Adaptive sample map for Monte Carlo ray tracing
NASA Astrophysics Data System (ADS)
Teng, Jun; Luo, Lixin; Chen, Zhibo
2010-07-01
Monte Carlo ray tracing algorithm is widely used by production quality renderers to generate synthesized images in films and TV programs. Noise artifact exists in synthetic images generated by Monte Carlo ray tracing methods. In this paper, a novel noise artifact detection and noise level representation method is proposed. We first apply discrete wavelet transform (DWT) on a synthetic image; the high frequency sub-bands of the DWT result encode the noise information. The sub-bands coefficients are then combined to generate a noise level description of the synthetic image, which is called noise map in the paper. This noise map is then subdivided into blocks for robust noise level metric calculation. Increasing the samples per pixel in Monte Carlo ray tracer can reduce the noise of a synthetic image to visually unnoticeable level. A noise-to-sample number mapping algorithm is thus performed on each block of the noise map, higher noise value is mapped to larger sample number, and lower noise value is mapped to smaller sample number, the result of mapping is called sample map. Each pixel in a sample map can be used by Monte Carlo ray tracer to reduce the noise level in the corresponding block of pixels in a synthetic image. However, this block based scheme produces blocky artifact as appeared in video and image compression algorithms. We use Gaussian filter to smooth the sample map, the result is adaptive sample map (ASP). ASP serves two purposes in rendering process; its statistics information can be used as noise level metric in synthetic image, and it can also be used by a Monte Carlo ray tracer to refine the synthetic image adaptively in order to reduce the noise to unnoticeable level but with less rendering time than the brute force method.
Laser ray tracing in a parallel arbitrary Lagrangian-Eulerian adaptive mesh refinement hydrocode
NASA Astrophysics Data System (ADS)
Masters, N. D.; Kaiser, T. B.; Anderson, R. W.; Eder, D. C.; Fisher, A. C.; Koniges, A. E.
2010-08-01
ALE-AMR is a new hydrocode that we are developing as a predictive modeling tool for debris and shrapnel formation in high-energy laser experiments. In this paper we present our approach to implementing laser ray tracing in ALE-AMR. We present the basic concepts of laser ray tracing and our approach to efficiently traverse the adaptive mesh hierarchy.
High performance dosimetry calculations using adapted ray-tracing
NASA Astrophysics Data System (ADS)
Perrotte, Lancelot; Saupin, Guillaume
2010-11-01
When preparing interventions on nuclear sites, it is interesting to study different scenarios, to identify the most appropriate one for the operator(s). Using virtual reality tools is a good way to simulate the potential scenarios. Thus, taking advantage of very efficient computation times can help the user studying different complex scenarios, by immediately evaluating the impact of any changes. In the field of radiation protection, people often use computation codes based on the straight line attenuation method with build-up factors. As for other approaches, geometrical computations (finding all the interactions between radiation rays and the scene objects) remain the bottleneck of the simulation. We present in this paper several optimizations used to speed up these geometrical computations, using innovative GPU ray-tracing algorithms. For instance, we manage to compute every intersectionbetween 600 000 rays and a huge 3D industrial scene in a fraction of second. Moreover, our algorithm works the same way for both static and dynamic scenes, allowing easier study of complex intervention scenarios (where everything moves: the operator(s), the shielding objects, the radiation sources).
ENZO+MORAY: radiation hydrodynamics adaptive mesh refinement simulations with adaptive ray tracing
NASA Astrophysics Data System (ADS)
Wise, John H.; Abel, Tom
2011-07-01
We describe a photon-conserving radiative transfer algorithm, using a spatially-adaptive ray-tracing scheme, and its parallel implementation into the adaptive mesh refinement cosmological hydrodynamics code ENZO. By coupling the solver with the energy equation and non-equilibrium chemistry network, our radiation hydrodynamics framework can be utilized to study a broad range of astrophysical problems, such as stellar and black hole feedback. Inaccuracies can arise from large time-steps and poor sampling; therefore, we devised an adaptive time-stepping scheme and a fast approximation of the optically-thin radiation field with multiple sources. We test the method with several radiative transfer and radiation hydrodynamics tests that are given in Iliev et al. We further test our method with more dynamical situations, for example, the propagation of an ionization front through a Rayleigh-Taylor instability, time-varying luminosities and collimated radiation. The test suite also includes an expanding H II region in a magnetized medium, utilizing the newly implemented magnetohydrodynamics module in ENZO. This method linearly scales with the number of point sources and number of grid cells. Our implementation is scalable to 512 processors on distributed memory machines and can include the radiation pressure and secondary ionizations from X-ray radiation. It is included in the newest public release of ENZO.
Laser Ray Tracing in a Parallel Arbitrary Lagrangian-Eulerian Adaptive Mesh Refinement Hydrocode
Masters, N D; Kaiser, T B; Anderson, R W; Eder, D C; Fisher, A C; Koniges, A E
2009-09-28
ALE-AMR is a new hydrocode that we are developing as a predictive modeling tool for debris and shrapnel formation in high-energy laser experiments. In this paper we present our approach to implementing laser ray-tracing in ALE-AMR. We present the equations of laser ray tracing, our approach to efficient traversal of the adaptive mesh hierarchy in which we propagate computational rays through a virtual composite mesh consisting of the finest resolution representation of the modeled space, and anticipate simulations that will be compared to experiments for code validation.
ERIC Educational Resources Information Center
Gatland, Ian R.
2002-01-01
Proposes a ray tracing approach to thin lens analysis based on a vector form of Snell's law for paraxial rays as an alternative to the usual approach in introductory physics courses. The ray tracing approach accommodates skew rays and thus provides a complete analysis. (Author/KHR)
Robb, P; Pawlowski, B
1990-05-01
The results of measuring the ray trace speed and compilation speed of thirty-nine computers in fifty-seven configurations, ranging from personal computers to super computers, are described. A correlation of ray trace speed has been made with the LINPACK benchmark which allows the ray trace speed to be estimated using LINPACK performance data. The results indicate that the latest generation of workstations, using CPUs based on RISC (Reduced Instruction Set Computer) technology, are as fast or faster than mainframe computers in compute-bound situations. PMID:20563112
NASA Astrophysics Data System (ADS)
Lam, Wai Sze Tiffany
Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for
Ray Tracing with Virtual Objects.
ERIC Educational Resources Information Center
Leinoff, Stuart
1991-01-01
Introduces the method of ray tracing to analyze the refraction or reflection of real or virtual images from multiple optical devices. Discusses ray-tracing techniques for locating images using convex and concave lenses or mirrors. (MDH)
ERIC Educational Resources Information Center
Majewski, Mirek
1997-01-01
Ray tracing is a method that allows the creation of photo-realistic images on a computer. This article describes a shareware ray tracing program called PovRay and includes some ideas on how PovRay can be used in teaching and in 3-D geometry, physics, and other high school and university subjects. (Author/AIM)
NASA Technical Reports Server (NTRS)
Redding, David C.; Breckenridge, William G.
1990-01-01
A new, coordinate-free version of the exact ray-trace equations for optical systems consisting of conic reflecting, refracting and reference surfaces is presented. These equations are differentiated to obtain closed-form optical sensitivity dyadics. For computation, the sensitivities are evaluated in a single global coordinate frame and combined in linearized ray-trace matrix difference equations that propagate the rays and the sensitivities from element to element. One purpose of this analysis is to create optical models that can be directly integrated with models of the instrument structure and control systems for dynamic simulation.
Real ray tracing in anisotropic viscoelastic media
NASA Astrophysics Data System (ADS)
Vavryčuk, Václav
2008-11-01
Ray tracing equations applicable to smoothly inhomogeneous anisotropic viscoelastic media are derived. The equations produce real rays, in contrast to previous ray-theoretical approaches, which deal with complex rays. The real rays are defined as the solutions of the Hamilton equations, with the Hamiltonian modified for viscoelastic media, and physically correspond to trajectories of high-frequency waves characterized by a real stationary phase. As a consequence, the complex eikonal equation is satisfied only approximately. The ray tracing equations are valid for weakly and moderately attenuating media. The rays are frequency-dependent and must be calculated for each frequency, separately. Solving the ray tracing equations in viscoelastic anisotropy is more time consuming than in elastic anisotropy. The main difficulty is with determining the stationary slowness vector, which is generally complex-valued and inhomogeneous and must be computed at each time step of the ray tracing procedure. In viscoelastic isotropy, the ray tracing equations considerably simplify, because the stationary slowness vector is homogeneous. The computational time for tracing rays in isotropic elastic and viscoelastic media is the same. Using numerical examples, it is shown that ray fields in weakly attenuating media (Q higher than about 30) are almost indistinguishable from those in elastic media. For moderately attenuating anisotropic media (Q between 5-20), the differences in ray fields can be visible and significant.
Reverse ray tracing for transformation optics.
Hu, Chia-Yu; Lin, Chun-Hung
2015-06-29
Ray tracing is an important technique for predicting optical system performance. In the field of transformation optics, the Hamiltonian equations of motion for ray tracing are well known. The numerical solutions to the Hamiltonian equations of motion are affected by the complexities of the inhomogeneous and anisotropic indices of the optical device. Based on our knowledge, no previous work has been conducted on ray tracing for transformation optics with extreme inhomogeneity and anisotropicity. In this study, we present the use of 3D reverse ray tracing in transformation optics. The reverse ray tracing is derived from Fermat's principle based on a sweeping method instead of finding the full solution to ordinary differential equations. The sweeping method is employed to obtain the eikonal function. The wave vectors are then obtained from the gradient of that eikonal function map in the transformed space to acquire the illuminance. Because only the rays in the points of interest have to be traced, the reverse ray tracing provides an efficient approach to investigate the illuminance of a system. This approach is useful in any form of transformation optics where the material property tensor is a symmetric positive definite matrix. The performance and analysis of three transformation optics with inhomogeneous and anisotropic indices are explored. The ray trajectories and illuminances in these demonstration cases are successfully solved by the proposed reverse ray tracing method. PMID:26191770
Validation of Ray Tracing Code Refraction Effects
NASA Technical Reports Server (NTRS)
Heath, Stephanie L.; McAninch, Gerry L.; Smith, Charles D.; Conner, David A.
2008-01-01
NASA's current predictive capabilities using the ray tracing program (RTP) are validated using helicopter noise data taken at Eglin Air Force Base in 2007. By including refractive propagation effects due to wind and temperature, the ray tracing code is able to explain large variations in the data observed during the flight test.
NASA Astrophysics Data System (ADS)
Fainberg, J.; Schaefer, W.
2015-06-01
A new algorithm for heat exchange between thermally coupled diffusely radiating interfaces is presented, which can be applied for closed and half open transparent radiating cavities. Interfaces between opaque and transparent materials are automatically detected and subdivided into elementary radiation surfaces named tiles. Contrary to the classical view factor method, the fixed unit sphere area subdivision oriented along the normal tile direction is projected onto the surrounding radiation mesh and not vice versa. Then, the total incident radiating flux of the receiver is approximated as a direct sum of radiation intensities of representative “senders” with the same weight factor. A hierarchical scheme for the space angle subdivision is selected in order to minimize the total memory and the computational demands during thermal calculations. Direct visibility is tested by means of a voxel-based ray tracing method accelerated by means of the anisotropic Chebyshev distance method, which reuses the computational grid as a Chebyshev one. The ray tracing algorithm is fully parallelized using MPI and takes advantage of the balanced distribution of all available tiles among all CPU's. This approach allows tracing of each particular ray without any communication. The algorithm has been implemented in a commercial casting process simulation software. The accuracy and computational performance of the new radiation model for heat treatment, investment and ingot casting applications is illustrated using industrial examples.
Symplectic ray-tracing: a new approach for nonlinear ray tracings by Hamiltonian dynamics
NASA Astrophysics Data System (ADS)
Satoh, Tetsu R.
2003-05-01
This paper describes a method of symplectic ray tracing for calculating the flows of non-linear dynamical systems. Symplectic ray tracing method traces the path of photons moving along the orbit calculated by using Hamilton's canonical equation. Using this method, we can simulate non-linear dynamical systems with various dimensions, accurate calculation, and quick implementation of scientif visualization system. This paper also demonstrates some visualization results of non-linear dynamical systems computed by using symplectic ray tracing method.
Improved backward ray tracing with stochastic sampling
NASA Astrophysics Data System (ADS)
Ryu, Seung Taek; Yoon, Kyung-Hyun
1999-03-01
This paper presents a new technique that enhances the diffuse interreflection with the concepts of backward ray tracing. In this research, we have modeled the diffuse rays with the following conditions. First, as the reflection from the diffuse surfaces occurs in all directions, it is impossible to trace all of the reflected rays. We confined the diffuse rays by sampling the spherical angle out of the reflected rays around the normal vector. Second, the traveled distance of reflected energy from the diffuse surface differs according to the object's property, and has a comparatively short reflection distance. Considering the fact that the rays created on the diffuse surfaces affect relatively small area, it is very inefficient to trace all of the sampled diffused rays. Therefore, we set a fixed distance as the critical distance and all the rays beyond this distance are ignored. The result of this research is that as the improved backward ray tracing can model the illumination effects such as the color bleeding effects, we can replace the radiosity algorithm under the limited environment.
What you need to know about… Tracing the X-ray Trail If you’ve just completed an x-ray, computed tomography (CT), magnetic resonance (MR) Start here! or other diagnostic imaging procedure, you probably want to know when you will ... los rayos X Si acaba de hacerse una radiografía, tomografía ¡Empezar ...
Birefringent Polarization Ray Tracing: Theory and Applications
NASA Astrophysics Data System (ADS)
McClain, Stephen Charles
Birefringent polarization ray tracing is an extension of geometric ray tracing. In addition to calculating ray paths and phases, it also analyzes the state of polarization through birefringent devices. Some systems containing birefringent elements include optical computers, radiometers, optical isolators, bar code scanners, and optical data storage systems. This dissertation derives explicit algorithms for polarization ray tracing through anisotropic media, optically active media, and anisotropic optically active media, such as quartz. The objective was to go beyond the electromagnetic relations to establish algorithms in standard ray tracing format, ready for direct inclusion into lens design software. The algorithms, derived from Maxwell's equations, constitutive relations, and boundary conditions, calculate the wavevector, ray vector, optical path length, refractive index, and polarization state of a ray. Generalized Fresnel relations govern the division of energy at each interface into two transmitted and two reflected modes. The algorithms are applied to calculate the polarization aberrations of a variety of birefringent devices. In particular, it is established that the polarization properties of quartz vary significantly (>20%) over angles of only 5 degrees. This limits the useful field of view of quartz devices. Field of view aberrations of birefringent elements can critically affect the performance of optical systems. Also, design guidelines are presented for pseudodepolarizers. These devices spatially scramble the polarization. Inserted into an instrument, a depolarizer negates the polarization sensitivity of the elements which follow it. Presented in detail is the design and analysis of a depolarizer for use in a spectrometer on NASA's Earth Observing System (EOS).
Birefringent polarization ray tracing: Theory and applications
NASA Astrophysics Data System (ADS)
McClain, Stephen Charles
1992-06-01
Birefringent polarization ray tracing is an extension of geometric ray tracing. In addition to calculating ray paths and phases, it also analyzes the state of polarization through birefringent devices. Some systems containing birefringent elements include optical computers, radiometers, optical isolators, bar code scanners, and optical data storage systems. This dissertation derives explicit algorithms for polarization ray tracing through anisotropic media, optically active media, and anisotropic optically active media, such as quartz. The objective was to go beyond the electromagnetic relations to establish algorithms in standard ray tracing format, ready for direct inclusion into lens design software. The algorithms, derived from Maxwell's equations, constitutive relations, and boundary conditions, calculate the wavevector, ray vector, optical path length, refractive index, and polarization state of a ray. Generalized Fresnel relations govern the division of energy at each interface into two transmitted and two reflected modes. The algorithms are applied to calculate the polarization aberrations of a variety of birefringent devices. In particular, it is established that the polarization properties of quartz vary significantly (greater than 20 percent) over angles of only 5 degrees. This limits the useful field of view of quartz devices. Field of view aberrations of birefringent elements can critically affect the performance of optical systems. Also, design guidelines are presented for pseudodepolarizers. These devices spatially scramble the polarization. Inserted into an instrument, a depolarizer negates the polarization sensitivity of the elements which follow it. Presented in detail is the design and analysis of a depolarizer for use in a spectrometer on NASA's Earth Observing System (EOS).
AXAF FITS standard for ray trace interchange
NASA Astrophysics Data System (ADS)
Hsieh, Paul F.
1993-07-01
A standard data format for the archival and transport of x-ray events generated by ray trace models is described. Upon review and acceptance by the Advanced X-ray Astrophysics Facility (AXAF) Software Systems Working Group (SSWG), this standard shall become the official AXAF data format for ray trace events. The Flexible Image Transport System (FITS) is well suited for the purposes of the standard and was selected to be the basis of the standard. FITS is both flexible and efficient and is also widely used within the astronomical community for storage and transfer of data. In addition, software to read and write FITS format files are widely available. In selecting quantities to be included within the ray trace standard, the AXAF Mission Support team, Science Instruments team, and the other contractor teams were surveyed. From the results of this survey, the following requirements were established: (1) for the scientific needs, each photon should have associated with it: position, direction, energy, and statistical weight; the standard must also accommodate path length (relative phase), and polarization. (2) a unique photon identifier is necessary for bookkeeping purposes; (3) a log of individuals, organizations, and software packages that have modified the data must be maintained in order to create an audit trail; (4) a mechanism for extensions to the basic kernel should be provided; and (5) the ray trace standard should integrate with future AXAF data product standards.
AXAF FITS standard for ray trace interchange
NASA Technical Reports Server (NTRS)
Hsieh, Paul F.
1993-01-01
A standard data format for the archival and transport of x-ray events generated by ray trace models is described. Upon review and acceptance by the Advanced X-ray Astrophysics Facility (AXAF) Software Systems Working Group (SSWG), this standard shall become the official AXAF data format for ray trace events. The Flexible Image Transport System (FITS) is well suited for the purposes of the standard and was selected to be the basis of the standard. FITS is both flexible and efficient and is also widely used within the astronomical community for storage and transfer of data. In addition, software to read and write FITS format files are widely available. In selecting quantities to be included within the ray trace standard, the AXAF Mission Support team, Science Instruments team, and the other contractor teams were surveyed. From the results of this survey, the following requirements were established: (1) for the scientific needs, each photon should have associated with it: position, direction, energy, and statistical weight; the standard must also accommodate path length (relative phase), and polarization. (2) a unique photon identifier is necessary for bookkeeping purposes; (3) a log of individuals, organizations, and software packages that have modified the data must be maintained in order to create an audit trail; (4) a mechanism for extensions to the basic kernel should be provided; and (5) the ray trace standard should integrate with future AXAF data product standards.
Ray tracing through progressive ophthalmic lenses
NASA Astrophysics Data System (ADS)
Bourdoncle, Bernard; Chauveau, J. P.; Mercier, Jean-Louis M.
1991-01-01
Ray-tracing through Progressive Addition Lenses (PAL) has been performed. PAL is a deep non rotationally symmetric asp1ric lens used for the compensation of presbyopia. PAL and its mathematical model are presented. The special features of the ray-tracing program due to the model of the lens plus eye system are detailed. Typical results are presented showing in particular that computing conditions of contour-plots of power and astigmatism must be very strict and that coma must be taken into account for precise measurements of PAL. 1.
Ray tracing on a networked processor array
NASA Astrophysics Data System (ADS)
Yang, Jungsook; Lee, Seung Eun; Chen, Chunyi; Bagherzadeh, Nader
2010-10-01
As computation costs increase to meet design requirements for computation-intensive graphics applications on today's embedded systems, the pressure to develop high-performance parallel processors on a chip will increase. Acceleration of the ray tracing computation has become a major issue as the computer graphics industry demands for rendering realistic images. Network-on-chip (NoC) techniques that interconnect multiple processing elements with routers are the solution for reducing computation time and power consumption by parallel processing on a chip. It is also essential to meet the scalability and complexity challenges for system-on-chip (SoC). In this article, we describe a parallel ray tracing application mapping on a mesh-based multicore NoC architecture. We describe an optimised ray tracing kernel and parallelisation strategies, varying the workload distribution statically and dynamically. In this work, we present results and timing performance of our parallel ray tracing application on a NoC, which are obtained through our cycle accurate multicore NoC simulator. Using a dynamic scheduling load balancing technique, we achieved a maximum speedup multiplier of 35.97 on an 8 × 8 networked processor array using a NoC as the interconnect.
Tracing Rays In Laser-Fringe Anemometers
NASA Technical Reports Server (NTRS)
Owen, Karl
1989-01-01
"OPTMAIN" is simple ray-tracing computer code developed to quantify refractive effects that result when laser-fringe anemometer used to observe flows through window. Code calculates changes for four different types of windows: flat-plate windows, simple cylindrical windows, "general" axisymmetric windows, and smooth general-surface windows. Written in FORTRAN IV.
Ray Traces Through Unsteady Jet Turbulence
NASA Technical Reports Server (NTRS)
Freund, J. B.; Fleischman, T. G.
2002-01-01
Results of an ongoing effort to quantify the role turbulence in scattering sound in jets are reported. Using a direct numerical simulation database to provide the flow data, ray paths traced through the mean flow are compared with those traced through the actual time evolving turbulent flow. Significant scattering by the turbulence is observed. The most notable effect is that upstream traveling waves that are trapped in the potential core by the mean flow, which acts as a wave guide, easily escape in the turbulent flow. A crude statistical estimate based on ray number density suggests that directivity is modified by the turbulence, but no rigorous treatment of non-uniformities in the high-frequency approximation is attempted.
Testing the ray-tracing code GYOTO
NASA Astrophysics Data System (ADS)
Grould, M.; Paumard, T.; Perrin, G.
2015-12-01
In the next few years, the near-infrared interferometer GRAVITY will observe the Galactic Center. Astrometric data will be obtained with an expected accuracy of 10 μas. In order to analyze those future data, we have developed a code named GYOTO to compute orbits and ray-trace images. We want to assess the validity and accuracy of GYOTO in a variety of contexts, in particular for stellar astrometry in the Galactic Center.
Special relativistic visualization by local ray tracing.
Müller, Thomas; Grottel, Sebastian; Weiskopf, Daniel
2010-01-01
Special relativistic visualization offers the possibility of experiencing the optical effects of traveling near the speed of light, including apparent geometric distortions as well as Doppler and searchlight effects. Early high-quality computer graphics images of relativistic scenes were created using offline, computationally expensive CPU-side 4D ray tracing. Alternate approaches such as image-based rendering and polygon-distortion methods are able to achieve interactivity, but exhibit inferior visual quality due to sampling artifacts. In this paper, we introduce a hybrid rendering technique based on polygon distortion and local ray tracing that facilitates interactive high-quality visualization of multiple objects moving at relativistic speeds in arbitrary directions. The method starts by calculating tight image-space footprints for the apparent triangles of the 3D scene objects. The final image is generated using a single image-space ray tracing step incorporating Doppler and searchlight effects. Our implementation uses GPU shader programming and hardware texture filtering to achieve high rendering speed. PMID:20975164
Nonlinear ray tracing for vessel enhanced visualization
NASA Astrophysics Data System (ADS)
Qiu, Feng; Hong, Wei
2012-02-01
3D visualization of angiography data is an important preprocessing step in diagnosis of vascular disease. This paper describes an efficient volume rendering method to emphasize feature-rich region (or focus) in the 3D angiography data. The method takes the input 3D angiography data and computes the focus with user specification or certain feature extraction algorithms. Then, a distance map is constructed based on the description of the focused region(s). While rendering the 3D angiography data, the nonlinear ray tracing method is used and the gradient of the distance volume is applied to guide ray marching. In the result image, the focused region(s) appears larger than in the normal ray-casting image, while the context (other regions of the volume) can be still preserved in the image (maybe displayed in a shrink size). This method avoids deforming the original volume to magnify focus regions, which is expensive to compute, thus improves the performance.
Magnetospheric ray tracing studies. [Jupiter's decametric radiation
NASA Technical Reports Server (NTRS)
Six, N. F.
1982-01-01
Using a model of Jupiter's magnetized plasma environment, radiation raypaths were calculated with a three-dimension ray tracing program. It is assumed that energetic particles produce the emission in the planet's auroral zone at frequencies just above the electron gyrofrequencies. This radiation is generated in narrow sheets defined by the angle of a ray with respect to the magnetic field line. By specifying the source position: latitude, longitude, and radial distance from the planet, signatures in the spectrum of frequency versus time seen by Voyager 1 and 2 were duplicated. The frequency range and the curvature of the decametric arcs in these dynamic spectra are the result of the geometry of the radiation sheets (imposed by the plasma and by the B-field) and illumination of Voyager 1 and 2 as the rotating magnetosphere mimics a pulsar.
Ray Tracing for Complex Astrophysical High-opacity Structures
NASA Astrophysics Data System (ADS)
Steinacker, J.; Bacmann, A.; Henning, T.
2006-07-01
We present a ray-tracing technique for radiative transfer modeling of complex three-dimensional (3D) structures that include dense regions of high optical depth, such as that in dense molecular clouds, circumstellar disks, envelopes of evolved stars, and dust tori around active galactic nuclei. The corresponding continuum radiative transfer problem is described, and the numerical requirements for inverse 3D density and temperature modeling are defined. We introduce a relative intensity and transform the radiative transfer equation along the rays to solve machine precision problems and to relax strong gradients in the source term. For the optically thick regions where common ray tracers are forced to perform small trace steps, we give two criteria for making use of a simple approximative solver crossing the optically thick region quickly. Using an example of a density structure with optical depth changes of 6 orders of magnitude and sharp temperature variations, we demonstrate the accuracy of the proposed scheme using a common fifth-order Runge-Kutta ray tracer with adaptive step-size control. In our test case, the gain in computational speed is about a factor of 870. The method is applied in order to calculate the temperature distribution within a massive molecular cloud core for different boundary conditions for the radiation field.
Application of ray tracing in radiation heat transfer
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.
1993-01-01
This collection of presentation figures displays the capabilities of ray tracing for radiation propagation calculations as compared to an analytical approach. The goal is to introduce the terminology and solution process used in ray tracing, and provide insight into radiation heat transfer principles and analysis tools. A thermal analysis working environment is introduced that solves demanding radiation heat transfer problems based on ray tracing. This information may serve as a reference for designing and building ones own analysis environment.
Powerful scriptable ray tracing package xrt
NASA Astrophysics Data System (ADS)
Klementiev, Konstantin; Chernikov, Roman
2014-09-01
We present an open source python based ray tracing tool that offers several useful features in graphical presentation, material properties, advanced calculations of synchrotron sources, implementation of diffractive and refractive elements, complex (also closed) surfaces and multiprocessing. The package has many usage examples which are supplied together with the code and visualized on its web page. We exemplify the present version by modeling (i) a curved crystal analyzer, (ii) a quarter wave plate, (iii) Bragg-Fresnel optics and (iv) multiple reflective and non-sequential optics (polycapillary). The present version implements the use of OpenCL framework that executes calculations on both CPUs and GPUs. Currently, the calculations of an undulator source on a GPU show a gain of about two orders of magnitude in computing time. The development version is successful in modelling the wavefront propagation. Two examples of diffraction on a plane mirror and a plane blazed grating are given for a beam with a finite energy band.
Ray tracing in nuclear-pumped flowing gas lasers
Mat'ev, V Yu
2003-06-30
The ray tracing in the resonators of a nuclear-pumped flowing gas lasers is considered. The refractive index profile of the medium in a direction perpendicular to the optical axis in such lasers can be considered parabolic, but the steepness of the parabola is quite nonuniform along the ray trace, and the resonator stability condition (the absolute value of the ray matrix trace for a single trip of the ray in the resonator is smaller than two) is not sufficient to confine the ray within the resonator after a large number of trips. (lasers)
Seismic ray tracing using linear traveltime interpolation
Asakawa, Eiichi; Kawanaka, Taku )
1993-01-01
A new ray-tracing method called linear traveltime interpolation (LTI) is proposed. This method computes traveltimes and raypaths in a 2D velocity structure more rapidly and accurately than other conventional methods. The LTI method is formulated for a 2D cell model, and calculations of traveltimes and raypaths are carried out only on cell boundaries. Therefore a raypath is considered to be always straight in a cell with uniform velocity. This approach is suitable to tomography analysis. The algorithm of LTI consists of two separate steps: step 1 calculates traveltimes on all cell boundaries; step 2 traces raypaths for all pairs of receivers and the shot. A traveltime at an arbitrary point on a cell boundary is assumed to be linearly interpolated between traveltimes at the adjacent discrete points at which traveltimes were calculated. Fermat's principle is used as the criterion for choosing the correct traveltimes and raypaths from several candidates routinely. The LTI method has been compared numerically with the shooting method and the finite-difference method (FDM) of the eikonal equation. The results show that the LTI method has great advantages of high speed and high accuracy in the calculation of both traveltimes and raypaths. The LTI method can be regarded as an advanced version of the conventional FDM of the eikonal equation because the formulae of FDM are independently derived from LTI. In the process of derivation, it is shown theoretically that LTI is more accurate than FDM. Moreover in the LTI method, they can avoid the numerical instability that occurs in Vidale's method where the velocity changes abruptly.
Tracing Lifestyle Adaptation in Prokaryotic Genomes
Altermann, Eric
2012-01-01
Lifestyle adaptation of microbes due to changes in their ecological niches or acquisition of new environments is a major driving force for genetic changes in their respective genomes. Moving into more specialized niches often results in the acquisition of new gene sets via horizontal gene transfer to utilize previously unavailable metabolites, while genetic ballast is shed by gene loss and/or gene inactivation. In some cases, larger genome rearrangements can be observed, such as the incorporation of whole genetic islands, providing a range of new phenotypic capabilities. Until recently these changes could not be comprehensively followed and identified due to the lack of complete microbial genome sequences. The advent of high-throughput DNA sequencing has dramatically changed the scientific landscape and today microbial genomes have become increasingly abundant. Currently, more than 2,900 genomes are published and more than 11,000 genome projects are listed in the Genomes Online Database‡. Although this wealth of information provides many new opportunities to assess microbial functionality, it also creates a new array of challenges when a comparison between multiple microbial genomes is required. Here, functional genome distribution (FGD) is introduced, analyzing the diversity between microbes based on their predicted ORFeome. FGD is therefore a comparative genomics approach, emphasizing the assessments of gene complements. To further facilitate the comparison between two or more genomes, degrees of amino-acid similarities between ORFeomes can be visualized in the Artemis comparison tool, graphically depicting small and large scale genome rearrangements, insertion and deletion events, and levels of similarity between individual open reading frames. FGD provides a new tool for comparative microbial genomics and the interpretation of differences in the genetic makeup of bacteria. PMID:22363326
Tracing lifestyle adaptation in prokaryotic genomes.
