An adaptive pseudo-spectral method for reaction diffusion problems
NASA Technical Reports Server (NTRS)
Bayliss, A.; Gottlieb, D.; Matkowsky, B. J.; Minkoff, M.
1987-01-01
The spectral interpolation error was considered for both the Chebyshev pseudo-spectral and Galerkin approximations. A family of functionals I sub r (u), with the property that the maximum norm of the error is bounded by I sub r (u)/J sub r, where r is an integer and J is the degree of the polynomial approximation, was developed. These functionals are used in the adaptive procedure whereby the problem is dynamically transformed to minimize I sub r (u). The number of collocation points is then chosen to maintain a prescribed error bound. The method is illustrated by various examples from combustion problems in one and two dimensions.
High precision computing with charge domain devices and a pseudo-spectral method therefor
NASA Technical Reports Server (NTRS)
Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor); Fijany, Amir (Inventor); Zak, Michail (Inventor)
1997-01-01
The present invention enhances the bit resolution of a CCD/CID MVM processor by storing each bit of each matrix element as a separate CCD charge packet. The bits of each input vector are separately multiplied by each bit of each matrix element in massive parallelism and the resulting products are combined appropriately to synthesize the correct product. In another aspect of the invention, such arrays are employed in a pseudo-spectral method of the invention, in which partial differential equations are solved by expressing each derivative analytically as matrices, and the state function is updated at each computation cycle by multiplying it by the matrices. The matrices are treated as synaptic arrays of a neural network and the state function vector elements are treated as neurons. In a further aspect of the invention, moving target detection is performed by driving the soliton equation with a vector of detector outputs. The neural architecture consists of two synaptic arrays corresponding to the two differential terms of the soliton-equation and an adder connected to the output thereof and to the output of the detector array to drive the soliton equation.
Seismic waves modeling with the Fourier pseudo-spectral method on massively parallel machines.
NASA Astrophysics Data System (ADS)
Klin, Peter
2015-04-01
The Fourier pseudo-spectral method (FPSM) is an approach for the 3D numerical modeling of the wave propagation, which is based on the discretization of the spatial domain in a structured grid and relies on global spatial differential operators for the solution of the wave equation. This last peculiarity is advantageous from the accuracy point of view but poses difficulties for an efficient implementation of the method to be run on parallel computers with distributed memory architecture. The 1D spatial domain decomposition approach has been so far commonly adopted in the parallel implementations of the FPSM, but it implies an intensive data exchange among all the processors involved in the computation, which can degrade the performance because of communication latencies. Moreover, the scalability of the 1D domain decomposition is limited, since the number of processors can not exceed the number of grid points along the directions in which the domain is partitioned. This limitation inhibits an efficient exploitation of the computational environments with a very large number of processors. In order to overcome the limitations of the 1D domain decomposition we implemented a parallel version of the FPSM based on a 2D domain decomposition, which allows to achieve a higher degree of parallelism and scalability on massively parallel machines with several thousands of processing elements. The parallel programming is essentially achieved using the MPI protocol but OpenMP parts are also included in order to exploit the single processor multi - threading capabilities, when available. The developed tool is aimed at the numerical simulation of the seismic waves propagation and in particular is intended for earthquake ground motion research. We show the scalability tests performed up to 16k processing elements on the IBM Blue Gene/Q computer at CINECA (Italy), as well as the application to the simulation of the earthquake ground motion in the alluvial plain of the Po river (Italy).
A pseudo-spectral method for a non-local KdV-Burgers equation posed on R
NASA Astrophysics Data System (ADS)
de la Hoz, Francisco; Cuesta, Carlota M.
2016-04-01
In this paper, we present a new pseudo-spectral method to solve the initial value problem associated to a non-local KdV-Burgers equation involving a Caputo-type fractional derivative. The basic idea is, using an algebraic map, to transform the whole real line into a bounded interval where we can apply a Fourier expansion. Special attention is given to the correct computation of the fractional derivative in this setting.
Morales, Jorge A.; Leroy, Matthieu; Bos, Wouter J.T.; Schneider, Kai
2014-10-01
A volume penalization approach to simulate magnetohydrodynamic (MHD) flows in confined domains is presented. Here the incompressible visco-resistive MHD equations are solved using parallel pseudo-spectral solvers in Cartesian geometries. The volume penalization technique is an immersed boundary method which is characterized by a high flexibility for the geometry of the considered flow. In the present case, it allows to use other than periodic boundary conditions in a Fourier pseudo-spectral approach. The numerical method is validated and its convergence is assessed for two- and three-dimensional hydrodynamic (HD) and MHD flows, by comparing the numerical results with results from literature and analytical solutions. The test cases considered are two-dimensional Taylor–Couette flow, the z-pinch configuration, three dimensional Orszag–Tang flow, Ohmic-decay in a periodic cylinder, three-dimensional Taylor–Couette flow with and without axial magnetic field and three-dimensional Hartmann-instabilities in a cylinder with an imposed helical magnetic field. Finally, we present a magnetohydrodynamic flow simulation in toroidal geometry with non-symmetric cross section and imposing a helical magnetic field to illustrate the potential of the method.
NASA Astrophysics Data System (ADS)
Morales, Jorge A.; Leroy, Matthieu; Bos, Wouter J. T.; Schneider, Kai
2014-10-01
A volume penalization approach to simulate magnetohydrodynamic (MHD) flows in confined domains is presented. Here the incompressible visco-resistive MHD equations are solved using parallel pseudo-spectral solvers in Cartesian geometries. The volume penalization technique is an immersed boundary method which is characterized by a high flexibility for the geometry of the considered flow. In the present case, it allows to use other than periodic boundary conditions in a Fourier pseudo-spectral approach. The numerical method is validated and its convergence is assessed for two- and three-dimensional hydrodynamic (HD) and MHD flows, by comparing the numerical results with results from literature and analytical solutions. The test cases considered are two-dimensional Taylo-Couette flow, the z-pinch configuration, three dimensional Orszag-Tang flow, Ohmic-decay in a periodic cylinder, three-dimensional Taylo-Couette flow with and without axial magnetic field and three-dimensional Hartmann-instabilities in a cylinder with an imposed helical magnetic field. Finally, we present a magnetohydrodynamic flow simulation in toroidal geometry with non-symmetric cross section and imposing a helical magnetic field to illustrate the potential of the method.
NASA Astrophysics Data System (ADS)
Margairaz, Fabien; Giometto, Marco; Parlange, Marc; Calaf, Marc
2015-11-01
The performance of dealiasing schemes and their computational cost on a pseudo-spectral code are analyzed. Dealiasing is required to limit the error that occurs when two discretized variables are multiplied, polluting the accuracy of the result. In this work three different dealiasing methods are explored: the 2/3 rule, the 3/2 rule, and a high order Fourier smoothing based method. We compare the cost of the traditionally accepted 3/2 rule (Canuto et al., 1988), where an expansion of the computational domain to a larger grid is required, to the cost of the other two techniques that do not require this expansion. This analysis is performed in the framework of Large-Eddy Simulations (LES) of incompressible flows using the constant Smagorinsky sub-grid model with a wall damping function and a wall model based on the log-law. A highly efficient LES code parallelized using a 2D pencil decomposition has been developed. The code employs the traditional pseudo-spectral approach to integrate the incompressible Navier-Stokes equations. Several simulations of a neutral atmospheric boundary layer using different degrees of numerical resolution are considered. Results show a net difference in computational cost between the different techniques without relevant changes in statistics.
Challenges at Petascale for Pseudo-Spectral Methods on Spheres (A Last Hurrah?)
NASA Technical Reports Server (NTRS)
Clune, Thomas
2011-01-01
Conclusions: a) Proper software abstractions should enable rapid-exploration of platform-specific optimizations/ tradeoffs. b) Pseudo-spectra! methods are marginally viable for at least some classes of petascaie problems. i.e., GPU based machine with good bisection would be best. c) Scalability at exascale is possible, but the necessary resolution will make algorithm prohibitively expensive. Efficient implementations of realistic global transposes are mtricate and tedious in MPI. PS at petascaie requires exploration of a variety of strategies for spreading local and remote communic3tions. PGAS allows far simpler implementation and thus rapid exploration of variants.
NASA Astrophysics Data System (ADS)
Sabetghadam, Fereidoun; Soltani, Elshan
2015-10-01
The moving boundary conditions are implemented into the Fourier pseudo-spectral solution of the two-dimensional incompressible Navier-Stokes equations (NSE) in the vorticity-velocity form, using the radial basis functions (RBF). Without explicit definition of an external forcing function, the desired immersed boundary conditions are imposed by direct modification of the convection and diffusion terms. At the beginning of each time-step the solenoidal velocities, satisfying the desired moving boundary conditions, along with a modified vorticity are obtained and used in modification of the convection and diffusion terms of the vorticity evolution equation. Time integration is performed by the explicit fourth-order Runge-Kutta method and the boundary conditions are set at the beginning of each sub-step. The method is applied to a couple of moving boundary problems and more than second-order of accuracy in space is demonstrated for the Reynolds numbers up to Re = 550. Moreover, performance of the method is shown in comparison with the classical Fourier pseudo-spectral method.
NASA Astrophysics Data System (ADS)
Sun, B.; Bi, L.; Yang, P.; Kattawar, G. W.
2011-12-01
We investigate the single-scattering properties of optically soft or tenuous particles (i.e., the relative refractive index is close to unity), which are abundant in nature, such as red blood cells in human body and particulate matters in natural waters. When the size parameter is small, a full wave simulation of light scattering is required for accurate modeling. As the size parameter becomes large (>20), the ray-tracing technique based on geometric optics is well suitable for obtaining the approximate solution of the scattering of light by particles. We use the pseudo-spectral time-domain (PSTD) method and a newly developed physical-geometric optics hybrid (PGOH) method for the solution of light scattering in a wide range of the size parameter. The shape of optically soft particles is assumed to be non-symmetric hexahedra, and the refractive index is assumed to be from 1.01 to 1.2. The accuracy of the PGOH solution for this particle is examined in comparison with the PSTD solution for moderate size parameters. An excellent agreement has been found for the 16 elements of the phase matrices. Therefore, a combination of PSTD and PGOH provides an efficient and accurate simulation tool for the interaction of light and optically soft particles. Special features of the optical properties of nonspherical optically soft particles are discussed.
NASA Astrophysics Data System (ADS)
Sidler, Rolf; Carcione, José M.; Holliger, Klaus
2013-02-01
We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge-Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid-solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.
Sidler, Rolf; Carcione, José M.; Holliger, Klaus
2013-02-15
We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge–Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid–solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.
NASA Astrophysics Data System (ADS)
Munro, Eugene
2013-12-01
In this paper, we will solve the Hamiltonian constraint describing a curved general relativistic spacetime to find initial data describing how a black hole exists in vacuum. This has been done before by other researchers [Ansorg, 2004], and we will be adapting our own methods to an existing pseudo spectral Poisson solver [Gourgoulhon, 2001]. The need for this adaptation arises from improper numerical handling, done by pseudo spectral-methods, of a large part the Hamiltonian constraint equation due to the presence of the black hole singularity. To resolve a portion of this issue up to a given order, we will determine irregularities by executing a polynomial expansion on the Hamiltonian constraint, analytically solving the troublesome components of the equation and subtracting those out of the numerical process. This technique will increase the equation's differentiability and allow the numerical solver to run more efficiently. We will cover all the calculations needed to describe one black hole with arbitrary spin and linear momentum. Our process is easily expanded into cases with n black holes [Brandt, 1997], which we will show in chapter 2. We will implement a spherical harmonic decomposition of the black hole conformal factor, using them as basis functions by which to further expand and dissect the Hamiltonian Constraint equation. In the end, the expansion and subtraction method will be done out to the order of r4, where r is the spherical radius assuming the black hole is at the coordinate origin, making the Hamiltonian equation, which, unaltered, is a C 2 equation, become a C7 equation. Smoothing the Hamiltonian improves numerical precision, especially near the BH where the most interesting physics occurs. The method used in this paper can be further implemented to higher orders of r to yield even smoother conditions. We will test the numerical results of using this method against the existing solver that uses the publicly available Lorene numerical libraries
Numerical stability of pseudo-spectral PIC code generalizations
NASA Astrophysics Data System (ADS)
Godfrey, Brendan B.; Vay, Jean-Luc
2014-10-01
Laser Plasma Accelerator (LPA) particle-in-cell (PIC) simulations are computationally demanding, because they require beam transport over times and distances long compared with the natural scales of the acceleration mechanism and because they are prone to numerical instabilities. To provide greater flexibility in LPA PIC simulations, we have generalized the Pseudo-Spectral Time Domain (PSTD) algorithm to accommodate arbitrary order spatial derivative approximations and substantially longer time steps. Here, we show that, by extending approaches developed by us for other PIC algorithms, numerical Cherenkov instabilities can be suppressed for the generalized PSTD algorithm. We also illustrate the relationships between the generalized PSTD and other PIC algorithms, such as Finite Difference Time Domain (FDTD) and Pseudo-Spectral Analytical Time Domain (PSATD) algorithms. Background information can be found at http://hifweb.lbl.gov/public/BLAST/Godfrey/. Work supported in part by DOE under Contract DE-AC02-05CH11231.
Scaling the Pseudo-Spectral Mountain: Spherical Anelasticity at 10,000 Cores
NASA Astrophysics Data System (ADS)
Featherstone, N. A.
2012-12-01
The last decade has witnessed a blossoming in the use of numerical simulations to examine global-scale dynamo processes operating in stellar convection zones. Increasing availability of computational resources has allowed many insights into these phenomena to be gained through the wide application of the Anelastic Spherical Harmonic (ASH) code in particular. ASH has been applied extensively to the study of solar-like stars; most notably to the various dynamo states attainable within such stars and to the processes that drive and maintain the solar differential rotation. Its application has also provided a window into the inner workings of convection zones with a decidedly less shellular geometry, such as the fully convective, low-mass M stars, or the convective cores of high-mass A- and B-type stars. ASH solves the anelastic MHD equations within a pseudo-spectral framework, employing a spherical harmonic decomposition on spherical shells and either a Chebyshev polynomial or finite-difference formulation in the radial direction. The spectral transforms associated with the pseudo-spectral treatment, and the inherent Poisson solve arising from the anelastic formulation, imply that ASH suffers from the same communication drawbacks associated with many other pseudo-spectral methods. Historically, the efficient application of this code has been limited to the use of roughly 2000 cores for problems with 10243 gridpoints, but recently, a thorough restructuring of ASH has allowed for strong scaling of 10243 class problems out to 17,000 cores. These improvements in scalability arise primarily from a careful load balancing of the Poisson solve and its associated communication pathways, as well as from aggregation of the spectral transform communication. I will discuss in detail the current implementation of ASH, accomplished entirely with MPI, and then touch on why an OpenMP hybridization (recently successful in some pseudo-spectral applications) seems unlikely to yield
Rapid expansion and pseudo spectral implementation for reverse time migration in VTI media
NASA Astrophysics Data System (ADS)
Pestana, Reynam C.; Ursin, Bjørn; Stoffa, Paul L.
2012-06-01
In isotropic media, we use the scalar acoustic wave equation to perform reverse time migration (RTM) of the recorded pressure wavefield data. In anisotropic media, P- and SV-waves are coupled, and the elastic wave equation should be used for RTM. For computational efficiency, a pseudo-acoustic wave equation is often used. This may be solved using a coupled system of second-order partial differential equations. We solve these using a pseudo spectral method and the rapid expansion method (REM) for the explicit time marching. This method generates a degenerate SV-wave in addition to the P-wave arrivals of interest. To avoid this problem, the elastic wave equation for vertical transversely isotropic (VTI) media can be split into separate wave equations for P- and SV-waves. These separate wave equations are stable, and they can be effectively used to model and migrate seismic data in VTI media where |ɛ - δ| is small. The artifact for the SV-wave has also been removed. The independent pseudo-differential wave equations can be solved one for each mode using the pseudo spectral method for the spatial derivatives and the REM for the explicit time advance of the wavefield. We show numerically stable and high-resolution modeling and RTM results for the pure P-wave mode in VTI media.
NASA Astrophysics Data System (ADS)
Pétri, J.
2015-03-01
The close vicinity of neutron stars remains poorly constrained by observations. Although plenty of data are available for the peculiar class of pulsars we are still unable to deduce the underlying plasma distribution in their magnetosphere. In the present paper, we try to unravel the magnetospheric structure starting from basic physics principles and reasonable assumptions about the magnetosphere. Beginning with the monopole force-free case, we compute accurate general relativistic solutions for the electromagnetic field around a slowly rotating magnetized neutron star. Moreover, here we address this problem by including the important effect of plasma screening. This is achieved by solving the time-dependent Maxwell equations in a curved space-time following the 3+1 formalism. We improved our previous numerical code based on pseudo-spectral methods in order to allow for possible discontinuities in the solution. Our algorithm based on a multidomain decomposition of the simulation box belongs to the discontinuous Galerkin finite element methods. We performed several sets of simulations to look for the general relativistic force-free monopole and split monopole solutions. Results show that our code is extremely powerful in handling extended domains of hundredth of light cylinder radii rL. The code has been validated against known exact analytical monopole solutions in flat space-time. We also present semi-analytical calculations for the general relativistic vacuum monopole.
Numerical stability analysis of the pseudo-spectral analytical time-domain PIC algorithm
Godfrey, Brendan B.; Vay, Jean-Luc; Haber, Irving
2014-02-01
The pseudo-spectral analytical time-domain (PSATD) particle-in-cell (PIC) algorithm solves the vacuum Maxwell's equations exactly, has no Courant time-step limit (as conventionally defined), and offers substantial flexibility in plasma and particle beam simulations. It is, however, not free of the usual numerical instabilities, including the numerical Cherenkov instability, when applied to relativistic beam simulations. This paper derives and solves the numerical dispersion relation for the PSATD algorithm and compares the results with corresponding behavior of the more conventional pseudo-spectral time-domain (PSTD) and finite difference time-domain (FDTD) algorithms. In general, PSATD offers superior stability properties over a reasonable range of time steps. More importantly, one version of the PSATD algorithm, when combined with digital filtering, is almost completely free of the numerical Cherenkov instability for time steps (scaled to the speed of light) comparable to or smaller than the axial cell size.
A Spectral Adaptive Mesh Refinement Method for the Burgers equation
NASA Astrophysics Data System (ADS)
Nasr Azadani, Leila; Staples, Anne
2013-03-01
Adaptive mesh refinement (AMR) is a powerful technique in computational fluid dynamics (CFD). Many CFD problems have a wide range of scales which vary with time and space. In order to resolve all the scales numerically, high grid resolutions are required. The smaller the scales the higher the resolutions should be. However, small scales are usually formed in a small portion of the domain or in a special period of time. AMR is an efficient method to solve these types of problems, allowing high grid resolutions where and when they are needed and minimizing memory and CPU time. Here we formulate a spectral version of AMR in order to accelerate simulations of a 1D model for isotropic homogenous turbulence, the Burgers equation, as a first test of this method. Using pseudo spectral methods, we applied AMR in Fourier space. The spectral AMR (SAMR) method we present here is applied to the Burgers equation and the results are compared with the results obtained using standard solution methods performed using a fine mesh.
P, Anbazhagan; Uday, Anjali; Moustafa, Sayed S R; Al-Arifi, Nassir S N
2016-01-01
Ground-motion prediction equations that are used to predict acceleration values are generally developed for a 5% viscous damping ratio. Special structures and structures that use damping devices may have damping ratios other than the conventionally used ratio of 5%. Hence, for such structures, the intensity measures predicted by conventional ground-motion prediction equations need to be converted to a particular level of damping using a damping reduction factor (DRF). DRF is the ratio of the spectral ordinate at 5% damping to the ordinate at a defined level of damping. In this study, the DRF has been defined using the spectral ordinate of pseudo-spectral acceleration and the effect of factors such as the duration of ground motion, magnitude, hypocenter distance, site classification, damping, and period are studied. In this study, an attempt has also been made to develop an empirical model for the DRF that is specifically applicable to the Himalayan region in terms of these predictor variables. A recorded earthquake with 410 horizontal motions was used, with data characterized by magnitudes ranging from 4 to 7.8 and hypocentral distances up to 520 km. The damping was varied from 0.5-30% and the period range considered was 0.02 to 10 s. The proposed model was compared and found to coincide well with models in the existing literature. The proposed model can be used to compute the DRF at any specific period, for any given value of predictor variables. PMID:27611854
Adaptive Algebraic Multigrid Methods
Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S; Ruge, J
2004-04-09
Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.
Accelerated adaptive integration method.
Kaus, Joseph W; Arrar, Mehrnoosh; McCammon, J Andrew
2014-05-15
Conformational changes that occur upon ligand binding may be too slow to observe on the time scales routinely accessible using molecular dynamics simulations. The adaptive integration method (AIM) leverages the notion that when a ligand is either fully coupled or decoupled, according to λ, barrier heights may change, making some conformational transitions more accessible at certain λ values. AIM adaptively changes the value of λ in a single simulation so that conformations sampled at one value of λ seed the conformational space sampled at another λ value. Adapting the value of λ throughout a simulation, however, does not resolve issues in sampling when barriers remain high regardless of the λ value. In this work, we introduce a new method, called Accelerated AIM (AcclAIM), in which the potential energy function is flattened at intermediate values of λ, promoting the exploration of conformational space as the ligand is decoupled from its receptor. We show, with both a simple model system (Bromocyclohexane) and the more complex biomolecule Thrombin, that AcclAIM is a promising approach to overcome high barriers in the calculation of free energies, without the need for any statistical reweighting or additional processors. PMID:24780083
Accelerated Adaptive Integration Method
2015-01-01
Conformational changes that occur upon ligand binding may be too slow to observe on the time scales routinely accessible using molecular dynamics simulations. The adaptive integration method (AIM) leverages the notion that when a ligand is either fully coupled or decoupled, according to λ, barrier heights may change, making some conformational transitions more accessible at certain λ values. AIM adaptively changes the value of λ in a single simulation so that conformations sampled at one value of λ seed the conformational space sampled at another λ value. Adapting the value of λ throughout a simulation, however, does not resolve issues in sampling when barriers remain high regardless of the λ value. In this work, we introduce a new method, called Accelerated AIM (AcclAIM), in which the potential energy function is flattened at intermediate values of λ, promoting the exploration of conformational space as the ligand is decoupled from its receptor. We show, with both a simple model system (Bromocyclohexane) and the more complex biomolecule Thrombin, that AcclAIM is a promising approach to overcome high barriers in the calculation of free energies, without the need for any statistical reweighting or additional processors. PMID:24780083
NASA Astrophysics Data System (ADS)
Hershkovitz, Yaron; Anker, Yaakov; Ben-Dor, Eyal; Schwartz, Guy; Gasith, Avital
2010-05-01
In-stream vegetation is a key ecosystem component in many fluvial ecosystems, having cascading effects on stream conditions and biotic structure. Traditionally, ground-level surveys (e.g. grid and transect analyses) are commonly used for estimating cover of aquatic macrophytes. Nonetheless, this methodological approach is highly time consuming and usually yields information which is practically limited to habitat and sub-reach scales. In contrast, remote-sensing techniques (e.g. satellite imagery and airborne photography), enable collection of large datasets over section, stream and basin scales, in relatively short time and reasonable cost. However, the commonly used spatial high resolution (1m) is often inadequate for examining aquatic vegetation on habitat or sub-reach scales. We examined the utility of a pseudo-spectral methodology, using RGB digital photography for estimating the cover of in-stream vegetation in a small Mediterranean-climate stream. We compared this methodology with that obtained by traditional ground-level grid methodology and with an airborne hyper-spectral remote sensing survey (AISA-ES). The study was conducted along a 2 km section of an intermittent stream (Taninim stream, Israel). When studied, the stream was dominated by patches of watercress (Nasturtium officinale) and mats of filamentous algae (Cladophora glomerata). The extent of vegetation cover at the habitat and section scales (100 and 104 m, respectively) were estimated by the pseudo-spectral methodology, using an airborne Roli camera with a Phase-One P 45 (39 MP) CCD image acquisition unit. The swaths were taken in elevation of about 460 m having a spatial resolution of about 4 cm (NADIR). For measuring vegetation cover at the section scale (104 m) we also used a 'push-broom' AISA-ES hyper-spectral swath having a sensor configuration of 182 bands (350-2500 nm) at elevation of ca. 1,200 m (i.e. spatial resolution of ca. 1 m). Simultaneously, with every swath we used an Analytical
An Open-Source, Pseudo-Spectral Convection Code for O(105) Cores
NASA Astrophysics Data System (ADS)
Featherstone, N. A.
2014-12-01
Spectral algorithms are a popular choice for modeling systems of turbulent, incompressible flow, due in part to their inherent numerical accuracy and also, as in the case of the sphere, geometrical considerations. These advantages must be weighed against the high cost of communication, however, as any time step taken by a spectral method will typically require multiple, global reorganizations (i.e. transposes) of the distributed flow fields and thermal variables. As more processors are employed in the solution of a particular problem, the total computation time decreases, but the number of inter-processor messages initiated increases. It is this property of spectral algorithms that ultimately limits their parallel scalability because, for any given problem size, there exists a sufficiently large process count such that the message initiation time overwhelms any gains in computation time. I will discuss the parallelization of a community-sourced spectral code that has been designed to mitigate this problem by minimizing the number of messages initiated within a single time step. The resulting algorithm possesses efficient strong scalability for problems both small (5123 grid points, 16,000 cores) and large (20483 grid points, 130,000 cores). This code, named Rayleigh, has been designed with the study of planetary and stellar dynamos in mind, and can efficiently simulate anelastic MHD convection within both spherical and Cartesian geometries. Rayleigh is being developed through the Computational Infrastructure for Geodynamics (UC Davis), and will be made publicly available in winter of 2015.
