein gels. Therefore the impact of widely applied pre-cooking gelation time/temperature strategies and post-cooking period on the texture and color of final protein gels was determined. Four pre-cooking gelation strategies (no setting time, 30 min at 25 °C, 1 h at 40 °C or 24 h at 4 °C) were applied to protein pastes (fish protein concentrate and standard functional additives). After cooking, texture and color were analyzed either directly or after 24 h at 4 °C on gels adjusted to 25 °C. No-set gels were harder, gummier and chewier (P < 0.05) when analyzed immediately after cooling; however, gel chewiness, cohesiveness and firmness indicated by Kramer force benefited from 24 h at 4 °C gel setting when stored post-cooking. Gel-setting conditions had a greater (P < 0.05) effect on texture when directly analyzed and most changes occurred in no-set gels. There were significant (P < 0.05) changes between directly analyzed and post-cooking stored gels in texture and color, depending on the pre-cooking gelation strategy. Pre-cooking gelation conditions will affect final protein gel texture and color, with gel stability benefiting from a gel-setting period. However, post-cooking storage may have a greater impact on final gels, with textural attributes becoming more consistent between all samples. © 2015 Society of Chemical Industry.

  6. Color, context, and cognitive style: variations in color knowledge retrieval as a function of task and subject variables.

    PubMed

    Hsu, Nina S; Kraemer, David J M; Oliver, Robyn T; Schlichting, Margaret L; Thompson-Schill, Sharon L

    2011-09-01

    Neuroimaging tests of sensorimotor theories of semantic memory hinge on the extent to which similar activation patterns are observed during perception and retrieval of objects or object properties. The present study was motivated by the hypothesis that some of the seeming discrepancies across studies reflect flexibility in the systems responsible for conceptual and perceptual processing of color. Specifically, we test the hypothesis that retrieval of color knowledge can be influenced by both context (a task variable) and individual differences in cognitive style (a subject variable). In Experiment 1, we provide fMRI evidence for differential activity during color knowledge retrieval by having subjects perform a verbal task, in which context encouraged subjects to retrieve more- or less-detailed information about the colors of named common objects in a blocked experimental design. In the left fusiform, we found more activity during retrieval of more- versus less-detailed color knowledge. We also assessed preference for verbal or visual cognitive style, finding that brain activity in the left lingual gyrus significantly correlated with preference for a visual cognitive style. We replicated many of these effects in Experiment 2, in which stimuli were presented more quickly, in a random order, and in the auditory modality. This illustration of some of the factors that can influence color knowledge retrieval leads to the conclusion that tests of conceptual and perceptual overlap must consider variation in both of these processes.

  7. Colors in mind: a novel paradigm to investigate pure color imagery.

    PubMed

    Wantz, Andrea L; Borst, Grégoire; Mast, Fred W; Lobmaier, Janek S

    2015-07-01

    Mental color imagery abilities are commonly measured using paradigms that involve naming, judging, or comparing the colors of visual mental images of well-known objects (e.g., "Is a sunflower darker yellow than a lemon"?). Although this approach is widely used in patient studies, differences in the ability to perform such color comparisons might simply reflect participants' general knowledge of object colors rather than their ability to generate accurate visual mental images of the colors of the objects. The aim of the present study was to design a new color imagery paradigm. Participants were asked to visualize a color for 3 s and then to determine a visually presented color by pressing 1 of 6 keys. We reasoned that participants would react faster when the imagined and perceived colors were congruent than when they were incongruent. In Experiment 1, participants were slower in incongruent than congruent trials but only when they were instructed to visualize the colors. The results in Experiment 2 demonstrate that the congruency effect reported in Experiment 1 cannot be attributed to verbalization of the color that had to be visualized. Finally, in Experiment 3, the congruency effect evoked by mental imagery correlated with performance in a perceptual version of the task. We discuss these findings with respect to the mechanisms that underlie mental imagery and patients suffering from color imagery deficits. (c) 2015 APA, all rights reserved.

  8. Effect of x-ray treatments on pathogenic bacteria, inherent microbiota, color, and texture on parsley leaves.

    PubMed

    Mahmoud, Barakat S M

    2012-10-01

    This work is a part of systematic studies of the effect of X-ray treatments on fresh produce. The main objective of this investigation was to study the effects of X-ray treatments in reducing the concentration of artificially inoculated Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica, and Shigella flexneri, and inherent microbiota on parsley leaves. The secondary objective was to study the effects of X-ray treatments on color and texture parameters on treated parsley leaves. The Dip-inoculated method was used to inoculate parsley leaves with a mixture of two or three strains of each tested organism at 10(8) to 10(9) colony-forming unit (CFU)/mL; the inoculated parsley leaves were then air-dried and followed by treatment with different doses of X-ray (0, 0.1, 0.5, 1.0, and 1.5 kGy) at 22°C and 55-60% relative humidity. Surviving bacterial populations on parsley leaves were evaluated using a nonselective medium (tryptic soy agar) with a selective medium overlay for each bacterium: E. coli O157:H7 (CT-SMAC agar), L. monocytogenes (MOA), and S. enterica and S. flexneri (XLD). Approximately 5.8, 3.1, 5.7, and 5.2 log CFU reductions of E. coli O157:H7, L. monocytogenes, S. enterica, and Shigella flexneri were achieved by treatment with 1.0 kGy X-ray, respectively. Furthermore, the populations of E. coli O157:H7, L. monocytogenes, S. enterica, and Shigella flexneri were reduced to less than the detectable limit (1.0 log CFU/g) by treatment with 1.5 kGy X-ray. Treatment with 1.5 kGy X-ray significantly reduced the initial inherent microbiota on parsley leaves, and inherent levels were significantly (p < 0.05) lower than the control sample throughout refrigerated storage for 30 days. No significant differences (p > 0.05) in color or texture of control and treated samples with 0.1-1.5 X-ray were observed. The results of investigation indicated that X-ray is an effective technology to eliminate E. coli O157:H7, L. monocytogenes, S. enterica, and

  9. An Illumination-Adaptive Colorimetric Measurement Using Color Image Sensor

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Hak; Lee, Jong-Hyub; Sohng, Kyu-Ik

    An image sensor for a use of colorimeter is characterized based on the CIE standard colorimetric observer. We use the method of least squares to derive a colorimetric characterization matrix between RGB output signals and CIE XYZ tristimulus values. This paper proposes an adaptive measuring method to obtain the chromaticity of colored scenes and illumination through a 3×3 camera transfer matrix under a certain illuminant. Camera RGB outputs, sensor status values, and photoelectric characteristic are used to obtain the chromaticity. Experimental results show that the proposed method is valid in the measuring performance.

  10. Color and Luminance Asymmetries in the Clear Sky

    DTIC Science & Technology

    2003-01-20

    differences directly from x, y, and Y in the perceptually anisotropic CIE XYZ color space, we first map this data into the isotropic CIELUV color...2 v*1/ 2 . 20 January 2003 Vol. 42, No. 3 APPLIED OPTICS 459 L*, u*, v* are the CIELUV space’s orthogonal coor- dinates, and L*, u*, v...are the corresponding differences between coordinates of the two light sources being compared. Note that 3–5 CIELUV color-difference units are often

  11. Improvement in perception of image sharpness through the addition of noise and its relationship with memory texture

    NASA Astrophysics Data System (ADS)

    Wan, Xiazi; Kobayashi, Hiroyuki; Aoki, Naokazu

    2015-03-01

    In a preceding study, we investigated the effects of image noise on the perception of image sharpness using white noise, and one- and two-dimensional single-frequency sinusoidal patterns as stimuli. This study extends our preceding study by evaluating natural color images, rather than black-and-white patterns. The results showed that the effect of noise in improving image sharpness perception is more evident in blurred images than in sharp images. This is consistent with the results of the preceding study. In another preceding study, we proposed "memory texture" to explain the preferred granularity of images, as a concept similar to "memory color" for preferred color reproduction. We observed individual differences in type of memory texture for each object, that is, white or 1/f noise. This study discusses the relationship between improvement of sharpness perception by adding noise, and the memory texture, following its individual differences. We found that memory texture is one of the elements that affect sharpness perception.

  12. Types of attention matter for awareness: a study with color afterimages.

    PubMed

    Baijal, Shruti; Srinivasan, Narayanan

    2009-12-01

    It has been argued that attention and awareness might oppose each other given that attending to an adapting stimulus weakens its afterimage. We argue instead that the type of attention guided by spatial extent and perceptual levels is critical and might result in differences in awareness using afterimages. Participants performed a central task with small, large, local, or global letters and a blue square as an adapting stimulus in three experiments and indicated the onset and offset of the afterimage. We found that increases in the spatial spread of attention resulted in the decrease of afterimage duration. In terms of levels of processing, global processing produced larger afterimage durations with stimuli controlled for spatial extent. The results suggest that focused or distributed attention produce different effects on awareness, possibly through their differential interactions with polarity dependent and independent processes involved in the formation of color afterimages.

  13. Perceptual learning.

    PubMed

    Seitz, Aaron R

    2017-07-10

    Perceptual learning refers to how experience can change the way we perceive sights, sounds, smells, tastes, and touch. Examples abound: music training improves our ability to discern tones; experience with food and wines can refine our pallet (and unfortunately more quickly empty our wallet), and with years of training radiologists learn to save lives by discerning subtle details of images that escape the notice of untrained viewers. We often take perceptual learning for granted, but it has a profound impact on how we perceive the world. In this Primer, I will explain how perceptual learning is transformative in guiding our perceptual processes, how research into perceptual learning provides insight into fundamental mechanisms of learning and brain processes, and how knowledge of perceptual learning can be used to develop more effective training approaches for those requiring expert perceptual skills or those in need of perceptual rehabilitation (such as individuals with poor vision). I will make a case that perceptual learning is ubiquitous, scientifically interesting, and has substantial practical utility to us all. Copyright © 2017. Published by Elsevier Ltd.

  14. Vibratory tactile display for textures

    NASA Technical Reports Server (NTRS)

    Ikei, Yasushi; Ikeno, Akihisa; Fukuda, Shuichi

    1994-01-01

    We have developed a tactile display that produces vibratory stimulus to a fingertip in contact with a vibrating tactor matrix. The display depicts tactile surface textures while the user is exploring a virtual object surface. A piezoelectric actuator drives the individual tactor in accordance with both the finger movement and the surface texture being traced. Spatiotemporal display control schemes were examined for presenting the fundamental surface texture elements. The temporal duration of vibratory stimulus was experimentally optimized to simulate the adaptation process of cutaneous sensation. The selected duration time for presenting a single line edge agreed with the time threshold of tactile sensation. Then spatial stimulus disposition schemes were discussed for representation of other edge shapes. As an alternative means not relying on amplitude control, a method of augmented duration at the edge was investigated. Spatial resolution of the display was measured for the lines presented both in perpendicular and parallel to a finger axis. Discrimination of texture density was also measured on random dot textures.

  15. Typography and color: effects of salience and fluency on conscious recollective experience.

    PubMed

    Wehr, Thomas; Wippich, Werner

    2004-12-01

    Within one experiment the central assumptions of the distinctiveness/fluency account of recollective experience were tested and contrasted with predictions of processing theory. To manipulate perceptual salience, the typography of words was varied. Effects of conceptual salience were induced by a variation of word color. In the study phase participants generated different word or object images according to presented words. To manipulate perceptual and conceptual fluency one test group underwent a priming procedure in the test phase, consisting of a recognition test, whereby some primes were identical to the target words typographically or by color and others were not. Additionally, all participants were asked to make judgments of recollective experience (remember, know, guess) after the old/new decisions. The results of the data analyses confirm the distinctiveness/fluency account. Words written in an unusual typography or color were judged significantly more often as "remembered" than normal words. The priming procedure uncovered some effects of fluency on reaction times: old/new decisions took less time if prime and target words were perceptually or conceptually identical.

  16. Video enhancement method with color-protection post-processing

    NASA Astrophysics Data System (ADS)

    Kim, Youn Jin; Kwak, Youngshin

    2015-01-01

    The current study is aimed to propose a post-processing method for video enhancement by adopting a color-protection technique. The color-protection intends to attenuate perceptible artifacts due to over-enhancements in visually sensitive image regions such as low-chroma colors, including skin and gray objects. In addition, reducing the loss in color texture caused by the out-of-color-gamut signals is also taken into account. Consequently, color reproducibility of video sequences could be remarkably enhanced while the undesirable visual exaggerations are minimized.

  17. Color psychology: effects of perceiving color on psychological functioning in humans.

    PubMed

    Elliot, Andrew J; Maier, Markus A

    2014-01-01

    Color is a ubiquitous perceptual stimulus that is often considered in terms of aesthetics. Here we review theoretical and empirical work that looks beyond color aesthetics to the link between color and psychological functioning in humans. We begin by setting a historical context for research in this area, particularly highlighting methodological issues that hampered earlier empirical work. We proceed to overview theoretical and methodological advances during the past decade and conduct a review of emerging empirical findings. Our empirical review focuses especially on color in achievement and affiliation/attraction contexts, but it also covers work on consumer behavior as well as food and beverage evaluation and consumption. The review clearly shows that color can carry important meaning and can have an important impact on people's affect, cognition, and behavior. The literature remains at a nascent stage of development, however, and we note that considerable work on boundary conditions, moderators, and real-world generalizability is needed before strong conceptual statements and recommendations for application are warranted. We provide suggestions for future research and conclude by emphasizing the broad promise of research in this area.

  18. Perceptual grouping allows for attention to cover noncontiguous locations and suppress capture from nearby locations.

    PubMed

    Kerzel, Dirk; Born, Sabine; Schönhammer, Josef

    2012-12-01

    A salient stimulus may interrupt visual search because of attentional capture. It has been shown that attentional capture occurs with a wide, but not with a small attentional window. We tested the hypothesis that capture depends more strongly on the shape of the attentional window than on its size. Search elements were arranged in two nested rings. The ring containing the search target remained fixed, while a salient color singleton occurred either in the same or in the other ring. We observed that color singletons only disrupted search when shown in the same ring as the search target. It is important to note that, when focusing on the outer array, which presumably required a larger attentional window, singletons on the inner array did not capture attention. In contrast to the original attentional window hypothesis, our results show that attentional capture does not always occur with a large attentional window. Rather, attention can be flexibly allocated to the set of relevant stimulus locations and attentional capture is confined to the attended locations. Further experiments showed that attention was allocated to search elements that were perceptually grouped into "whole" or "Gestalt"-like objects, which prevented attentional capture from nearby locations. However, when attention was allocated to noncontiguous locations that did not form a perceptual Gestalt, nearby locations elicited attentional capture. Perceptual grouping could be based on a combination of color and position, but not on color alone. Thus, the allocation of attention to Gestalt-like objects that were jointly defined by similarity and proximity prevented attentional capture from nearby locations.

  19. Human visual system-based color image steganography using the contourlet transform

    NASA Astrophysics Data System (ADS)

    Abdul, W.; Carré, P.; Gaborit, P.

    2010-01-01

    We present a steganographic scheme based on the contourlet transform which uses the contrast sensitivity function (CSF) to control the force of insertion of the hidden information in a perceptually uniform color space. The CIELAB color space is used as it is well suited for steganographic applications because any change in the CIELAB color space has a corresponding effect on the human visual system as is very important for steganographic schemes to be undetectable by the human visual system (HVS). The perceptual decomposition of the contourlet transform gives it a natural advantage over other decompositions as it can be molded with respect to the human perception of different frequencies in an image. The evaluation of the imperceptibility of the steganographic scheme with respect to the color perception of the HVS is done using standard methods such as the structural similarity (SSIM) and CIEDE2000. The robustness of the inserted watermark is tested against JPEG compression.

  20. Physics and psychophysics of color reproduction

    NASA Astrophysics Data System (ADS)

    Giorgianni, Edward J.

    1991-08-01

    The successful design of a color-imaging system requires knowledge of the factors used to produce and control color. This knowledge can be derived, in part, from measurements of the physical properties of the imaging system. Color itself, however, is a perceptual response and cannot be directly measured. Though the visual process begins with physics, as radiant energy reaching the eyes, it is in the mind of the observer that the stimuli produced from this radiant energy are interpreted and organized to form meaningful perceptions, including the perception of color. A comprehensive understanding of color reproduction, therefore, requires not only a knowledge of the physical properties of color-imaging systems but also an understanding of the physics, psychophysics, and psychology of the human observer. The human visual process is quite complex; in many ways the physical properties of color-imaging systems are easier to understand.

  1. Differential interference effects of negative emotional states on subsequent semantic and perceptual processing

    PubMed Central

    Gorlick, Marissa A.; Mather, Mara

    2012-01-01

    Past studies have revealed that encountering negative events interferes with cognitive processing of subsequent stimuli. The present study investigated whether negative events affect semantic and perceptual processing differently. Presentation of negative pictures produced slower reaction times than neutral or positive pictures in tasks that require semantic processing, such as natural/man-made judgments about drawings of objects, commonness judgments about objects, and categorical judgments about pairs of words. In contrast, negative picture presentation did not slow down judgments in subsequent perceptual processing (e.g., color judgments about words, and size judgments about objects). The subjective arousal level of negative pictures did not modulate the interference effects on semantic/perceptual processing. These findings indicate that encountering negative emotional events interferes with semantic processing of subsequent stimuli more strongly than perceptual processing, and that not all types of subsequent cognitive processing are impaired by negative events. PMID:22142207

  2. Differential interference effects of negative emotional states on subsequent semantic and perceptual processing.

    PubMed

    Sakaki, Michiko; Gorlick, Marissa A; Mather, Mara

    2011-12-01

    Past studies have revealed that encountering negative events interferes with cognitive processing of subsequent stimuli. The present study investigates whether negative events affect semantic and perceptual processing differently. Presentation of negative pictures produced slower reaction times than neutral or positive pictures in tasks that require semantic processing, such as natural or man-made judgments about drawings of objects, commonness judgments about objects, and categorical judgments about pairs of words. In contrast, negative picture presentation did not slow down judgments in subsequent perceptual processing (e.g., color judgments about words, size judgments about objects). The subjective arousal level of negative pictures did not modulate the interference effects on semantic or perceptual processing. These findings indicate that encountering negative emotional events interferes with semantic processing of subsequent stimuli more strongly than perceptual processing, and that not all types of subsequent cognitive processing are impaired by negative events. (c) 2011 APA, all rights reserved.

  3. Perceptual Factors Influence Visual Search for Meaningful Symbols In Individuals with Intellectual Disabilities and Down Syndrome or Autism Spectrum Disorders

    PubMed Central

    Wilkinson, Krista M.; McIlvane, William J.

    2013-01-01

    Augmentative and alternative communication (AAC) systems often supplement oral communication of individuals with intellectual and communication disabilities. Research with nondisabled preschoolers has demonstrated that two visual perceptual factors influence speed and/or accuracy of finding a target - the internal color and spatial organization of symbols. Twelve participants with Down syndrome and 12 with ASD underwent two search tasks. In one, the symbols were clustered by internal color; in the other the identical symbols had no arrangement cue. Visual search was superior in participants with ASD compared to those with Down syndrome. In both groups, responses were significantly faster when the symbols were clustered by internal color. Construction of aided AAC displays may benefit from attention to their physical/perceptual features. PMID:24245729

  4. Resolution for color photography

    NASA Astrophysics Data System (ADS)

    Hubel, Paul M.; Bautsch, Markus

    2006-02-01

    Although it is well known that luminance resolution is most important, the ability to accurately render colored details, color textures, and colored fabrics cannot be overlooked. This includes the ability to accurately render single-pixel color details as well as avoiding color aliasing. All consumer digital cameras on the market today record in color and the scenes people are photographing are usually color. Yet almost all resolution measurements made on color cameras are done using a black and white target. In this paper we present several methods for measuring and quantifying color resolution. The first method, detailed in a previous publication, uses a slanted-edge target of two colored surfaces in place of the standard black and white edge pattern. The second method employs the standard black and white targets recommended in the ISO standard, but records these onto the camera through colored filters thus giving modulation between black and one particular color component; red, green, and blue color separation filters are used in this study. The third method, conducted at Stiftung Warentest, an independent consumer organization of Germany, uses a whitelight interferometer to generate fringe pattern targets of varying color and spatial frequency.

  5. Evaluation of color mapping algorithms in different color spaces

    NASA Astrophysics Data System (ADS)

    Bronner, Timothée.-Florian; Boitard, Ronan; Pourazad, Mahsa T.; Nasiopoulos, Panos; Ebrahimi, Touradj

    2016-09-01

    The color gamut supported by current commercial displays is only a subset of the full spectrum of colors visible by the human eye. In High-Definition (HD) television technology, the scope of the supported colors covers 35.9% of the full visible gamut. For comparison, Ultra High-Definition (UHD) television, which is currently being deployed on the market, extends this range to 75.8%. However, when reproducing content with a wider color gamut than that of a television, typically UHD content on HD television, some original color information may lie outside the reproduction capabilities of the television. Efficient gamut mapping techniques are required in order to fit the colors of any source content into the gamut of a given display. The goal of gamut mapping is to minimize the distortion, in terms of perceptual quality, when converting video from one color gamut to another. It is assumed that the efficiency of gamut mapping depends on the color space in which it is computed. In this article, we evaluate 14 gamut mapping techniques, 12 combinations of two projection methods across six color spaces as well as R'G'B' Clipping and wrong gamut interpretation. Objective results, using the CIEDE2000 metric, show that the R'G'B' Clipping is slightly outperformed by only one combination of color space and projection method. However, analysis of images shows that R'G'B' Clipping can result in loss of contrast in highly saturated images, greatly impairing the quality of the mapped image.

  6. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration

    NASA Astrophysics Data System (ADS)

    Vatankhah-Varnosfaderani, Mohammad; Keith, Andrew N.; Cong, Yidan; Liang, Heyi; Rosenthal, Martin; Sztucki, Michael; Clair, Charles; Magonov, Sergei; Ivanov, Dimitri A.; Dobrynin, Andrey V.; Sheiko, Sergei S.

    2018-03-01

    Active camouflage is widely recognized as a soft-tissue feature, and yet the ability to integrate adaptive coloration and tissuelike mechanical properties into synthetic materials remains elusive. We provide a solution to this problem by uniting these functions in moldable elastomers through the self-assembly of linear-bottlebrush-linear triblock copolymers. Microphase separation of the architecturally distinct blocks results in physically cross-linked networks that display vibrant color, extreme softness, and intense strain stiffening on par with that of skin tissue. Each of these functional properties is regulated by the structure of one macromolecule, without the need for chemical cross-linking or additives. These materials remain stable under conditions characteristic of internal bodily environments and under ambient conditions, neither swelling in bodily fluids nor drying when exposed to air.

  7. A Model for the Transfer of Perceptual-Motor Skill Learning in Human Behaviors

    ERIC Educational Resources Information Center

    Rosalie, Simon M.; Muller, Sean

    2012-01-01

    This paper presents a preliminary model that outlines the mechanisms underlying the transfer of perceptual-motor skill learning in sport and everyday tasks. Perceptual-motor behavior is motivated by performance demands and evolves over time to increase the probability of success through adaptation. Performance demands at the time of an event…

  8. Color constancy in a scene with bright colors that do not have a fully natural surface appearance.

    PubMed

    Fukuda, Kazuho; Uchikawa, Keiji

    2014-04-01

    Theoretical and experimental approaches have proposed that color constancy involves a correction related to some average of stimulation over the scene, and some of the studies showed that the average gives greater weight to surrounding bright colors. However, in a natural scene, high-luminance elements do not necessarily carry information about the scene illuminant when the luminance is too high for it to appear as a natural object color. The question is how a surrounding color's appearance mode influences its contribution to the degree of color constancy. Here the stimuli were simple geometric patterns, and the luminance of surrounding colors was tested over the range beyond the luminosity threshold. Observers performed perceptual achromatic setting on the test patch in order to measure the degree of color constancy and evaluated the surrounding bright colors' appearance mode. Broadly, our results support the assumption that the visual system counts only the colors in the object-color appearance for color constancy. However, detailed analysis indicated that surrounding colors without a fully natural object-color appearance had some sort of influence on color constancy. Consideration of this contribution of unnatural object color might be important for precise modeling of human color constancy.

  9. Cupuassu (Theobroma grandiflorum) pulp, probiotic, and prebiotic: Influence on color, apparent viscosity, and texture of goat milk yogurts.