Altermann, Eric
2012-01-01
Lifestyle adaptation of microbes due to changes in their ecological niches or acquisition of new environments is a major driving force for genetic changes in their respective genomes. Moving into more specialized niches often results in the acquisition of new gene sets via horizontal gene transfer to utilize previously unavailable metabolites, while genetic ballast is shed by gene loss and/or gene inactivation. In some cases, larger genome rearrangements can be observed, such as the incorporation of whole genetic islands, providing a range of new phenotypic capabilities. Until recently these changes could not be comprehensively followed and identified due to the lack of complete microbial genome sequences. The advent of high-throughput DNA sequencing has dramatically changed the scientific landscape and today microbial genomes have become increasingly abundant. Currently, more than 2,900 genomes are published and more than 11,000 genome projects are listed in the Genomes Online Database. Although this wealth of information provides many new opportunities to assess microbial functionality, it also creates a new array of challenges when a comparison between multiple microbial genomes is required. Here, functional genome distribution (FGD) is introduced, analyzing the diversity between microbes based on their predicted ORFeome. FGD is therefore a comparative genomics approach, emphasizing the assessments of gene complements. To further facilitate the comparison between two or more genomes, degrees of amino-acid similarities between ORFeomes can be visualized in the Artemis comparison tool, graphically depicting small and large scale genome rearrangements, insertion and deletion events, and levels of similarity between individual open reading frames. FGD provides a new tool for comparative microbial genomics and the interpretation of differences in the genetic makeup of bacteria. PMID:22363326
Some extensions of the Booker method of ray tracing
NASA Astrophysics Data System (ADS)
Budden, K. G.
1989-10-01
The Booker method of ray tracing is useful for tracing the paths of radio rays in a plane stratified magneto-plasma, and a brief summary is given. In its simplest form it is used for tracing a single ray, without taking account of the configuration of neighboring rays. Two extensions of the method are discussed. The first is the effect on the signal amplitude of the divergence or convergence of neighboring rays in a thin ray pencil. The second is the technique of complex rays and complex space, which are especially useful when electron collisions introduce attenuation of the waves. Some typical results for both extensions are presented. This paper is mainly a tutorial paper, but some new results are given, including a method for dealing with a singularity in the equations for the ray divergence effect.
The vectorization of a ray tracing program for image generation
NASA Technical Reports Server (NTRS)
Plunkett, D. J.; Cychosz, J. M.; Bailey, M. J.
1984-01-01
Ray tracing is a widely used method for producing realistic computer generated images. Ray tracing involves firing an imaginary ray from a view point, through a point on an image plane, into a three dimensional scene. The intersections of the ray with the objects in the scene determines what is visible at the point on the image plane. This process must be repeated many times, once for each point (commonly called a pixel) in the image plane. A typical image contains more than a million pixels making this process computationally expensive. A traditional ray tracing program processes one ray at a time. In such a serial approach, as much as ninety percent of the execution time is spent computing the intersection of a ray with the surface in the scene. With the CYBER 205, many rays can be intersected with all the bodies im the scene with a single series of vector operations. Vectorization of this intersection process results in large decreases in computation time. The CADLAB's interest in ray tracing stems from the need to produce realistic images of mechanical parts. A high quality image of a part during the design process can increase the productivity of the designer by helping him visualize the results of his work. To be useful in the design process, these images must be produced in a reasonable amount of time. This discussion will explain how the ray tracing process was vectorized and gives examples of the images obtained.
ROBAST: ROOT-based ray-tracing library for cosmic-ray telescopes
NASA Astrophysics Data System (ADS)
Okumura, Akira
2016-03-01
ROBAST (ROOT-based simulator for ray tracing) is a non-sequential ray-tracing simulation library developed for wide use in optical simulations of gamma-ray and cosmic-ray telescopes. The library is written in C++ and fully utilizes the geometry library of the ROOT analysis framework, and can build the complex optics geometries typically used in cosmic ray experiments and ground-based gamma-ray telescopes.
Light ray tracing through a leaf cross section
NASA Technical Reports Server (NTRS)
Kumar, R.; Silva, L. F.
1973-01-01
A light ray, incident at about 5 deg to the normal, is geometrically plotted through the drawing of the cross section of a soybean leaf using Fresnel's equations and Snell's law. The optical mediums of the leaf considered for ray tracing are: air, cell sap, chloroplast, and cell wall. The ray is also drawn through the same leaf cross section with cell wall and air as the only optical mediums. The values of the reflection and transmission found from the ray tracing tests agree closely with the experimental results obtained using a Beckman Dk-2A Spectroreflector.
Light ray tracing through a leaf cross section
NASA Technical Reports Server (NTRS)
Kumar, R.; Silva, L.
1973-01-01
A light ray, incident at about 5 deg to the normal, is geometrically plotted through the drawing of the cross section of a soybean leaf using Fresnel's equations and Snell's law. The optical mediums of the leaf considered for ray tracing are air, cell sap, chloroplast, and cell wall. The above ray is also drawn through the same leaf cross section considering cell wall and air as the only optical mediums. The values of the reflection and transmission found from ray tracing agree closely with the experimental results obtained using a Beckman DK-2A spectroreflectometer.
Polarization ray tracing in anisotropic optically active media
NASA Technical Reports Server (NTRS)
Mcclain, Stephen C.; Chipman, Russell A.
1992-01-01
Procedures for performing polarization ray tracing through birefringent media are presented in a form compatible with the standard methods of geometric ray tracing. The birefringent materials treated include the following: anisotropic optically active materials such as quartz, non-optically active uniaxial materials such as calcite, and isotropic optically active materials such as mercury sulfide or organic liquids. Refraction and reflection algorithms are presented which compute both ray directions and wave directions. Methods for computing polarization modes, refractive indices, optical path lengths, and Fresnel transmission and reflection coefficients are also specified.
Toward Adaptive X-Ray Telescopes
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.
2011-01-01
Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.
Differential ray tracing analysis of the Schwarzschild objective
NASA Astrophysics Data System (ADS)
Prieto-Blanco, Xesús; Mouriz, Dolores; González Núñez, Héctor; Lopez Lago, Elena; de la Fuente, Raúl
2011-05-01
Differential Ray Tracing (DRT) is applied to optimize the design of a Schwarzschild objective with large aperture and for arbitrary object position. This optical system lacks of cylindrical symmetry about the non-paraxial base ray, causing astigmatism of a pencil of rays around this ray. The analysis determines the mirror radii ratio that makes the pencil anastigmatic, leading to an excellent image performance. In particular, the classical aplanatic Schwarzschild design is obtained in the limiting case where the base ray becomes paraxial. One example of a design, similar to a typical commercial objective for microscopy, is presented and the image quality is analyzed with an optical design program.
On a combined adaptive tetrahedral tracing and edge diffraction model
NASA Astrophysics Data System (ADS)
Hart, Carl R.
A major challenge in architectural acoustics is the unification of diffraction models and geometric acoustics. For example, geometric acoustics is insufficient to quantify the scattering characteristics of acoustic diffusors. Typically the time-independent boundary element method (BEM) is the method of choice. In contrast, time-domain computations are of interest for characterizing both the spatial and temporal scattering characteristics of acoustic diffusors. Hence, a method is sought that predicts acoustic scattering in the time-domain. A prediction method, which combines an advanced image source method and an edge diffraction model, is investigated for the prediction of time-domain scattering. Adaptive tetrahedral tracing is an advanced image source method that generates image sources through an adaptive process. Propagating tetrahedral beams adapt to ensonified geometry mapping the geometric sound field in space and along boundaries. The edge diffraction model interfaces with the adaptive tetrahedral tracing process by the transfer of edge geometry and visibility information. Scattering is quantified as the contribution of secondary sources along a single or multiple interacting edges. Accounting for a finite number of diffraction permutations approximates the scattered sound field. Superposition of the geometric and scattered sound fields results in a synthesized impulse response between a source and a receiver. Evaluation of the prediction technique involves numerical verification and numerical validation. Numerical verification is based upon a comparison with analytic and numerical (BEM) solutions for scattering geometries. Good agreement is shown for the selected scattering geometries. Numerical validation is based upon experimentally determined scattered impulse responses of acoustic diffusors. Experimental data suggests that the predictive model is appropriate for high-frequency predictions. For the experimental determination of the scattered impulse
Numerical Ray-Tracing in Full Angle Spatial Compounding
NASA Astrophysics Data System (ADS)
Koch, Andreas; Koch, Ingo; Hansen, Christian; Lerch, Reinhard; Ermert, Helmut
The assumption of straight-line wave propagation is common in medical ultrasound. While sufficient for unidirectional systems, it is the main cause for degenerated FASC (Full Angle Spatial Compounding) images, where B-mode data from different viewing angles around an object, e.g. the female breast, are superimposed. To overcome this, we have implemented an eikonal equation based algorithm to perform numerical ray-tracing in inhomogeneous speed of sound distributions. Results can be used to correct ray-paths prior to FASC. Our goal was to improve FASC image quality by using numerical ray-tracing. A tissue mimicking phantom with reservoirs filled with different concentrations of saline water and correspondingly different speeds of sound was imaged with a 2.5 MHz transducer. To evaluate the isotropy of the system's spatial resolution, seven fibers were included into the phantom and the reservoirs. We compared the full width at half maximum of line scatterer images in a FASC image corrected by ray-paths from the numerical ray-tracing with an uncorrected FASC image. Results show that numerical ray-tracing improves the image contrast, eliminates double line artifacts and improves the resolution and its isotropy in FASC.
Studying the precision of ray tracing techniques with Szekeres models
NASA Astrophysics Data System (ADS)
Koksbang, S. M.; Hannestad, S.
2015-07-01
The simplest standard ray tracing scheme employing the Born and Limber approximations and neglecting lens-lens coupling is used for computing the convergence along individual rays in mock N-body data based on Szekeres swiss cheese and onion models. The results are compared with the exact convergence computed using the exact Szekeres metric combined with the Sachs formalism. A comparison is also made with an extension of the simple ray tracing scheme which includes the Doppler convergence. The exact convergence is reproduced very precisely as the sum of the gravitational and Doppler convergences along rays in Lemaitre-Tolman-Bondi swiss cheese and single void models. This is not the case when the swiss cheese models are based on nonsymmetric Szekeres models. For such models, there is a significant deviation between the exact and ray traced paths and hence also the corresponding convergences. There is also a clear deviation between the exact and ray tracing results obtained when studying both nonsymmetric and spherically symmetric Szekeres onion models.
Ray-tracing-based reconstruction algorithms for digital breast tomosynthesis
NASA Astrophysics Data System (ADS)
Zhou, Weihua; Lu, Jianping; Zhou, Otto; Chen, Ying
2015-03-01
As a breast-imaging technique, digital breast tomosynthesis has great potential to improve the diagnosis of early breast cancer over mammography. Ray-tracing-based reconstruction algorithms, such as ray-tracing back projection, maximum-likelihood expectation maximization (MLEM), ordered-subset MLEM (OS-MLEM), and simultaneous algebraic reconstruction technique (SART), have been developed as reconstruction methods for different breast tomosynthesis systems. This paper provides a comparative study to investigate these algorithms by computer simulation and phantom study. Experimental results suggested that, among the four investigated reconstruction algorithms, OS-MLEM and SART performed better in interplane artifact removal with a fast speed convergence.
Ray tracing a three dimensional scene using a grid
Wald, Ingo; Ize, Santiago; Parker, Steven G; Knoll, Aaron
2013-02-26
Ray tracing a three-dimensional scene using a grid. One example embodiment is a method for ray tracing a three-dimensional scene using a grid. In this example method, the three-dimensional scene is made up of objects that are spatially partitioned into a plurality of cells that make up the grid. The method includes a first act of computing a bounding frustum of a packet of rays, and a second act of traversing the grid slice by slice along a major traversal axis. Each slice traversal includes a first act of determining one or more cells in the slice that are overlapped by the frustum and a second act of testing the rays in the packet for intersection with any objects at least partially bounded by the one or more cells overlapped by the frustum.
NASA Astrophysics Data System (ADS)
Lee, Kyoung Jin
Understanding and modeling seismic wave propagation is important in regional and exploration seismology. Ray tracing is a powerful and popular method for this purpose. Wavefront construction (WFC) method handles wavefronts instead of individual rays, thereby controlling proper ray density on the wavefront. By adaptively controlling rays over a wavefront, it efficiently models wave propagation. Algorithms for a quasi-P wave wavefront construction method and a new coordinate system used to generate wavefront construction mesh are proposed and tested for numerical properties and modeling capabilities. Traveltimes, amplitudes, and other parameters, which can be used for seismic imaging such as migrations and synthetic seismograms, are computed from the wavefront construction method. Modeling with wavefront construction code is applied to anisotropic media as well as isotropic media. Synthetic seismograms are computed using the wavefront construction method as a new way of generating synthetics. To incorporate layered velocity models, the model based interpolation (MBI) ray tracing method, which is designed to take advantage of the wavefront construction method as well as conventional ray tracing methods, is proposed and experimental codes are developed for it. Many wavefront construction codes are limited to smoothed velocity models for handling complicated problems in layered velocity models and the conventional ray tracing methods suffer from the inability to control ray density during wave propagation. By interpolating the wavefront near model boundaries, it is possible to handle the layered velocity model as well as overcome ray density control problems in conventional methods. The test results revealed this new method can be an effective modeling tool for accurate and effective computing.
Ray tracing package through a lens system and a spectrometer
Zurro, B.; King, P.W.; Lazarus, E.A.
1980-03-01
To study the light collection optics of the ISX-B two-dimensional (2-D) Thomson scattering system, we have implemented in the Oak Ridge National Laboratory (ORNL) Fusion Energy Division (FED) PDP-10 two computer programs, LENS and SPECT, that trace rays through a lens system and a spectrometer, respectively. The lens package follows the path of any kind of ray (meridional or skew) through a centered optical system formed by an arbitrary number of spherical surfaces. The spectrometer package performs geometrical ray tracing through a Czerney-Turner spectrometer and can be easily modified for studying any other configuration. Contained herein is a description of the procedures followed and a listing of the computer programs.
Modeling pyramidal sensors in ray-tracing software by a suitable user-defined surface
NASA Astrophysics Data System (ADS)
Antichi, Jacopo; Munari, Matteo; Magrin, Demetrio; Riccardi, Armando
2016-04-01
Following the unprecedented results in terms of performances delivered by the first light adaptive optics system at the Large Binocular Telescope, there has been a wide-spread and increasing interest on the pyramid wavefront sensor (PWFS), which is the key component, together with the adaptive secondary mirror, of the adaptive optics (AO) module. Currently, there is no straightforward way to model a PWFS in standard sequential ray-tracing software. Common modeling strategies tend to be user-specific and, in general, are unsatisfactory for general applications. To address this problem, we have developed an approach to PWFS modeling based on user-defined surface (UDS), whose properties reside in a specific code written in C language, for the ray-tracing software ZEMAX™. With our approach, the pyramid optical component is implemented as a standard surface in ZEMAX™, exploiting its dynamic link library (DLL) conversion then greatly simplifying ray tracing and analysis. We have utilized the pyramid UDS DLL surface-referred to as pyramidal acronyms may be too risky (PAM2R)-in order to design the current PWFS-based AO system for the Giant Magellan Telescope, evaluating tolerances, with particular attention to the angular sensitivities, by means of sequential ray-tracing tools only, thus verifying PAM2R reliability and robustness. This work indicates that PAM2R makes the design of PWFS as simple as that of other optical standard components. This is particularly suitable with the advent of the extremely large telescopes era for which complexity is definitely one of the main challenges.
Ray tracing in discontinuous velocity model with implicit Interface
NASA Astrophysics Data System (ADS)
Zhang, Jianxing; Yang, Qin; Meng, Xianhai; Li, Jigang
2016-07-01
Ray tracing in the velocity model containing complex discontinuities is still facing many challenges. The main difficulty arises from the detection of the spatial relationship between the rays and the interfaces that are usually described in non-linear parametric forms. We propose a novel model representation method that can facilitate the implementation of classical shooting-ray methods. In the representation scheme, each interface is expressed as the zero contour of a signed distance field. A multi-copy strategy is adopted to describe the volumetric properties within blocks. The implicit description of the interface makes it easier to detect the ray-interface intersection. The direct calculation of the intersection point is converted into the problem of judging the signs of a ray segment's endpoints. More importantly, the normal to the interface at the intersection point can be easily acquired according to the signed distance field of the interface. The multiple storage of the velocity property in the proximity of the interface can provide accurate and unambiguous velocity information of the intersection point. Thus, the departing ray path can be determined easily and robustly. In addition, the new representation method can describe velocity models containing very complex geological structures, such as faults, salt domes, intrusions, and pinches, without any simplification. The examples on synthetic and real models validate the robustness and accuracy of the ray tracing based on the proposed model representation scheme.
Ray Tracing Study of Magnetospheric ULF Wave Propagation.
NASA Astrophysics Data System (ADS)
Zhang, Xinbo
1993-01-01
A semi-empirical plasma density model and Mead -Fairfield magnetic field model are incorporated into a 3-D ray tracing code to study magnetospheric ULF wave propagation from the subsolar magnetopause. The ray-tracing of Pc3 compressional waves from the magnetosheath reveals that the magnetosphere can present a major propagation barrier to the penetration of these waves to the plasmasphere. This barrier is the ion-ion cutoff between the He^+ and O ^+ gyroresonances. As a result of the frequency -dependent location of this cutoff, the magnetosphere behaves like a filter for Pc3 compressional waves, and only the low frequency components can penetrate to the inner magnetosphere. These results are in agreement with previous satellite observations. This 'filter action' strongly depends on the relative concentration of He^+ and O^+ and is, therefore, sensitive to solar and magnetic activity. The study of the propagation characteristics of Pc3 transverse Alfven waves shows that these waves cannot penetrate to low Earth altitudes for wave frequencies above about approximately 0.03 hz. The configuration of the refractive index reveals an O^+-He^+ associated cutoff located between the assumed wave source in the equatorial magnetopause and the Earth. When the O^+ concentration is removed from the plasma composition, the barrier no longer exists, and waves with much higher frequencies than 0.03 Hz can penetrate to low altitudes. The result that the 0.03 Hz or lower frequency Alfven waves can be guided to the low altitudes agrees with ground-based power spectrum observations at high latitudes. The ray tracing study of Pc 1-2 waves reproduces earlier results (Rauch and Roux, 1982) for an H ^+-He^+ two-ion-species plasma, i.e. Pc 1-2 left hand polarized Alfven mode waves originating at equatorial geostationary orbit, below He ^+ gyrofrequency, are guided to the ground. However, our ray tracing study shows that previous Pc 1-2 ray tracing results are only valid in the absence of O
Ray tracing reconstruction investigation for C-arm tomosynthesis
NASA Astrophysics Data System (ADS)
Malalla, Nuhad A. Y.; Chen, Ying
2016-04-01
C-arm tomosynthesis is a three dimensional imaging technique. Both x-ray source and the detector are mounted on a C-arm wheeled structure to provide wide variety of movement around the object. In this paper, C-arm tomosynthesis was introduced to provide three dimensional information over a limited view angle (less than 180o) to reduce radiation exposure and examination time. Reconstruction algorithms based on ray tracing method such as ray tracing back projection (BP), simultaneous algebraic reconstruction technique (SART) and maximum likelihood expectation maximization (MLEM) were developed for C-arm tomosynthesis. C-arm tomosynthesis projection images of simulated spherical object were simulated with a virtual geometric configuration with a total view angle of 40 degrees. This study demonstrated the sharpness of in-plane reconstructed structure and effectiveness of removing out-of-plane blur for each reconstruction algorithms. Results showed the ability of ray tracing based reconstruction algorithms to provide three dimensional information with limited angle C-arm tomosynthesis.
A three-dimensional ray-tracing code dedicated to x-ray laser amplification simulation
NASA Astrophysics Data System (ADS)
Temporal, M.; Jacquemot, S.; Bonnet, L.; Decoster, A.
2001-04-01
A three-dimensional (3D) ray-tracing code has been developed to simulate the x-ray intensity produced in recent experiments where a silver target was driven by two laser beams. The code is used as a postprocessor of a detailed atomic physics code, which provides emissivities and opacities for inverted transitions. The hydrodynamics of the plasma is calculated with a 1D1/2 hydrocode where transverse profiles of temperature and density follow a self-similar solution. The 3D ray-tracing code accounts for progressive target illumination and calculates the x-ray laser output by solving the eikonal equation. Once 3D paths are determined, a steady-state transport solution is used to calculate the output intensity. The ray-tracing package is discussed first, then the present 3D results are compared with 2D calculations, as well as with collected experimental data.
A Fast Ray-Tracing Using Bounding Spheres and Frustum Rays for Dynamic Scene Rendering
NASA Astrophysics Data System (ADS)
Suzuki, Ken-Ichi; Kaeriyama, Yoshiyuki; Komatsu, Kazuhiko; Egawa, Ryusuke; Ohba, Nobuyuki; Kobayashi, Hiroaki
Ray tracing is one of the most popular techniques for generating photo-realistic images. Extensive research and development work has made interactive static scene rendering realistic. This paper deals with interactive dynamic scene rendering in which not only the eye point but also the objects in the scene change their 3D locations every frame. In order to realize interactive dynamic scene rendering, RTRPS (Ray Tracing based on Ray Plane and Bounding Sphere), which utilizes the coherency in rays, objects, and grouped-rays, is introduced. RTRPS uses bounding spheres as the spatial data structure which utilizes the coherency in objects. By using bounding spheres, RTRPS can ignore the rotation of moving objects within a sphere, and shorten the update time between frames. RTRPS utilizes the coherency in rays by merging rays into a ray-plane, assuming that the secondary rays and shadow rays are shot through an aligned grid. Since a pair of ray-planes shares an original ray, the intersection for the ray can be completed using the coherency in the ray-planes. Because of the three kinds of coherency, RTRPS can significantly reduce the number of intersection tests for ray tracing. Further acceleration techniques for ray-plane-sphere and ray-triangle intersection are also presented. A parallel projection technique converts a 3D vector inner product operation into a 2D operation and reduces the number of floating point operations. Techniques based on frustum culling and binary-tree structured ray-planes optimize the order of intersection tests between ray-planes and a sphere, resulting in 50% to 90% reduction of intersection tests. Two ray-triangle intersection techniques are also introduced, which are effective when a large number of rays are packed into a ray-plane. Our performance evaluations indicate that RTRPS gives 13 to 392 times speed up in comparison with a ray tracing algorithm without organized rays and spheres. We found out that RTRPS also provides competitive
Auroral kilometric radiation source characteristics using ray tracing techniques
NASA Astrophysics Data System (ADS)
Schreiber, R.; Santolik, O.; Parrot, M.; Lefeuvre, F.; Hanasz, J.; Brittnacher, M.; Parks, G.
2002-11-01
3-D ray tracing to the presumed auroral kilometric radiation (AKR) source region has been performed using the input data from wave distribution function (WDF) based on the AKR waveforms recorded on board the Interball 2 satellite by the French wave experiment MEMO. Both the direction of the WDF maximum and the WDF form and angular size have been taken into account. Two instances of AKR emissions were observed on 28 January 1997 at 2037 and 2107 UT. Rays traced in R-X mode out of the s/c point toward two different active regions on the auroral oval (as seen with Polar UV imager after projection of the source region along the magnetic field lines down to the ionosphere level). Source region apparent angular sizes based on WDF are compatible with sizes estimated from signal modulation produced by electric antenna system rotation.
Fast stereoscopic images with ray-traced volume rendering
Adelson, S.J.; Hansen, C.D.
1994-05-01
One of the drawbacks of standard volume rendering techniques is that is it often difficult to comprehend the three-dimensional structure of the volume from a single frame; this is especially true in cases where there is no solid surface. Generally, several frames must be generated and viewed sequentially, using motion parallax to relay depth. Another option is to generate a single spectroscopic pair, resulting in clear and unambiguous depth information in both static and moving images. Methods have been developed which take advantage of the coherence between the two halves of a stereo pair for polygon rendering and ray-tracing, generating the second half of the pair in significantly less time than that required to completely render a single image. This paper reports the results of implementing these techniques with parallel ray-traced volume rendering. In tests with different data types, the time savings is in the range of 70--80%.
Stochastic ray tracing for simulation of high intensity focal ultrasound therapy.
Koskela, Julius; Vahala, Erkki; de Greef, Martijn; Lafitte, Luc P; Ries, Mario
2014-09-01
An algorithm is presented for rapid simulation of high-intensity focused ultrasound (HIFU) fields. Essentially, the method combines ray tracing with Monte Carlo integration to evaluate the Rayleigh-Sommerfeld integral. A large number of computational particles, phonons, are distributed among the elements of a phase-array transducer. The phonons are emitted into random directions and are propagated along trajectories computed with the ray tracing method. As the simulation progresses, an improving stochastic estimate of the acoustic field is obtained. The method can adapt to complicated geometries, and it is well suited to parallelization. The method is verified against reference simulations and pressure measurements from an ex vivo porcine thoracic tissue sample. Results are presented for acceleration with graphics processing units (GPUs). The method is expected to serve in applications, where flexibility and rapid computation time are crucial, in particular clinical HIFU treatment planning. PMID:25190416
Ray tracing homogenizing mirrors for synchrotron x-ray lithography
NASA Astrophysics Data System (ADS)
Homer, Michael; Rosser, Roy J.; Speer, R. J.
1991-12-01
Saddle toroid array mirrors (STAMs) are novel grazing-incidence mirrors. They have been proposed as the optical component that most efficiently matches synchrotron orbital radiation (SOR) to the needs of proximity x-ray lithography. However, STAMs have yet to be accepted by the synchrotron lithography community because of the lack of detailed data on their expected performance, due primarily to the difficulty of raytracing such mirrors using existing optical raytrace programs. A raytracing package written especially to study the design and optimization of these unusually shaped mirrors and the very encouraging results obtained with the package to date are described. The optimum STAM designs turn out to be the most effective way of homogeneously illuminating a rectangular proximity x-ray lithography mask, improving on existing scanning mirror systems by at least a factor of four. They have the added advantage of being stationary, which should lead to greater reliability--a quality of considerable value in the production environment these mirrors are intended for, namely the ultra-high vacuum of a synchrotron beamline. Based on the results of the raytracing, a prototype STAM has been constructed, and preparations are being made for an x-ray test of the device.
3D ultrasonic ray tracing in AutoCAD®
NASA Astrophysics Data System (ADS)
Reilly, D.; Leggat, P.; McNab, A.
2001-04-01
To assist with the design and validation of testing procedures for NDT, add-on modules have been developed for AutoCAD® 2000. One of the modules computes and displays ultrasonic 3D ray tracing. Another determines paths between two points, for instance a probe and a target or two probes. The third module displays phased array operational modes and calculates element delays for phased array operation. The modules can be applied to simple or complex solid model components.
grtrans: Polarized general relativistic radiative transfer via ray tracing
NASA Astrophysics Data System (ADS)
Dexter, Jason
2016-05-01
grtrans calculates ray tracing radiative transfer in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics, for comparing theoretical models of black hole accretion flows and jets with observations. The code is written in Fortran 90 and parallelizes with OpenMP; the full code and several components have Python interfaces. grtrans includes Geokerr (ascl:1011.015) and requires cfitsio (ascl:1010.001) and pyfits (ascl:1207.009).
Ray tracing for point distribution in unstructured grid generation
Khamayseh, A.; Ortega, F.; Trease, H.
1995-12-31
We present a procedure by which grid points are generated on surfaces or within three-dimensional volumes to produce high quality unstructed grids for complex geometries. The virtue of this method is based on ray-tracing approach for curved polyhedra whose faces may lie on natural quadrics (planes, cylinders, cones, or spheres) or triangular faceted surfaces. We also present an efficient point location algorithm for identifying points relative to various regions with classification of inside/on/outside.
grtrans: Polarized general relativistic radiative transfer via ray tracing
NASA Astrophysics Data System (ADS)
Dexter, Jason
2016-05-01
grtrans calculates ray tracing radiative transfer in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics, for comparing theoretical models of black hole accretion flows and jets with observations. The code is written in Fortran 90 and parallelizes with OpenMP; the full code and several components have Python interfaces. grtrans requires Geokerr (ascl:1011.015), cfitsio (ascl:1010.001), and pyfits (ascl:1207.009).
Ray tracing software application in VIP lamp design
NASA Astrophysics Data System (ADS)
Rehn, Henning
2002-08-01
In our contribution we demonstrate a wide variety of ray tracing software applications for the design of VIP short-arc discharge video projection lamps. On the basis of simulations we derive design rules for the lamp itself and for its optical environment. Light Tools software acts as a means to understand the collection efficiency of a VIP lamp with an elliptical reflector and as an instrument to prove the conclusions.
Accelerated ray tracing algorithm under urban macro cell
NASA Astrophysics Data System (ADS)
Liu, Z.-Y.; Guo, L.-X.; Guan, X.-W.
2015-10-01
In this study, an ray tracing propagation prediction model, which is based on creating a virtual source tree, is used because of their high efficiency and reliable prediction accuracy. In addition, several acceleration techniques are also adopted to improve the efficiency of ray-tracing-based prediction over large areas. However, in the process of employing the ray tracing method for coverage zone prediction, runtime is linearly proportional to the total number of prediction points, leading to large and sometimes prohibitive computation time requirements under complex geographical urban macrocell environments. In order to overcome this bottleneck, the compute unified device architecture (CUDA), which provides fine-grained data parallelism and thread parallelism, is implemented to accelerate the calculation. Taking full advantage of tens of thousands of threads in CUDA program, the decomposition of the coverage prediction problem is firstly conducted by partitioning the image tree and the visible prediction points to different sources. Then, we make every thread calculate the electromagnetic field of one propagation path and then collect these results. Comparing this parallel algorithm with the traditional sequential algorithm, it can be found that computational efficiency has been improved.
Three dimensional ray tracing of the Jovian magnetosphere in the low frequency range
NASA Technical Reports Server (NTRS)
Menietti, J. D.
1984-01-01
Ray tracing studies of Jovian low frequency emissions were studied. A comprehensive three-dimensional ray tracing computer code for examination of model Jovian decametric (DAM) emission was developed. The improvements to the computer code are outlined and described. The results of the ray tracings of Jovian emissions will be presented in summary form.
Ray-tracing in a two-dimensional ionosphere
NASA Astrophysics Data System (ADS)
Labahn, R. W.
1985-08-01
The quasi-parabolic method is adapted to ray-track through a medium with horizontal gradients in electron density. The resulting method is applicable to any model ionosphere without the requirements for numerical derivatives. Example calculations are given for model ledges and troughs and an average worldwide ionospheric model.
Graphical User Interface for Interactive Seismic Ray Tracing
NASA Astrophysics Data System (ADS)
Song, Jianli; ten Brink, Uri
2005-03-01
RayGUI 2.0 is a new version of RayGUI, a graphical user interface (GUI) to the seismic travel time modeling program of Zelt and Smith [1992]. It represents a significant improvement over the previous version of RayGUI (RayGUI 1.04; Loss et al. [1998a,1998b]). RayGUI 2.0 uses an updated Java version (1.3), and can run on various operating systems (UNIX, Linux, and Mac OS X). Several new functions have been incorporated, including executing the forward and inversion codes of Zelt and Smith [1992], creating models or adding new parts of models from an ASCII file, graphically adding layers or points, graphically pinching layers, changing the velocity value of a control point, reporting point location and velocity, importing travel-time lists, generating postscript files, exporting the velocity model into an ASCII file, generating 1-D velocity profiles at specified locations, calculating root-mean-square errors between observed and calculated arrivals for selected phases, and accessing the ray trace log, as well as several other new display features.