Method For Model-Reference Adaptive Control
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1990-01-01
Relatively simple method of model-reference adaptive control (MRAC) developed from two prior classes of MRAC techniques: signal-synthesis method and parameter-adaption method. Incorporated into unified theory, which yields more general adaptation scheme.
Milne, R.B.
1995-12-01
This thesis describes a new method for the numerical solution of partial differential equations of the parabolic type on an adaptively refined mesh in two or more spatial dimensions. The method is motivated and developed in the context of the level set formulation for the curvature dependent propagation of surfaces in three dimensions. In that setting, it realizes the multiple advantages of decreased computational effort, localized accuracy enhancement, and compatibility with problems containing a range of length scales.
Robust Optimal Adaptive Control Method with Large Adaptive Gain
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2009-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.
Simple method for model reference adaptive control
NASA Technical Reports Server (NTRS)
Seraji, H.
1989-01-01
A simple method is presented for combined signal synthesis and parameter adaptation within the framework of model reference adaptive control theory. The results are obtained using a simple derivation based on an improved Liapunov function.
A new orientation-adaptive interpolation method.
Wang, Qing; Ward, Rabab Kreidieh
2007-04-01
We propose an isophote-oriented, orientation-adaptive interpolation method. The proposed method employs an interpolation kernel that adapts to the local orientation of isophotes, and the pixel values are obtained through an oriented, bilinear interpolation. We show that, by doing so, the curvature of the interpolated isophotes is reduced, and, thus, zigzagging artifacts are largely suppressed. Analysis and experiments show that images interpolated using the proposed method are visually pleasing and almost artifact free. PMID:17405424
The Method of Adaptive Comparative Judgement
ERIC Educational Resources Information Center
Pollitt, Alastair
2012-01-01
Adaptive Comparative Judgement (ACJ) is a modification of Thurstone's method of comparative judgement that exploits the power of adaptivity, but in scoring rather than testing. Professional judgement by teachers replaces the marking of tests; a judge is asked to compare the work of two students and simply to decide which of them is the better.…
Adaptive mesh refinement with spectral accuracy for magnetohydrodynamics in two space dimensions
NASA Astrophysics Data System (ADS)
Rosenberg, D.; Pouquet, A.; Mininni, P. D.
2007-08-01
We examine the effect of accuracy of high-order spectral element methods, with or without adaptive mesh refinement (AMR), in the context of a classical configuration of magnetic reconnection in two space dimensions, the so-called Orszag-Tang (OT) vortex made up of a magnetic X-point centred on a stagnation point of the velocity. A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate this problem. The MHD solver is explicit, and uses the Elsässer formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described elsewhere in the fluid context (Rosenberg et al 2006 J. Comput. Phys. 215 59-80) the code allows both statically refined and dynamically refined grids. Tests of the algorithm using analytic solutions are described, and comparisons of the OT solutions with pseudo-spectral computations are performed. We demonstrate for moderate Reynolds numbers that the algorithms using both static and refined grids reproduce the pseudo-spectral solutions quite well. We show that low-order truncation—even with a comparable number of global degrees of freedom—fails to correctly model some strong (sup-norm) quantities in this problem, even though it satisfies adequately the weak (integrated) balance diagnostics.
Variational method for adaptive grid generation
Brackbill, J.U.
1983-01-01
A variational method for generating adaptive meshes is described. Functionals measuring smoothness, skewness, orientation, and the Jacobian are minimized to generate a mapping from a rectilinear domain in natural coordinate to an arbitrary domain in physical coordinates. From the mapping, a mesh is easily constructed. In using the method to adaptively zone computational problems, as few as one third the number of mesh points are required in each coordinate direction compared with a uniformly zoned mesh.
Adaptive Finite Element Methods in Geodynamics
NASA Astrophysics Data System (ADS)
Davies, R.; Davies, H.; Hassan, O.; Morgan, K.; Nithiarasu, P.
2006-12-01
Adaptive finite element methods are presented for improving the quality of solutions to two-dimensional (2D) and three-dimensional (3D) convection dominated problems in geodynamics. The methods demonstrate the application of existing technology in the engineering community to problems within the `solid' Earth sciences. Two-Dimensional `Adaptive Remeshing': The `remeshing' strategy introduced in 2D adapts the mesh automatically around regions of high solution gradient, yielding enhanced resolution of the associated flow features. The approach requires the coupling of an automatic mesh generator, a finite element flow solver and an error estimator. In this study, the procedure is implemented in conjunction with the well-known geodynamical finite element code `ConMan'. An unstructured quadrilateral mesh generator is utilised, with mesh adaptation accomplished through regeneration. This regeneration employs information provided by an interpolation based local error estimator, obtained from the computed solution on an existing mesh. The technique is validated by solving thermal and thermo-chemical problems with known benchmark solutions. In a purely thermal context, results illustrate that the method is highly successful, improving solution accuracy whilst increasing computational efficiency. For thermo-chemical simulations the same conclusions can be drawn. However, results also demonstrate that the grid based methods employed for simulating the compositional field are not competitive with the other methods (tracer particle and marker chain) currently employed in this field, even at the higher spatial resolutions allowed by the adaptive grid strategies. Three-Dimensional Adaptive Multigrid: We extend the ideas from our 2D work into the 3D realm in the context of a pre-existing 3D-spherical mantle dynamics code, `TERRA'. In its original format, `TERRA' is computationally highly efficient since it employs a multigrid solver that depends upon a grid utilizing a clever
NASA Astrophysics Data System (ADS)
Pearce, J. D.; Esler, J. G.
2010-10-01
A pseudo-spectral algorithm is presented for the solution of the rotating Green-Naghdi shallow water equations in two spatial dimensions. The equations are first written in vorticity-divergence form, in order to exploit the fact that time-derivatives then appear implicitly in the divergence equation only. A nonlinear equation must then be solved at each time-step in order to determine the divergence tendency. The nonlinear equation is solved by means of a simultaneous iteration in spectral space to determine each Fourier component. The key to the rapid convergence of the iteration is the use of a good initial guess for the divergence tendency, which is obtained from polynomial extrapolation of the solution obtained at previous time-levels. The algorithm is therefore best suited to be used with a standard multi-step time-stepping scheme (e.g. leap-frog). Two test cases are presented to validate the algorithm for initial value problems on a square periodic domain. The first test is to verify cnoidal wave speeds in one-dimension against analytical results. The second test is to ensure that the Miles-Salmon potential vorticity is advected as a parcel-wise conserved tracer throughout the nonlinear evolution of a perturbed jet subject to shear instability. The algorithm is demonstrated to perform well in each test. The resulting numerical model is expected to be of use in identifying paradigmatic behavior in mesoscale flows in the atmosphere and ocean in which both vortical, nonlinear and dispersive effects are important.
A New Adaptive Image Denoising Method
NASA Astrophysics Data System (ADS)
Biswas, Mantosh; Om, Hari
2016-03-01
In this paper, a new adaptive image denoising method is proposed that follows the soft-thresholding technique. In our method, a new threshold function is also proposed, which is determined by taking the various combinations of noise level, noise-free signal variance, subband size, and decomposition level. It is simple and adaptive as it depends on the data-driven parameters estimation in each subband. The state-of-the-art denoising methods viz. VisuShrink, SureShrink, BayesShrink, WIDNTF and IDTVWT are not able to modify the coefficients in an efficient manner to provide the good quality of image. Our method removes the noise from the noisy image significantly and provides better visual quality of an image.
Domain adaptive boosting method and its applications
NASA Astrophysics Data System (ADS)
Geng, Jie; Miao, Zhenjiang
2015-03-01
Differences of data distributions widely exist among datasets, i.e., domains. For many pattern recognition, nature language processing, and content-based analysis systems, a decrease in performance caused by the domain differences between the training and testing datasets is still a notable problem. We propose a domain adaptation method called domain adaptive boosting (DAB). It is based on the AdaBoost approach with extensions to cover the domain differences between the source and target domains. Two main stages are contained in this approach: source-domain clustering and source-domain sample selection. By iteratively adding the selected training samples from the source domain, the discrimination model is able to achieve better domain adaptation performance based on a small validation set. The DAB algorithm is suitable for the domains with large scale samples and easy to extend for multisource adaptation. We implement this method on three computer vision systems: the skin detection model in single images, the video concept detection model, and the object classification model. In the experiments, we compare the performances of several commonly used methods and the proposed DAB. Under most situations, the DAB is superior.
Structured adaptive grid generation using algebraic methods
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, Bharat K.; Roger, R. P.; Chan, Stephen C.
1993-01-01
The accuracy of the numerical algorithm depends not only on the formal order of approximation but also on the distribution of grid points in the computational domain. Grid adaptation is a procedure which allows optimal grid redistribution as the solution progresses. It offers the prospect of accurate flow field simulations without the use of an excessively timely, computationally expensive, grid. Grid adaptive schemes are divided into two basic categories: differential and algebraic. The differential method is based on a variational approach where a function which contains a measure of grid smoothness, orthogonality and volume variation is minimized by using a variational principle. This approach provided a solid mathematical basis for the adaptive method, but the Euler-Lagrange equations must be solved in addition to the original governing equations. On the other hand, the algebraic method requires much less computational effort, but the grid may not be smooth. The algebraic techniques are based on devising an algorithm where the grid movement is governed by estimates of the local error in the numerical solution. This is achieved by requiring the points in the large error regions to attract other points and points in the low error region to repel other points. The development of a fast, efficient, and robust algebraic adaptive algorithm for structured flow simulation applications is presented. This development is accomplished in a three step process. The first step is to define an adaptive weighting mesh (distribution mesh) on the basis of the equidistribution law applied to the flow field solution. The second, and probably the most crucial step, is to redistribute grid points in the computational domain according to the aforementioned weighting mesh. The third and the last step is to reevaluate the flow property by an appropriate search/interpolate scheme at the new grid locations. The adaptive weighting mesh provides the information on the desired concentration
Parallel adaptive wavelet collocation method for PDEs
Nejadmalayeri, Alireza; Vezolainen, Alexei; Brown-Dymkoski, Eric; Vasilyev, Oleg V.
2015-10-01
A parallel adaptive wavelet collocation method for solving a large class of Partial Differential Equations is presented. The parallelization is achieved by developing an asynchronous parallel wavelet transform, which allows one to perform parallel wavelet transform and derivative calculations with only one data synchronization at the highest level of resolution. The data are stored using tree-like structure with tree roots starting at a priori defined level of resolution. Both static and dynamic domain partitioning approaches are developed. For the dynamic domain partitioning, trees are considered to be the minimum quanta of data to be migrated between the processes. This allows fully automated and efficient handling of non-simply connected partitioning of a computational domain. Dynamic load balancing is achieved via domain repartitioning during the grid adaptation step and reassigning trees to the appropriate processes to ensure approximately the same number of grid points on each process. The parallel efficiency of the approach is discussed based on parallel adaptive wavelet-based Coherent Vortex Simulations of homogeneous turbulence with linear forcing at effective non-adaptive resolutions up to 2048{sup 3} using as many as 2048 CPU cores.
An adaptive selective frequency damping method
NASA Astrophysics Data System (ADS)
Jordi, Bastien; Cotter, Colin; Sherwin, Spencer
2015-03-01
The selective frequency damping (SFD) method is used to obtain unstable steady-state solutions of dynamical systems. The stability of this method is governed by two parameters that are the control coefficient and the filter width. Convergence is not guaranteed for arbitrary choice of these parameters. Even when the method does converge, the time necessary to reach a steady-state solution may be very long. We present an adaptive SFD method. We show that by modifying the control coefficient and the filter width all along the solver execution, we can reach an optimum convergence rate. This method is based on successive approximations of the dominant eigenvalue of the flow studied. We design a one-dimensional model to select SFD parameters that enable us to control the evolution of the least stable eigenvalue of the system. These parameters are then used for the application of the SFD method to the multi-dimensional flow problem. We apply this adaptive method to a set of classical test cases of computational fluid dynamics and show that the steady-state solutions obtained are similar to what can be found in the literature. Then we apply it to a specific vortex dominated flow (of interest for the automotive industry) whose stability had never been studied before. Seventh Framework Programme of the European Commission - ANADE project under Grant Contract PITN-GA-289428.
An Adaptive VOF Method on Unstructured Grid
NASA Astrophysics Data System (ADS)
Wu, L. L.; Huang, M.; Chen, B.
2011-09-01
In order to improve the accuracy of interface capturing and keeping the computational efficiency, an adaptive VOF method on unstructured grid is proposed in this paper. The volume fraction in each cell is regarded as the criterion to locally refine the interface cell. With the movement of interface, new interface cells (0 ≤ f ≤ 1) are subdivided into child cells, while those child cells that no longer contain interface will be merged back into the original parent cell. In order to avoid the complicated redistribution of volume fraction during the subdivision and amalgamation procedure, a predictor-corrector algorithm is proposed to implement the subdivision and amalgamation procedures only in empty or full cell ( f = 0 or 1). Thus volume fraction in the new cell can take the value from the original cell directly, and the interpolation of the interface is avoided. The advantage of this method is that the re-generation of the whole grid system is not necessary, so its implementation is very efficient. Moreover, an advection flow test of a hollow square was performed, and the relative shape error of the result obtained by adaptive mesh is smaller than those by non-refined grid, which verifies the validation of our method.
Ensemble transform sensitivity method for adaptive observations
NASA Astrophysics Data System (ADS)
Zhang, Yu; Xie, Yuanfu; Wang, Hongli; Chen, Dehui; Toth, Zoltan
2016-01-01
The Ensemble Transform (ET) method has been shown to be useful in providing guidance for adaptive observation deployment. It predicts forecast error variance reduction for each possible deployment using its corresponding transformation matrix in an ensemble subspace. In this paper, a new ET-based sensitivity (ETS) method, which calculates the gradient of forecast error variance reduction in terms of analysis error variance reduction, is proposed to specify regions for possible adaptive observations. ETS is a first order approximation of the ET; it requires just one calculation of a transformation matrix, increasing computational efficiency (60%-80% reduction in computational cost). An explicit mathematical formulation of the ETS gradient is derived and described. Both the ET and ETS methods are applied to the Hurricane Irene (2011) case and a heavy rainfall case for comparison. The numerical results imply that the sensitive areas estimated by the ETS and ET are similar. However, ETS is much more efficient, particularly when the resolution is higher and the number of ensemble members is larger.
Adaptive characterization method for desktop color printers
NASA Astrophysics Data System (ADS)
Shen, Hui-Liang; Zheng, Zhi-Huan; Jin, Chong-Chao; Du, Xin; Shao, Si-Jie; Xin, John H.
2013-04-01
With the rapid development of multispectral imaging technique, it is desired that the spectral color can be accurately reproduced using desktop color printers. However, due to the specific spectral gamuts determined by printer inks, it is almost impossible to exactly replicate the reflectance spectra in other media. In addition, as ink densities can not be individually controlled, desktop printers can only be regarded as red-green-blue devices, making physical models unfeasible. We propose a locally adaptive method, which consists of both forward and inverse models, for desktop printer characterization. In the forward model, we establish the adaptive transform between control values and reflectance spectrum on individual cellular subsets by using weighted polynomial regression. In the inverse model, we first determine the candidate space of the control values based on global inverse regression and then compute the optimal control values by minimizing the color difference between the actual spectrum and the predicted spectrum via forward transform. Experimental results show that the proposed method can reproduce colors accurately for different media under multiple illuminants.
Adaptive method with intercessory feedback control for an intelligent agent
Goldsmith, Steven Y.
2004-06-22
An adaptive architecture method with feedback control for an intelligent agent provides for adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. An adaptive architecture method with feedback control for multiple intelligent agents provides for coordinating and adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. Re-programming of the adaptive architecture is through a nexus which coordinates reflexive and deliberator components.
Adaptive Accommodation Control Method for Complex Assembly
NASA Astrophysics Data System (ADS)
Kang, Sungchul; Kim, Munsang; Park, Shinsuk
Robotic systems have been used to automate assembly tasks in manufacturing and in teleoperation. Conventional robotic systems, however, have been ineffective in controlling contact force in multiple contact states of complex assemblythat involves interactions between complex-shaped parts. Unlike robots, humans excel at complex assembly tasks by utilizing their intrinsic impedance, forces and torque sensation, and tactile contact clues. By examining the human behavior in assembling complex parts, this study proposes a novel geometry-independent control method for robotic assembly using adaptive accommodation (or damping) algorithm. Two important conditions for complex assembly, target approachability and bounded contact force, can be met by the proposed control scheme. It generates target approachable motion that leads the object to move closer to a desired target position, while contact force is kept under a predetermined value. Experimental results from complex assembly tests have confirmed the feasibility and applicability of the proposed method.
Adapting implicit methods to parallel processors
Reeves, L.; McMillin, B.; Okunbor, D.; Riggins, D.
1994-12-31
When numerically solving many types of partial differential equations, it is advantageous to use implicit methods because of their better stability and more flexible parameter choice, (e.g. larger time steps). However, since implicit methods usually require simultaneous knowledge of the entire computational domain, these methods axe difficult to implement directly on distributed memory parallel processors. This leads to infrequent use of implicit methods on parallel/distributed systems. The usual implementation of implicit methods is inefficient due to the nature of parallel systems where it is common to take the computational domain and distribute the grid points over the processors so as to maintain a relatively even workload per processor. This creates a problem at the locations in the domain where adjacent points are not on the same processor. In order for the values at these points to be calculated, messages have to be exchanged between the corresponding processors. Without special adaptation, this will result in idle processors during part of the computation, and as the number of idle processors increases, the lower the effective speed improvement by using a parallel processor.
Linearly-Constrained Adaptive Signal Processing Methods
NASA Astrophysics Data System (ADS)
Griffiths, Lloyd J.
1988-01-01
In adaptive least-squares estimation problems, a desired signal d(n) is estimated using a linear combination of L observation values samples xi (n), x2(n), . . . , xL-1(n) and denoted by the vector X(n). The estimate is formed as the inner product of this vector with a corresponding L-dimensional weight vector W. One particular weight vector of interest is Wopt which minimizes the mean-square between d(n) and the estimate. In this context, the term `mean-square difference' is a quadratic measure such as statistical expectation or time average. The specific value of W which achieves the minimum is given by the prod-uct of the inverse data covariance matrix and the cross-correlation between the data vector and the desired signal. The latter is often referred to as the P-vector. For those cases in which time samples of both the desired and data vector signals are available, a variety of adaptive methods have been proposed which will guarantee that an iterative weight vector Wa(n) converges (in some sense) to the op-timal solution. Two which have been extensively studied are the recursive least-squares (RLS) method and the LMS gradient approximation approach. There are several problems of interest in the communication and radar environment in which the optimal least-squares weight set is of interest and in which time samples of the desired signal are not available. Examples can be found in array processing in which only the direction of arrival of the desired signal is known and in single channel filtering where the spectrum of the desired response is known a priori. One approach to these problems which has been suggested is the P-vector algorithm which is an LMS-like approximate gradient method. Although it is easy to derive the mean and variance of the weights which result with this algorithm, there has never been an identification of the corresponding underlying error surface which the procedure searches. The purpose of this paper is to suggest an alternative
An adaptive SPH method for strong shocks
NASA Astrophysics Data System (ADS)
Sigalotti, Leonardo Di G.; López, Hender; Trujillo, Leonardo
2009-09-01
We propose an alternative SPH scheme to usual SPH Godunov-type methods for simulating supersonic compressible flows with sharp discontinuities. The method relies on an adaptive density kernel estimation (ADKE) algorithm, which allows the width of the kernel interpolant to vary locally in space and time so that the minimum necessary smoothing is applied in regions of low density. We have performed a von Neumann stability analysis of the SPH equations for an ideal gas and derived the corresponding dispersion relation in terms of the local width of the kernel. Solution of the dispersion relation in the short wavelength limit shows that stability is achieved for a wide range of the ADKE parameters. Application of the method to high Mach number shocks confirms the predictions of the linear analysis. Examples of the resolving power of the method are given for a set of difficult problems, involving the collision of two strong shocks, the strong shock-tube test, and the interaction of two blast waves.
Adaptive wavelet methods - Matrix-vector multiplication
NASA Astrophysics Data System (ADS)
Černá, Dana; Finěk, Václav
2012-12-01
The design of most adaptive wavelet methods for elliptic partial differential equations follows a general concept proposed by A. Cohen, W. Dahmen and R. DeVore in [3, 4]. The essential steps are: transformation of the variational formulation into the well-conditioned infinite-dimensional l2 problem, finding of the convergent iteration process for the l2 problem and finally derivation of its finite dimensional version which works with an inexact right hand side and approximate matrix-vector multiplications. In our contribution, we shortly review all these parts and wemainly pay attention to approximate matrix-vector multiplications. Effective approximation of matrix-vector multiplications is enabled by an off-diagonal decay of entries of the wavelet stiffness matrix. We propose here a new approach which better utilize actual decay of matrix entries.
Adaptive model training system and method
Bickford, Randall L; Palnitkar, Rahul M; Lee, Vo
2014-04-15
An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.
Adaptive model training system and method
Bickford, Randall L; Palnitkar, Rahul M
2014-11-18
An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.
Online Adaptive Replanning Method for Prostate Radiotherapy
Ahunbay, Ergun E.; Peng Cheng; Holmes, Shannon; Godley, Andrew; Lawton, Colleen; Li, X. Allen
2010-08-01
Purpose: To report the application of an adaptive replanning technique for prostate cancer radiotherapy (RT), consisting of two steps: (1) segment aperture morphing (SAM), and (2) segment weight optimization (SWO), to account for interfraction variations. Methods and Materials: The new 'SAM+SWO' scheme was retroactively applied to the daily CT images acquired for 10 prostate cancer patients on a linear accelerator and CT-on-Rails combination during the course of RT. Doses generated by the SAM+SWO scheme based on the daily CT images were compared with doses generated after patient repositioning using the current planning target volume (PTV) margin (5 mm, 3 mm toward rectum) and a reduced margin (2 mm), along with full reoptimization scans based on the daily CT images to evaluate dosimetry benefits. Results: For all cases studied, the online replanning method provided significantly better target coverage when compared with repositioning with reduced PTV (13% increase in minimum prostate dose) and improved organ sparing when compared with repositioning with regular PTV (13% decrease in the generalized equivalent uniform dose of rectum). The time required to complete the online replanning process was 6 {+-} 2 minutes. Conclusion: The proposed online replanning method can be used to account for interfraction variations for prostate RT with a practically acceptable time frame (5-10 min) and with significant dosimetric benefits. On the basis of this study, the developed online replanning scheme is being implemented in the clinic for prostate RT.
Adaptive numerical methods for partial differential equations
Cololla, P.
1995-07-01
This review describes a structured approach to adaptivity. The Automated Mesh Refinement (ARM) algorithms developed by M Berger are described, touching on hyperbolic and parabolic applications. Adaptivity is achieved by overlaying finer grids only in areas flagged by a generalized error criterion. The author discusses some of the issues involved in abutting disparate-resolution grids, and demonstrates that suitable algorithms exist for dissipative as well as hyperbolic systems.
Principles and Methods of Adapted Physical Education.
ERIC Educational Resources Information Center
Arnheim, Daniel D.; And Others
Programs in adapted physical education are presented preceded by a background of services for the handicapped, by the psychosocial implications of disability, and by the growth and development of the handicapped. Elements of conducting programs discussed are organization and administration, class organization, facilities, exercise programs…
QUEST - A Bayesian adaptive psychometric method
NASA Technical Reports Server (NTRS)
Watson, A. B.; Pelli, D. G.
1983-01-01
An adaptive psychometric procedure that places each trial at the current most probable Bayesian estimate of threshold is described. The procedure takes advantage of the common finding that the human psychometric function is invariant in form when expressed as a function of log intensity. The procedure is simple, fast, and efficient, and may be easily implemented on any computer.
Adaptive method of realizing natural gradient learning for multilayer perceptrons.
Amari, S; Park, H; Fukumizu, K
2000-06-01
The natural gradient learning method is known to have ideal performances for on-line training of multilayer perceptrons. It avoids plateaus, which give rise to slow convergence of the backpropagation method. It is Fisher efficient, whereas the conventional method is not. However, for implementing the method, it is necessary to calculate the Fisher information matrix and its inverse, which is practically very difficult. This article proposes an adaptive method of directly obtaining the inverse of the Fisher information matrix. It generalizes the adaptive Gauss-Newton algorithms and provides a solid theoretical justification of them. Simulations show that the proposed adaptive method works very well for realizing natural gradient learning. PMID:10935719
Solution-adaptive finite element method in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1993-01-01
Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.
Adaptive method for electron bunch profile prediction
NASA Astrophysics Data System (ADS)
Scheinker, Alexander; Gessner, Spencer
2015-10-01
We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial control system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET.
Adaptive method for electron bunch profile prediction
Scheinker, Alexander; Gessner, Spencer
2015-10-01
We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial control system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET. © 2015 authors. Published by the American Physical Society.
Assessing Adaptive Instructional Design Tools and Methods in ADAPT[IT].