    PubMed

    Costa, Marion P; Frasao, Beatriz S; Silva, Adriana Cristina O; Freitas, Mônica Q; Franco, Robson M; Conte-Junior, Carlos A

    2015-09-01

    Cupuassu is an acidic fruit that has a characteristic aroma, flavor, and texture; its fiber-rich pulp can provide a different consistency than other fruit pulps. Goat milk is an excellent source of amino acids, fatty acids, and minerals, and is widely used for processing fermented milks, such as yogurt. However, compared with cow milk yogurts, it is difficult to make goat milk yogurts with a good consistency. Therefore, it is necessary to use certain technological strategies. This study was carried out to investigate the possibility of adding cupuassu pulp, probiotic (Lactobacillus acidophilus LA-5), and prebiotic (inulin) to improve the texture of goat milk yogurt. A total of 6 treatments were performed: natural (N), probiotic (Pro), prebiotic (Pre), synbiotic (S), cupuassu (C), and probiotic with cupuassu (PC). The viability of probiotic in yogurts (Pro, S, and PC) was evaluated. In addition, instrumental analyses (pH, color, apparent viscosity, and texture) were performed to evaluate the influence of these different ingredients on goat milk yogurts. The probiotic bacteria remained viable (≥7 log cfu·mL(-1)) throughout the 28d of refrigerated storage, which exceeded the minimum count required to confer probiotic physiological benefits. The pH levels of the yogurts inoculated with L. acidophilus (Pro, S, and PC) were lower than others yogurts (N, Pre, and C). However, all yogurt samples underwent gradual decreases in pH until 7 to 14d of storage. The lightness (L*) was affected initially by addition of all ingredients (cupuassu pulp, probiotic, and prebiotic). The addition of cupuassu pulp (C and PC) increased the L* during the period of storage. Apparent viscosity and firmness decreased in the PC yogurt. The consistency was highest in the yogurts with added prebiotic (Pre and S) than the other yogurts (N, Pro, C, and PC) at the end of the storage period (d 28). The cohesiveness remained constant in all yogurts (N, Pro, Pre, S, C, and PC). Based on the results

  10. Combined effects of high hydrostatic pressure and sodium nitrite on color, water holding capacity and texture of frankfurter

    NASA Astrophysics Data System (ADS)

    Jonas, G.; Csehi, B.; Palotas, P.; Toth, A.; Kenesei, Gy; Pasztor-Huszar, K.; Friedrich, L.

    2017-10-01

    The aim of this study was to investigate the effect of sodium nitrite and high hydrostatic pressure on the color, water holding capacity (WHC) and texture characteristics of frankfurter. Three hundred, 450 and 600 MPa (5 minutes; 20 °C) and 50, 75, 100 and 125 ppm (calculated on weight of meat) sodium nitrite were applied. Parameters were measured right after the pressure treatment. Data were evaluated with two-way analysis of variance (p 0.05) with pressure levels and sodium nitrite amounts as factors. Nitrite reduction significantly increased lightness (L*) and resulted in decreased redness (a*) value. The pressure treatments decreased the lightness at all nitrite concentrations and did not significantly affect the red color of frankfurters. Fifty and 75 ppm nitrite and pressurization at 300 or 450 MPa improved the water holding property of frankfurter. The pressure treatment did not significantly affect the WHC but changing the nitrite amount had significant effect on it. Interactive effect occurred between pressure levels and nitrite concentrations for hardness. The pressure treatment increased and the nitrite reduction decreased hardness. Significant changes were found in cohesiveness at 450 and 600 MPa in frankfurters containing 50 and 75 ppm nitrite: pressure treatment at higher levels and nitrite reduction decreased the value of cohesiveness.

  11. Image data compression having minimum perceptual error

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1995-01-01

    A method for performing image compression that eliminates redundant and invisible image components is described. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  12. Comparative evaluation of effects of bleaching on color stability and marginal adaptation of discolored direct and indirect composite laminate veneers under in vivo conditions.

    PubMed

    Jain, Veena; Das, Taposh K; Pruthi, Gunjan; Shah, Naseem; Rajendiran, Suresh

    2015-01-01

    Change in color and loss of marginal adaptation of tooth colored restorative materials is not acceptable. Bleaching is commonly used for treating discolored teeth. However, the literature is scanty regarding its effect on color and marginal adaptation of direct and indirect composite laminate veneers (CLVs) under in vivo conditions. Purpose of the study was to determine the effect of bleaching on color change and marginal adaptation of direct and indirect CLVs over a period of time when exposed to the oral environment. For this purpose, a total of 14 subjects irrespective of age and sex indicated for CLV restorations on maxillary anterior teeth were selected following the inclusion and exclusion criteria. For each subject, indirect CLVs were fabricated and looted in the first quadrant (Group 1) and direct CLV's (Group 2), were given in the second quadrant. Color change was assessed clinically using intra-oral digital spectrophotometer and marginal adaptation was assessed on epoxy resin replica of the tooth-restoration interface under scanning electron microscope. After 6 months, the subjects underwent a home bleaching regimen for 14 days using 10% carbamide peroxide. The assessment of color change and marginal adaptation was done at 6 months after veneering (0-180 days), immediately after the bleaching regimen (0-194 days) and 3 months after the bleaching regimen (0-284 days). The difference in median color change (ΔE) between the groups was tested using Wilcoxon rank sum test while the median color change with time within the groups was tested using Wilcoxon signed rank test. The difference in the rates of marginal adaptation was tested between the groups using Chi-square/Fisher's exact test. Bleaching led to statistically significant color change at cervical (CE), middle and incisal (IE) regions when direct and indirect composites were compared (P < 0.05). During intra-group comparison, direct CLV's showed significant color change at CE and IE regions when

  13. Effects of Purple-fleshed Sweet Potato (Ipomoera batatas Cultivar Ayamurasaki) Powder Addition on Color and Texture Properties and Sensory Characteristics of Cooked Pork Sausages during Storage

    PubMed Central

    Jin, Sang-Keun; Kim, Yeong-Jung; Park, Jae Hong; Hur, In-Chul; Nam, Sang-Hae; Shin, Daekeun

    2012-01-01

    This study was conducted to evaluate the effects of adding purple-fleshed sweet potato (PFP) powder on the texture properties and sensory characteristics of cooked pork sausage. Sodium nitrite alone and sodium nitrite in combination with PFP were added to five different treatments sausages (CON (control) = 0.01% sodium nitrite, SP25 = 0.005% sodium nitrite and 0.25% purple-fleshed sweet potato powder combination, SP50 = 0.005% sodium nitrite and 0.5% purple-fleshed sweet potato powder combination, PP25 = 0.25% purple-fleshed sweet potato powder, PP50 = 0.5% purple-fleshed sweet potato powder). The sausages were cooked to 74°C, stored at 4°C for 6 wks, and used for chemical analysis, textural properties, and a sensory evaluation on 0, 2, 4 and 6 wks of storage, respectively. Similar CIE a* and b* values were determined in sausages from CON, SP25 and SP50 at the end of storage, and they were higher in CIE a* but lower in CIE b* than that of the PP25 and PP50 sausages. Significant differences were observed for brittleness and hardness when PFP was added to the sausages but were not confirmed after 4 wks of storage. The objective color score was influenced by adding PFP; however, the effect was not dose dependent. In overall acceptability, panelists favored the CON, SP25, SP50, and PP50 sausages but did not prefer PP25 sausages at the end of storage. Therefore, adding PFP to cooked pork sausages improved color and texture properties and sensory characteristics, but further study is needed to determine the proper ratio of sodium nitrite and PFP. PMID:25049698

  14. Effects of Purple-fleshed Sweet Potato (Ipomoera batatas Cultivar Ayamurasaki) Powder Addition on Color and Texture Properties and Sensory Characteristics of Cooked Pork Sausages during Storage.

    PubMed

    Jin, Sang-Keun; Kim, Yeong-Jung; Park, Jae Hong; Hur, In-Chul; Nam, Sang-Hae; Shin, Daekeun

    2012-09-01

    This study was conducted to evaluate the effects of adding purple-fleshed sweet potato (PFP) powder on the texture properties and sensory characteristics of cooked pork sausage. Sodium nitrite alone and sodium nitrite in combination with PFP were added to five different treatments sausages (CON (control) = 0.01% sodium nitrite, SP25 = 0.005% sodium nitrite and 0.25% purple-fleshed sweet potato powder combination, SP50 = 0.005% sodium nitrite and 0.5% purple-fleshed sweet potato powder combination, PP25 = 0.25% purple-fleshed sweet potato powder, PP50 = 0.5% purple-fleshed sweet potato powder). The sausages were cooked to 74°C, stored at 4°C for 6 wks, and used for chemical analysis, textural properties, and a sensory evaluation on 0, 2, 4 and 6 wks of storage, respectively. Similar CIE a* and b* values were determined in sausages from CON, SP25 and SP50 at the end of storage, and they were higher in CIE a* but lower in CIE b* than that of the PP25 and PP50 sausages. Significant differences were observed for brittleness and hardness when PFP was added to the sausages but were not confirmed after 4 wks of storage. The objective color score was influenced by adding PFP; however, the effect was not dose dependent. In overall acceptability, panelists favored the CON, SP25, SP50, and PP50 sausages but did not prefer PP25 sausages at the end of storage. Therefore, adding PFP to cooked pork sausages improved color and texture properties and sensory characteristics, but further study is needed to determine the proper ratio of sodium nitrite and PFP.

  15. Visual adaptation enhances action sound discrimination.

    PubMed

    Barraclough, Nick E; Page, Steve A; Keefe, Bruce D

    2017-01-01

    Prolonged exposure, or adaptation, to a stimulus in 1 modality can bias, but also enhance, perception of a subsequent stimulus presented within the same modality. However, recent research has also found that adaptation in 1 modality can bias perception in another modality. Here, we show a novel crossmodal adaptation effect, where adaptation to a visual stimulus enhances subsequent auditory perception. We found that when compared to no adaptation, prior adaptation to visual, auditory, or audiovisual hand actions enhanced discrimination between 2 subsequently presented hand action sounds. Discrimination was most enhanced when the visual action "matched" the auditory action. In addition, prior adaptation to a visual, auditory, or audiovisual action caused subsequent ambiguous action sounds to be perceived as less like the adaptor. In contrast, these crossmodal action aftereffects were not generated by adaptation to the names of actions. Enhanced crossmodal discrimination and crossmodal perceptual aftereffects may result from separate mechanisms operating in audiovisual action sensitive neurons within perceptual systems. Adaptation-induced crossmodal enhancements cannot be explained by postperceptual responses or decisions. More generally, these results together indicate that adaptation is a ubiquitous mechanism for optimizing perceptual processing of multisensory stimuli.

  16. Daylight coloring for monochrome infrared imagery

    NASA Astrophysics Data System (ADS)

    Gabura, James

    2015-05-01

    The effectiveness of infrared imagery in poor visibility situations is well established and the range of applications is expanding as we enter a new era of inexpensive thermal imagers for mobile phones. However there is a problem in that the counterintuitive reflectance characteristics of various common scene elements can cause slowed reaction times and impaired situational awareness-consequences that can be especially detrimental in emergency situations. While multiband infrared sensors can be used, they are inherently more costly. Here we propose a technique for adding a daylight color appearance to single band infrared images, using the normally overlooked property of local image texture. The simple method described here is illustrated with colorized images from the visible red and long wave infrared bands. Our colorizing process not only imparts a natural daylight appearance to infrared images but also enhances the contrast and visibility of otherwise obscure detail. We anticipate that this colorizing method will lead to a better user experience, faster reaction times and improved situational awareness for a growing community of infrared camera users. A natural extension of our process could expand upon its texture discerning feature by adding specialized filters for discriminating specific targets.

  17. Advances in color science: from retina to behavior

    PubMed Central

    Chatterjee, Soumya; Field, Greg D.; Horwitz, Gregory D.; Johnson, Elizabeth N.; Koida, Kowa; Mancuso, Katherine

    2010-01-01

    Color has become a premier model system for understanding how information is processed by neural circuits, and for investigating the relationships among genes, neural circuits and perception. Both the physical stimulus for color and the perceptual output experienced as color are quite well characterized, but the neural mechanisms that underlie the transformation from stimulus to perception are incompletely understood. The past several years have seen important scientific and technical advances that are changing our understanding of these mechanisms. Here, and in the accompanying minisymposium, we review the latest findings and hypotheses regarding color computations in the retina, primary visual cortex and higher-order visual areas, focusing on non-human primates, a model of human color vision. PMID:21068298

  18. Three Fresh Exposures, Enhanced Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This enhanced-color panoramic camera image from the Mars Exploration Rover Opportunity features three holes created by the rock abrasion tool between sols 143 and 148 (June 18 and June 23, 2004) inside 'Endurance Crater.' The enhanced image makes the red colors a little redder and blue colors a little bluer, allowing viewers to see differences too subtle to be seen without the exaggeration. When compared with an approximately true color image, the tailings from the rock abrasion tool and the interior of the abraded holes are more prominent in this view. Being able to discriminate color variations helps scientists determine rocks' compositional differences and texture variations. This image was created using the 753-, 535- and 432-nanometer filters.

  19. Effects of selective attention on perceptual filling-in.

    PubMed

    De Weerd, P; Smith, E; Greenberg, P

    2006-03-01

    After few seconds, a figure steadily presented in peripheral vision becomes perceptually filled-in by its background, as if it "disappeared". We report that directing attention to the color, shape, or location of a figure increased the probability of perceiving filling-in compared to unattended figures, without modifying the time required for filling-in. This effect could be augmented by boosting attention. Furthermore, the frequency distribution of filling-in response times for attended figures could be predicted by multiplying the frequencies of response times for unattended figures with a constant. We propose that, after failure of figure-ground segregation, the neural interpolation processes that produce perceptual filling-in are enhanced in attended figure regions. As filling-in processes are involved in surface perception, the present study demonstrates that even very early visual processes are subject to modulation by cognitive factors.

  20. Daytime Color Appearance of Retroreflective Traffic Control Sign Materials

    DOT National Transportation Integrated Search

    2013-04-01

    Photometric measurements of the daytime chromaticity and luminance of retroreflective sign materials were made both in the laboratory and in the field. These instrument measurements were compared with daytime perceptual judgments of color properties ...

  1. SU-E-J-262: Variability in Texture Analysis of Gynecological Tumors in the Context of An 18F-FDG PET Adaptive Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawrocki, J; Chino, J; Das, S

    Purpose: This study examines the effect on texture analysis due to variable reconstruction of PET images in the context of an adaptive FDG PET protocol for node positive gynecologic cancer patients. By measuring variability in texture features from baseline and intra-treatment PET-CT, we can isolate unreliable texture features due to large variation. Methods: A subset of seven patients with node positive gynecological cancers visible on PET was selected for this study. Prescribed dose varied between 45–50.4Gy, with a 55–70Gy boost to the PET positive nodes. A baseline and intratreatment (between 30–36Gy) PET-CT were obtained on a Siemens Biograph mCT. Eachmore » clinical PET image set was reconstructed 6 times using a TrueX+TOF algorithm with varying iterations and Gaussian filter. Baseline and intra-treatment primary GTVs were segmented using PET Edge (MIM Software Inc., Cleveland, OH), a semi-automatic gradient-based algorithm, on the clinical PET and transferred to the other reconstructed sets. Using an in-house MATLAB program, four 3D texture matrices describing relationships between voxel intensities in the GTV were generated: co-occurrence, run length, size zone, and neighborhood difference. From these, 39 textural features characterizing texture were calculated in addition to SUV histogram features. The percent variability among parameters was first calculated. Each reconstructed texture feature from baseline and intra-treatment per patient was normalized to the clinical baseline scan and compared using the Wilcoxon signed-rank test in order to isolate variations due to reconstruction parameters. Results: For the baseline scans, 13 texture features showed a mean range greater than 10%. For the intra scans, 28 texture features showed a mean range greater than 10%. Comparing baseline to intra scans, 25 texture features showed p <0.05. Conclusion: Variability due to different reconstruction parameters increased with treatment, however, the majority of

  2. Categorical clustering of the neural representation of color.

    PubMed

    Brouwer, Gijs Joost; Heeger, David J

    2013-09-25

    Cortical activity was measured with functional magnetic resonance imaging (fMRI) while human subjects viewed 12 stimulus colors and performed either a color-naming or diverted attention task. A forward model was used to extract lower dimensional neural color spaces from the high-dimensional fMRI responses. The neural color spaces in two visual areas, human ventral V4 (V4v) and VO1, exhibited clustering (greater similarity between activity patterns evoked by stimulus colors within a perceptual category, compared to between-category colors) for the color-naming task, but not for the diverted attention task. Response amplitudes and signal-to-noise ratios were higher in most visual cortical areas for color naming compared to diverted attention. But only in V4v and VO1 did the cortical representation of color change to a categorical color space. A model is presented that induces such a categorical representation by changing the response gains of subpopulations of color-selective neurons.

  3. Categorical Clustering of the Neural Representation of Color

    PubMed Central

    Heeger, David J.

    2013-01-01

    Cortical activity was measured with functional magnetic resonance imaging (fMRI) while human subjects viewed 12 stimulus colors and performed either a color-naming or diverted attention task. A forward model was used to extract lower dimensional neural color spaces from the high-dimensional fMRI responses. The neural color spaces in two visual areas, human ventral V4 (V4v) and VO1, exhibited clustering (greater similarity between activity patterns evoked by stimulus colors within a perceptual category, compared to between-category colors) for the color-naming task, but not for the diverted attention task. Response amplitudes and signal-to-noise ratios were higher in most visual cortical areas for color naming compared to diverted attention. But only in V4v and VO1 did the cortical representation of color change to a categorical color space. A model is presented that induces such a categorical representation by changing the response gains of subpopulations of color-selective neurons. PMID:24068814

  4. Short-term perceptual learning in visual conjunction search.

    PubMed

    Su, Yuling; Lai, Yunpeng; Huang, Wanyi; Tan, Wei; Qu, Zhe; Ding, Yulong

    2014-08-01

    Although some studies showed that training can improve the ability of cross-dimension conjunction search, less is known about the underlying mechanism. Specifically, it remains unclear whether training of visual conjunction search can successfully bind different features of separated dimensions into a new function unit at early stages of visual processing. In the present study, we utilized stimulus specificity and generalization to provide a new approach to investigate the mechanisms underlying perceptual learning (PL) in visual conjunction search. Five experiments consistently showed that after 40 to 50 min of training of color-shape/orientation conjunction search, the ability to search for a certain conjunction target improved significantly and the learning effects did not transfer to a new target that differed from the trained target in both color and shape/orientation features. However, the learning effects were not strictly specific. In color-shape conjunction search, although the learning effect could not transfer to a same-shape different-color target, it almost completely transferred to a same-color different-shape target. In color-orientation conjunction search, the learning effect partly transferred to a new target that shared same color or same orientation with the trained target. Moreover, the sum of transfer effects for the same color target and the same orientation target in color-orientation conjunction search was algebraically equivalent to the learning effect for trained target, showing an additive transfer effect. The different transfer patterns in color-shape and color-orientation conjunction search learning might reflect the different complexity and discriminability between feature dimensions. These results suggested a feature-based attention enhancement mechanism rather than a unitization mechanism underlying the short-term PL of color-shape/orientation conjunction search.

  5. Visual adaptation and face perception.

    PubMed

    Webster, Michael A; MacLeod, Donald I A

    2011-06-12

    The appearance of faces can be strongly affected by the characteristics of faces viewed previously. These perceptual after-effects reflect processes of sensory adaptation that are found throughout the visual system, but which have been considered only relatively recently in the context of higher level perceptual judgements. In this review, we explore the consequences of adaptation for human face perception, and the implications of adaptation for understanding the neural-coding schemes underlying the visual representation of faces. The properties of face after-effects suggest that they, in part, reflect response changes at high and possibly face-specific levels of visual processing. Yet, the form of the after-effects and the norm-based codes that they point to show many parallels with the adaptations and functional organization that are thought to underlie the encoding of perceptual attributes like colour. The nature and basis for human colour vision have been studied extensively, and we draw on ideas and principles that have been developed to account for norms and normalization in colour vision to consider potential similarities and differences in the representation and adaptation of faces.

  6. Perceptual Organization and Operative Thought: A Study of Coherence in Memory.

    ERIC Educational Resources Information Center

    Heindel, Patricia; Kose, Gary

    Examined in three studies were the influence of perceptual organization on children's memory and the relationship between operational thought and memory performance. In the first study, 72 children at 5, 7, and 9 years of age were given a series of Piagetian tasks and a memory task. Subjects were presented with 10 color-shape pairs depicted in…

  7. Effects of Perceptual Training on the Salience of Information in a Recall Problem.

    ERIC Educational Resources Information Center

    West, Robin L.; Odom, Richard D.

    1979-01-01

    Kindergarten children were given a salience-assessment task to determine each child's salience hierarchy for the dimensions of form, color, and position, and each was provided perceptual training with his/her least salient dimension. Training promoted fewer errors in recall in comparison to control group subjects. (RH)

  8. Efficacy of cetylpyridinium chloride against Listeria monocytogenes and its influence on color and texture of cooked roast beef.

    PubMed

    Singh, M; Thippareddi, H; Phebus, R K; Marsden, J L; Herald, T J; Nutsch, A L

    2005-11-01

    Sliced (cut) and exterior (intact) surfaces of restructured cooked roast beef were inoculated with Listeria monocytogenes, treated with cetylpyridinium chloride (CPC; immersion in 500 ml of 1% solution for 1 min), individually vacuum packaged, and stored for 42 days at 0 or 4 degrees C. Noninoculated samples were similarly treated, packaged, and stored to determine effects on quality (color and firmness) and on naturally occurring bacterial populations, including aerobic plate counts and lactic acid bacteria. Immediately after CPC treatment, regardless of inoculation level, L. monocytogenes populations were reduced (P = 0.05) by about 2 log CFU/cm2 on sliced surfaces and by about 4 log CFU/cm2 on exterior surfaces. Throughout 42 days of refrigerated storage (at both 0 and 4 degrees C), L. monocytogenes populations on CPC-treated samples remained lower (P = 0.05) than those of nontreated samples for both surface types. After 42 days of storage at both 0 and 4 degrees C, aerobic plate count and lactic acid bacteria populations of treated samples were 1 to 1.5 log CFU/cm2 lower (P = 0.05) than those of nontreated samples for both surface types. CPC treatment resulted in negligible effects (P > 0.05) on the color (L*, a*, and b* values) of exterior and sliced roast beef surfaces during storage. For both sliced and exterior surfaces, CPC-treated samples were generally less firm than nontreated samples. CPC treatment effectively reduced L. monocytogenes populations on roast beef surfaces and resulted in relatively minor impacts on color and texture attributes. CPC treatment, especially when applied to products prior to slicing, may serve as an effective antimicrobial intervention for ready-to-eat meat products.

  9. Components of Attention in Grapheme-Color Synesthesia: A Modeling Approach

    PubMed Central

    Ásgeirsson, Árni Gunnar; Nordfang, Maria; Sørensen, Thomas Alrik

    2015-01-01

    Grapheme-color synesthesia is a condition where the perception of graphemes consistently and automatically evokes an experience of non-physical color. Many have studied how synesthesia affects the processing of achromatic graphemes, but less is known about the synesthetic processing of physically colored graphemes. Here, we investigated how the visual processing of colored letters is affected by the congruence or incongruence of synesthetic grapheme-color associations. We briefly presented graphemes (10–150 ms) to 9 grapheme-color synesthetes and to 9 control observers. Their task was to report as many letters (targets) as possible, while ignoring digit (distractors). Graphemes were either congruently or incongruently colored with the synesthetes’ reported grapheme-color association. A mathematical model, based on Bundesen’s (1990) Theory of Visual Attention (TVA), was fitted to each observer’s data, allowing us to estimate discrete components of visual attention. The models suggested that the synesthetes processed congruent letters faster than incongruent ones, and that they were able to retain more congruent letters in visual short-term memory, while the control group’s model parameters were not significantly affected by congruence. The increase in processing speed, when synesthetes process congruent letters, suggests that synesthesia affects the processing of letters at a perceptual level. To account for the benefit in processing speed, we propose that synesthetic associations become integrated into the categories of graphemes, and that letter colors are considered as evidence for making certain perceptual categorizations in the visual system. We also propose that enhanced visual short-term memory capacity for congruently colored graphemes can be explained by the synesthetes’ expertise regarding their specific grapheme-color associations. PMID:26252019

  10. Components of Attention in Grapheme-Color Synesthesia: A Modeling Approach.

    PubMed

    Ásgeirsson, Árni Gunnar; Nordfang, Maria; Sørensen, Thomas Alrik

    2015-01-01

    Grapheme-color synesthesia is a condition where the perception of graphemes consistently and automatically evokes an experience of non-physical color. Many have studied how synesthesia affects the processing of achromatic graphemes, but less is known about the synesthetic processing of physically colored graphemes. Here, we investigated how the visual processing of colored letters is affected by the congruence or incongruence of synesthetic grapheme-color associations. We briefly presented graphemes (10-150 ms) to 9 grapheme-color synesthetes and to 9 control observers. Their task was to report as many letters (targets) as possible, while ignoring digit (distractors). Graphemes were either congruently or incongruently colored with the synesthetes' reported grapheme-color association. A mathematical model, based on Bundesen's (1990) Theory of Visual Attention (TVA), was fitted to each observer's data, allowing us to estimate discrete components of visual attention. The models suggested that the synesthetes processed congruent letters faster than incongruent ones, and that they were able to retain more congruent letters in visual short-term memory, while the control group's model parameters were not significantly affected by congruence. The increase in processing speed, when synesthetes process congruent letters, suggests that synesthesia affects the processing of letters at a perceptual level. To account for the benefit in processing speed, we propose that synesthetic associations become integrated into the categories of graphemes, and that letter colors are considered as evidence for making certain perceptual categorizations in the visual system. We also propose that enhanced visual short-term memory capacity for congruently colored graphemes can be explained by the synesthetes' expertise regarding their specific grapheme-color associations.