Dynamic ray tracing and its application in triangulated media
Rueger, A.
1993-07-01
Hale and Cohen (1991) developed software to generate two-dimensional computer models of complex geology. Their method uses a triangulation technique designed to support efficient and accurate computation of seismic wavefields for models of the earth`s interior. Subsequently, Hale (1991) used this triangulation approach to perform dynamic ray tracing and create synthetic seismograms based on the method of Gaussian beams. Here, I extend this methodology to allow an increased variety of ray-theoretical experiments. Specifically, the developed program GBmod (Gaussian Beam MODeling) can produce arbitrary multiple sequences and incorporate attenuation and density variations. In addition, I have added an option to perform Fresnel-volume ray tracing (Cerveny and Soares, 1992). Corrections for reflection and transmission losses at interfaces, and for two-and-one-half-dimensional (2.5-D) spreading are included. However, despite these enhancements, difficulties remain in attempts to compute accurate synthetic seismograms if strong lateral velocity inhomogeneities are present. Here, these problems are discussed and, to a certain extent, reduced. I provide example computations of high-frequency seismograms based on the method of Gaussian beams to exhibit the advantages and disadvantages of the proposed modeling method and illustrate new features for both surface and vertical seismic profiling (VSP) acquisition geometries.
Microseismic network design assessment based on 3D ray tracing
NASA Astrophysics Data System (ADS)
Näsholm, Sven Peter; Wuestefeld, Andreas; Lubrano-Lavadera, Paul; Lang, Dominik; Kaschwich, Tina; Oye, Volker
2016-04-01
There is increasing demand on the versatility of microseismic monitoring networks. In early projects, being able to locate any triggers was considered a success. These early successes led to a better understanding of how to extract value from microseismic results. Today operators, regulators, and service providers work closely together in order to find the optimum network design to meet various requirements. In the current study we demonstrate an integrated and streamlined network capability assessment approach. It is intended for use during the microseismic network design process prior to installation. The assessments are derived from 3D ray tracing between a grid of event points and the sensors. Three aspects are discussed: 1) Magnitude of completeness or detection limit; 2) Event location accuracy; and 3) Ground-motion hazard. The network capability parameters 1) and 2) are estimated at all hypothetic event locations and are presented in the form of maps given a seismic sensor coordinate scenario. In addition, the ray tracing traveltimes permit to estimate the point-spread-functions (PSFs) at the event grid points. PSFs are useful in assessing the resolution and focusing capability of the network for stacking-based event location and imaging methods. We estimate the performance for a hypothetical network case with 11 sensors. We consider the well-documented region around the San Andreas Fault Observatory at Depth (SAFOD) located north of Parkfield, California. The ray tracing is done through a detailed velocity model which covers a 26.2 by 21.2 km wide area around the SAFOD drill site with a resolution of 200 m both for the P-and S-wave velocities. Systematic network capability assessment for different sensor site scenarios prior to installation facilitates finding a final design which meets the survey objectives.
Comment on "Improved ray tracing air mass numbers model"
NASA Astrophysics Data System (ADS)
van der Werf, Siebren Y.
2008-01-01
Air mass numbers have traditionally been obtained by techniques that use height as the integration variable. This introduces an inherent singularity at the horizon, and ad hoc solutions have been invented to cope with it. A survey of the possible options including integration by height, zenith angle, and horizontal distance or path length is presented. Ray tracing by path length is shown to avoid singularities both at the horizon and in the zenith. A fourth-order Runge-Kutta numerical integration scheme is presented, which treats refraction and air mass as path integrals. The latter may optionally be split out into separate contributions of the atmosphere's constituents.
A complete ray-trace analysis of the Mirage toy
NASA Astrophysics Data System (ADS)
Adhya, Sriya; Noé, John W.
2007-06-01
The `Mirage' (Opti-Gone International) is a well-known optics demonstration (PIRA index number 6A20.35) that uses two opposed concave mirrors to project a real image of a small object into space. We studied image formation in the Mirage by standard 2x2 matrix methods and by exact ray tracing, with particular attention to additional real images that can be observed when the mirror separation is increased beyond one focal length. We find that the three readily observed secondary images correspond to 4, 6, or 8 reflections, respectively, contrary to previous reports.
Ray tracing study for non-imaging daylight collectors
Wittkopf, Stephen; Oliver Grobe, Lars; Geisler-Moroder, David; Compagnon, Raphael; Kaempf, Jerome; Linhart, Friedrich; Scartezzini, Jean-Louis
2010-06-15
This paper presents a novel method to study how well non-imaging daylight collectors pipe diffuse daylight into long horizontal funnels for illuminating deep buildings. Forward ray tracing is used to derive luminous intensity distributions curves (LIDC) of such collectors centered in an arc-shaped light source representing daylight. New photometric characteristics such as 2D flux, angular spread and horizontal offset are introduced as a function of such LIDC. They are applied for quantifying and thus comparing different collector contours. (author)
Photorealistic ray tracing to visualize automobile side mirror reflective scenes.
Lee, Hocheol; Kim, Kyuman; Lee, Gang; Lee, Sungkoo; Kim, Jingu
2014-10-20
We describe an interactive visualization procedure for determining the optimal surface of a special automobile side mirror, thereby removing the blind spot, without the need for feedback from the error-prone manufacturing process. If the horizontally progressive curvature distributions are set to the semi-mathematical expression for a free-form surface, the surface point set can then be derived through numerical integration. This is then converted to a NURBS surface while retaining the surface curvature. Then, reflective scenes from the driving environment can be virtually realized using photorealistic ray tracing, in order to evaluate how these reflected images would appear to drivers. PMID:25401606
Large thin adaptive x-ray mirrors
NASA Astrophysics Data System (ADS)
Doel, Peter; Atkins, Carolyn; Thompson, Samantha; Brooks, David; Yao, Jun; Feldman, Charlotte; Willingale, Richard; Button, Tim; Zhang, Dou; James, Ady
2007-09-01
This paper describes the progress made in a proof of concept study and recent results of a research program into large active x-ray mirrors that is part of the UK Smart X-ray Optics project. The ultimate aim is to apply the techniques of active/adaptive optics to the next generation of nested shell astronomical X-ray space telescopes. A variety of deformable mirror technologies are currently available, the most promising of which for active X-ray mirrors are probably unimorph and bimorph piezoelectric mirrors. In this type of mirror one or more sheets of piezoelectric material are bonded to or coated with a passive reflective layer. On the back or between the piezoceramic layer/layers are series of electrodes. Application of an electric field causes the piezoelectric material to undergo local deformation thus changing the mirror shape. Starting in 2005 a proof of concept active mirror research program has been undertaken. This work included modelling and development of actively controlled thin shell mirrors. Finite element models of piezo-electric actuated mirrors have been developed and verified against experimental test systems. This has included the modelling and test of piezo-electric hexagonal unimorph segments. Various actuator types and low shrinkage conductive bonding methods have been investigated and laboratory tests of the use of piezo-electric actuators to adjust the form of an XMM-Newton space telescope engineering model mirror shell have been conducted and show that movement of the optics at the required level is achievable. Promising technological approaches have been identified including moulded piezo-ceramics and piezo-electrics fibre bundles.
Ray-tracing software comparison for linear focusing solar collectors
NASA Astrophysics Data System (ADS)
Osório, Tiago; Horta, Pedro; Larcher, Marco; Pujol-Nadal, Ramón; Hertel, Julian; van Rooyen, De Wet; Heimsath, Anna; Schneider, Simon; Benitez, Daniel; Frein, Antoine; Denarie, Alice
2016-05-01
Ray-Tracing software tools have been widely used in the optical design of solar concentrating collectors. In spite of the ability of these tools to assess the geometrical and material aspects impacting the optical performance of concentrators, their use in combination with experimental measurements in the framework of collector testing procedures as not been implemented, to the date, in none of the current solar collector testing standards. In the latest revision of ISO9806 an effort was made to include linear focusing concentrating collectors but some practical and theoretical difficulties emerged. A Ray-Tracing analysis could provide important contributions to overcome these issues, complementing the experimental results obtained through thermal testing and allowing the achievement of more thorough testing outputs with lower experimental requirements. In order to evaluate different available software tools a comparison study was conducted. Taking as representative technologies for line-focus concentrators the Parabolic Trough Collector and the Linear Fresnel Reflector Collector, two exemplary cases with predefined conditions - geometry, sun model and material properties - were simulated with different software tools. This work was carried out within IEA/SHC Task 49 "Solar Heat Integration in Industrial Processes".
Ray Tracing Modeling of Gravity Wave Propagation and Dissipation
NASA Astrophysics Data System (ADS)
Vadas, Sharon; Crowley, Geoff
In this paper, we describe a ray trace model which calculates the wavevector, location and phase of a gravity wave (GW) as it propagates in the lower atmosphere and thermosphere. If used for a discreet transient source (such as a deep convective plume), we describe how this model can calculate the body forcing and the heat/cooling that are created when the GWs within a wave packet dissipate in the thermosphere from kinematic viscosity and thermal diffusivity. Although the body force calculation requires only the divergence of the momentum flux, the heat/cooling calculation requires the reconstructed GW field (e.g., density, velocity perturbations), which in turn requires the GW dissipative polarization relations. We describe these relations. We then describe the results of a recent study involving GWs identified from TIDDBIT HF Doppler sounder data taken at Wallops Island, VI, USA. Using this ray trace model, we determine if the unusual neutral wind profile measured by a rocket experiment at high altitudes (~290-370 km) could have been caused by the propagation and dissipation of several waves observed by TIDDBIT at lower altitudes.
Ray-traced tropospheric total slant delays for GNSS processing
NASA Astrophysics Data System (ADS)
Hobiger, T.; Ichikawa, R.; Hatanaka, Y.; Yutsudo, T.; Iwashita, C.; Miyahara, B.; Koyama, Y.; Kondo, T.
2007-12-01
Numerical weather models have undergone an improvement of spatial and temporal resolution in the recent years, which made their use for GNSS applications feasible. Ray-tracing through such models permits the computation of total troposphere delays and ray-bending angles. At the National Institute of Information and Communications Technology (NICT), Japan the so-called KAshima RAy-tracing Tools (KARAT) have been developed which allow to obtain troposphere delay corrections in real-time. Together with fine-mesh weather models from the Japanese Meteorological Agency (JMA) huge parts of the East Asian region, including Japan, Korea, Taiwan and East China, can be covered. The Japanese GEONET with its more than 1300 GNSS receivers represent an ideal test-bed for the evaluation of the performance of KARAT. In cooperation with the Geographical Survey Institute (GSI), Japan more than 1.6 billion observations, covering measurements from July 1st until August 31st, 2006, were processed and the corresponding troposphere delays were used to modify the original RINEX files by subtraction of code- and phase delays. These modified observations were processed by a dedicated analysis run of the GEONET operation center, taking advantage of the computer cluster at GSI. First results from this study, together with an in-depth discussion about the assets and drawbacks of the reduction of troposphere total slant delays will be given in this presentation. Additionally an overview about KARAT, the treatment of observational data and the impact of future refined numerical weather models on GNSS analysis will be included in this contribution.
Ray Tracing to Predict Optical Behaviour of Shock Compressed Dielectrics
NASA Astrophysics Data System (ADS)
Tear, Gareth R.; Proud, William G.
2015-06-01
In order to investigate the optical response of dielectric materials under shock compression, a characteristics model has been combined with a three dimensional optical ray tracing model. A general biaxial optical model is used along with a first order photoelastic model which couples the characteristics component to the optical component. This optical model is three dimensional and as such can be used to investigate small deviations from the perfect one dimensional shock wave which is typically assumed in plate impact experiments. A detailed description of the model will be presented, and comparison to available literature as well as recent experiments on the optical behaviour of shock compressed a-cut calcite and a-cut sapphire. The authors would like to thank Dr D E Eakins and Dr D J Chapman for fruitful discussions. The Institute of Shock Physics acknowledges the continued support of AWE and Imperial College London.
Ray tracing in FLRW flat space-times
NASA Astrophysics Data System (ADS)
Acquaviva, Giovanni; Bonetti, Luca; Cognola, Guido; Zerbini, Sergio
2013-12-01
In this work we take moves from the debate triggered by Melia et al. in [J. Cosmol. Astropart. Phys. 09 (2012) 029; Mon. Not. R. Astron. Soc. 421, 3356 (2012)] and followed by opposite comments by Lewis and Oirschot in [Mon. Not. R. Astron. Soc. Lett. 423, 26 (2012); 431, 25 (2013)]. The point in question regards the role of the Hubble horizon as a limit for observability in a cosmological setting. We propose to tackle the issue in a broader way by relating it to the causal character of the Hubble surface and to the tracing of null trajectories, focusing on both three-fluids and generalized Chaplygin gas models. The results should make clear that for quite reasonable and physically motivated models, light rays reaching a comoving observer at R(t0)=0 have never traveled a distance greater than the proper radius of the horizon until t0.
Calculation of material properties and ray tracing in transformation media.
Schurig, D; Pendry, J B; Smith, D R
2006-10-16
Complex and interesting electromagnetic behavior can be found in spaces with non-flat topology. When considering the properties of an electromagnetic medium under an arbitrary coordinate transformation an alternative interpretation presents itself. The transformed material property tensors may be interpreted as a different set of material properties in a flat, Cartesian space. We describe the calculation of these material properties for coordinate transformations that describe spaces with spherical or cylindrical holes in them. The resulting material properties can then implement invisibility cloaks in flat space. We also describe a method for performing geometric ray tracing in these materials which are both inhomogeneous and anisotropic in their electric permittivity and magnetic permeability. PMID:19529371
Polarization Ray Trace Model of the MODIS Instrument
NASA Technical Reports Server (NTRS)
Waluschka, Eugene; Xiong, Jack; Esaias, Wayne E.; Voss, Kenneth; Souaidia, Nordine; Pellicori, Samuel; Moyer, David; Guenther, Bruce; Barnes, William
2004-01-01
Sunlight reflected from the earth is, to a certain extent, polarized. Radiometers, such as the MODIS instrument on board the TERRA and AQUA spacecraft, are to a certain extent polarizers. Accurate radiometric measurements must take into account both the polarization state of the scene and the polarization sensitivity of the measuring instrument. The measured polarization characteristics of the MODIS instruments are contained in various radiometric models. Continued use of these radiometric math models, over a number of years, have shown where these models can be improved. Currently a MODIS polarization ray trace model has been created which models the thin film structure on the optical elements. This approach is described and modeled and measured instrument polarization sensitivity results presented.
A FORMALISM FOR COVARIANT POLARIZED RADIATIVE TRANSPORT BY RAY TRACING
Gammie, Charles F.; Leung, Po Kin
2012-06-20
We write down a covariant formalism for polarized radiative transfer appropriate for ray tracing through a turbulent plasma. The polarized radiation field is represented by the polarization tensor (coherency matrix) N{sup {alpha}{beta}} {identical_to} (a{sup {alpha}}{sub k} a*{sup {beta}}{sub k}), where a{sub k} is a Fourier coefficient for the vector potential. Using Maxwell's equations, the Liouville-Vlasov equation, and the WKB approximation, we show that the transport equation in vacuo is k{sup {mu}}{nabla}{sub {mu}} N{sup {alpha}{beta}} = 0. We show that this is equivalent to Broderick and Blandford's formalism based on invariant Stokes parameters and a rotation coefficient, and suggest a modification that may reduce truncation error in some situations. Finally, we write down several alternative approaches to integrating the transfer equation.
Ray trace calculation of ionospheric propagation at lower frequencies
NASA Astrophysics Data System (ADS)
Reilly, Michael H.
2006-10-01
The Raytrace/Ionospheric Conductivity and Electron Density-Bent-Gallagher model has been revised to make it applicable to ionospheric propagation at low radio frequencies (0.5-5.0 MHz), where the ionosphere and magnetic anisotropy drastically alter propagation paths and provide a severe test of propagation model algorithms. The necessary revisions are discussed, and the model is applied to the problem of ionospheric penetration from a source below the ionosphere to a receiver above the ionosphere. It is necessary to include the electron collision frequency in the Appleton-Hartree index of refraction in order to permit ionospheric penetration for radio frequencies below the maximum plasma frequency (e.g., whistler modes). The associated reformulation of the ray trace equations for a complex index of refraction is straightforward. Difficulties with numerical methods are cited for the lowest frequencies, and future improvements are indicated.
Ionospheric Plasma Drift Analysis Technique Based On Ray Tracing
NASA Astrophysics Data System (ADS)
Ari, Gizem; Toker, Cenk
2016-07-01
Ionospheric drift measurements provide important information about the variability in the ionosphere, which can be used to quantify ionospheric disturbances caused by natural phenomena such as solar, geomagnetic, gravitational and seismic activities. One of the prominent ways for drift measurement depends on instrumentation based measurements, e.g. using an ionosonde. The drift estimation of an ionosonde depends on measuring the Doppler shift on the received signal, where the main cause of Doppler shift is the change in the length of the propagation path of the signal between the transmitter and the receiver. Unfortunately, ionosondes are expensive devices and their installation and maintenance require special care. Furthermore, the ionosonde network over the world or even Europe is not dense enough to obtain a global or continental drift map. In order to overcome the difficulties related to an ionosonde, we propose a technique to perform ionospheric drift estimation based on ray tracing. First, a two dimensional TEC map is constructed by using the IONOLAB-MAP tool which spatially interpolates the VTEC estimates obtained from the EUREF CORS network. Next, a three dimensional electron density profile is generated by inputting the TEC estimates to the IRI-2015 model. Eventually, a close-to-real situation electron density profile is obtained in which ray tracing can be performed. These profiles can be constructed periodically with a period of as low as 30 seconds. By processing two consequent snapshots together and calculating the propagation paths, we estimate the drift measurements over any coordinate of concern. We test our technique by comparing the results to the drift measurements taken at the DPS ionosonde at Pruhonice, Czech Republic. This study is supported by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.
Image transfer through cirrus clouds. I. Ray trace analysis and wave-front reconstruction.
Landesman, B T; Kindilien, P J; Matson, C L; Caudill, T R
2000-10-20
A new technique for modeling image transfer through cirrus clouds is presented. The technique uses a ray trace to model beam propagation through a three-dimensional volume of polydisperse, hexagonal ice crystals. Beyond the cloud, the technique makes use of standard Huygens-Fresnel propagation methods. At the air-cloud interface, each wave front is resolved into a ray distribution for input to the ray trace software. Similarly, a wave front is reconstructed from the output ray distribution at the cloud-air interface. Simulation output from the ray trace program is presented and the modulation transfer function for stars imaged through cirrus clouds of varying depths is discussed. PMID:18354542
General Relativistic Ray Tracing for X-ray Reverberation and Polarimetry Studies of Black Holes
NASA Astrophysics Data System (ADS)
Hoormann, Janie; Krawczynski, Henric
2015-01-01
We present the results of General Relativistic (GR) ray tracing calculations of the X-ray emission from mass accreting stellar mass and supermassive black holes. Our study aims at exploring the X-ray reverberation and X-ray polarimetry signatures of different accretion flow geometries and different spacetime backgrounds (GR and non-GR backgrounds). We present first results derived for the well-known lamp-post model, where a point source of continuum emission illuminates an accretion disk with high energy photons which are tracked by parallel transporting the photon wave and polarization vectors. The simulation code models the reprocessing and reflection by of photons impinging on the accretion disk. We study the degeneracy of astrophysical parameters (parametrizing the geometry of the accretion disk and the location and properties of the lamppost photon source) and the parameters describing the underlying metrics. We emphasize furthermore the difference of the observational signatures for stellar mass and supermassive black holes.
RAY-RAMSES: a code for ray tracing on the fly in N-body simulations
NASA Astrophysics Data System (ADS)
Barreira, Alexandre; Llinares, Claudio; Bose, Sownak; Li, Baojiu
2016-05-01
We present a ray tracing code to compute integrated cosmological observables on the fly in AMR N-body simulations. Unlike conventional ray tracing techniques, our code takes full advantage of the time and spatial resolution attained by the N-body simulation by computing the integrals along the line of sight on a cell-by-cell basis through the AMR simulation grid. Moroever, since it runs on the fly in the N-body run, our code can produce maps of the desired observables without storing large (or any) amounts of data for post-processing. We implemented our routines in the RAMSES N-body code and tested the implementation using an example of weak lensing simulation. We analyse basic statistics of lensing convergence maps and find good agreement with semi-analytical methods. The ray tracing methodology presented here can be used in several cosmological analysis such as Sunyaev-Zel'dovich and integrated Sachs-Wolfe effect studies as well as modified gravity. Our code can also be used in cross-checks of the more conventional methods, which can be important in tests of theory systematics in preparation for upcoming large scale structure surveys.
NASA Astrophysics Data System (ADS)
Rojo, Pilar; Royo, Santiago; Caum, Jesus; Ramírez, Jorge; Madariaga, Ines
2015-02-01
Peripheral refraction, the refractive error present outside the main direction of gaze, has lately attracted interest due to its alleged relationship with the progression of myopia. The ray tracing procedures involved in its calculation need to follow an approach different from those used in conventional ophthalmic lens design, where refractive errors are compensated only in the main direction of gaze. We present a methodology for the evaluation of the peripheral refractive error in ophthalmic lenses, adapting the conventional generalized ray tracing approach to the requirements of the evaluation of peripheral refraction. The nodal point of the eye and a retinal conjugate surface will be used to evaluate the three-dimensional distribution of refractive error around the fovea. The proposed approach enables us to calculate the three-dimensional peripheral refraction induced by any ophthalmic lens at any direction of gaze and to personalize the lens design to the requirements of the user. The complete evaluation process for a given user prescribed with a -5.76D ophthalmic lens for foveal vision is detailed, and comparative results obtained when the geometry of the lens is modified and when the central refractive error is over- or undercorrected. The methodology is also applied for an emmetropic eye to show its application for refractive errors other than myopia.
Fast Ray Tracing of Lunar Digital Elevation Models
NASA Technical Reports Server (NTRS)
McClanahan, Timothy P.; Evans, L. G.; Starr, R. D.; Mitrofanov, I.
2009-01-01
Ray-tracing (RT) of Lunar Digital Elevation Models (DEM)'s is performed to virtually derive the degree of radiation incident to terrain as a function of time, orbital and ephemeris constraints [I- 4]. This process is an integral modeling process in lunar polar research and exploration due to the present paucity of terrain information at the poles and mission planning activities for the anticipated spring 2009 launch of the Lunar Reconnaissance Orbiter (LRO). As part of the Lunar Exploration Neutron Detector (LEND) and Lunar Crater Observation and Sensing Satellite (LCROSS) preparations RI methods are used to estimate the critical conditions presented by the combined effects of high latitude, terrain and the moons low obliquity [5-7]. These factors yield low incident solar illumination and subsequently extreme thermal, and radiation conditions. The presented research uses RT methods both for radiation transport modeling in space and regolith related research as well as to derive permanently shadowed regions (PSR)'s in high latitude topographic minima, e.g craters. These regions are of scientific and human exploration interest due to the near constant low temperatures in PSRs, inferred to be < 100 K. Hydrogen is thought to have accumulated in PSR's through the combined effects of periodic cometary bombardment and/or solar wind processes, and the extreme cold which minimizes hydrogen sublimation [8-9]. RT methods are also of use in surface position optimization for future illumination dependent on surface resources e.g. power and communications equipment.
Ray-tracing simulations of coupled dark energy models
NASA Astrophysics Data System (ADS)
Pace, Francesco; Baldi, Marco; Moscardini, Lauro; Bacon, David; Crittenden, Robert
2015-02-01
Dark matter and dark energy are usually assumed to couple only gravitationally. An extension to this picture is to model dark energy as a scalar field coupled directly to cold dark matter. This coupling leads to new physical effects, such as a fifth force and a time-dependent dark matter particle mass. In this work we examine the impact that coupling has on weak lensing statistics by constructing realistic simulated weak lensing maps using ray-tracing techniques through N-body cosmological simulations. We construct maps for different lensing quantities, covering a range of scales from a few arcminutes to several degrees. The concordance Λ cold dark matter (ΛCDM) model is compared to different coupled dark energy models, described either by an exponential scalar field potential (standard coupled dark energy scenario) or by a SUGRA potential (bouncing model). We analyse several statistical quantities and our results, with sources at low redshifts are largely consistent with previous work on cosmic microwave background lensing by Carbone et al. The most significant differences from the ΛCDM model are due to the enhanced growth of the perturbations and to the effective friction term in non-linear dynamics. For the most extreme models, we see differences in the power spectra up to 40 per cent compared to the ΛCDM model. The different time evolution of the linear matter overdensity can account for most of the differences, but when controlling for this using a ΛCDM model having the same normalization, the overall signal is smaller due to the effect of the friction term appearing in the equation of motion for dark matter particles.
Trace metals and their relation to bacterial infections studied by X-ray microscopy
NASA Astrophysics Data System (ADS)
Maser, J.; Wagner, D.; Lai, B.; Cai, Z.; Legnini, D.; Moric, I.; Bermudez, L.
2003-03-01
Bacterial pathogens survive in different environments in the human host by responding with expression of virulence factors that enable them to adapt to changing conditions. Trace elements regulate the expression of many virulence genes in bacteria and are thus important for their survival in the host. Mycobacteria are intracellular pathogens that can cause diseases such as tuberculosis or secondary infections in immunocompromised patients. We have used a hard x-ray microprobe to study the trace element distribution in the mycobacterial phagosome after infection of macrophages. We have studied phagosomes with virulent (M. avium) and nonvirulent (M. smegmatis) mycobacteria. In this article, we will show that the iron concentration in phagosomes with macrophages infected with nonvirulent M. smegmatis is reduced 24 hours after infection but increased in phagosomes in cells infected with virulent M. avium. In addition, we will show the effect activation of macrophages with tumor necrosis factor (TNF-α) or interferon (IFN-γ) has on the iron concentration in M. avium.
Tabuchi, M.; Tatsumi, M.; Yamamoto, A.; Endo, T.
2013-07-01
A new correction model for ray tracing of the method of characteristics is proposed in order to reduce discretization error. As the ray tracing parameters such as azimuthal angle division, polar angle division and ray separation are considered in this study. In the method of characteristics, region average scalar fluxes can be implicitly expressed by collision probabilities, although these collision probabilities are not directly treated in the ordinary calculation scheme. From this viewpoint, difference between a coarse ray tracing condition and a detailed one can be interpreted as the difference in the estimation of collision probabilities. In other words, the discretization error for ray tracing can be recognized as a consequence of inaccurate collision probabilities caused by coarse ray tracing. This discussion suggests that accurate region average scalar flux can be obtained through an appropriate correction on collision probabilities. In this paper, a correction model on collision probabilities is theoretically derived based on the neutron balance equation, and its validity is confirmed through typical single assembly calculations. The effectiveness of the present correction method is also discussed in this paper. It is confirmed that discretization error for ray tracing can be significantly reduced by the present correction method in a multi-assembly calculation, though the correction factor is estimated in single assembly geometry. (authors)
Three-dimensional ray tracing on Delaunay-based reconstructed surfaces.
Ortiz, Sergio; Siedlecki, Damian; Remon, Laura; Marcos, Susana
2009-07-10
A method of ray tracing for free-form optical surfaces has been developed. The ray tracing through such surfaces is based on Delaunay triangulation of the discrete data of the surface and is related to finite-element modeling. Some numerical examples of applications to analytical, noisy, and experimental free-form surfaces (in particular, a corneal topography map) are presented. Ray-tracing results (i.e., spot diagram root-mean-square error) with the new method are in agreement with those obtained using a modal fitting of the surface, for sampling densities higher than 40 x 40 elements. The method competes in flexibility, simplicity, and computing times with standard methods for surface fitting and ray tracing. PMID:19593339
Paraxial ray-tracing approach for the simulation of ultrasonic inspection of welds
Gardahaut, Audrey; Jezzine, Karim; Cassereau, Didier
2014-02-18
On-site inspection of bimetallic or austenitic welds can be very difficult to interpret owing to their internal structures. Skewing and splitting of the ultrasonic beam may occur due to the anisotropic and inhomogeneous properties of the welding material. In this paper, we present a ray-based method to simulate the propagation of ultrasonic waves in such structures. The formalism is based on dynamic ray tracing system in Cartesian coordinates along a reference ray. Standard ray tracing consists in the solution of a system of linear ordinary differential equations of the first order and is used to determine the trajectory of the ray. Likewise, dynamic ray tracing (DRT) also called paraxial ray tracing consists in the solution of an additional system of linear ordinary differential equations along the ray allowing paraxial quantities to be computed. It is used to evaluate the geometrical spreading and amplitude along the ray and in its vicinity. DRT is applied on a smooth representation of the elastic properties of the weld obtained thanks to an image processing technique applied on a macrograph of the weld. Simulation results are presented and compared to finite elements and experimental results.
Paraxial ray-tracing approach for the simulation of ultrasonic inspection of welds
NASA Astrophysics Data System (ADS)
Gardahaut, Audrey; Jezzine, Karim; Cassereau, Didier
2014-02-01
On-site inspection of bimetallic or austenitic welds can be very difficult to interpret owing to their internal structures. Skewing and splitting of the ultrasonic beam may occur due to the anisotropic and inhomogeneous properties of the welding material. In this paper, we present a ray-based method to simulate the propagation of ultrasonic waves in such structures. The formalism is based on dynamic ray tracing system in Cartesian coordinates along a reference ray. Standard ray tracing consists in the solution of a system of linear ordinary differential equations of the first order and is used to determine the trajectory of the ray. Likewise, dynamic ray tracing (DRT) also called paraxial ray tracing consists in the solution of an additional system of linear ordinary differential equations along the ray allowing paraxial quantities to be computed. It is used to evaluate the geometrical spreading and amplitude along the ray and in its vicinity. DRT is applied on a smooth representation of the elastic properties of the weld obtained thanks to an image processing technique applied on a macrograph of the weld. Simulation results are presented and compared to finite elements and experimental results.
Kostro, André; Geiger, Mario; Scartezzini, Jean-Louis; Schüler, Andreas
2016-07-01
Advanced optical ray tracing software, CFSpro, was developed for the study and optimization of complex fenestration systems (CFSs). Using an algorithm mixing 2D and 3D approaches, accurate computation of large numbers of rays in extruded geometries can be performed and visualized in real time. A thin film model was included to assess the spectral control provided by coatings. In this paper, the ray tracing model is described and validated. A novel glazing, engineered with this simulation tool, is presented. It combines the functions of daylight provision, glare protection, and seasonal thermal control while conserving a view to the outside at near normal incidence. PMID:27409200
Ray tracing a three-dimensional scene using a hierarchical data structure
Wald, Ingo; Boulos, Solomon; Shirley, Peter
2012-09-04
Ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. One example embodiment is a method for ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. In this example embodiment, the hierarchical data structure includes at least a parent node and a corresponding plurality of child nodes. The method includes a first act of determining that a first active ray in the packet hits the parent node and a second act of descending to each of the plurality of child nodes.