ERIC Educational Resources Information Center
Eseryel, Deniz; Spector, J. Michael
ADAPT[IT] (Advanced Design Approach for Personalized Training - Interactive Tools) is a European project within the Information Society Technologies program that is providing design methods and tools to guide a training designer according to the latest cognitive science and standardization principles. ADAPT[IT] addresses users in two significantly…
A New Adaptive Image Denoising Method Based on Neighboring Coefficients
NASA Astrophysics Data System (ADS)
Biswas, Mantosh; Om, Hari
2016-03-01
Many good techniques have been discussed for image denoising that include NeighShrink, improved adaptive wavelet denoising method based on neighboring coefficients (IAWDMBNC), improved wavelet shrinkage technique for image denoising (IWST), local adaptive wiener filter (LAWF), wavelet packet thresholding using median and wiener filters (WPTMWF), adaptive image denoising method based on thresholding (AIDMT). These techniques are based on local statistical description of the neighboring coefficients in a window. These methods however do not give good quality of the images since they cannot modify and remove too many small wavelet coefficients simultaneously due to the threshold. In this paper, a new image denoising method is proposed that shrinks the noisy coefficients using an adaptive threshold. Our method overcomes these drawbacks and it has better performance than the NeighShrink, IAWDMBNC, IWST, LAWF, WPTMWF, and AIDMT denoising methods.
Moving and adaptive grid methods for compressible flows
NASA Technical Reports Server (NTRS)
Trepanier, Jean-Yves; Camarero, Ricardo
1995-01-01
This paper describes adaptive grid methods developed specifically for compressible flow computations. The basic flow solver is a finite-volume implementation of Roe's flux difference splitting scheme or arbitrarily moving unstructured triangular meshes. The grid adaptation is performed according to geometric and flow requirements. Some results are included to illustrate the potential of the methodology.
An adaptive pseudospectral method for discontinuous problems
NASA Technical Reports Server (NTRS)
Augenbaum, Jeffrey M.
1988-01-01
The accuracy of adaptively chosen, mapped polynomial approximations is studied for functions with steep gradients or discontinuities. It is shown that, for steep gradient functions, one can obtain spectral accuracy in the original coordinate system by using polynomial approximations in a transformed coordinate system with substantially fewer collocation points than are necessary using polynomial expansion directly in the original, physical, coordinate system. It is also shown that one can avoid the usual Gibbs oscillation associated with steep gradient solutions of hyperbolic pde's by approximation in suitably chosen coordinate systems. Continuous, high gradient solutions are computed with spectral accuracy (as measured in the physical coordinate system). Discontinuous solutions associated with nonlinear hyperbolic equations can be accurately computed by using an artificial viscosity chosen to smooth out the solution in the mapped, computational domain. Thus, shocks can be effectively resolved on a scale that is subgrid to the resolution available with collocation only in the physical domain. Examples with Fourier and Chebyshev collocation are given.
Adaptable radiation monitoring system and method
Archer, Daniel E.; Beauchamp, Brock R.; Mauger, G. Joseph; Nelson, Karl E.; Mercer, Michael B.; Pletcher, David C.; Riot, Vincent J.; Schek, James L.; Knapp, David A.
2006-06-20
A portable radioactive-material detection system capable of detecting radioactive sources moving at high speeds. The system has at least one radiation detector capable of detecting gamma-radiation and coupled to an MCA capable of collecting spectral data in very small time bins of less than about 150 msec. A computer processor is connected to the MCA for determining from the spectral data if a triggering event has occurred. Spectral data is stored on a data storage device, and a power source supplies power to the detection system. Various configurations of the detection system may be adaptably arranged for various radiation detection scenarios. In a preferred embodiment, the computer processor operates as a server which receives spectral data from other networked detection systems, and communicates the collected data to a central data reporting system.
Adaptive computational methods for aerothermal heating analysis
NASA Technical Reports Server (NTRS)
Price, John M.; Oden, J. Tinsley
1988-01-01
The development of adaptive gridding techniques for finite-element analysis of fluid dynamics equations is described. The developmental work was done with the Euler equations with concentration on shock and inviscid flow field capturing. Ultimately this methodology is to be applied to a viscous analysis for the purpose of predicting accurate aerothermal loads on complex shapes subjected to high speed flow environments. The development of local error estimate strategies as a basis for refinement strategies is discussed, as well as the refinement strategies themselves. The application of the strategies to triangular elements and a finite-element flux-corrected-transport numerical scheme are presented. The implementation of these strategies in the GIM/PAGE code for 2-D and 3-D applications is documented and demonstrated.
Adaptive mesh strategies for the spectral element method
NASA Technical Reports Server (NTRS)
Mavriplis, Catherine
1992-01-01
An adaptive spectral method was developed for the efficient solution of time dependent partial differential equations. Adaptive mesh strategies that include resolution refinement and coarsening by three different methods are illustrated on solutions to the 1-D viscous Burger equation and the 2-D Navier-Stokes equations for driven flow in a cavity. Sharp gradients, singularities, and regions of poor resolution are resolved optimally as they develop in time using error estimators which indicate the choice of refinement to be used. The adaptive formulation presents significant increases in efficiency, flexibility, and general capabilities for high order spectral methods.
Comparing Anisotropic Output-Based Grid Adaptation Methods by Decomposition
NASA Technical Reports Server (NTRS)
Park, Michael A.; Loseille, Adrien; Krakos, Joshua A.; Michal, Todd
2015-01-01
Anisotropic grid adaptation is examined by decomposing the steps of flow solution, ad- joint solution, error estimation, metric construction, and simplex grid adaptation. Multiple implementations of each of these steps are evaluated by comparison to each other and expected analytic results when available. For example, grids are adapted to analytic metric fields and grid measures are computed to illustrate the properties of multiple independent implementations of grid adaptation mechanics. Different implementations of each step in the adaptation process can be evaluated in a system where the other components of the adaptive cycle are fixed. Detailed examination of these properties allows comparison of different methods to identify the current state of the art and where further development should be targeted.
Adaptive sequential methods for detecting network intrusions
NASA Astrophysics Data System (ADS)
Chen, Xinjia; Walker, Ernest
2013-06-01
In this paper, we propose new sequential methods for detecting port-scan attackers which routinely perform random "portscans" of IP addresses to find vulnerable servers to compromise. In addition to rigorously control the probability of falsely implicating benign remote hosts as malicious, our method performs significantly faster than other current solutions. Moreover, our method guarantees that the maximum amount of observational time is bounded. In contrast to the previous most effective method, Threshold Random Walk Algorithm, which is explicit and analytical in nature, our proposed algorithm involve parameters to be determined by numerical methods. We have introduced computational techniques such as iterative minimax optimization for quick determination of the parameters of the new detection algorithm. A framework of multi-valued decision for detecting portscanners and DoS attacks is also proposed.
Adaptive finite-element method for diffraction gratings
NASA Astrophysics Data System (ADS)
Bao, Gang; Chen, Zhiming; Wu, Haijun
2005-06-01
A second-order finite-element adaptive strategy with error control for one-dimensional grating problems is developed. The unbounded computational domain is truncated to a bounded one by a perfectly-matched-layer (PML) technique. The PML parameters, such as the thickness of the layer and the medium properties, are determined through sharp a posteriori error estimates. The adaptive finite-element method is expected to increase significantly the accuracy and efficiency of the discretization as well as reduce the computation cost. Numerical experiments are included to illustrate the competitiveness of the proposed adaptive method.
Adaptive multiscale method for two-dimensional nanoscale adhesive contacts
NASA Astrophysics Data System (ADS)
Tong, Ruiting; Liu, Geng; Liu, Lan; Wu, Liyan
2013-05-01
There are two separate traditional approaches to model contact problems: continuum and atomistic theory. Continuum theory is successfully used in many domains, but when the scale of the model comes to nanometer, continuum approximation meets challenges. Atomistic theory can catch the detailed behaviors of an individual atom by using molecular dynamics (MD) or quantum mechanics, although accurately, it is usually time-consuming. A multiscale method coupled MD and finite element (FE) is presented. To mesh the FE region automatically, an adaptive method based on the strain energy gradient is introduced to the multiscale method to constitute an adaptive multiscale method. Utilizing the proposed method, adhesive contacts between a rigid cylinder and an elastic substrate are studied, and the results are compared with full MD simulations. The process of FE meshes refinement shows that adaptive multiscale method can make FE mesh generation more flexible. Comparison of the displacements of boundary atoms in the overlap region with the results from full MD simulations indicates that adaptive multiscale method can transfer displacements effectively. Displacements of atoms and FE nodes on the center line of the multiscale model agree well with that of atoms in full MD simulations, which shows the continuity in the overlap region. Furthermore, the Von Mises stress contours and contact force distributions in the contact region are almost same as full MD simulations. The method presented combines multiscale method and adaptive technique, and can provide a more effective way to multiscale method and to the investigation on nanoscale contact problems.
Fast adaptive composite grid methods on distributed parallel architectures
NASA Technical Reports Server (NTRS)
Lemke, Max; Quinlan, Daniel
1992-01-01
The fast adaptive composite (FAC) grid method is compared with the adaptive composite method (AFAC) under variety of conditions including vectorization and parallelization. Results are given for distributed memory multiprocessor architectures (SUPRENUM, Intel iPSC/2 and iPSC/860). It is shown that the good performance of AFAC and its superiority over FAC in a parallel environment is a property of the algorithm and not dependent on peculiarities of any machine.
Adaptive upscaling with the dual mesh method
Guerillot, D.; Verdiere, S.
1997-08-01
The objective of this paper is to demonstrate that upscaling should be calculated during the flow simulation instead of trying to enhance the a priori upscaling methods. Hence, counter-examples are given to motivate our approach, the so-called Dual Mesh Method. The main steps of this numerical algorithm are recalled. Applications illustrate the necessity to consider different average relative permeability values depending on the direction in space. Moreover, these values could be different for the same average saturation. This proves that an a priori upscaling cannot be the answer even in homogeneous cases because of the {open_quotes}dynamical heterogeneity{close_quotes} created by the saturation profile. Other examples show the efficiency of the Dual Mesh Method applied to heterogeneous medium and to an actual field case in South America.
Adaptive Finite Element Methods for Continuum Damage Modeling
NASA Technical Reports Server (NTRS)
Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.
1995-01-01
The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.
An auto-adaptive background subtraction method for Raman spectra.
Xie, Yi; Yang, Lidong; Sun, Xilong; Wu, Dewen; Chen, Qizhen; Zeng, Yongming; Liu, Guokun
2016-05-15
Background subtraction is a crucial step in the preprocessing of Raman spectrum. Usually, parameter manipulating of the background subtraction method is necessary for the efficient removal of the background, which makes the quality of the spectrum empirically dependent. In order to avoid artificial bias, we proposed an auto-adaptive background subtraction method without parameter adjustment. The main procedure is: (1) select the local minima of spectrum while preserving major peaks, (2) apply an interpolation scheme to estimate background, (3) and design an iteration scheme to improve the adaptability of background subtraction. Both simulated data and Raman spectra have been used to evaluate the proposed method. By comparing the backgrounds obtained from three widely applied methods: the polynomial, the Baek's and the airPLS, the auto-adaptive method meets the demand of practical applications in terms of efficiency and accuracy. PMID:26950502
An auto-adaptive background subtraction method for Raman spectra
NASA Astrophysics Data System (ADS)
Xie, Yi; Yang, Lidong; Sun, Xilong; Wu, Dewen; Chen, Qizhen; Zeng, Yongming; Liu, Guokun
2016-05-01
Background subtraction is a crucial step in the preprocessing of Raman spectrum. Usually, parameter manipulating of the background subtraction method is necessary for the efficient removal of the background, which makes the quality of the spectrum empirically dependent. In order to avoid artificial bias, we proposed an auto-adaptive background subtraction method without parameter adjustment. The main procedure is: (1) select the local minima of spectrum while preserving major peaks, (2) apply an interpolation scheme to estimate background, (3) and design an iteration scheme to improve the adaptability of background subtraction. Both simulated data and Raman spectra have been used to evaluate the proposed method. By comparing the backgrounds obtained from three widely applied methods: the polynomial, the Baek's and the airPLS, the auto-adaptive method meets the demand of practical applications in terms of efficiency and accuracy.
Track and vertex reconstruction: From classical to adaptive methods
Strandlie, Are; Fruehwirth, Rudolf
2010-04-15
This paper reviews classical and adaptive methods of track and vertex reconstruction in particle physics experiments. Adaptive methods have been developed to meet the experimental challenges at high-energy colliders, in particular, the CERN Large Hadron Collider. They can be characterized by the obliteration of the traditional boundaries between pattern recognition and statistical estimation, by the competition between different hypotheses about what constitutes a track or a vertex, and by a high level of flexibility and robustness achieved with a minimum of assumptions about the data. The theoretical background of some of the adaptive methods is described, and it is shown that there is a close connection between the two main branches of adaptive methods: neural networks and deformable templates, on the one hand, and robust stochastic filters with annealing, on the other hand. As both classical and adaptive methods of track and vertex reconstruction presuppose precise knowledge of the positions of the sensitive detector elements, the paper includes an overview of detector alignment methods and a survey of the alignment strategies employed by past and current experiments.
Introduction to Adaptive Methods for Differential Equations
NASA Astrophysics Data System (ADS)
Eriksson, Kenneth; Estep, Don; Hansbo, Peter; Johnson, Claes
Knowing thus the Algorithm of this calculus, which I call Differential Calculus, all differential equations can be solved by a common method (Gottfried Wilhelm von Leibniz, 1646-1719).When, several years ago, I saw for the first time an instrument which, when carried, automatically records the number of steps taken by a pedestrian, it occurred to me at once that the entire arithmetic could be subjected to a similar kind of machinery so that not only addition and subtraction, but also multiplication and division, could be accomplished by a suitably arranged machine easily, promptly and with sure results. For it is unworthy of excellent men to lose hours like slaves in the labour of calculations, which could safely be left to anyone else if the machine was used. And now that we may give final praise to the machine, we may say that it will be desirable to all who are engaged in computations which, as is well known, are the managers of financial affairs, the administrators of others estates, merchants, surveyors, navigators, astronomers, and those connected with any of the crafts that use mathematics (Leibniz).
Stability and error estimation for Component Adaptive Grid methods
NASA Technical Reports Server (NTRS)
Oliger, Joseph; Zhu, Xiaolei
1994-01-01
Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.
Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods
NASA Astrophysics Data System (ADS)
Chung, Eric; Efendiev, Yalchin; Hou, Thomas Y.
2016-09-01
In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method. Besides the method's basic outline, we discuss some important ingredients needed for the method's success. We also discuss several applications. The proposed method allows performing local model reduction in the presence of high contrast and no scale separation.
Final Report: Symposium on Adaptive Methods for Partial Differential Equations
Pernice, M.; Johnson, C.R.; Smith, P.J.; Fogelson, A.
1998-12-10
OAK-B135 Final Report: Symposium on Adaptive Methods for Partial Differential Equations. Complex physical phenomena often include features that span a wide range of spatial and temporal scales. Accurate simulation of such phenomena can be difficult to obtain, and computations that are under-resolved can even exhibit spurious features. While it is possible to resolve small scale features by increasing the number of grid points, global grid refinement can quickly lead to problems that are intractable, even on the largest available computing facilities. These constraints are particularly severe for three dimensional problems that involve complex physics. One way to achieve the needed resolution is to refine the computational mesh locally, in only those regions where enhanced resolution is required. Adaptive solution methods concentrate computational effort in regions where it is most needed. These methods have been successfully applied to a wide variety of problems in computational science and engineering. Adaptive methods can be difficult to implement, prompting the development of tools and environments to facilitate their use. To ensure that the results of their efforts are useful, algorithm and tool developers must maintain close communication with application specialists. Conversely it remains difficult for application specialists who are unfamiliar with the methods to evaluate the trade-offs between the benefits of enhanced local resolution and the effort needed to implement an adaptive solution method.
A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics
Anderson, R W; Pember, R B; Elliott, N S
2004-01-28
A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.
A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics
Anderson, R W; Pember, R B; Elliott, N S
2002-10-19
A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.
Adaptive wavelet collocation method simulations of Rayleigh-Taylor instability
NASA Astrophysics Data System (ADS)
Reckinger, S. J.; Livescu, D.; Vasilyev, O. V.
2010-12-01
Numerical simulations of single-mode, compressible Rayleigh-Taylor instability are performed using the adaptive wavelet collocation method (AWCM), which utilizes wavelets for dynamic grid adaptation. Due to the physics-based adaptivity and direct error control of the method, AWCM is ideal for resolving the wide range of scales present in the development of the instability. The problem is initialized consistent with the solutions from linear stability theory. Non-reflecting boundary conditions are applied to prevent the contamination of the instability growth by pressure waves created at the interface. AWCM is used to perform direct numerical simulations that match the early-time linear growth, the terminal bubble velocity and a reacceleration region.
Adaptive computational methods for SSME internal flow analysis
NASA Technical Reports Server (NTRS)
Oden, J. T.
1986-01-01
Adaptive finite element methods for the analysis of classes of problems in compressible and incompressible flow of interest in SSME (space shuttle main engine) analysis and design are described. The general objective of the adaptive methods is to improve and to quantify the quality of numerical solutions to the governing partial differential equations of fluid dynamics in two-dimensional cases. There are several different families of adaptive schemes that can be used to improve the quality of solutions in complex flow simulations. Among these are: (1) r-methods (node-redistribution or moving mesh methods) in which a fixed number of nodal points is allowed to migrate to points in the mesh where high error is detected; (2) h-methods, in which the mesh size h is automatically refined to reduce local error; and (3) p-methods, in which the local degree p of the finite element approximation is increased to reduce local error. Two of the three basic techniques have been studied in this project: an r-method for steady Euler equations in two dimensions and a p-method for transient, laminar, viscous incompressible flow. Numerical results are presented. A brief introduction to residual methods of a-posterior error estimation is also given and some pertinent conclusions of the study are listed.
Adaptive windowed range-constrained Otsu method using local information
NASA Astrophysics Data System (ADS)
Zheng, Jia; Zhang, Dinghua; Huang, Kuidong; Sun, Yuanxi; Tang, Shaojie
2016-01-01
An adaptive windowed range-constrained Otsu method using local information is proposed for improving the performance of image segmentation. First, the reason why traditional thresholding methods do not perform well in the segmentation of complicated images is analyzed. Therein, the influences of global and local thresholdings on the image segmentation are compared. Second, two methods that can adaptively change the size of the local window according to local information are proposed by us. The characteristics of the proposed methods are analyzed. Thereby, the information on the number of edge pixels in the local window of the binarized variance image is employed to adaptively change the local window size. Finally, the superiority of the proposed method over other methods such as the range-constrained Otsu, the active contour model, the double Otsu, the Bradley's, and the distance-regularized level set evolution is demonstrated. It is validated by the experiments that the proposed method can keep more details and acquire much more satisfying area overlap measure as compared with the other conventional methods.
Likelihood Methods for Adaptive Filtering and Smoothing. Technical Report #455.
ERIC Educational Resources Information Center
Butler, Ronald W.
The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…
A Conditional Exposure Control Method for Multidimensional Adaptive Testing
ERIC Educational Resources Information Center
Finkelman, Matthew; Nering, Michael L.; Roussos, Louis A.
2009-01-01
In computerized adaptive testing (CAT), ensuring the security of test items is a crucial practical consideration. A common approach to reducing item theft is to define maximum item exposure rates, i.e., to limit the proportion of examinees to whom a given item can be administered. Numerous methods for controlling exposure rates have been proposed…
Applications of the Lattice Boltzmann Method to Complex and Turbulent Flows
NASA Technical Reports Server (NTRS)
Luo, Li-Shi; Qi, Dewei; Wang, Lian-Ping; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
We briefly review the method of the lattice Boltzmann equation (LBE). We show the three-dimensional LBE simulation results for a non-spherical particle in Couette flow and 16 particles in sedimentation in fluid. We compare the LBE simulation of the three-dimensional homogeneous isotropic turbulence flow in a periodic cubic box of the size 1283 with the pseudo-spectral simulation, and find that the two results agree well with each other but the LBE method is more dissipative than the pseudo-spectral method in small scales, as expected.
Adaptive frequency estimation by MUSIC (Multiple Signal Classification) method
NASA Astrophysics Data System (ADS)
Karhunen, Juha; Nieminen, Esko; Joutsensalo, Jyrki
During the last years, the eigenvector-based method called MUSIC has become very popular in estimating the frequencies of sinusoids in additive white noise. Adaptive realizations of the MUSIC method are studied using simulated data. Several of the adaptive realizations seem to give in practice equally good results as the nonadaptive standard realization. The only exceptions are instantaneous gradient type algorithms that need considerably more samples to achieve a comparable performance. A new method is proposed for constructing initial estimates to the signal subspace. The method improves often dramatically the performance of instantaneous gradient type algorithms. The new signal subspace estimate can also be used to define a frequency estimator directly or to simplify eigenvector computation.
Adaptive reconnection-based arbitrary Lagrangian Eulerian method
Bo, Wurigen; Shashkov, Mikhail
2015-07-21
We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALE method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.
Adaptive reconnection-based arbitrary Lagrangian Eulerian method
Bo, Wurigen; Shashkov, Mikhail
2015-07-21
We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less
Method and system for environmentally adaptive fault tolerant computing
NASA Technical Reports Server (NTRS)
Copenhaver, Jason L. (Inventor); Jeremy, Ramos (Inventor); Wolfe, Jeffrey M. (Inventor); Brenner, Dean (Inventor)
2010-01-01
A method and system for adapting fault tolerant computing. The method includes the steps of measuring an environmental condition representative of an environment. An on-board processing system's sensitivity to the measured environmental condition is measured. It is determined whether to reconfigure a fault tolerance of the on-board processing system based in part on the measured environmental condition. The fault tolerance of the on-board processing system may be reconfigured based in part on the measured environmental condition.
Workshop on adaptive grid methods for fusion plasmas
Wiley, J.C.
1995-07-01
The author describes a general `hp` finite element method with adaptive grids. The code was based on the work of Oden, et al. The term `hp` refers to the method of spatial refinement (h), in conjunction with the order of polynomials used as a part of the finite element discretization (p). This finite element code seems to handle well the different mesh grid sizes occuring between abuted grids with different resolutions.
Solving Chemical Master Equations by an Adaptive Wavelet Method
Jahnke, Tobias; Galan, Steffen
2008-09-01
Solving chemical master equations is notoriously difficult due to the tremendous number of degrees of freedom. We present a new numerical method which efficiently reduces the size of the problem in an adaptive way. The method is based on a sparse wavelet representation and an algorithm which, in each time step, detects the essential degrees of freedom required to approximate the solution up to the desired accuracy.
ICASE/LaRC Workshop on Adaptive Grid Methods
NASA Technical Reports Server (NTRS)
South, Jerry C., Jr. (Editor); Thomas, James L. (Editor); Vanrosendale, John (Editor)
1995-01-01
Solution-adaptive grid techniques are essential to the attainment of practical, user friendly, computational fluid dynamics (CFD) applications. In this three-day workshop, experts gathered together to describe state-of-the-art methods in solution-adaptive grid refinement, analysis, and implementation; to assess the current practice; and to discuss future needs and directions for research. This was accomplished through a series of invited and contributed papers. The workshop focused on a set of two-dimensional test cases designed by the organizers to aid in assessing the current state of development of adaptive grid technology. In addition, a panel of experts from universities, industry, and government research laboratories discussed their views of needs and future directions in this field.
An Adaptive Cross-Architecture Combination Method for Graph Traversal
You, Yang; Song, Shuaiwen; Kerbyson, Darren J.
2014-06-18
Breadth-First Search (BFS) is widely used in many real-world applications including computational biology, social networks, and electronic design automation. The combination method, using both top-down and bottom-up techniques, is the most effective BFS approach. However, current combination methods rely on trial-and-error and exhaustive search to locate the optimal switching point, which may cause significant runtime overhead. To solve this problem, we design an adaptive method based on regression analysis to predict an optimal switching point for the combination method at runtime within less than 0.1% of the BFS execution time.
An adaptive over/under data combination method
NASA Astrophysics Data System (ADS)
He, Jian-Wei; Lu, Wen-Kai; Li, Zhong-Xiao
2013-12-01
The traditional "dephase and sum" algorithms for over/under data combination estimate the ghost operator by assuming a calm sea surface. However, the real sea surface is typically rough, which invalidates the calm sea surface assumption. Hence, the traditional "dephase and sum" algorithms might produce poor-quality results in rough sea conditions. We propose an adaptive over/under data combination method, which adaptively estimates the amplitude spectrum of the ghost operator from the over/under data, and then over/under data combinations are implemented using the estimated ghost operators. A synthetic single shot gather is used to verify the performance of the proposed method in rough sea surface conditions and a real triple over/under dataset demonstrates the method performance.
An Adaptive Derivative-based Method for Function Approximation
Tong, C
2008-10-22
To alleviate the high computational cost of large-scale multi-physics simulations to study the relationships between the model parameters and the outputs of interest, response surfaces are often used in place of the exact functional relationships. This report explores a method for response surface construction using adaptive sampling guided by derivative information at each selected sample point. This method is especially suitable for applications that can readily provide added information such as gradients and Hessian with respect to the input parameters under study. When higher order terms (third and above) in the Taylor series are negligible, the approximation error for this method can be controlled. We present details of the adaptive algorithm and numerical results on a few test problems.
Development of a dynamically adaptive grid method for multidimensional problems
NASA Astrophysics Data System (ADS)
Holcomb, J. E.; Hindman, R. G.