  11. Adaptation and visual salience

    PubMed Central

    McDermott, Kyle C.; Malkoc, Gokhan; Mulligan, Jeffrey B.; Webster, Michael A.

    2011-01-01

    We examined how the salience of color is affected by adaptation to different color distributions. Observers searched for a color target on a dense background of distractors varying along different directions in color space. Prior adaptation to the backgrounds enhanced search on the same background while adaptation to orthogonal background directions slowed detection. Advantages of adaptation were seen for both contrast adaptation (to different color axes) and chromatic adaptation (to different mean chromaticities). Control experiments, including analyses of eye movements during the search, suggest that these aftereffects are unlikely to reflect simple learning or changes in search strategies on familiar backgrounds, and instead result from how adaptation alters the relative salience of the target and background colors. Comparable effects were observed along different axes in the chromatic plane or for axes defined by different combinations of luminance and chromatic contrast, consistent with visual search and adaptation mediated by multiple color mechanisms. Similar effects also occurred for color distributions characteristic of natural environments with strongly selective color gamuts. Our results are consistent with the hypothesis that adaptation may play an important functional role in highlighting the salience of novel stimuli by discounting ambient properties of the visual environment. PMID:21106682

  12. Examining the Pathologic Adaptation Model of Community Violence Exposure in Male Adolescents of Color

    PubMed Central

    Gaylord-Harden, Noni K.; So, Suzanna; Bai, Grace J.; Henry, David B.; Tolan, Patrick H.

    2017-01-01

    The current study examined a model of desensitization to community violence exposure—the pathologic adaptation model—in male adolescents of color. The current study included 285 African American (61%) and Latino (39%) male adolescents (W1 M age = 12.41) from the Chicago Youth Development Study to examine the longitudinal associations between community violence exposure, depressive symptoms, and violent behavior. Consistent with the pathologic adaptation model, results indicated a linear, positive association between community violence exposure in middle adolescence and violent behavior in late adolescence, as well as a curvilinear association between community violence exposure in middle adolescence and depressive symptoms in late adolescence, suggesting emotional desensitization. Further, these effects were specific to cognitive-affective symptoms of depression and not somatic symptoms. Emotional desensitization outcomes, as assessed by depressive symptoms, can occur in male adolescents of color exposed to community violence and these effects extend from middle adolescence to late adolescence. PMID:27653968

  13. Using RGB displays to portray color realistic imagery to animal eyes

    PubMed Central

    Johnsen, Sönke

    2017-01-01

    Abstract RGB displays effectively simulate millions of colors in the eyes of humans by modulating the relative amount of light emitted by 3 differently colored juxtaposed lights (red, green, and blue). The relationship between the ratio of red, green, and blue light and the perceptual experience of that light has been well defined by psychophysical experiments in humans, but is unknown in animals. The perceptual experience of an animal looking at an RGB display of imagery designed for humans is likely to poorly represent an animal’s experience of the same stimulus in the real world. This is due, in part, to the fact that many animals have different numbers of photoreceptor classes than humans do and that their photoreceptor classes have peak sensitivities centered over different parts of the ultraviolet and visible spectrum. However, it is sometimes possible to generate videos that accurately mimic natural stimuli in the eyes of another animal, even if that animal’s sensitivity extends into the ultraviolet portion of the spectrum. How independently each RGB phosphor stimulates each of an animal’s photoreceptor classes determines the range of colors that can be simulated for that animal. What is required to determine optimal color rendering for another animal is a device capable of measuring absolute or relative quanta of light across the portion of the spectrum visible to the animal (i.e., a spectrometer), and data on the spectral sensitivities of the animal’s photoreceptor classes. In this article, we outline how to use such equipment and information to generate video stimuli that mimic, as closely as possible, an animal’s color perceptual experience of real-world objects. Key words: color vision, computer animation, perception, video playback, virtual reality. PMID:29491960

  14. Color inference in visual communication: the meaning of colors in recycling.

    PubMed

    Schloss, Karen B; Lessard, Laurent; Walmsley, Charlotte S; Foley, Kathleen

    2018-01-01

    People interpret abstract meanings from colors, which makes color a useful perceptual feature for visual communication. This process is complicated, however, because there is seldom a one-to-one correspondence between colors and meanings. One color can be associated with many different concepts (one-to-many mapping) and many colors can be associated with the same concept (many-to-one mapping). We propose that to interpret color-coding systems, people perform assignment inference to determine how colors map onto concepts. We studied assignment inference in the domain of recycling. Participants saw images of colored but unlabeled bins and were asked to indicate which bins they would use to discard different kinds of recyclables and trash. In Experiment 1, we tested two hypotheses for how people perform assignment inference. The local assignment hypothesis predicts that people simply match objects with their most strongly associated color. The global assignment hypothesis predicts that people also account for the association strengths between all other objects and colors within the scope of the color-coding system. Participants discarded objects in bins that optimized the color-object associations of the entire set, which is consistent with the global assignment hypothesis. This sometimes resulted in discarding objects in bins whose colors were weakly associated with the object, even when there was a stronger associated option available. In Experiment 2, we tested different methods for encoding color-coding systems and found that people were better at assignment inference when color sets simultaneously maximized the association strength between assigned color-object parings while minimizing associations between unassigned pairings. Our study provides an approach for designing intuitive color-coding systems that facilitate communication through visual media such as graphs, maps, signs, and artifacts.

  15. Deception in plants: mimicry or perceptual exploitation?

    PubMed

    Schaefer, H Martin; Ruxton, Graeme D

    2009-12-01

    Mimicry involves adaptive resemblance between a mimic and a model. However, despite much recent research, it remains contentious in plants. Here, we review recent progress on studying deception by flowers, distinguishing between plants relying on mimicry to achieve pollination and those relying on the exploitation of the perceptual biases of animals. We disclose fundamental differences between both mechanisms and explain why the evolution of exploitation is less constrained than that of mimicry. Exploitation of perceptual biases might thus be a precursor for the gradual evolution of mimicry. Increasing knowledge on the sensory and cognitive filters in animals, and on the selective pressures that maintain them, should aid researchers in tracing the evolutionary dynamics of deception in plants.

  16. Perceptual experience and posttest improvements in perceptual accuracy and consistency.

    PubMed

    Wagman, Jeffrey B; McBride, Dawn M; Trefzger, Amanda J

    2008-08-01

    Two experiments investigated the relationship between perceptual experience (during practice) and posttest improvements in perceptual accuracy and consistency. Experiment 1 investigated the potential relationship between how often knowledge of results (KR) is provided during a practice session and posttest improvements in perceptual accuracy. Experiment 2 investigated the potential relationship between how often practice (PR) is provided during a practice session and posttest improvements in perceptual consistency. The results of both experiments are consistent with previous findings that perceptual accuracy improves only when practice includes KR and that perceptual consistency improves regardless of whether practice includes KR. In addition, the results showed that although there is a relationship between how often KR is provided during a practice session and posttest improvements in perceptual accuracy, there is no relationship between how often PR is provided during a practice session and posttest improvements in consistency.

  17. Real-Time Adaptive Color Segmentation by Neural Networks

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.

    2004-01-01

    Artificial neural networks that would utilize the cascade error projection (CEP) algorithm have been proposed as means of autonomous, real-time, adaptive color segmentation of images that change with time. In the original intended application, such a neural network would be used to analyze digitized color video images of terrain on a remote planet as viewed from an uninhabited spacecraft approaching the planet. During descent toward the surface of the planet, information on the segmentation of the images into differently colored areas would be updated adaptively in real time to capture changes in contrast, brightness, and resolution, all in an effort to identify a safe and scientifically productive landing site and provide control feedback to steer the spacecraft toward that site. Potential terrestrial applications include monitoring images of crops to detect insect invasions and monitoring of buildings and other facilities to detect intruders. The CEP algorithm is reliable and is well suited to implementation in very-large-scale integrated (VLSI) circuitry. It was chosen over other neural-network learning algorithms because it is better suited to realtime learning: It provides a self-evolving neural-network structure, requires fewer iterations to converge and is more tolerant to low resolution (that is, fewer bits) in the quantization of neural-network synaptic weights. Consequently, a CEP neural network learns relatively quickly, and the circuitry needed to implement it is relatively simple. Like other neural networks, a CEP neural network includes an input layer, hidden units, and output units (see figure). As in other neural networks, a CEP network is presented with a succession of input training patterns, giving rise to a set of outputs that are compared with the desired outputs. Also as in other neural networks, the synaptic weights are updated iteratively in an effort to bring the outputs closer to target values. A distinctive feature of the CEP neural

  18. Predicting perceptual learning from higher-order cortical processing.

    PubMed

    Wang, Fang; Huang, Jing; Lv, Yaping; Ma, Xiaoli; Yang, Bin; Wang, Encong; Du, Boqi; Li, Wu; Song, Yan

    2016-01-01

    Visual perceptual learning has been shown to be highly specific to the retinotopic location and attributes of the trained stimulus. Recent psychophysical studies suggest that these specificities, which have been associated with early retinotopic visual cortex, may in fact not be inherent in perceptual learning and could be related to higher-order brain functions. Here we provide direct electrophysiological evidence in support of this proposition. In a series of event-related potential (ERP) experiments, we recorded high-density electroencephalography (EEG) from human adults over the course of learning in a texture discrimination task (TDT). The results consistently showed that the earliest C1 component (68-84ms), known to reflect V1 activity driven by feedforward inputs, was not modulated by learning regardless of whether the behavioral improvement is location specific or not. In contrast, two later posterior ERP components (posterior P1 and P160-350) over the occipital cortex and one anterior ERP component (anterior P160-350) over the prefrontal cortex were progressively modified day by day. Moreover, the change of the anterior component was closely correlated with improved behavioral performance on a daily basis. Consistent with recent psychophysical and imaging observations, our results indicate that perceptual learning can mainly involve changes in higher-level visual cortex as well as in the neural networks responsible for cognitive functions such as attention and decision making. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Detection of small bowel tumors in capsule endoscopy frames using texture analysis based on the discrete wavelet transform.

    PubMed

    Barbosa, Daniel J C; Ramos, Jaime; Lima, Carlos S

    2008-01-01

    Capsule endoscopy is an important tool to diagnose tumor lesions in the small bowel. The capsule endoscopic images possess vital information expressed by color and texture. This paper presents an approach based in the textural analysis of the different color channels, using the wavelet transform to select the bands with the most significant texture information. A new image is then synthesized from the selected wavelet bands, trough the inverse wavelet transform. The features of each image are based on second-order textural information, and they are used in a classification scheme using a multilayer perceptron neural network. The proposed methodology has been applied in real data taken from capsule endoscopic exams and reached 98.7% sensibility and 96.6% specificity. These results support the feasibility of the proposed algorithm.

  20. Texture Adaption in Dysphagia: Acceptability Differences Between Thickened and Naturally Thick Beverages.

    PubMed

    Gerschke, Marco; Seehafer, Peggy

    The aim of the study was to investigate differences in the acceptability between thickened and naturally viscous beverages. This was an exploratory, cross-sectional study. One hundred twenty-eight healthy volunteers rated overall liking/disliking of a selection of each of three thickened drinks and three beverages of natural viscosity pre- and postconsumption. Mean ratings were subjected to statistical analysis done with t tests. Although all naturally thick beverages evoked good expectations, there were significant differences in expected acceptance of thickened fluids concerning the kind of beverage. Postconsumption of naturally thick beverages were rated significantly better than thickened. The findings suggest an alternative offer of naturally thick drinks and waiver of thickening water when viscosity adaption is needed. The sufficient and safe oral fluid intake in dysphagia requires compliance to dietetic recommendations. Naturally thick beverages can contribute to increase the appeal of texture-modified diet.

  1. Automatic Texture Reconstruction of 3d City Model from Oblique Images

    NASA Astrophysics Data System (ADS)

    Kang, Junhua; Deng, Fei; Li, Xinwei; Wan, Fang

    2016-06-01

    In recent years, the photorealistic 3D city models are increasingly important in various geospatial applications related to virtual city tourism, 3D GIS, urban planning, real-estate management. Besides the acquisition of high-precision 3D geometric data, texture reconstruction is also a crucial step for generating high-quality and visually realistic 3D models. However, most of the texture reconstruction approaches are probably leading to texture fragmentation and memory inefficiency. In this paper, we introduce an automatic framework of texture reconstruction to generate textures from oblique images for photorealistic visualization. Our approach include three major steps as follows: mesh parameterization, texture atlas generation and texture blending. Firstly, mesh parameterization procedure referring to mesh segmentation and mesh unfolding is performed to reduce geometric distortion in the process of mapping 2D texture to 3D model. Secondly, in the texture atlas generation step, the texture of each segmented region in texture domain is reconstructed from all visible images with exterior orientation and interior orientation parameters. Thirdly, to avoid color discontinuities at boundaries between texture regions, the final texture map is generated by blending texture maps from several corresponding images. We evaluated our texture reconstruction framework on a dataset of a city. The resulting mesh model can get textured by created texture without resampling. Experiment results show that our method can effectively mitigate the occurrence of texture fragmentation. It is demonstrated that the proposed framework is effective and useful for automatic texture reconstruction of 3D city model.

  2. The physiology and psychophysics of the color-form relationship: a review.

    PubMed

    Moutoussis, Konstantinos

    2015-01-01

    The relationship between color and form has been a long standing issue in visual science. A picture of functional segregation and topographic clustering emerges from anatomical and electrophysiological studies in animals, as well as by brain imaging studies in human. However, one of the many roles of chromatic information is to support form perception, and in some cases it can do so in a way superior to achromatic (luminance) information. This occurs both at an early, contour-detection stage, as well as in late, higher stages involving spatial integration and the perception of global shapes. Pure chromatic contrast can also support several visual illusions related to form-perception. On the other hand, form seems a necessary prerequisite for the computation and assignment of color across space, and there are several respects in which the color of an object can be influenced by its form. Evidently, color and form are mutually dependent. Electrophysiological studies have revealed neurons in the visual brain able to signal contours determined by pure chromatic contrast, the spatial tuning of which is similar to that of neurons carrying luminance information. It seems that, especially at an early stage, form is processed by several, independent systems that interact with each other, each one having different tuning characteristics in color space. At later processing stages, mechanisms able to combine information coming from different sources emerge. A clear interaction between color and form is manifested by the fact that color-form contingencies can be observed in various perceptual phenomena such as adaptation aftereffects and illusions. Such an interaction suggests a possible early binding between these two attributes, something that has been verified by both electrophysiological and fMRI studies.

  3. Significance of perceptually relevant image decolorization for scene classification

    NASA Astrophysics Data System (ADS)

    Viswanathan, Sowmya; Divakaran, Govind; Soman, Kutti Padanyl

    2017-11-01

    Color images contain luminance and chrominance components representing the intensity and color information, respectively. The objective of this paper is to show the significance of incorporating chrominance information to the task of scene classification. An improved color-to-grayscale image conversion algorithm that effectively incorporates chrominance information is proposed using the color-to-gray structure similarity index and singular value decomposition to improve the perceptual quality of the converted grayscale images. The experimental results based on an image quality assessment for image decolorization and its success rate (using the Cadik and COLOR250 datasets) show that the proposed image decolorization technique performs better than eight existing benchmark algorithms for image decolorization. In the second part of the paper, the effectiveness of incorporating the chrominance component for scene classification tasks is demonstrated using a deep belief network-based image classification system developed using dense scale-invariant feature transforms. The amount of chrominance information incorporated into the proposed image decolorization technique is confirmed with the improvement to the overall scene classification accuracy. Moreover, the overall scene classification performance improved by combining the models obtained using the proposed method and conventional decolorization methods.

  4. A medical imaging analysis system for trigger finger using an adaptive texture-based active shape model (ATASM) in ultrasound images

    PubMed Central

    Chuang, Bo-I; Kuo, Li-Chieh; Yang, Tai-Hua; Su, Fong-Chin; Jou, I-Ming; Lin, Wei-Jr; Sun, Yung-Nien

    2017-01-01

    Trigger finger has become a prevalent disease that greatly affects occupational activity and daily life. Ultrasound imaging is commonly used for the clinical diagnosis of trigger finger severity. Due to image property variations, traditional methods cannot effectively segment the finger joint’s tendon structure. In this study, an adaptive texture-based active shape model method is used for segmenting the tendon and synovial sheath. Adapted weights are applied in the segmentation process to adjust the contribution of energy terms depending on image characteristics at different positions. The pathology is then determined according to the wavelet and co-occurrence texture features of the segmented tendon area. In the experiments, the segmentation results have fewer errors, with respect to the ground truth, than contours drawn by regular users. The mean values of the absolute segmentation difference of the tendon and synovial sheath are 3.14 and 4.54 pixels, respectively. The average accuracy of pathological determination is 87.14%. The segmentation results are all acceptable in data of both clear and fuzzy boundary cases in 74 images. And the symptom classifications of 42 cases are also a good reference for diagnosis according to the expert clinicians’ opinions. PMID:29077737

  5. Digital visual communications using a Perceptual Components Architecture

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1991-01-01

    The next era of space exploration will generate extraordinary volumes of image data, and management of this image data is beyond current technical capabilities. We propose a strategy for coding visual information that exploits the known properties of early human vision. This Perceptual Components Architecture codes images and image sequences in terms of discrete samples from limited bands of color, spatial frequency, orientation, and temporal frequency. This spatiotemporal pyramid offers efficiency (low bit rate), variable resolution, device independence, error-tolerance, and extensibility.

  6. Top-down cortical input during NREM sleep consolidates perceptual memory.

    PubMed

    Miyamoto, D; Hirai, D; Fung, C C A; Inutsuka, A; Odagawa, M; Suzuki, T; Boehringer, R; Adaikkan, C; Matsubara, C; Matsuki, N; Fukai, T; McHugh, T J; Yamanaka, A; Murayama, M

    2016-06-10

    During tactile perception, long-range intracortical top-down axonal projections are essential for processing sensory information. Whether these projections regulate sleep-dependent long-term memory consolidation is unknown. We altered top-down inputs from higher-order cortex to sensory cortex during sleep and examined the consolidation of memories acquired earlier during awake texture perception. Mice learned novel textures and consolidated them during sleep. Within the first hour of non-rapid eye movement (NREM) sleep, optogenetic inhibition of top-down projecting axons from secondary motor cortex (M2) to primary somatosensory cortex (S1) impaired sleep-dependent reactivation of S1 neurons and memory consolidation. In NREM sleep and sleep-deprivation states, closed-loop asynchronous or synchronous M2-S1 coactivation, respectively, reduced or prolonged memory retention. Top-down cortical information flow in NREM sleep is thus required for perceptual memory consolidation. Copyright © 2016, American Association for the Advancement of Science.

  7. A self-adaptive algorithm for traffic sign detection in motion image based on color and shape features

    NASA Astrophysics Data System (ADS)

    Zhang, Ka; Sheng, Yehua; Gong, Zhijun; Ye, Chun; Li, Yongqiang; Liang, Cheng

    2007-06-01

    As an important sub-system in intelligent transportation system (ITS), the detection and recognition of traffic signs from mobile images is becoming one of the hot spots in the international research field of ITS. Considering the problem of traffic sign automatic detection in motion images, a new self-adaptive algorithm for traffic sign detection based on color and shape features is proposed in this paper. Firstly, global statistical color features of different images are computed based on statistics theory. Secondly, some self-adaptive thresholds and special segmentation rules for image segmentation are designed according to these global color features. Then, for red, yellow and blue traffic signs, the color image is segmented to three binary images by these thresholds and rules. Thirdly, if the number of white pixels in the segmented binary image exceeds the filtering threshold, the binary image should be further filtered. Fourthly, the method of gray-value projection is used to confirm top, bottom, left and right boundaries for candidate regions of traffic signs in the segmented binary image. Lastly, if the shape feature of candidate region satisfies the need of real traffic sign, this candidate region is confirmed as the detected traffic sign region. The new algorithm is applied to actual motion images of natural scenes taken by a CCD camera of the mobile photogrammetry system in Nanjing at different time. The experimental results show that the algorithm is not only simple, robust and more adaptive to natural scene images, but also reliable and high-speed on real traffic sign detection.

  8. Preprocessing with image denoising and histogram equalization for endoscopy image analysis using texture analysis.

    PubMed

    Hiroyasu, Tomoyuki; Hayashinuma, Katsutoshi; Ichikawa, Hiroshi; Yagi, Nobuaki

    2015-08-01

    A preprocessing method for endoscopy image analysis using texture analysis is proposed. In a previous study, we proposed a feature value that combines a co-occurrence matrix and a run-length matrix to analyze the extent of early gastric cancer from images taken with narrow-band imaging endoscopy. However, the obtained feature value does not identify lesion zones correctly due to the influence of noise and halation. Therefore, we propose a new preprocessing method with a non-local means filter for de-noising and contrast limited adaptive histogram equalization. We have confirmed that the pattern of gastric mucosa in images can be improved by the proposed method. Furthermore, the lesion zone is shown more correctly by the obtained color map.

  9. Electrophysiological correlates of target eccentricity in texture segmentation.

    PubMed

    Schaffer, Susann; Schubö, Anna; Meinecke, Cristina

    2011-06-01

    Event-related potentials and behavioural performance as a function of target eccentricity were measured while subjects performed a texture segmentation task. Fit-of-structures, i.e. easiness of target detection was varied: in Experiment 1, a texture with peripheral fit (easier detection of peripheral presented targets) and in Experiment 2, a texture with foveal fit (easier detection of foveal presented targets) was used. In the two experiments, the N2p was sensitive to target eccentricity showing larger amplitudes for foveal targets compared to peripheral targets, and at the foveal position, a reversal of the N2p differential amplitude effect was found. The anterior P2 seemed sensitive to the easiness of target detection. In both experiments the N2pc varied as a function of eccentricity. However, the P3 was neither sensitive to target eccentricity nor to the fit-of-structures. Results show the existence of a P2/N2 complex (Potts and Tucker, 2001) indicating executive functions located in the anterior cortex and perceptual processes located in the posterior cortex. Furthermore, the N2p might indicate the existence of a foveal vs. peripheral subsystem in visual processing. 2011 Elsevier B.V. All rights reserved.

  10. Adaptive local linear regression with application to printer color management.

    PubMed

    Gupta, Maya R; Garcia, Eric K; Chin, Erika

    2008-06-01

    Local learning methods, such as local linear regression and nearest neighbor classifiers, base estimates on nearby training samples, neighbors. Usually, the number of neighbors used in estimation is fixed to be a global "optimal" value, chosen by cross validation. This paper proposes adapting the number of neighbors used for estimation to the local geometry of the data, without need for cross validation. The term enclosing neighborhood is introduced to describe a set of neighbors whose convex hull contains the test point when possible. It is proven that enclosing neighborhoods yield bounded estimation variance under some assumptions. Three such enclosing neighborhood definitions are presented: natural neighbors, natural neighbors inclusive, and enclosing k-NN. The effectiveness of these neighborhood definitions with local linear regression is tested for estimating lookup tables for color management. Significant improvements in error metrics are shown, indicating that enclosing neighborhoods may be a promising adaptive neighborhood definition for other local learning tasks as well, depending on the density of training samples.