SolTrace: A Ray-Tracing Code for Complex Solar Optical Systems
Wendelin, Tim; Dobos, Aron; Lewandowski, Allan
2013-10-01
SolTrace is an optical simulation tool designed to model optical systems used in concentrating solar power (CSP) applications. The code was first written in early 2003, but has seen significant modifications and changes since its inception, including conversion from a Pascal-based software development platform to C++. SolTrace is unique in that it can model virtually any optical system utilizingthe sun as the source. It has been made available for free and as such is in use worldwide by industry, universities, and research laboratories. The fundamental design of the code is discussed, including enhancements and improvements over the earlier version. Comparisons are made with other optical modeling tools, both non-commercial and commercial in nature. Finally, modeled results are shownfor some typical CSP systems and, in one case, compared to measured optical data.
Engelken, Johannes; Espadas, Guadalupe; Mancuso, Francesco M; Bonet, Nuria; Scherr, Anna-Lena; Jímenez-Álvarez, Victoria; Codina-Solà, Marta; Medina-Stacey, Daniel; Spataro, Nino; Stoneking, Mark; Calafell, Francesc; Sabidó, Eduard; Bosch, Elena
2016-03-01
Essential trace elements possess vital functions at molecular, cellular, and physiological levels in health and disease, and they are tightly regulated in the human body. In order to assess variability and potential adaptive evolution of trace element homeostasis, we quantified 18 trace elements in 150 liver samples, together with the expression levels of 90 genes and abundances of 40 proteins involved in their homeostasis. Additionally, we genotyped 169 single nucleotide polymorphism (SNPs) in the same sample set. We detected significant associations for 8 protein quantitative trait loci (pQTL), 10 expression quantitative trait loci (eQTLs), and 15 micronutrient quantitative trait loci (nutriQTL). Six of these exceeded the false discovery rate cutoff and were related to essential trace elements: 1) one pQTL for GPX2 (rs10133290); 2) two previously described eQTLs for HFE (rs12346) and SELO (rs4838862) expression; and 3) three nutriQTLs: The pathogenic C282Y mutation at HFE affecting iron (rs1800562), and two SNPs within several clustered metallothionein genes determining selenium concentration (rs1811322 and rs904773). Within the complete set of significant QTLs (which involved 30 SNPs and 20 gene regions), we identified 12 SNPs with extreme patterns of population differentiation (FST values in the top 5% percentile in at least one HapMap population pair) and significant evidence for selective sweeps involving QTLs at GPX1, SELENBP1, GPX3, SLC30A9, and SLC39A8. Overall, this detailed study of various molecular phenotypes illustrates the role of regulatory variants in explaining differences in trace element homeostasis among populations and in the human adaptive response to environmental pressures related to micronutrients. PMID:26582562
Sabidó, Eduard; Bosch, Elena
2016-01-01
Essential trace elements possess vital functions at molecular, cellular, and physiological levels in health and disease, and they are tightly regulated in the human body. In order to assess variability and potential adaptive evolution of trace element homeostasis, we quantified 18 trace elements in 150 liver samples, together with the expression levels of 90 genes and abundances of 40 proteins involved in their homeostasis. Additionally, we genotyped 169 single nucleotide polymorphism (SNPs) in the same sample set. We detected significant associations for 8 protein quantitative trait loci (pQTL), 10 expression quantitative trait loci (eQTLs), and 15 micronutrient quantitative trait loci (nutriQTL). Six of these exceeded the false discovery rate cutoff and were related to essential trace elements: 1) one pQTL for GPX2 (rs10133290); 2) two previously described eQTLs for HFE (rs12346) and SELO (rs4838862) expression; and 3) three nutriQTLs: The pathogenic C282Y mutation at HFE affecting iron (rs1800562), and two SNPs within several clustered metallothionein genes determining selenium concentration (rs1811322 and rs904773). Within the complete set of significant QTLs (which involved 30 SNPs and 20 gene regions), we identified 12 SNPs with extreme patterns of population differentiation (FST values in the top 5% percentile in at least one HapMap population pair) and significant evidence for selective sweeps involving QTLs at GPX1, SELENBP1, GPX3, SLC30A9, and SLC39A8. Overall, this detailed study of various molecular phenotypes illustrates the role of regulatory variants in explaining differences in trace element homeostasis among populations and in the human adaptive response to environmental pressures related to micronutrients. PMID:26582562
Can We Trace "Arbitrary" Rays to Locate an Image Formed by a Thin Lens?
ERIC Educational Resources Information Center
Suppapittayaporn, Decha; Panijpan, Bhinyo; Emarat, Narumon
2010-01-01
After learning how to trace the principal rays [Fig. 1(i)] through a thin lens in order to form the image in the conventional way, students sometimes ask whether it is possible to use other rays emanating from the object to form exactly the same image--for example, the two arbitrary rays shown in Fig. 1(ii). The answer is a definite yes, and this…
Ray-tracing method for creeping waves on arbitrarily shaped nonuniform rational B-splines surfaces.
Chen, Xi; He, Si-Yuan; Yu, Ding-Feng; Yin, Hong-Cheng; Hu, Wei-Dong; Zhu, Guo-Qiang
2013-04-01
An accurate creeping ray-tracing algorithm is presented in this paper to determine the tracks of creeping waves (or creeping rays) on arbitrarily shaped free-form parametric surfaces [nonuniform rational B-splines (NURBS) surfaces]. The main challenge in calculating the surface diffracted fields on NURBS surfaces is due to the difficulty in determining the geodesic paths along which the creeping rays propagate. On one single parametric surface patch, the geodesic paths need to be computed by solving the geodesic equations numerically. Furthermore, realistic objects are generally modeled as the union of several connected NURBS patches. Due to the discontinuity of the parameter between the patches, it is more complicated to compute geodesic paths on several connected patches than on one single patch. Thus, a creeping ray-tracing algorithm is presented in this paper to compute the geodesic paths of creeping rays on the complex objects that are modeled as the combination of several NURBS surface patches. In the algorithm, the creeping ray tracing on each surface patch is performed by solving the geodesic equations with a Runge-Kutta method. When the creeping ray propagates from one patch to another, a transition method is developed to handle the transition of the creeping ray tracing across the border between the patches. This creeping ray-tracing algorithm can meet practical requirements because it can be applied to the objects with complex shapes. The algorithm can also extend the applicability of NURBS for electromagnetic and optical applications. The validity and usefulness of the algorithm can be verified from the numerical results. PMID:23595326
Szostek, Kamil; Piórkowski, Adam
2016-10-01
Ultrasound (US) imaging is one of the most popular techniques used in clinical diagnosis, mainly due to lack of adverse effects on patients and the simplicity of US equipment. However, the characteristics of the medium cause US imaging to imprecisely reconstruct examined tissues. The artifacts are the results of wave phenomena, i.e. diffraction or refraction, and should be recognized during examination to avoid misinterpretation of an US image. Currently, US training is based on teaching materials and simulators and ultrasound simulation has become an active research area in medical computer science. Many US simulators are limited by the complexity of the wave phenomena, leading to intensive sophisticated computation that makes it difficult for systems to operate in real time. To achieve the required frame rate, the vast majority of simulators reduce the problem of wave diffraction and refraction. The following paper proposes a solution for an ultrasound simulator based on methods known in geophysics. To improve simulation quality, a wavefront construction method was adapted which takes into account the refraction phenomena. This technique uses ray tracing and velocity averaging to construct wavefronts in the simulation. Instead of a geological medium, real CT scans are applied. This approach can produce more realistic projections of pathological findings and is also capable of providing real-time simulation. PMID:27586490
Optimizing detector geometry for trace element mapping by X-ray fluorescence
Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan
2015-01-01
We report that trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. In conclusion, we conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.
Optimizing detector geometry for trace element mapping by X-ray fluorescence
Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan
2015-01-01
We report that trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral responsemore » of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. In conclusion, we conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less
Optimizing detector geometry for trace element mapping by X-ray fluorescence
Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan
2016-01-01
Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples. PMID:25600825
A data distributed parallel algorithm for ray-traced volume rendering
NASA Technical Reports Server (NTRS)
Ma, Kwan-Liu; Painter, James S.; Hansen, Charles D.; Krogh, Michael F.
1993-01-01
This paper presents a divide-and-conquer ray-traced volume rendering algorithm and a parallel image compositing method, along with their implementation and performance on the Connection Machine CM-5, and networked workstations. This algorithm distributes both the data and the computations to individual processing units to achieve fast, high-quality rendering of high-resolution data. The volume data, once distributed, is left intact. The processing nodes perform local ray tracing of their subvolume concurrently. No communication between processing units is needed during this locally ray-tracing process. A subimage is generated by each processing unit and the final image is obtained by compositing subimages in the proper order, which can be determined a priori. Test results on both the CM-5 and a group of networked workstations demonstrate the practicality of our rendering algorithm and compositing method.
Long gamma-ray bursts trace the star formation history
Dado, Shlomo; Dar, Arnon
2014-04-10
We show that if the broad-line supernova explosions of Type Ic (SNeIc) produce the bulk of the observed long duration gamma-ray bursts (LGRBs), including high- and low-luminosity LGRBs and X-ray flashes, and if the LGRBs have the geometry assumed in the cannonball model of LGRBs, then their rate, measured by Swift, and their redshift distribution are consistent with the star formation rate (SFR) over the entire range of redshifts where the SFR has been measured with sufficient accuracy.
Ray Tracing Through Non-Rotationally Symmetrical Systems With A Desktop Computer
NASA Astrophysics Data System (ADS)
Mackay, R. M.; Busse lle, F. J.
1986-10-01
A general ray-trace program has been developed for use on a desktop computer which traces finite rays through any non-rotationally symmetrical system. In particular any combination of decentred, tilted and rotated surface has been considered. Surface types such as Conic sections with and without Aspherics, Toric surfaces, surfaces of S and T Cylindrical sections, and Axicons, may be ray-traced. Each surface is defined in terms of a local rectangular co-ordinate system and has a particular aperture shape attributed to it. Aperture shapes may be defined as circular, elliptical, rectangular or quadrilateral. Also the centre of any aperture shape may be displaced from its local coordinate origin to facilitate the tracing of off-axis paraboloids. Before transferring to the next surface, the local coordinates are referred back to an initial reference coordinate system. Finally a means of assessing aberrations has been included. The main task here was to get a mathematical model of a non-rotationally symmetrical finite ray-trace running on an inexpensive desk top computer. The program was written for the BBC MICRO in order to investigate devices such as scanning systems for modern Thermal Imagers etc.
Magnetospheric Whistler Mode Ray Tracing with the Inclusion of Finite Electron and Ion Temperature
NASA Astrophysics Data System (ADS)
Maxworth, A. S.; Golkowski, M.
2015-12-01
Ray tracing is an important technique for the study of whistler mode wave propagation in the Earth's magnetosphere. In numerical ray tracing the trajectory of a wave packet is calculated at each point in space by solving the Haselgrove equations, assuming a smooth, loss-less medium with no mode coupling. Previous work on ray tracing has assumed a cold plasma environment with negligible electron and ion temperatures. In this work we present magnetospheric whistler mode wave ray tracing results with the inclusion of finite ion and electron temperature. The inclusion of finite temperature effects makes the fourth order dispersion relation become sixth order. We compare our results with the work done by previous researchers for cold plasma environments, using two near earth space models (NGO and GCPM). Inclusion of finite temperature closes the otherwise open refractive index surface near the lower hybrid resonance frequency and affects the magnetospheric reflection of whistler waves. We also asses the main changes in the ray trajectory and implications for cyclotron resonance wave particle interactions including energetic particle precipitation.
Automatic creation of object hierarchies for ray tracing
NASA Technical Reports Server (NTRS)
Goldsmith, Jeffrey; Salmon, John
1987-01-01
Various methods for evaluating generated trees are proposed. The use of the hierarchical extent method of Rubin and Whitted (1980) to find the objects that will be hit by a ray is examined. This method employs tree searching; the construction of a tree of bounding volumes in order to determine the number of objects that will be hit by a ray is discussed. A tree generation algorithm, which uses a heuristic tree search strategy, is described. The effects of shuffling and sorting on the input data are investigated. The cost of inserting an object into the hierarchy during the construction of a tree algorithm is estimated. The steps involved in estimating the number of intersection calculations are presented.
A boundary integral formalism for stochastic ray tracing in billiards
Chappell, David J.; Tanner, Gregor
2014-12-15
Determining the flow of rays or non-interacting particles driven by a force or velocity field is fundamental to modelling many physical processes. These include particle flows arising in fluid mechanics and ray flows arising in the geometrical optics limit of linear wave equations. In many practical applications, the driving field is not known exactly and the dynamics are determined only up to a degree of uncertainty. This paper presents a boundary integral framework for propagating flows including uncertainties, which is shown to systematically interpolate between a deterministic and a completely random description of the trajectory propagation. A simple but efficient discretisation approach is applied to model uncertain billiard dynamics in an integrable rectangular domain.
Odyssey: Ray tracing and radiative transfer in Kerr spacetime
NASA Astrophysics Data System (ADS)
Pu, Hung-Yi; Yun, Kiyun; Younsi, Ziri; Yoon, Suk-Jin
2016-01-01
Odyssey is a GPU-based General Relativistic Radiative Transfer (GRRT) code for computing images and/or spectra in Kerr metric describing the spacetime around a rotating black hole. Odyssey is implemented in CUDA C/C++. For flexibility, the namespace structure in C++ is used for different tasks; the two default tasks presented in the source code are the redshift of a Keplerian disk and the image of a Keplerian rotating shell at 340GHz. Odyssey_Edu, an educational software package for visualizing the ray trajectories in the Kerr spacetime that uses Odyssey, is also available.
An Energy Conservative Ray-Tracing Method With a Time Interpolation of the Force Field
Yao, Jin
2015-02-10
A new algorithm that constructs a continuous force field interpolated in time is proposed for resolving existing difficulties in numerical methods for ray-tracing. This new method has improved accuracy, but with the same degree of algebraic complexity compared to Kaisers method.
Comparing TID simulations using 3-D ray tracing and mirror reflection
NASA Astrophysics Data System (ADS)
Huang, X.; Reinisch, B. W.; Sales, G. S.; Paznukhov, V. V.; Galkin, I. A.
2016-04-01
Measuring the time variations of Doppler frequencies and angles of arrival (AoA) of ionospherically reflected HF waves has been proposed as a means of detecting the occurrence of traveling ionospheric disturbances (TIDs). Simulations are made using ray tracing through the International Reference Ionosphere (IRI) electron density model in an effort to reproduce measured signatures. The TID is represented by a wavelike perturbation of the 3-D electron density traveling horizontally in the ionosphere with an amplitude that varies sinusoidally with time. By judiciously selecting the TID parameters the ray tracing simulation reproduces the observed Doppler frequencies and AoAs. Ray tracing in a 3-D realistic ionosphere is, however, excessively time consuming considering the involved homing procedures. It is shown that a carefully selected reflecting corrugated mirror can reproduce the time variations of the AoA and Doppler frequency. The results from the ray tracing through the IRI model ionosphere and the mirror model reflections are compared to assess the applicability of the mirror-reflection model.
GPU-based ray tracing algorithm for high-speed propagation prediction in typical indoor environments
NASA Astrophysics Data System (ADS)
Guo, Lixin; Guan, Xiaowei; Liu, Zhongyu
2015-10-01
A fast 3-D ray tracing propagation prediction model based on virtual source tree is presented in this paper, whose theoretical foundations are geometrical optics(GO) and the uniform theory of diffraction(UTD). In terms of typical single room indoor scene, taking the geometrical and electromagnetic information into account, some acceleration techniques are adopted to raise the efficiency of the ray tracing algorithm. The simulation results indicate that the runtime of the ray tracing algorithm will sharply increase when the number of the objects in the single room is large enough. Therefore, GPU acceleration technology is used to solve that problem. As is known to all, GPU is good at calculation operation rather than logical judgment, so that tens of thousands of threads in CUDA programs are able to calculate at the same time, in order to achieve massively parallel acceleration. Finally, a typical single room with several objects is simulated by using the serial ray tracing algorithm and the parallel one respectively. It can be found easily from the results that compared with the serial algorithm, the GPU-based one can achieve greater efficiency.
NASA Astrophysics Data System (ADS)
Harikae, Seiji; Kotake, Kei; Takiwaki, Tomoya; Sekiguchi, Yu-ichiro
2010-09-01
Bearing in mind the application to the collapsar models of gamma-ray bursts (GRBs), we develop a numerical scheme and code for estimating the deposition of energy and momentum due to the neutrino pair annihilation (ν + {\\bar{ν}} → e^{-} + e^{+}) in the vicinity of an accretion tori around a Kerr black hole. Our code is designed to solve the general relativistic (GR) neutrino transfer by a ray-tracing method. To solve the collisional Boltzmann equation in curved spacetime, we numerically integrate the so-called rendering equation along the null geodesics. We employ the Fehlberg (4,5) adaptive integrator in the Runge-Kutta method to perform the numerical integration accurately. For the neutrino opacity, the charged-current β-processes, which are dominant in the vicinity of the accretion tori, are taken into account. The numerical accuracy of the developed code is certified by several tests in which we show comparisons with the corresponding analytical solutions. In order to solve the energy-dependent ray-tracing transport, we propose that an adaptive-mesh-refinement approach, which we take for the two radiation angles (θ, phi) and the neutrino energy, is useful in reducing the computational cost significantly. Based on the hydrodynamical data in our collapsar simulation, we estimate the annihilation rates in a post-processing manner. Increasing the Kerr parameter from 0 to 1, it is found that the GR effect can increase the local energy deposition rate by about one order of magnitude, and the net energy deposition rate by several tens of percent. After the accretion disk settles into a stationary state (typically later than ~9 s from the onset of gravitational collapse), we point out that the neutrino-heating timescale in the vicinity of the polar funnel region can be shorter than the dynamical timescale. Our results suggest that the neutrino pair annihilation is potentially as important as the conventional magnetohydrodynamic mechanism for igniting the GRB
Tracing Chromospheric Evaporation in Radio and Soft X-rays
NASA Technical Reports Server (NTRS)
Aschwanden, Markus J.
1997-01-01
There are three publications in refereed journals and several presentations at scientific conferences resulted from this work, over a period of 6 months during 1995/1996. In the first paper, the discovery of the chromospheric evaporation process at radio wavelengths is described. In the second paper, the radio detection is used to quantify electron densities in the upflowing heated plasma in flare loops, which is then compared with independent other density measurements from soft X-rays, or the plasma frequency of electron beams originating in the acceleration region. In the third paper, the diagnostic results of the chromospheric evaporation process are embedded into a broader picture of a standard flare scenario. Abstracts of these three papers are attached.
Irick, S.C.; Jung, C.R.
1997-07-01
There are a number of ray trace programs currently used for the design of synchrotron beamlines. While several of these programs have been written and used mostly within the programmer`s institution, many have also been available to the general public. This paper discusses three such programs. One is a commercial product oriented for the general optical designer (not specifically for synchrotron beamlines). One is designed for synchrotron beamlines and is free with restricted availability. Finally, one is designed for synchrotron beamlines and is used primarily in one institution. The wealth of information from general optical materials and components catalogs is readily available in the commercial program for general optical designs. This makes the design of an infrared beamline easier from the standpoint of component selection. However, this program is not easily configured for synchrotron beamline designs, particularly for a bending magnet source. The synchrotron ray trace programs offer a variety of sources, but generally are not as easy to use from the standpoint of the user interface. This paper shows ray traces of the same beamline Optikwerks, SHADOW, and RAY, and compares the results.
Ray tracing in a finite-element domain using nodal basis functions.
Schrader, Karl N; Subia, Samuel R; Myre, John W; Summers, Kenneth L
2014-08-20
A method is presented for tracing rays through a medium discretized as finite-element volumes. The ray-trajectory equations are cast into the local element coordinate frame, and the full finite-element interpolation is used to determine instantaneous index gradient for the ray-path integral equation. The finite-element methodology is also used to interpolate local surface deformations and the surface normal vector for computing the refraction angle when launching rays into the volume, and again when rays exit the medium. The procedure is applied to a finite-element model of an optic with a severe refractive-index gradient, and the results are compared to the closed-form gradient ray-path integral approach. PMID:25321137
Reverse Monte Carlo ray-tracing for radiative heat transfer in combustion systems
NASA Astrophysics Data System (ADS)
Sun, Xiaojing
Radiative heat transfer is a dominant heat transfer phenomenon in high temperature systems. With the rapid development of massive supercomputers, the Monte-Carlo ray tracing (MCRT) method starts to see its applications in combustion systems. This research is to find out if Monte-Carlo ray tracing can offer more accurate and efficient calculations than the discrete ordinates method (DOM). Monte-Carlo ray tracing method is a statistical method that traces the history of a bundle of rays. It is known as solving radiative heat transfer with almost no approximation. It can handle nonisotropic scattering and nongray gas mixtures with relative ease compared to conventional methods, such as DOM and spherical harmonics method, etc. There are two schemes in Monte-Carlo ray tracing method: forward and backward/reverse. Case studies and the governing equations demonstrate the advantages of reverse Monte-Carlo ray tracing (RMCRT) method. The RMCRT can be easily implemented for domain decomposition parallelism. In this dissertation, different efficiency improvements techniques for RMCRT are introduced and implemented. They are the random number generator, stratified sampling, ray-surface intersection calculation, Russian roulette, and important sampling. There are two major modules in solving the radiative heat transfer problems: the RMCRT RTE solver and the optical property models. RMCRT is first fully verified in gray, scattering, absorbing and emitting media with black/nonblack, diffuse/nondiffuse bounded surface problems. Sensitivity analysis is carried out with regard to the ray numbers, the mesh resolutions of the computational domain, optical thickness of the media and effects of variance reduction techniques (stratified sampling, Russian roulette). Results are compared with either analytical solutions or benchmark results. The efficiency (the product of error and computation time) of RMCRT has been compared to DOM and suggest great potential for RMCRT's application
NASA Astrophysics Data System (ADS)
Tichý, Vladimír; Hudec, René; Němcová, Šárka
2016-06-01
The algorithm presented is intended mainly for lobster eye optics. This type of optics (and some similar types) allows for a simplification of the classical ray-tracing procedure that requires great many rays to simulate. The method presented performs the simulation of a only few rays; therefore it is extremely effective. Moreover, to simplify the equations, a specific mathematical formalism is used. Only a few simple equations are used, therefore the program code can be simple as well. The paper also outlines how to apply the method to some other reflective optical systems.
NASA Astrophysics Data System (ADS)
Tichý, Vladimír; Hudec, René; Němcová, Šárka
2016-03-01
The algorithm presented is intended mainly for lobster eye optics. This type of optics (and some similar types) allows for a simplification of the classical ray-tracing procedure that requires great many rays to simulate. The method presented performs the simulation of a only few rays; therefore it is extremely effective. Moreover, to simplify the equations, a specific mathematical formalism is used. Only a few simple equations are used, therefore the program code can be simple as well. The paper also outlines how to apply the method to some other reflective optical systems.
Solar Proton Transport Within an ICRU Sphere Surrounded by a Complex Shield: Ray-trace Geometry
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Wilson, John W.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.
2015-01-01
A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z is less than or equal to 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency.
Exact ray tracing formulas based on a nontrigonometric alternative to Snell's law.
Elagha, Hassan A
2012-12-01
In this work, Fermat's principle is applied to derive a simple exact formula for refraction (reflection) in terms of the lengths of the incident and refracted rays. This formula is a nontrigonometric alternative to Snell's law and is general for all optical surfaces. It is used to derive the paraxial optics equations in a more simple and direct way than that often used in the literature. It's also applied to derive a new single, exact ray tracing formula for the nonparaxial refraction (reflection) at a single optical surface. The obtained formulas are used to develop a simple ray tracing procedure for meridional refraction through systems of spherical surfaces without the need to use any form of Snell's law. Numerical examples are provided and discussed. PMID:23455919
NASA Astrophysics Data System (ADS)
Huang, Yong; Shi, Guo-Dong; Zhu, Ke-Yong
2016-06-01
This paper adopts the Runge-Kutta ray tracing method to obtain the ray-trajectory numerical solution in a two-dimensional gradient index medium. The emitting, absorbing and scattering processes are simulated by the Monte Carlo method. The temperature field and ray trajectory in the medium are obtained by the three methods, the Runge-Kutta ray tracing method, the ray tracing method with the cell model and the discrete curved ray tracing method with the linear refractive index cell model. Comparing the results of the three methods, it is found that the results by the Monte Carlo Runge-Kutta ray tracing method are of the highest accuracy. To improve the computational speed, the variable step-size Runge-Kutta ray tracing method is proposed, and the maximum relative error between the temperature field in the nonscattering medium by this method and the benchmark solution is less than 0.5%. The results also suggest that the Runge-Kutta ray tracing method would make the radiative transfer solution in the three-dimensional graded index media much easier.
Trace metal content in aspirin and women's cosmetics via proton induced x-ray emission (PIXE)
Hichwa, B.P.; Pun, D.D.; Wang, D.
1981-04-01
A multielemental analysis to determine the trace metal content of generic and name-brand aspirins and name-brand lipsticks was done via proton induced x-ray (PIXE) measurements. The Hope College PIXE system is described as well as the target preparation methods. The trace metal content of twelve brands of aspirin and aspirin substitutes and fourteen brands of lipstick are reported. Detection limits for most elements are in the range of 100 parts per billion (ppb) to 10 parts per million (ppm).
Yang, Bing-jun; Chao, Keng-hsing; Tsai, Jui-che
2012-09-01
In this paper we develop a three-dimensional (3D) ray tracing tool based on the ABCD ray transfer matrices. With symmetric optical components and under paraxial approximation, two sets of 2×2 ABCD matrices, each for a two-dimensional subspace, can be used to describe the 3D ray propagation completely. Compared to commercial ray-tracing software packages, our tool requires no tedious drawing, and the results for various conditions, such as different device dimensions and incident angles, can be easily obtained by simply changing the parameter values used for the calculation. We have employed this matrix-based 3D ray tracing tool to model cat's eye retroreflectors. The cat's eye performance, including the retroreflection efficiency, acceptance angle (i.e., field of view), and beam divergence and deviation, is fully studied. The application of this 3D ray tracing technique can be further extended to other optical components. PMID:22945148
Ionospheric differential error determination using ray tracing for a short baseline
NASA Astrophysics Data System (ADS)
Abdullah, M.; Strangeways, H. J.; Zulkifli, S. S. N.
2010-11-01
Since the United States government discontinued Selective Availability (SA) on 1 May 2000, ionospheric effects have been responsible for the largest errors in GPS systems. The standard Differential GPS (DGPS) method is incapable of completely eliminating the ionospheric error. This paper describes a new approach to determine the differential ionospheric error between geographically distributed receiver stations. The ray paths of GPS signals were simulated using a modified Jones 3D ray tracing programme that includes the effect of the geomagnetic field. A Nelder-Mead optimisation algorithm was embedded in the program to precisely determine the satellite-to-station path. A realistic ionospheric model is essential for accurate ray tracing results and for estimates of differential error that are accurate on sub-centimetre scales. Here, the ionospheric model used in the ray tracing programme was developed by fitting realistic ionosphere profiles with a number of exponential functions. Results were compared to the theoretical approach. Results show that the differential delay is about 1-5 cm at low elevation angles for a short baseline of 10 km, as reported in other literature. This delay is often neglected in DGPS application. The differential delay also shows a pattern similar to that predicted by the Klobuchar model. The method proposed here can be used to improve future GPS applications.
Weiland, C.M.; Steck, L.K.; Dawson, P.B.
1995-10-10
The authors explore the impact of three-dimensional minimum travel time ray tracing on nonlinear teleseismic inversion. This problem has particular significance when trying to image strongly contrasting low-velocity bodies, such as magma chambers, because strongly refracted/and/or diffracted rays may precede the direct P wave arrival traditionally used in straight-ray seismic tomography. They use a simplex-based ray tracer to compute the three-dimensional, minimum travel time ray paths and employ an interative technique to cope with nonlinearity. Results from synthetic data show that their algorithm results in better model reconstructions compared with traditional straight-ray inversions. The authors reexamine the teleseismic data collected at Long Valley caldera by the U.S. Geological Survey. The most prominent feature of their result is a 25-30% low-velocity zone centered at 11.5 km depth beneath the northwestern quandrant of the caldera. Beneath this at a depth of 24.5 km is a more diffuse 15% low-velocity zone. In general, the low velocities tend to deepen to the south and east. The authors interpret the shallow feature to be the residual Long Valley caldera magma chamber, while the deeper feature may represent basaltic magmas ponded in the midcrust. The deeper position of the prominent low-velocity region in comparison to earlier tomographic images is a result of using three-dimensional rays rather than straight rays in the ray tracing. The magnitude of the low-velocity anomaly is a factor of {approximately}3 times larger than earlier models from linear arrival time inversions and is consistent with models based on observations of ray bending at sites within the caldera. These results imply the presence of anywhere from 7 to 100% partial melt beneath the caldera. 40 refs., 1 fig., 1 tab.
Improvements of the Ray-Tracing Based Method Calculating Hypocentral Loci for Earthquake Location
NASA Astrophysics Data System (ADS)
Zhao, A. H.
2014-12-01
Hypocentral loci are very useful to reliable and visual earthquake location. However, they can hardly be analytically expressed when the velocity model is complex. One of methods numerically calculating them is based on a minimum traveltime tree algorithm for tracing rays: a focal locus is represented in terms of ray paths in its residual field from the minimum point (namely initial point) to low residual points (referred as reference points of the focal locus). The method has no restrictions on the complexity of the velocity model but still lacks the ability of correctly dealing with multi-segment loci. Additionally, it is rather laborious to set calculation parameters for obtaining loci with satisfying completeness and fineness. In this study, we improve the ray-tracing based numerical method to overcome its advantages. (1) Reference points of a hypocentral locus are selected from nodes of the model cells that it goes through, by means of a so-called peeling method. (2) The calculation domain of a hypocentral locus is defined as such a low residual area that its connected regions each include one segment of the locus and hence all the focal locus segments are respectively calculated with the minimum traveltime tree algorithm for tracing rays by repeatedly assigning the minimum residual reference point among those that have not been traced as an initial point. (3) Short ray paths without branching are removed to make the calculated locus finer. Numerical tests show that the improved method becomes capable of efficiently calculating complete and fine hypocentral loci of earthquakes in a complex model.