1984-06-01
An approach to solution adaptive grid generation for use with finite difference techniques, previously demonstrated on model problems in one space dimension, has been extended to multidimensional problems. The method is based on the popular elliptic steady grid generators, but is 'dynamically' adaptive in the sense that a grid is maintained at all times satisfying the steady grid law driven by a solution-dependent source term. Testing has been carried out on Burgers' equation in one and two space dimensions. Results appear encouraging both for inviscid wave propagation cases and viscous boundary layer cases, suggesting that application to practical flow problems is now possible. In the course of the work, obstacles relating to grid correction, smoothing of the solution, and elliptic equation solvers have been largely overcome. Concern remains, however, about grid skewness, boundary layer resolution and the need for implicit integration methods. Also, the method in 3-D is expected to be very demanding of computer resources.
Final Report: Symposium on Adaptive Methods for Partial Differential Equations
Pernice, Michael; Johnson, Christopher R.; Smith, Philip J.; Fogelson, Aaron
1998-12-08
Complex physical phenomena often include features that span a wide range of spatial and temporal scales. Accurate simulation of such phenomena can be difficult to obtain, and computations that are under-resolved can even exhibit spurious features. While it is possible to resolve small scale features by increasing the number of grid points, global grid refinement can quickly lead to problems that are intractable, even on the largest available computing facilities. These constraints are particularly severe for three dimensional problems that involve complex physics. One way to achieve the needed resolution is to refine the computational mesh locally, in only those regions where enhanced resolution is required. Adaptive solution methods concentrate computational effort in regions where it is most needed. These methods have been successfully applied to a wide variety of problems in computational science and engineering. Adaptive methods can be difficult to implement, prompting the development of tools and environments to facilitate their use. To ensure that the results of their efforts are useful, algorithm and tool developers must maintain close communication with application specialists. Conversely it remains difficult for application specialists who are unfamiliar with the methods to evaluate the trade-offs between the benefits of enhanced local resolution and the effort needed to implement an adaptive solution method.
Advanced numerical methods in mesh generation and mesh adaptation
Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A
2010-01-01
Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge
Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes
NASA Technical Reports Server (NTRS)
Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak
2004-01-01
High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel
Methods for prismatic/tetrahedral grid generation and adaptation
NASA Astrophysics Data System (ADS)
Kallinderis, Y.
1995-10-01
The present work involves generation of hybrid prismatic/tetrahedral grids for complex 3-D geometries including multi-body domains. The prisms cover the region close to each body's surface, while tetrahedra are created elsewhere. Two developments are presented for hybrid grid generation around complex 3-D geometries. The first is a new octree/advancing front type of method for generation of the tetrahedra of the hybrid mesh. The main feature of the present advancing front tetrahedra generator that is different from previous such methods is that it does not require the creation of a background mesh by the user for the determination of the grid-spacing and stretching parameters. These are determined via an automatically generated octree. The second development is a method for treating the narrow gaps in between different bodies in a multiply-connected domain. This method is applied to a two-element wing case. A High Speed Civil Transport (HSCT) type of aircraft geometry is considered. The generated hybrid grid required only 170 K tetrahedra instead of an estimated two million had a tetrahedral mesh been used in the prisms region as well. A solution adaptive scheme for viscous computations on hybrid grids is also presented. A hybrid grid adaptation scheme that employs both h-refinement and redistribution strategies is developed to provide optimum meshes for viscous flow computations. Grid refinement is a dual adaptation scheme that couples 3-D, isotropic division of tetrahedra and 2-D, directional division of prisms.
Efficient Unstructured Grid Adaptation Methods for Sonic Boom Prediction
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Carter, Melissa B.; Deere, Karen A.; Waithe, Kenrick A.
2008-01-01
This paper examines the use of two grid adaptation methods to improve the accuracy of the near-to-mid field pressure signature prediction of supersonic aircraft computed using the USM3D unstructured grid flow solver. The first method (ADV) is an interactive adaptation process that uses grid movement rather than enrichment to more accurately resolve the expansion and compression waves. The second method (SSGRID) uses an a priori adaptation approach to stretch and shear the original unstructured grid to align the grid with the pressure waves and reduce the cell count required to achieve an accurate signature prediction at a given distance from the vehicle. Both methods initially create negative volume cells that are repaired in a module in the ADV code. While both approaches provide significant improvements in the near field signature (< 3 body lengths) relative to a baseline grid without increasing the number of grid points, only the SSGRID approach allows the details of the signature to be accurately computed at mid-field distances (3-10 body lengths) for direct use with mid-field-to-ground boom propagation codes.
Vortical Flow Prediction Using an Adaptive Unstructured Grid Method
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2003-01-01
A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving practical vortical flow problems. The first test case concerns vortex flow over a simple 65 delta wing with different values of leading-edge radius. Although the geometry is quite simple, it poses a challenging problem for computing vortices originating from blunt leading edges. The second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the wind-tunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.
Vortical Flow Prediction Using an Adaptive Unstructured Grid Method
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2001-01-01
A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving practical vortical flow problems. The first test case concerns vortex flow over a simple 65deg delta wing with different values of leading-edge bluntness, and the second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the windtunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.
Adaptive [theta]-methods for pricing American options
NASA Astrophysics Data System (ADS)
Khaliq, Abdul Q. M.; Voss, David A.; Kazmi, Kamran
2008-12-01
We develop adaptive [theta]-methods for solving the Black-Scholes PDE for American options. By adding a small, continuous term, the Black-Scholes PDE becomes an advection-diffusion-reaction equation on a fixed spatial domain. Standard implementation of [theta]-methods would require a Newton-type iterative procedure at each time step thereby increasing the computational complexity of the methods. Our linearly implicit approach avoids such complications. We establish a general framework under which [theta]-methods satisfy a discrete version of the positivity constraint characteristic of American options, and numerically demonstrate the sensitivity of the constraint. The positivity results are established for the single-asset and independent two-asset models. In addition, we have incorporated and analyzed an adaptive time-step control strategy to increase the computational efficiency. Numerical experiments are presented for one- and two-asset American options, using adaptive exponential splitting for two-asset problems. The approach is compared with an iterative solution of the two-asset problem in terms of computational efficiency.
Space-time adaptive numerical methods for geophysical applications.
Castro, C E; Käser, M; Toro, E F
2009-11-28
In this paper we present high-order formulations of the finite volume and discontinuous Galerkin finite-element methods for wave propagation problems with a space-time adaptation technique using unstructured meshes in order to reduce computational cost without reducing accuracy. Both methods can be derived in a similar mathematical framework and are identical in their first-order version. In their extension to higher order accuracy in space and time, both methods use spatial polynomials of higher degree inside each element, a high-order solution of the generalized Riemann problem and a high-order time integration method based on the Taylor series expansion. The static adaptation strategy uses locally refined high-resolution meshes in areas with low wave speeds to improve the approximation quality. Furthermore, the time step length is chosen locally adaptive such that the solution is evolved explicitly in time by an optimal time step determined by a local stability criterion. After validating the numerical approach, both schemes are applied to geophysical wave propagation problems such as tsunami waves and seismic waves comparing the new approach with the classical global time-stepping technique. The problem of mesh partitioning for large-scale applications on multi-processor architectures is discussed and a new mesh partition approach is proposed and tested to further reduce computational cost. PMID:19840984
Robust flicker evaluation method for low power adaptive dimming LCDs
NASA Astrophysics Data System (ADS)
Kim, Seul-Ki; Song, Seok-Jeong; Nam, Hyoungsik
2015-05-01
This paper describes a robust dimming flicker evaluation method of adaptive dimming algorithms for low power liquid crystal displays (LCDs). While the previous methods use sum of square difference (SSD) values without excluding the image sequence information, the proposed modified SSD (mSSD) values are obtained only with the dimming flicker effects by making use of differential images. The proposed scheme is verified for eight dimming configurations of two dimming level selection methods and four temporal filters over three test videos. Furthermore, a new figure of merit is introduced to cover the dimming flicker as well as image qualities and power consumption.
Optimal and adaptive methods of processing hydroacoustic signals (review)
NASA Astrophysics Data System (ADS)
Malyshkin, G. S.; Sidel'nikov, G. B.
2014-09-01
Different methods of optimal and adaptive processing of hydroacoustic signals for multipath propagation and scattering are considered. Advantages and drawbacks of the classical adaptive (Capon, MUSIC, and Johnson) algorithms and "fast" projection algorithms are analyzed for the case of multipath propagation and scattering of strong signals. The classical optimal approaches to detecting multipath signals are presented. A mechanism of controlled normalization of strong signals is proposed to automatically detect weak signals. The results of simulating the operation of different detection algorithms for a linear equidistant array under multipath propagation and scattering are presented. An automatic detector is analyzed, which is based on classical or fast projection algorithms, which estimates the background proceeding from median filtering or the method of bilateral spatial contrast.
Adaptive domain decomposition methods for advection-diffusion problems
Carlenzoli, C.; Quarteroni, A.
1995-12-31
Domain decomposition methods can perform poorly on advection-diffusion equations if diffusion is dominated by advection. Indeed, the hyperpolic part of the equations could affect the behavior of iterative schemes among subdomains slowing down dramatically their rate of convergence. Taking into account the direction of the characteristic lines we introduce suitable adaptive algorithms which are stable with respect to the magnitude of the convective field in the equations and very effective on bear boundary value problems.
NASA Astrophysics Data System (ADS)
Domingues, Margarete O.; Gomes, Anna Karina F.; Mendes, Odim; Schneider, Kai
2013-10-01
We present a new adaptive multiresoltion method for the numerical simulation of ideal magnetohydrodynamics. The governing equations, i.e., the compressible Euler equations coupled with the Maxwell equations are discretized using a finite volume scheme on a two-dimensional Cartesian mesh. Adaptivity in space is obtained via multiresolution analysis, which allows the reliable introduction of a locally refined mesh while controlling the error. The explicit time discretization uses a compact Runge-Kutta method for local time stepping and an embedded Runge-Kutta scheme for automatic time step control. An extended generalized Lagrangian multiplier approach with the mixed hyperbolic-parabolic correction type is used to control the incompressibility of the magnetic field. Applications to a two-dimensional problem illustrate the properties of the method. Memory savings and numerical divergences of the magnetic field are reported and the accuracy of the adaptive computations is assessed by comparing with the available exact solution. This work was supported by the contract SiCoMHD (ANR-Blanc 2011-045).
An adaptive unsupervised hyperspectral classification method based on Gaussian distribution
NASA Astrophysics Data System (ADS)
Yue, Jiang; Wu, Jing-wei; Zhang, Yi; Bai, Lian-fa
2014-11-01
In order to achieve adaptive unsupervised clustering in the high precision, a method using Gaussian distribution to fit the similarity of the inter-class and the noise distribution is proposed in this paper, and then the automatic segmentation threshold is determined by the fitting result. First, according with the similarity measure of the spectral curve, this method assumes that the target and the background both in Gaussian distribution, the distribution characteristics is obtained through fitting the similarity measure of minimum related windows and center pixels with Gaussian function, and then the adaptive threshold is achieved. Second, make use of the pixel minimum related windows to merge adjacent similar pixels into a picture-block, then the dimensionality reduction is completed and the non-supervised classification is realized. AVIRIS data and a set of hyperspectral data we caught are used to evaluate the performance of the proposed method. Experimental results show that the proposed algorithm not only realizes the adaptive but also outperforms K-MEANS and ISODATA on the classification accuracy, edge recognition and robustness.
A New Online Calibration Method for Multidimensional Computerized Adaptive Testing.
Chen, Ping; Wang, Chun
2016-09-01
Multidimensional-Method A (M-Method A) has been proposed as an efficient and effective online calibration method for multidimensional computerized adaptive testing (MCAT) (Chen & Xin, Paper presented at the 78th Meeting of the Psychometric Society, Arnhem, The Netherlands, 2013). However, a key assumption of M-Method A is that it treats person parameter estimates as their true values, thus this method might yield erroneous item calibration when person parameter estimates contain non-ignorable measurement errors. To improve the performance of M-Method A, this paper proposes a new MCAT online calibration method, namely, the full functional MLE-M-Method A (FFMLE-M-Method A). This new method combines the full functional MLE (Jones & Jin in Psychometrika 59:59-75, 1994; Stefanski & Carroll in Annals of Statistics 13:1335-1351, 1985) with the original M-Method A in an effort to correct for the estimation error of ability vector that might otherwise adversely affect the precision of item calibration. Two correction schemes are also proposed when implementing the new method. A simulation study was conducted to show that the new method generated more accurate item parameter estimation than the original M-Method A in almost all conditions. PMID:26608960
A novel adaptive force control method for IPMC manipulation
NASA Astrophysics Data System (ADS)
Hao, Lina; Sun, Zhiyong; Li, Zhi; Su, Yunquan; Gao, Jianchao
2012-07-01
IPMC is a type of electro-active polymer material, also called artificial muscle, which can generate a relatively large deformation under a relatively low input voltage (generally speaking, less than 5 V), and can be implemented in a water environment. Due to these advantages, IPMC can be used in many fields such as biomimetics, service robots, bio-manipulation, etc. Until now, most existing methods for IPMC manipulation are displacement control not directly force control, however, under most conditions, the success rate of manipulations for tiny fragile objects is limited by the contact force, such as using an IPMC gripper to fix cells. Like most EAPs, a creep phenomenon exists in IPMC, of which the generated force will change with time and the creep model will be influenced by the change of the water content or other environmental factors, so a proper force control method is urgently needed. This paper presents a novel adaptive force control method (AIPOF control—adaptive integral periodic output feedback control), based on employing a creep model of which parameters are obtained by using the FRLS on-line identification method. The AIPOF control method can achieve an arbitrary pole configuration as long as the plant is controllable and observable. This paper also designs the POF and IPOF controller to compare their test results. Simulation and experiments of micro-force-tracking tests are carried out, with results confirming that the proposed control method is viable.
Investigation of the Multiple Method Adaptive Control (MMAC) method for flight control systems
NASA Technical Reports Server (NTRS)
Athans, M.; Baram, Y.; Castanon, D.; Dunn, K. P.; Green, C. S.; Lee, W. H.; Sandell, N. R., Jr.; Willsky, A. S.
1979-01-01
The stochastic adaptive control of the NASA F-8C digital-fly-by-wire aircraft using the multiple model adaptive control (MMAC) method is presented. The selection of the performance criteria for the lateral and the longitudinal dynamics, the design of the Kalman filters for different operating conditions, the identification algorithm associated with the MMAC method, the control system design, and simulation results obtained using the real time simulator of the F-8 aircraft at the NASA Langley Research Center are discussed.
Parallel, adaptive finite element methods for conservation laws
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E.
1994-01-01
We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial errors are obtained by a p-refinement technique using superconvergence at Radau points. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational cost of the method.
Adaptive methods for nonlinear structural dynamics and crashworthiness analysis
NASA Technical Reports Server (NTRS)
Belytschko, Ted
1993-01-01
The objective is to describe three research thrusts in crashworthiness analysis: adaptivity; mixed time integration, or subcycling, in which different timesteps are used for different parts of the mesh in explicit methods; and methods for contact-impact which are highly vectorizable. The techniques are being developed to improve the accuracy of calculations, ease-of-use of crashworthiness programs, and the speed of calculations. The latter is still of importance because crashworthiness calculations are often made with models of 20,000 to 50,000 elements using explicit time integration and require on the order of 20 to 100 hours on current supercomputers. The methodologies are briefly reviewed and then some example calculations employing these methods are described. The methods are also of value to other nonlinear transient computations.
Robust time and frequency domain estimation methods in adaptive control
NASA Technical Reports Server (NTRS)
Lamaire, Richard Orville
1987-01-01
A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.
Planetary gearbox fault diagnosis using an adaptive stochastic resonance method
NASA Astrophysics Data System (ADS)
Lei, Yaguo; Han, Dong; Lin, Jing; He, Zhengjia
2013-07-01
Planetary gearboxes are widely used in aerospace, automotive and heavy industry applications due to their large transmission ratio, strong load-bearing capacity and high transmission efficiency. The tough operation conditions of heavy duty and intensive impact load may cause gear tooth damage such as fatigue crack and teeth missed etc. The challenging issues in fault diagnosis of planetary gearboxes include selection of sensitive measurement locations, investigation of vibration transmission paths and weak feature extraction. One of them is how to effectively discover the weak characteristics from noisy signals of faulty components in planetary gearboxes. To address the issue in fault diagnosis of planetary gearboxes, an adaptive stochastic resonance (ASR) method is proposed in this paper. The ASR method utilizes the optimization ability of ant colony algorithms and adaptively realizes the optimal stochastic resonance system matching input signals. Using the ASR method, the noise may be weakened and weak characteristics highlighted, and therefore the faults can be diagnosed accurately. A planetary gearbox test rig is established and experiments with sun gear faults including a chipped tooth and a missing tooth are conducted. And the vibration signals are collected under the loaded condition and various motor speeds. The proposed method is used to process the collected signals and the results of feature extraction and fault diagnosis demonstrate its effectiveness.
Spatially-Anisotropic Parallel Adaptive Wavelet Collocation Method
NASA Astrophysics Data System (ADS)
Vasilyev, Oleg V.; Brown-Dymkoski, Eric
2015-11-01
Despite latest advancements in development of robust wavelet-based adaptive numerical methodologies to solve partial differential equations, they all suffer from two major ``curses'': 1) the reliance on rectangular domain and 2) the ``curse of anisotropy'' (i.e. homogeneous wavelet refinement and inability to have spatially varying aspect ratio of the mesh elements). The new method addresses both of these challenges by utilizing an adaptive anisotropic wavelet transform on curvilinear meshes that can be either algebraically prescribed or calculated on the fly using PDE-based mesh generation. In order to ensure accurate representation of spatial operators in physical space, an additional adaptation on spatial physical coordinates is also performed. It is important to note that when new nodes are added in computational space, the physical coordinates can be approximated by interpolation of the existing solution and additional local iterations to ensure that the solution of coordinate mapping PDEs is converged on the new mesh. In contrast to traditional mesh generation approaches, the cost of adding additional nodes is minimal, mainly due to localized nature of iterative mesh generation PDE solver requiring local iterations in the vicinity of newly introduced points. This work was supported by ONR MURI under grant N00014-11-1-069.
The SMART CLUSTER METHOD - adaptive earthquake cluster analysis and declustering
NASA Astrophysics Data System (ADS)
Schaefer, Andreas; Daniell, James; Wenzel, Friedemann
2016-04-01
Earthquake declustering is an essential part of almost any statistical analysis of spatial and temporal properties of seismic activity with usual applications comprising of probabilistic seismic hazard assessments (PSHAs) and earthquake prediction methods. The nature of earthquake clusters and subsequent declustering of earthquake catalogues plays a crucial role in determining the magnitude-dependent earthquake return period and its respective spatial variation. Various methods have been developed to address this issue from other researchers. These have differing ranges of complexity ranging from rather simple statistical window methods to complex epidemic models. This study introduces the smart cluster method (SCM), a new methodology to identify earthquake clusters, which uses an adaptive point process for spatio-temporal identification. Hereby, an adaptive search algorithm for data point clusters is adopted. It uses the earthquake density in the spatio-temporal neighbourhood of each event to adjust the search properties. The identified clusters are subsequently analysed to determine directional anisotropy, focussing on a strong correlation along the rupture plane and adjusts its search space with respect to directional properties. In the case of rapid subsequent ruptures like the 1992 Landers sequence or the 2010/2011 Darfield-Christchurch events, an adaptive classification procedure is applied to disassemble subsequent ruptures which may have been grouped into an individual cluster using near-field searches, support vector machines and temporal splitting. The steering parameters of the search behaviour are linked to local earthquake properties like magnitude of completeness, earthquake density and Gutenberg-Richter parameters. The method is capable of identifying and classifying earthquake clusters in space and time. It is tested and validated using earthquake data from California and New Zealand. As a result of the cluster identification process, each event in
A multilevel adaptive projection method for unsteady incompressible flow
NASA Technical Reports Server (NTRS)
Howell, Louis H.
1993-01-01
There are two main requirements for practical simulation of unsteady flow at high Reynolds number: the algorithm must accurately propagate discontinuous flow fields without excessive artificial viscosity, and it must have some adaptive capability to concentrate computational effort where it is most needed. We satisfy the first of these requirements with a second-order Godunov method similar to those used for high-speed flows with shocks, and the second with a grid-based refinement scheme which avoids some of the drawbacks associated with unstructured meshes. These two features of our algorithm place certain constraints on the projection method used to enforce incompressibility. Velocities are cell-based, leading to a Laplacian stencil for the projection which decouples adjacent grid points. We discuss features of the multigrid and multilevel iteration schemes required for solution of the resulting decoupled problem. Variable-density flows require use of a modified projection operator--we have found a multigrid method for this modified projection that successfully handles density jumps of thousands to one. Numerical results are shown for the 2D adaptive and 3D variable-density algorithms.
A parallel adaptive method for pseudo-arclength continuation
NASA Astrophysics Data System (ADS)
Aruliah, D. A.; van Veen, L.; Dubitski, A.
2012-10-01
Pseudo-arclength continuation is a well-established method for constructing a numerical curve comprising solutions of a system of nonlinear equations. In many complicated high-dimensional systems, the corrector steps within pseudo-arclength continuation are extremely costly to compute; as a result, the step-length of the preceding prediction step must be adapted carefully to avoid prohibitively many failed steps. We describe the essence of a parallel method for adapting the step-length of pseudo-arclength continuation. Our method employs several predictor-corrector sequences with differing step-lengths running concurrently on distinct processors. Our parallel framework permits intermediate results of correction sequences that have not yet converged to seed new predictor-corrector sequences with various step-lengths; the goal is to amortize the cost of corrector steps to make further progress along the underlying numerical curve. Results from numerical experiments suggest a three-fold speedup is attainable when the continuation curve sought has great topological complexity and the corrector steps require significant processor time.
Adaptive grid methods for RLV environment assessment and nozzle analysis
NASA Technical Reports Server (NTRS)
Thornburg, Hugh J.
1996-01-01
Rapid access to highly accurate data about complex configurations is needed for multi-disciplinary optimization and design. In order to efficiently meet these requirements a closer coupling between the analysis algorithms and the discretization process is needed. In some cases, such as free surface, temporally varying geometries, and fluid structure interaction, the need is unavoidable. In other cases the need is to rapidly generate and modify high quality grids. Techniques such as unstructured and/or solution-adaptive methods can be used to speed the grid generation process and to automatically cluster mesh points in regions of interest. Global features of the flow can be significantly affected by isolated regions of inadequately resolved flow. These regions may not exhibit high gradients and can be difficult to detect. Thus excessive resolution in certain regions does not necessarily increase the accuracy of the overall solution. Several approaches have been employed for both structured and unstructured grid adaption. The most widely used involve grid point redistribution, local grid point enrichment/derefinement or local modification of the actual flow solver. However, the success of any one of these methods ultimately depends on the feature detection algorithm used to determine solution domain regions which require a fine mesh for their accurate representation. Typically, weight functions are constructed to mimic the local truncation error and may require substantial user input. Most problems of engineering interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that the adaptive grid feature detection algorithm be developed to recognize flow structures of different type as well as differing intensity, and adequately address scaling and normalization across blocks. These weight functions can then be used to construct blending functions for algebraic redistribution, interpolation functions for unstructured grid generation
Turbulence profiling methods applied to ESO's adaptive optics facility
NASA Astrophysics Data System (ADS)
Valenzuela, Javier; Béchet, Clémentine; Garcia-Rissmann, Aurea; Gonté, Frédéric; Kolb, Johann; Le Louarn, Miska; Neichel, Benoît; Madec, Pierre-Yves; Guesalaga, Andrés.
2014-07-01
Two algorithms were recently studied for C2n profiling from wide-field Adaptive Optics (AO) measurements on GeMS (Gemini Multi-Conjugate AO system). They both rely on the Slope Detection and Ranging (SLODAR) approach, using spatial covariances of the measurements issued from various wavefront sensors. The first algorithm estimates the C2n profile by applying the truncated least-squares inverse of a matrix modeling the response of slopes covariances to various turbulent layer heights. In the second method, the profile is estimated by deconvolution of these spatial cross-covariances of slopes. We compare these methods in the new configuration of ESO Adaptive Optics Facility (AOF), a high-order multiple laser system under integration. For this, we use measurements simulated by the AO cluster of ESO. The impact of the measurement noise and of the outer scale of the atmospheric turbulence is analyzed. The important influence of the outer scale on the results leads to the development of a new step for outer scale fitting included in each algorithm. This increases the reliability and robustness of the turbulence strength and profile estimations.
An adaptive PCA fusion method for remote sensing images
NASA Astrophysics Data System (ADS)
Guo, Qing; Li, An; Zhang, Hongqun; Feng, Zhongkui
2014-10-01
The principal component analysis (PCA) method is a popular fusion method used for its efficiency and high spatial resolution improvement. However, the spectral distortion is often found in PCA. In this paper, we propose an adaptive PCA method to enhance the spectral quality of the fused image. The amount of spatial details of the panchromatic (PAN) image injected into each band of the multi-spectral (MS) image is appropriately determined by a weighting matrix, which is defined by the edges of the PAN image, the edges of the MS image and the proportions between MS bands. In order to prove the effectiveness of the proposed method, the qualitative visual and quantitative analyses are introduced. The correlation coefficient (CC), the spectral discrepancy (SPD), and the spectral angle mapper (SAM) are used to measure the spectral quality of each fused band image. Q index is calculated to evaluate the global spectral quality of all the fused bands as a whole. The spatial quality is evaluated by the average gradient (AG) and the standard deviation (STD). Experimental results show that the proposed method improves the spectral quality very much comparing to the original PCA method while maintaining the high spatial quality of the original PCA.
NASA Technical Reports Server (NTRS)
Kantor, A. V.; Timonin, V. G.; Azarova, Y. S.
