A receding horizon approach for dynamic UAV mission management
NASA Astrophysics Data System (ADS)
Cassandras, Christos G.; Li, Wei
2003-09-01
We consider a setting where multiple UAVs form a team cooperating to visit multiple targets to collect rewards associated with them. The team objective is to maximize the total reward accumulated over a given time interval. Complicating factors include uncertainties regarding the locations of targets and the effectiveness of collecting rewards, differences among vehicle capabilities, and the fact that rewards are time-varying. We describe a Receding Horizon (RH) control scheme which dynamically assigns vehicles to targets and simultaneously determines associated trajectories. This scheme is based on solving a sequence of optimization problems over a planning horizon and executing them over a shorter action horizon. We also describe a simulated battlespace environment designed to test UAV team missions and to illustrate how the RH scheme can achieve optimal performance with high probability.
Information Space Receding Horizon Control for Multisensor Tasking Problems.
Sunberg, Zachary; Chakravorty, Suman; Erwin, Richard Scott
2016-06-01
In this paper, we present a receding horizon solution to the problem of optimal scheduling for multiple sensors monitoring a group of dynamical targets. The term target is used here in the classic sense of being the object that is being sensed or observed by the sensors. This problem is motivated by the space situational awareness (SSA) problem. The multisensor optimal scheduling problem can be posed as a multiagent Markov decision process on the information space which has a dynamic programming (DP) solution. We present a simulation-based stochastic optimization technique that exploits the structure inherent in the problem to obtain variance reduction along with a distributed solution. This stochastic optimization technique is combined with a receding horizon approach which uses online solution of the control problems to obviate the need to solve the computationally intractable multiagent information space DP problem and hence, makes the technique computationally tractable. The technique is tested on a moderate scale SSA example which is nonetheless computationally intractable for existing solution techniques. PMID:26259208
Stochastic receding horizon control: application to an octopedal robot
NASA Astrophysics Data System (ADS)
Shah, Shridhar K.; Tanner, Herbert G.
2013-06-01
Miniature autonomous systems are being developed under ARL's Micro Autonomous Systems and Technology (MAST). These systems can only be fitted with a small-size processor, and their motion behavior is inherently uncertain due to manufacturing and platform-ground interactions. One way to capture this uncertainty is through a stochastic model. This paper deals with stochastic motion control design and implementation for MAST- specific eight-legged miniature crawling robots, which have been kinematically modeled as systems exhibiting the behavior of a Dubin's car with stochastic noise. The control design takes the form of stochastic receding horizon control, and is implemented on a Gumstix Overo Fire COM with 720 MHz processor and 512 MB RAM, weighing 5.5 g. The experimental results show the effectiveness of this control law for miniature autonomous systems perturbed by stochastic noise.
Decentralized receding horizon control of large scale dynamically decoupled systems
NASA Astrophysics Data System (ADS)
Keviczky, Tamas
Decentralized control techniques today can be found in a broad spectrum of applications ranging from robotics and formation flight to civil engineering. Their importance for dynamically decoupled systems arises from the abundance of networks of independently actuated systems and the necessity of avoiding centralized design when this becomes computationally prohibitive or would require unrealistic expectations regarding information exchange. A decentralized optimal control framework using distributed Receding Horizon Control (RHC) schemes is proposed to address this problem, which helps overcome drawbacks of currently available methods. Stability of the proposed scheme is analyzed in detail and a number of methodologies are enlisted to address the problem of feasibility. In particular, a feasible decentralized RHC scheme based on hierarchical decomposition and feasible set projection is developed. Another approach for guaranteed constraint fulfillment is described as well using invariant sets of emergency controllers and switching. A hybrid decentralized RHC framework is also introduced based on coordinating functions and logic rules. The proposed framework makes use of algorithms that rely on results from computational geometry, mathematical programming solvers, constrained optimal control, invariant set computation and hybrid systems. These techniques allow the formulation of constrained optimal control problems and the computation of their equivalent look-up tables which are easily implementable in real-time. A summary of relevant background material related to these underlying techniques is provided in this thesis as well. Applicability of the proposed framework is explored using the formation control problem of multiple Unmanned Air Vehicles (UAVs) as a motivating example. This particular application problem has a wide range of envisioned applications including distributed sensing and monitoring, which appear to be the most promising ones. The challenge in UAV
NASA Astrophysics Data System (ADS)
Ahn, Choonki; Han, Soohee
This letter presents new delayed perturbation bounds (DPBs)for stabilizing receding horizon H∞ control (RHHC). The linear matrix inequality (LMI) approach to determination of DPBs for the RHHC is proposed. We show through a numerical example that the RHHC can guarantee an H∞ norm bound for a larger class of systems with delayed perturbations than conventional infinite horizon H∞ control (IHHC).