TIM, a ray-tracing program for METATOY research and its dissemination
NASA Astrophysics Data System (ADS)
Lambert, Dean; Hamilton, Alasdair C.; Constable, George; Snehanshu, Harsh; Talati, Sharvil; Courtial, Johannes
2012-03-01
TIM (The Interactive METATOY) is a ray-tracing program specifically tailored towards our research in METATOYs, which are optical components that appear to be able to create wave-optically forbidden light-ray fields. For this reason, TIM possesses features not found in other ray-tracing programs. TIM can either be used interactively or by modifying the openly available source code; in both cases, it can easily be run as an applet embedded in a web page. Here we describe the basic structure of TIM's source code and how to extend it, and we give examples of how we have used TIM in our own research. Program summaryProgram title: TIM Catalogue identifier: AEKY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 124 478 No. of bytes in distributed program, including test data, etc.: 4 120 052 Distribution format: tar.gz Programming language: Java Computer: Any computer capable of running the Java Virtual Machine (JVM) 1.6 Operating system: Any; developed under Mac OS X Version 10.6 RAM: Typically 145 MB (interactive version running under Mac OS X Version 10.6) Classification: 14, 18 External routines: JAMA [1] (source code included) Nature of problem: Visualisation of scenes that include scene objects that create wave-optically forbidden light-ray fields. Solution method: Ray tracing. Unusual features: Specifically designed to visualise wave-optically forbidden light-ray fields; can visualise ray trajectories; can visualise geometric optic transformations; can create anaglyphs (for viewing with coloured "3D glasses") and random-dot autostereograms of the scene; integrable into web pages. Running time: Problem-dependent; typically seconds for a simple scene.
Skeleton-based tracing of curved fibers from 3D X-ray microtomographic imaging
NASA Astrophysics Data System (ADS)
Huang, Xiang; Wen, Donghui; Zhao, Yanwei; Wang, Qinghui; Zhou, Wei; Deng, Daxiang
A skeleton-based fiber tracing algorithm is described and applied on a specific fibrous material, porous metal fiber sintered sheet (PMFSS), featuring high porosity and curved fibers. The skeleton segments are firstly categorized according to the connectivity of the skeleton paths. Spurious segments like fiber bonds are detected making extensive use of the distance transform (DT) values. Single fibers are then traced and reconstructed by consecutively choosing the connecting skeleton segment pairs that show the most similar orientations and radius. Moreover, to reduce the misconnection due to the tracing orders, a multilevel tracing strategy is proposed. The fibrous network is finally reconstructed by dilating single fibers according to the DT values. Based on the traced single fibers, various morphology information regarding fiber length, radius, orientation, and tortuosity are quantitatively analyzed and compared with our previous results (Wang et al., 2013). Moreover, the number of bonds per fibers are firstly accessed. The methodology described in this paper can be expanded to other fibrous materials with adapted parameters.
Real time adaptive filtering for digital X-ray applications.
Bockenbach, Olivier; Mangin, Michel; Schuberth, Sebastian
2006-01-01
Over the last decade, many methods for adaptively filtering a data stream have been proposed. Those methods have applications in two dimensional imaging as well as in three dimensional image reconstruction. Although the primary objective of this filtering technique is to reduce the noise while avoiding to blur the edges, diagnostic, automated segmentation and surgery show a growing interest in enhancing the features contained in the image flow. Most of the methods proposed so far emerged from thorough studies of the physics of the considered modality and therefore show only a marginal capability to be extended across modalities. Moreover, adaptive filtering belongs to the family of processing intensive algorithms. Existing technology has often driven to simplifications and modality specific optimization to sustain the expected performances. In the specific case of real time digital X-ray as used surgery, the system has to sustain a throughput of 30 frames per second. In this study, we take a generalized approach for adaptive filtering based on multiple oriented filters. Mapping the filtering part to the embedded real time image processing while a user/application defined adaptive recombination of the filter outputs allow to change the smoothing and edge enhancement properties of the filter without changing the oriented filter parameters. We have implemented the filtering on a Cell Broadband Engine processor and the adaptive recombination on an off-the-shelf PC, connected via Gigabit Ethernet. This implementation is capable of filtering images of 5122 pixels at a throughput in excess of 40 frames per second while allowing to change the parameters in real time. PMID:17354937
Combining ray tracing and CFD in the thermal analysis of a parabolic dish tubular cavity receiver
NASA Astrophysics Data System (ADS)
Craig, Ken J.; Marsberg, Justin; Meyer, Josua P.
2016-05-01
This paper describes the numerical evaluation of a tubular receiver used in a dish Brayton cycle. In previous work considering the use of Computational Fluid Dynamics (CFD) to perform the calculation of the absorbed radiation from the parabolic dish into the cavity as well as the resulting conjugate heat transfer, it was shown that an axi-symmetric model of the dish and receiver absorbing surfaces was useful in reducing the computational cost required for a full 3-D discrete ordinates solution, but concerns remained about its accuracy. To increase the accuracy, the Monte Carlo ray tracer SolTrace is used to perform the calculation of the absorbed radiation profile to be used in the conjugate heat transfer CFD simulation. The paper describes an approach for incorporating a complex geometry like a tubular receiver generated using CFD software into SolTrace. The results illustrate the variation of CFD mesh density that translates into the number of elements in SolTrace as well as the number of rays used in the Monte Carlo approach and their effect on obtaining a resolution-independent solution. The conjugate heat transfer CFD simulation illustrates the effect of applying the SolTrace surface heat flux profile solution as a volumetric heat source to heat up the air inside the tube. Heat losses due to convection and thermal re-radiation are also determined as a function of different tube absorptivities.
Adapting an ant colony metaphor for multi-robot chemical plume tracing.
Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Li, Fei; Zeng, Ming
2012-01-01
We consider chemical plume tracing (CPT) in time-varying airflow environments using multiple mobile robots. The purpose of CPT is to approach a gas source with a previously unknown location in a given area. Therefore, the CPT could be considered as a dynamic optimization problem in continuous domains. The traditional ant colony optimization (ACO) algorithm has been successfully used for combinatorial optimization problems in discrete domains. To adapt the ant colony metaphor to the multi-robot CPT problem, the two-dimension continuous search area is discretized into grids and the virtual pheromone is updated according to both the gas concentration and wind information. To prevent the adapted ACO algorithm from being prematurely trapped in a local optimum, the upwind surge behavior is adopted by the robots with relatively higher gas concentration in order to explore more areas. The spiral surge (SS) algorithm is also examined for comparison. Experimental results using multiple real robots in two indoor natural ventilated airflow environments show that the proposed CPT method performs better than the SS algorithm. The simulation results for large-scale advection-diffusion plume environments show that the proposed method could also work in outdoor meandering plume environments. PMID:22666056
Adapting an Ant Colony Metaphor for Multi-Robot Chemical Plume Tracing
Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Li, Fei; Zeng, Ming
2012-01-01
We consider chemical plume tracing (CPT) in time-varying airflow environments using multiple mobile robots. The purpose of CPT is to approach a gas source with a previously unknown location in a given area. Therefore, the CPT could be considered as a dynamic optimization problem in continuous domains. The traditional ant colony optimization (ACO) algorithm has been successfully used for combinatorial optimization problems in discrete domains. To adapt the ant colony metaphor to the multi-robot CPT problem, the two-dimension continuous search area is discretized into grids and the virtual pheromone is updated according to both the gas concentration and wind information. To prevent the adapted ACO algorithm from being prematurely trapped in a local optimum, the upwind surge behavior is adopted by the robots with relatively higher gas concentration in order to explore more areas. The spiral surge (SS) algorithm is also examined for comparison. Experimental results using multiple real robots in two indoor natural ventilated airflow environments show that the proposed CPT method performs better than the SS algorithm. The simulation results for large-scale advection-diffusion plume environments show that the proposed method could also work in outdoor meandering plume environments. PMID:22666056
Analytical calculation of spectral phase of grism pairs by the geometrical ray tracing method
NASA Astrophysics Data System (ADS)
Rahimi, L.; Askari, A. A.; Saghafifar, H.
2016-07-01
The most optimum operation of a grism pair is practically approachable when an analytical expression of its spectral phase is in hand. In this paper, we have employed the accurate geometrical ray tracing method to calculate the analytical phase shift of a grism pair, at transmission and reflection configurations. As shown by the results, for a great variety of complicated configurations, the spectral phase of a grism pair is in the same form of that of a prism pair. The only exception is when the light enters into and exits from different facets of a reflection grism. The analytical result has been used to calculate the second-order dispersions of several examples of grism pairs in various possible configurations. All results are in complete agreement with those from ray tracing method. The result of this work can be very helpful in the optimal design and application of grism pairs at various configurations.
Nonparaxial geometrical Ronchi test for spherical mirrors: an inverse ray-tracing approach.
Juarez-Salazar, Rigoberto
2016-08-01
A geometrical model based on an inverse ray-tracing approach to describe the Ronchi test for a concave spherical mirror is presented. In contrast to the conventional ray-tracing method, which refers to information unavailable in ronchigrams, the proposed model provides an explicit relation between the available information in the ronchigram and the parameters of the setup (radius of the sphere, position of the source, position and orientation of the observation, and grating planes). This allows for extracting the parameters of interest by a simple fitting procedure, as demonstrated by an application. The derived model exhibits new unexplored potential applications of the Ronchi test, establishing it as a very useful, simple, and universal tool for optical evaluation. PMID:27505380
Three-dimensional ray tracing of the Jovian magnetosphere in the low-frequency range
NASA Technical Reports Server (NTRS)
Menietti, J. D.; Green, J. L.; Gulkis, S.; Six, F.
1984-01-01
Three-dimensional ray tracing of the Jovian DAM emission has been performed utilizing the O-4 magnetic field model (Acuna and Ness, 1979) and a realistic plasma model. Minimal assumptions about the emission mechanism have been made that include radiation in the right-hand extraordinary mode, propagating nearly perpendicular to the field line at source points located just above the RX cutoff frequency along Io flux tubes. Ray tracing has been performed in the frequency range from 2-35 MHz from successive Io flux tubes separated by ten degrees of central meridian longitude for a full circumference of northern hemisphere sources. The results show unusual complexity in model arc spectra that is displayed in a constant Io phase format with many similarities to the Voyager PRA data. The results suggest much of the variation in observed DAM spectral features is a result of propagation effects rather than emission process differences.
Ray-tracing code TRAVIS for ECR heating, EC current drive and ECE diagnostic
NASA Astrophysics Data System (ADS)
Marushchenko, N. B.; Turkin, Y.; Maassberg, H.
2014-01-01
A description of the recently developed ray-tracing code TRAVIS is given together with the theoretical background, results of benchmarking and examples of application. The code is written for electron cyclotron studies with emphasis on heating, current drive and ECE diagnostic. The code works with an arbitrary 3D magnetic equilibrium being applicable for both stellarators and tokamaks. The equations for ray tracing are taken in the weakly relativistic approach, i.e. with thermal effects taken into account, while the absorption, current drive and emissivity are calculated in the fully relativistic approach. For the calculation of ECCD, an adjoint technique with parallel momentum conservation is applied. The code is controlled through a specially designed graphical user interface, which allows the preparation of the input parameters and viewing the results in convenient (2D and 3D) form.
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.
1990-01-01
Analysis of energy emitted from simple or complex cavity designs can lead to intricate solutions due to nonuniform radiosity and irradiation within a cavity. A numerical ray tracing technique was applied to simulate radiation propagating within and from various cavity designs. To obtain the energy balance relationships between isothermal and nonisothermal cavity surfaces and space, the computer code NEVADA was utilized for its statistical technique applied to numerical ray tracing. The analysis method was validated by comparing results with known theoretical and limiting solutions, and the electrical resistance network method. In general, for nonisothermal cavities the performance (apparent emissivity) is a function of cylinder length-to-diameter ratio, surface emissivity, and cylinder surface temperatures. The extent of nonisothermal conditions in a cylindrical cavity significantly affects the overall cavity performance. Results are presented over a wide range of parametric variables for use as a possible design reference.
Mathematic models for a ray tracing method and its applications in wireless optical communications.
Zhang, Minglun; Zhang, Yangan; Yuan, Xueguang; Zhang, Jinnan
2010-08-16
This paper presents a new ray tracing method, which contains a whole set of mathematic models, and its validity is verified by simulations. In addition, both theoretical analysis and simulation results show that the computational complexity of the method is much lower than that of previous ones. Therefore, the method can be used to rapidly calculate the impulse response of wireless optical channels for complicated systems. PMID:20721238
Detection and quantification of trace elements in rice and rice products using x-ray fluorescence
NASA Astrophysics Data System (ADS)
Foran, Kelly A.; Fleming, David E. B.
2015-12-01
We used X-ray fluorescence (XRF) to examine the presence of arsenic (As) and other trace elements (manganese, iron, nickel, copper, and zinc) in rice and rice products. A portable XRF analyzer was used to test samples, and amplitudes for the analyzed elements were identified in the resulting data. The detection limit of the system was sufficiently low to detect As in some rice and rice product samples.
Leiner, Claude; Nemitz, Wolfgang; Schweitzer, Susanne; Kuna, Ladislav; Wenzl, Franz P; Hartmann, Paul; Satzinger, Valentin; Sommer, Christian
2016-03-20
We show that with an appropriate combination of two optical simulation techniques-classical ray-tracing and the finite difference time domain method-an optical device containing multiple diffractive and refractive optical elements can be accurately simulated in an iterative simulation approach. We compare the simulation results with experimental measurements of the device to discuss the applicability and accuracy of our iterative simulation procedure. PMID:27140556
NASA Astrophysics Data System (ADS)
Lavrinenko, Ya S.; Morozov, I. V.; Pikuz, S. A.; Skobelev, I. Yu
2015-11-01
Spherically bent crystals are widely used in focusing monochromators, spectrometers and other x-ray optical systems. In particular, they are used in focusing spectrometers with spatial resolution, applied in high energy density diagnostics and warm dense matter studies. In this case, plasma parameters are obtained via measurements of relative intensities of characteristic spectral emission lines for multiply charged ions, which are affected by an instrumental function. Here we develop and use the ray-tracing computer simulations to study reflectivity properties of spherically bent crystals in a particular experimental conditions and to provide the method to adjust and validate the measured spectral line intensities on quantitative basis.
A new kind of splines and their use for fast ray-tracing in reflective cavities
NASA Astrophysics Data System (ADS)
Pantelic, Dejan V.; Janevski, Zoran D.
1989-08-01
In this paper we are presenting a new kind of splines that are very effective in ray-tracing applications. They are designed in such a way to enable the fast and efficient computation of line-spline intersections (line representing the light ray, and spline representing the reflective cavity). These splines are piecewise parabolic polynomials, but with additional degrees of freedom. Polynomial sections of the spline can be rotated to a certain angle (each section has its own angle of rotation), enabling thus the continuity of the first derivative.
Stress optical path difference analysis of off-axis lens ray trace footprint
NASA Astrophysics Data System (ADS)
Hsu, Ming-Ying; Chan, Chia-Yen; Lin, Wei-Cheng; Wu, Kun-Huan; Chen, Chih-Wen; Chan, Shenq-Tsong; Huang, Ting-Ming
2013-06-01
The mechanical and thermal stress on lens will cause the glass refractive index different, the refractive index of light parallel and light perpendicular to the direction of stress. The refraction index changes will introduce Optical Path Difference (OPD). This study is applying Finite Element Method (FEM) and optical ray tracing; calculate off axis ray stress OPD. The optical system stress distribution result is calculated from finite element simulation, and the stress coordinate need to rotate to optical path direction. Meanwhile, weighting stress to each optical ray path and sum the ray path OPD. The Z-direction stress OPD can be fitted by Zernike polynomial, the separated to sag difference, and rigid body motion. The fitting results can be used to evaluate the stress effect on optical component.
De Andrade V.; Thieme J.; Chubar O.
2011-10-14
The Sub-micron Resolution X-ray spectroscopy (SRX) beamline will benefit from the ultralow emittance of the National Synchrotron Light Source II to address a wide variety of scientific applications studying heterogeneous systems at the sub-micrometer scale. This work focuses on the KB branch ({Delta}E: 4.65-28 keV). Its main optical components include a horizontally focusing mirror forming an adjustable secondary source, a horizontally deflecting monochromator and two sets of Kirkpatrick-Baez mirrors as focusing optics of two distinct inline stations for operations requiring either high flux or high resolution. In the first approach, the beamline layout was optimized with ray-tracing calculations involving Shadowvui computer codes. As a result, the location and characteristics of optics were specified for achieving either the most intense or the smallest monochromatic beam possible on the target (10{sup 13} ph/s or 10{sup 12} ph/s respectively in a 500 nm or 65 nm focal spot). At the nanoprobe station, the diffraction limited focusing of X-rays is governed by the beam coherence. Hence, a classical geometric approach is not anymore adapted. To get reliable estimates of the Nanoprobe performances, a wavefront propagation study was performed using Synchrotron Radiation Workshop (SRW) code. At 7.2 keV, calculations show an intense (10{sup 12} ph/s) 67 nm wide diffraction limited spot achieved with actual metrological data of mirrors.
Chorus wave-normal statistics in the Earth's radiation belts from ray tracing technique
NASA Astrophysics Data System (ADS)
Breuillard, H.; Zaliznyak, Y.; Krasnoselskikh, V.; Agapitov, O.; Artemyev, A.; Rolland, G.
2012-08-01
Discrete ELF/VLF (Extremely Low Frequency/Very Low Frequency) chorus emissions are one of the most intense electromagnetic plasma waves observed in radiation belts and in the outer terrestrial magnetosphere. These waves play a crucial role in the dynamics of radiation belts, and are responsible for the loss and the acceleration of energetic electrons. The objective of our study is to reconstruct the realistic distribution of chorus wave-normals in radiation belts for all magnetic latitudes. To achieve this aim, the data from the electric and magnetic field measurements onboard Cluster satellite are used to determine the wave-vector distribution of the chorus signal around the equator region. Then the propagation of such a wave packet is modeled using three-dimensional ray tracing technique, which employs K. Rönnmark's WHAMP to solve hot plasma dispersion relation along the wave packet trajectory. The observed chorus wave distributions close to waves source are first fitted to form the initial conditions which then propagate numerically through the inner magnetosphere in the frame of the WKB approximation. Ray tracing technique allows one to reconstruct wave packet properties (electric and magnetic fields, width of the wave packet in k-space, etc.) along the propagation path. The calculations show the spatial spreading of the signal energy due to propagation in the inhomogeneous and anisotropic magnetized plasma. Comparison of wave-normal distribution obtained from ray tracing technique with Cluster observations up to 40° latitude demonstrates the reliability of our approach and applied numerical schemes.
A data distributed, parallel algorithm for ray-traced volume rendering
Ma, Kwan-Liu; Painter, J.S.; Hansen, C.D.; Krogh, M.F.
1993-03-30
This paper presents a divide-and-conquer ray-traced volume rendering algorithm and its implementation on networked workstations and a massively parallel computer, the Connection Machine CM-5. This algorithm distributes the data and the computational load to individual processing units to achieve fast, high-quality rendering of high-resolution data, even when only a modest amount of memory is available on each machine. The volume data, once distributed, is left intact. The processing nodes perform local ray-tracing of their subvolume concurrently. No communication between processing units is needed during this locally ray-tracing process. A subimage is generated by each processing unit and the final image is obtained by compositing subimages in the proper order, which can be determined a priori. Implementations and tests on a group of networked workstations and on the Thinking Machines CM-5 demonstrate the practicality of our algorithm and expose different performance tuning issues for each platform. We use data sets from medical imaging and computational fluid dynamics simulations in the study of this algorithm.
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Sutton, S. R.
1989-01-01
Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission.
Ray tracing in the human eye: measurement and modeling of optical aberrations
NASA Astrophysics Data System (ADS)
Navarro, Rafael M.; Rodriguez, P.; Gonzalez, L.; Aporta, J.; Hdez-Matamoros, J. L.
2004-10-01
The rapid development of cataract and refractive surgery requires new methods to assess the optical quality of the eye. The optimized optical design of custom treatments to improve the optical performance of individual eyes requires, at least, to have the technology to (1) measure the geometry (anatomy) of the optics of the eye; (2) measure the optical performance (refractive state, aberrations, etc); (3) Build a custom optical and anatomical model of the individual eye to treat; (4) Optimal design of custom treatments. In this communication we will present the work carried out by our group to develop methods for measuring and modeling the optical performance of the eye. In particular, we will focus, first, on the Laser Ray Tracing method that we have developed to measure the optical aberrations of the eye, as a physical in vivo implementation of the classical numerical ray tracing used by optical designers; and second, on the development of custom optical models of the eye to perform that numerical ray tracing which predicts with a high fidelity experimental measurements. The methods developed have been applied to design both custom surgery and optical aids to improve optical performance.
Ray-tracing and physical-optics analysis of the aperture efficiency in a radio telescope.
Olmi, Luca; Bolli, Pietro
2007-07-01
The performance of telescope systems working at microwave or visible-IR wavelengths is typically described in terms of different parameters according to the wavelength range. Most commercial ray-tracing packages have been specifically designed for use with visible-IR systems and thus, though very flexible and sophisticated, do not provide the appropriate parameters to fully describe microwave antennas and to compare with specifications. We demonstrate that the Strehl ratio is equal to the phase efficiency when the apodization factor is taken into account. The phase efficiency is the most critical contribution to the aperture efficiency of an antenna and the most difficult parameter to optimize during the telescope design. The equivalence between the Strehl ratio and the phase efficiency gives the designer/user of the telescope the opportunity to use the faster commercial ray-tracing software to optimize the design. We also discuss the results of several tests performed to check the validity of this relationship that we carried out using a ray-tracing software, ZEMAX, and a full Physical Optics software, GRASP9.3, applied to three different telescope designs that span a factor of approximately 10 in terms of D/lambda. The maximum measured discrepancy between phase efficiency and Strehl ratio varies between approximately 0.4% and 1.9% up to an offset angle of >40 beams, depending on the optical configuration, but it is always less than 0.5% where the Strehl ratio is >0.95. PMID:17571151
Inversion of anisotropic inner core structure from three dimensional ray tracing
NASA Astrophysics Data System (ADS)
Sun, X.; Song, X.
2005-12-01
Seismological studies have generally suggest that the Earth's inner core is anisotropic and the anisotropic structure change significantly both laterally and with depth. Previous body-wave studies of the inner core have relied on 1-D ray tracing or waveform modeling, which do not account fully the 3D anisotropic structure. Here we adopt a pseudo-bending ray tracing (PBR) method in spherical coordinates (Koketsu and Sekine, 1998) for seismic rays that traverse the inner core (PKP-DF phase). The method iteratively perturbs each discontinuity points and continuous segment of the ray through 3D (but isotropic) earth structure so that its travel time is minimum. Our implementation also includes a flexible scheme in calculating the velocity gradient needed to perturb the ray. A large volume is included in calculating the velocity gradient initially to find the global minimum, but a small volume surrounding the ray is used eventually to obtain the precise local velocity gradient that is sampled by the ray. Tests show that our implementation is very stable, reliable, and fast. We have traced the rays for over 3000 event-station pairs that we have differential PKP travel-time measurements using both the PBR method and a shooting method for a 1D model (AK135). The travel-time difference from the two methods is generally within 0.05 s with a few up to 0.07 s and the largest path difference is within 24 km; Even with a model of strong velocity gradient, the travel time difference is still less than 0.08s and the largest path difference is within 40km. Because the ray direction in the inner core does not change much (within 10 degrees even with a strong velocity gradient in the inner core), the 3D anisotropic structure of the inner core can be approximated to the first order as 3D heterogeneous (but isotropic) structure for a given ray, assuming the inner core anisotropy is axisymmetric. We are implementing the PBR method and B-spline interpolation to invert for 3D anisotropic
Fast robust non-sequential optical ray-tracing with implicit algebraic surfaces
NASA Astrophysics Data System (ADS)
Greynolds, Alan W.
2015-09-01
The fastest, most robust, general technique for non-sequentially ray-tracing a large class of imaging and non-imaging optical systems is by geometric modeling with algebraic (i.e. polynomial) implicit surfaces. The basic theory of these surfaces with special attention to optimizing their precise intersection with a ray (even at grazing incidence) is outlined for an admittedly limited software implementation. On a couple of "tame" examples, a 64-bit Windows 7 version is significantly faster than the fastest commercial design software (all multi-threaded). Non-sequential ray-surface interactions approaching 30M/sec are achieved on a 12-core 2.67 GHz Mac Pro desktop computer. For a more exotic example of a 6th degree Wood's horn beam dump (light trap), a 32-bit Windows single thread version traces rays nearly 4 times faster than the commercial ASAP software's implicit algebraic surface and over 13 times faster than its equivalent NURBS surface. However, implicit surfaces are foreign to most CAD systems and thus unfortunately, don't easily fit into a modern workflow.
Subhalo Tracing in Simulations and Subhalo Observation in Gamma-rays
NASA Astrophysics Data System (ADS)
Han, J. X.
2014-05-01
Current major observations of the Universe favor the concordant ΛCDM cosmology, in which the matter content is dominated by cold dark matter (CDM). In this CDM universe, small perturbations from the initial condition grow into clumps of virilized structure called dark matter haloes. Small haloes form early and later merge to form bigger haloes. As a result, dark matter haloes host plenty of substructures called subhaloes which are the self-bound remnants of their progenitor haloes. These subhaloes could be studied in detail with the help of numerical simulations, which then could provide input into theories of galaxy formation, and also influence the way dark matter could be detected. To find and trace dark matter subhaloes in simulations, we develop a new code, the Hierarchical Bound-Tracing (HBT for short) code, based on the merger hierarchy of dark matter haloes. Application of this code to a recent benchmark test of finding subhaloes demonstrates that HBT stands as one of the best codes to trace the evolutionary history of subhaloes. The success of this code lies in its careful treatment of the complex physical processes associated with the evolution of subhaloes, and in its robust unbinding algorithm with an adaptive source subhalo management. We keep a full record of the merger hierarchy of haloes and subhaloes, and allow growth of satellite subhaloes through accretion from its ``satellite-of-satellites'', hence allowing mergers among satellites. Local accretion of background mass is omitted, while rebinding of stripped mass is allowed. The justification of these treatments is provided by case studies of the lives of individual subhaloes, and by the success in finding the complete subhalo catalogue. We compare our result to other popular subhalo finders. It is shown that HBT is able to well resolve subhaloes in high density environment, and keep strict physical track of subhaloes' merger history. This code is fully parallelized, and freely available upon
Subhalo Tracing in Simulations and Subhalo Observation in Gamma-rays
NASA Astrophysics Data System (ADS)
Han, J. X.
2014-05-01
Current major observations of the Universe favor the concordant ΛCDM cosmology, in which the matter content is dominated by cold dark matter (CDM). In this CDM universe, small perturbations from the initial condition grow into clumps of virilized structure called dark matter haloes. Small haloes form early and later merge to form bigger haloes. As a result, dark matter haloes host plenty of substructures called subhaloes which are the self-bound remnants of their progenitor haloes. These subhaloes could be studied in detail with the help of numerical simulations, which then could provide input into theories of galaxy formation, and also influence the way dark matter could be detected. To find and trace dark matter subhaloes in simulations, we develop a new code, the Hierarchical Bound-Tracing (HBT for short) code, based on the merger hierarchy of dark matter haloes. Application of this code to a recent benchmark test of finding subhaloes demonstrates that HBT stands as one of the best codes to trace the evolutionary history of subhaloes. The success of this code lies in its careful treatment of the complex physical processes associated with the evolution of subhaloes, and in its robust unbinding algorithm with an adaptive source subhalo management. We keep a full record of the merger hierarchy of haloes and subhaloes, and allow growth of satellite subhaloes through accretion from its ``satellite-of-satellites'', hence allowing mergers among satellites. Local accretion of background mass is omitted, while rebinding of stripped mass is allowed. The justification of these treatments is provided by case studies of the lives of individual subhaloes, and by the success in finding the complete subhalo catalogue. We compare our result to other popular subhalo finders. It is shown that HBT is able to well resolve subhaloes in high density environment, and keep strict physical track of subhaloes' merger history. This code is fully parallelized, and freely available upon
Comparing FDTD and Ray-Tracing Models in Numerical Simulation of HgCdTe LWIR Photodetectors
NASA Astrophysics Data System (ADS)
Vallone, Marco; Goano, Michele; Bertazzi, Francesco; Ghione, Giovanni; Schirmacher, Wilhelm; Hanna, Stefan; Figgemeier, Heinrich
2016-04-01
We present a simulation study of HgCdTe-based long-wavelength infrared detectors, focusing on methodological comparisons between the finite-difference time-domain (FDTD) and ray-tracing optical models. We performed three-dimensional simulations to determine the absorbed photon density distributions and the corresponding photocurrent and quantum efficiency spectra of isolated n-on-p uniform-composition pixels, systematically comparing the results obtained with FDTD and ray tracing. Since ray tracing is a classical optics approach, unable to describe interference effects, its applicability has been found to be strongly wavelength dependent, especially when reflections from metallic layers are relevant. Interesting cavity effects around the material cutoff wavelength are described, and the cases where ray tracing can be considered a viable approximation are discussed.
Comparing FDTD and Ray-Tracing Models in Numerical Simulation of HgCdTe LWIR Photodetectors
NASA Astrophysics Data System (ADS)
Vallone, Marco; Goano, Michele; Bertazzi, Francesco; Ghione, Giovanni; Schirmacher, Wilhelm; Hanna, Stefan; Figgemeier, Heinrich
2016-09-01
We present a simulation study of HgCdTe-based long-wavelength infrared detectors, focusing on methodological comparisons between the finite-difference time-domain (FDTD) and ray-tracing optical models. We performed three-dimensional simulations to determine the absorbed photon density distributions and the corresponding photocurrent and quantum efficiency spectra of isolated n-on- p uniform-composition pixels, systematically comparing the results obtained with FDTD and ray tracing. Since ray tracing is a classical optics approach, unable to describe interference effects, its applicability has been found to be strongly wavelength dependent, especially when reflections from metallic layers are relevant. Interesting cavity effects around the material cutoff wavelength are described, and the cases where ray tracing can be considered a viable approximation are discussed.
Adaptive Gene Loss? Tracing Back the Pseudogenization of the Rabbit CCL8 Chemokine.
van der Loo, Wessel; Magalhaes, Maria João; de Matos, Ana Lemos; Abrantes, Joana; Yamada, Fumio; Esteves, Pedro J
2016-08-01
Studies of the process of pseudogenization have widened our understanding of adaptive evolutionary change. In Rabbit, an alteration at the second extra-cellular loop of the CCR5 chemokine receptor was found to be associated with the pseudogenization of one of its prime ligands, the chemokine CCL8. This relationship has raised questions about the existence of a causal link between both events, which would imply adaptive gene loss. This hypothesis is evaluated here by tracing back the history of the genetic modifications underlying the chemokine pseudogenization. The obtained data indicate that mutations at receptor and ligand genes occurred after the lineage split of New World Leporids versus Old World Leporids and prior to the generic split of the of Old World species studied, which occurred an estimated 8-9 million years ago. More important, they revealed the emergence, before this zoographical split, of a "slippery" nucleotide motif (CCCCGGG) at the 3' region of CCL8-exon2. Such motives are liable of generating +1G or -1G frameshifts, which could, however, be overcome by "translesion" synthesis or somatic reversion. The CCL8 pseudogenization in the Old World lineage was apparently initiated by three synapomorphic point mutations at the exon2-intron2 boundary which provide at short range premature terminating codons, independently of the reading frame imposed by the slippery motif. The presence of this motif in New World Leporids might allow verifying this scenario. The importance of CCL8-CCR5 signaling in parasite-host interaction would suggest that the CCL8 knock-out in Old World populations might be related to changes in pathogenic environment. PMID:27306379
Line shape and ray trace calculations in saturated X-ray lasers: Application to Ni-like silver
NASA Astrophysics Data System (ADS)
Benredjem, D.; Guilbaud, O.; Möller, C.; Klisnick, A.; Ros, D.; Dubau, J.; Calisti, A.; Talin, B.