1974-01-01
The method of adaptive discretization is the most promising for elimination of redundancy from telemetry messages characterized by signal shape. Adaptive discretization with associative sorting was considered as a way to avoid the shortcomings of adaptive discretization with buffer smoothing and adaptive discretization with logical switching in on-board information compression devices (OICD) in spacecraft. Mathematical investigations of OICD are presented.
Hwang, Wei-Chin
2010-01-01
How do we culturally adapt psychotherapy for ethnic minorities? Although there has been growing interest in doing so, few therapy adaptation frameworks have been developed. The majority of these frameworks take a top-down theoretical approach to adapting psychotherapy. The purpose of this paper is to introduce a community-based developmental approach to modifying psychotherapy for ethnic minorities. The Formative Method for Adapting Psychotherapy (FMAP) is a bottom-up approach that involves collaborating with consumers to generate and support ideas for therapy adaptation. It involves 5-phases that target developing, testing, and reformulating therapy modifications. These phases include: (a) generating knowledge and collaborating with stakeholders (b) integrating generated information with theory and empirical and clinical knowledge, (c) reviewing the initial culturally adapted clinical intervention with stakeholders and revising the culturally adapted intervention, (d) testing the culturally adapted intervention, and (e) finalizing the culturally adapted intervention. Application of the FMAP is illustrated using examples from a study adapting psychotherapy for Chinese Americans, but can also be readily applied to modify therapy for other ethnic groups. PMID:20625458
Robust image registration using adaptive coherent point drift method
NASA Astrophysics Data System (ADS)
Yang, Lijuan; Tian, Zheng; Zhao, Wei; Wen, Jinhuan; Yan, Weidong
2016-04-01
Coherent point drift (CPD) method is a powerful registration tool under the framework of the Gaussian mixture model (GMM). However, the global spatial structure of point sets is considered only without other forms of additional attribute information. The equivalent simplification of mixing parameters and the manual setting of the weight parameter in GMM make the CPD method less robust to outlier and have less flexibility. An adaptive CPD method is proposed to automatically determine the mixing parameters by embedding the local attribute information of features into the construction of GMM. In addition, the weight parameter is treated as an unknown parameter and automatically determined in the expectation-maximization algorithm. In image registration applications, the block-divided salient image disk extraction method is designed to detect sparse salient image features and local self-similarity is used as attribute information to describe the local neighborhood structure of each feature. The experimental results on optical images and remote sensing images show that the proposed method can significantly improve the matching performance.
Efficient Combustion Simulation via the Adaptive Wavelet Collocation Method
NASA Astrophysics Data System (ADS)
Lung, Kevin; Brown-Dymkoski, Eric; Guerrero, Victor; Doran, Eric; Museth, Ken; Balme, Jo; Urberger, Bob; Kessler, Andre; Jones, Stephen; Moses, Billy; Crognale, Anthony
Rocket engine development continues to be driven by the intuition and experience of designers, progressing through extensive trial-and-error test campaigns. Extreme temperatures and pressures frustrate direct observation, while high-fidelity simulation can be impractically expensive owing to the inherent muti-scale, multi-physics nature of the problem. To address this cost, an adaptive multi-resolution PDE solver has been designed which targets the high performance, many-core architecture of GPUs. The adaptive wavelet collocation method is used to maintain a sparse-data representation of the high resolution simulation, greatly reducing the memory footprint while tightly controlling physical fidelity. The tensorial, stencil topology of wavelet-based grids lends itself to highly vectorized algorithms which are necessary to exploit the performance of GPUs. This approach permits efficient implementation of direct finite-rate kinetics, and improved resolution of steep thermodynamic gradients and the smaller mixing scales that drive combustion dynamics. Resolving these scales is crucial for accurate chemical kinetics, which are typically degraded or lost in statistical modeling approaches.
A locally adaptive kernel regression method for facies delineation
NASA Astrophysics Data System (ADS)
Fernàndez-Garcia, D.; Barahona-Palomo, M.; Henri, C. V.; Sanchez-Vila, X.
2015-12-01
Facies delineation is defined as the separation of geological units with distinct intrinsic characteristics (grain size, hydraulic conductivity, mineralogical composition). A major challenge in this area stems from the fact that only a few scattered pieces of hydrogeological information are available to delineate geological facies. Several methods to delineate facies are available in the literature, ranging from those based only on existing hard data, to those including secondary data or external knowledge about sedimentological patterns. This paper describes a methodology to use kernel regression methods as an effective tool for facies delineation. The method uses both the spatial and the actual sampled values to produce, for each individual hard data point, a locally adaptive steering kernel function, self-adjusting the principal directions of the local anisotropic kernels to the direction of highest local spatial correlation. The method is shown to outperform the nearest neighbor classification method in a number of synthetic aquifers whenever the available number of hard data is small and randomly distributed in space. In the case of exhaustive sampling, the steering kernel regression method converges to the true solution. Simulations ran in a suite of synthetic examples are used to explore the selection of kernel parameters in typical field settings. It is shown that, in practice, a rule of thumb can be used to obtain suboptimal results. The performance of the method is demonstrated to significantly improve when external information regarding facies proportions is incorporated. Remarkably, the method allows for a reasonable reconstruction of the facies connectivity patterns, shown in terms of breakthrough curves performance.
A forward method for optimal stochastic nonlinear and adaptive control
NASA Technical Reports Server (NTRS)
Bayard, David S.
1988-01-01
A computational approach is taken to solve the optimal nonlinear stochastic control problem. The approach is to systematically solve the stochastic dynamic programming equations forward in time, using a nested stochastic approximation technique. Although computationally intensive, this provides a straightforward numerical solution for this class of problems and provides an alternative to the usual dimensionality problem associated with solving the dynamic programming equations backward in time. It is shown that the cost degrades monotonically as the complexity of the algorithm is reduced. This provides a strategy for suboptimal control with clear performance/computation tradeoffs. A numerical study focusing on a generic optimal stochastic adaptive control example is included to demonstrate the feasibility of the method.
Adaptive mesh refinement and adjoint methods in geophysics simulations
NASA Astrophysics Data System (ADS)
Burstedde, Carsten
2013-04-01
It is an ongoing challenge to increase the resolution that can be achieved by numerical geophysics simulations. This applies to considering sub-kilometer mesh spacings in global-scale mantle convection simulations as well as to using frequencies up to 1 Hz in seismic wave propagation simulations. One central issue is the numerical cost, since for three-dimensional space discretizations, possibly combined with time stepping schemes, a doubling of resolution can lead to an increase in storage requirements and run time by factors between 8 and 16. A related challenge lies in the fact that an increase in resolution also increases the dimensionality of the model space that is needed to fully parametrize the physical properties of the simulated object (a.k.a. earth). Systems that exhibit a multiscale structure in space are candidates for employing adaptive mesh refinement, which varies the resolution locally. An example that we found well suited is the mantle, where plate boundaries and fault zones require a resolution on the km scale, while deeper area can be treated with 50 or 100 km mesh spacings. This approach effectively reduces the number of computational variables by several orders of magnitude. While in this case it is possible to derive the local adaptation pattern from known physical parameters, it is often unclear what are the most suitable criteria for adaptation. We will present the goal-oriented error estimation procedure, where such criteria are derived from an objective functional that represents the observables to be computed most accurately. Even though this approach is well studied, it is rarely used in the geophysics community. A related strategy to make finer resolution manageable is to design methods that automate the inference of model parameters. Tweaking more than a handful of numbers and judging the quality of the simulation by adhoc comparisons to known facts and observations is a tedious task and fundamentally limited by the turnaround times
Evaluation of Adaptive Subdivision Method on Mobile Device
NASA Astrophysics Data System (ADS)
Rahim, Mohd Shafry Mohd; Isa, Siti Aida Mohd; Rehman, Amjad; Saba, Tanzila
2013-06-01
Recently, there are significant improvements in the capabilities of mobile devices; but rendering large 3D object is still tedious because of the constraint in resources of mobile devices. To reduce storage requirement, 3D object is simplified but certain area of curvature is compromised and the surface will not be smooth. Therefore a method to smoother selected area of a curvature is implemented. One of the popular methods is adaptive subdivision method. Experiments are performed using two data with results based on processing time, rendering speed and the appearance of the object on the devices. The result shows a downfall in frame rate performance due to the increase in the number of triangles with each level of iteration while the processing time of generating the new mesh also significantly increase. Since there is a difference in screen size between the devices the surface on the iPhone appears to have more triangles and more compact than the surface displayed on the iPad. [Figure not available: see fulltext.
ERIC Educational Resources Information Center
Melaragno, Ralph J.
The two-phase study compared two methods of adapting self-instructional materials to individual differences among learners. The methods were compared with each other and with a control condition involving only minimal adaptation. The first adaptation procedure was based on subjects' performances on a learning task in Phase I of the study; the…
Broom, Donald M
2006-01-01
The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and
An Adaptive De-Aliasing Strategy for Discontinuous Galerkin methods
NASA Astrophysics Data System (ADS)
Beck, Andrea; Flad, David; Frank, Hannes; Munz, Claus-Dieter
2015-11-01
Discontinuous Galerkin methods combine the accuracy of a local polynomial representation with the geometrical flexibility of an element-based discretization. In combination with their excellent parallel scalability, these methods are currently of great interest for DNS and LES. For high order schemes, the dissipation error approaches a cut-off behavior, which allows an efficient wave resolution per degree of freedom, but also reduces robustness against numerical errors. One important source of numerical error is the inconsistent discretization of the non-linear convective terms, which results in aliasing of kinetic energy and solver instability. Consistent evaluation of the inner products prevents this form of error, but is computationally very expensive. In this talk, we discuss the need for a consistent de-aliasing to achieve a neutrally stable scheme, and present a novel strategy for recovering a part of the incurred computational costs. By implementing the de-aliasing operation through a cell-local projection filter, we can perform adaptive de-aliasing in space and time, based on physically motivated indicators. We will present results for a homogeneous isotropic turbulence and the Taylor-Green vortex flow, and discuss implementation details, accuracy and efficiency.
Method for removing tilt control in adaptive optics systems
Salmon, J.T.
1998-04-28
A new adaptive optics system and method of operation are disclosed, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G{prime} = (I{minus}X(X{sup T} X){sup {minus}1}X{sup T})G(I{minus}A). 3 figs.
Method for removing tilt control in adaptive optics systems
Salmon, Joseph Thaddeus
1998-01-01
A new adaptive optics system and method of operation, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G'=(I-X(X.sup.T X).sup.-1 X.sup.T)G(I-A)
Adapted G-mode Clustering Method applied to Asteroid Taxonomy
NASA Astrophysics Data System (ADS)
Hasselmann, Pedro H.; Carvano, Jorge M.; Lazzaro, D.
2013-11-01
The original G-mode was a clustering method developed by A. I. Gavrishin in the late 60's for geochemical classification of rocks, but was also applied to asteroid photometry, cosmic rays, lunar sample and planetary science spectroscopy data. In this work, we used an adapted version to classify the asteroid photometry from SDSS Moving Objects Catalog. The method works by identifying normal distributions in a multidimensional space of variables. The identification starts by locating a set of points with smallest mutual distance in the sample, which is a problem when data is not planar. Here we present a modified version of the G-mode algorithm, which was previously written in FORTRAN 77, in Python 2.7 and using NumPy, SciPy and Matplotlib packages. The NumPy was used for array and matrix manipulation and Matplotlib for plot control. The Scipy had a import role in speeding up G-mode, Scipy.spatial.distance.mahalanobis was chosen as distance estimator and Numpy.histogramdd was applied to find the initial seeds from which clusters are going to evolve. Scipy was also used to quickly produce dendrograms showing the distances among clusters. Finally, results for Asteroids Taxonomy and tests for different sample sizes and implementations are presented.
Adaptable Metadata Rich IO Methods for Portable High Performance IO
Lofstead, J.; Zheng, Fang; Klasky, Scott A; Schwan, Karsten
2009-01-01
Since IO performance on HPC machines strongly depends on machine characteristics and configuration, it is important to carefully tune IO libraries and make good use of appropriate library APIs. For instance, on current petascale machines, independent IO tends to outperform collective IO, in part due to bottlenecks at the metadata server. The problem is exacerbated by scaling issues, since each IO library scales differently on each machine, and typically, operates efficiently to different levels of scaling on different machines. With scientific codes being run on a variety of HPC resources, efficient code execution requires us to address three important issues: (1) end users should be able to select the most efficient IO methods for their codes, with minimal effort in terms of code updates or alterations; (2) such performance-driven choices should not prevent data from being stored in the desired file formats, since those are crucial for later data analysis; and (3) it is important to have efficient ways of identifying and selecting certain data for analysis, to help end users cope with the flood of data produced by high end codes. This paper employs ADIOS, the ADaptable IO System, as an IO API to address (1)-(3) above. Concerning (1), ADIOS makes it possible to independently select the IO methods being used by each grouping of data in an application, so that end users can use those IO methods that exhibit best performance based on both IO patterns and the underlying hardware. In this paper, we also use this facility of ADIOS to experimentally evaluate on petascale machines alternative methods for high performance IO. Specific examples studied include methods that use strong file consistency vs. delayed parallel data consistency, as that provided by MPI-IO or POSIX IO. Concerning (2), to avoid linking IO methods to specific file formats and attain high IO performance, ADIOS introduces an efficient intermediate file format, termed BP, which can be converted, at small
A hybrid method for optimization of the adaptive Goldstein filter
NASA Astrophysics Data System (ADS)
Jiang, Mi; Ding, Xiaoli; Tian, Xin; Malhotra, Rakesh; Kong, Weixue
2014-12-01
The Goldstein filter is a well-known filter for interferometric filtering in the frequency domain. The main parameter of this filter, alpha, is set as a power of the filtering function. Depending on it, considered areas are strongly or weakly filtered. Several variants have been developed to adaptively determine alpha using different indicators such as the coherence, and phase standard deviation. The common objective of these methods is to prevent areas with low noise from being over filtered while simultaneously allowing stronger filtering over areas with high noise. However, the estimators of these indicators are biased in the real world and the optimal model to accurately determine the functional relationship between the indicators and alpha is also not clear. As a result, the filter always under- or over-filters and is rarely correct. The study presented in this paper aims to achieve accurate alpha estimation by correcting the biased estimator using homogeneous pixel selection and bootstrapping algorithms, and by developing an optimal nonlinear model to determine alpha. In addition, an iteration is also merged into the filtering procedure to suppress the high noise over incoherent areas. The experimental results from synthetic and real data show that the new filter works well under a variety of conditions and offers better and more reliable performance when compared to existing approaches.
Tsunami modelling with adaptively refined finite volume methods
LeVeque, R.J.; George, D.L.; Berger, M.J.
2011-01-01
Numerical modelling of transoceanic tsunami propagation, together with the detailed modelling of inundation of small-scale coastal regions, poses a number of algorithmic challenges. The depth-averaged shallow water equations can be used to reduce this to a time-dependent problem in two space dimensions, but even so it is crucial to use adaptive mesh refinement in order to efficiently handle the vast differences in spatial scales. This must be done in a 'wellbalanced' manner that accurately captures very small perturbations to the steady state of the ocean at rest. Inundation can be modelled by allowing cells to dynamically change from dry to wet, but this must also be done carefully near refinement boundaries. We discuss these issues in the context of Riemann-solver-based finite volume methods for tsunami modelling. Several examples are presented using the GeoClaw software, and sample codes are available to accompany the paper. The techniques discussed also apply to a variety of other geophysical flows. ?? 2011 Cambridge University Press.
LDRD Final Report: Adaptive Methods for Laser Plasma Simulation
Dorr, M R; Garaizar, F X; Hittinger, J A
2003-01-29
The goal of this project was to investigate the utility of parallel adaptive mesh refinement (AMR) in the simulation of laser plasma interaction (LPI). The scope of work included the development of new numerical methods and parallel implementation strategies. The primary deliverables were (1) parallel adaptive algorithms to solve a system of equations combining plasma fluid and light propagation models, (2) a research code implementing these algorithms, and (3) an analysis of the performance of parallel AMR on LPI problems. The project accomplished these objectives. New algorithms were developed for the solution of a system of equations describing LPI. These algorithms were implemented in a new research code named ALPS (Adaptive Laser Plasma Simulator) that was used to test the effectiveness of the AMR algorithms on the Laboratory's large-scale computer platforms. The details of the algorithm and the results of the numerical tests were documented in an article published in the Journal of Computational Physics [2]. A principal conclusion of this investigation is that AMR is most effective for LPI systems that are ''hydrodynamically large'', i.e., problems requiring the simulation of a large plasma volume relative to the volume occupied by the laser light. Since the plasma-only regions require less resolution than the laser light, AMR enables the use of efficient meshes for such problems. In contrast, AMR is less effective for, say, a single highly filamented beam propagating through a phase plate, since the resulting speckle pattern may be too dense to adequately separate scales with a locally refined mesh. Ultimately, the gain to be expected from the use of AMR is highly problem-dependent. One class of problems investigated in this project involved a pair of laser beams crossing in a plasma flow. Under certain conditions, energy can be transferred from one beam to the other via a resonant interaction with an ion acoustic wave in the crossing region. AMR provides an
Solution of Reactive Compressible Flows Using an Adaptive Wavelet Method
NASA Astrophysics Data System (ADS)
Zikoski, Zachary; Paolucci, Samuel; Powers, Joseph
2008-11-01
This work presents numerical simulations of reactive compressible flow, including detailed multicomponent transport, using an adaptive wavelet algorithm. The algorithm allows for dynamic grid adaptation which enhances our ability to fully resolve all physically relevant scales. The thermodynamic properties, equation of state, and multicomponent transport properties are provided by CHEMKIN and TRANSPORT libraries. Results for viscous detonation in a H2:O2:Ar mixture, and other problems in multiple dimensions, are included.
On Accuracy of Adaptive Grid Methods for Captured Shocks
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.
2002-01-01
The accuracy of two grid adaptation strategies, grid redistribution and local grid refinement, is examined by solving the 2-D Euler equations for the supersonic steady flow around a cylinder. Second- and fourth-order linear finite difference shock-capturing schemes, based on the Lax-Friedrichs flux splitting, are used to discretize the governing equations. The grid refinement study shows that for the second-order scheme, neither grid adaptation strategy improves the numerical solution accuracy compared to that calculated on a uniform grid with the same number of grid points. For the fourth-order scheme, the dominant first-order error component is reduced by the grid adaptation, while the design-order error component drastically increases because of the grid nonuniformity. As a result, both grid adaptation techniques improve the numerical solution accuracy only on the coarsest mesh or on very fine grids that are seldom found in practical applications because of the computational cost involved. Similar error behavior has been obtained for the pressure integral across the shock. A simple analysis shows that both grid adaptation strategies are not without penalties in the numerical solution accuracy. Based on these results, a new grid adaptation criterion for captured shocks is proposed.
NASA Technical Reports Server (NTRS)
Wang, Ray (Inventor)
2009-01-01
A method and system for spatial data manipulation input and distribution via an adaptive wireless transceiver. The method and system include a wireless transceiver for automatically and adaptively controlling wireless transmissions using a Waveform-DNA method. The wireless transceiver can operate simultaneously over both the short and long distances. The wireless transceiver is automatically adaptive and wireless devices can send and receive wireless digital and analog data from various sources rapidly in real-time via available networks and network services.
NASA Astrophysics Data System (ADS)
Bargatze, L. F.
2015-12-01
Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted
Adaptation of a-Stratified Method in Variable Length Computerized Adaptive Testing.
ERIC Educational Resources Information Center
Wen, Jian-Bing; Chang, Hua-Hua; Hau, Kit-Tai
Test security has often been a problem in computerized adaptive testing (CAT) because the traditional wisdom of item selection overly exposes high discrimination items. The a-stratified (STR) design advocated by H. Chang and his collaborators, which uses items of less discrimination in earlier stages of testing, has been shown to be very…
Study of adaptive methods for data compression of scanner data
NASA Technical Reports Server (NTRS)
1977-01-01
The performance of adaptive image compression techniques and the applicability of a variety of techniques to the various steps in the data dissemination process are examined in depth. It is concluded that the bandwidth of imagery generated by scanners can be reduced without introducing significant degradation such that the data can be transmitted over an S-band channel. This corresponds to a compression ratio equivalent to 1.84 bits per pixel. It is also shown that this can be achieved using at least two fairly simple techniques with weight-power requirements well within the constraints of the LANDSAT-D satellite. These are the adaptive 2D DPCM and adaptive hybrid techniques.
Systems and Methods for Derivative-Free Adaptive Control
NASA Technical Reports Server (NTRS)
Yucelen, Tansel (Inventor); Kim, Kilsoo (Inventor); Calise, Anthony J. (Inventor)
2015-01-01
An adaptive control system is disclosed. The control system can control uncertain dynamic systems. The control system can employ one or more derivative-free adaptive control architectures. The control system can further employ one or more derivative-free weight update laws. The derivative-free weight update laws can comprise a time-varying estimate of an ideal vector of weights. The control system of the present invention can therefore quickly stabilize systems that undergo sudden changes in dynamics, caused by, for example, sudden changes in weight. Embodiments of the present invention can also provide a less complex control system than existing adaptive control systems. The control system can control aircraft and other dynamic systems, such as, for example, those with non-minimum phase dynamics.
A New Method to Cancel RFI---The Adaptive Filter
NASA Astrophysics Data System (ADS)
Bradley, R.; Barnbaum, C.
1996-12-01
An increasing amount of precious radio frequency spectrum in the VHF, UHF, and microwave bands is being utilized each year to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Some radio spectral lines of astronomical interest occur outside the protected radio astronomy bands and are unobservable due to heavy interference. Conventional approaches to deal with RFI include legislation, notch filters, RF shielding, and post-processing techniques. Although these techniques are somewhat successful, each suffers from insufficient interference cancellation. One concept of interference excision that has not been used before in radio astronomy is adaptive interference cancellation. The concept of adaptive interference canceling was first introduced in the mid-1970s as a way to reduce unwanted noise in low frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartment of automobiles. Only recently have high-speed digital filter chips made adaptive filtering possible in a bandwidth as large a few megahertz, finally opening the door to astronomical uses. The system consists of two receivers: the main beam of the radio telescope receives the desired signal corrupted by RFI coming in the sidelobes, and the reference antenna receives only the RFI. The reference antenna is processed using a digital adaptive filter and then subtracted from the signal in the main beam, thus producing the system output. The weights of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the interference canceler will lock onto the RFI and the filter will adjust itself to minimize the effect of the RFI at the system output. We are building a prototype 100 MHz receiver and will measure the cancellation
The use of the spectral method within the fast adaptive composite grid method
McKay, S.M.
1994-12-31
The use of efficient algorithms for the solution of partial differential equations has been sought for many years. The fast adaptive composite grid (FAC) method combines an efficient algorithm with high accuracy to obtain low cost solutions to partial differential equations. The FAC method achieves fast solution by combining solutions on different grids with varying discretizations and using multigrid like techniques to find fast solution. Recently, the continuous FAC (CFAC) method has been developed which utilizes an analytic solution within a subdomain to iterate to a solution of the problem. This has been shown to achieve excellent results when the analytic solution can be found. The CFAC method will be extended to allow solvers which construct a function for the solution, e.g., spectral and finite element methods. In this discussion, the spectral methods will be used to provide a fast, accurate solution to the partial differential equation. As spectral methods are more accurate than finite difference methods, the ensuing accuracy from this hybrid method outside of the subdomain will be investigated.
Adaptive finite element methods for two-dimensional problems in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1994-01-01
Some recent results obtained using solution-adaptive finite element methods in two-dimensional problems in linear elastic fracture mechanics are presented. The focus is on the basic issue of adaptive finite element methods for validating the new methodology by computing demonstration problems and comparing the stress intensity factors to analytical results.
Evaluation of an adaptive beamforming method for hearing aids.
Greenberg, J E; Zurek, P M
1992-03-01
In this paper evaluations of a two-microphone adaptive beamforming system for hearing aids are presented. The system, based on the constrained adaptive beamformer described by Griffiths and Jim [IEEE Trans. Antennas Propag. AP-30, 27-34 (1982)], adapts to preserve target signals from straight ahead and to minimize jammer signals arriving from other directions. Modifications of the basic Griffiths-Jim algorithm are proposed to alleviate problems of target cancellation and misadjustment that arise in the presence of strong target signals. The evaluations employ both computer simulations and a real-time hardware implementation and are restricted to the case of a single jammer. Performance is measured by the spectrally weighted gain in the target-to-jammer ratio in the steady state. Results show that in environments with relatively little reverberation: (1) the modifications allow good performance even with misaligned arrays and high input target-to-jammer ratios; and (2) performance is better with a broadside array with 7-cm spacing between microphones than with a 26-cm broadside or a 7-cm endfire configuration. Performance degrades in reverberant environments; at the critical distance of a room, improvement with a practical system is limited to a few dB. PMID:1564202
Method and apparatus for adaptive force and position control of manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1989-01-01
The present invention discloses systematic methods and apparatus for the design of real time controllers. Real-time control employs adaptive force/position by use of feedforward and feedback controllers, with the feedforward controller being the inverse of the linearized model of robot dynamics and containing only proportional-double-derivative terms is disclosed. The feedback controller, of the proportional-integral-derivative type, ensures that manipulator joints follow reference trajectories and the feedback controller achieves robust tracking of step-plus-exponential trajectories, all in real time. The adaptive controller includes adaptive force and position control within a hybrid control architecture. The adaptive controller, for force control, achieves tracking of desired force setpoints, and the adaptive position controller accomplishes tracking of desired position trajectories. Circuits in the adaptive feedback and feedforward controllers are varied by adaptation laws.