NASA Astrophysics Data System (ADS)
Joseph-Duran, Bernat; Ocampo-Martinez, Carlos; Cembrano, Gabriela
2015-10-01
An output-feedback control strategy for pollution mitigation in combined sewer networks is presented. The proposed strategy provides means to apply model-based predictive control to large-scale sewer networks, in-spite of the lack of measurements at most of the network sewers. In previous works, the authors presented a hybrid linear control-oriented model for sewer networks together with the formulation of Optimal Control Problems (OCP) and State Estimation Problems (SEP). By iteratively solving these problems, preliminary Receding Horizon Control with Moving Horizon Estimation (RHC/MHE) results, based on flow measurements, were also obtained. In this work, the RHC/MHE algorithm has been extended to take into account both flow and water level measurements and the resulting control loop has been extensively simulated to assess the system performance according different measurement availability scenarios and rain events. All simulations have been carried out using a detailed physically based model of a real case-study network as virtual reality.
NASA Astrophysics Data System (ADS)
Liu, C.; Chen, W.-H.
2013-12-01
This paper describes an integrated path planning and tracking control framework for autonomous vertical-take-off-and-landing (VTOL) vehicles, particularly quadrotors. The path planning adopts a receding horizon strategy to repeatedly plan a local trajectory that satisfies both the vehicle dynamics and obstacle-free requirement. A tracking controller is then designed to track the planned path. The differential flatness property of the quadrotor is exploited in both path planner and tracking controller designs. The proposed framework is verified by real-time simulations incorporating online optimization.
Peng, Haijun; Jiang, Xin
2016-01-01
This paper studies a nonlinear receding horizon control guidance strategy for spacecraft formation reconfiguration on libration orbits in the Sun-Earth system. For comparison, a linear quadratic soft terminal control strategy is also considered for the same reconfiguration missions. A novel symplectic iterative numerical algorithm is proposed to obtain the optimal solution for the nonlinear receding horizon control strategy at each update instant. With the aid of the quasilinearization method, a high-efficiency structure-preserving symplectic method is introduced in the iterations, and the optimal control problem is replaced successfully by a series of sparse symmetrical linear equations. Several typical spacecraft formation reconfiguration missions including resizing, rotating and slewing reconfigurations and their combinations are numerically simulated to show the effectiveness of the nonlinear receding horizon guidance strategy based on the proposed symplectic algorithm. Through these simulations, the nonlinear receding horizon control strategy is shown to have obvious advantages in convergence and parameter sensitivity compared with a linear quadratic soft terminal control strategy. Monte Carlo stochastic simulations are used to test the robustness of the nonlinear receding horizon control guidance in dealing with measurement and execution errors. PMID:26542358
NASA Astrophysics Data System (ADS)
Franzè, Giuseppe; Lucia, Walter; Tedesco, Francesco
2014-12-01
This paper proposes a Model Predictive Control (MPC) strategy to address regulation problems for constrained polytopic Linear Parameter Varying (LPV) systems subject to input and state constraints in which both plant measurements and command signals in the loop are sent through communication channels subject to time-varying delays (Networked Control System (NCS)). The results here proposed represent a significant extension to the LPV framework of a recent Receding Horizon Control (RHC) scheme developed for the so-called robust case. By exploiting the parameter availability, the pre-computed sequences of one- step controllable sets inner approximations are less conservative than the robust counterpart. The resulting framework guarantees asymptotic stability and constraints fulfilment regardless of plant uncertainties and time-delay occurrences. Finally, experimental results on a laboratory two-tank test-bed show the effectiveness of the proposed approach.