2006-05-01
Longitudinal coherence length in X-ray lasers depends strongly on the shape of the amplified line. We have modelled an experiment performed at the LULI facility of Ecole Polytechnique. The experiment was devoted to the study of the temporal (longitudinal) coherence of the transient Ni-like silver 4d 4p transition X-ray laser at 13.9 nm. Accurate line shape calculations using PPP, a spectral line shape code, confirm that the Voigt profile is a good approximation for this X-ray laser line. This allows us to extensively use the Voigt shape in conditions where the amplifier, i.e. the plasma produced by the interaction of a high intensity laser with a slab target, is neither stationary nor homogeneous. Our calculations involve a ray trace code which is a post-processor to the hydrodynamic simulation EHYBRID. As the effect of saturation is important for the level populations and gains we include the interaction between the amplified beam and the medium using the Maxwell-Bloch formalism. While the FWHM of the spontaneous emission profile is ˜10 mÅ, the amplified X-ray line exhibits gain narrowing leading to the smaller width ˜3 mÅ. Comparison with experiment is discussed.
NASA Astrophysics Data System (ADS)
Jha, R. M.; Wiesbeck, W.
1995-04-01
A generalized approach to analytical surface-ray tracing in three dimensions, and a review of its application to convex conducting bodies, is presented, using the Eisenhart Coordinate System. The ray-parameters so obtained, for quadric cylinders (QUACYLs) and surfaces of revolution (QUASORs), are in a one-parameter form for UTD mutual-coupling applications. The ray analysis is also extended to the hybrid QUACYLs (e.g., aircraft wings) and hybrid QUASORs (e.g., satellite-launch vehicles), by introducing Hertz's principle of particle dynamics to EM theory. This mathematical formulation is applicable even to other important non-Eisenhart surfaces, such as the ogive. A summary of the mathematical formulations is included.
R-LODs: fast LOD-based ray tracing of massive models
Yoon, Sung-Eui; Lauterbach, Christian; Manocha, Dinesh
2006-08-25
We present a novel LOD (level-of-detail) algorithm to accelerate ray tracing of massive models. Our approach computes drastic simplifications of the model and the LODs are well integrated with the kd-tree data structure. We introduce a simple and efficient LOD metric to bound the error for primary and secondary rays. The LOD representation has small runtime overhead and our algorithm can be combined with ray coherence techniques and cache-coherent layouts to improve the performance. In practice, the use of LODs can alleviate aliasing artifacts and improve memory coherence. We implement our algorithm on both 32bit and 64bit machines and able to achieve up to 2.20 times improvement in frame rate of rendering models consisting of tens or hundreds of millions of triangles with little loss in image quality.
A computer program to trace seismic ray distribution in complex two-dimensional geological models
Yacoub, Nazieh K.; Scott, James H.
1970-01-01
A computer program has been developed to trace seismic rays and their amplitudes and energies through complex two-dimensional geological models, for which boundaries between elastic units are defined by a series of digitized X-, Y-coordinate values. Input data for the program includes problem identification, control parameters, model coordinates and elastic parameter for the elastic units. The program evaluates the partitioning of ray amplitude and energy at elastic boundaries, computes the total travel time, total travel distance and other parameters for rays arising at the earth's surface. Instructions are given for punching program control cards and data cards, and for arranging input card decks. An example of printer output for a simple problem is presented. The program is written in FORTRAN IV language. The listing of the program is shown in the Appendix, with an example output from a CDC-6600 computer.
GRay: A Massively Parallel GPU-based Code for Ray Tracing in Relativistic Spacetimes
NASA Astrophysics Data System (ADS)
Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal
2013-11-01
We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This graphics-processing-unit (GPU)-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single-precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 ns per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing central-processing-unit-based ray-tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparing theoretical predictions of images, spectra, and light curves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of Kerr black holes and the photon rings that surround them. We also provide accurate fitting formulae of their dependencies on black hole spin and observer inclination, which can be used to interpret upcoming observations of the black holes at the center of the Milky Way, as well as M87, with the Event Horizon Telescope.
GRay: A MASSIVELY PARALLEL GPU-BASED CODE FOR RAY TRACING IN RELATIVISTIC SPACETIMES
Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal
2013-11-01
We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This graphics-processing-unit (GPU)-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single-precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 ns per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing central-processing-unit-based ray-tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparing theoretical predictions of images, spectra, and light curves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of Kerr black holes and the photon rings that surround them. We also provide accurate fitting formulae of their dependencies on black hole spin and observer inclination, which can be used to interpret upcoming observations of the black holes at the center of the Milky Way, as well as M87, with the Event Horizon Telescope.
Ray-tracing simulation and SABER satellite observations of convective gravity waves
NASA Astrophysics Data System (ADS)
Kalisch, Silvio; Eckermann, Stephen; Ern, Manfred; Preusse, Peter; Riese, Martin; Trinh, Quang Thai; Kim, Young-Ha; Chun, Hye-Yeong
Gravity waves (GWs) are known as a coupling mechanism between different atmospheric layers. They contribute to the wave-driving of the QBO and are also responsible for driving large scale circulations like the Brewer-Dobson circulation. One major and highly variable source of GWs is convection. Deep convection in the tropics excites GWs with prominent amplitudes and horizontal phase speeds of up to 90 m/s. These GWs propagate upward and, when breaking, release the wave's momentum, thus accelerate the background flow. Direction and magnitude of the acceleration strongly depends on wind filtering between the convective GW source and the considered altitude. Both, the generation mechanism of GWs close to the top of deep convective towers and the wind filtering process during GW propagation largely influence the GW spectrum found in the tropical middle atmosphere and therefore magnitude and direction of the acceleration. We present the results of GW ray-tracing calculations from tropospheric (convective) sources up to the mesosphere. The Gravity wave Regional Or Global RAy-Tracer (GROGRAT) was used to perform the GW trajectory calculations. The convective GW source scheme from Yonsei University (South Korea) served as the lower boundary condition to quantify the GW excitation from convection. Heating rates, cloud top data, and atmospheric background data were provided by the MERRA dataset for the calculation of convective forcing from deep convection and for the atmospheric background of the ray-tracing calculations afterwards. In order to validate our ray-tracing simulation results, we compare them to satellite measurements of temperature amplitudes and momentum fluxes from the SABER instrument. Therefore, observational constrains from limb-sounding instruments have been quantified. Influences of orbit geometry, the instrument's observational filter, and the wavelength shift in the observed GW spectrum are discussed. Geographic structures in the observed global
Wolter X-Ray Microscope Computed Tomography Ray-Trace Model with Preliminary Simulation Results
Jackson, J A
2006-02-27
It is proposed to build a Wolter X-ray Microscope Computed Tomography System in order to characterize objects to sub-micrometer resolution. Wolter Optics Systems use hyperbolic, elliptical, and/or parabolic mirrors to reflect x-rays in order to focus or magnify an image. Wolter Optics have been used as telescopes and as microscopes. As microscopes they have been used for a number of purposes such as measuring emission x-rays and x-ray fluoresce of thin biological samples. Standard Computed Tomography (CT) Systems use 2D radiographic images, from a series of rotational angles, acquired by passing x-rays through an object to reconstruct a 3D image of the object. The x-ray paths in a Wolter X-ray Microscope will be considerably different than those of a standard CT system. There is little information about the 2D radiographic images that can be expected from such a system. There are questions about the quality, resolution and focusing range of an image created with such a system. It is not known whether characterization information can be obtained from these images and whether these 2D images can be reconstructed to 3D images of the object. A code has been developed to model the 2D radiographic image created by an object in a Wolter X-ray Microscope. This code simply follows the x-ray through the object and optics. There is no modeling at this point of other effects, such as scattering, reflection losses etc. Any object, of appropriate size, can be used in the model code. A series of simulations using a number of different objects was run to study the effects of the optics. The next step will be to use this model to reconstruct an object from the simulated data. Funding for the project ended before this goal could be accomplished. The following documentation includes: (1) background information on current X-ray imaging systems, (2) background on Wolter Optics, (3) description of the Wolter System being used, (4) purpose, limitations and development of the modeling
An Efficient Ray-Tracing Method for Determining Terrain Intercepts in EDL Simulations
NASA Technical Reports Server (NTRS)
Shidner, Jeremy D.
2016-01-01
The calculation of a ray's intercept from an arbitrary point in space to a prescribed surface is a common task in computer simulations. The arbitrary point often represents an object that is moving according to the simulation, while the prescribed surface is fixed in a defined frame. For detailed simulations, this surface becomes complex, taking the form of real-world objects such as mountains, craters or valleys which require more advanced methods to accurately calculate a ray's intercept location. Incorporation of these complex surfaces has commonly been implemented in graphics systems that utilize highly optimized graphics processing units to analyze such features. This paper proposes a simplified method that does not require computationally intensive graphics solutions, but rather an optimized ray-tracing method for an assumed terrain dataset. This approach was developed for the Mars Science Laboratory mission which landed on the complex terrain of Gale Crater. First, this paper begins with a discussion of the simulation used to implement the model and the applicability of finding surface intercepts with respect to atmosphere modeling, altitude determination, radar modeling, and contact forces influencing vehicle dynamics. Next, the derivation and assumptions of the intercept finding method are presented. Key assumptions are noted making the routines specific to only certain types of surface data sets that are equidistantly spaced in longitude and latitude. The derivation of the method relies on ray-tracing, requiring discussion on the formulation of the ray with respect to the terrain datasets. Further discussion includes techniques for ray initialization in order to optimize the intercept search. Then, the model implementation for various new applications in the simulation are demonstrated. Finally, a validation of the accuracy is presented along with the corresponding data sets used in the validation. A performance summary of the method will be shown using
Towards adaptive, streaming analysis of x-ray tomography data
Thomas, Mathew; Kleese van Dam, Kerstin; Marshall, Matthew J.; Kuprat, Andrew P.; Carson, James P.; Lansing, Carina S.; Guillen, Zoe C.; Miller, Erin A.; Lanekoff, Ingela; Laskin, Julia
2015-03-04
Temporal and spatial resolution of chemical imaging methodologies such as x-ray tomography are rapidly increasing, leading to more complex experimental procedures and fast growing data volumes. Automated analysis pipelines and big data analytics are becoming essential to effectively evaluate the results of such experiments. Offering those data techniques in an adaptive, streaming environment can further substantially improve the scientific discovery process, by enabling experimental control and steering based on the evaluation of emerging phenomena as they are observed by the experiment. Pacific Northwest National Laboratory (PNNL)’ Chemical Imaging Initiative (CII - http://imaging.pnnl.gov/ ) has worked since 2011 towards developing a framework that allows users to rapidly compose and customize high throughput experimental analysis pipelines for multiple instrument types. The framework, named ‘Rapid Experimental Analysis’ (REXAN) Framework [1], is based on the idea of reusable component libraries and utilizes the PNNL developed collaborative data management and analysis environment ‘Velo’, to provide a user friendly analysis and data management environment for experimental facilities. This article will, discuss the capabilities established for X-Ray tomography, discuss lessons learned, and provide an overview of our more recent work in the Analysis in Motion Initiative (AIM - http://aim.pnnl.gov/ ) at PNNL to provide REXAN capabilities in a streaming environment.
A comprehensive ray tracing study on the impact of solar reflections from glass curtain walls.
Wong, Justin S J
2016-01-01
To facilitate the investigation of the impact of solar reflection from the façades of skyscrapers to surrounding environment, a comprehensive ray tracing model has been developed using the International Commerce Centre (ICC) in Hong Kong as an example. Taking into account the actual physical dimensions of buildings and meteorological data, the model simulates and traces the paths of solar reflections from ICC to the surrounding buildings, assessing the impact in terms of hit locations, light intensity and the hit time on each day throughout the year. Our analyses show that various design and architectural features of ICC have amplified the intensity of reflected solar rays and increased the hit rates of surrounding buildings. These factors include the high reflectivity of glass panels, their upward tilting angles, the concave profile of the 'Dragon Tail' (glass panels near the base), the particular location and orientation of ICC, as well as the immense height of ICC with its large reflective surfaces. The simulation results allow us to accurately map the date and time when the ray projections occur on each of the target buildings, rendering important information such as the number of converging (overlapping) projections, and the actual light intensity hitting each of the buildings at any given time. Comparisons with other skyscrapers such as Taipei 101 in Taiwan and 2-IFC (International Finance Centre) Hong Kong are made. Remedial actions for ICC and preventive measures are also discussed. PMID:26646546
NASA Astrophysics Data System (ADS)
Knowlton, S. F.; Hartwell, G. J.; Maurer, D. A.; Marushchenko, N. B.; Turkin, Y.; Bigelow, T.
2015-11-01
Plasmas in the Compact Toroidal Hybrid (CTH), a five field period, l = 2 torsatron (B0 = 0 . 5 T R0 = 0 . 75 m, ap ~ 0 . 2 m) will be heated by second harmonic X-mode electron cyclotron heating with power provided by a 28 GHz gyrotron capable of producing up to 200 kW. Ray-tracing calculations that will guide the selection of the launching position, antenna focal length, and beam-steering characteristics are performed with the TRAVIS code. Non-axisymmetric vacuum and current-carrying CTH equilibria for the ray tracing are modeled with the V3FIT code. The calculated absorption is highest for vertically propagating rays that traverse the region where a saddle of resonant field strength exists. However, the absorption for top-launched waves is more sensitive to variations in the magnetic equilibria than for a radial side launch where the magnetic field profile is tokamak-like. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.
Photorealistic ray tracing of free-space invisibility cloaks made of uniaxial dielectrics.
Halimeh, Jad C; Wegener, Martin
2012-12-17
The design rules of transformation optics generally lead to spatially inhomogeneous and anisotropic impedance-matched magneto-dielectric material distributions for, e.g., free-space invisibility cloaks. Recently, simplified anisotropic non-magnetic free-space cloaks made of a locally uniaxial dielectric material (calcite) have been realized experimentally. In a two-dimensional setting and for in-plane polarized light propagating in this plane, the cloaking performance can still be perfect for light rays. However, for general views in three dimensions, various imperfections are expected. In this paper, we study two different purely dielectric uniaxial cylindrical free-space cloaks. For one, the optic axis is along the radial direction, for the other one it is along the azimuthal direction. The azimuthal uniaxial cloak has not been suggested previously to the best of our knowledge. We visualize the cloaking performance of both by calculating photorealistic images rendered by ray tracing. Following and complementing our previous ray-tracing work, we use an equation of motion directly derived from Fermat's principle. The rendered images generally exhibit significant imperfections. This includes the obvious fact that cloaking does not work at all for horizontal or for ordinary linear polarization of light. Moreover, more subtle effects occur such as viewing-angle-dependent aberrations. However, we still find amazingly good cloaking performance for the purely dielectric azimuthal uniaxial cloak. PMID:23263067
Spin tracking simulations in AGS based on ray-tracing methods - bare lattice, no snakes -
Meot, F.; Ahrens, L.; Gleen, J.; Huang, H.; Luccio, A.; MacKay, W. W.; Roser, T.; Tsoupas, N.
2009-09-01
This Note reports on the first simulations of and spin dynamics in the AGS using the ray-tracing code Zgoubi. It includes lattice analysis, comparisons with MAD, DA tracking, numerical calculation of depolarizing resonance strengths and comparisons with analytical models, etc. It also includes details on the setting-up of Zgoubi input data files and on the various numerical methods of concern in and available from Zgoubi. Simulations of crossing and neighboring of spin resonances in AGS ring, bare lattice, without snake, have been performed, in order to assess the capabilities of Zgoubi in that matter, and are reported here. This yields a rather long document. The two main reasons for that are, on the one hand the desire of an extended investigation of the energy span, and on the other hand a thorough comparison of Zgoubi results with analytical models as the 'thin lens' approximation, the weak resonance approximation, and the static case. Section 2 details the working hypothesis : AGS lattice data, formulae used for deriving various resonance related quantities from the ray-tracing based 'numerical experiments', etc. Section 3 gives inventories of the intrinsic and imperfection resonances together with, in a number of cases, the strengths derived from the ray-tracing. Section 4 gives the details of the numerical simulations of resonance crossing, including behavior of various quantities (closed orbit, synchrotron motion, etc.) aimed at controlling that the conditions of particle and spin motions are correct. In a similar manner Section 5 gives the details of the numerical simulations of spin motion in the static case: fixed energy in the neighboring of the resonance. In Section 6, weak resonances are explored, Zgoubi results are compared with the Fresnel integrals model. Section 7 shows the computation of the {rvec n} vector in the AGS lattice and tuning considered. Many details on the numerical conditions as data files etc. are given in the Appendix Section
Fitting of NWM Ray-traced Slant Factors to Closed-form Tropospheric Mapping Functions
NASA Astrophysics Data System (ADS)
Urquhart, L.; Nievinski, F. G.; Santos, M. C.
2009-05-01
Ray-tracing in numerical weather models (NWM) is a promising solution for describing the elevation angle- and azimuth-dependence of tropospheric delay, especially at very low elevation angles, in an attempt to de- correlate vertical position and zenith tropospheric delay during GPS estimation. On the other hand, mapping functions expressed in closed form remain imperative, demanded by the need for (i) fast processing and (ii) convenient distribution to end-users, who employ a variety of third-party GPS processing packages. We investigate the fitting of ray-tracing results to closed-form expressions. We neglect the variation of the tropospheric delay with latitude, longitude, and height, offering a mapping function valid for a specific station site (similarly as done for VMF1-Site [Boehm et al., 1996]). We focus on the variation of the delay with time, elevation angle, and azimuth. For the time-dependence, we choose to work with slant factors instead of slant delays, because the former are more stable in time than the latter; that is a consequence of the normalization by zenith delays which removes the bulk of the variation with time. For the elevation angle-dependence we compare the continued form fraction of Yan and Ping [1995] with that of Marini [1972] (normalized to yield unity at zenith, as given by Herring [1992]). The latter is more commonly used, but the former is expected to provide a better fit at elevation angles below five degrees. Since the ray-tracing results do not necessarily assume azimuthal symmetry, we have to account for the azimuth-dependence. For that we compare the single-direction model of Davis et al. [1993] with the inclusion of secondary directions [Seko et al., 2004] and arbitrary spherical harmonics [Böhm and Schuh, 2001]). We also assess whether physically-oblivious models (i.e., not derived from analytical idealized atmospheric models), such spline or polynomials, as suggested by Rocken et al. [2001], are adequate.
Modeling the effect of refraction on OCT imaging of lung tissue: a ray-tracing approach
NASA Astrophysics Data System (ADS)
Golabchi, Fatemeh N.; Golabchi, Ali; Brooks, Dana H.; Gouldstone, Andrew; DiMarzio, Charles A.
2012-03-01
Determining the structure of lung tissue is difficult in ex-vivo samples. Optical coherence tomography (OCT) can image alveoli but ignores optical effects that distort the images. For example, light refracts and changes speed at the alveolar air-tissue surface. We employ ray-tracing to model OCT imaging with directional and speed changes included, using spherical shapes in 2D. Results show apparent thickening of inter-aveolar walls and distortion of shape and depth. Our approach suggests a correction algorithm by combining the model with image analysis. Distortion correction will allow inference of tissue mechanical properties and deeper imaging.
Modeling and analysis of novel laser weld joint designs using optical ray tracing.
Milewski, J. O.
2002-01-01
Reflection of laser energy presents challenges in material processing that can lead to process inefficiency or process instability. Understanding the fundamentals of non-imaging optics and the reflective propagation of laser energy can allow process and weld joint designs to take advantage of these reflections to enhance process efficiency or mitigate detrimental effects. Optical ray tracing may be used within a 3D computer model to evaluate novel joint and fixture designs for laser welding that take advantage of the reflective propagation of laser energy. This modeling work extends that of previous studies by the author and provides comparison with experimental studies performed on highly reflective metals. Practical examples are discussed.
NASA Technical Reports Server (NTRS)
Gardner, C. S.; Rowlett, J. R.; Hendrickson, B. E.
1978-01-01
Errors may be introduced in satellite laser ranging data by atmospheric refractivity. Ray tracing data have indicated that horizontal refractivity gradients may introduce nearly 3-cm rms error when satellites are near 10-degree elevation. A correction formula to compensate for the horizontal gradients has been developed. Its accuracy is evaluated by comparing it to refractivity profiles. It is found that if both spherical and gradient correction formulas are employed in conjunction with meteorological measurements, a range resolution of one cm or less is feasible for satellite elevation angles above 10 degrees.
X-Ray fluorescence analysis of trace elements in fruit juice
NASA Astrophysics Data System (ADS)
Bao, Sheng-Xiang; Wang, Zhi-Hong; Liu, Jing-Song
1999-12-01
X-Ray fluorescence spectrometry is applied to the determination of trace elements in fruit juice characterized by a high content of sugar and other soluble solid substances. Samples are prepared by evaporation, carbonization and pressing into discs. The synthesis of standards is described in detail. All element concentrations are directly estimated from linear calibration curves obtained without any matrix correction. The results of the analysis are in good agreement with those given by inductively coupled plasma-atomic emission spectrometry and atomic absorption spectrometry techniques.
Infrasonic ray tracing applied to mesoscale atmospheric structures: refraction by hurricanes.
Bedard, Alfred J; Jones, R Michael
2013-11-01
A ray-tracing program is used to estimate the refraction of infrasound by the temperature structure of the atmosphere and by hurricanes represented by a Rankine-combined vortex wind plus a temperature perturbation. Refraction by the hurricane winds is significant, giving rise to regions of focusing, defocusing, and virtual sources. The refraction of infrasound by the temperature anomaly associated with a hurricane is small, probably no larger than that from uncertainties in the wind field. The results are pertinent to interpreting ocean wave generated infrasound in the vicinities of tropical cyclones. PMID:24180755
Coupled Ray-tracing and Fokker-Planck EBW Modeling for Spherical Tokamaks
NASA Astrophysics Data System (ADS)
Urban, J.; Decker, J.; Peysson, Y.; Preinhaelter, J.; Taylor, G.; Vahala, L.; Vahala, G.
2009-11-01
The AMR (Antenna—Mode-conversion—Ray-tracing) code [1, 2] has been recently coupled with the LUKE [3] Fokker-Planck code. This modeling suite is capable of complex simulations of electron Bernstein wave (EBW) emission, heating and current drive. We employ these codes to study EBW heating and current drive performance under spherical tokamak (ST) configurations—typical NSTX discharges are employed. EBW parameters, such as frequency, antenna position and direction, are varied and optimized for particular configurations and objectives. In this way, we show the versatility of EBWs.
Practical Considerations in Trace Element Analysis of Bone by Portable X-ray Fluorescence.
Byrnes, Jennifer F; Bush, Peter J
2016-07-01
Forensic anthropologists are more often turning to nondestructive methods to assist with skeletal analyses, specifically for trace elemental analyses. Portable XRF (pXRF) instruments are versatile and are able to be used in diverse settings or for specimens of a shape and size that cannot be accommodated by laboratory-based instruments. Use of XRF requires knowledge of analysis parameters such as X-ray penetration and exit depth. Analysis depth was determined by examining pure elements through known thicknesses of equine bone slices. Correlation between the element's X-ray emission energy and the depth of reading was observed. Bone surfaces from a small unknown historic cemetery were analyzed before and after sanding of the periosteal surface to observe possible changes in XRF readings based on potential diagenesis. Results validate the pXRF device as a powerful and convenient instrument for nondestructive analysis, while highlighting limitations and considerations for the analysis of osseous materials. PMID:27093090
Tracing X-rays through an L-shaped laterally graded multilayer mirror: a synchrotron application.
Honnicke, Marcelo Goncalves; Huang, Xianrong; Keister, Jeffrey W; Kodituwakku, Chaminda Nalaka; Cai, Yong Q
2010-05-01
A theoretical model to trace X-rays through an L-shaped (nested or Montel Kirkpatrick-Baez mirrors) laterally graded multilayer mirror to be used in a synchrotron application is presented. The model includes source parameters (size and divergence), mirror figure (parabolic and elliptic), multilayer parameters (reflectivity, which depends on layer material, thickness and number of layers) and figure errors (slope error, roughness, layer thickness fluctuation Deltad/d and imperfection in the corners). The model was implemented through MATLAB/OCTAVE scripts, and was employed to study the performance of a multilayer mirror designed for the analyzer system of an ultrahigh-resolution inelastic X-ray scattering spectrometer at National Synchrotron Light Source II. The results are presented and discussed. PMID:20400833
[Research on the X-ray fluorescence spectrometry method to determine trace elements in kimberlite].
Zhang, Lei; Yan, Chuan-wei; Lu, Yi
2003-04-01
It is very important to detect trace elements for kilmberlite. Through improving the working conditions of X-ray fluorescence spectrometer and optimizing the analytical conditions, the determination method of trace elements, such as Sc, Cr, Ni, Y, Nb, La, in kimberlite was worked out. The method has been successfully applied to the determination of trace elements in over 2 thousand samples of kimberlite from Liaoning province. The detection limits of the method were relatively low (the detection limit of Sc droped from 9.54 to 2.83 micrograms.g-1 and the detection limit of La droped from 21.68 micrograms.g-1 to 9.18 micrograms.g-1), i.e. 2.83, 2.15, 2.20, 1.17, 1.05 and 9.18 micrograms.g-1 for Sc, Cr, Ni, Y, Nb and La, respectively. The precision of the method was very high with 2.10%-7.09% of RSD (n = 20). Compared with ICP spectrometry this method is satisfactory. The method has proven to be simple and rapid with low cost and high efficiency. PMID:12961906
Trace element profiles in murine Lewis lung carcinoma by radioisotope-induced X-ray fluorescence.
Frank, A. S.; Schauble, M. K.; Preiss, I. L.
1986-01-01
Trace element profiles of various body tissues and tumor were established during growth of the Lewis lung tumor (LLT) with the use of radioisotope-induced X-ray fluorescence (RIXRF) analysis. The LLT, a highly malignant experimental murine tumor, resembles its human counterpart, has a well-defined life cycle, and kills its host in 30 days. When compared with normal controls, Zn, Br, and Rb levels in lung, liver, and skeletal muscle and Zn and Sr levels in bone from tumor-bearing mice exhibited large fluctuations at critical points in the tumor life cycle. In addition, the 24-day primary tumor trace element profile resembled that of its tissue of origin, normal lung, and was quite different from other normal tissues studied. These findings indicate that trace element profiles may help in the diagnosis, staging, and monitoring of disease. RIXRF is an excellent technique for this purpose because it is sensitive and relatively nondestructive of samples and has multielement capabilities. Images Figure 1 p423-a PMID:3953767
Accounting for partiality in serial crystallography using ray-tracing principles
Kroon-Batenburg, Loes M. J. Schreurs, Antoine M. M.; Ravelli, Raimond B. G.; Gros, Piet
2015-08-25
Serial crystallography generates partial reflections from still diffraction images. Partialities are estimated with EVAL ray-tracing simulations, thereby improving merged reflection data to a similar quality as conventional rotation data. Serial crystallography generates ‘still’ diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a ‘still’ Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R{sub int} factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R{sub int} of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography.
Integrated Ray Tracing (IRT) simulation of SCOTS measurement of GMT fast steering mirror surface
NASA Astrophysics Data System (ADS)
Choi, Ji Nyeong; Ryu, Dongok; Kim, Sug-Whan; Graves, Logan; Su, Peng; Huang, Run; Kim, Dae Wook
2015-09-01
The Software Configurable Optical Testing System (SCOTS) is one of the newest testing methods for large mirror surfaces. The Integrated Ray Tracing (IRT) technique can be applicable to the SCOTS simulation by performing non-sequential ray tracing from the screen to the camera detector in the real scale. Therefore, the radiometry of distorted pattern images are numerically estimated by the IRT simulation module. In this study, we construct an IRT SCOTS simulation model for the Fast Steering Mirror Prototype (FSMP) surface of the Giant Magellan Telescope (GMT). GMT FSMP is an off-axis ellipsoidal concave mirror that is 1064 mm in diameter and has PV 3.1 mm in aspheric departure. The surface error requirement is less than 20 nm rms. The screen is modeled as an array of 1366 by 768 screen pixels of 0.227 mm in pitch size. The screen is considered as a Lambertian scattering surface. The screen and the camera are positioned around 4390 mm away from the mirror and separated by around 132 mm from each other. The light source are scanning lines and sinusoidal patterns generated by 616,050 rays per one screen pixel. Of the initially generated rays, 0.22 % are received by the camera's detector and contribute to form distorted pattern images. These images are converted to the slope and height maps of the mirror surface. The final result for the height difference between input surface and reconstructed surface was 14.14 nm rms. Additionally, the simulated mirror pattern image was compared with the real SCOTS test for the GMT FSMP. This study shows applicability of using the IRT model to SCOTS simulation with nanometer level numerical accuracy.
Fast ray-tracing of human eye optics on Graphics Processing Units.
Wei, Qi; Patkar, Saket; Pai, Dinesh K
2014-05-01
We present a new technique for simulating retinal image formation by tracing a large number of rays from objects in three dimensions as they pass through the optic apparatus of the eye to objects. Simulating human optics is useful for understanding basic questions of vision science and for studying vision defects and their corrections. Because of the complexity of computing such simulations accurately, most previous efforts used simplified analytical models of the normal eye. This makes them less effective in modeling vision disorders associated with abnormal shapes of the ocular structures which are hard to be precisely represented by analytical surfaces. We have developed a computer simulator that can simulate ocular structures of arbitrary shapes, for instance represented by polygon meshes. Topographic and geometric measurements of the cornea, lens, and retina from keratometer or medical imaging data can be integrated for individualized examination. We utilize parallel processing using modern Graphics Processing Units (GPUs) to efficiently compute retinal images by tracing millions of rays. A stable retinal image can be generated within minutes. We simulated depth-of-field, accommodation, chromatic aberrations, as well as astigmatism and correction. We also show application of the technique in patient specific vision correction by incorporating geometric models of the orbit reconstructed from clinical medical images. PMID:24713524
MCViNE - An object oriented Monte Carlo neutron ray tracing simulation package
NASA Astrophysics Data System (ADS)
Lin, Jiao Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; Abernathy, Douglas L.; Lumsden, Mark D.; Winn, Barry; Aczel, Adam A.; Aivazis, Michael; Fultz, Brent
2016-02-01
MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. With simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.
Three dimensional ray tracing Jovian magnetosphere in the low frequency range
NASA Technical Reports Server (NTRS)
Menietti, J. D.