Multiscale Simulation of Microcrack Based on a New Adaptive Finite Element Method
NASA Astrophysics Data System (ADS)
Xu, Yun; Chen, Jun; Chen, Dong Quan; Sun, Jin Shan
In this paper, a new adaptive finite element (FE) framework based on the variational multiscale method is proposed and applied to simulate the dynamic behaviors of metal under loadings. First, the extended bridging scale method is used to couple molecular dynamics and FE. Then, macro damages evolvements of those micro defects are simulated by the adaptive FE method. Some auxiliary strategies, such as the conservative mesh remapping, failure mechanism and mesh splitting technique are also included in the adaptive FE computation. Efficiency of our method is validated by numerical experiments.
An adaptive response surface method for crashworthiness optimization
NASA Astrophysics Data System (ADS)
Shi, Lei; Yang, Ren-Jye; Zhu, Ping
2013-11-01
Response surface-based design optimization has been commonly used for optimizing large-scale design problems in the automotive industry. However, most response surface models are built by a limited number of design points without considering data uncertainty. In addition, the selection of a response surface in the literature is often arbitrary. This article uses a Bayesian metric to systematically select the best available response surface among several candidates in a library while considering data uncertainty. An adaptive, efficient response surface strategy, which minimizes the number of computationally intensive simulations, was developed for design optimization of large-scale complex problems. This methodology was demonstrated by a crashworthiness optimization example.
Robustness of an adaptive beamforming method for hearing aids.
Peterson, P M; Wei, S M; Rabinowitz, W M; Zurek, P M
1990-01-01
We describe the results of computer simulations of a multimicrophone adaptive-beamforming system as a noise reduction device for hearing aids. Of particular concern was the system's sensitivity to violations of the underlying assumption that the target signal is identical at the microphones. Two- and four-microphone versions of the system were tested in simulated anechoic and modestly-reverberant environments with one and two jammers, and with deviations from the assumed straight-ahead target direction. Also examined were the effects of input target-to-jammer ratio and adaptive-filter length. Generally, although the noise-reduction performance of the system is degraded by target misalignment and modest reverberation, the system still provides positive advantage at input target-to-jammer ratios up to about 0 dB. This is in contrast to the degrading target-cancellation effect that the system can have when the equal-target assumption is violated and the input target-to-jammer ratio is greater than zero. PMID:2356741
Nonlinear mode decomposition: A noise-robust, adaptive decomposition method
NASA Astrophysics Data System (ADS)
Iatsenko, Dmytro; McClintock, Peter V. E.; Stefanovska, Aneta
2015-09-01
The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool—nonlinear mode decomposition (NMD)—which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques—which, together with the adaptive choice of their parameters, make it extremely noise robust—and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.
Nonlinear mode decomposition: a noise-robust, adaptive decomposition method.
Iatsenko, Dmytro; McClintock, Peter V E; Stefanovska, Aneta
2015-09-01
The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool-nonlinear mode decomposition (NMD)-which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques-which, together with the adaptive choice of their parameters, make it extremely noise robust-and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download. PMID:26465549
Investigating Item Exposure Control Methods in Computerized Adaptive Testing
ERIC Educational Resources Information Center
Ozturk, Nagihan Boztunc; Dogan, Nuri
2015-01-01
This study aims to investigate the effects of item exposure control methods on measurement precision and on test security under various item selection methods and item pool characteristics. In this study, the Randomesque (with item group sizes of 5 and 10), Sympson-Hetter, and Fade-Away methods were used as item exposure control methods. Moreover,…
A massively parallel adaptive finite element method with dynamic load balancing
Devine, K.D.; Flaherty, J.E.; Wheat, S.R.; Maccabe, A.B.
1993-05-01
We construct massively parallel, adaptive finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We demonstrate parallel efficiency through computations on a 1024-processor nCUBE/2 hypercube. We also present results using adaptive p-refinement to reduce the computational cost of the method. We describe tiling, a dynamic, element-based data migration system. Tiling dynamically maintains global load balance in the adaptive method by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. We demonstrate the effectiveness of the dynamic load balancing with adaptive p-refinement examples.
An examination of an adapter method for measuring the vibration transmitted to the human arms
Xu, Xueyan S.; Dong, Ren G.; Welcome, Daniel E.; Warren, Christopher; McDowell, Thomas W.
2016-01-01
The objective of this study is to evaluate an adapter method for measuring the vibration on the human arms. Four instrumented adapters with different weights were used to measure the vibration transmitted to the wrist, forearm, and upper arm of each subject. Each adapter was attached at each location on the subjects using an elastic cloth wrap. Two laser vibrometers were also used to measure the transmitted vibration at each location to evaluate the validity of the adapter method. The apparent mass at the palm of the hand along the forearm direction was also measured to enhance the evaluation. This study found that the adapter and laser-measured transmissibility spectra were comparable with some systematic differences. While increasing the adapter mass reduced the resonant frequency at the measurement location, increasing the tightness of the adapter attachment increased the resonant frequency. However, the use of lightweight (≤15 g) adapters under medium attachment tightness did not change the basic trends of the transmissibility spectrum. The resonant features observed in the transmissibility spectra were also correlated with those observed in the apparent mass spectra. Because the local coordinate systems of the adapters may be significantly misaligned relative to the global coordinates of the vibration test systems, large errors were observed for the adapter-measured transmissibility in some individual orthogonal directions. This study, however, also demonstrated that the misalignment issue can be resolved by either using the total vibration transmissibility or by measuring the misalignment angles to correct the errors. Therefore, the adapter method is acceptable for understanding the basic characteristics of the vibration transmission in the human arms, and the adapter-measured data are acceptable for approximately modeling the system. PMID:26834309
Investigation of the Multiple Model Adaptive Control (MMAC) method for flight control systems
NASA Technical Reports Server (NTRS)
1975-01-01
The application was investigated of control theoretic ideas to the design of flight control systems for the F-8 aircraft. The design of an adaptive control system based upon the so-called multiple model adaptive control (MMAC) method is considered. Progress is reported.
The older person has a stroke: Learning to adapt using the Feldenkrais® Method.
Jackson-Wyatt, O
1995-01-01
The older person with a stroke requires adapted therapeutic interventions to take into account normal age-related changes. The Feldenkrais® Method presents a model for learning to promote adaptability that addresses key functional changes seen with normal aging. Clinical examples related to specific functional tasks are discussed to highlight major treatment modifications and neuromuscular, psychological, emotional, and sensory considerations. PMID:27619899
An adaptive filter method for spacecraft using gravity assist
NASA Astrophysics Data System (ADS)
Ning, Xiaolin; Huang, Panpan; Fang, Jiancheng; Liu, Gang; Ge, Shuzhi Sam
2015-04-01
Celestial navigation (CeleNav) has been successfully used during gravity assist (GA) flyby for orbit determination in many deep space missions. Due to spacecraft attitude errors, ephemeris errors, the camera center-finding bias, and the frequency of the images before and after the GA flyby, the statistics of measurement noise cannot be accurately determined, and yet have time-varying characteristics, which may introduce large estimation error and even cause filter divergence. In this paper, an unscented Kalman filter (UKF) with adaptive measurement noise covariance, called ARUKF, is proposed to deal with this problem. ARUKF scales the measurement noise covariance according to the changes in innovation and residual sequences. Simulations demonstrate that ARUKF is robust to the inaccurate initial measurement noise covariance matrix and time-varying measurement noise. The impact factors in the ARUKF are also investigated.
New methods and astrophysical applications of adaptive mesh fluid simulations
NASA Astrophysics Data System (ADS)
Wang, Peng
The formation of stars, galaxies and supermassive black holes are among the most interesting unsolved problems in astrophysics. Those problems are highly nonlinear and involve enormous dynamical ranges. Thus numerical simulations with spatial adaptivity are crucial in understanding those processes. In this thesis, we discuss the development and application of adaptive mesh refinement (AMR) multi-physics fluid codes to simulate those nonlinear structure formation problems. To simulate the formation of star clusters, we have developed an AMR magnetohydrodynamics (MHD) code, coupled with radiative cooling. We have also developed novel algorithms for sink particle creation, accretion, merging and outflows, all of which are coupled with the fluid algorithms using operator splitting. With this code, we have been able to perform the first AMR-MHD simulation of star cluster formation for several dynamical times, including sink particle and protostellar outflow feedbacks. The results demonstrated that protostellar outflows can drive supersonic turbulence in dense clumps and explain the observed slow and inefficient star formation. We also suggest that global collapse rate is the most important factor in controlling massive star accretion rate. In the topics of galaxy formation, we discuss the results of three projects. In the first project, using cosmological AMR hydrodynamics simulations, we found that isolated massive star still forms in cosmic string wakes even though the mega-parsec scale structure has been perturbed significantly by the cosmic strings. In the second project, we calculated the dynamical heating rate in galaxy formation. We found that by balancing our heating rate with the atomic cooling rate, it gives a critical halo mass which agrees with the result of numerical simulations. This demonstrates that the effect of dynamical heating should be put into semi-analytical works in the future. In the third project, using our AMR-MHD code coupled with radiative
Parallel architectures for iterative methods on adaptive, block structured grids
NASA Technical Reports Server (NTRS)
Gannon, D.; Vanrosendale, J.
1983-01-01
A parallel computer architecture well suited to the solution of partial differential equations in complicated geometries is proposed. Algorithms for partial differential equations contain a great deal of parallelism. But this parallelism can be difficult to exploit, particularly on complex problems. One approach to extraction of this parallelism is the use of special purpose architectures tuned to a given problem class. The architecture proposed here is tuned to boundary value problems on complex domains. An adaptive elliptic algorithm which maps effectively onto the proposed architecture is considered in detail. Two levels of parallelism are exploited by the proposed architecture. First, by making use of the freedom one has in grid generation, one can construct grids which are locally regular, permitting a one to one mapping of grids to systolic style processor arrays, at least over small regions. All local parallelism can be extracted by this approach. Second, though there may be a regular global structure to the grids constructed, there will be parallelism at this level. One approach to finding and exploiting this parallelism is to use an architecture having a number of processor clusters connected by a switching network. The use of such a network creates a highly flexible architecture which automatically configures to the problem being solved.
An adaptive mesh refinement algorithm for the discrete ordinates method
Jessee, J.P.; Fiveland, W.A.; Howell, L.H.; Colella, P.; Pember, R.B.
1996-03-01
The discrete ordinates form of the radiative transport equation (RTE) is spatially discretized and solved using an adaptive mesh refinement (AMR) algorithm. This technique permits the local grid refinement to minimize spatial discretization error of the RTE. An error estimator is applied to define regions for local grid refinement; overlapping refined grids are recursively placed in these regions; and the RTE is then solved over the entire domain. The procedure continues until the spatial discretization error has been reduced to a sufficient level. The following aspects of the algorithm are discussed: error estimation, grid generation, communication between refined levels, and solution sequencing. This initial formulation employs the step scheme, and is valid for absorbing and isotopically scattering media in two-dimensional enclosures. The utility of the algorithm is tested by comparing the convergence characteristics and accuracy to those of the standard single-grid algorithm for several benchmark cases. The AMR algorithm provides a reduction in memory requirements and maintains the convergence characteristics of the standard single-grid algorithm; however, the cases illustrate that efficiency gains of the AMR algorithm will not be fully realized until three-dimensional geometries are considered.
Analysis of modified SMI method for adaptive array weight control
NASA Technical Reports Server (NTRS)
Dilsavor, R. L.; Moses, R. L.
1989-01-01
An adaptive array is applied to the problem of receiving a desired signal in the presence of weak interference signals which need to be suppressed. A modification, suggested by Gupta, of the sample matrix inversion (SMI) algorithm controls the array weights. In the modified SMI algorithm, interference suppression is increased by subtracting a fraction F of the noise power from the diagonal elements of the estimated covariance matrix. Given the true covariance matrix and the desired signal direction, the modified algorithm is shown to maximize a well-defined, intuitive output power ratio criterion. Expressions are derived for the expected value and variance of the array weights and output powers as a function of the fraction F and the number of snapshots used in the covariance matrix estimate. These expressions are compared with computer simulation and good agreement is found. A trade-off is found to exist between the desired level of interference suppression and the number of snapshots required in order to achieve that level with some certainty. The removal of noise eigenvectors from the covariance matrix inverse is also discussed with respect to this application. Finally, the type and severity of errors which occur in the covariance matrix estimate are characterized through simulation.
Speckle reduction in optical coherence tomography by adaptive total variation method
NASA Astrophysics Data System (ADS)
Wu, Tong; Shi, Yaoyao; Liu, Youwen; He, Chongjun
2015-12-01
An adaptive total variation method based on the combination of speckle statistics and total variation restoration is proposed and developed for reducing speckle noise in optical coherence tomography (OCT) images. The statistical distribution of the speckle noise in OCT image is investigated and measured. With the measured parameters such as the mean value and variance of the speckle noise, the OCT image is restored by the adaptive total variation restoration method. The adaptive total variation restoration algorithm was applied to the OCT images of a volunteer's hand skin, which showed effective speckle noise reduction and image quality improvement. For image quality comparison, the commonly used median filtering method was also applied to the same images to reduce the speckle noise. The measured results demonstrate the superior performance of the adaptive total variation restoration method in terms of image signal-to-noise ratio, equivalent number of looks, contrast-to-noise ratio, and mean square error.
An adaptation of Krylov subspace methods to path following
Walker, H.F.
1996-12-31
Krylov subspace methods at present constitute a very well known and highly developed class of iterative linear algebra methods. These have been effectively applied to nonlinear system solving through Newton-Krylov methods, in which Krylov subspace methods are used to solve the linear systems that characterize steps of Newton`s method (the Newton equations). Here, we will discuss the application of Krylov subspace methods to path following problems, in which the object is to track a solution curve as a parameter varies. Path following methods are typically of predictor-corrector form, in which a point near the solution curve is {open_quotes}predicted{close_quotes} by some easy but relatively inaccurate means, and then a series of Newton-like corrector iterations is used to return approximately to the curve. The analogue of the Newton equation is underdetermined, and an additional linear condition must be specified to determine corrector steps uniquely. This is typically done by requiring that the steps be orthogonal to an approximate tangent direction. Augmenting the under-determined system with this orthogonality condition in a straightforward way typically works well if direct linear algebra methods are used, but Krylov subspace methods are often ineffective with this approach. We will discuss recent work in which this orthogonality condition is imposed directly as a constraint on the corrector steps in a certain way. The means of doing this preserves problem conditioning, allows the use of preconditioners constructed for the fixed-parameter case, and has certain other advantages. Experiments on standard PDE continuation test problems indicate that this approach is effective.
Systems and Methods for Parameter Dependent Riccati Equation Approaches to Adaptive Control
NASA Technical Reports Server (NTRS)
Kim, Kilsoo (Inventor); Yucelen, Tansel (Inventor); Calise, Anthony J. (Inventor)
2015-01-01
Systems and methods for adaptive control are disclosed. The systems and methods can control uncertain dynamic systems. The control system can comprise a controller that employs a parameter dependent Riccati equation. The controller can produce a response that causes the state of the system to remain bounded. The control system can control both minimum phase and non-minimum phase systems. The control system can augment an existing, non-adaptive control design without modifying the gains employed in that design. The control system can also avoid the use of high gains in both the observer design and the adaptive control law.
Adapting Western Research Methods to Indigenous Ways of Knowing
Christopher, Suzanne
2013-01-01
Indigenous communities have long experienced exploitation by researchers and increasingly require participatory and decolonizing research processes. We present a case study of an intervention research project to exemplify a clash between Western research methodologies and Indigenous methodologies and how we attempted reconciliation. We then provide implications for future research based on lessons learned from Native American community partners who voiced concern over methods of Western deductive qualitative analysis. Decolonizing research requires constant reflective attention and action, and there is an absence of published guidance for this process. Continued exploration is needed for implementing Indigenous methods alone or in conjunction with appropriate Western methods when conducting research in Indigenous communities. Currently, examples of Indigenous methods and theories are not widely available in academic texts or published articles, and are often not perceived as valid. PMID:23678897
Solving delay differential equations in S-ADAPT by method of steps.
Bauer, Robert J; Mo, Gary; Krzyzanski, Wojciech
2013-09-01
S-ADAPT is a version of the ADAPT program that contains additional simulation and optimization abilities such as parametric population analysis. S-ADAPT utilizes LSODA to solve ordinary differential equations (ODEs), an algorithm designed for large dimension non-stiff and stiff problems. However, S-ADAPT does not have a solver for delay differential equations (DDEs). Our objective was to implement in S-ADAPT a DDE solver using the methods of steps. The method of steps allows one to solve virtually any DDE system by transforming it to an ODE system. The solver was validated for scalar linear DDEs with one delay and bolus and infusion inputs for which explicit analytic solutions were derived. Solutions of nonlinear DDE problems coded in S-ADAPT were validated by comparing them with ones obtained by the MATLAB DDE solver dde23. The estimation of parameters was tested on the MATLB simulated population pharmacodynamics data. The comparison of S-ADAPT generated solutions for DDE problems with the explicit solutions as well as MATLAB produced solutions which agreed to at least 7 significant digits. The population parameter estimates from using importance sampling expectation-maximization in S-ADAPT agreed with ones used to generate the data. PMID:23810514
Automatic multirate methods for ordinary differential equations. [Adaptive time steps
Gear, C.W.
1980-01-01
A study is made of the application of integration methods in which different step sizes are used for different members of a system of equations. Such methods can result in savings if the cost of derivative evaluation is high or if a system is sparse; however, the estimation and control of errors is very difficult and can lead to high overheads. Three approaches are discussed, and it is shown that the least intuitive is the most promising. 2 figures.
NASA Astrophysics Data System (ADS)
Ng, C. S.; Rosenberg, D.; Pouquet, A.; Germaschewski, K.; Bhattacharjee, A.
2009-04-01
A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)] is applied to simulate the problem of MHD island coalescence instability (\\ci) in two dimensions. \\ci is a fundamental MHD process that can produce sharp current layers and subsequent reconnection and heating in a high-Lundquist number plasma such as the solar corona [Ng and Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Due to the formation of thin current layers, it is highly desirable to use adaptively or statically refined grids to resolve them, and to maintain accuracy at the same time. The output of the spectral-element static adaptive refinement simulations are compared with simulations using a finite difference method on the same refinement grids, and both methods are compared to pseudo-spectral simulations with uniform grids as baselines. It is shown that with the statically refined grids roughly scaling linearly with effective resolution, spectral element runs can maintain accuracy significantly higher than that of the finite difference runs, in some cases achieving close to full spectral accuracy.
Adaptive error covariances estimation methods for ensemble Kalman filters
Zhen, Yicun; Harlim, John
2015-08-01
This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for using information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.
A massively parallel adaptive finite element method with dynamic load balancing
Devine, K.D.; Flaherty, J.E.; Wheat, S.R.; Maccabe, A.B.
1993-12-31
The authors construct massively parallel adaptive finite element methods for the solution of hyperbolic conservation laws. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. The resulting method is of high order and may be parallelized efficiently on MIMD computers. They demonstrate parallel efficiency through computations on a 1024-processor nCUBE/2 hypercube. They present results using adaptive p-refinement to reduce the computational cost of the method, and tiling, a dynamic, element-based data migration system that maintains global load balance of the adaptive method by overlapping neighborhoods of processors that each perform local balancing.
Restrictive Stochastic Item Selection Methods in Cognitive Diagnostic Computerized Adaptive Testing
ERIC Educational Resources Information Center
Wang, Chun; Chang, Hua-Hua; Huebner, Alan
2011-01-01
This paper proposes two new item selection methods for cognitive diagnostic computerized adaptive testing: the restrictive progressive method and the restrictive threshold method. They are built upon the posterior weighted Kullback-Leibler (KL) information index but include additional stochastic components either in the item selection index or in…
Weighted Structural Regression: A Broad Class of Adaptive Methods for Improving Linear Prediction.
ERIC Educational Resources Information Center
Pruzek, Robert M.; Lepak, Greg M.
1992-01-01
Adaptive forms of weighted structural regression are developed and discussed. Bootstrapping studies indicate that the new methods have potential to recover known population regression weights and predict criterion score values routinely better than do ordinary least squares methods. The new methods are scale free and simple to compute. (SLD)
An Adaptive Kalman Filter using a Simple Residual Tuning Method
NASA Technical Reports Server (NTRS)
Harman, Richard R.
1999-01-01
One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.
An Adaptive Kalman Filter Using a Simple Residual Tuning Method
NASA Technical Reports Server (NTRS)
Harman, Richard R.
1999-01-01
One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. A. H. Jazwinski developed a specialized version of this technique for estimation of process noise. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.
Adapting and using quality management methods to improve health promotion.
Becker, Craig M; Glascoff, Mary A; Felts, William Michael; Kent, Christopher
2015-01-01
Although the western world is the most technologically advanced civilization to date, it is also the most addicted, obese, medicated, and in-debt adult population in history. Experts had predicted that the 21st century would be a time of better health and prosperity. Although wealth has increased, our quest to quell health problems using a pathogenic approach without understanding the interconnectedness of everyone and everything has damaged personal and planetary health. While current efforts help identify and eliminate causes of problems, they do not facilitate the creation of health and well-being as would be done with a salutogenic approach. Sociologist Aaron Antonovsky coined the term salutogenesis in 1979. It is derived from salus, which is Latin for health, and genesis, meaning to give birth. Salutogenesis, the study of the origins and creation of health, provides a method to identify an interconnected way to enhance well-being. Salutogenesis provides a framework for a method of practice to improve health promotion efforts. This article illustrates how quality management methods can be used to guide health promotion efforts focused on improving health beyond the absence of disease. PMID:25777291
MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods
Schmidt, Johannes F. M.; Santelli, Claudio; Kozerke, Sebastian
2016-01-01
An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and ℓ1-regularized parallel imaging methods. PMID:27116675
Adaptive Discrete Equation Method for injection of stochastic cavitating flows
NASA Astrophysics Data System (ADS)
Geraci, Gianluca; Rodio, Maria Giovanna; Iaccarino, Gianluca; Abgrall, Remi; Congedo, Pietro
2014-11-01
This work aims at the improvement of the prediction and of the control of biofuel injection for combustion. In fact, common injector should be optimized according to the specific physical/chemical properties of biofuels. In order to attain this scope, an optimized model for reproducing the injection for several biofuel blends will be considered. The originality of this approach is twofold, i) the use of cavitating two-phase compressible models, known as Baer & Nunziato, in order to reproduce the injection, and ii) the design of a global scheme for directly taking into account experimental measurements uncertainties in the simulation. In particular, stochastic intrusive methods display a high efficiency when dealing with discontinuities in unsteady compressible flows. We have recently formulated a new scheme for simulating stochastic multiphase flows relying on the Discrete Equation Method (DEM) for describing multiphase effects. The set-up of the intrusive stochastic method for multiphase unsteady compressible flows in quasi 1D configuration will be presented. The target test-case is a multiphase unsteady nozzle for injection of biofuels, described by complex thermodynamics models, for which experimental data and associated uncertainties are available.
MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods.
Schmidt, Johannes F M; Santelli, Claudio; Kozerke, Sebastian
2016-01-01
An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and ℓ1-regularized parallel imaging methods. PMID:27116675
The Pilates method and cardiorespiratory adaptation to training.
Tinoco-Fernández, Maria; Jiménez-Martín, Miguel; Sánchez-Caravaca, M Angeles; Fernández-Pérez, Antonio M; Ramírez-Rodrigo, Jesús; Villaverde-Gutiérrez, Carmen
2016-01-01
Although all authors report beneficial health changes following training based on the Pilates method, no explicit analysis has been performed of its cardiorespiratory effects. The objective of this study was to evaluate possible changes in cardiorespiratory parameters with the Pilates method. A total of 45 university students aged 18-35 years (77.8% female and 22.2% male), who did not routinely practice physical exercise or sports, volunteered for the study and signed informed consent. The Pilates training was conducted over 10 weeks, with three 1-hour sessions per week. Physiological cardiorespiratory responses were assessed using a MasterScreen CPX apparatus. After the 10-week training, statistically significant improvements were observed in mean heart rate (135.4-124.2 beats/min), respiratory exchange ratio (1.1-0.9) and oxygen equivalent (30.7-27.6) values, among other spirometric parameters, in submaximal aerobic testing. These findings indicate that practice of the Pilates method has a positive influence on cardiorespiratory parameters in healthy adults who do not routinely practice physical exercise activities. PMID:27357919
Error estimation and adaptive order nodal method for solving multidimensional transport problems
Zamonsky, O.M.; Gho, C.J.; Azmy, Y.Y.
1998-01-01
The authors propose a modification of the Arbitrarily High Order Transport Nodal method whereby they solve each node and each direction using different expansion order. With this feature and a previously proposed a posteriori error estimator they develop an adaptive order scheme to automatically improve the accuracy of the solution of the transport equation. They implemented the modified nodal method, the error estimator and the adaptive order scheme into a discrete-ordinates code for solving monoenergetic, fixed source, isotropic scattering problems in two-dimensional Cartesian geometry. They solve two test problems with large homogeneous regions to test the adaptive order scheme. The results show that using the adaptive process the storage requirements are reduced while preserving the accuracy of the results.
An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
1999-01-01
An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.