Horizon and the question whether galaxies that recede faster than light are observable
NASA Astrophysics Data System (ADS)
Kiang, T.
1997-02-01
To the question, "Can we observe galaxies that recede faster than light ?", the great majority of cosmologists at present would answer, "No, such galaxies are outside our horizon". Underlying this answer is the idea that velocity in relativistic cosmology has to be defined by the relativistic Doppler shift formula. But in cosmology, redshift is "cosmological" and not "Doppler". And there is available an independent definition of velocity. Thanks to the Cosmological Principle, there is a distance- independent, universal time t and a time- dependent, instantaneous distance l, and velocity can naturally be defined as dl/dt. With this definition and the cosmological interpretation of redshift, it is shown: (1) That "horizon", which owes its role as the limit of observation to its association with infinite redshift, is irrelevant to the question. (2) That the answer must depend on the particular cosmological model. Specifically. the answer is NO for the steady state model, and YES for all three types ( k = 0, -1, +1) of the big bang model; in the k = 0 model, all sources with redshifts greater than 1.25 would have had their recession velocities at the time of emission greater than 1 light velocity. It has been found useful to contrast the character of time and distance in cosmology and black hole physics. A brief history of time, distance, velocity and redshift is given to show that the Doppler formula is inapplicable to recession velocities. Based on the present approach, a "World Atlas of the Universe" is constructed, which shows, inter alia, that recession and photon velocities at distant points obey the old, pre-relativity law of addition, while the local speed of light is kept constant
Liu, Andong; Yu, Li; Zhang, Wen-An
2011-01-01
The receding horizon H(∞) control (RHHC) problem is investigated in this paper for a class of networked control systems (NCSs) with random delay and packet disordering. A new model is proposed to describe the NCS with random delay which may be larger than one sampling period. The random delay is modeled as a Markov chain while the closed-loop system is described as a Markovian jump system. Sufficient conditions for the closed-loop NCS to be stochastically stable and the performance index to be upper bounded are derived by using the receding optimization principle. Furthermore, by solving a semi-definite programming (SDP) with linear matrix inequalities (LMIs) constraint, a piecewise-constant receding horizon H(∞) controller is obtained, and the designed piecewise-constant controller ensures that the closed-loop NCS achieves a prescribed H(∞) disturbance attenuation level. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed method. PMID:21036353
Dynamical encoding of looming, receding, and focussing
NASA Astrophysics Data System (ADS)
Longtin, Andre; Clarke, Stephen Elisha; Maler, Leonard; Center for Neural Dynamics Collaboration
This talk will discuss a non-conventional neural coding task that may apply more broadly to many senses in higher vertebrates. We ask whether and how a non-visual sensory system can focus on an object. We present recent experimental and modeling work that shows how the early sensory circuitry of electric sense can perform such neuronal focusing that is manifested behaviorally. This sense is the main one used by weakly electric fish to navigate, locate prey and communicate in the murky waters of their natural habitat. We show that there is a distance at which the Fisher information of a neuron's response to a looming and receding object is maximized, and that this distance corresponds to a behaviorally relevant one chosen by these animals. Strikingly, this maximum occurs at a bifurcation between tonic firing and bursting. We further discuss how the invariance of this distance to signal attributes can arise, a process that first involves power-law spike frequency adaptation. The talk will also highlight the importance of expanding the classic dual neural encoding of contrast using ON and OFF cells in the context of looming and receding stimuli. The authors acknowledge support from CIHR and NSERC.
Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics.