1982-01-01
Ray tracing of the Jovian magnetosphere in the low frequency range (1+40 MHz) has resulted in a new understanding of the source mechanism for Io dependent decametric radiation (DAM). Our three dimensional ray tracing computer code has provided model DAM arcs at 10 deg. intervals of Io longitude source positions for the full 360 deg of Jovian system III longitude. In addition, particularly interesting arcs were singled out for detailed study and modelling. Dependent decametric radiation arcs are categorized according to curvature--the higher curvature arcs are apparently due to wave stimulation at a nonconstant wave normal angle, psi. The psi(f) relationship has a signature that is common to most of the higher curvature arcs. The low curvature arcs, on the other hand, are adequately modelled with a constant wave normal angle of close to 90 deg. These results imply that for higher curvature arcs observed for from Jupiter (to diminish spacecraft motion effects) the electrons providing the gyroemission are relativistically beamed.
MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package
Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; Abernathy, Douglas L.; Lumsden, Mark D.; Winn, Barry L.; Aczel, Adam A.; Aivazis, Michael; Fultz, Brent
2015-11-28
MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.
MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package
Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; Abernathy, Douglas L.; Lumsden, Mark D.; Winn, Barry L.; Aczel, Adam A.; Aivazis, Michael; Fultz, Brent
2015-11-28
MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiplemore » scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.« less
NASA Astrophysics Data System (ADS)
Mitsuishi, I.; Ezoe, Y.; Ogawa, T.; Sato, M.; Nakamura, K.; Numazawa, M.; Takeuchi, K.; Ohashi, T.; Ishikawa, K.; Mitsuda, K.
2016-01-01
To investigate a feasibility for in situ X-ray imaging spectrometer JUXTA (Jupiter X-ray Telescope Array) onboard a Japanese Jupiter exploration mission, we demonstrated the ideal performances, i.e., angular resolution, effective area and grasp, of our original, conically-approximated Wolter type-I MEMS-processed optics, by extending the previous ray-tracing simulator. The novel simulator enables us to study both on- and off-axis responses for our optics with two-stage optical configurations for the first time. The on-axis angular resolution is restricted to ∼ 13 μm corresponding to ∼ 10 arcsec on the detector plane without considering the diffraction effect and dominated by the diffraction effect below ∼ 1 keV (e.g., 13 arcsec at 1 keV). Si optics can achieve effective area of >700 mm2 and grasp of >1600 mm2 deg2 at our interesting energy of 600 eV. Larger effective area and grasp can be attained by employing Ni as a substrate material or Ir as a reflecting surface material. However, other factors produced in the fabrication processes such as the waviness on the mirror surface and the deformation error cause the significant performance degradation. Thus, we concluded that MEMS-processed optics can satisfy all the requirements of JUXTA only if the manufacturing accuracy can be controlled.
Use of Synchrotron X-ray Fluorescence to Measure Trace Metal Distribution in the Brain
NASA Astrophysics Data System (ADS)
Linkous, D.; Flinn, J. M.; Lanzirotti, A.; Frederickson, C.; Jones, B. F.; Bertsch, P. M.
2002-12-01
X26A, National Synchrotron Light Source, was used to quantitatively evaluate the spatial distribution of trace metals, such as Zn and Cu, in brain tissue. X-ray microprobe techniques offer distinct advantages over other analytical methods by allowing analyses to be done in-situ with little or no chemical pretreatment and low detection limits (about 1 ppm). In the context of neuroscience, SXRF can provide non-destructive measurements of specific metal concentrations and distribution within nerve (brain) tissue. Neuronal tissue from organisms having undergone different normal or experimental conditions may be compared, with analytical capacities not limited by binding states of the metal (i.e., vesicular or enzymatic), as is the case with staining techniques.. Whole regions of tissue may be scanned for detectable trace metals at spatial resolutions of 10um or less using focused monochromatic x-ray beams. Here special attention has been given to zinc because it is the most common trace metal in the brain, and levels have been increasing in the environment. In this investigation, zinc concentrations present within the hilus of a rat hippocampus, and to a lesser extent in the cortex, have been shown to increase following long-term ingestion of zinc-enhanced drinking water that was associated with deficits in spatial memory. Concomitantly, copper concentrations in the internal capsule were comparatively lower. Other first order transition metals, Cr, V, Mn, and Co were not detected. In contrast, elevated levels of Zn, Cu, and Fe have been seen in amyloid plaques associated with Alzheimer's disease.
Shi, Xianbo; Reininger, Ruben; Sanchez del Rio, Manuel; Assoufid, Lahsen
2014-01-01
A new method for beamline simulation combining ray-tracing and wavefront propagation is described. The ‘Hybrid Method’ computes diffraction effects when the beam is clipped by an aperture or mirror length and can also simulate the effect of figure errors in the optical elements when diffraction is present. The effect of different spatial frequencies of figure errors on the image is compared with SHADOW results pointing to the limitations of the latter. The code has been benchmarked against the multi-electron version of SRW in one dimension to show its validity in the case of fully, partially and non-coherent beams. The results demonstrate that the code is considerably faster than the multi-electron version of SRW and is therefore a useful tool for beamline design and optimization. PMID:24971960
Shi, Xianbo; Reininger, Ruben; Sanchez Del Rio, Manuel; Assoufid, Lahsen
2014-07-01
A new method for beamline simulation combining ray-tracing and wavefront propagation is described. The `Hybrid Method' computes diffraction effects when the beam is clipped by an aperture or mirror length and can also simulate the effect of figure errors in the optical elements when diffraction is present. The effect of different spatial frequencies of figure errors on the image is compared with SHADOW results pointing to the limitations of the latter. The code has been benchmarked against the multi-electron version of SRW in one dimension to show its validity in the case of fully, partially and non-coherent beams. The results demonstrate that the code is considerably faster than the multi-electron version of SRW and is therefore a useful tool for beamline design and optimization. PMID:24971960
Ray tracing based path-length calculations for polarized light tomographic imaging
NASA Astrophysics Data System (ADS)
Manjappa, Rakesh; Kanhirodan, Rajan
2015-09-01
A ray tracing based path length calculation is investigated for polarized light transport in a pixel space. Tomographic imaging using polarized light transport is promising for applications in optical projection tomography of small animal imaging and turbid media with low scattering. Polarized light transport through a medium can have complex effects due to interactions such as optical rotation of linearly polarized light, birefringence, di-attenuation and interior refraction. Here we investigate the effects of refraction of polarized light in a non-scattering medium. This step is used to obtain the initial absorption estimate. This estimate can be used as prior in Monte Carlo (MC) program that simulates the transport of polarized light through a scattering medium to assist in faster convergence of the final estimate. The reflectance for p-polarized (parallel) and s-polarized (perpendicular) are different and hence there is a difference in the intensities that reach the detector end. The algorithm computes the length of the ray in each pixel along the refracted path and this is used to build the weight matrix. This weight matrix with corrected ray path length and the resultant intensity reaching the detector for each ray is used in the algebraic reconstruction (ART) method. The proposed method is tested with numerical phantoms for various noise levels. The refraction errors due to regions of different refractive index are discussed, the difference in intensities with polarization is considered. The improvements in reconstruction using the correction so applied is presented. This is achieved by tracking the path of the ray as well as the intensity of the ray as it traverses through the medium.
Ray-tracing simulations vs. satellite observations of gravity waves forced by deep convection
NASA Astrophysics Data System (ADS)
Kalisch, Silvio; Trinh, Thai; Chun, Hye-Yeong; Ern, Manfred; Preusse, Peter; Eckermann, Stephen D.; Riese, Martin
2015-04-01
Gravity waves (GW) are a prominent coupling mechanism between their tropospheric sources and the upper stratosphere to mesosphere region. They contribute prominently to the wave driving of the Quasi-biennial-oscillation (QBO) in the tropics and other large scale circulations like the Brewer-Dobson circulation. One important dynamic source of GWs is convection. Convective GWs have considerable short horizontal wavelengths and are therefore not entirely observable by infrared limb-sounding satellite instruments. For this reason, we present the results of GW ray-tracing calculations from convective sources up to the mesosphere. We utilized the Gravity wave Regional Or Global RAy-Tracer (GROGRAT) to perform the GW trajectory calculations. The launch conditions for each GW were calculated using the convective GW source scheme from Yonsei University (South Korea) to quantify the excitation by deep convection. Heating rates, cloud data, and atmospheric background data were provided by the MERRA dataset for the estimation of convective forcing by deep convection and as the atmospheric background for the ray-tracing calculations afterwards. The resulting momentum flux distributions are in remarkable coincidence with typical geographic regions of deep convection in the tropics. Additionally, the momentum flux distributions of higher latitude regions are simulated using a standard launch distribution for GWs. In order to validate our findings we compare our simulation results with satellite measurements of temperature amplitudes and momentum flux from infrared limb-sounding satellite instruments. These validations are complemented with an in-depth analysis of the observational filter for two different satellite instruments (HIRDLS and SABER). Scanning geometry, limitations in the detection of short wavelengths, aliasing effects, and the detector sensitivity are taken into account to quantify the level of uncertainty in our results. This analysis finally shows a good agreement
NASA Astrophysics Data System (ADS)
Guo-Dong, Shi; Yong, Huang; Ke-Yong, Zhu
2016-06-01
A Runge-Kutta ray-tracing method for determining the thermal emissions of a two-dimensional semitransparent graded-index medium has been developed for this study. A backward ray-tracing method and a backward Monte Carlo method were employed in the calculations. The emission characteristics of a linear refractive index medium were investigated. The results of the Runge-Kutta ray-tracing method were shown to agree well with previously obtained exact solutions. The apparent emissivities of a radial refractive index medium obtained using the Runge-Kutta ray-tracing method fit the analytical solutions well. However, for a sinusoidally distributed nonlinear refractive index medium, the Runge-Kutta ray-tracing method revised emissivity results differed from the results of a linear refractive index bar model at certain angles. The results show that the Runge-Kutta ray-tracing method is effective in dealing with the radiative transfer problems of multidimensional graded index media.
NASA Astrophysics Data System (ADS)
Zhang, Dong; Zhang, Ting-Ting; Zhang, Xiao-Lei; Yang, Yan; Hu, Ying; Qin, Qian-Qing
2013-05-01
We present a new method of three-dimensional (3-D) seismic ray tracing, based on an improvement to the linear traveltime interpolation (LTI) ray tracing algorithm. This new technique involves two separate steps. The first involves a forward calculation based on the LTI method and the dynamic successive partitioning scheme, which is applied to calculate traveltimes on cell boundaries and assumes a wavefront that expands from the source to all grid nodes in the computational domain. We locate several dynamic successive partition points on a cell's surface, the traveltimes of which can be calculated by linear interpolation between the vertices of the cell's boundary. The second is a backward step that uses Fermat's principle and the fact that the ray path is always perpendicular to the wavefront and follows the negative traveltime gradient. In this process, the first-arriving ray path can be traced from the receiver to the source along the negative traveltime gradient, which can be calculated by reconstructing the continuous traveltime field with cubic B-spline interpolation. This new 3-D ray tracing method is compared with the LTI method and the shortest path method (SPM) through a number of numerical experiments. These comparisons show obvious improvements to computed traveltimes and ray paths, both in precision and computational efficiency.
GPU-based four-dimensional general-relativistic ray tracing
NASA Astrophysics Data System (ADS)
Kuchelmeister, Daniel; Müller, Thomas; Ament, Marco; Wunner, Günter; Weiskopf, Daniel
2012-10-01
This paper presents a new general-relativistic ray tracer that enables image synthesis on an interactive basis by exploiting the performance of graphics processing units (GPUs). The application is capable of visualizing the distortion of the stellar background as well as trajectories of moving astronomical objects orbiting a compact mass. Its source code includes metric definitions for the Schwarzschild and Kerr spacetimes that can be easily extended to other metric definitions, relying on its object-oriented design. The basic functionality features a scene description interface based on the scripting language Lua, real-time image output, and the ability to edit almost every parameter at runtime. The ray tracing code itself is implemented for parallel execution on the GPU using NVidia's Compute Unified Device Architecture (CUDA), which leads to performance improvement of an order of magnitude compared to a single CPU and makes the application competitive with small CPU cluster architectures. Program summary Program title: GpuRay4D Catalog identifier: AEMV_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 73649 No. of bytes in distributed program, including test data, etc.: 1334251 Distribution format: tar.gz Programming language: C++, CUDA. Computer: Linux platforms with a NVidia CUDA enabled GPU (Compute Capability 1.3 or higher), C++ compiler, NVCC (The CUDA Compiler Driver). Operating system: Linux. RAM: 2 GB Classification: 1.5. External routines: OpenGL Utility Toolkit development files, NVidia CUDA Toolkit 3.2, Lua5.2 Nature of problem: Ray tracing in four-dimensional Lorentzian spacetimes. Solution method: Numerical integration of light rays, GPU-based parallel programming using CUDA, 3D
KARAT-LAMBDA - frequency dependent ray-traced troposphere delays for space applications
NASA Astrophysics Data System (ADS)
Hobiger, Thomas; Baron, Philippe
2014-05-01
Space-geodetic microwave techniques work under the assumption that the only dispersive, i.e. frequency dependent delay contribution is caused by the ionosphere. In general, the refractivity, even for the troposphere, is a complex quantity which can be denoted as N = N0 + (N'(f) + i N''(f)) where N0 is a frequency independent term, and N'(f) and N''(f) represent the complex frequency dependence. Thereby, the imaginary part can be used to derive the loss of energy (absorption) and the real part can be assigned to the changes in the propagation velocity (refraction) and thus describes the delay of an electromagnetic wave which propagates through that medium. Although the frequency dependent delay contribution appears to be of small order, one has to consider that signals are propagating through few kilometers of troposphere at high elevations to hundredths of kilometers at low elevations. Therefore, the Kashima Ray-Tracing package (Hobiger et al., 2008) has been modified (and named KARAT-LAMBDA) to enable the consideration of a frequency dependent refractivity. By using this tool, it was studied if and to which extent future space geodetic instruments are affected from dispersive troposphere delays. Moreover, a semi-empirical correction model for the microwave link of the Atomic Clock Ensemble in Space (ACES) has been developed, based on ray-tracing calculations with KARAT-LAMBDA. The proposed model (Hobiger et al., 2013) has been tested with simulated ISS overflights at different potential ACES ground station sites and it could be demonstrated that this model is capable to remove biases and elevation dependent features caused by the dispersive troposphere delay difference between the up-link and down-link. References: T. Hobiger, R. Ichikawa, T. Kondo, and Y. Koyama (2008), Fast and accurate ray-tracing algorithms for real-time space geodetic applications using numerical weather models, Journal of Geophysical Research, vol. 113, iss. D203027, pp. 1-14. T. Hobiger, D
Trace elements analysis in biological samples by radioisotopic x-ray fluorescence.
Cesareo, R
1976-01-01
The X-ray fluorescence technique, induced by radioisotopic sources, provides a very simple method for the simultaneous analysis of trace elements in biological samples. For blood, serum, platelets, etc., samples of about 0.1 ml were deposited on filter paper disks, dried, and analyzed. In such a way the "thin specimen" approximation is realized, resulting in the following advantages: The X-ray intensity of a given element is a liner function of mass per unit area over several orders of magnitude. Interelement effects became negligible. The ratio of fluorescent X-rays to scattered radiation is increased. The sensitivity of the technique for elements with atomic number ranging from about 20-92 varies from some units to some tens of parts per million by weight in 100 s measuring time, by using a gas proportional counter, and from about some tenths to some parts per million by using an X-ray semiconductor detector, in a measuring time of 10(3)-10(4)s. In such a way and with the described features, the Cl, K, Ca, Fe, Cu, Zn, Br content of several speciments of blood and serum was determined. Measurements were further carried out in order to labelling blood components with stable tracers and to detect their concentration by means of the X-ray fluorescence technique. The life span of platelets was, for example, measured after labelling platelets with stable Selenocystine. The sensitivity of the XRF technique can further be enhanced by about three orders of magnitude by using a pre-enrichment step with ion-exchange resins and liquid volumes not lower than 500 ml. Urine analyses have been carried in such a way, and copper in about 20 ml serum after selective extraction. PMID:1017430
Bizarro, J.P.; Peysson, Y.; Bonoli, P.T.; Carrasco, J.; de Wit, T.D.; Fuchs, V.; Hoang, G.T.; Litaudon, X.; Moreau, D.; Pocheau, C.; Shkarofsky, I.P. )
1993-09-01
A detailed investigation is presented on the ability of combined ray-tracing and Fokker--Planck calculations to predict the hard x-ray (HXR) emission during lower-hybrid (LH) current drive in tokamaks when toroidally induced ray stochasticity is important. A large number of rays is used and the electron distribution function is obtained by self-consistently iterating the appropriate power deposition and Fokker--Planck calculations. It is shown that effects due to radial diffusion of suprathermal electrons and to radiation scattering by the inner wall can be significant. The experimentally observed features of the HXR emission are fairly well predicted, thus confirming that combined ray-tracing and Fokker--Planck codes are capable of correctly modeling the physics of LH current drive in tokamaks.
An x-ray microprobe beam line for trace element analysis
Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kwiatek, W.M.; Long, G.J.; Pounds, J.G.; Schidlovsky, G.; Spanne, P.; Rivers, M.L.; Sutton, S.R.
1987-01-01
The application of synchrotron radiation to an x-ray microprobe for trace element analysis is a complementary and natural extension of existing microprobe techniques using electrons, protons, and heavier ions as excitation sources for x-ray fluorescence. The ability to focus charged particles leads to electron microprobes with spatial resolutions in the sub-micrometer range and down to 100 ppM detection limits and proton microprobes with micrometer resolution and ppM detection limits. The characteristics of synchrotron radiation that prove useful for microprobe analysis include a broad and continuous energy spectrum, a relatively small amount of radiation damage compared to that deposited by charged particles, a highly polarized source which reduces background scattered radiation in an appropriate counting geometry, and a small vertical divergence angle of approx.0.2 mrad which allows for focussing of the light beam into a small spot with high flux. The features of a dedicated x-ray microprobe beam line developed at the National Synchrotron Light Source (NSLS) are described. 4 refs., 3 figs.
Mapping gray-scale image to 3D surface scanning data by ray tracing
NASA Astrophysics Data System (ADS)
Li, Peng; Jones, Peter R. M.
1997-03-01
The extraction and location of feature points from range imaging is an important but difficult task in machine vision based measurement systems. There exist some feature points which are not able to be detected from pure geometric characteristics, particularly in those measurement tasks related to the human body. The Loughborough Anthropometric Shadow Scanner (LASS) is a whole body surface scanner based on structured light technique. Certain applications of LASS require accurate location of anthropometric landmarks from the scanned data. This is sometimes impossible from existing raw data because some landmarks do not appear in the scanned data. Identification of these landmarks has to resort to surface texture of the scanned object. Modifications to LASS were made to allow gray-scale images to be captured before or after the object was scanned. Two-dimensional gray-scale image must be mapped to the scanned data to acquire the 3D coordinates of a landmark. The method to map 2D images to the scanned data is based on the colinearity conditions and ray-tracing method. If the camera center and image coordinates are known, the corresponding object point must lie on a ray starting from the camera center and connecting to the image coordinate. By intersecting the ray with the scanned surface of the object, the 3D coordinates of a point can be solved. Experimentation has demonstrated the feasibility of the method.
Determination of minor and trace elements in kidney stones by x-ray fluorescence analysis
NASA Astrophysics Data System (ADS)
Srivastava, Anjali; Heisinger, Brianne J.; Sinha, Vaibhav; Lee, Hyong-Koo; Liu, Xin; Qu, Mingliang; Duan, Xinhui; Leng, Shuai; McCollough, Cynthia H.
2014-03-01
The determination of accurate material composition of a kidney stone is crucial for understanding the formation of the kidney stone as well as for preventive therapeutic strategies. Radiations probing instrumental activation analysis techniques are excellent tools for identification of involved materials present in the kidney stone. In particular, x-ray fluorescence (XRF) can be very useful for the determination of minor and trace materials in the kidney stone. The X-ray fluorescence measurements were performed at the Radiation Measurements and Spectroscopy Laboratory (RMSL) of department of nuclear engineering of Missouri University of Science and Technology and different kidney stones were acquired from the Mayo Clinic, Rochester, Minnesota. Presently, experimental studies in conjunction with analytical techniques were used to determine the exact composition of the kidney stone. A new type of experimental set-up was developed and utilized for XRF analysis of the kidney stone. The correlation of applied radiation source intensity, emission of X-ray spectrum from involving elements and absorption coefficient characteristics were analyzed. To verify the experimental results with analytical calculation, several sets of kidney stones were analyzed using XRF technique. The elements which were identified from this techniques are Silver (Ag), Arsenic (As), Bromine (Br), Chromium (Cr), Copper (Cu), Gallium (Ga), Germanium (Ge), Molybdenum (Mo), Niobium (Nb), Rubidium (Rb), Selenium (Se), Strontium (Sr), Yttrium (Y), Zirconium (Zr). This paper presents a new approach for exact detection of accurate material composition of kidney stone materials using XRF instrumental activation analysis technique.
Trace element abundances in single presolar silicon carbide grains by synchrotron X-ray fluorescence
NASA Astrophysics Data System (ADS)
Kashiv, Yoav
2004-12-01
Synchrotron x-ray fluorescence (SXRF) was applied to the study of presolar grains for the first time in this study. 41 single SiC grains of the KJF size fraction (mass-weighted median size of 1.86 μm) from the Murchison (CM2) Meteorite were analyzed. The absolute abundances of the following elements were determined (not every element in every grain): S, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Sr, Y, Zr, Nb, Mo, Ru, Os, Ir and Pt (underlined elements were detected here for the first time in single grains). There is good agreement between the heavier trace element abundances in the grains and s-process nucleosynthesis calculations. It suggests that smaller 13C pocket sizes are needed in the parent stars, a free parameter in the stellar models, than is deduced from isotopic analyses of s-, and s-mainly, elements, such as Zr and Mo. In addition, the data confirms the radiogenic nature of the Nb in the grains, due to the in situ decay of 93Zr (t 1/2 = 1.5 × 106 year). The data suggest that the trace elements condensed into the host SiC grains by a combination of condensation in solid solution and incorporation of subgrains. It seems that many of the trace elements reside mainly in subgrains of two solid solution: (1)a TiC based solid solution, and (2)a Mo-Ru carbide based solid solution. The presence of subgrains of an Fe-Ni alloy solid solution is suggested as well. Subgrains of all 3 solid solutions were observed previously in presolar graphite grains.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Adobe Acrobat.
Total reflection X-ray fluorescence analysis of trace-elements in candies marketed in Mexico
NASA Astrophysics Data System (ADS)
Martinez, T.; Lartigue, J.; Zarazua, G.; Avila-Perez, P.; Navarrete, M.; Tejeda, S.
2010-06-01
Trace metals concentrations in food are significant for nutrition, due either to their nature or toxicity. Sweets, including chewing gum and candies, are not exactly a food, but they usually are unwearied consumed by children, the most vulnerable age-group to any kind of metal contamination in the food chain. The presence of relatively high concentrations of heavy metals such as Lead elicits concern since children are highly susceptible to heavy metals poisoning. Trace-metals concentrations were determined for six different flavors of a Mexican candy by means of Total X-ray Fluorescence Spectrometry. Triplicate samples of the various candy's flavours (strawberry, pineapple, lemon, blackberry, orange and chilli) were digested in 8 mL of a mix of supra-pure HNO 3 and H 2O 2 (6 mL: 2 mL) in a microwave oven MARS-X. Results show the presence of essential and toxic elements such as Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, and Pb. All metal concentrations were higher and significantly different ( α = 0.05) in chilli candy, compared to other candy flavours. Lead concentration fluctuated in the range of 0.102 to 0.342 μg g - 1 . A discussion about risk consumption and concentration allowed by Mexican and International Norms is made. As a part of the Quality Control Program, a NIST standard of "Citrus Leaves" and a blank were treated in the same way.
Trace element cartography of Globigerinoides ruber shells using particle-induced X-ray emission
NASA Astrophysics Data System (ADS)
Gehlen, M.; Bassinot, F.; Beck, L.; Khodja, H.
2004-12-01
Micro particle-induced X-ray emission (PIXE) is a nondestructive elemental analysis technique that can be used to map the distribution of elements with a spatial resolution of ±4 μm2 and a penetration depth of ±2 μm in a calcite matrix. To test its potential to improve our understanding of trace element distribution in foraminifera shells, we mapped the Mg distribution across individual chambers of the planktonic species Globigerinoides ruber. G. ruber shells were picked from equatorial Atlantic surface sediments (Sierra Leone Rise). They ranged from well-preserved to heavily dissolved tests. The mapping of trace elements across test chambers made it possible to discriminate between variability inherent to the shell material and heterogeneity linked to contaminant phases. Contaminating mineral phases were characterized by high Mg concentrations (Mg/Ca = 19.7 mmol/mol) and high levels of Si, Al, and Fe. Mg/Ca values of well-preserved shells ranged from 3.9 to 4.5 mmol/mol. The Mg to Ca ratios of partially dissolved shells varied between 1.8 and 3.4 mmol/mol between outer and inner chambers. Low and homogeneous Mg/Ca values of 2.0 and 2.3 mmol/mol were determined for chambers of a severely dissolved test.
NASA Astrophysics Data System (ADS)
Bockle, Stefan; Rovati, Luigi; Ansari, Rafat R.
2003-07-01
In this paper we present theoretical analysis to support the polarimetric approach for glucose detection in the human eye applying Brewster reflection off the ocular lens. The theoretical eye model of Navarro, which is based upon anatomical data, was used to perform ray-tracing, whereas the electromagnetic and polarization parameters of light propagation through the eye-media were calculated. The errors in glucose concentration determination due to refraction and deviation from the ideal optical path were calculated under different conditions. Effects of using incident linearly and circularly polarized light and variation of intersection condition of the incoming light beam with the anterior corneal surface were taken into consideration. Calculations were performed for a wide spectral range by applying dispersion curves for the eye-media. These simulations show the potential and the limits of the proposed optical approach.
Yang, Yufei; Yan, Changxiang
2016-02-20
The polarization properties of a two-axis periscopic optical scanner constituted by a pair of rotating planar mirrors have been studied by using the three-dimensional polarization ray-tracing matrix method. The separate and cumulative matrices that define the transformation of the polarization state are obtained and expressed in terms of the rotation angles of two mirrors. The variations of diattenuation and retardance are investigated and graphically shown as functions of the rotation angles. On this basis, a further investigation about the cumulative polarization aberrations of three different metal-coated periscopic scanners is accomplished. Finally, the output polarization states of the three metal-coated scanners are calculated with the input beam of the arbitrary polarization states, and the results show that aluminum film is more appropriate than gold film or silver film for the polarization-maintaining periscopic scanner. PMID:26906587
Introducing GAMER: A fast and accurate method for ray-tracing galaxies using procedural noise
Groeneboom, N. E.; Dahle, H.
2014-03-10
We developed a novel approach for fast and accurate ray-tracing of galaxies using procedural noise fields. Our method allows for efficient and realistic rendering of synthetic galaxy morphologies, where individual components such as the bulge, disk, stars, and dust can be synthesized in different wavelengths. These components follow empirically motivated overall intensity profiles but contain an additional procedural noise component that gives rise to complex natural patterns that mimic interstellar dust and star-forming regions. These patterns produce more realistic-looking galaxy images than using analytical expressions alone. The method is fully parallelized and creates accurate high- and low- resolution images that can be used, for example, in codes simulating strong and weak gravitational lensing. In addition to having a user-friendly graphical user interface, the C++ software package GAMER is easy to implement into an existing code.
Simulation of radiation damping in rings, using stepwise ray-tracing methods
NASA Astrophysics Data System (ADS)
Méot, F.
2015-06-01
The ray-tracing code Zgoubi computes particle trajectories in arbitrary magnetic and/or electric field maps or analytical field models. It includes a built-in fitting procedure, spin tracking, many Monte Carlo processes. The accuracy of the integration method makes it an efficient tool for multi-turn tracking in periodic machines. Energy loss by synchrotron radiation, based on Monte Carlo techniques, had been introduced in Zgoubi in the early 2000s for studies regarding the linear collider beam delivery system. However, only recently has this Monte Carlo tool been used for systematic beam dynamics and spin diffusion studies in rings, including the eRHIC electron-ion collider project at the Brookhaven National Laboratory. Some beam dynamics aspects of this recent use of Zgoubi capabilities, including considerations of accuracy as well as further benchmarking in the presence of synchrotron radiation in rings, are reported here.
Traz - An Interactive Ray-Tracing Computer Program Integrated With A Solid-Modeling CAD System
NASA Astrophysics Data System (ADS)
Dolan, Ariel
1986-02-01
The combination of an optical ray-tracing program with a solid modeling C.A.D. (computer-aided-design) system creates a very flexible tool for optical system analysis and evaluation. The program uses the CAD data-structure and user-friendly menus for creation, manipulation and visualization of the optical system. Furthermore, it is capable of dealing with problems which are impossible or difficult to handle by existing optical design programs, such as calculations of three-dimensional sensitivities, multiple reflections, multiple-surface apertures, specular stray radiation, image rotation and complex-prism design. It can also be used as an efficient tool for error-budget and error-analysis, and can be fully interfaced with a finite-elements analysis program, thus enabling the evaluation of the effects of mechanical or thermal loads on the optical performance.
Simulation of radiation damping in rings, using stepwise ray-tracing methods
Meot, F.
2015-06-26
The ray-tracing code Zgoubi computes particle trajectories in arbitrary magnetic and/or electric field maps or analytical field models. It includes a built-in fitting procedure, spin tracking many Monte Carlo processes. The accuracy of the integration method makes it an efficient tool for multi-turn tracking in periodic machines. Energy loss by synchrotron radiation, based on Monte Carlo techniques, had been introduced in Zgoubi in the early 2000s for studies regarding the linear collider beam delivery system. However, only recently has this Monte Carlo tool been used for systematic beam dynamics and spin diffusion studies in rings, including eRHIC electron-ion collider projectmore » at the Brookhaven National Laboratory. Some beam dynamics aspects of this recent use of Zgoubi capabilities, including considerations of accuracy as well as further benchmarking in the presence of synchrotron radiation in rings, are reported here.« less
Simulation of radiation damping in rings, using stepwise ray-tracing methods
Meot, F.
2015-06-26
The ray-tracing code Zgoubi computes particle trajectories in arbitrary magnetic and/or electric field maps or analytical field models. It includes a built-in fitting procedure, spin tracking many Monte Carlo processes. The accuracy of the integration method makes it an efficient tool for multi-turn tracking in periodic machines. Energy loss by synchrotron radiation, based on Monte Carlo techniques, had been introduced in Zgoubi in the early 2000s for studies regarding the linear collider beam delivery system. However, only recently has this Monte Carlo tool been used for systematic beam dynamics and spin diffusion studies in rings, including eRHIC electron-ion collider project at the Brookhaven National Laboratory. Some beam dynamics aspects of this recent use of Zgoubi capabilities, including considerations of accuracy as well as further benchmarking in the presence of synchrotron radiation in rings, are reported here.
A comparison of partially specular radiosity and ray tracing for room acoustics modeling
NASA Astrophysics Data System (ADS)
Beamer, C. Walter; Muehleisen, Ralph T.