  11. Categorical color constancy for simulated surfaces.

    PubMed

    Olkkonen, Maria; Hansen, Thorsten; Gegenfurtner, Karl R

    2009-11-12

    Color constancy is the ability to perceive constant surface colors under varying lighting conditions. Color constancy has traditionally been investigated with asymmetric matching, where stimuli are matched over two different contexts, or with achromatic settings, where a stimulus is made to appear gray. These methods deliver accurate information on the transformations of single points of color space under illuminant changes, but can be cumbersome and unintuitive for observers. Color naming is a fast and intuitive alternative to matching, allowing data collection from a large portion of color space. We asked observers to name the colors of 469 Munsell surfaces with known reflectance spectra simulated under five different illuminants. Observers were generally as consistent in naming the colors of surfaces under different illuminants as they were naming the colors of the same surfaces over time. The transformations in category boundaries caused by illuminant changes were generally small and could be explained well with simple linear models. Finally, an analysis of the pattern of naming consistency across color space revealed that largely the same hues were named consistently across illuminants and across observers even after correcting for category size effects. This indicates a possible relationship between perceptual color constancy and the ability to consistently communicate colors.

  12. Spirit Beholds Bumpy Boulder (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    As NASA's Mars Exploration Rover Spirit began collecting images for a 360-degree panorama of new terrain, the rover captured this view of a dark boulder with an interesting surface texture. The boulder sits about 40 centimeters (16 inches) tall on Martian sand about 5 meters (16 feet) away from Spirit. It is one of many dark, volcanic rock fragments -- many pocked with rounded holes called vesicles -- littering the slope of 'Low Ridge.' The rock surface facing the rover is similar in appearance to the surface texture on the outside of lava flows on Earth.

    Spirit took this false-color image with the panoramic camera on the rover's 810th sol, or Martian day, of exploring Mars (April 13, 2006). This image is a false-color rendering using camera's 753-nanometer, 535-nanometer, and 432-nanometer filters.

  13. Local adaptation and matching habitat choice in female barn owls with respect to melanic coloration.

    PubMed

    Dreiss, A N; Antoniazza, S; Burri, R; Fumagalli, L; Sonnay, C; Frey, C; Goudet, J; Roulin, Alexandre

    2012-01-01

    Local adaptation is a major mechanism underlying the maintenance of phenotypic variation in spatially heterogeneous environments. In the barn owl (Tyto alba), dark and pale reddish-pheomelanic individuals are adapted to conditions prevailing in northern and southern Europe, respectively. Using a long-term dataset from Central Europe, we report results consistent with the hypothesis that the different pheomelanic phenotypes are adapted to specific local conditions in females, but not in males. Compared to whitish females, reddish females bred in sites surrounded by more arable fields and less forests. Colour-dependent habitat choice was apparently beneficial. First, whitish females produced more fledglings when breeding in wooded areas, whereas reddish females when breeding in sites with more arable fields. Second, cross-fostering experiments showed that female nestlings grew wings more rapidly when both their foster and biological mothers were of similar colour. The latter result suggests that mothers should particularly produce daughters in environments that best match their own coloration. Accordingly, whiter females produced fewer daughters in territories with more arable fields. In conclusion, females displaying alternative melanic phenotypes bred in habitats providing them with the highest fitness benefits. Although small in magnitude, matching habitat selection and local adaptation may help maintain variation in pheomelanin coloration in the barn owl. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  14. Minimizing Skin Color Differences Does Not Eliminate the Own-Race Recognition Advantage in Infants

    PubMed Central

    Anzures, Gizelle; Pascalis, Olivier; Quinn, Paul C.; Slater, Alan M.; Lee, Kang

    2011-01-01

    An abundance of experience with own-race faces and limited to no experience with other-race faces has been associated with better recognition memory for own-race faces in infants, children, and adults. This study investigated the developmental origins of this other-race effect (ORE) by examining the role of a salient perceptual property of faces—that of skin color. Six- and 9-month-olds’ recognition memory for own- and other-race faces was examined using infant-controlled habituation and visual-paired comparison at test. Infants were shown own- or other-race faces in color or with skin color cues minimized in grayscale images. Results for the color stimuli replicated previous findings that infants show an ORE in face recognition memory. Results for the grayscale stimuli showed that even when a salient perceptual cue to race, such as skin color information, is minimized, 6- to 9-month-olds, nonetheless, show an ORE in their face recognition memory. Infants’ use of shape-based and configural cues for face recognition is discussed. PMID:22039335

  15. Visual adaptation and face perception

    PubMed Central

    Webster, Michael A.; MacLeod, Donald I. A.

    2011-01-01

    The appearance of faces can be strongly affected by the characteristics of faces viewed previously. These perceptual after-effects reflect processes of sensory adaptation that are found throughout the visual system, but which have been considered only relatively recently in the context of higher level perceptual judgements. In this review, we explore the consequences of adaptation for human face perception, and the implications of adaptation for understanding the neural-coding schemes underlying the visual representation of faces. The properties of face after-effects suggest that they, in part, reflect response changes at high and possibly face-specific levels of visual processing. Yet, the form of the after-effects and the norm-based codes that they point to show many parallels with the adaptations and functional organization that are thought to underlie the encoding of perceptual attributes like colour. The nature and basis for human colour vision have been studied extensively, and we draw on ideas and principles that have been developed to account for norms and normalization in colour vision to consider potential similarities and differences in the representation and adaptation of faces. PMID:21536555

  16. Perceptual Bias and Loudness Change: An Investigation of Memory, Masking, and Psychophysiology

    NASA Astrophysics Data System (ADS)

    Olsen, Kirk N.

    Loudness is a fundamental aspect of human auditory perception that is closely associated with a sound's physical acoustic intensity. The dynamic quality of intensity change is an inherent acoustic feature in real-world listening domains such as speech and music. However, perception of loudness change in response to continuous intensity increases (up-ramps) and decreases (down-ramps) has received relatively little empirical investigation. Overestimation of loudness change in response to up-ramps is said to be linked to an adaptive survival response associated with looming (or approaching) motion in the environment. The hypothesised 'perceptual bias' to looming auditory motion suggests why perceptual overestimation of up-ramps may occur; however it does not offer a causal explanation. It is concluded that post-stimulus judgements of perceived loudness change are significantly affected by a cognitive recency response bias that, until now, has been an artefact of experimental procedure. Perceptual end-level differences caused by duration specific sensory adaptation at peripheral and/or central stages of auditory processing may explain differences in post-stimulus judgements of loudness change. Experiments that investigate human responses to acoustic intensity dynamics, encompassing topics from basic auditory psychophysics (e.g., sensory adaptation) to cognitive-emotional appraisal of increasingly complex stimulus events such as music and auditory warnings, are proposed for future research.

  17. Action video game play facilitates the development of better perceptual templates.

    PubMed

    Bejjanki, Vikranth R; Zhang, Ruyuan; Li, Renjie; Pouget, Alexandre; Green, C Shawn; Lu, Zhong-Lin; Bavelier, Daphne

    2014-11-25

    The field of perceptual learning has identified changes in perceptual templates as a powerful mechanism mediating the learning of statistical regularities in our environment. By measuring threshold-vs.-contrast curves using an orientation identification task under varying levels of external noise, the perceptual template model (PTM) allows one to disentangle various sources of signal-to-noise changes that can alter performance. We use the PTM approach to elucidate the mechanism that underlies the wide range of improvements noted after action video game play. We show that action video game players make use of improved perceptual templates compared with nonvideo game players, and we confirm a causal role for action video game play in inducing such improvements through a 50-h training study. Then, by adapting a recent neural model to this task, we demonstrate how such improved perceptual templates can arise from reweighting the connectivity between visual areas. Finally, we establish that action gamers do not enter the perceptual task with improved perceptual templates. Instead, although performance in action gamers is initially indistinguishable from that of nongamers, action gamers more rapidly learn the proper template as they experience the task. Taken together, our results establish for the first time to our knowledge the development of enhanced perceptual templates following action game play. Because such an improvement can facilitate the inference of the proper generative model for the task at hand, unlike perceptual learning that is quite specific, it thus elucidates a general learning mechanism that can account for the various behavioral benefits noted after action game play.

  18. Action video game play facilitates the development of better perceptual templates

    PubMed Central

    Bejjanki, Vikranth R.; Zhang, Ruyuan; Li, Renjie; Pouget, Alexandre; Green, C. Shawn; Lu, Zhong-Lin; Bavelier, Daphne

    2014-01-01

    The field of perceptual learning has identified changes in perceptual templates as a powerful mechanism mediating the learning of statistical regularities in our environment. By measuring threshold-vs.-contrast curves using an orientation identification task under varying levels of external noise, the perceptual template model (PTM) allows one to disentangle various sources of signal-to-noise changes that can alter performance. We use the PTM approach to elucidate the mechanism that underlies the wide range of improvements noted after action video game play. We show that action video game players make use of improved perceptual templates compared with nonvideo game players, and we confirm a causal role for action video game play in inducing such improvements through a 50-h training study. Then, by adapting a recent neural model to this task, we demonstrate how such improved perceptual templates can arise from reweighting the connectivity between visual areas. Finally, we establish that action gamers do not enter the perceptual task with improved perceptual templates. Instead, although performance in action gamers is initially indistinguishable from that of nongamers, action gamers more rapidly learn the proper template as they experience the task. Taken together, our results establish for the first time to our knowledge the development of enhanced perceptual templates following action game play. Because such an improvement can facilitate the inference of the proper generative model for the task at hand, unlike perceptual learning that is quite specific, it thus elucidates a general learning mechanism that can account for the various behavioral benefits noted after action game play. PMID:25385590

  19. Using color and grayscale images to teach histology to color-deficient medical students.

    PubMed

    Rubin, Lindsay R; Lackey, Wendy L; Kennedy, Frances A; Stephenson, Robert B

    2009-01-01

    Examination of histologic and histopathologic microscopic sections relies upon differential colors provided by staining techniques, such as hematoxylin and eosin, to delineate normal tissue components and to identify pathologic alterations in these components. Given the prevalence of color deficiency (commonly called "color blindness") in the general population, it is likely that this reliance upon color differentiation poses a significant obstacle for several medical students beginning a course of study that includes examination of histologic slides. In the past, first-year medical students at Michigan State University who identified themselves as color deficient were encouraged to use color transparency overlays or tinted contact lenses to filter out problematic colors. Recently, however, we have offered such students a computer monitor adjusted to grayscale for in-lab work, as well as grayscale copies of color photomicrographs for examination purposes. Grayscale images emphasize the texture of tissues and the contrasts between tissues as the students learn histologic architecture. Using this approach, color-deficient students have quickly learned to compensate for their deficiency by focusing on cell and tissue structure rather than on color variation. Based upon our experience with color-deficient students, we believe that grayscale photomicrographs may also prove instructional for students with normal (trichromatic) color vision, by encouraging them to consider structural characteristics of cells and tissues that may otherwise be overshadowed by stain colors.

  20. Enhanced attention amplifies face adaptation.

    PubMed

    Rhodes, Gillian; Jeffery, Linda; Evangelista, Emma; Ewing, Louise; Peters, Marianne; Taylor, Libby

    2011-08-15

    Perceptual adaptation not only produces striking perceptual aftereffects, but also enhances coding efficiency and discrimination by calibrating coding mechanisms to prevailing inputs. Attention to simple stimuli increases adaptation, potentially enhancing its functional benefits. Here we show that attention also increases adaptation to faces. In Experiment 1, face identity aftereffects increased when attention to adapting faces was increased using a change detection task. In Experiment 2, figural (distortion) face aftereffects increased when attention was increased using a snap game (detecting immediate repeats) during adaptation. Both were large effects. Contributions of low-level adaptation were reduced using free viewing (both experiments) and a size change between adapt and test faces (Experiment 2). We suggest that attention may enhance adaptation throughout the entire cortical visual pathway, with functional benefits well beyond the immediate advantages of selective processing of potentially important stimuli. These results highlight the potential to facilitate adaptive updating of face-coding mechanisms by strategic deployment of attentional resources. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Effects of saturation and contrast polarity on the figure-ground organization of color on gray.

    PubMed

    Dresp-Langley, Birgitta; Reeves, Adam

    2014-01-01

    Poorly saturated colors are closer to a pure gray than strongly saturated ones and, therefore, appear less "colorful."Color saturation is effectively manipulated in the visual arts for balancing conflicting sensations and moods and for inducing the perception of relative distance in the pictorial plane. While perceptual science has proven quite clearly that the luminance contrast of any hue acts as a self-sufficient cue to relative depth in visual images, the role of color saturation in such figure-ground organization has remained unclear. We presented configurations of colored inducers on gray "test" backgrounds to human observers. Luminance and saturation of the inducers was uniform on each trial, but varied across trials. We ran two separate experimental tasks. In the relative background brightness task, perceptual judgments indicated whether the apparent brightness of the gray test background contrasted with, assimilated to, or appeared equal (no effect) to that of a comparison background with the same luminance contrast. Contrast polarity and its interaction with color saturation affected response proportions for contrast, assimilation and no effect. In the figure-ground task, perceptual judgments indicated whether the inducers appeared to lie in front of, behind, or in the same depth with the background. Strongly saturated inducers produced significantly larger proportions of foreground effects indicating that these inducers stand out as figure against the background. Weakly saturated inducers produced significantly larger proportions of background effects, indicating that these inducers are perceived as lying behind the backgrounds. We infer that color saturation modulates figure-ground organization, both directly by determining relative inducer depth, and indirectly, and in interaction with contrast polarity, by affecting apparent background brightness. The results point toward a hitherto undocumented functional role of color saturation in the genesis of

  2. Effects of saturation and contrast polarity on the figure-ground organization of color on gray

    PubMed Central

    Dresp-Langley, Birgitta; Reeves, Adam

    2014-01-01

    Poorly saturated colors are closer to a pure gray than strongly saturated ones and, therefore, appear less “colorful.”Color saturation is effectively manipulated in the visual arts for balancing conflicting sensations and moods and for inducing the perception of relative distance in the pictorial plane. While perceptual science has proven quite clearly that the luminance contrast of any hue acts as a self-sufficient cue to relative depth in visual images, the role of color saturation in such figure-ground organization has remained unclear. We presented configurations of colored inducers on gray “test” backgrounds to human observers. Luminance and saturation of the inducers was uniform on each trial, but varied across trials. We ran two separate experimental tasks. In the relative background brightness task, perceptual judgments indicated whether the apparent brightness of the gray test background contrasted with, assimilated to, or appeared equal (no effect) to that of a comparison background with the same luminance contrast. Contrast polarity and its interaction with color saturation affected response proportions for contrast, assimilation and no effect. In the figure-ground task, perceptual judgments indicated whether the inducers appeared to lie in front of, behind, or in the same depth with the background. Strongly saturated inducers produced significantly larger proportions of foreground effects indicating that these inducers stand out as figure against the background. Weakly saturated inducers produced significantly larger proportions of background effects, indicating that these inducers are perceived as lying behind the backgrounds. We infer that color saturation modulates figure-ground organization, both directly by determining relative inducer depth, and indirectly, and in interaction with contrast polarity, by affecting apparent background brightness. The results point toward a hitherto undocumented functional role of color saturation in the

  3. Active contours on statistical manifolds and texture segmentation

    Treesearch

    Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman

    2005-01-01

    A new approach to active contours on statistical manifolds is presented. The statistical manifolds are 2- dimensional Riemannian manifolds that are statistically defined by maps that transform a parameter domain onto a set of probability density functions. In this novel framework, color or texture features are measured at each image point and their statistical...

  4. Active contours on statistical manifolds and texture segmentaiton

    Treesearch

    Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman

    2005-01-01

    A new approach to active contours on statistical manifolds is presented. The statistical manifolds are 2- dimensional Riemannian manifolds that are statistically defined by maps that transform a parameter domain onto-a set of probability density functions. In this novel framework, color or texture features are measured at each Image point and their statistical...

  5. Color calibration of an RGB camera mounted in front of a microscope with strong color distortion.

    PubMed

    Charrière, Renée; Hébert, Mathieu; Trémeau, Alain; Destouches, Nathalie

    2013-07-20

    This paper aims at showing that performing color calibration of an RGB camera can be achieved even in the case where the optical system before the camera introduces strong color distortion. In the present case, the optical system is a microscope containing a halogen lamp, with a nonuniform irradiance on the viewed surface. The calibration method proposed in this work is based on an existing method, but it is preceded by a three-step preprocessing of the RGB images aiming at extracting relevant color information from the strongly distorted images, taking especially into account the nonuniform irradiance map and the perturbing texture due to the surface topology of the standard color calibration charts when observed at micrometric scale. The proposed color calibration process consists first in computing the average color of the color-chart patches viewed under the microscope; then computing white balance, gamma correction, and saturation enhancement; and finally applying a third-order polynomial regression color calibration transform. Despite the nonusual conditions for color calibration, fairly good performance is achieved from a 48 patch Lambertian color chart, since an average CIE-94 color difference on the color-chart colors lower than 2.5 units is obtained.

  6. Relationship between perceptual learning in speech and statistical learning in younger and older adults

    PubMed Central

    Neger, Thordis M.; Rietveld, Toni; Janse, Esther

    2014-01-01

    Within a few sentences, listeners learn to understand severely degraded speech such as noise-vocoded speech. However, individuals vary in the amount of such perceptual learning and it is unclear what underlies these differences. The present study investigates whether perceptual learning in speech relates to statistical learning, as sensitivity to probabilistic information may aid identification of relevant cues in novel speech input. If statistical learning and perceptual learning (partly) draw on the same general mechanisms, then statistical learning in a non-auditory modality using non-linguistic sequences should predict adaptation to degraded speech. In the present study, 73 older adults (aged over 60 years) and 60 younger adults (aged between 18 and 30 years) performed a visual artificial grammar learning task and were presented with 60 meaningful noise-vocoded sentences in an auditory recall task. Within age groups, sentence recognition performance over exposure was analyzed as a function of statistical learning performance, and other variables that may predict learning (i.e., hearing, vocabulary, attention switching control, working memory, and processing speed). Younger and older adults showed similar amounts of perceptual learning, but only younger adults showed significant statistical learning. In older adults, improvement in understanding noise-vocoded speech was constrained by age. In younger adults, amount of adaptation was associated with lexical knowledge and with statistical learning ability. Thus, individual differences in general cognitive abilities explain listeners' variability in adapting to noise-vocoded speech. Results suggest that perceptual and statistical learning share mechanisms of implicit regularity detection, but that the ability to detect statistical regularities is impaired in older adults if visual sequences are presented quickly. PMID:25225475

  7. Relationship between perceptual learning in speech and statistical learning in younger and older adults.

    PubMed

    Neger, Thordis M; Rietveld, Toni; Janse, Esther

    2014-01-01

    Within a few sentences, listeners learn to understand severely degraded speech such as noise-vocoded speech. However, individuals vary in the amount of such perceptual learning and it is unclear what underlies these differences. The present study investigates whether perceptual learning in speech relates to statistical learning, as sensitivity to probabilistic information may aid identification of relevant cues in novel speech input. If statistical learning and perceptual learning (partly) draw on the same general mechanisms, then statistical learning in a non-auditory modality using non-linguistic sequences should predict adaptation to degraded speech. In the present study, 73 older adults (aged over 60 years) and 60 younger adults (aged between 18 and 30 years) performed a visual artificial grammar learning task and were presented with 60 meaningful noise-vocoded sentences in an auditory recall task. Within age groups, sentence recognition performance over exposure was analyzed as a function of statistical learning performance, and other variables that may predict learning (i.e., hearing, vocabulary, attention switching control, working memory, and processing speed). Younger and older adults showed similar amounts of perceptual learning, but only younger adults showed significant statistical learning. In older adults, improvement in understanding noise-vocoded speech was constrained by age. In younger adults, amount of adaptation was associated with lexical knowledge and with statistical learning ability. Thus, individual differences in general cognitive abilities explain listeners' variability in adapting to noise-vocoded speech. Results suggest that perceptual and statistical learning share mechanisms of implicit regularity detection, but that the ability to detect statistical regularities is impaired in older adults if visual sequences are presented quickly.

  8. Color Image Restoration Using Nonlocal Mumford-Shah Regularizers

    NASA Astrophysics Data System (ADS)

    Jung, Miyoun; Bresson, Xavier; Chan, Tony F.; Vese, Luminita A.

    We introduce several color image restoration algorithms based on the Mumford-Shah model and nonlocal image information. The standard Ambrosio-Tortorelli and Shah models are defined to work in a small local neighborhood, which are sufficient to denoise smooth regions with sharp boundaries. However, textures are not local in nature and require semi-local/non-local information to be denoised efficiently. Inspired from recent work (NL-means of Buades, Coll, Morel and NL-TV of Gilboa, Osher), we extend the standard models of Ambrosio-Tortorelli and Shah approximations to Mumford-Shah functionals to work with nonlocal information, for better restoration of fine structures and textures. We present several applications of the proposed nonlocal MS regularizers in image processing such as color image denoising, color image deblurring in the presence of Gaussian or impulse noise, color image inpainting, and color image super-resolution. In the formulation of nonlocal variational models for the image deblurring with impulse noise, we propose an efficient preprocessing step for the computation of the weight function w. In all the applications, the proposed nonlocal regularizers produce superior results over the local ones, especially in image inpainting with large missing regions. Experimental results and comparisons between the proposed nonlocal methods and the local ones are shown.

  9. Visual search asymmetries within color-coded and intensity-coded displays.

    PubMed

    Yamani, Yusuke; McCarley, Jason S

    2010-06-01

    Color and intensity coding provide perceptual cues to segregate categories of objects within a visual display, allowing operators to search more efficiently for needed information. Even within a perceptually distinct subset of display elements, however, it may often be useful to prioritize items representing urgent or task-critical information. The design of symbology to produce search asymmetries (Treisman & Souther, 1985) offers a potential technique for doing this, but it is not obvious from existing models of search that an asymmetry observed in the absence of extraneous visual stimuli will persist within a complex color- or intensity-coded display. To address this issue, in the current study we measured the strength of a visual search asymmetry within displays containing color- or intensity-coded extraneous items. The asymmetry persisted strongly in the presence of extraneous items that were drawn in a different color (Experiment 1) or a lower contrast (Experiment 2) than the search-relevant items, with the targets favored by the search asymmetry producing highly efficient search. The asymmetry was attenuated but not eliminated when extraneous items were drawn in a higher contrast than search-relevant items (Experiment 3). Results imply that the coding of symbology to exploit visual search asymmetries can facilitate visual search for high-priority items even within color- or intensity-coded displays. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  10. Semantic and perceptual processing of number symbols: evidence from a cross-linguistic fMRI adaptation study.

    PubMed

    Holloway, Ian D; Battista, Christian; Vogel, Stephan E; Ansari, Daniel

    2013-03-01

    The ability to process the numerical magnitude of sets of items has been characterized in many animal species. Neuroimaging data have associated this ability to represent nonsymbolic numerical magnitudes (e.g., arrays of dots) with activity in the bilateral parietal lobes. Yet the quantitative abilities of humans are not limited to processing the numerical magnitude of nonsymbolic sets. Humans have used this quantitative sense as the foundation for symbolic systems for the representation of numerical magnitude. Although numerical symbol use is widespread in human cultures, the brain regions involved in processing of numerical symbols are just beginning to be understood. Here, we investigated the brain regions underlying the semantic and perceptual processing of numerical symbols. Specifically, we used an fMRI adaptation paradigm to examine the neural response to Hindu-Arabic numerals and Chinese numerical ideographs in a group of Chinese readers who could read both symbol types and a control group who could read only the numerals. Across groups, the Hindu-Arabic numerals exhibited ratio-dependent modulation in the left IPS. In contrast, numerical ideographs were associated with activation in the right IPS, exclusively in the Chinese readers. Furthermore, processing of the visual similarity of both digits and ideographs was associated with activation of the left fusiform gyrus. Using culture as an independent variable, we provide clear evidence for differences in the brain regions associated with the semantic and perceptual processing of numerical symbols. Additionally, we reveal a striking difference in the laterality of parietal activation between the semantic processing of the two symbols types.