Heydari, Ali; Balakrishnan, Sivasubramanya N
2013-01-01
To synthesize fixed-final-time control-constrained optimal controllers for discrete-time nonlinear control-affine systems, a single neural network (NN)-based controller called the Finite-horizon Single Network Adaptive Critic is developed in this paper. Inputs to the NN are the current system states and the time-to-go, and the network outputs are the costates that are used to compute optimal feedback control. Control constraints are handled through a nonquadratic cost function. Convergence proofs of: 1) the reinforcement learning-based training method to the optimal solution; 2) the training error; and 3) the network weights are provided. The resulting controller is shown to solve the associated time-varying Hamilton-Jacobi-Bellman equation and provide the fixed-final-time optimal solution. Performance of the new synthesis technique is demonstrated through different examples including an attitude control problem wherein a rigid spacecraft performs a finite-time attitude maneuver subject to control bounds. The new formulation has great potential for implementation since it consists of only one NN with single set of weights and it provides comprehensive feedback solutions online, though it is trained offline. PMID:24808214
Wang, Fei-Yue; Jin, Ning; Liu, Derong; Wei, Qinglai
2011-01-01
In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the optimal control law which makes the performance index function close to the greatest lower bound of all performance indices within an ε-error bound. The optimal number of control steps can also be obtained by the proposed ADP algorithms. A convergence analysis of the proposed ADP algorithms in terms of performance index function and control policy is made. In order to facilitate the implementation of the iterative ADP algorithms, neural networks are used for approximating the performance index function, computing the optimal control policy, and modeling the nonlinear system. Finally, two simulation examples are employed to illustrate the applicability of the proposed method. PMID:20876014
24. VIEW FORM NORTHWEST, WHERE HOUSE RECEDES INTO HILL, SHOWING ...
24. VIEW FORM NORTHWEST, WHERE HOUSE RECEDES INTO HILL, SHOWING ROOF, CHIMNEY AND OCTAGONAL SKYLIGHT TO KITCHEN IN CENTER - Isaac N. Hagan House, Kentuck Knob, U.S. Route 40 vicinity (Stewart Township), Chalkhill, Fayette County, PA
NASA Astrophysics Data System (ADS)
Perlovsky, Leonid I.; Webb, Virgil H.; Bradley, Scott R.; Hansen, Christopher A.
1998-07-01
An advanced detection and tracking system is being developed for the U.S. Navy's Relocatable Over-the-Horizon Radar (ROTHR) to provide improved tracking performance against small aircraft typically used in drug-smuggling activities. The development is based on the Maximum Likelihood Adaptive Neural System (MLANS), a model-based neural network that combines advantages of neural network and model-based algorithmic approaches. The objective of the MLANS tracker development effort is to address user requirements for increased detection and tracking capability in clutter and improved track position, heading, and speed accuracy. The MLANS tracker is expected to outperform other approaches to detection and tracking for the following reasons. It incorporates adaptive internal models of target return signals, target tracks and maneuvers, and clutter signals, which leads to concurrent clutter suppression, detection, and tracking (track-before-detect). It is not combinatorial and thus does not require any thresholding or peak picking and can track in low signal-to-noise conditions. It incorporates superresolution spectrum estimation techniques exceeding the performance of conventional maximum likelihood and maximum entropy methods. The unique spectrum estimation method is based on the Einsteinian interpretation of the ROTHR received energy spectrum as a probability density of signal frequency. The MLANS neural architecture and learning mechanism are founded on spectrum models and maximization of the "Einsteinian" likelihood, allowing knowledge of the physical behavior of both targets and clutter to be injected into the tracker algorithms. The paper describes the addressed requirements and expected improvements, theoretical foundations, engineering methodology, and results of the development effort to date.
Fluctuations of a receding contact line near the entrainment transition
NASA Astrophysics Data System (ADS)
Bico, Jose; Delon, Giles; Fermigier, Marc
2004-11-01
We study experimentally the fluctuations of a contact line receding on a plane solid substrate. The contact line is perturbed by localized defects and we follow the relaxation of perturbations induced by these defects, as a function of the mean contact line speed and wavelengths characteristic of the perturbations. We compare our results with theoretical predictions by Golestanian and Raphael showing a divergence of the relaxation time at the entrainment transition (when the receding velocity exceeds a critical value, the liquid is entrained by the solid).