2005-04-01
Partially specular (PS) radiosity is an extended form of the general radiosity method. Acoustic radiosity is a form of bulk transfer of radiant acoustic energy. This bulk transfer is accomplished through a system of energy balance equations that relate the bulk energy transfer of each surface in the system to all other surfaces in the system. Until now acoustic radiosity has been limited to modeling only diffuse surface reflection. The new PS acoustic radiosity method can model all real surface types, diffuse, specular and everything in between. PS acoustic radiosity also models all real source types and distributions, not just point sources. The results of the PS acoustic radiosity method are compared to those of well known ray tracing programs. [Work supported by NSF.
Sun-, Earth- and Moon-integrated simulation ray tracing for observation from space using ASAP
NASA Astrophysics Data System (ADS)
Breault, Robert P.; Kim, Sug-Whan; Yang, Seul-Ki; Ryu, Dongok
2014-09-01
The Space Optics Laboratory at Yonsei University, Korea, in cooperation with Breault Research Organization (BRO) in Tucson, Arizona, have invested significant research and development efforts into creating large scale ray tracing techniques for simulating "reflected" light from the earth with an artificial satellite. This presentation describes a complex model that combines the sun, the earth and an orbiting optical instrument combined into a real scale nonsequential ray tracing computation using BRO's Advanced Systems Analysis Program, ASAP®. The Sun is simulated as a spherically emitting light source of 695,500 km in diameter. The earth also is simulated as a sphere with its characteristics defined as target objects to be observed and defined with appropriate optical properties. They include the atmosphere, land and ocean elements, each having distinctive optical properties expressed by single or combined characteristics of refraction, reflection and scattering. The current embodiment has an atmospheric model consisting of 33 optical layers, a land model with 6 different albedos and the ocean simulated with sun glint characteristics. A space-based optical instrument, with an actual opto-mechanical prescription, is defined in an orbit of several hundreds to thousands of miles in altitude above the earth's surface. The model allows for almost simultaneous evaluations of the imaging and radiometric performances of the instrument. Several real-life application results are reported suggesting that this simulation approach not only provides valuable information that can greatly improve the space optical instrument performance but also provides a simulation tool for scientists to evaluate all phases of a space mission.
The P velocity within the Tonga Benioff Zone determined from traced rays and observations
NASA Astrophysics Data System (ADS)
Huppert, Lawrence N.; Frohlich, Cliff
1981-05-01
P waves with travel time residuals between 0 s and -12 s are observed at regional stations in Samoa (AFI) and Raoul Island (RAO) for 39 earthquakes in Tonga with focal depths between 70 km and 300 km. These anomalously large residuals apparently are produced because seismic phases travel along the strike of the Tonga Benioff zone within the high-velocity subducted lithosphere for up to 1200 km before arriving at AFI and RAO. To eliminate erroneous residuals caused by poor event locations, we selected 11 stations and reread the available P times at these stations for the 39 events. These arrivals and (pP-P) intervals were used to relocate the events using a variant of the joint hypocenter determination method. Then the pattern of residuals at AFI and RAO (not used in the relocation) was compared to the pattern of residuals expected for various models of the subducted lithosphere, as determined by ray tracing. The observed pattern of residuals at AFI is consistent with the ray-traced models if some of the first arrivals are produced by rays traveling directly along the strike of the subducting lithosphere, and if others are produced by rays which reflect once off the upper surface of the subducting lithosphere before arriving at AFI. The observed residuals can be explained by a model where the P velocity in the subducted lithosphere is 8% higher than the velocity in the Herrin model. The residuals are fit even better by a layered slab model in which the seismic velocity is about 6% higher than the Herrin velocity at the upper surface of the subducted lithosphere and about 9% higher at the bottom of the slab. These velocity contrasts could be produced if the temperature in the slab was 700°C cooler than the surrounding mantle, and if there were no partially melted material within the slab. The existence of these anomalously large residuals suggests that the high velocity region in the upper 300 km of the mantle beneath Tonga must be fairly continuous over distances
NASA Astrophysics Data System (ADS)
Löhr, S. C.; Kennedy, M. J.
2015-03-01
Animal burrowers leave an indelible signature on the sedimentary record in most marine environments, with the seeming exception of low-oxygen environments. In modern sedimentary settings, however, sub-millimetre-sized benthic animals (meiofauna) are adapted to low oxygen and even sulfidic conditions. Almost nothing is known about their impact on ancient marine sediments because they leave few recognizable traces. Here we show, in classic Pliocene-aged anoxic facies from the Mediterranean, the first reported trace fossil evidence of meiofaunal activity and its relation to changing oxygenation. A novel approach utilizing electron imaging of ion-polished samples shows that meiofauna pervasively reworked sediment under oxygen-depleted conditions that excluded macrofauna, fragmenting organic laminae and emplacing 15- to 70-μm-diameter faecal pellets without macroscopically influencing the fabric. The extent of reworking raises the question: how pervasively altered are other sediments presently assumed to lack animal influence and how far into the geological record does this influence extend?
A ray tracing study of shock leakage in a model supersonic jet
NASA Astrophysics Data System (ADS)
Shariff, Karim; Manning, Ted A.
2013-07-01
Recent work has described screech noise from a supersonic jet as being due to leakage of a wave that is otherwise trapped in the jet's interior. In that work, the simplest of many techniques used is ray tracing for a single shear-layer modeled as a row of Stuart vortices. In the present work, a lower row of vortices is added to form a plane jet. Instead of plotting ray paths, a technique of visualization analogous to streaklines is used that better corresponds to instantaneous density fields as observed, for instance, by the Schlieren method. This produces striking images that show leakage of waves at each internal reflection resulting in a row of acoustic sources as envisioned since the 1950s. However, the sources are not isotropic and each has a zone of silence in the downstream direction. Leakage creates a fold in the wave pattern internal to the jet which leads to fine scale features. Reported experiments have also observed fine scale features (described as splitting) in the shock-cell pattern; they may be related to those observed here. Internally reflected rays also undergo a diffusive process as they propagate down the jet. In particular, each successive internal reflection at an unsteady shear-layer scatters rays along a wider range of wave angle and makes them more susceptible to leakage at the next reflection. It also causes more downstream directivity for the more downstream sources. An important result is that as the Mach number Mj is varied, maxima in leakage rate and mean acoustic amplitude occur at (near) resonances between the Mach-wave and shear-layer periods. Maxima in sound pressure level versus Mj have also been reported for laboratory round jets. Finally, as the shear-layer thickness is increased, a minimum in the rate of leakage (correlated with a minimum in radiation amplitude) occurs due to the competing effects of increased shear-layer penetration versus reduced eddy passage frequency.
Proposed additions to the SHADOW ray-tracing code for general-asymmetric perfect-crystal optics
Blasdell, R.C.; Macrander, A.T.
1993-12-01
The dynamical theory of the diffraction of X-rays from perfect crystals is traditionally expressed in terms of Maxwell`s equations using a semi-classical theory originally due to Ewald and von Laue. Combining the work of Batterman and Cole, Caticha and Caticha-Ellis, and Zachariasen, a formalism is obtained that treats the general asymmetric, thick and thin crystal, Laue and Bragg cases within the second order dispersion surface approximation. The authors have implemented this formalism with thick Bragg crystal E-field boundary value conditions in several routines they have added to one of the Advanced Photon Source (APS) versions of the SHADOW ray-tracing code in order to provide the ability to ray trace inclined double-crystal monochromators and high-resolution backscattering analyzers. These additions have been submitted to the University of Wisconsin Center for X-Ray Lithography for consideration for inclusion in the next version of SHADOW.
Kashima RAy-Tracing Service (KARATS) for high accurate GNSS positioning
NASA Astrophysics Data System (ADS)
Ichikawa, R.; Hobiger, T.; Hasegawa, S.; Tsutsumi, M.; Koyama, Y.; Kondo, T.
2010-12-01
Radio signal delays associated with the neutral atmosphere are one of the major error sources of space geodesy such as GPS, GLONASS, GALILEO, VLBI, In-SAR measurements. We have developed a state-of-art tool to estimate the atmospheric path delays by ray-tracing through JMA meso-scale analysis (MANAL data) data. The tools, which we have named 'KAshima RAytracing Tools (KARAT)', are capable of calculating total slant delays and ray-bending angles considering real atmospheric phenomena. Numerical weather models such as MANAL data have undergone a significant improvement of accuracy and spatial resolution, which makes it feasible to utilize them for the correction of atmosphere excess path delays. In the previous studies for evaluating KARAT performance, the KARAT solutions are slightly better than the solutions using VMF1 and GMF with linear gradient model for horizontal and height positions. Based on these results we have started the web-based online service, 'KAshima RAytracing Service (KARATS)' for providing the atmospheric delay correction of RINEX files on Jan 27th, 2010. The KARATS receives user's RINEX data via a proper web site (http://vps.nict.go.jp/karats/index.html) and processes user's data files using KARAT for reducing atmospheric slant delays. The reduced RINEX files are archived in the specific directory for each user on the KARATS server. Once the processing is finished the information of data archive is sent privately via email to each user. If user want to process a large amount of data files, user can prepare own server which archives them. The KARATS can get these files from the user's server using GNU ¥emph{wget} and performs ray-traced corrections. We will present a brief status of the KARATS and summarize first experiences gained after this service went operational in December 2009. In addition, we will also demonstrate the newest KARAT performance based on the 5km MANAL data which has been operational from April 7th, 2009 and an outlook on
The forms of trace metals in an Illinois basin coal by x-ray absorption fine structure spectroscopy
Chou, I.-Ming; Bruinius, J.A.; Lytle, J.M.; Ruch, R.R.; Huggins, Frank E.; Huffman, G.P.; Ho, K.K.
1997-01-01
Utilities burning Illinois coals currently do not consider trace elements in their flue gas emissions. After the US EPA completes an investigation on trace elements, however, this may change and flue gas emission standards may be established. The mode of occurrence of a trace element may determine its cleanability and Hue gas emission potential. X-ray Absorption Fine Structure (XAFS) is a spectroscopic technique that can differentiate the mode of occurrence of an element, even at the low concentrations that trace elements are found in coal. This is principally accomplished by comparing the XAFS spectra of a coal to a database of reference sample spectra. This study evaluated the technique as a potential tool to examine six trace elements in an Illinois #6 coal. For the elements As and Zn, the present database provides a definitive interpretation on their mode of occurrence. For the elements Ti, V, Cr, and Mn the database of XAFS spectra of trace elements in coal was still too limited to allow a definitive interpretation. The data obtained on these elements, however, was sufficient to rule out several of the mineralogical possibilities that have been suggested previously. The results indicate that XAFS is a promising technique for the study of trace elements in coal.
NASA Astrophysics Data System (ADS)
Moussavi Alashloo, S. Y.; Ghosh, D. P.; Bashir, Y.; Yusoff, W. I. Wan
2016-02-01
The Earth's subsurface is an anisotropic medium where the velocity of seismic waves alters in different propagation angles. Omitting anisotropy in seismic imaging not only brings mis-positioning of migrated dipping events but also fails to retain dipping energy during dip-moveout. To account for the efficacy of seismic anisotropy in imaging, an anisotropic wave equation must be engaged. Seismic traveltime computing is fundamental of both Kirchhoff migration and tomography algorithms. Two main categories of traveltime computing involve traditional ray tracing methods and finite difference eikonal solvers. In this study, we present two techniques of initial-value ray tracing and fast marching eikonal solver in isotropic and vertical transverse isotropy (VTI) media, and a comparison between results is demonstrated for more evaluation. Although the ray tracing approach is able to compute multiple arrivals with great precision, the eikonal solver is faster and more robust for traveltime computation. Since the ray tracing result is not a deterministic solution and it depends on the initial circumstance, employing the eikonal solver method are more preferred and suggested.
NASA Astrophysics Data System (ADS)
Okumura, Akira; Noda, Koji; Rulten, Cameron
2016-03-01
We have developed a non-sequential ray-tracing simulation library, ROOT-basedsimulatorforraytracing (ROBAST), which is aimed to be widely used in optical simulations of cosmic-ray (CR) and gamma-ray telescopes. The library is written in C++, and fully utilizes the geometry library of the ROOT framework. Despite the importance of optics simulations in CR experiments, no open-source software for ray-tracing simulations that can be widely used in the community has existed. To reduce the dispensable effort needed to develop multiple ray-tracing simulators by different research groups, we have successfully used ROBAST for many years to perform optics simulations for the Cherenkov Telescope Array (CTA). Among the six proposed telescope designs for CTA, ROBAST is currently used for three telescopes: a Schwarzschild-Couder (SC) medium-sized telescope, one of SC small-sized telescopes, and a large-sized telescope (LST). ROBAST is also used for the simulation and development of hexagonal light concentrators proposed for the LST focal plane. Making full use of the ROOT geometry library with additional ROBAST classes, we are able to build the complex optics geometries typically used in CR experiments and ground-based gamma-ray telescopes. We introduce ROBAST and its features developed for CR experiments, and show several successful applications for CTA.
The Use of Pro/Engineer CAD Software and Fishbowl Tool Kit in Ray-tracing Analysis
NASA Technical Reports Server (NTRS)
Nounu, Hatem N.; Kim, Myung-Hee Y.; Ponomarev, Artem L.; Cucinotta, Francis A.
2009-01-01
This document is designed as a manual for a user who wants to operate the Pro/ENGINEER (ProE) Wildfire 3.0 with the NASA Space Radiation Program's (SRP) custom-designed Toolkit, called 'Fishbowl', for the ray tracing of complex spacecraft geometries given by a ProE CAD model. The analysis of spacecraft geometry through ray tracing is a vital part in the calculation of health risks from space radiation. Space radiation poses severe risks of cancer, degenerative diseases and acute radiation sickness during long-term exploration missions, and shielding optimization is an important component in the application of radiation risk models. Ray tracing is a technique in which 3-dimensional (3D) vehicle geometry can be represented as the input for the space radiation transport code and subsequent risk calculations. In ray tracing a certain number of rays (on the order of 1000) are used to calculate the equivalent thickness, say of aluminum, of the spacecraft geometry seen at a point of interest called the dose point. The rays originate at the dose point and terminate at a homogenously distributed set of points lying on a sphere that circumscribes the spacecraft and that has its center at the dose point. The distance a ray traverses in each material is converted to aluminum or other user-selected equivalent thickness. Then all equivalent thicknesses are summed up for each ray. Since each ray points to a direction, the aluminum equivalent of each ray represents the shielding that the geometry provides to the dose point from that particular direction. This manual will first list for the user the contact information for help in installing ProE and Fishbowl in addition to notes on the platform support and system requirements information. Second, the document will show the user how to use the software to ray trace a Pro/E-designed 3-D assembly and will serve later as a reference for troubleshooting. The user is assumed to have previous knowledge of ProE and CAD modeling.
Accounting for partiality in serial crystallography using ray-tracing principles
Kroon-Batenburg, Loes M. J.; Schreurs, Antoine M. M.; Ravelli, Raimond B. G.; Gros, Piet
2015-01-01
Serial crystallography generates ‘still’ diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a ‘still’ Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R int factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R int of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography. PMID:26327370
Accounting for partiality in serial crystallography using ray-tracing principles.
Kroon-Batenburg, Loes M J; Schreurs, Antoine M M; Ravelli, Raimond B G; Gros, Piet
2015-09-01
Serial crystallography generates `still' diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a `still' Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R(int) factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R(int) of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography. PMID:26327370
Twining, Benjamin S; Baines, Stephen B; Fisher, Nicholas S; Maser, Jörg; Vogt, Stefan; Jacobsen, Chris; Tovar-Sanchez, Antonio; Sañudo-Wilhelmy, Sergio A
2003-08-01
The study of trace metal cycling by aquatic protists is limited by current analytical techniques. Standard "bulk" element analysis techniques that rely on physical separations to concentrate cells for analysis cannot separate cells from co-occurring detrital material or other cells of differing taxonomy or trophic function. Here we demonstrate the ability of a synchrotron-based X-ray fluorescence (SXRF) microprobe to quantify the elements Si, Mn, Fe, Ni, and Zn in individual aquatic protist cells. This technique distinguishes between different types of cells in an assemblage and between cells and other particulate matter. Under typical operating conditions, the minimum detection limits are 7.0 x 10(-16) mol microm(-2) for Si and between 5.0 x 10(-20) and 3.9 x 10(-19) mol microm(-2) for Mn, Fe, Ni, and Zn; this sensitivity is sufficient to detect these elements in cells from even the most pristine waters as demonstrated in phytoplankton cells collected from remote areas of the Southern Ocean. Replicate analyses of single cells produced variations of <5% for Si, Mn, Fe, and Zn and <10% for Ni. Comparative analyses of cultured phytoplankton cells generally show no significant differences in cellular metal concentrations measured with SXRF and standard bulk techniques (spectrophotometry and graphite furnace atomic absorption spectrometry). SXRF also produces two-dimensional maps of element distributions in cells, thereby providing information not available with other analytical approaches. This technique enables the accurate and precise measurement of trace metals in individual aquatic protists collected from natural environments. PMID:14572047
Twining, B. S.; Baines, S. B.; Fisher, N. S.; Maser, J.; Vogt, S.; Jacobsen, C.; Tovar-Sanchez, A.; Sanudo-Wihelmy, S. A.; Experimental Facilities Division; Stony Brook Univ.
2003-01-01
The study of trace metal cycling by aquatic protists is limited by current analytical techniques. Standard 'bulk' element analysis techniques that rely on physical separations to concentrate cells for analysis cannot separate cells from co-occurring detrital material or other cells of differing taxonomy or trophic function. Here we demonstrate the ability of a synchrotron-based X-ray fluorescence (SXRF) microprobe to quantify the elements Si, Mn, Fe, Ni, and Zn in individual aquatic protist cells. This technique distinguishes between different types of cells in an assemblage and between cells and other particulate matter. Under typical operating conditions, the minimum detection limits are 7.0 x 10{sup -16} mol {mu}m{sup -2} for Si and between 5.0 x 10{sup -20} and 3.9 x 10{sup -19} mol {mu}m{sup -2} for Mn, Fe, Ni, and Zn; this sensitivity is sufficient to detect these elements in cells from even the most pristine waters as demonstrated in phytoplankton cells collected from remote areas of the Southern Ocean. Replicate analyses of single cells produced variations of <5% for Si, Mn, Fe, and Zn and <10% for Ni. Comparative analyses of cultured phytoplankton cells generally show no significant differences in cellular metal concentrations measured with SXRF and standard bulk techniques (spectrophotometry and graphite furnace atomic absorption spectrometry). SXRF also produces two-dimensional maps of element distributions in cells, thereby providing information not available with other analytical approaches. This technique enables the accurate and precise measurement of trace metals in individual aquatic protists collected from natural environments.
Threading Dislocation Characterization and Stress Mapping Depth Profiling via Ray Tracing Technique
NASA Astrophysics Data System (ADS)
Zhou, Tianyi
Zinc oxide (ZnO) has been well known as a transparent, dielectric, piezoelectric and wide band gap material. The potential capabilities have been demonstrated for a wide range of applications such as piezoelectric transducer, gas sensor, optical waveguides and transparent electrode. It could also be applied as a substrate material for GaN-based devices. However, while some applications have already been realized, issues relating to crystalline defects remain a barrier to the successful realization of several others. In this thesis, the central focus of Chapter II is to characterize threading dislocations in hydrothermal grown ZnO substrates through simulation work as well as other techniques. The goal of this study is to find the origin of threading dislocations and design strategies to mitigate their negative effects by either reducing their densities or completely eliminating them. In Chapter III, the technique of SMART (stress mapping analysis via ray tracing) is discussed in detail to measure residue stress in packaged silicon circuits. Residual stress plays an important role in the performance and lifetime of single crystal device material. There are mainly two advantages of SMART compared with other techniques: (a) all six components of the stress tensor could be evaluated; (b) it is non-destructive and no damaging trace will be left on the sample. In this study, our goal is to build a relationship between stress distribution and depth. The concept of penetration depth is critically important in this study and its value may cause great changes for real space stress distribution. A new function is applied to get better fitting curves. Data in this study is obtained from various penetration depth, which represents exponentially decaying weighted average of actual stress value or in other words this stress profile is Laplace transform of real stress profile. Mathematical procedure is described to determine real stress profile from Laplace profile. Experiment
Identification of Gravity wave Sources over Tropical Latitudes Using Reverse Ray Tracing technique
NASA Astrophysics Data System (ADS)
Venkat Ratnam, Madineni; Pramitha, M.
2016-07-01
Sources and propagation characteristics of high-frequency gravity waves (GWs) observed in the mesosphere using airglow emissions from Gadanki (13.5oN, 79.2oE) and Hyderabad (17.5oN, 78.5oE) are investigated using reverse ray tracing. Wave amplitudes are also traced back, including both radiative and diffusive damping. For this a climatological model of the background atmosphere for the Gadanki region has been developed using nearly 30 years of observations available from a variety of ground based (MST radar, radiosondes, MF radar) and rocket- and satellite-borne measurements. With the reverse ray-tracing method, the source locations for wave events could be identified to be in the upper troposphere. Uncertainty in locating the terminal points of wave events in the horizontal direction is estimated to be within 50-100 km and 150-300 km for Gadanki and Hyderabad wave events, respectively. This uncertainty arises mainly due to non-consideration of the day-to-day variability in the tidal amplitudes. Interestingly, large (~9ms-1 km-1) vertical shears in the horizontal wind are noticed near the ray terminal points (at 10-12 km altitude) and are thus identified to be the source for generating the observed high phase- speed, high-frequency GWs. We also tried to identify the sources for the GWs which are observed during Indo-French campaign conducted during May 2014. Uniqueness of the present study lies in using near-real time background atmosphere data from simultaneous radiosonde and meteor radar covering both source and propagation/dissipation regions of GWs. When we searched for the sources near the terminal points, deep convection is found to be a source for these events. We also tried to identify the sources of inertia-gravity waves (IGWs) that are observed in the troposphere and lower stratosphere during different seasons using long-term (2006-2014) high resolution radiosonde observations. In general, 50% of the waves observed over this location have convection as
Separating Trace Mapping and Reactive Simulatability Soundness: The Case of Adaptive Corruption
NASA Astrophysics Data System (ADS)
Mazaré, Laurent; Warinschi, Bogdan
Computational soundness is the research direction that aims to translate security guarantees with respect to Dolev-Yao models into guarantees with resepect to the stronger computational models of modern cryptography. There are essentially two different approaches that aim to achieve computational soundness. One approach is based on the so-called trace mapping theorems, and one based on reactive simulatability. In a recent paper, Backes, Dürthmuth, and Küsters have shown that the stronger requirements needed for reactive simulatability-based soundness imply that a trace mapping theorem also holds. It was left as an open problem whether there exists interesting settings where the simulatability framework breaks down but mapping theorems still exist.
Solar proton exposure of an ICRU sphere within a complex structure part II: Ray-trace geometry.
Slaba, Tony C; Wilson, John W; Badavi, Francis F; Reddell, Brandon D; Bahadori, Amir A
2016-06-01
A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z ≤ 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency. PMID:27345204
Solar proton exposure of an ICRU sphere within a complex structure part II: Ray-trace geometry
NASA Astrophysics Data System (ADS)
Slaba, Tony C.; Wilson, John W.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.
2016-06-01
A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z ≤ 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency.
Xu, S.; Nielsen, R.W.
1992-01-01
The high-power and high-flux x-ray beams produced by third generation synchrotron radiation sources such as the Advanced Photon Source (APS) can cause significantly high gas desorption rates on beamline front-end components if beam missteering occurs. The effect of this gas desorption needs to be understood for dynamic vacuum analysis. To simulate beam missteering conditions, optical ray-tracing methods have been employed. The results of the ray-tracing analysis have been entered into a system-oriented vacuum program to provide dynamic vacuum calculations for determination of pumping requirements for the beamline front-ends. The APS will provide several types of synchrotron radiation sources, for example, undulators, wigglers, and bending magnets. For the purpose of this study, the wiggler source was chosen as a worst case'' scenario due to its high photon flux, high beam power, and relatively large beam cross section.
Xu, S.; Nielsen, R.W.
1992-09-01
The high-power and high-flux x-ray beams produced by third generation synchrotron radiation sources such as the Advanced Photon Source (APS) can cause significantly high gas desorption rates on beamline front-end components if beam missteering occurs. The effect of this gas desorption needs to be understood for dynamic vacuum analysis. To simulate beam missteering conditions, optical ray-tracing methods have been employed. The results of the ray-tracing analysis have been entered into a system-oriented vacuum program to provide dynamic vacuum calculations for determination of pumping requirements for the beamline front-ends. The APS will provide several types of synchrotron radiation sources, for example, undulators, wigglers, and bending magnets. For the purpose of this study, the wiggler source was chosen as a ``worst case`` scenario due to its high photon flux, high beam power, and relatively large beam cross section.
NASA Astrophysics Data System (ADS)
Zhou, Tianyi; Raghothamachar, Balaji; Wu, Fangzhen; Dalmau, Rafael; Moody, Baxter; Craft, Spalding; Schlesser, Raoul; Dudley, Michael; Sitar, Zlatko
2014-04-01
Threading dislocations in aluminum nitride boules grown by physical vapor transport method were systematically studied via synchrotron x-ray topography (white beam and monochromatic) in conjunction with ray tracing simulations. Two major types of threading dislocations were observed in the c-axis-grown boules: threading screw dislocations (TSDs) and threading edge dislocations (TEDs) with Burgers vectors along the [0001] and directions, respectively. TSDs were typically observed in the middle of the boule while TEDs were commonly observed to aggregate into arrays along the and directions in various parts of the boule on basal plane oriented wafers. By comparison with ray tracing simulations, the absolute Burgers vectors of both TSDs and TEDs in the arrays could be unambiguously determined. TEDs comprise over 90 % of all threading dislocations observed. The relationships between TED arrays and low angle grain boundaries and their possible formation mechanisms are discussed.
Novel ray tracing method for stray light suppression from ocean remote sensing measurements.
Oh, Eunsong; Hong, Jinsuk; Kim, Sug-Whan; Park, Young-Je; Cho, Seong-Ick
2016-05-16
We developed a new integrated ray tracing (IRT) technique to analyze the stray light effect in remotely sensed images. Images acquired with the Geostationary Ocean Color Imager show a radiance level discrepancy at the slot boundary, which is suspected to be a stray light effect. To determine its cause, we developed and adjusted a novel in-orbit stray light analysis method, which consists of three simulated phases (source, target, and instrument). Each phase simulation was performed in a way that used ray information generated from the Sun and reaching the instrument detector plane efficiently. This simulation scheme enabled the construction of the real environment from the remote sensing data, with a focus on realistic phenomena. In the results, even in a cloud-free environment, a background stray light pattern was identified at the bottom of each slot. Variations in the stray light effect and its pattern according to bright target movement were simulated, with a maximum stray light ratio of 8.5841% in band 2 images. To verify the proposed method and simulation results, we compared the results with the real acquired remotely sensed image. In addition, after correcting for abnormal phenomena in specific cases, we confirmed that the stray light ratio decreased from 2.38% to 1.02% in a band 6 case, and from 1.09% to 0.35% in a band 8 case. IRT-based stray light analysis enabled clear determination of the stray light path and candidates in in-orbit circumstances, and the correction process aided recovery of the radiometric discrepancy. PMID:27409848
NASA Astrophysics Data System (ADS)
Liang, Yicheng; Peng, Hao
2015-02-01
Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity.
NASA Astrophysics Data System (ADS)
Towle, Erica L.; Clark, Clifton D.; Aaron, Michelle T.; Dunn, Andrew K.; Welch, Ashley J.; Thomas, Robert J.
2013-02-01
In recent years, several studies have been investigating the impact of thermal lensing in ocular media on the visual function. These studies have shown that when near-infrared (NIR) laser energy (1319 nm) is introduced to a human eye, the heating of the eye can be sufficient to alter the index of refraction of the media leading to transient changes in the visible wavefront through an effect known as thermal lensing, while remaining at a safe level. One of the main limitations of experimentation with human subjects, however, is the reliance on a subject's description of the effect, which can vary greatly between individuals. Therefore, a computational model was needed that could accurately represent the changes of an image as a function of changes in the index of refraction. First, to model changes in the index of refraction throughout the eye, a computational thermal propagation model was used. These data were used to generate a comprehensive ray tracing model of the human eye using Zemax ( Radiant Zemax Inc, Redmond WA) via a gradient lens surface. Using this model, several different targets have been analyzed which made it possible to calculate real-world visual acuity so that the effect of changes in the index of refraction could be related back to changes in the image of a visual scene.
Effects of urban microcellular environments on ray-tracing-based coverage predictions.
Liu, Zhongyu; Guo, Lixin; Guan, Xiaowei; Sun, Jiejing
2016-09-01
The ray-tracing (RT) algorithm, which is based on geometrical optics and the uniform theory of diffraction, has become a typical deterministic approach of studying wave-propagation characteristics. Under urban microcellular environments, the RT method highly depends on detailed environmental information. The aim of this paper is to provide help in selecting the appropriate level of accuracy required in building databases to achieve good tradeoffs between database costs and prediction accuracy. After familiarization with the operating procedures of the RT-based prediction model, this study focuses on the effect of errors in environmental information on prediction results. The environmental information consists of two parts, namely, geometric and electrical parameters. The geometric information can be obtained from a digital map of a city. To study the effects of inaccuracies in geometry information (building layout) on RT-based coverage prediction, two different artificial erroneous maps are generated based on the original digital map, and systematic analysis is performed by comparing the predictions with the erroneous maps and measurements or the predictions with the original digital map. To make the conclusion more persuasive, the influence of random errors on RMS delay spread results is investigated. Furthermore, given the electrical parameters' effect on the accuracy of the predicted results of the RT model, the dielectric constant and conductivity of building materials are set with different values. The path loss and RMS delay spread under the same circumstances are simulated by the RT prediction model. PMID:27607495
Ray-tracing analysis of the Wien velocity filter for protons
NASA Astrophysics Data System (ADS)
Kim, Jae Hong; Kim, Yu-Soek
2015-02-01
A Wien velocity filter employs a combination of crossed magnetic and electrostatic fields in order to select the desired velocity of ions. Several microscopes and spectrometers are used as filters to ensure the introduction of a pure ion fraction into the lens, deflecting unnecessary particles which have slightly different energies. The Wien filter is also considered to be a useful device to transport mono-energy protons from a source to an injection system. In its simplest form, the Wien filter has two flat parallel electrodes that are arranged between two flat magnet poles, creating homogeneous electric and magnetic fields which cross each other. However, this type of filter has no focusing effect in the direction of the magnetic field and has an unmatched field distribution, which causes deflections of protons at the entrance and the exit of the filter. At higher magnetic field strengs, for fast protons, the deflection of the trajectories becomes larger; thus, the transport efficiency is reduced. A low-aberration velocity filter is needed for high transport efficiency. Recently, a stigmatic focusing of the filter by using hyperbolic cylindrical magnet pole pieces, which produce an inhomogeneous magnetic field inside the ExB filter, has been suggested. In this research, three types of Wien filters were designed in order to investigate the geometry of the electrodes and the magnet poles, thus minimizing aberrations. Ray-tracing analyses were carried out to estimate the performance of the proposed Wien filters within a useful velocity selector.