  11. Color space distortions in patients with type 2 diabetes mellitus.

    PubMed

    Feitosa-Santana, Claudia; Oiwa, Nestor N; Paramei, Galina V; Bimler, David; Costa, Marcelo F; Lago, Marcos; Nishi, Mauro; Ventura, Dora F

    2006-01-01

    Color vision impairment was examined in patients with type 2 diabetes mellitus (DM2) without retinopathy. We assessed the type and degree of distortions of individual color spaces. DM2 patients (n = 32), and age-matched controls (n = 20) were tested using the Farnsworth D-15 and the Lanthony D-15d tests. In addition, subsets of caps from both tests were employed in a triadic procedure (Bimler & Kirkland, 2004). Matrices of inter-cap subjective dissimilarities were estimated from each subject's "odd-one-out" choices, and processed using non-metric multidimensional scaling. Two-dimensional color spaces, individual and group (DM2 patients; controls), were reconstructed, with the axes interpreted as the R/G and B/Y perceptual opponent systems. Compared to controls, patient results were not significant for the D-15 and D-15d. In contrast, in the triadic procedure the residual distances were significantly different compared to controls: right eye, P = 0.021, and left eye, P = 0.022. Color space configurations for the DM2 patients were compressed along the B/Y and R/G dimensions. The present findings agree with earlier studies demonstrating diffuse losses in early stages of DM2. The proposed method of testing uses color spaces to represent discrimination and provides more differentiated quantitative diagnosis, which may be interpreted as the perceptual color system affected. In addition, it enables the detection of very mild color vision impairment that is not captured by the D-15d test. Along with fundoscopy, individual color spaces may serve for monitoring early functional changes and thereby to support a treatment strategy.

  12. Enhanced facial texture illumination normalization for face recognition.

    PubMed

    Luo, Yong; Guan, Ye-Peng

    2015-08-01

    An uncontrolled lighting condition is one of the most critical challenges for practical face recognition applications. An enhanced facial texture illumination normalization method is put forward to resolve this challenge. An adaptive relighting algorithm is developed to improve the brightness uniformity of face images. Facial texture is extracted by using an illumination estimation difference algorithm. An anisotropic histogram-stretching algorithm is proposed to minimize the intraclass distance of facial skin and maximize the dynamic range of facial texture distribution. Compared with the existing methods, the proposed method can more effectively eliminate the redundant information of facial skin and illumination. Extensive experiments show that the proposed method has superior performance in normalizing illumination variation and enhancing facial texture features for illumination-insensitive face recognition.

  13. Children's color perception in relation to habitat and skin color.

    PubMed

    Gaines, R; Powell, G J

    1981-09-01

    Developmental color perception of negroid and caucasoid children in 3 societies is examined in relation to the theories that proximity to the equator and fundus pigmentation (as measured by skin color) reduce shortwave (blue-green) in comparison with long-wave perception. The 278 4- and 8-year-old native-born, urban, English-speaking children were from latitudes 6 degrees 27' N (Enugu, Nigeria), 17 degrees 18' N (Basseterre, Saint Kitts, East Caribbean), and 34 degrees 3' N (Los Angeles, Calif.). Equal numbers of boys and girls from middle socioeconomic homes were medically examined for normal nutritional status and near vision. Children were individually tested on the Gaines Color Perception Test. The results show that short-wavelength perception is less accurate than long-wave-length perception in all locations, but most of the variance is attributable to conditions of low value or chroma stimuli rather than to proximity to the equator. There were no significant differences between Nigerian, Saint Kittitian and California caucasoid children. In accord with the pigmentation theory, young California negroid children had less accurate short-wavelength color perception than California caucasoid children. However, Nigerian and Saint Kittitian negroid children's perceptual accuracy was at least as accurate as that of caucasoid children. Amount of pigmentation does not appear to be a universal variable in children's color perception. Socioeconomic status, nutritional variables, developmental growth of the eye, or controlled stimulus conditions of the present research could account for the lack of positive relationships between color perception and habitat or skin color.

  14. Direct Volume Rendering with Shading via Three-Dimensional Textures

    NASA Technical Reports Server (NTRS)

    VanGelder, Allen; Kim, Kwansik

    1996-01-01

    A new and easy-to-implement method for direct volume rendering that uses 3D texture maps for acceleration, and incorporates directional lighting, is described. The implementation, called Voltx, produces high-quality images at nearly interactive speeds on workstations with hardware support for three-dimensional texture maps. Previously reported methods did not incorporate a light model, and did not address issues of multiple texture maps for large volumes. Our research shows that these extensions impact performance by about a factor of ten. Voltx supports orthographic, perspective, and stereo views. This paper describes the theory and implementation of this technique, and compares it to the shear-warp factorization approach. A rectilinear data set is converted into a three-dimensional texture map containing color and opacity information. Quantized normal vectors and a lookup table provide efficiency. A new tesselation of the sphere is described, which serves as the basis for normal-vector quantization. A new gradient-based shading criterion is described, in which the gradient magnitude is interpreted in the context of the field-data value and the material classification parameters, and not in isolation. In the rendering phase, the texture map is applied to a stack of parallel planes, which effectively cut the texture into many slabs. The slabs are composited to form an image.

  15. Preferred color correction for digital LCD TVs

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung Tae; Kim, Choon-Woo; Ahn, Ji-Young; Kang, Dong-Woo; Shin, Hyun-Ho

    2009-01-01

    Instead of colorimetirc color reproduction, preferred color correction is applied for digital TVs to improve subjective image quality. First step of the preferred color correction is to survey the preferred color coordinates of memory colors. This can be achieved by the off-line human visual tests. Next step is to extract pixels of memory colors representing skin, grass and sky. For the detected pixels, colors are shifted towards the desired coordinates identified in advance. This correction process may result in undesirable contours on the boundaries between the corrected and un-corrected areas. For digital TV applications, the process of extraction and correction should be applied in every frame of the moving images. This paper presents a preferred color correction method in LCH color space. Values of chroma and hue are corrected independently. Undesirable contours on the boundaries of correction are minimized. The proposed method change the coordinates of memory color pixels towards the target color coordinates. Amount of correction is determined based on the averaged coordinate of the extracted pixels. The proposed method maintains the relative color difference within memory color areas. Performance of the proposed method is evaluated using the paired comparison. Results of experiments indicate that the proposed method can reproduce perceptually pleasing images to viewers.

  16. Color Categories: Evidence for the Cultural Relativity Hypothesis

    ERIC Educational Resources Information Center

    Roberson, D.; Davidoff, J.; Davies, I.R.L.; Shapiro, L.R.

    2005-01-01

    The question of whether language affects our categorization of perceptual continua is of particular interest for the domain of color where constraints on categorization have been proposed both within the visual system and in the visual environment. Recent research (Roberson, Davies, & Davidoff, 2000; Roberson et al., in press) found…

  17. Color-binding errors during rivalrous suppression of form.

    PubMed

    Hong, Sang Wook; Shevell, Steven K

    2009-09-01

    How does a physical stimulus determine a conscious percept? Binocular rivalry provides useful insights into this question because constant physical stimulation during rivalry causes different visual experiences. For example, presentation of vertical stripes to one eye and horizontal stripes to the other eye results in a percept that alternates between horizontal and vertical stripes. Presentation of a different color to each eye (color rivalry) produces alternating percepts of the two colors or, in some cases, a color mixture. The experiments reported here reveal a novel and instructive resolution of rivalry for stimuli that differ in both form and color: perceptual alternation between the rivalrous forms (e.g., horizontal or vertical stripes), with both eyes' colors seen simultaneously in separate parts of the currently perceived form. Thus, the colors presented to the two eyes (a) maintain their distinct neural representations despite resolution of form rivalry and (b) can bind separately to distinct parts of the perceived form.

  18. The physiology and psychophysics of the color-form relationship: a review

    PubMed Central

    Moutoussis, Konstantinos

    2015-01-01

    The relationship between color and form has been a long standing issue in visual science. A picture of functional segregation and topographic clustering emerges from anatomical and electrophysiological studies in animals, as well as by brain imaging studies in human. However, one of the many roles of chromatic information is to support form perception, and in some cases it can do so in a way superior to achromatic (luminance) information. This occurs both at an early, contour-detection stage, as well as in late, higher stages involving spatial integration and the perception of global shapes. Pure chromatic contrast can also support several visual illusions related to form-perception. On the other hand, form seems a necessary prerequisite for the computation and assignment of color across space, and there are several respects in which the color of an object can be influenced by its form. Evidently, color and form are mutually dependent. Electrophysiological studies have revealed neurons in the visual brain able to signal contours determined by pure chromatic contrast, the spatial tuning of which is similar to that of neurons carrying luminance information. It seems that, especially at an early stage, form is processed by several, independent systems that interact with each other, each one having different tuning characteristics in color space. At later processing stages, mechanisms able to combine information coming from different sources emerge. A clear interaction between color and form is manifested by the fact that color-form contingencies can be observed in various perceptual phenomena such as adaptation aftereffects and illusions. Such an interaction suggests a possible early binding between these two attributes, something that has been verified by both electrophysiological and fMRI studies. PMID:26578989

  19. Incidental orthographic learning during a color detection task.

    PubMed

    Protopapas, Athanassios; Mitsi, Anna; Koustoumbardis, Miltiadis; Tsitsopoulou, Sofia M; Leventi, Marianna; Seitz, Aaron R

    2017-09-01

    Orthographic learning refers to the acquisition of knowledge about specific spelling patterns forming words and about general biases and constraints on letter sequences. It is thought to occur by strengthening simultaneously activated visual and phonological representations during reading. Here we demonstrate that a visual perceptual learning procedure that leaves no time for articulation can result in orthographic learning evidenced in improved reading and spelling performance. We employed task-irrelevant perceptual learning (TIPL), in which the stimuli to be learned are paired with an easy task target. Assorted line drawings and difficult-to-spell words were presented in red color among sequences of other black-colored words and images presented in rapid succession, constituting a fast-TIPL procedure with color detection being the explicit task. In five experiments, Greek children in Grades 4-5 showed increased recognition of words and images that had appeared in red, both during and after the training procedure, regardless of within-training testing, and also when targets appeared in blue instead of red. Significant transfer to reading and spelling emerged only after increased training intensity. In a sixth experiment, children in Grades 2-3 showed generalization to words not presented during training that carried the same derivational affixes as in the training set. We suggest that reinforcement signals related to detection of the target stimuli contribute to the strengthening of orthography-phonology connections beyond earlier levels of visually-based orthographic representation learning. These results highlight the potential of perceptual learning procedures for the reinforcement of higher-level orthographic representations. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. SU-E-J-249: Characterization of Gynecological Tumor Heterogeneity Using Texture Analysis in the Context of An 18F-FDG PET Adaptive Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawrocki, J; Chino, J; Craciunescu, O

    Purpose: We propose a method to examine gynecological tumor heterogeneity using texture analysis in the context of an adaptive PET protocol in order to establish if texture metrics from baseline PET-CT predict tumor response better than SUV metrics alone as well as determine texture features correlating with tumor response during radiation therapy. Methods: This IRB approved protocol included 29 women with node positive gynecological cancers visible on FDG-PET treated with EBRT to the PET positive nodes. A baseline and intra-treatment PET-CT was obtained. Tumor outcome was determined based on RECIST on posttreatment PET-CT. Primary GTVs were segmented using 40% thresholdmore » and a semi-automatic gradient-based contouring tool, PET Edge (MIM Software Inc., Cleveland, OH). SUV histogram features, Metabolic Volume (MV), and Total Lesion Glycolysis (TLG) were calculated. Four 3D texture matrices describing local and regional relationships between voxel intensities in the GTV were generated: co-occurrence, run length, size zone, and neighborhood difference. From these, 39 texture features were calculated. Prognostic power of baseline features derived from gradientbased and threshold GTVs were determined using the Wilcoxon rank-sum test. Receiver Operating Characteristics and logistic regression was performed using JMP (SAS Institute Inc., Cary, NC) to find probabilities of predicting response. Changes in features during treatment were determined using the Wilcoxon signed-rank test. Results: Of the 29 patients, there were 16 complete responders, 7 partial responders, and 6 non-responders. Comparing CR/PR vs. NR for gradient-based GTVs, 7 texture values, TLG, and SUV kurtosis had a p < 0.05. Threshold GTVs yielded 4 texture features and TLG with p < 0.05. From baseline to intra-treatment, 14 texture features, SUVmean, SUVmax, MV, and TLG changed with p < 0.05. Conclusion: Texture analysis of PET imaged gynecological tumors is an effective method for early prognosis

  1. The importance of perceptual experience in the esthetic appreciation of the body.

    PubMed

    Mele, Sonia; Cazzato, Valentina; Urgesi, Cosimo

    2013-01-01

    Several studies suggest that sociocultural models conveying extreme thinness as the widespread ideal of beauty exert an important influence on the perceptual and emotional representation of body image. The psychological mechanisms underlying such environmental influences, however, are unclear. Here, we utilized a perceptual adaptation paradigm to investigate how perceptual experience modulates body esthetic appreciation. We found that the liking judgments of round bodies increased or decreased after brief exposure to round or thin bodies, respectively. No change occurred in the liking judgments of thin bodies. The results suggest that perceptual experience may shape our esthetic appreciation to favor more familiar round body figures. Importantly, individuals with more deficits in interoceptive awareness were less prone to increase their liking ratings of round bodies after exposure, suggesting a specific risk factor for the susceptibility to the influence of the extreme thin vs. round body ideals of beauty portrayed by the media.

  2. The Importance of Perceptual Experience in the Esthetic Appreciation of the Body

    PubMed Central

    Mele, Sonia; Cazzato, Valentina; Urgesi, Cosimo

    2013-01-01

    Several studies suggest that sociocultural models conveying extreme thinness as the widespread ideal of beauty exert an important influence on the perceptual and emotional representation of body image. The psychological mechanisms underlying such environmental influences, however, are unclear. Here, we utilized a perceptual adaptation paradigm to investigate how perceptual experience modulates body esthetic appreciation. We found that the liking judgments of round bodies increased or decreased after brief exposure to round or thin bodies, respectively. No change occurred in the liking judgments of thin bodies. The results suggest that perceptual experience may shape our esthetic appreciation to favor more familiar round body figures. Importantly, individuals with more deficits in interoceptive awareness were less prone to increase their liking ratings of round bodies after exposure, suggesting a specific risk factor for the susceptibility to the influence of the extreme thin vs. round body ideals of beauty portrayed by the media. PMID:24324689

  3. Model-based color halftoning using direct binary search.

    PubMed

    Agar, A Ufuk; Allebach, Jan P

    2005-12-01

    In this paper, we develop a model-based color halftoning method using the direct binary search (DBS) algorithm. Our method strives to minimize the perceived error between the continuous tone original color image and the color halftone image. We exploit the differences in how the human viewers respond to luminance and chrominance information and use the total squared error in a luminance/chrominance based space as our metric. Starting with an initial halftone, we minimize this error metric using the DBS algorithm. Our method also incorporates a measurement based color printer dot interaction model to prevent the artifacts due to dot overlap and to improve color texture quality. We calibrate our halftoning algorithm to ensure accurate colorant distributions in resulting halftones. We present the color halftones which demonstrate the efficacy of our method.

  4. The influence of color on emotional perception of natural scenes.

    PubMed

    Codispoti, Maurizio; De Cesarei, Andrea; Ferrari, Vera

    2012-01-01

    Is color a critical factor when processing the emotional content of natural scenes? Under challenging perceptual conditions, such as when pictures are briefly presented, color might facilitate scene segmentation and/or function as a semantic cue via association with scene-relevant concepts (e.g., red and blood/injury). To clarify the influence of color on affective picture perception, we compared the late positive potentials (LPP) to color versus grayscale pictures, presented for very brief (24 ms) and longer (6 s) exposure durations. Results indicated that removing color information had no effect on the affective modulation of the LPP, regardless of exposure duration. These findings imply that the recognition of the emotional content of scenes, even when presented very briefly, does not critically rely on color information. Copyright © 2011 Society for Psychophysiological Research.

  5. Can color changes alter the neural correlates of recognition memory? Manipulation of processing affects an electrophysiological indicator of conceptual implicit memory.

    PubMed

    Cui, Xiaoyu; Gao, Chuanji; Zhou, Jianshe; Guo, Chunyan

    2016-09-28

    It has been widely shown that recognition memory includes two distinct retrieval processes: familiarity and recollection. Many studies have shown that recognition memory can be facilitated when there is a perceptual match between the studied and the tested items. Most event-related potential studies have explored the perceptual match effect on familiarity on the basis of the hypothesis that the specific event-related potential component associated with familiarity is the FN400 (300-500 ms mid-frontal effect). However, it is currently unclear whether the FN400 indexes familiarity or conceptual implicit memory. In addition, on the basis of the findings of a previous study, the so-called perceptual manipulations in previous studies may also involve some conceptual alterations. Therefore, we sought to determine the influence of perceptual manipulation by color changes on recognition memory when the perceptual or the conceptual processes were emphasized. Specifically, different instructions (perceptually or conceptually oriented) were provided to the participants. The results showed that color changes may significantly affect overall recognition memory behaviorally and that congruent items were recognized with a higher accuracy rate than incongruent items in both tasks, but no corresponding neural changes were found. Despite the evident familiarity shown in the two tasks (the behavioral performance of recognition memory was much higher than at the chance level), the FN400 effect was found in conceptually oriented tasks, but not perceptually oriented tasks. It is thus highly interesting that the FN400 effect was not induced, although color manipulation of recognition memory was behaviorally shown, as seen in previous studies. Our findings of the FN400 effect for the conceptual but not perceptual condition support the explanation that the FN400 effect indexes conceptual implicit memory.

  6. Homeostatic study of the effects of sportswear color on the contest outcome

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-Qin; Liu, Timon Cheng-Yi; Wu, Ren-Le; Ruan, Chang-Xiong; He, Li-Mei; Liu, Song-Hao

    2008-12-01

    There are effects of sportswear color on the contest outcome. It has been explained from the psychological and perceptual viewpoints, respectively. It was studied by integrating the homeostatic theory of exercise training and autonomic nervous model of color vision in this paper. It was found that the effects of sportswear color on the contest outcome depend on autonomic nervous homeostasis (ANH). Color can be classified into hot color such as red, orange and yellow and cold color such as green, blue and violet. If the athletes have been in ANH, there are no effects of sportswear color on the contest outcome. If the autonomic nervous system is far from ANH due to exercise induced fatigue, wearing cold color had no predominance for cold-hot matches, and wearing white had no predominance for white-color matches.

  7. A perceptual map for gait symmetry quantification and pathology detection.

    PubMed

    Moevus, Antoine; Mignotte, Max; de Guise, Jacques A; Meunier, Jean

    2015-10-29

    The gait movement is an essential process of the human activity and the result of collaborative interactions between the neurological, articular and musculoskeletal systems, working efficiently together. This explains why gait analysis is important and increasingly used nowadays for the diagnosis of many different types (neurological, muscular, orthopedic, etc.) of diseases. This paper introduces a novel method to quickly visualize the different parts of the body related to an asymmetric movement in the human gait of a patient for daily clinical usage. The proposed gait analysis algorithm relies on the fact that the healthy walk has (temporally shift-invariant) symmetry properties in the coronal plane. The goal is to provide an inexpensive and easy-to-use method, exploiting an affordable consumer depth sensor, the Kinect, to measure the gait asymmetry and display results in a perceptual way. We propose a multi-dimensional scaling mapping using a temporally shift invariant distance, allowing us to efficiently visualize (in terms of perceptual color difference) the asymmetric body parts of the gait cycle of a subject. We also propose an index computed from this map and which quantifies locally and globally the degree of asymmetry. The proposed index is proved to be statistically significant and this new, inexpensive, marker-less, non-invasive, easy to set up, gait analysis system offers a readable and flexible tool for clinicians to analyze gait characteristics and to provide a fast diagnostic. This system, which estimates a perceptual color map providing a quick overview of asymmetry existing in the gait cycle of a subject, can be easily exploited for disease progression, recovery cues from post-operative surgery (e.g., to check the healing process or the effect of a treatment or a prosthesis) or might be used for other pathologies where gait asymmetry might be a symptom.

  8. A model of color vision with a robot system

    NASA Astrophysics Data System (ADS)

    Wang, Haihui

    2006-01-01

    In this paper, we propose to generalize the saccade target method and state that perceptual stability in general arises by learning the effects one's actions have on sensor responses. The apparent visual stability of color percept across saccadic eye movements can be explained by positing that perception involves observing how sensory input changes in response to motor activities. The changes related to self-motion can be learned, and once learned, used to form stable percepts. The variation of sensor data in response to a motor act is therefore a requirement for stable perception rather than something that has to be compensated for in order to perceive a stable world. In this paper, we have provided a simple implementation of this sensory-motor contingency view of perceptual stability. We showed how a straightforward application of the temporal difference enhancement learning technique yielding color percepts that are stable across saccadic eye movements, even though the raw sensor input may change radically.

  9. Human V4 Activity Patterns Predict Behavioral Performance in Imagery of Object Color.

    PubMed

    Bannert, Michael M; Bartels, Andreas

    2018-04-11

    Color is special among basic visual features in that it can form a defining part of objects that are engrained in our memory. Whereas most neuroimaging research on human color vision has focused on responses related to external stimulation, the present study investigated how sensory-driven color vision is linked to subjective color perception induced by object imagery. We recorded fMRI activity in male and female volunteers during viewing of abstract color stimuli that were red, green, or yellow in half of the runs. In the other half we asked them to produce mental images of colored, meaningful objects (such as tomato, grapes, banana) corresponding to the same three color categories. Although physically presented color could be decoded from all retinotopically mapped visual areas, only hV4 allowed predicting colors of imagined objects when classifiers were trained on responses to physical colors. Importantly, only neural signal in hV4 was predictive of behavioral performance in the color judgment task on a trial-by-trial basis. The commonality between neural representations of sensory-driven and imagined object color and the behavioral link to neural representations in hV4 identifies area hV4 as a perceptual hub linking externally triggered color vision with color in self-generated object imagery. SIGNIFICANCE STATEMENT Humans experience color not only when visually exploring the outside world, but also in the absence of visual input, for example when remembering, dreaming, and during imagery. It is not known where neural codes for sensory-driven and internally generated hue converge. In the current study we evoked matching subjective color percepts, one driven by physically presented color stimuli, the other by internally generated color imagery. This allowed us to identify area hV4 as the only site where neural codes of corresponding subjective color perception converged regardless of its origin. Color codes in hV4 also predicted behavioral performance in an

  10. Quaternion-Based Texture Analysis of Multiband Satellite Images: Application to the Estimation of Aboveground Biomass in the East Region of Cameroon.

    PubMed

    Djiongo Kenfack, Cedrigue Boris; Monga, Olivier; Mpong, Serge Moto; Ndoundam, René

    2018-03-01

    Within the last decade, several approaches using quaternion numbers to handle and model multiband images in a holistic manner were introduced. The quaternion Fourier transform can be efficiently used to model texture in multidimensional data such as color images. For practical application, multispectral satellite data appear as a primary source for measuring past trends and monitoring changes in forest carbon stocks. In this work, we propose a texture-color descriptor based on the quaternion Fourier transform to extract relevant information from multiband satellite images. We propose a new multiband image texture model extraction, called FOTO++, in order to address biomass estimation issues. The first stage consists in removing noise from the multispectral data while preserving the edges of canopies. Afterward, color texture descriptors are extracted thanks to a discrete form of the quaternion Fourier transform, and finally the support vector regression method is used to deduce biomass estimation from texture indices. Our texture features are modeled using a vector composed with the radial spectrum coming from the amplitude of the quaternion Fourier transform. We conduct several experiments in order to study the sensitivity of our model to acquisition parameters. We also assess its performance both on synthetic images and on real multispectral images of Cameroonian forest. The results show that our model is more robust to acquisition parameters than the classical Fourier Texture Ordination model (FOTO). Our scheme is also more accurate for aboveground biomass estimation. We stress that a similar methodology could be implemented using quaternion wavelets. These results highlight the potential of the quaternion-based approach to study multispectral satellite images.

  11. The effect of appropriate and inappropriate stimulus color on odor discrimination.

    PubMed

    Stevenson, Richard J; Oaten, Megan

    2008-05-01

    Color can strongly affect participants' self-report of an odor's qualities. In Experiment 1, we examined whether color influences a more objective measure of odor quality, discrimination. Odor pairs, presented in their appropriate color (e.g., strawberry and cherry in red water), an inappropriate color (e.g., strawberry and cherry in green water), or uncolored water were presented for discrimination. Participants made significantly more errors when odors were discriminated in an inappropriate color. In Experiment 2, the same design was utilized, but with an articulatory suppression task (AST), to examine whether the effect of color was mediated by identification or by a more direct effect on the percept. Here, the AST significantly improved discrimination for the inappropriate color condition, relative to Experiment 1. Although color does affect a more objective measure of odor quality, this is mediated by conceptual, rather than perceptual, means.