Stability of the Taylor--Culick receding rim: surprising observations
NASA Astrophysics Data System (ADS)
Lhuissier, Henri; Villermaux, Emmanuel
2008-11-01
When punctured, a uniform liquid sheet is known, since Taylor and Culick, to recess at a constant speed balancing surface tension and inertia. For planar soap films, this steady solution holds until the initially smooth receding rim is violently destabilized, exhibiting deep indentations from which droplets are ejected. A surprising new three dimensional mechanism explaining this destabilization and resulting wavelength has been evidenced : because of the shear between the still outer medium and the receding liquid, the film flaps through a Kelvin--Helmholtz instability, itself inducing an acceleration perpendicular to the film, which intensifies with the flapping amplitude. To this acceleration is associated a classical Rayleigh--Taylor mechanism, promoting the rim indentations. The same mechanism holds for a punctured round bubble, for which the relevant acceleration is the Culick velocity squared divided by the bubble radius. The bearing of this phenomenon on aerosols formation in Nature will be underlined.
Coffee Stains from Drops with Receding Contact Lines
NASA Astrophysics Data System (ADS)
Freed-Brown, Julian
2015-03-01
We present a framework for calculating the surface density profile of a coffee stain deposited by a drying drop with a receding contact line. For standard coffee stains, the fluid pins to the substrate, forces flow towards the exterior of the drop and deposits a thin, concentrated ring of particles. Unlike a pinned drop, a receding drop pushes fluid towards its interior and continuously deposits mass across its substrate as it evaporates. This gives rise to a new class of mountain-like morphologies that are not seen in the standard coffee ring effect but are reminiscent of recent experimental results. For a thin, circular drop with uniform evaporation, we calculate the surface density profile analytically and find that it diverges towards the center of the drop as η ~r - 1 / 2 , where r is the distance from the center. We estimate how this divergence is softened due to solute interactions at the final stage of drying. Our framework can easily be extended numerically or analytically to investigate novel stain morphologies left by drying drops of different shapes and evaporation profiles. This work is part of a thesis project advised by Tom Witten. It was supported in part by the National Science Foundation's MRSEC Program under Award Number DMR 0820054.
Larry G. Stolarczyk, Sc.D.
2002-07-31
Real-time horizon sensing (HS) on continuous mining (CM) machines is becoming an industry tool. Installation and testing of production-grade HS systems has been ongoing this quarter at Oxbow Mining Company, Monterey Coal Company (EXXON), FMC Trona, Twentymile Coal Company (RAG America), and SASOL Coal. Detailed monitoring of system function, user experience, and mining benefits is ongoing. All horizon sensor components have finished MSHA (United States) and IEC (International) certification.
Microscopic Receding Contact Line Dynamics on Pillar and Irregular Superhydrophobic Surfaces
Yeong, Yong Han; Milionis, Athanasios; Loth, Eric; Bayer, Ilker S.
2015-01-01
Receding angles have been shown to have great significance when designing a superhydrophobic surface for applications involving self-cleaning. Although apparent receding angles under dynamic conditions have been well studied, the microscopic receding contact line dynamics are not well understood. Therefore, experiments were performed to measure these dynamics on textured square pillar and irregular superhydrophobic surfaces at micron length scales and at micro-second temporal scales. Results revealed a consistent “slide-snap” motion of the microscopic receding line as compared to the “stick-slip” dynamics reported in previous studies. Interface angles between 40–60° were measured for the pre-snap receding lines on all pillar surfaces. Similar “slide-snap” dynamics were also observed on an irregular nanocomposite surface. However, the sharper features of the surface asperities resulted in a higher pre-snap receding line interface angle (~90°). PMID:25670630
NASA Astrophysics Data System (ADS)
Marin, F.; Goosmann, R. W.; Petrucci, P.-O.