A Massively Parallel Adaptive Fast Multipole Method on Heterogeneous Architectures
Lashuk, Ilya; Chandramowlishwaran, Aparna; Langston, Harper; Nguyen, Tuan-Anh; Sampath, Rahul S; Shringarpure, Aashay; Vuduc, Richard; Ying, Lexing; Zorin, Denis; Biros, George
2012-01-01
We describe a parallel fast multipole method (FMM) for highly nonuniform distributions of particles. We employ both distributed memory parallelism (via MPI) and shared memory parallelism (via OpenMP and GPU acceleration) to rapidly evaluate two-body nonoscillatory potentials in three dimensions on heterogeneous high performance computing architectures. We have performed scalability tests with up to 30 billion particles on 196,608 cores on the AMD/CRAY-based Jaguar system at ORNL. On a GPU-enabled system (NSF's Keeneland at Georgia Tech/ORNL), we observed 30x speedup over a single core CPU and 7x speedup over a multicore CPU implementation. By combining GPUs with MPI, we achieve less than 10 ns/particle and six digits of accuracy for a run with 48 million nonuniformly distributed particles on 192 GPUs.
Impedance adaptation methods of the piezoelectric energy harvesting
NASA Astrophysics Data System (ADS)
Kim, Hyeoungwoo
In this study, the important issues of energy recovery were addressed and a comprehensive investigation was performed on harvesting electrical power from an ambient mechanical vibration source. Also discussed are the impedance matching methods used to increase the efficiency of energy transfer from the environment to the application. Initially, the mechanical impedance matching method was investigated to increase mechanical energy transferred to the transducer from the environment. This was done by reducing the mechanical impedance such as damping factor and energy reflection ratio. The vibration source and the transducer were modeled by a two-degree-of-freedom dynamic system with mass, spring constant, and damper. The transmissibility employed to show how much mechanical energy that was transferred in this system was affected by the damping ratio and the stiffness of elastic materials. The mechanical impedance of the system was described by electrical system using analogy between the two systems in order to simply the total mechanical impedance. Secondly, the transduction rate of mechanical energy to electrical energy was improved by using a PZT material which has a high figure of merit and a high electromechanical coupling factor for electrical power generation, and a piezoelectric transducer which has a high transduction rate was designed and fabricated. The high g material (g33 = 40 [10-3Vm/N]) was developed to improve the figure of merit of the PZT ceramics. The cymbal composite transducer has been found as a promising structure for piezoelectric energy harvesting under high force at cyclic conditions (10--200 Hz), because it has almost 40 times higher effective strain coefficient than PZT ceramics. The endcap of cymbal also enhances the endurance of the ceramic to sustain ac load along with stress amplification. In addition, a macro fiber composite (MFC) was employed as a strain component because of its flexibility and the high electromechanical coupling
A self-adaptive-grid method with application to airfoil flow
NASA Technical Reports Server (NTRS)
Nakahashi, K.; Deiwert, G. S.
1985-01-01
A self-adaptive-grid method is described that is suitable for multidimensional steady and unsteady computations. Based on variational principles, a spring analogy is used to redistribute grid points in an optimal sense to reduce the overall solution error. User-specified parameters, denoting both maximum and minimum permissible grid spacings, are used to define the all-important constants, thereby minimizing the empiricism and making the method self-adaptive. Operator splitting and one-sided controls for orthogonality and smoothness are used to make the method practical, robust, and efficient. Examples are included for both steady and unsteady viscous flow computations about airfoils in two dimensions, as well as for a steady inviscid flow computation and a one-dimensional case. These examples illustrate the precise control the user has with the self-adaptive method and demonstrate a significant improvement in accuracy and quality of the solutions.
NASA Astrophysics Data System (ADS)
Cai, Xiaochun; Hu, Yihua; Wang, Peng; Sun, Dujuan; Hu, Guilan
2009-10-01
The paper presents an adaptive segmentation and activity classification method for filamentous fungi image. Firstly, an adaptive structuring element (SE) construction algorithm is proposed for image background suppression. Based on watershed transform method, the color labeled segmentation of fungi image is taken. Secondly, the fungi elements feature space is described and the feature set for fungi hyphae activity classification is extracted. The growth rate evaluation of fungi hyphae is achieved by using SVM classifier. Some experimental results demonstrate that the proposed method is effective for filamentous fungi image processing.
Webster, Clayton G; Zhang, Guannan; Gunzburger, Max D
2012-10-01
Accurate predictive simulations of complex real world applications require numerical approximations to first, oppose the curse of dimensionality and second, converge quickly in the presence of steep gradients, sharp transitions, bifurcations or finite discontinuities in high-dimensional parameter spaces. In this paper we present a novel multi-dimensional multi-resolution adaptive (MdMrA) sparse grid stochastic collocation method, that utilizes hierarchical multiscale piecewise Riesz basis functions constructed from interpolating wavelets. The basis for our non-intrusive method forms a stable multiscale splitting and thus, optimal adaptation is achieved. Error estimates and numerical examples will used to compare the efficiency of the method with several other techniques.
Anderson, R W; Pember, R B; Elliott, N S
2001-10-22
A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. This method facilitates the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required through dynamic adaption. Many of the core issues involved in the development of the combined ALEAMR method hinge upon the integration of AMR with a staggered grid Lagrangian integration method. The novel components of the method are mainly driven by the need to reconcile traditional AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. Numerical examples are presented which demonstrate the accuracy and efficiency of the method.
Adaptation of the TCLP and SW-846 methods to radioactive mixed waste
Griest, W.H.; Schenley, R.L.; Caton, J.E.; Wolfe, P.F.
1994-07-01
Modifications of conventional sample preparation and analytical methods are necessary to provide radiation protection and to meet sensitivity requirements for regulated constituents when working with radioactive samples. Adaptations of regulatory methods for determining ``total`` Toxicity Characteristic Leaching Procedure (TCLP) volatile and semivolatile organics and pesticides, and for conducting aqueous leaching are presented.
ERIC Educational Resources Information Center
Wang, Ze; Rohrer, David; Chuang, Chi-ching; Fujiki, Mayo; Herman, Keith; Reinke, Wendy
2015-01-01
This study compared 5 scoring methods in terms of their statistical assumptions. They were then used to score the Teacher Observation of Classroom Adaptation Checklist, a measure consisting of 3 subscales and 21 Likert-type items. The 5 methods used were (a) sum/average scores of items, (b) latent factor scores with continuous indicators, (c)…
An adaptive, formally second order accurate version of the immersed boundary method
NASA Astrophysics Data System (ADS)
Griffith, Boyce E.; Hornung, Richard D.; McQueen, David M.; Peskin, Charles S.
2007-04-01
Like many problems in biofluid mechanics, cardiac mechanics can be modeled as the dynamic interaction of a viscous incompressible fluid (the blood) and a (visco-)elastic structure (the muscular walls and the valves of the heart). The immersed boundary method is a mathematical formulation and numerical approach to such problems that was originally introduced to study blood flow through heart valves, and extensions of this work have yielded a three-dimensional model of the heart and great vessels. In the present work, we introduce a new adaptive version of the immersed boundary method. This adaptive scheme employs the same hierarchical structured grid approach (but a different numerical scheme) as the two-dimensional adaptive immersed boundary method of Roma et al. [A multilevel self adaptive version of the immersed boundary method, Ph.D. Thesis, Courant Institute of Mathematical Sciences, New York University, 1996; An adaptive version of the immersed boundary method, J. Comput. Phys. 153 (2) (1999) 509-534] and is based on a formally second order accurate (i.e., second order accurate for problems with sufficiently smooth solutions) version of the immersed boundary method that we have recently described [B.E. Griffith, C.S. Peskin, On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems, J. Comput. Phys. 208 (1) (2005) 75-105]. Actual second order convergence rates are obtained for both the uniform and adaptive methods by considering the interaction of a viscous incompressible flow and an anisotropic incompressible viscoelastic shell. We also present initial results from the application of this methodology to the three-dimensional simulation of blood flow in the heart and great vessels. The results obtained by the adaptive method show good qualitative agreement with simulation results obtained by earlier non-adaptive versions of the method, but the flow in the vicinity of the model heart valves
An h-adaptive local discontinuous Galerkin method for the Navier-Stokes-Korteweg equations
NASA Astrophysics Data System (ADS)
Tian, Lulu; Xu, Yan; Kuerten, J. G. M.; van der Vegt, J. J. W.
2016-08-01
In this article, we develop a mesh adaptation algorithm for a local discontinuous Galerkin (LDG) discretization of the (non)-isothermal Navier-Stokes-Korteweg (NSK) equations modeling liquid-vapor flows with phase change. This work is a continuation of our previous research, where we proposed LDG discretizations for the (non)-isothermal NSK equations with a time-implicit Runge-Kutta method. To save computing time and to capture the thin interfaces more accurately, we extend the LDG discretization with a mesh adaptation method. Given the current adapted mesh, a criterion for selecting candidate elements for refinement and coarsening is adopted based on the locally largest value of the density gradient. A strategy to refine and coarsen the candidate elements is then provided. We emphasize that the adaptive LDG discretization is relatively simple and does not require additional stabilization. The use of a locally refined mesh in combination with an implicit Runge-Kutta time method is, however, non-trivial, but results in an efficient time integration method for the NSK equations. Computations, including cases with solid wall boundaries, are provided to demonstrate the accuracy, efficiency and capabilities of the adaptive LDG discretizations.
NASA Astrophysics Data System (ADS)
Moore, F.; Burke, M.
2015-12-01
A wide range of studies using a variety of methods strongly suggest that climate change will have a negative impact on agricultural production in many areas. Farmers though should be able to learn about a changing climate and to adjust what they grow and how they grow it in order to reduce these negative impacts. However, it remains unclear how effective these private (autonomous) adaptations will be, or how quickly they will be adopted. Constraining the uncertainty on this adaptation is important for understanding the impacts of climate change on agriculture. Here we review a number of empirical methods that have been proposed for understanding the rate and effectiveness of private adaptation to climate change. We compare these methods using data on agricultural yields in the United States and western Europe.
The adaptive problems of female teenage refugees and their behavioral adjustment methods for coping
Mhaidat, Fatin
2016-01-01
This study aimed at identifying the levels of adaptive problems among teenage female refugees in the government schools and explored the behavioral methods that were used to cope with the problems. The sample was composed of 220 Syrian female students (seventh to first secondary grades) enrolled at government schools within the Zarqa Directorate and who came to Jordan due to the war conditions in their home country. The study used the scale of adaptive problems that consists of four dimensions (depression, anger and hostility, low self-esteem, and feeling insecure) and a questionnaire of the behavioral adjustment methods for dealing with the problem of asylum. The results indicated that the Syrian teenage female refugees suffer a moderate degree of adaptation problems, and the positive adjustment methods they have used are more than the negatives. PMID:27175098
NASA Technical Reports Server (NTRS)
Mccormick, S.; Quinlan, D.
1989-01-01
The fast adaptive composite grid method (FAC) is an algorithm that uses various levels of uniform grids (global and local) to provide adaptive resolution and fast solution of PDEs. Like all such methods, it offers parallelism by using possibly many disconnected patches per level, but is hindered by the need to handle these levels sequentially. The finest levels must therefore wait for processing to be essentially completed on all the coarser ones. A recently developed asynchronous version of FAC, called AFAC, completely eliminates this bottleneck to parallelism. This paper describes timing results for AFAC, coupled with a simple load balancing scheme, applied to the solution of elliptic PDEs on an Intel iPSC hypercube. These tests include performance of certain processes necessary in adaptive methods, including moving grids and changing refinement. A companion paper reports on numerical and analytical results for estimating convergence factors of AFAC applied to very large scale examples.
A new adaptive exponential smoothing method for non-stationary time series with level shifts
NASA Astrophysics Data System (ADS)
Monfared, Mohammad Ali Saniee; Ghandali, Razieh; Esmaeili, Maryam
2014-07-01
Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting process. This paper generalizes the SES method into a new adaptive method called revised simple exponential smoothing (RSES), as an alternative method to recognize non-stationary level shifts in the time series. We show that the new method improves the accuracy of the forecasting process. This is done by controlling the number of observations and the smoothing parameter in an adaptive approach, and in accordance with the laws of statistical control limits and the Bayes rule of conditioning. We use a numerical example to show how the new RSES method outperforms its traditional counterpart, SES.
Software for the parallel adaptive solution of conservation laws by discontinous Galerkin methods.
Flaherty, J. E.; Loy, R. M.; Shephard, M. S.; Teresco, J. D.
1999-08-17
The authors develop software tools for the solution of conservation laws using parallel adaptive discontinuous Galerkin methods. In particular, the Rensselaer Partition Model (RPM) provides parallel mesh structures within an adaptive framework to solve the Euler equations of compressible flow by a discontinuous Galerkin method (LOCO). Results are presented for a Rayleigh-Taylor flow instability for computations performed on 128 processors of an IBM SP computer. In addition to managing the distributed data and maintaining a load balance, RPM provides information about the parallel environment that can be used to tailor partitions to a specific computational environment.
A comparison of locally adaptive multigrid methods: LDC, FAC and FIC
NASA Technical Reports Server (NTRS)
Khadra, Khodor; Angot, Philippe; Caltagirone, Jean-Paul
1993-01-01
This study is devoted to a comparative analysis of three 'Adaptive ZOOM' (ZOom Overlapping Multi-level) methods based on similar concepts of hierarchical multigrid local refinement: LDC (Local Defect Correction), FAC (Fast Adaptive Composite), and FIC (Flux Interface Correction)--which we proposed recently. These methods are tested on two examples of a bidimensional elliptic problem. We compare, for V-cycle procedures, the asymptotic evolution of the global error evaluated by discrete norms, the corresponding local errors, and the convergence rates of these algorithms.
Lei, Xusheng; Li, Jingjing
2012-01-01
This paper presents an adaptive information fusion method to improve the accuracy and reliability of the altitude measurement information for small unmanned aerial rotorcraft during the landing process. Focusing on the low measurement performance of sensors mounted on small unmanned aerial rotorcraft, a wavelet filter is applied as a pre-filter to attenuate the high frequency noises in the sensor output. Furthermore, to improve altitude information, an adaptive extended Kalman filter based on a maximum a posteriori criterion is proposed to estimate measurement noise covariance matrix in real time. Finally, the effectiveness of the proposed method is proved by static tests, hovering flight and autonomous landing flight tests. PMID:23201993
Adaptive spatial carrier frequency method for fast monitoring optical properties of fibres
NASA Astrophysics Data System (ADS)
Sokkar, T. Z. N.; El-Farahaty, K. A.; El-Bakary, M. A.; Omar, E. Z.; Agour, M.; Hamza, A. A.
2016-05-01
We present an extension of the adaptive spatial carrier frequency method which is proposed for fast measuring optical properties of fibrous materials. The method can be considered as a two complementary steps. In the first step, the support of the adaptive filter shall be defined. In the second step, the angle between the sample under test and the interference fringe system generated by the utilized interferometer has to be determined. Thus, the support of the optical filter associated with the implementation of the adaptive spatial carrier frequency method is accordingly rotated. This method is experimentally verified by measuring optical properties of polypropylene (PP) fibre with the help of a Mach-Zehnder interferometer. The results show that errors resulting from rotating the fibre with respect to the interference fringes of the interferometer are reduced compared with the traditional band pass filter method. This conclusion was driven by comparing results of the mean refractive index of drown PP fibre at parallel polarization direction obtained from the new and adaptive spatial carrier frequency method.
McClarren, Ryan G. Urbatsch, Todd J.
2009-09-01
In this paper we develop a robust implicit Monte Carlo (IMC) algorithm based on more accurately updating the linearized equilibrium radiation energy density. The method does not introduce oscillations in the solution and has the same limit as {delta}t{yields}{infinity} as the standard Fleck and Cummings IMC method. Moreover, the approach we introduce can be trivially added to current implementations of IMC by changing the definition of the Fleck factor. Using this new method we develop an adaptive scheme that uses either standard IMC or the modified method basing the adaptation on a zero-dimensional problem solved in each cell. Numerical results demonstrate that the new method can avoid the nonphysical overheating that occurs in standard IMC when the time step is large. The method also leads to decreased noise in the material temperature at the cost of a potential increase in the radiation temperature noise.
Yoshikawa, Takako; Morigami, Makoto; Sadr, Alireza; Tagami, Junji
2014-01-01
This study aimed to evaluate the effects of the light curing method and resin composite composition on marginal sealing and resin composite adaptation to the cavity wall. Cylindrical cavities were prepared on the buccal or lingual cervical regions. The teeth were restored using Clearfil Liner Bond 2V adhesive system and filled with Clearfil Photo Bright or Palfique Estelite resin composite. The resins were cured using the conventional or slow-start light curing method. After thermal cycling, the specimens were subjected to a dye penetration test. The slow-start curing method showed better resin composite adaptation to the cavity wall for both composites. Furthermore, the slow-start curing method resulted in significantly improved dentin marginal sealing compared with the conventional method for Clearfil Photo Bright. The light-cured resin composite, which exhibited increased contrast ratios duringpolymerization, seems to suggest high compensation for polymerization contraction stress when using the slow-start curing method. PMID:24988883
A NOISE ADAPTIVE FUZZY EQUALIZATION METHOD FOR PROCESSING SOLAR EXTREME ULTRAVIOLET IMAGES
Druckmueller, M.
2013-08-15
A new image enhancement tool ideally suited for the visualization of fine structures in extreme ultraviolet images of the corona is presented in this paper. The Noise Adaptive Fuzzy Equalization method is particularly suited for the exceptionally high dynamic range images from the Atmospheric Imaging Assembly instrument on the Solar Dynamics Observatory. This method produces artifact-free images and gives significantly better results than methods based on convolution or Fourier transform which are often used for that purpose.
A density-based adaptive quantum mechanical/molecular mechanical method.
Waller, Mark P; Kumbhar, Sadhana; Yang, Jack
2014-10-20
We present a density-based adaptive quantum mechanical/molecular mechanical (DBA-QM/MM) method, whereby molecules can switch layers from the QM to the MM region and vice versa. The adaptive partitioning of the molecular system ensures that the layer assignment can change during the optimization procedure, that is, on the fly. The switch from a QM molecule to a MM molecule is determined if there is an absence of noncovalent interactions to any atom of the QM core region. The presence/absence of noncovalent interactions is determined by analysis of the reduced density gradient. Therefore, the location of the QM/MM boundary is based on physical arguments, and this neatly removes some empiricism inherent in previous adaptive QM/MM partitioning schemes. The DBA-QM/MM method is validated by using a water-in-water setup and an explicitly solvated L-alanyl-L-alanine dipeptide. PMID:24954803
A GPU-accelerated adaptive discontinuous Galerkin method for level set equation
NASA Astrophysics Data System (ADS)
Karakus, A.; Warburton, T.; Aksel, M. H.; Sert, C.
2016-01-01
This paper presents a GPU-accelerated nodal discontinuous Galerkin method for the solution of two- and three-dimensional level set (LS) equation on unstructured adaptive meshes. Using adaptive mesh refinement, computations are localised mostly near the interface location to reduce the computational cost. Small global time step size resulting from the local adaptivity is avoided by local time-stepping based on a multi-rate Adams-Bashforth scheme. Platform independence of the solver is achieved with an extensible multi-threading programming API that allows runtime selection of different computing devices (GPU and CPU) and different threading interfaces (CUDA, OpenCL and OpenMP). Overall, a highly scalable, accurate and mass conservative numerical scheme that preserves the simplicity of LS formulation is obtained. Efficiency, performance and local high-order accuracy of the method are demonstrated through distinct numerical test cases.
Method and system for training dynamic nonlinear adaptive filters which have embedded memory
NASA Technical Reports Server (NTRS)
Rabinowitz, Matthew (Inventor)
2002-01-01
Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.
An adaptive mesh finite volume method for the Euler equations of gas dynamics
NASA Astrophysics Data System (ADS)
Mungkasi, Sudi
2016-06-01
The Euler equations have been used to model gas dynamics for decades. They consist of mathematical equations for the conservation of mass, momentum, and energy of the gas. For a large time value, the solution may contain discontinuities, even when the initial condition is smooth. A standard finite volume numerical method is not able to give accurate solutions to the Euler equations around discontinuities. Therefore we solve the Euler equations using an adaptive mesh finite volume method. In this paper, we present a new construction of the adaptive mesh finite volume method with an efficient computation of the refinement indicator. The adaptive method takes action automatically at around places having inaccurate solutions. Inaccurate solutions are reconstructed to reduce the error by refining the mesh locally up to a certain level. On the other hand, if the solution is already accurate, then the mesh is coarsened up to another certain level to minimize computational efforts. We implement the numerical entropy production as the mesh refinement indicator. As a test problem, we take the Sod shock tube problem. Numerical results show that the adaptive method is more promising than the standard one in solving the Euler equations of gas dynamics.
A Hyperspherical Adaptive Sparse-Grid Method for High-Dimensional Discontinuity Detection
Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.; Burkardt, John V.
2015-06-24
This study proposes and analyzes a hyperspherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hypersurface of an N-dimensional discontinuous quantity of interest, by virtue of a hyperspherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyperspherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. In addition, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.
A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Solution of the Euler Equations
Anderson, R W; Elliott, N S; Pember, R B
2003-02-14
A new method that combines staggered grid arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the methods are driven by the need to reconcile traditional AMR techniques with the staggered variables and moving, deforming meshes associated with Lagrange based ALE schemes. We develop interlevel solution transfer operators and interlevel boundary conditions first in the case of purely Lagrangian hydrodynamics, and then extend these ideas into an ALE method by developing adaptive extensions of elliptic mesh relaxation techniques. Conservation properties of the method are analyzed, and a series of test problem calculations are presented which demonstrate the utility and efficiency of the method.
Applications of automatic mesh generation and adaptive methods in computational medicine
Schmidt, J.A.; Macleod, R.S.; Johnson, C.R.; Eason, J.C.
1995-12-31
Important problems in Computational Medicine exist that can benefit from the implementation of adaptive mesh refinement techniques. Biological systems are so inherently complex that only efficient models running on state of the art hardware can begin to simulate reality. To tackle the complex geometries associated with medical applications we present a general purpose mesh generation scheme based upon the Delaunay tessellation algorithm and an iterative point generator. In addition, automatic, two- and three-dimensional adaptive mesh refinement methods are presented that are derived from local and global estimates of the finite element error. Mesh generation and adaptive refinement techniques are utilized to obtain accurate approximations of bioelectric fields within anatomically correct models of the heart and human thorax. Specifically, we explore the simulation of cardiac defibrillation and the general forward and inverse problems in electrocardiography (ECG). Comparisons between uniform and adaptive refinement techniques are made to highlight the computational efficiency and accuracy of adaptive methods in the solution of field problems in computational medicine.
Development and evaluation of a method of calibrating medical displays based on fixed adaptation
Sund, Patrik Månsson, Lars Gunnar; Båth, Magnus
2015-04-15
Purpose: The purpose of this work was to develop and evaluate a new method for calibration of medical displays that includes the effect of fixed adaptation and by using equipment and luminance levels typical for a modern radiology department. Methods: Low contrast sinusoidal test patterns were derived at nine luminance levels from 2 to 600 cd/m{sup 2} and used in a two alternative forced choice observer study, where the adaptation level was fixed at the logarithmic average of 35 cd/m{sup 2}. The contrast sensitivity at each luminance level was derived by establishing a linear relationship between the ten pattern contrast levels used at every luminance level and a detectability index (d′) calculated from the fraction of correct responses. A Gaussian function was fitted to the data and normalized to the adaptation level. The corresponding equation was used in a display calibration method that included the grayscale standard display function (GSDF) but compensated for fixed adaptation. In the evaluation study, the contrast of circular objects with a fixed pixel contrast was displayed using both calibration methods and was rated on a five-grade scale. Results were calculated using a visual grading characteristics method. Error estimations in both observer studies were derived using a bootstrap method. Results: The contrast sensitivities for the darkest and brightest patterns compared to the contrast sensitivity at the adaptation luminance were 37% and 56%, respectively. The obtained Gaussian fit corresponded well with similar studies. The evaluation study showed a higher degree of equally distributed contrast throughout the luminance range with the calibration method compensated for fixed adaptation than for the GSDF. The two lowest scores for the GSDF were obtained for the darkest and brightest patterns. These scores were significantly lower than the lowest score obtained for the compensated GSDF. For the GSDF, the scores for all luminance levels were statistically
Adaptive non-local means method for speckle reduction in ultrasound images
NASA Astrophysics Data System (ADS)
Ai, Ling; Ding, Mingyue; Zhang, Xuming
2016-03-01
Noise removal is a crucial step to enhance the quality of ultrasound images. However, some existing despeckling methods cannot ensure satisfactory restoration performance. In this paper, an adaptive non-local means (ANLM) filter is proposed for speckle noise reduction in ultrasound images. The distinctive property of the proposed method lies in that the decay parameter will not take the fixed value for the whole image but adapt itself to the variation of the local features in the ultrasound images. In the proposed method, the pre-filtered image will be obtained using the traditional NLM method. Based on the pre-filtered result, the local gradient will be computed and it will be utilized to determine the decay parameter adaptively for each image pixel. The final restored image will be produced by the ANLM method using the obtained decay parameters. Simulations on the synthetic image show that the proposed method can deliver sufficient speckle reduction while preserving image details very well and it outperforms the state-of-the-art despeckling filters in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). Experiments on the clinical ultrasound image further demonstrate the practicality and advantage of the proposed method over the compared filtering methods.