  12. The nature of instructional effects in color constancy.

    PubMed

    Radonjić, Ana; Brainard, David H

    2016-06-01

    The instructions subjects receive can have a large effect on experimentally measured color constancy, but the nature of these effects and how their existence should inform our understanding of color perception remains unclear. We used a factorial design to measure how instructional effects on constancy vary with experimental task and stimulus set. In each of 2 experiments, we employed both a classic adjustment-based asymmetric matching task and a novel color selection task. Four groups of naive subjects were instructed to make adjustments/selections based on (a) color (neutral instructions); (b) the light reaching the eye (physical spectrum instructions); (c) the actual surface reflectance of an object (objective reflectance instructions); or (d) the apparent surface reflectance of an object (apparent reflectance instructions). Across the 2 experiments we varied the naturalness of the stimuli. We find clear interactions between instructions, task, and stimuli. With simplified stimuli (Experiment 1), instructional effects were large and the data revealed 2 instruction-dependent patterns. In 1 (neutral and physical spectrum instructions) constancy was low, intersubject variability was also low, and adjustment-based and selection-based constancy were in agreement. In the other (reflectance instructions) constancy was high, intersubject variability was large, adjustment-based constancy deviated from selection-based constancy and for some subjects selection-based constancy increased across sessions. Similar patterns held for naturalistic stimuli (Experiment 2), although instructional effects were smaller. We interpret these 2 patterns as signatures of distinct task strategies-1 is perceptual, with judgments based primarily on the perceptual representation of color; the other involves explicit instruction-driven reasoning. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Segregation of Form, Color, Movement, and Depth: Anatomy, Physiology, and Perception

    NASA Astrophysics Data System (ADS)

    Livingstone, Margaret; Hubel, David

    1988-05-01

    Anatomical and physiological observations in monkeys indicate that the primate visual system consists of several separate and independent subdivisions that analyze different aspects of the same retinal image: cells in cortical visual areas 1 and 2 and higher visual areas are segregated into three interdigitating subdivisions that differ in their selectivity for color, stereopsis, movement, and orientation. The pathways selective for form and color seem to be derived mainly from the parvocellular geniculate subdivisions, the depth- and movement-selective components from the magnocellular. At lower levels, in the retina and in the geniculate, cells in these two subdivisions differ in their color selectivity, contrast sensitivity, temporal properties, and spatial resolution. These major differences in the properties of cells at lower levels in each of the subdivisions led to the prediction that different visual functions, such as color, depth, movement, and form perception, should exhibit corresponding differences. Human perceptual experiments are remarkably consistent with these predictions. Moreover, perceptual experiments can be designed to ask which subdivisions of the system are responsible for particular visual abilities, such as figure/ground discrimination or perception of depth from perspective or relative movement--functions that might be difficult to deduce from single-cell response properties.

  14. Three Fresh Exposures, Stretched Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image from NASA's Mars Exploration Rover Opportunity has been processed using a technique known as a decorrelation stretch to exaggerate the colors. The area in the image includes three holes created inside 'Endurance Crater' by Opportunity's rock abrasion tool between sols 143 and 148 (June 18 and June 23, 2004). Because color variations are so subtle in the pictured area, stretched images are useful for discriminating color differences that can alert scientists to compositional and textural variations. For example, without the exaggeration, no color difference would be discernable among the tailings left behind after the grinding of these holes, but in this stretched image, the tailings around 'London' (top) appear more red than those of the other holes ('Virginia,' middle, and 'Cobble Hill,' bottom). Scientists believe that is because the rock abrasion tool sliced through two 'blueberries,' or spherules (visible on the upper left and upper right sides of the circle). When the blades break up these spherules, composed of mostly gray hematite, the result is a bright red powder. In this image, you can see the rock layers that made the team want to grind holes in each identified layer. The top layer is yellowish red, the middle is yellowish green and the lower layer is green. Another advantage to viewing this stretched image is the clear detail of the distribution of the rock abrasion tool tailings (heading down-slope) and the differences in rock texture. This image was created using the 753-, 535- and 432-nanometer filters.

  15. Separation of specular and diffuse components using tensor voting in color images.

    PubMed

    Nguyen, Tam; Vo, Quang Nhat; Yang, Hyung-Jeong; Kim, Soo-Hyung; Lee, Guee-Sang

    2014-11-20

    Most methods for the detection and removal of specular reflections suffer from nonuniform highlight regions and/or nonconverged artifacts induced by discontinuities in the surface colors, especially when dealing with highly textured, multicolored images. In this paper, a novel noniterative and predefined constraint-free method based on tensor voting is proposed to detect and remove the highlight components of a single color image. The distribution of diffuse and specular pixels in the original image is determined using tensors' saliency analysis, instead of comparing color information among neighbor pixels. The achieved diffuse reflectance distribution is used to remove specularity components. The proposed method is evaluated quantitatively and qualitatively over a dataset of highly textured, multicolor images. The experimental results show that our result outperforms other state-of-the-art techniques.

  16. The Sapir-Whorf Hypothesis and Probabilistic Inference: Evidence from the Domain of Color

    PubMed Central

    Austerweil, Joseph L.; Griffiths, Thomas L.; Regier, Terry

    2016-01-01

    The Sapir-Whorf hypothesis holds that our thoughts are shaped by our native language, and that speakers of different languages therefore think differently. This hypothesis is controversial in part because it appears to deny the possibility of a universal groundwork for human cognition, and in part because some findings taken to support it have not reliably replicated. We argue that considering this hypothesis through the lens of probabilistic inference has the potential to resolve both issues, at least with respect to certain prominent findings in the domain of color cognition. We explore a probabilistic model that is grounded in a presumed universal perceptual color space and in language-specific categories over that space. The model predicts that categories will most clearly affect color memory when perceptual information is uncertain. In line with earlier studies, we show that this model accounts for language-consistent biases in color reconstruction from memory in English speakers, modulated by uncertainty. We also show, to our knowledge for the first time, that such a model accounts for influential existing data on cross-language differences in color discrimination from memory, both within and across categories. We suggest that these ideas may help to clarify the debate over the Sapir-Whorf hypothesis. PMID:27434643

  17. Using perceptual rules in interactive visualization

    NASA Astrophysics Data System (ADS)

    Rogowitz, Bernice E.; Treinish, Lloyd A.

    1994-05-01

    In visualization, data are represented as variations in grayscale, hue, shape, and texture. They can be mapped to lines, surfaces, and glyphs, and can be represented statically or in animation. In modem visualization systems, the choices for representing data seem unlimited. This is both a blessing and a curse, however, since the visual impression created by the visualization depends critically on which dimensions are selected for representing the data (Bertin, 1967; Tufte, 1983; Cleveland, 1991). In modem visualization systems, the user can interactively select many different mapping and representation operations, and can interactively select processing operations (e.g., applying a color map), realization operations (e.g., generating geometric structures such as contours or streamlines), and rendering operations (e.g., shading or ray-tracing). The user can, for example, map data to a color map, then apply contour lines, then shift the viewing angle, then change the color map again, etc. In many systems, the user can vary the choices for each operation, selecting, for example, particular color maps, contour characteristics, and shading techniques. The hope is that this process will eventually converge on a visual representation which expresses the structure of the data and effectively communicates its message in a way that meets the user's goals. Sometimes, however, it results in visual representations which are confusing, misleading, and garish.

  18. Perceptual response to visual noise and display media

    NASA Technical Reports Server (NTRS)

    Durgin, Frank H.; Proffitt, Dennis R.

    1993-01-01

    The present project was designed to follow up an earlier investigation in which perceptual adaptation in response to the use of Night Vision Goggles, or image intensification (I squared) systems, such as those employed in the military were studied. Our chief concern in the earlier studies was with the dynamic visual noise that is a byproduct of the I(sup 2) technology: under low light conditions, there is a great deal of 'snow' or sporadic 'twinkling' of pixels in the I(sup 2) display which is more salient as the ambient light levels are lower. Because prolonged exposure to static visual noise produces strong adaptation responses, we reasoned that the dynamic visual noise of I(sup 2) displays might have a similar effect, which could have implications for their long term use. However, in the series of experiments reported last year, no evidence at all of such aftereffects following extended exposure to I(sup 2) displays were found. This finding surprised us, and led us to propose the following studies: (1) an investigation of dynamic visual noise and its capacity to produce after effects; and (2) an investigation of the perceptual consequences of characteristics of the display media.

  19. Adaptive Ambient Illumination Based on Color Harmony Model

    NASA Astrophysics Data System (ADS)

    Kikuchi, Ayano; Hirai, Keita; Nakaguchi, Toshiya; Tsumura, Norimichi; Miyake, Yoichi

    We investigated the relationship between ambient illumination and psychological effect by applying a modified color harmony model. We verified the proposed model by analyzing correlation between psychological value and modified color harmony score. Experimental results showed the possibility to obtain the best color for illumination using this model.

  20. Joint effects of emotion and color on memory.

    PubMed

    Kuhbandner, Christof; Pekrun, Reinhard

    2013-06-01

    Numerous studies have shown that memory is enhanced for emotionally negative and positive information relative to neutral information. We examined whether emotion-induced memory enhancement is influenced by low-level perceptual attributes such as color. Because in everyday life red is often used as a warning signal, whereas green signals security, we hypothesized that red might enhance memory for negative information and green memory for positive information. To capture the signaling function of colors, we measured memory for words standing out from the context by color, and manipulated the color and emotional significance of the outstanding words. Making words outstanding by color strongly enhanced memory, replicating the well-known von Restorff effect. Furthermore, memory for colored words was further increased by emotional significance, replicating the memory-enhancing effect of emotion. Most intriguingly, the effects of emotion on memory additionally depended on color type. Red strongly increased memory for negative words, whereas green strongly increased memory for positive words. These findings provide the first evidence that emotion-induced memory enhancement is influenced by color and demonstrate that different colors can have different functions in human memory.

  1. Histogram contrast analysis and the visual segregation of IID textures.

    PubMed

    Chubb, C; Econopouly, J; Landy, M S

    1994-09-01

    A new psychophysical methodology is introduced, histogram contrast analysis, that allows one to measure stimulus transformations, f, used by the visual system to draw distinctions between different image regions. The method involves the discrimination of images constructed by selecting texture micropatterns randomly and independently (across locations) on the basis of a given micropattern histogram. Different components of f are measured by use of different component functions to modulate the micropattern histogram until the resulting textures are discriminable. When no discrimination threshold can be obtained for a given modulating component function, a second titration technique may be used to measure the contribution of that component to f. The method includes several strong tests of its own assumptions. An example is given of the method applied to visual textures composed of small, uniform squares with randomly chosen gray levels. In particular, for a fixed mean gray level mu and a fixed gray-level variance sigma 2, histogram contrast analysis is used to establish that the class S of all textures composed of small squares with jointly independent, identically distributed gray levels with mean mu and variance sigma 2 is perceptually elementary in the following sense: there exists a single, real-valued function f S of gray level, such that two textures I and J in S are discriminable only if the average value of f S applied to the gray levels in I is significantly different from the average value of f S applied to the gray levels in J. Finally, histogram contrast analysis is used to obtain a seventh-order polynomial approximation of f S.

  2. Referenceless perceptual fog density prediction model

    NASA Astrophysics Data System (ADS)

    Choi, Lark Kwon; You, Jaehee; Bovik, Alan C.

    2014-02-01

    We propose a perceptual fog density prediction model based on natural scene statistics (NSS) and "fog aware" statistical features, which can predict the visibility in a foggy scene from a single image without reference to a corresponding fogless image, without side geographical camera information, without training on human-rated judgments, and without dependency on salient objects such as lane markings or traffic signs. The proposed fog density predictor only makes use of measurable deviations from statistical regularities observed in natural foggy and fog-free images. A fog aware collection of statistical features is derived from a corpus of foggy and fog-free images by using a space domain NSS model and observed characteristics of foggy images such as low contrast, faint color, and shifted intensity. The proposed model not only predicts perceptual fog density for the entire image but also provides a local fog density index for each patch. The predicted fog density of the model correlates well with the measured visibility in a foggy scene as measured by judgments taken in a human subjective study on a large foggy image database. As one application, the proposed model accurately evaluates the performance of defog algorithms designed to enhance the visibility of foggy images.

  3. CFA-aware features for steganalysis of color images

    NASA Astrophysics Data System (ADS)

    Goljan, Miroslav; Fridrich, Jessica

    2015-03-01

    Color interpolation is a form of upsampling, which introduces constraints on the relationship between neighboring pixels in a color image. These constraints can be utilized to substantially boost the accuracy of steganography detectors. In this paper, we introduce a rich model formed by 3D co-occurrences of color noise residuals split according to the structure of the Bayer color filter array to further improve detection. Some color interpolation algorithms, AHD and PPG, impose pixel constraints so tight that extremely accurate detection becomes possible with merely eight features eliminating the need for model richification. We carry out experiments on non-adaptive LSB matching and the content-adaptive algorithm WOW on five different color interpolation algorithms. In contrast to grayscale images, in color images that exhibit traces of color interpolation the security of WOW is significantly lower and, depending on the interpolation algorithm, may even be lower than non-adaptive LSB matching.

  4. Bayesian Exploration for Intelligent Identification of Textures

    PubMed Central

    Fishel, Jeremy A.; Loeb, Gerald E.

    2012-01-01

    In order to endow robots with human-like abilities to characterize and identify objects, they must be provided with tactile sensors and intelligent algorithms to select, control, and interpret data from useful exploratory movements. Humans make informed decisions on the sequence of exploratory movements that would yield the most information for the task, depending on what the object may be and prior knowledge of what to expect from possible exploratory movements. This study is focused on texture discrimination, a subset of a much larger group of exploratory movements and percepts that humans use to discriminate, characterize, and identify objects. Using a testbed equipped with a biologically inspired tactile sensor (the BioTac), we produced sliding movements similar to those that humans make when exploring textures. Measurement of tactile vibrations and reaction forces when exploring textures were used to extract measures of textural properties inspired from psychophysical literature (traction, roughness, and fineness). Different combinations of normal force and velocity were identified to be useful for each of these three properties. A total of 117 textures were explored with these three movements to create a database of prior experience to use for identifying these same textures in future encounters. When exploring a texture, the discrimination algorithm adaptively selects the optimal movement to make and property to measure based on previous experience to differentiate the texture from a set of plausible candidates, a process we call Bayesian exploration. Performance of 99.6% in correctly discriminating pairs of similar textures was found to exceed human capabilities. Absolute classification from the entire set of 117 textures generally required a small number of well-chosen exploratory movements (median = 5) and yielded a 95.4% success rate. The method of Bayesian exploration developed and tested in this paper may generalize well to other cognitive problems

  5. Bayesian exploration for intelligent identification of textures.

    PubMed

    Fishel, Jeremy A; Loeb, Gerald E

    2012-01-01

    In order to endow robots with human-like abilities to characterize and identify objects, they must be provided with tactile sensors and intelligent algorithms to select, control, and interpret data from useful exploratory movements. Humans make informed decisions on the sequence of exploratory movements that would yield the most information for the task, depending on what the object may be and prior knowledge of what to expect from possible exploratory movements. This study is focused on texture discrimination, a subset of a much larger group of exploratory movements and percepts that humans use to discriminate, characterize, and identify objects. Using a testbed equipped with a biologically inspired tactile sensor (the BioTac), we produced sliding movements similar to those that humans make when exploring textures. Measurement of tactile vibrations and reaction forces when exploring textures were used to extract measures of textural properties inspired from psychophysical literature (traction, roughness, and fineness). Different combinations of normal force and velocity were identified to be useful for each of these three properties. A total of 117 textures were explored with these three movements to create a database of prior experience to use for identifying these same textures in future encounters. When exploring a texture, the discrimination algorithm adaptively selects the optimal movement to make and property to measure based on previous experience to differentiate the texture from a set of plausible candidates, a process we call Bayesian exploration. Performance of 99.6% in correctly discriminating pairs of similar textures was found to exceed human capabilities. Absolute classification from the entire set of 117 textures generally required a small number of well-chosen exploratory movements (median = 5) and yielded a 95.4% success rate. The method of Bayesian exploration developed and tested in this paper may generalize well to other cognitive problems.

  6. Development of Neural Sensitivity to Face Identity Correlates with Perceptual Discriminability

    PubMed Central

    Barnett, Michael A.; Hartley, Jake; Gomez, Jesse; Stigliani, Anthony; Grill-Spector, Kalanit

    2016-01-01

    Face perception is subserved by a series of face-selective regions in the human ventral stream, which undergo prolonged development from childhood to adulthood. However, it is unknown how neural development of these regions relates to the development of face-perception abilities. Here, we used functional magnetic resonance imaging (fMRI) to measure brain responses of ventral occipitotemporal regions in children (ages, 5–12 years) and adults (ages, 19–34 years) when they viewed faces that parametrically varied in dissimilarity. Since similar faces generate lower responses than dissimilar faces due to fMRI adaptation, this design objectively evaluates neural sensitivity to face identity across development. Additionally, a subset of subjects participated in a behavioral experiment to assess perceptual discriminability of face identity. Our data reveal three main findings: (1) neural sensitivity to face identity increases with age in face-selective but not object-selective regions; (2) the amplitude of responses to faces increases with age in both face-selective and object-selective regions; and (3) perceptual discriminability of face identity is correlated with the neural sensitivity to face identity of face-selective regions. In contrast, perceptual discriminability is not correlated with the amplitude of response in face-selective regions or of responses of object-selective regions. These data suggest that developmental increases in neural sensitivity to face identity in face-selective regions improve perceptual discriminability of faces. Our findings significantly advance the understanding of the neural mechanisms of development of face perception and open new avenues for using fMRI adaptation to study the neural development of high-level visual and cognitive functions more broadly. SIGNIFICANCE STATEMENT Face perception, which is critical for daily social interactions, develops from childhood to adulthood. However, it is unknown what developmental changes in

  7. Development of Neural Sensitivity to Face Identity Correlates with Perceptual Discriminability.

    PubMed

    Natu, Vaidehi S; Barnett, Michael A; Hartley, Jake; Gomez, Jesse; Stigliani, Anthony; Grill-Spector, Kalanit

    2016-10-19

    Face perception is subserved by a series of face-selective regions in the human ventral stream, which undergo prolonged development from childhood to adulthood. However, it is unknown how neural development of these regions relates to the development of face-perception abilities. Here, we used functional magnetic resonance imaging (fMRI) to measure brain responses of ventral occipitotemporal regions in children (ages, 5-12 years) and adults (ages, 19-34 years) when they viewed faces that parametrically varied in dissimilarity. Since similar faces generate lower responses than dissimilar faces due to fMRI adaptation, this design objectively evaluates neural sensitivity to face identity across development. Additionally, a subset of subjects participated in a behavioral experiment to assess perceptual discriminability of face identity. Our data reveal three main findings: (1) neural sensitivity to face identity increases with age in face-selective but not object-selective regions; (2) the amplitude of responses to faces increases with age in both face-selective and object-selective regions; and (3) perceptual discriminability of face identity is correlated with the neural sensitivity to face identity of face-selective regions. In contrast, perceptual discriminability is not correlated with the amplitude of response in face-selective regions or of responses of object-selective regions. These data suggest that developmental increases in neural sensitivity to face identity in face-selective regions improve perceptual discriminability of faces. Our findings significantly advance the understanding of the neural mechanisms of development of face perception and open new avenues for using fMRI adaptation to study the neural development of high-level visual and cognitive functions more broadly. Face perception, which is critical for daily social interactions, develops from childhood to adulthood. However, it is unknown what developmental changes in the brain lead to improved

  8. Norm compliance affects perceptual decisions through modulation of a starting point bias.

    PubMed

    Toelch, Ulf; Panizza, Folco; Heekeren, Hauke R

    2018-03-01

    Adaptive decisions in social contexts depend on both perceptual information and social expectations or norms. These are potentially in conflict when certain choices are beneficial for an individual, but societal rules mandate a different course of action. To resolve such a conflict, the reliability of information has to be balanced against potentially deleterious effects of non-compliance such as ostracism. In this study, we systematically investigated how interactions between perceptual and social influences affect decision-relevant cognitive processes. In a direction-of-motion discrimination task, participants received perceptual information alongside information on other players' choices. In addition, we created conflict scenarios where players' choices affected other participants' monetary rewards dependent on whether their choices were in line or against the opinion of the other players. Importantly, we altered the strength of this manipulation in two separate experiments by contrasting motivations of either preventing harm or providing a benefit to others. Behavioural analyses and computational models of perceptual decisions showed that participants successfully integrated perceptual with social information. Participants' reliance on social information was effectively modulated in conflict situations. Critically, these effects were augmented when the strength of social norms was increased, indexing conditions under which social norms effectively influence decisions. These results inform theories of social influence by providing an account of how higher order goals like social norm compliance affect perceptual decisions.

  9. Norm compliance affects perceptual decisions through modulation of a starting point bias

    PubMed Central

    Panizza, Folco; Heekeren, Hauke R.

    2018-01-01

    Adaptive decisions in social contexts depend on both perceptual information and social expectations or norms. These are potentially in conflict when certain choices are beneficial for an individual, but societal rules mandate a different course of action. To resolve such a conflict, the reliability of information has to be balanced against potentially deleterious effects of non-compliance such as ostracism. In this study, we systematically investigated how interactions between perceptual and social influences affect decision-relevant cognitive processes. In a direction-of-motion discrimination task, participants received perceptual information alongside information on other players' choices. In addition, we created conflict scenarios where players’ choices affected other participants' monetary rewards dependent on whether their choices were in line or against the opinion of the other players. Importantly, we altered the strength of this manipulation in two separate experiments by contrasting motivations of either preventing harm or providing a benefit to others. Behavioural analyses and computational models of perceptual decisions showed that participants successfully integrated perceptual with social information. Participants' reliance on social information was effectively modulated in conflict situations. Critically, these effects were augmented when the strength of social norms was increased, indexing conditions under which social norms effectively influence decisions. These results inform theories of social influence by providing an account of how higher order goals like social norm compliance affect perceptual decisions. PMID:29657747

  10. The effect of texture granularity on texture synthesis quality

    NASA Astrophysics Data System (ADS)

    Golestaneh, S. Alireza; Subedar, Mahesh M.; Karam, Lina J.

    2015-09-01

    Natural and artificial textures occur frequently in images and in video sequences. Image/video coding systems based on texture synthesis can make use of a reliable texture synthesis quality assessment method in order to improve the compression performance in terms of perceived quality and bit-rate. Existing objective visual quality assessment methods do not perform satisfactorily when predicting the synthesized texture quality. In our previous work, we showed that texture regularity can be used as an attribute for estimating the quality of synthesized textures. In this paper, we study the effect of another texture attribute, namely texture granularity, on the quality of synthesized textures. For this purpose, subjective studies are conducted to assess the quality of synthesized textures with different levels (low, medium, high) of perceived texture granularity using different types of texture synthesis methods.

  11. Perceptual processing affects conceptual processing.

    PubMed

    Van Dantzig, Saskia; Pecher, Diane; Zeelenberg, René; Barsalou, Lawrence W

    2008-04-05

    According to the Perceptual Symbols Theory of cognition (Barsalou, 1999), modality-specific simulations underlie the representation of concepts. A strong prediction of this view is that perceptual processing affects conceptual processing. In this study, participants performed a perceptual detection task and a conceptual property-verification task in alternation. Responses on the property-verification task were slower for those trials that were preceded by a perceptual trial in a different modality than for those that were preceded by a perceptual trial in the same modality. This finding of a modality-switch effect across perceptual processing and conceptual processing supports the hypothesis that perceptual and conceptual representations are partially based on the same systems. 2008 Cognitive Science Society, Inc.

  12. Linguistic and Perceptual Mapping in Spatial Representations: An Attentional Account.

    PubMed

    Valdés-Conroy, Berenice; Hinojosa, José A; Román, Francisco J; Romero-Ferreiro, Verónica

    2018-03-01

    Building on evidence for embodied representations, we investigated whether Spanish spatial terms map onto the NEAR/FAR perceptual division of space. Using a long horizontal display, we measured congruency effects during the processing of spatial terms presented in NEAR or FAR space. Across three experiments, we manipulated the task demands in order to investigate the role of endogenous attention in linguistic and perceptual space mapping. We predicted congruency effects only when spatial properties were relevant for the task (reaching estimation task, Experiment 1) but not when attention was allocated to other features (lexical decision, Experiment 2; and color, Experiment 3). Results showed faster responses for words presented in Near-space in all experiments. Consistent with our hypothesis, congruency effects were observed only when a reaching estimate was requested. Our results add important evidence for the role of top-down processing in congruency effects from embodied representations of spatial terms. Copyright © 2017 Cognitive Science Society, Inc.