NASA Astrophysics Data System (ADS)
Tang, Qiuyan; Wang, Jing; Lv, Pin; Sun, Quan
2015-10-01
Propagation simulation method and choosing mesh grid are both very important to get the correct propagation results in wave optics simulation. A new angular spectrum propagation method with alterable mesh grid based on the traditional angular spectrum method and the direct FFT method is introduced. With this method, the sampling space after propagation is not limited to propagation methods no more, but freely alterable. However, choosing mesh grid on target board influences the validity of simulation results directly. So an adaptive mesh choosing method based on wave characteristics is proposed with the introduced propagation method. We can calculate appropriate mesh grids on target board to get satisfying results. And for complex initial wave field or propagation through inhomogeneous media, we can also calculate and set the mesh grid rationally according to above method. Finally, though comparing with theoretical results, it's shown that the simulation result with the proposed method coinciding with theory. And by comparing with the traditional angular spectrum method and the direct FFT method, it's known that the proposed method is able to adapt to a wider range of Fresnel number conditions. That is to say, the method can simulate propagation results efficiently and correctly with propagation distance of almost zero to infinity. So it can provide better support for more wave propagation applications such as atmospheric optics, laser propagation and so on.
Earthquake Rupture Dynamics using Adaptive Mesh Refinement and High-Order Accurate Numerical Methods
NASA Astrophysics Data System (ADS)
Kozdon, J. E.; Wilcox, L.
2013-12-01
Our goal is to develop scalable and adaptive (spatial and temporal) numerical methods for coupled, multiphysics problems using high-order accurate numerical methods. To do so, we are developing an opensource, parallel library known as bfam (available at http://bfam.in). The first application to be developed on top of bfam is an earthquake rupture dynamics solver using high-order discontinuous Galerkin methods and summation-by-parts finite difference methods. In earthquake rupture dynamics, wave propagation in the Earth's crust is coupled to frictional sliding on fault interfaces. This coupling is two-way, required the simultaneous simulation of both processes. The use of laboratory-measured friction parameters requires near-fault resolution that is 4-5 orders of magnitude higher than that needed to resolve the frequencies of interest in the volume. This, along with earlier simulations using a low-order, finite volume based adaptive mesh refinement framework, suggest that adaptive mesh refinement is ideally suited for this problem. The use of high-order methods is motivated by the high level of resolution required off the fault in earlier the low-order finite volume simulations; we believe this need for resolution is a result of the excessive numerical dissipation of low-order methods. In bfam spatial adaptivity is handled using the p4est library and temporal adaptivity will be accomplished through local time stepping. In this presentation we will present the guiding principles behind the library as well as verification of code against the Southern California Earthquake Center dynamic rupture code validation test problems.
New cardiac MRI gating method using event-synchronous adaptive digital filter.
Park, Hodong; Park, Youngcheol; Cho, Sungpil; Jang, Bongryoel; Lee, Kyoungjoung
2009-11-01
When imaging the heart using MRI, an artefact-free electrocardiograph (ECG) signal is not only important for monitoring the patient's heart activity but also essential for cardiac gating to reduce noise in MR images induced by moving organs. The fundamental problem in conventional ECG is the distortion induced by electromagnetic interference. Here, we propose an adaptive algorithm for the suppression of MR gradient artefacts (MRGAs) in ECG leads of a cardiac MRI gating system. We have modeled MRGAs by assuming a source of strong pulses used for dephasing the MR signal. The modeled MRGAs are rectangular pulse-like signals. We used an event-synchronous adaptive digital filter whose reference signal is synchronous to the gradient peaks of MRI. The event detection processor for the event-synchronous adaptive digital filter was implemented using the phase space method-a sort of topology mapping method-and least-squares acceleration filter. For evaluating the efficiency of the proposed method, the filter was tested using simulation and actual data. The proposed method requires a simple experimental setup that does not require extra hardware connections to obtain the reference signals of adaptive digital filter. The proposed algorithm was more effective than the multichannel approach. PMID:19644754
Item Pocket Method to Allow Response Review and Change in Computerized Adaptive Testing
ERIC Educational Resources Information Center
Han, Kyung T.
2013-01-01
Most computerized adaptive testing (CAT) programs do not allow test takers to review and change their responses because it could seriously deteriorate the efficiency of measurement and make tests vulnerable to manipulative test-taking strategies. Several modified testing methods have been developed that provide restricted review options while…
Method for reducing the drag of blunt-based vehicles by adaptively increasing forebody roughness
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A. (Inventor); Saltzman, Edwin J. (Inventor); Moes, Timothy R. (Inventor); Iliff, Kenneth W. (Inventor)
2005-01-01
A method for reducing drag upon a blunt-based vehicle by adaptively increasing forebody roughness to increase drag at the roughened area of the forebody, which results in a decrease in drag at the base of this vehicle, and in total vehicle drag.
NASA Technical Reports Server (NTRS)
Kornilova, L. N.; Cowings, P. S.; Toscano, W. B.; Arlashchenko, N. I.; Korneev, D. Iu; Ponomarenko, A. V.; Salagovich, S. V.; Sarantseva, A. V.; Kozlovskaia, I. B.
2000-01-01
Presented are results of testing the method of adaptive biocontrol during preflight training of cosmonauts. Within the MIR-25 crew, a high level of controllability of the autonomous reactions was characteristic of Flight Commanders MIR-23 and MIR-25 and flight Engineer MIR-23, while Flight Engineer MIR-25 displayed a weak intricate dependence of these reactions on the depth of relaxation or strain.
Applying Parallel Adaptive Methods with GeoFEST/PYRAMID to Simulate Earth Surface Crustal Dynamics
NASA Technical Reports Server (NTRS)
Norton, Charles D.; Lyzenga, Greg; Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Li, Peggy
2006-01-01
This viewgraph presentation reviews the use Adaptive Mesh Refinement (AMR) in simulating the Crustal Dynamics of Earth's Surface. AMR simultaneously improves solution quality, time to solution, and computer memory requirements when compared to generating/running on a globally fine mesh. The use of AMR in simulating the dynamics of the Earth's Surface is spurred by future proposed NASA missions, such as InSAR for Earth surface deformation and other measurements. These missions will require support for large-scale adaptive numerical methods using AMR to model observations. AMR was chosen because it has been successful in computation fluid dynamics for predictive simulation of complex flows around complex structures.
An edge-based solution-adaptive method applied to the AIRPLANE code
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Thomas, Scott D.; Cliff, Susan E.
1995-01-01
Computational methods to solve large-scale realistic problems in fluid flow can be made more efficient and cost effective by using them in conjunction with dynamic mesh adaption procedures that perform simultaneous coarsening and refinement to capture flow features of interest. This work couples the tetrahedral mesh adaption scheme, 3D_TAG, with the AIRPLANE code to solve complete aircraft configuration problems in transonic and supersonic flow regimes. Results indicate that the near-field sonic boom pressure signature of a cone-cylinder is improved, the oblique and normal shocks are better resolved on a transonic wing, and the bow shock ahead of an unstarted inlet is better defined.
Matthews, Devin A.; Stanton, John F.
2015-02-14
The theory of non-orthogonal spin-adaptation for closed-shell molecular systems is applied to coupled cluster methods with quadruple excitations (CCSDTQ). Calculations at this level of detail are of critical importance in describing the properties of molecular systems to an accuracy which can meet or exceed modern experimental techniques. Such calculations are of significant (and growing) importance in such fields as thermodynamics, kinetics, and atomic and molecular spectroscopies. With respect to the implementation of CCSDTQ and related methods, we show that there are significant advantages to non-orthogonal spin-adaption with respect to simplification and factorization of the working equations and to creating an efficient implementation. The resulting algorithm is implemented in the CFOUR program suite for CCSDT, CCSDTQ, and various approximate methods (CCSD(T), CC3, CCSDT-n, and CCSDT(Q))
NASA Astrophysics Data System (ADS)
Chai, Runqi; Savvaris, Al; Tsourdos, Antonios
2016-06-01
In this paper, a fuzzy physical programming (FPP) method has been introduced for solving multi-objective Space Manoeuvre Vehicles (SMV) skip trajectory optimization problem based on hp-adaptive pseudospectral methods. The dynamic model of SMV is elaborated and then, by employing hp-adaptive pseudospectral methods, the problem has been transformed to nonlinear programming (NLP) problem. According to the mission requirements, the solutions were calculated for each single-objective scenario. To get a compromised solution for each target, the fuzzy physical programming (FPP) model is proposed. The preference function is established with considering the fuzzy factor of the system such that a proper compromised trajectory can be acquired. In addition, the NSGA-II is tested to obtain the Pareto-optimal solution set and verify the Pareto optimality of the FPP solution. Simulation results indicate that the proposed method is effective and feasible in terms of dealing with the multi-objective skip trajectory optimization for the SMV.
An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors
NASA Technical Reports Server (NTRS)
Kopasakis, George; DeLaat, John C.; Chang, Clarence T.
2008-01-01
An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.
Recent advances in high-performance modeling of plasma-based acceleration using the full PIC method
NASA Astrophysics Data System (ADS)
Vay, J.-L.; Lehe, R.; Vincenti, H.; Godfrey, B. B.; Haber, I.; Lee, P.
2016-09-01
Numerical simulations have been critical in the recent rapid developments of plasma-based acceleration concepts. Among the various available numerical techniques, the particle-in-cell (PIC) approach is the method of choice for self-consistent simulations from first principles. The fundamentals of the PIC method were established decades ago, but improvements or variations are continuously being proposed. We report on several recent advances in PIC-related algorithms that are of interest for application to plasma-based accelerators, including (a) detailed analysis of the numerical Cherenkov instability and its remediation for the modeling of plasma accelerators in laboratory and Lorentz boosted frames, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, and (c) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of perfectly matched layers in high-order and pseudo-spectral solvers.
Xia, Kelin; Zhan, Meng; Wan, Decheng; Wei, Guo-Wei
2012-02-01
Mesh deformation methods are a versatile strategy for solving partial differential equations (PDEs) with a vast variety of practical applications. However, these methods break down for elliptic PDEs with discontinuous coefficients, namely, elliptic interface problems. For this class of problems, the additional interface jump conditions are required to maintain the well-posedness of the governing equation. Consequently, in order to achieve high accuracy and high order convergence, additional numerical algorithms are required to enforce the interface jump conditions in solving elliptic interface problems. The present work introduces an interface technique based adaptively deformed mesh strategy for resolving elliptic interface problems. We take the advantages of the high accuracy, flexibility and robustness of the matched interface and boundary (MIB) method to construct an adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients. The proposed method generates deformed meshes in the physical domain and solves the transformed governed equations in the computational domain, which maintains regular Cartesian meshes. The mesh deformation is realized by a mesh transformation PDE, which controls the mesh redistribution by a source term. The source term consists of a monitor function, which builds in mesh contraction rules. Both interface geometry based deformed meshes and solution gradient based deformed meshes are constructed to reduce the L(∞) and L(2) errors in solving elliptic interface problems. The proposed adaptively deformed mesh based interface method is extensively validated by many numerical experiments. Numerical results indicate that the adaptively deformed mesh based interface method outperforms the original MIB method for dealing with elliptic interface problems. PMID:22586356
Xia, Kelin; Zhan, Meng; Wan, Decheng; Wei, Guo-Wei
2011-01-01
Mesh deformation methods are a versatile strategy for solving partial differential equations (PDEs) with a vast variety of practical applications. However, these methods break down for elliptic PDEs with discontinuous coefficients, namely, elliptic interface problems. For this class of problems, the additional interface jump conditions are required to maintain the well-posedness of the governing equation. Consequently, in order to achieve high accuracy and high order convergence, additional numerical algorithms are required to enforce the interface jump conditions in solving elliptic interface problems. The present work introduces an interface technique based adaptively deformed mesh strategy for resolving elliptic interface problems. We take the advantages of the high accuracy, flexibility and robustness of the matched interface and boundary (MIB) method to construct an adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients. The proposed method generates deformed meshes in the physical domain and solves the transformed governed equations in the computational domain, which maintains regular Cartesian meshes. The mesh deformation is realized by a mesh transformation PDE, which controls the mesh redistribution by a source term. The source term consists of a monitor function, which builds in mesh contraction rules. Both interface geometry based deformed meshes and solution gradient based deformed meshes are constructed to reduce the L∞ and L2 errors in solving elliptic interface problems. The proposed adaptively deformed mesh based interface method is extensively validated by many numerical experiments. Numerical results indicate that the adaptively deformed mesh based interface method outperforms the original MIB method for dealing with elliptic interface problems. PMID:22586356
Adaptation strategies for high order discontinuous Galerkin methods based on Tau-estimation
NASA Astrophysics Data System (ADS)
Kompenhans, Moritz; Rubio, Gonzalo; Ferrer, Esteban; Valero, Eusebio
2016-02-01
In this paper three p-adaptation strategies based on the minimization of the truncation error are presented for high order discontinuous Galerkin methods. The truncation error is approximated by means of a τ-estimation procedure and enables the identification of mesh regions that require adaptation. Three adaptation strategies are developed and termed a posteriori, quasi-a priori and quasi-a priori corrected. All strategies require fine solutions, which are obtained by enriching the polynomial order, but while the former needs time converged solutions, the last two rely on non-converged solutions, which lead to faster computations. In addition, the high order method permits the spatial decoupling for the estimated errors and enables anisotropic p-adaptation. These strategies are verified and compared in terms of accuracy and computational cost for the Euler and the compressible Navier-Stokes equations. It is shown that the two quasi-a priori methods achieve a significant reduction in computational cost when compared to a uniform polynomial enrichment. Namely, for a viscous boundary layer flow, we obtain a speedup of 6.6 and 7.6 for the quasi-a priori and quasi-a priori corrected approaches, respectively.
A wavelet-optimized, very high order adaptive grid and order numerical method
NASA Technical Reports Server (NTRS)
Jameson, Leland
1996-01-01
Differencing operators of arbitrarily high order can be constructed by interpolating a polynomial through a set of data followed by differentiation of this polynomial and finally evaluation of the polynomial at the point where a derivative approximation is desired. Furthermore, the interpolating polynomial can be constructed from algebraic, trigonometric, or, perhaps exponential polynomials. This paper begins with a comparison of such differencing operator construction. Next, the issue of proper grids for high order polynomials is addressed. Finally, an adaptive numerical method is introduced which adapts the numerical grid and the order of the differencing operator depending on the data. The numerical grid adaptation is performed on a Chebyshev grid. That is, at each level of refinement the grid is a Chebvshev grid and this grid is refined locally based on wavelet analysis.
An h-adaptive finite element method for turbulent heat transfer
Carriington, David B
2009-01-01
A two-equation turbulence closure model (k-{omega}) using an h-adaptive grid technique and finite element method (FEM) has been developed to simulate low Mach flow and heat transfer. These flows are applicable to many flows in engineering and environmental sciences. Of particular interest in the engineering modeling areas are: combustion, solidification, and heat exchanger design. Flows for indoor air quality modeling and atmospheric pollution transport are typical types of environmental flows modeled with this method. The numerical method is based on a hybrid finite element model using an equal-order projection process. The model includes thermal and species transport, localized mesh refinement (h-adaptive) and Petrov-Galerkin weighting for the stabilizing the advection. This work develops the continuum model of a two-equation turbulence closure method. The fractional step solution method is stated along with the h-adaptive grid method (Carrington and Pepper, 2002). Solutions are presented for 2d flow over a backward-facing step.
A Digitalized Gyroscope System Based on a Modified Adaptive Control Method
Xia, Dunzhu; Hu, Yiwei; Ni, Peizhen
2016-01-01
In this work we investigate the possibility of applying the adaptive control algorithm to Micro-Electro-Mechanical System (MEMS) gyroscopes. Through comparing the gyroscope working conditions with the reference model, the adaptive control method can provide online estimation of the key parameters and the proper control strategy for the system. The digital second-order oscillators in the reference model are substituted for two phase locked loops (PLLs) to achieve a more steady amplitude and frequency control. The adaptive law is modified to satisfy the condition of unequal coupling stiffness and coupling damping coefficient. The rotation mode of the gyroscope system is considered in our work and a rotation elimination section is added to the digitalized system. Before implementing the algorithm in the hardware platform, different simulations are conducted to ensure the algorithm can meet the requirement of the angular rate sensor, and some of the key adaptive law coefficients are optimized. The coupling components are detected and suppressed respectively and Lyapunov criterion is applied to prove the stability of the system. The modified adaptive control algorithm is verified in a set of digitalized gyroscope system, the control system is realized in digital domain, with the application of Field Programmable Gate Array (FPGA). Key structure parameters are measured and compared with the estimation results, which validated that the algorithm is feasible in the setup. Extra gyroscopes are used in repeated experiments to prove the commonality of the algorithm. PMID:26959019
A Digitalized Gyroscope System Based on a Modified Adaptive Control Method.
Xia, Dunzhu; Hu, Yiwei; Ni, Peizhen
2016-01-01
In this work we investigate the possibility of applying the adaptive control algorithm to Micro-Electro-Mechanical System (MEMS) gyroscopes. Through comparing the gyroscope working conditions with the reference model, the adaptive control method can provide online estimation of the key parameters and the proper control strategy for the system. The digital second-order oscillators in the reference model are substituted for two phase locked loops (PLLs) to achieve a more steady amplitude and frequency control. The adaptive law is modified to satisfy the condition of unequal coupling stiffness and coupling damping coefficient. The rotation mode of the gyroscope system is considered in our work and a rotation elimination section is added to the digitalized system. Before implementing the algorithm in the hardware platform, different simulations are conducted to ensure the algorithm can meet the requirement of the angular rate sensor, and some of the key adaptive law coefficients are optimized. The coupling components are detected and suppressed respectively and Lyapunov criterion is applied to prove the stability of the system. The modified adaptive control algorithm is verified in a set of digitalized gyroscope system, the control system is realized in digital domain, with the application of Field Programmable Gate Array (FPGA). Key structure parameters are measured and compared with the estimation results, which validated that the algorithm is feasible in the setup. Extra gyroscopes are used in repeated experiments to prove the commonality of the algorithm. PMID:26959019
Scale-adaptive tensor algebra for local many-body methods of electronic structure theory
Liakh, Dmitry I
2014-01-01
While the formalism of multiresolution analysis (MRA), based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent-particle level and, recently, second-order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many-particle) theory which is based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this paper, we present a formalism called scale-adaptive tensor algebra (SATA) which exploits an adaptive representation of tensors of many-body operators via the local adjustment of the basis set quality. Given a series of locally supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability and reliability of local correlated many-body methods of electronic structure theory, especially those directly based on atomic orbitals (or any other localized basis functions).
Recent advances in the modeling of plasmas with the Particle-In-Cell methods
NASA Astrophysics Data System (ADS)
Vay, Jean-Luc; Lehe, Remi; Vincenti, Henri; Godfrey, Brendan; Lee, Patrick; Haber, Irv
2015-11-01
The Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations of plasmas from first principles. The fundamentals of the PIC method were established decades ago but improvements or variations are continuously being proposed. We report on several recent advances in PIC related algorithms, including: (a) detailed analysis of the numerical Cherenkov instability and its remediation, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, (c) arbitrary-order finite-difference and generalized pseudo-spectral Maxwell solvers, (d) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of Perfectly Matched Layers in high-order and pseudo-spectral solvers. Work supported by US-DOE Contracts DE-AC02-05CH11231 and the US-DOE SciDAC program ComPASS. Used resources of NERSC, supported by US-DOE Contract DE-AC02-05CH11231.
An adaptive subspace trust-region method for frequency-domain seismic full waveform inversion
NASA Astrophysics Data System (ADS)
Zhang, Huan; Li, Xiaofan; Song, Hanjie; Liu, Shaolin
2015-05-01
Full waveform inversion is currently considered as a promising seismic imaging method to obtain high-resolution and quantitative images of the subsurface. It is a nonlinear ill-posed inverse problem, the main difficulty of which that prevents the full waveform inversion from widespread applying to real data is the sensitivity to incorrect initial models and noisy data. Local optimization theories including Newton's method and gradient method always lead the convergence to local minima, while global optimization algorithms such as simulated annealing are computationally costly. To confront this issue, in this paper we investigate the possibility of applying the trust-region method to the full waveform inversion problem. Different from line search methods, trust-region methods force the new trial step within a certain neighborhood of the current iterate point. Theoretically, the trust-region methods are reliable and robust, and they have very strong convergence properties. The capability of this inversion technique is tested with the synthetic Marmousi velocity model and the SEG/EAGE Salt model. Numerical examples demonstrate that the adaptive subspace trust-region method can provide solutions closer to the global minima compared to the conventional Approximate Hessian approach and the L-BFGS method with a higher convergence rate. In addition, the match between the inverted model and the true model is still excellent even when the initial model deviates far from the true model. Inversion results with noisy data also exhibit the remarkable capability of the adaptive subspace trust-region method for low signal-to-noise data inversions. Promising numerical results suggest this adaptive subspace trust-region method is suitable for full waveform inversion, as it has stronger convergence and higher convergence rate.
Adaptive mesh refinement techniques for the immersed interface method applied to flow problems.
Li, Zhilin; Song, Peng
2013-06-01
In this paper, we develop an adaptive mesh refinement strategy of the Immersed Interface Method for flow problems with a moving interface. The work is built on the AMR method developed for two-dimensional elliptic interface problems in the paper [12] (CiCP, 12(2012), 515-527). The interface is captured by the zero level set of a Lipschitz continuous function φ(x, y, t). Our adaptive mesh refinement is built within a small band of |φ(x, y, t)| ≤ δ with finer Cartesian meshes. The AMR-IIM is validated for Stokes and Navier-Stokes equations with exact solutions, moving interfaces driven by the surface tension, and classical bubble deformation problems. A new simple area preserving strategy is also proposed in this paper for the level set method. PMID:23794763
A time-accurate adaptive grid method and the numerical simulation of a shock-vortex interaction
NASA Technical Reports Server (NTRS)
Bockelie, Michael J.; Eiseman, Peter R.
1990-01-01
A time accurate, general purpose, adaptive grid method is developed that is suitable for multidimensional steady and unsteady numerical simulations. The grid point movement is performed in a manner that generates smooth grids which resolve the severe solution gradients and the sharp transitions in the solution gradients. The temporal coupling of the adaptive grid and the PDE solver is performed with a grid prediction correction method that is simple to implement and ensures the time accuracy of the grid. Time accurate solutions of the 2-D Euler equations for an unsteady shock vortex interaction demonstrate the ability of the adaptive method to accurately adapt the grid to multiple solution features.
Development of the Adaptive Collision Source (ACS) method for discrete ordinates
Walters, W.; Haghighat, A.
2013-07-01
We have developed a new collision source method to solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. The angular adaptation method is unique in that the flux from each scattering source iteration is obtained, with potentially a different quadrature order. Traditionally, the flux from every iteration is combined, with the same quadrature applied to the combined flux. Since the scattering process tends to distribute the radiation more evenly over angles (i.e., make it more isotropic), the quadrature requirements generally decrease with each iteration. This allows for an optimal use of processing power, by using a high order quadrature for the first few iterations that need it, before shifting to lower order quadratures for the remaining iterations. This is essentially an extension of the first collision source method, and we call it the adaptive collision source method (ACS). The ACS methodology has been implemented in the TITAN discrete ordinates code, and has shown a relative speedup of 1.5-2.5 on a test problem, for the same desired level of accuracy. (authors)
A multigrid method for steady Euler equations on unstructured adaptive grids
NASA Technical Reports Server (NTRS)
Riemslagh, Kris; Dick, Erik
1993-01-01
A flux-difference splitting type algorithm is formulated for the steady Euler equations on unstructured grids. The polynomial flux-difference splitting technique is used. A vertex-centered finite volume method is employed on a triangular mesh. The multigrid method is in defect-correction form. A relaxation procedure with a first order accurate inner iteration and a second-order correction performed only on the finest grid, is used. A multi-stage Jacobi relaxation method is employed as a smoother. Since the grid is unstructured a Jacobi type is chosen. The multi-staging is necessary to provide sufficient smoothing properties. The domain is discretized using a Delaunay triangular mesh generator. Three grids with more or less uniform distribution of nodes but with different resolution are generated by successive refinement of the coarsest grid. Nodes of coarser grids appear in the finer grids. The multigrid method is started on these grids. As soon as the residual drops below a threshold value, an adaptive refinement is started. The solution on the adaptively refined grid is accelerated by a multigrid procedure. The coarser multigrid grids are generated by successive coarsening through point removement. The adaption cycle is repeated a few times. Results are given for the transonic flow over a NACA-0012 airfoil.
Vortical Flow Prediction using an Adaptive Unstructured Grid Method. Chapter 11
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2009-01-01
A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving vortical flow problems. The first test case concerns vortex flow over a simple 65 delta wing with different values of leading-edge radius. Although the geometry is quite simple, it poses a challenging problem for computing vortices originating from blunt leading edges. The second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the wind-tunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.
NASA Astrophysics Data System (ADS)
Shi, Lei; Wang, Z. J.
2015-08-01
Adjoint-based mesh adaptive methods are capable of distributing computational resources to areas which are important for predicting an engineering output. In this paper, we develop an adjoint-based h-adaptation approach based on the high-order correction procedure via reconstruction formulation (CPR) to minimize the output or functional error. A dual-consistent CPR formulation of hyperbolic conservation laws is developed and its dual consistency is analyzed. Super-convergent functional and error estimate for the output with the CPR method are obtained. Factors affecting the dual consistency, such as the solution point distribution, correction functions, boundary conditions and the discretization approach for the non-linear flux divergence term, are studied. The presented method is then used to perform simulations for the 2D Euler and Navier-Stokes equations with mesh adaptation driven by the adjoint-based error estimate. Several numerical examples demonstrate the ability of the presented method to dramatically reduce the computational cost comparing with uniform grid refinement.