  13. Plugging the attention deficit: perceptual load counters increased distraction in ADHD.

    PubMed

    Forster, Sophie; Robertson, David J; Jennings, Alistair; Asherson, Philip; Lavie, Nilli

    2014-01-01

    Increased vulnerability to extraneous distraction is a key symptom of Attention-Deficit Hyperactivity Disorder (ADHD), which may have particularly disruptive consequences. Here we apply Load Theory of attention to increase understanding of this symptom, and to explore a potential method for ameliorating it. Previous research in nonclinical populations has highlighted increased perceptual load as a means of improving the ability to focus attention and avoid distraction. The present study examines whether adults with ADHD can also benefit from conditions of high perceptual load to improve their focused attention abilities. We tested adults with ADHD and age- and IQ-matched controls on a novel measure of irrelevant distraction under load, designed to parallel the form of distraction that is symptomatic of ADHD. During a letter search task, in which perceptual load was varied through search set size, participants were required to ignore salient yet entirely irrelevant distractors (colorful images of cartoon characters) presented infrequently (10% of trials). The presence of these distractors produced a significantly greater interference effect on the search RTs for the adults with ADHD compared with controls, p = .005, ηp² = .231. Perceptual load, however, significantly reduced distractor interference for the ADHD group and was as effective in reducing the elevated distractor interference in ADHD as it was for controls. These findings clarify the nature of the attention deficit underlying increased distraction in ADHD, and demonstrate a tangible method for overcoming it.

  14. Plugging the Attention Deficit: Perceptual Load Counters Increased Distraction in ADHD

    PubMed Central

    2013-01-01

    Objective: Increased vulnerability to extraneous distraction is a key symptom of Attention-Deficit Hyperactivity Disorder (ADHD), which may have particularly disruptive consequences. Here we apply Load Theory of attention to increase understanding of this symptom, and to explore a potential method for ameliorating it. Previous research in nonclinical populations has highlighted increased perceptual load as a means of improving the ability to focus attention and avoid distraction. The present study examines whether adults with ADHD can also benefit from conditions of high perceptual load to improve their focused attention abilities. Method: We tested adults with ADHD and age- and IQ-matched controls on a novel measure of irrelevant distraction under load, designed to parallel the form of distraction that is symptomatic of ADHD. During a letter search task, in which perceptual load was varied through search set size, participants were required to ignore salient yet entirely irrelevant distractors (colorful images of cartoon characters) presented infrequently (10% of trials). Results: The presence of these distractors produced a significantly greater interference effect on the search RTs for the adults with ADHD compared with controls, p = .005, ηp2 = .231. Perceptual load, however, significantly reduced distractor interference for the ADHD group and was as effective in reducing the elevated distractor interference in ADHD as it was for controls. Conclusions: These findings clarify the nature of the attention deficit underlying increased distraction in ADHD, and demonstrate a tangible method for overcoming it. PMID:24219607

  15. Land use classification using texture information in ERTS-A MSS imagery

    NASA Technical Reports Server (NTRS)

    Haralick, R. M. (Principal Investigator); Shanmugam, K. S.; Bosley, R.

    1973-01-01

    The author has identified the following significant results. Preliminary digital analysis of ERTS-1 MSS imagery reveals that the textural features of the imagery are very useful for land use classification. A procedure for extracting the textural features of ERTS-1 imagery is presented and the results of a land use classification scheme based on the textural features are also presented. The land use classification algorithm using textural features was tested on a 5100 square mile area covered by part of an ERTS-1 MSS band 5 image over the California coastline. The image covering this area was blocked into 648 subimages of size 8.9 square miles each. Based on a color composite of the image set, a total of 7 land use categories were identified. These land use categories are: coastal forest, woodlands, annual grasslands, urban areas, large irrigated fields, small irrigated fields, and water. The automatic classifier was trained to identify the land use categories using only the textural characteristics of the subimages; 75 percent of the subimages were assigned correct identifications. Since texture and spectral features provide completely different kinds of information, a significant increase in identification accuracy will take place when both features are used together.

  16. Perceptual learning improves stereoacuity in amblyopia.

    PubMed

    Xi, Jie; Jia, Wu-Li; Feng, Li-Xia; Lu, Zhong-Lin; Huang, Chang-Bing

    2014-04-15

    Amblyopia is a developmental disorder that results in both monocular and binocular deficits. Although traditional treatment in clinical practice (i.e., refractive correction, or occlusion by patching and penalization of the fellow eye) is effective in restoring monocular visual acuity, there is little information on how binocular function, especially stereopsis, responds to traditional amblyopia treatment. We aim to evaluate the effects of perceptual learning on stereopsis in observers with amblyopia in the current study. Eleven observers (21.1 ± 5.1 years, six females) with anisometropic or ametropic amblyopia were trained to judge depth in 10 to 13 sessions. Red-green glasses were used to present three different texture anaglyphs with different disparities but a fixed exposure duration. Stereoacuity was assessed with the Fly Stereo Acuity Test and visual acuity was assessed with the Chinese Tumbling E Chart before and after training. Averaged across observers, training significantly reduced disparity threshold from 776.7″ to 490.4″ (P < 0.01) and improved stereoacuity from 200.3″ to 81.6″ (P < 0.01). Interestingly, visual acuity also significantly improved from 0.44 to 0.35 logMAR (approximately 0.9 lines, P < 0.05) in the amblyopic eye after training. Moreover, the learning effects in two of the three retested observers were largely retained over a 5-month period. Perceptual learning is effective in improving stereo vision in observers with amblyopia. These results, together with previous evidence, suggest that structured monocular and binocular training might be necessary to fully recover degraded visual functions in amblyopia. Chinese Abstract.

  17. The neural systems for perceptual updating.

    PubMed

    Stöttinger, Elisabeth; Aichhorn, Markus; Anderson, Britt; Danckert, James

    2018-04-01

    In a constantly changing environment we must adapt to both abrupt and gradual changes to incoming information. Previously, we demonstrated that a distributed network (including the anterior insula and anterior cingulate cortex) was active when participants updated their initial representations (e.g., it's a cat) in a gradually morphing picture task (e.g., now it's a rabbit; Stöttinger et al., 2015). To shed light on whether these activations reflect the proactive decisions to update or perceptual uncertainty, we introduced two additional conditions. By presenting picture morphs twice we controlled for uncertainty in perceptual decision making. Inducing an abrupt shift in a third condition allowed us to differentiate between a proactive decision in uncertainty-driven updating and a reactive decision in surprise-based updating. We replicated our earlier result, showing the robustness of the effect. In addition, we found activation in the anterior insula (bilaterally) and the mid frontal area/ACC in all three conditions, indicative of the importance of these areas in updating of all kinds. When participants were naïve as to the identity of the second object, we found higher activations in the mid-cingulate cortex and cuneus - areas typically associated with task difficulty, in addition to higher activations in the right TPJ most likely reflecting the shift to a new perspective. Activations associated with the proactive decision to update to a new interpretation were found in a network including the dorsal ACC known to be involved in exploration and the endogenous decision to switch to a new interpretation. These findings suggest a general network commonly engaged in all types of perceptual decision making supported by additional networks associated with perceptual uncertainty or updating provoked by either proactive or reactive decision making. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Perceptual training methods compared: the relative efficacy of different approaches to enhancing sport-specific anticipation.

    PubMed

    Abernethy, Bruce; Schorer, Jörg; Jackson, Robin C; Hagemann, Norbert

    2012-06-01

    The comparative efficacy of different perceptual training approaches for the improvement of anticipation was examined using a goalkeeping task from European handball that required the rapid prediction of shot direction. Novice participants (N = 60) were assigned equally to four different training groups and two different control groups (a placebo group and a group who undertook no training). The training groups received either (i) explicit rules to guide anticipation; (ii) direction as to the location of the key anticipatory cues provided either just verbally (verbal cueing) or supplemented with color highlighting (color cueing); or (iii) undertook a matching judgment task to encourage implicit learning. Performance of the groups was compared on an anticipation test administered before training, after the training intervention, under a condition involving evaluative stress, and after a 5-month retention period. The explicit learning, verbal cueing, and implicit learning conditions provided the greatest sustained improvements in performance whereas the group given color cueing performed no better than the control groups. Only the implicit learning group showed performance superior to the control groups under the stress situation. The verbal cueing, color cueing, and implicit learning groups formulated the lowest number of explicit rules related to the critical shoulder cue although the reported use of general cues and rules based on all cues did not differ between any of the groups. Anticipation can be improved through a variety of different perceptual training approaches with the relative efficacy of the different approaches being contingent upon both the time scale and conditions under which learning is assessed.

  19. Visual Perceptual Learning and Models.

    PubMed

    Dosher, Barbara; Lu, Zhong-Lin

    2017-09-15

    Visual perceptual learning through practice or training can significantly improve performance on visual tasks. Originally seen as a manifestation of plasticity in the primary visual cortex, perceptual learning is more readily understood as improvements in the function of brain networks that integrate processes, including sensory representations, decision, attention, and reward, and balance plasticity with system stability. This review considers the primary phenomena of perceptual learning, theories of perceptual learning, and perceptual learning's effect on signal and noise in visual processing and decision. Models, especially computational models, play a key role in behavioral and physiological investigations of the mechanisms of perceptual learning and for understanding, predicting, and optimizing human perceptual processes, learning, and performance. Performance improvements resulting from reweighting or readout of sensory inputs to decision provide a strong theoretical framework for interpreting perceptual learning and transfer that may prove useful in optimizing learning in real-world applications.

  20. Graphemes Sharing Phonetic Features Tend to Induce Similar Synesthetic Colors

    PubMed Central

    Kang, Mi-Jeong; Kim, Yeseul; Shin, Ji-Young; Kim, Chai-Youn

    2017-01-01

    Individuals with grapheme-color synesthesia experience idiosyncratic colors when viewing achromatic letters or digits. Despite large individual differences in grapheme-color association, synesthetes tend to associate graphemes sharing a perceptual feature with similar synesthetic colors. Sound has been suggested as one such feature. In the present study, we investigated whether graphemes of which representative phonemes have similar phonetic features tend to be associated with analogous synesthetic colors. We tested five Korean multilingual synesthetes on a color-matching task using graphemes from Korean, English, and Japanese orthography. We then compared the similarity of synesthetic colors induced by those characters sharing a phonetic feature. Results showed that graphemes associated with the same phonetic feature tend to induce synesthetic color in both within- and cross-script analyses. Moreover, this tendency was consistent for graphemes that are not transliterable into each other as well as graphemes that are. These results suggest that it is the perceptual—i.e., phonetic—properties associated with graphemes, not just conceptual associations such as transliteration, that determine synesthetic color. PMID:28348537

  1. Colorful Bedrock Exposed in a Landslide Scarp

    NASA Image and Video Library

    2016-12-07

    The steep walls of Valles Marineris sometimes fail, creating giant landslides. This provides a clean exposure of the underlying bedrock. This image of the north wall of Ganges Chasma reveals bedrock with diverse colors and textures, representing different geologic units. http://photojournal.jpl.nasa.gov/catalog/PIA21217

  2. Design and Evaluation of Perceptual-based Object Group Selection Techniques

    NASA Astrophysics Data System (ADS)

    Dehmeshki, Hoda

    Selecting groups of objects is a frequent task in graphical user interfaces. It is required prior to many standard operations such as deletion, movement, or modification. Conventional selection techniques are lasso, rectangle selection, and the selection and de-selection of items through the use of modifier keys. These techniques may become time-consuming and error-prone when target objects are densely distributed or when the distances between target objects are large. Perceptual-based selection techniques can considerably improve selection tasks when targets have a perceptual structure, for example when arranged along a line. Current methods to detect such groups use ad hoc grouping algorithms that are not based on results from perception science. Moreover, these techniques do not allow selecting groups with arbitrary arrangements or permit modifying a selection. This dissertation presents two domain-independent perceptual-based systems that address these issues. Based on established group detection models from perception research, the proposed systems detect perceptual groups formed by the Gestalt principles of good continuation and proximity. The new systems provide gesture-based or click-based interaction techniques for selecting groups with curvilinear or arbitrary structures as well as clusters. Moreover, the gesture-based system is adapted for the graph domain to facilitate path selection. This dissertation includes several user studies that show the proposed systems outperform conventional selection techniques when targets form salient perceptual groups and are still competitive when targets are semi-structured.

  3. Demonstration of an ebbinghaus illusion at a memory level: manipulation of the memory size and not the perceptual size.

    PubMed

    Rey, Amandine Eve; Riou, Benoit; Versace, Rémy

    2014-01-01

    Based on recent behavioral and neuroimaging data suggesting that memory and perception are partially based on the same sensorimotor system, the theoretical aim of the present study was to show that it is difficult to dissociate memory mechanisms from perceptual mechanisms other than on the basis of the presence (perceptual processing) or absence (memory processing) of the characteristics of the objects involved in the processing. In line with this assumption, two experiments using an adaptation of the Ebbinghaus illusion paradigm revealed similar effects irrespective of whether the size difference between the inner circles and the surrounding circles was manipulated perceptually (the size difference was perceptually present, Experiment 1) or merely reactivated in memory (the difference was perceptually absent, Experiment 2).

  4. Perceptual learning and human expertise

    NASA Astrophysics Data System (ADS)

    Kellman, Philip J.; Garrigan, Patrick

    2009-06-01

    We consider perceptual learning: experience-induced changes in the way perceivers extract information. Often neglected in scientific accounts of learning and in instruction, perceptual learning is a fundamental contributor to human expertise and is crucial in domains where humans show remarkable levels of attainment, such as language, chess, music, and mathematics. In Section 2, we give a brief history and discuss the relation of perceptual learning to other forms of learning. We consider in Section 3 several specific phenomena, illustrating the scope and characteristics of perceptual learning, including both discovery and fluency effects. We describe abstract perceptual learning, in which structural relationships are discovered and recognized in novel instances that do not share constituent elements or basic features. In Section 4, we consider primary concepts that have been used to explain and model perceptual learning, including receptive field change, selection, and relational recoding. In Section 5, we consider the scope of perceptual learning, contrasting recent research, focused on simple sensory discriminations, with earlier work that emphasized extraction of invariance from varied instances in more complex tasks. Contrary to some recent views, we argue that perceptual learning should not be confined to changes in early sensory analyzers. Phenomena at various levels, we suggest, can be unified by models that emphasize discovery and selection of relevant information. In a final section, we consider the potential role of perceptual learning in educational settings. Most instruction emphasizes facts and procedures that can be verbalized, whereas expertise depends heavily on implicit pattern recognition and selective extraction skills acquired through perceptual learning. We consider reasons why perceptual learning has not been systematically addressed in traditional instruction, and we describe recent successful efforts to create a technology of perceptual

  5. Parallel detection of violations of color constancy

    PubMed Central

    Foster, David H.; Nascimento, Sérgio M. C.; Amano, Kinjiro; Arend, Larry; Linnell, Karina J.; Nieves, Juan Luis; Plet, Sabrina; Foster, Jeffrey S.

    2001-01-01

    The perceived colors of reflecting surfaces generally remain stable despite changes in the spectrum of the illuminating light. This color constancy can be measured operationally by asking observers to distinguish illuminant changes on a scene from changes in the reflecting properties of the surfaces comprising it. It is shown here that during fast illuminant changes, simultaneous changes in spectral reflectance of one or more surfaces in an array of other surfaces can be readily detected almost independent of the numbers of surfaces, suggesting a preattentive, spatially parallel process. This process, which is perfect over a spatial window delimited by the anatomical fovea, may form an early input to a multistage analysis of surface color, providing the visual system with information about a rapidly changing world in advance of the generation of a more elaborate and stable perceptual representation. PMID:11438751

  6. Number of discernible object colors is a conundrum.

    PubMed

    Masaoka, Kenichiro; Berns, Roy S; Fairchild, Mark D; Moghareh Abed, Farhad

    2013-02-01

    Widely varying estimates of the number of discernible object colors have been made by using various methods over the past 100 years. To clarify the source of the discrepancies in the previous, inconsistent estimates, the number of discernible object colors is estimated over a wide range of color temperatures and illuminance levels using several chromatic adaptation models, color spaces, and color difference limens. Efficient and accurate models are used to compute optimal-color solids and count the number of discernible colors. A comprehensive simulation reveals limitations in the ability of current color appearance models to estimate the number of discernible colors even if the color solid is smaller than the optimal-color solid. The estimates depend on the color appearance model, color space, and color difference limen used. The fundamental problem lies in the von Kries-type chromatic adaptation transforms, which have an unknown effect on the ranking of the number of discernible colors at different color temperatures.

  7. Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry

    PubMed Central

    Einhäuser, Wolfgang; Stout, James; Koch, Christof; Carter, Olivia

    2008-01-01

    During sustained viewing of an ambiguous stimulus, an individual's perceptual experience will generally switch between the different possible alternatives rather than stay fixed on one interpretation (perceptual rivalry). Here, we measured pupil diameter while subjects viewed different ambiguous visual and auditory stimuli. For all stimuli tested, pupil diameter increased just before the reported perceptual switch and the relative amount of dilation before this switch was a significant predictor of the subsequent duration of perceptual stability. These results could not be explained by blink or eye-movement effects, the motor response or stimulus driven changes in retinal input. Because pupil dilation reflects levels of norepinephrine (NE) released from the locus coeruleus (LC), we interpret these results as suggestive that the LC–NE complex may play the same role in perceptual selection as in behavioral decision making. PMID:18250340

  8. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation

    PubMed Central

    Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R.; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg

    2016-01-01

    Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words “GREEN” or “RED” were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying “GREEN” or “RED” had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system. PMID:26958463

  9. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation.

    PubMed

    Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg

    2016-01-01

    Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words "GREEN" or "RED" were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying "GREEN" or "RED" had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system.

  10. Color vision in children and the Lanthony New Color Test.

    PubMed

    Ling, Barbara Y; Dain, Stephen J

    2008-01-01

    Much is known about color vision in infants, adolescents, and adults, but very few studies report the changes, which occur in color perception of children in their early schooling years. There is also a shortage of suitable color vision tests for children. This study investigated the changes in color vision of school students between 5-12 years old using the Lanthony New Color Test (NCT). Subjects of all ages were able to complete a shortened form of this test adequately. The Vingrys and King-Smith (1988) method of panel test analysis and Adams and Rodic (1982) color confusion score were adapted to analyze their performance of the test. This study confirmed that there are changes in color perception occurring in this age group. Color perception abilities increased as a function of age and there was also an improvement in the performance on the NCT with age. This can be attributed to both cognitive development and changes occurring to the color vision system.

  11. A Simple Principled Approach for Modeling and Understanding Uniform Color Metrics

    PubMed Central

    Smet, Kevin A.G.; Webster, Michael A.; Whitehead, Lorne A.

    2016-01-01

    An important goal in characterizing human color vision is to order color percepts in a way that captures their similarities and differences. This has resulted in the continuing evolution of “uniform color spaces,” in which the distances within the space represent the perceptual differences between the stimuli. While these metrics are now very successful in predicting how color percepts are scaled, they do so in largely empirical, ad hoc ways, with limited reference to actual mechanisms of color vision. In this article our aim is to instead begin with general and plausible assumptions about color coding, and then develop a model of color appearance that explicitly incorporates them. We show that many of the features of empirically-defined color order systems (such as those of Munsell, Pantone, NCS, and others) as well as many of the basic phenomena of color perception, emerge naturally from fairly simple principles of color information encoding in the visual system and how it can be optimized for the spectral characteristics of the environment. PMID:26974939

  12. Effects of milk powder and its components on texture, yield, and color of a lean poultry meat model system.

    PubMed

    Barbut, S

    2010-06-01

    The effects of whole milk powder, 2 skim milk powders, caseinate, and 2 modified whey proteins (2% protein level in the final product) were evaluated in lean chicken meat batters and compared with controls with and without added lactose. All dairy proteins significantly (P<0.05) reduced cook losses when compared against the controls, with the 2 skim milk powders and modified whey-I showing the best results. Hardness and fracturability were also higher for all test batters compared with controls. Skim milk-II showed the highest fracturability value (21.9 vs. 7.1 N for the control) and was also found to be the most cost-effective ingredient for improving moisture binding and texture; skim milk-I and modified whey-I followed behind. Springiness and fracture distance were higher for all of the dairy proteins, except caseinate, indicating a positive contribution to the lean meat system's elasticity. In terms of color, adding the skim milk powders, modified whey-II, and whole milk powder resulted in lighter cooked meat batters as evidenced by the higher L* values and higher spectra curves.

  13. Probing perceptual antinomies with the watercolor illusion and explaining how the brain resolves them.

    PubMed

    Tanca, Maria; Grossberg, Stephen; Pinna, Baingio

    2010-01-01

    The purpose of this work is to study how the brain solves perceptual antinomies, induced by the watercolor illusion in the color and in the figure-ground segregation domain, when they are present in different parts of the same object. The watercolor illusion shows two main effects: a long-range coloration and an object-hole effect across large enclosed areas (Pinna, 1987, 2005, 2008a, b; Pinna and Grossberg, 2005; Pinna et al., 2001). This illusion strongly enhances the unilateral belongingness of the boundaries (Rubin, 1915) determining grouping and figure-ground segregation more strongly than the well-known Gestalt principles. Due to the watercolor illusion, both the figure and the background assume new properties becoming, respectively, a bulging object and a hole both with a 3-D volumetric appearance (object-hole effect). When the coloration and the object-hole effects induced by the watercolor illusion are opposite (antinomic) within different portions of the same shape, some questions emerge: Do the antinomies split the shape in two parts (a half shape appears as an object and the other half as a hole) or are they solved through a new emergent perceptual result beyond the single effects? Is there a predominance of one component over the other that is less visible or totally invisible? What is perceptible and what is invisible? Is there a wholeness process under conditions where perceptual antinomies coexist? By imparting motion to a watercolored object that gradually should become a hole while overlapping another object placed behind, is the wholeness of the watercolor object weakened or reorganized in a new way? The results of phenomenological experiments suggested that the antinomies tend to be solved through two complement processes of phenomenal wholeness and partialness. These processes are explained in the light of the FACADE neural model of 3-D vision and figure-ground separation (Grossberg, 1994, 2003), notably of how complementary cortical boundary

  14. Selective Pressures Explain Differences in Flower Color among Gentiana lutea Populations.

    PubMed

    Sobral, Mar; Veiga, Tania; Domínguez, Paula; Guitián, Javier A; Guitián, Pablo; Guitián, José M

    2015-01-01

    Flower color variation among plant populations might reflect adaptation to local conditions such as the interacting animal community. In the northwest Iberian Peninsula, flower color of Gentiana lutea varies longitudinally among populations, ranging from orange to yellow. We explored whether flower color is locally adapted and the role of pollinators and seed predators as agents of selection by analyzing the influence of flower color on (i) pollinator visitation rate and (ii) escape from seed predation and (iii) by testing whether differences in pollinator communities correlate with flower color variation across populations. Finally, (iv) we investigated whether variation in selective pressures explains flower color variation among 12 G. lutea populations. Flower color influenced pollinator visits and differences in flower color among populations were related to variation in pollinator communities. Selective pressures on flower color vary among populations and explain part of flower color differences among populations of G. lutea. We conclude that flower color in G. lutea is locally adapted and that pollinators play a role in this adaptation.

  15. Selective Pressures Explain Differences in Flower Color among Gentiana lutea Populations

    PubMed Central

    Domínguez, Paula; Guitián, Javier A.; Guitián, Pablo; Guitián, José M.

    2015-01-01

    Flower color variation among plant populations might reflect adaptation to local conditions such as the interacting animal community. In the northwest Iberian Peninsula, flower color of Gentiana lutea varies longitudinally among populations, ranging from orange to yellow. We explored whether flower color is locally adapted and the role of pollinators and seed predators as agents of selection by analyzing the influence of flower color on (i) pollinator visitation rate and (ii) escape from seed predation and (iii) by testing whether differences in pollinator communities correlate with flower color variation across populations. Finally, (iv) we investigated whether variation in selective pressures explains flower color variation among 12 G. lutea populations. Flower color influenced pollinator visits and differences in flower color among populations were related to variation in pollinator communities. Selective pressures on flower color vary among populations and explain part of flower color differences among populations of G. lutea. We conclude that flower color in G. lutea is locally adapted and that pollinators play a role in this adaptation. PMID:26172378

  16. Effect of grilling and baking on physicochemical and textural properties of tilapia (Oreochromis niloticus) fish burger.

    PubMed

    Bainy, Eduarda Molardi; Bertan, Larissa Canhadas; Corazza, Marcos Lucio; Lenzi, Marcelo Kaminski

    2015-08-01

    The influence of two common cooking methods, grilling and baking, on chemical composition, water retention, fat retention, cooking yield, diameter reduction, expressible water, color and mechanical texture of tilapia (Oreochromis niloticus) fish burgers was investigated. Texture analyses were performed using a Warner-Bratzler test. The fish burger had a softer texture with a lower shear force than other meat products reported in the literature. There were no significant differences in proximate composition, diameter reduction, fat retention and expressible water between the grilled and oven-baked fish burgers. Cooking methods did not affect the cooking times and cooking rates. Warner-Bratzler parameters and color were significantly influenced by the cooking method. Grilling contributed to a shear force and work of shearing increase due to the lower cooking yield and water retention. Raw burgers had the highest L* (69.13 ± 0.96) and lowest b* (17.50 ± 0.75) values. Results indicated that baking yielded a product with better cooking characteristics, such as a desired softer texture with lower shear values (4.01 ± 0.54) and increased water retention (95.82 ± 0.77). Additionally, the baked fish burgers were lighter (higher L*) and less red (lower a*) than the grilled ones.

  17. Color Addition and Subtraction Apps

    NASA Astrophysics Data System (ADS)

    Ruiz, Frances; Ruiz, Michael J.

    2015-10-01

    Color addition and subtraction apps in HTML5 have been developed for students as an online hands-on experience so that they can more easily master principles introduced through traditional classroom demonstrations. The evolution of the additive RGB color model is traced through the early IBM color adapters so that students can proceed step by step in understanding mathematical representations of RGB color. Finally, color addition and subtraction are presented for the X11 colors from web design to illustrate yet another real-life application of color mixing.

  18. Gray Bananas and a Red Letter A - From Synesthetic Sensation to Memory Colors.

    PubMed

    Weiss, Franziska; Greenlee, Mark W; Volberg, Gregor

    2018-01-01

    Grapheme-color synesthesia is a condition in which objectively achromatic graphemes induce concurrent color experiences. While it was long thought that the colors emerge during perception, there is growing support for the view that colors are integral to synesthetes' cognitive representations of graphemes. In this work, we review evidence for two opposing theories positing either a perceptual or cognitive origin of concurrent colors: the cross-activation theory and the conceptual-mediation model. The review covers results on inducer and concurrent color processing as well as findings concerning the brain structure and grapheme-color mappings in synesthetes and trained mappings in nonsynesthetes. The results support different aspects of both theories. Finally, we discuss how research on memory colors could provide a new perspective in the debate about the level of processing at which the synesthetic colors occur.

  19. 2D virtual texture on 3D real object with coded structured light

    NASA Astrophysics Data System (ADS)

    Molinier, Thierry; Fofi, David; Salvi, Joaquim; Gorria, Patrick

    2008-02-01

    Augmented reality is used to improve color segmentation on human body or on precious no touch artifacts. We propose a technique to project a synthesized texture on real object without contact. Our technique can be used in medical or archaeological application. By projecting a suitable set of light patterns onto the surface of a 3D real object and by capturing images with a camera, a large number of correspondences can be found and the 3D points can be reconstructed. We aim to determine these points of correspondence between cameras and projector from a scene without explicit points and normals. We then project an adjusted texture onto the real object surface. We propose a global and automatic method to virtually texture a 3D real object.

  20. Perceptual Factors Influence Visual Search for Meaningful Symbols in Individuals with Intellectual Disabilities and Down Syndrome or Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Wilkinson, Krista M.; McIlvane, William J.

    2013-01-01

    Augmentative and alternative communication (AAC) systems often supplement oral communication for individuals with intellectual and communication disabilities. Research with preschoolers without disabilities has demonstrated that two visual--perceptual factors influence speed and/or accuracy of finding a target: the internal color and spatial…

  1. Color Makes a Difference: Two-Dimensional Object Naming in Literate and Illiterate Subjects

    ERIC Educational Resources Information Center

    Reis, Alexandra; Faisca, Luis; Ingvar, Martin; Petersson, Karl Magnus

    2006-01-01

    Previous work has shown that illiterate subjects are better at naming two-dimensional representations of real objects when presented as colored photos as compared to black and white drawings. This raises the question if color or textural details selectively improve object recognition and naming in illiterate compared to literate subjects. In this…

  2. Perceptual quality prediction on authentically distorted images using a bag of features approach

    PubMed Central

    Ghadiyaram, Deepti; Bovik, Alan C.

    2017-01-01

    Current top-performing blind perceptual image quality prediction models are generally trained on legacy databases of human quality opinion scores on synthetically distorted images. Therefore, they learn image features that effectively predict human visual quality judgments of inauthentic and usually isolated (single) distortions. However, real-world images usually contain complex composite mixtures of multiple distortions. We study the perceptually relevant natural scene statistics of such authentically distorted images in different color spaces and transform domains. We propose a “bag of feature maps” approach that avoids assumptions about the type of distortion(s) contained in an image and instead focuses on capturing consistencies—or departures therefrom—of the statistics of real-world images. Using a large database of authentically distorted images, human opinions of them, and bags of features computed on them, we train a regressor to conduct image quality prediction. We demonstrate the competence of the features toward improving automatic perceptual quality prediction by testing a learned algorithm using them on a benchmark legacy database as well as on a newly introduced distortion-realistic resource called the LIVE In the Wild Image Quality Challenge Database. We extensively evaluate the perceptual quality prediction model and algorithm and show that it is able to achieve good-quality prediction power that is better than other leading models. PMID:28129417

  3. Characterization of Urban Landscape Using Super-Resolution UAS Data, Multiple Textural Scales and Data-Mining Techniques

    NASA Astrophysics Data System (ADS)

    Voss, M.; Blundell, B.

    2015-12-01

    Characterization of urban environments is a high priority for the U.S. Army as battlespaces have transitioned from the predominantly open spaces of the 20th century to urban areas where soldiers have reduced situational awareness due to the diversity and density of their surroundings. Creating high-resolution urban terrain geospatial information will improve mission planning and soldier effectiveness. In this effort, super-resolution true-color imagery was collected with an Altivan NOVA unmanned aerial system over the Muscatatuck Urban Training Center near Butlerville, Indiana on September 16, 2014. Multispectral texture analysis using different algorithms was conducted for urban surface characterization at a variety of scales. Training samples extracted from the true-color and texture images. These data were processed using a variety of meta-algorithms with a decision tree classifier to create a high-resolution urban features map. In addition to improving accuracy over traditional image classification methods, this technique allowed the determination of the most significant textural scales in creating urban terrain maps for tactical exploitation.

  4. Fast Image Texture Classification Using Decision Trees

    NASA Technical Reports Server (NTRS)

    Thompson, David R.

    2011-01-01

    Texture analysis would permit improved autonomous, onboard science data interpretation for adaptive navigation, sampling, and downlink decisions. These analyses would assist with terrain analysis and instrument placement in both macroscopic and microscopic image data products. Unfortunately, most state-of-the-art texture analysis demands computationally expensive convolutions of filters involving many floating-point operations. This makes them infeasible for radiation- hardened computers and spaceflight hardware. A new method approximates traditional texture classification of each image pixel with a fast decision-tree classifier. The classifier uses image features derived from simple filtering operations involving integer arithmetic. The texture analysis method is therefore amenable to implementation on FPGA (field-programmable gate array) hardware. Image features based on the "integral image" transform produce descriptive and efficient texture descriptors. Training the decision tree on a set of training data yields a classification scheme that produces reasonable approximations of optimal "texton" analysis at a fraction of the computational cost. A decision-tree learning algorithm employing the traditional k-means criterion of inter-cluster variance is used to learn tree structure from training data. The result is an efficient and accurate summary of surface morphology in images. This work is an evolutionary advance that unites several previous algorithms (k-means clustering, integral images, decision trees) and applies them to a new problem domain (morphology analysis for autonomous science during remote exploration). Advantages include order-of-magnitude improvements in runtime, feasibility for FPGA hardware, and significant improvements in texture classification accuracy.

  5. When visual perception causes feeling: enhanced cross-modal processing in grapheme-color synesthesia.

    PubMed

    Weiss, Peter H; Zilles, Karl; Fink, Gereon R

    2005-12-01

    In synesthesia, stimulation of one sensory modality (e.g., hearing) triggers a percept in another, non-stimulated sensory modality (e.g., vision). Likewise, perception of a form (e.g., a letter) may induce a color percept (i.e., grapheme-color synesthesia). To date, the neural mechanisms underlying synesthesia remain to be elucidated. We disclosed by fMRI, while controlling for surface color processing, enhanced activity in the left intraparietal cortex during the experience of grapheme-color synesthesia (n = 9). In contrast, the perception of surface color per se activated the color centers in the fusiform gyrus bilaterally. The data support theoretical accounts that grapheme-color synesthesia may originate from enhanced cross-modal binding of form and color. A mismatch of surface color and grapheme induced synesthetically felt color additionally activated the left dorsolateral prefrontal cortex (DLPFC). This suggests that cognitive control processes become active to resolve the perceptual conflict resulting from synesthesia.

  6. Limits on perceptual encoding can be predicted from known receptive field properties of human visual cortex.

    PubMed

    Cohen, Michael A; Rhee, Juliana Y; Alvarez, George A

    2016-01-01

    Human cognition has a limited capacity that is often attributed to the brain having finite cognitive resources, but the nature of these resources is usually not specified. Here, we show evidence that perceptual interference between items can be predicted by known receptive field properties of the visual cortex, suggesting that competition within representational maps is an important source of the capacity limitations of visual processing. Across the visual hierarchy, receptive fields get larger and represent more complex, high-level features. Thus, when presented simultaneously, high-level items (e.g., faces) will often land within the same receptive fields, while low-level items (e.g., color patches) will often not. Using a perceptual task, we found long-range interference between high-level items, but only short-range interference for low-level items, with both types of interference being weaker across hemifields. Finally, we show that long-range interference between items appears to occur primarily during perceptual encoding and not during working memory maintenance. These results are naturally explained by the distribution of receptive fields and establish a link between perceptual capacity limits and the underlying neural architecture. (c) 2015 APA, all rights reserved).

  7. Effects of Perceptual and Contextual Enrichment on Visual Confrontation Naming in Adult Aging

    ERIC Educational Resources Information Center

    Rogalski, Yvonne; Peelle, Jonathan E.; Reilly, Jamie

    2011-01-01

    Purpose: The purpose of this study was to determine the effects of enriching line drawings with color/texture and environmental context as a facilitator of naming speed and accuracy in older adults. Method: Twenty young and 23 older adults named high-frequency picture stimuli from the Boston Naming Test (Kaplan, Goodglass, & Weintraub, 2001) under…

  8. Device-independent color scanning

    NASA Astrophysics Data System (ADS)

    Burger, Rudolph E.

    1993-08-01

    Color calibration technology is being incorporated into both Apple and Microsoft's operating systems. These color savvy operating systems will produce a market pull towards 'smart color' scanners and printers which, in turn, will lead towards a distributed architecture for color management systems (CMS). Today's desktop scanners produce red-green-blue color signals that do not accurately describe the color of the object being scanned. Future scanners will be self-calibrating and communicate their own 'device profile' to the operating system based CMS. This paper describes some of the key technologies required for this next generation of smart color scanners. Topics covered include a comparison of colorimetric and conventional scanning technologies, and the impact of metamerism, dye fluorescence and chromatic adaptation on device independent color scanning.

  9. Colorful Impact Ejecta from Hargraves Crater

    NASA Image and Video Library

    2017-05-08

    The collision that created Hargraves Crater impacted into diverse bedrock lithologies of ancient Mars; the impact ejecta is a rich mix of rock types with different colors and textures, as seen by NASA Mars Reconnaissance Orbiter. The crater is named after Robert Hargraves who discovered and studied meteorite impacts on the Earth. https://photojournal.jpl.nasa.gov/catalog/PIA21609

  10. Human attention filters for single colors.

    PubMed

    Sun, Peng; Chubb, Charles; Wright, Charles E; Sperling, George

    2016-10-25

    The visual images in the eyes contain much more information than the brain can process. An important selection mechanism is feature-based attention (FBA). FBA is best described by attention filters that specify precisely the extent to which items containing attended features are selectively processed and the extent to which items that do not contain the attended features are attenuated. The centroid-judgment paradigm enables quick, precise measurements of such human perceptual attention filters, analogous to transmission measurements of photographic color filters. Subjects use a mouse to locate the centroid-the center of gravity-of a briefly displayed cloud of dots and receive precise feedback. A subset of dots is distinguished by some characteristic, such as a different color, and subjects judge the centroid of only the distinguished subset (e.g., dots of a particular color). The analysis efficiently determines the precise weight in the judged centroid of dots of every color in the display (i.e., the attention filter for the particular attended color in that context). We report 32 attention filters for single colors. Attention filters that discriminate one saturated hue from among seven other equiluminant distractor hues are extraordinarily selective, achieving attended/unattended weight ratios >20:1. Attention filters for selecting a color that differs in saturation or lightness from distractors are much less selective than attention filters for hue (given equal discriminability of the colors), and their filter selectivities are proportional to the discriminability distance of neighboring colors, whereas in the same range hue attention-filter selectivity is virtually independent of discriminabilty.

  11. Human attention filters for single colors

    PubMed Central

    Sun, Peng; Chubb, Charles; Wright, Charles E.; Sperling, George

    2016-01-01

    The visual images in the eyes contain much more information than the brain can process. An important selection mechanism is feature-based attention (FBA). FBA is best described by attention filters that specify precisely the extent to which items containing attended features are selectively processed and the extent to which items that do not contain the attended features are attenuated. The centroid-judgment paradigm enables quick, precise measurements of such human perceptual attention filters, analogous to transmission measurements of photographic color filters. Subjects use a mouse to locate the centroid—the center of gravity—of a briefly displayed cloud of dots and receive precise feedback. A subset of dots is distinguished by some characteristic, such as a different color, and subjects judge the centroid of only the distinguished subset (e.g., dots of a particular color). The analysis efficiently determines the precise weight in the judged centroid of dots of every color in the display (i.e., the attention filter for the particular attended color in that context). We report 32 attention filters for single colors. Attention filters that discriminate one saturated hue from among seven other equiluminant distractor hues are extraordinarily selective, achieving attended/unattended weight ratios >20:1. Attention filters for selecting a color that differs in saturation or lightness from distractors are much less selective than attention filters for hue (given equal discriminability of the colors), and their filter selectivities are proportional to the discriminability distance of neighboring colors, whereas in the same range hue attention-filter selectivity is virtually independent of discriminabilty. PMID:27791040

  12. Sexual affordances, perceptual-motor invariance extraction and intentional nonlinear dynamics: sexually deviant and non-deviant patterns in male subjects.

    PubMed

    Renaud, Patrice; Goyette, Mathieu; Chartier, Sylvain; Zhornitski, Simon; Trottier, Dominique; Rouleau, Joanne-L; Proulx, Jean; Fedoroff, Paul; Bradford, John-P; Dassylva, Benoit; Bouchard, Stephane

    2010-10-01

    Sexual arousal and gaze behavior dynamics are used to characterize deviant sexual interests in male subjects. Pedophile patients and non-deviant subjects are immersed with virtual characters depicting relevant sexual features. Gaze behavior dynamics as indexed from correlation dimensions (D2) appears to be fractal in nature and significantly different from colored noise (surrogate data tests and recurrence plot analyses were performed). This perceptual-motor fractal dynamics parallels sexual arousal and differs from pedophiles to non-deviant subjects when critical sexual information is processed. Results are interpreted in terms of sexual affordance, perceptual invariance extraction and intentional nonlinear dynamics.

  13. Perceptual Grouping Enhances Visual Plasticity

    PubMed Central

    Mastropasqua, Tommaso; Turatto, Massimo

    2013-01-01

    Visual perceptual learning, a manifestation of neural plasticity, refers to improvements in performance on a visual task achieved by training. Attention is known to play an important role in perceptual learning, given that the observer's discriminative ability improves only for those stimulus feature that are attended. However, the distribution of attention can be severely constrained by perceptual grouping, a process whereby the visual system organizes the initial retinal input into candidate objects. Taken together, these two pieces of evidence suggest the interesting possibility that perceptual grouping might also affect perceptual learning, either directly or via attentional mechanisms. To address this issue, we conducted two experiments. During the training phase, participants attended to the contrast of the task-relevant stimulus (oriented grating), while two similar task-irrelevant stimuli were presented in the adjacent positions. One of the two flanking stimuli was perceptually grouped with the attended stimulus as a consequence of its similar orientation (Experiment 1) or because it was part of the same perceptual object (Experiment 2). A test phase followed the training phase at each location. Compared to the task-irrelevant no-grouping stimulus, orientation discrimination improved at the attended location. Critically, a perceptual learning effect equivalent to the one observed for the attended location also emerged for the task-irrelevant grouping stimulus, indicating that perceptual grouping induced a transfer of learning to the stimulus (or feature) being perceptually grouped with the task-relevant one. Our findings indicate that no voluntary effort to direct attention to the grouping stimulus or feature is necessary to enhance visual plasticity. PMID:23301100

  14. Perceptual grouping enhances visual plasticity.

    PubMed

    Mastropasqua, Tommaso; Turatto, Massimo

    2013-01-01

    Visual perceptual learning, a manifestation of neural plasticity, refers to improvements in performance on a visual task achieved by training. Attention is known to play an important role in perceptual learning, given that the observer's discriminative ability improves only for those stimulus feature that are attended. However, the distribution of attention can be severely constrained by perceptual grouping, a process whereby the visual system organizes the initial retinal input into candidate objects. Taken together, these two pieces of evidence suggest the interesting possibility that perceptual grouping might also affect perceptual learning, either directly or via attentional mechanisms. To address this issue, we conducted two experiments. During the training phase, participants attended to the contrast of the task-relevant stimulus (oriented grating), while two similar task-irrelevant stimuli were presented in the adjacent positions. One of the two flanking stimuli was perceptually grouped with the attended stimulus as a consequence of its similar orientation (Experiment 1) or because it was part of the same perceptual object (Experiment 2). A test phase followed the training phase at each location. Compared to the task-irrelevant no-grouping stimulus, orientation discrimination improved at the attended location. Critically, a perceptual learning effect equivalent to the one observed for the attended location also emerged for the task-irrelevant grouping stimulus, indicating that perceptual grouping induced a transfer of learning to the stimulus (or feature) being perceptually grouped with the task-relevant one. Our findings indicate that no voluntary effort to direct attention to the grouping stimulus or feature is necessary to enhance visual plasticity.

  15. Fashion advertisements: a comparison of viewers' perceptual and affective responses to illustrated and photographed stimuli.

    PubMed

    Kimle, P A; Fiore, A M

    1992-12-01

    The perceptual and affective responses of 44 women to actual illustrated and photographed fashion advertisements during focused interviews were explored. Content analysis methods identified categories of response; frequency of response categories for the two media were compared using Fisher's z tests. Significant differences in perceptual responses included greater visual interest created by the use of color in photographs, greater interest in layout and design features of the illustrations, and interest in characteristics of the models in the photographs. Affective response differences included greater preference for photographic advertisements and the garments in them. Contrary to suggestions from professionals in fashion advertising, no significant differences were found in viewers' perceptions of information about the products in the advertisements or perceptions of meaning and aesthetic response.

  16. Selection of optimal spectral sensitivity functions for color filter arrays.

    PubMed

    Parmar, Manu; Reeves, Stanley J

    2010-12-01

    A color image meant for human consumption can be appropriately displayed only if at least three distinct color channels are present. Typical digital cameras acquire three-color images with only one sensor. A color filter array (CFA) is placed on the sensor such that only one color is sampled at a particular spatial location. This sparsely sampled signal is then reconstructed to form a color image with information about all three colors at each location. In this paper, we show that the wavelength sensitivity functions of the CFA color filters affect both the color reproduction ability and the spatial reconstruction quality of recovered images. We present a method to select perceptually optimal color filter sensitivity functions based upon a unified spatial-chromatic sampling framework. A cost function independent of particular scenes is defined that expresses the error between a scene viewed by the human visual system and the reconstructed image that represents the scene. A constrained minimization of the cost function is used to obtain optimal values of color-filter sensitivity functions for several periodic CFAs. The sensitivity functions are shown to perform better than typical RGB and CMY color filters in terms of both the s-CIELAB ∆E error metric and a qualitative assessment.

  17. Perceptual Learning Improves Stereoacuity in Amblyopia

    PubMed Central

    Xi, Jie; Jia, Wu-Li; Feng, Li-Xia; Lu, Zhong-Lin; Huang, Chang-Bing

    2014-01-01

    Purpose. Amblyopia is a developmental disorder that results in both monocular and binocular deficits. Although traditional treatment in clinical practice (i.e., refractive correction, or occlusion by patching and penalization of the fellow eye) is effective in restoring monocular visual acuity, there is little information on how binocular function, especially stereopsis, responds to traditional amblyopia treatment. We aim to evaluate the effects of perceptual learning on stereopsis in observers with amblyopia in the current study. Methods. Eleven observers (21.1 ± 5.1 years, six females) with anisometropic or ametropic amblyopia were trained to judge depth in 10 to 13 sessions. Red–green glasses were used to present three different texture anaglyphs with different disparities but a fixed exposure duration. Stereoacuity was assessed with the Fly Stereo Acuity Test and visual acuity was assessed with the Chinese Tumbling E Chart before and after training. Results. Averaged across observers, training significantly reduced disparity threshold from 776.7″ to 490.4″ (P < 0.01) and improved stereoacuity from 200.3″ to 81.6″ (P < 0.01). Interestingly, visual acuity also significantly improved from 0.44 to 0.35 logMAR (approximately 0.9 lines, P < 0.05) in the amblyopic eye after training. Moreover, the learning effects in two of the three retested observers were largely retained over a 5-month period. Conclusions. Perceptual learning is effective in improving stereo vision in observers with amblyopia. These results, together with previous evidence, suggest that structured monocular and binocular training might be necessary to fully recover degraded visual functions in amblyopia. Chinese Abstract PMID:24508791

  18. A model for the transfer of perceptual-motor skill learning in human behaviors.

    PubMed

    Rosalie, Simon M; Müller, Sean

    2012-09-01

    This paper presents a preliminary model that outlines the mechanisms underlying the transfer of perceptual-motor skill learning in sport and everyday tasks. Perceptual-motor behavior is motivated by performance demands and evolves over time to increase the probability of success through adaptation. Performance demands at the time of an event create a unique transfer domain that specifies a range of potentially successful actions. Transfer comprises anticipatory subconscious and conscious mechanisms. The model also outlines how transfer occurs across a continuum, which depends on the individual's expertise and contextual variables occurring at the incidence of transfer

  19. Textured catalysts and methods of making textured catalysts

    DOEpatents

    Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA

    2007-03-06

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  20. Spatial imaging in color and HDR: prometheus unchained

    NASA Astrophysics Data System (ADS)

    McCann, John J.

    2013-03-01

    The Human Vision and Electronic Imaging Conferences (HVEI) at the IS and T/SPIE Electronic Imaging meetings have brought together research in the fundamentals of both vision and digital technology. This conference has incorporated many color disciplines that have contributed to the theory and practice of today's imaging: color constancy, models of vision, digital output, high-dynamic-range imaging, and the understanding of perceptual mechanisms. Before digital imaging, silver halide color was a pixel-based mechanism. Color films are closely tied to colorimetry, the science of matching pixels in a black surround. The quanta catch of the sensitized silver salts determines the amount of colored dyes in the final print. The rapid expansion of digital imaging over the past 25 years has eliminated the limitations of using small local regions in forming images. Spatial interactions can now generate images more like vision. Since the 1950's, neurophysiology has shown that post-receptor neural processing is based on spatial interactions. These results reinforced the findings of 19th century experimental psychology. This paper reviews the role of HVEI in color, emphasizing the interaction of research on vision and the new algorithms and processes made possible by electronic imaging.