2016-06-01
Context. Obscuring circumnuclear dust is a well-established constituent of active galactic nuclei (AGN). Traditionally referred to as the receding dusty torus, its inner radius and angular extension should depend on the photo-ionizing luminosity of the central source. Aims: We quantify the expected time-dependent near-infrared (NIR), optical, ultraviolet (UV) and X-ray polarization of a receding dusty torus as a function of the variable X-ray flux level and spectral shape. Methods: Using a Monte Carlo approach, we simulate the radiative transfer between the multiple components of an AGN adopting model constraints from the bright Seyfert galaxy NGC 4151. We compare our model results to the observed NIR to UV polarization of the source and predict its X-ray polarization. Results: We find that the 2-8 keV polarization fraction of a standard AGN model varies from less then a few percent along polar viewing angles up to tens of percent at equatorial inclinations. At viewing angles around the type-1/type-2 transition, there is a different X-ray polarization variability in a static or a receding torus scenario. In the former case, the expected 2-8 keV polarization of NGC 4151 is found to be 1.21% ± 0.34% with a constant polarization position angle, while in the latter scenario it varies from 0.1% to 6% depending on the photon index of the primary radiation. Additionally, an orthogonal rotation of the polarization position angle with photon energy appears for very soft primary spectra. Conclusions: Future X-ray polarimetry missions will be able to test whether the receding model is valid for Seyfert galaxies seen at a viewing angle close to the torus horizon. The overall stability of the polarization position angle for photon indexes softer than Γ = 1.5 ensures that reliable measurements of X-ray polarization are possible. We derive a long-term observational strategy for NGC 4151 assuming observations with a small to medium-sized X-ray polarimetry satellite.
Larry G. Stolarczyk
2003-03-18
With the aid of a DOE grant (No. DE-FC26-01NT41050), Stolar Research Corporation (Stolar) developed the Horizon Sensor (HS) to distinguish between the different layers of a coal seam. Mounted on mining machine cutter drums, HS units can detect or sense the horizon between the coal seam and the roof and floor rock, providing the opportunity to accurately mine the section of the seam most desired. HS also enables accurate cutting of minimum height if that is the operator's objective. Often when cutting is done out-of-seam, the head-positioning function facilitates a fixed mining height to minimize dilution. With this technology, miners can still be at a remote location, yet cut only the clean coal, resulting in a much more efficient overall process. The objectives of this project were to demonstrate the feasibility of horizon sensing on mining machines and demonstrate that Horizon Sensing can allow coal to be cut cleaner and more efficiently. Stolar's primary goal was to develop the Horizon Sensor (HS) into an enabling technology for full or partial automation or ''agile mining''. This technical innovation (R&D 100 Award Winner) is quickly demonstrating improvements in productivity and miner safety at several prominent coal mines in the United States. In addition, the HS system can enable the cutting of cleaner coal. Stolar has driven the HS program on the philosophy that cutting cleaner coal means burning cleaner coal. The sensor, located inches from the cutting bits, is based upon the physics principles of a Resonant Microstrip Patch Antenna (RMPA). When it is in proximity of the rock-coal interface, the RMPA impedance varies depending on the thickness of uncut coal. The impedance is measured by the computer-controlled electronics and then sent by radio waves to the mining machine. The worker at the machine can read the data via a Graphical User Interface, displaying a color-coded image of the coal being cut, and direct the machine appropriately. The Horizon Sensor
Killing Horizons Kill Horizon Degrees
NASA Astrophysics Data System (ADS)
Bergamin, L.; Grumiller, D.
Frequently, it is argued that the microstates responsible for the Bekenstein-Hawking entropy should arise from some physical degrees of freedom located near or on the black hole horizon. In this essay, we elucidate that instead entropy may emerge from the conversion of physical degrees of freedom, attached to a generic boundary, into unobservable gauge degrees of freedom attached to the horizon. By constructing the reduced phase space, it can be demonstrated that such a transmutation indeed takes place for a large class of black holes, including Schwarzschild.
Stable predictive control horizons
NASA Astrophysics Data System (ADS)
Estrada, Raúl; Favela, Antonio; Raimondi, Angelo; Nevado, Antonio; Requena, Ricardo; Beltrán-Carbajal, Francisco
2012-04-01
The stability theory of predictive and adaptive predictive control for processes of linear and stable nature is based on the hypothesis of a physically realisable driving desired trajectory (DDT). The formal theoretical verification of this hypothesis is trivial for processes with a stable inverse, but it is not for processes with an unstable inverse. The extended strategy of predictive control was developed with the purpose of overcoming methodologically this stability problem and it has delivered excellent performance and stability in its industrial applications given a suitable choice of the prediction horizon. From a theoretical point of view, the existence of a prediction horizon capable of ensuring stability for processes with an unstable inverse was proven in the literature. However, no analytical solution has been found for the determination of the prediction horizon values which guarantee stability, in spite of the theoretical and practical interest of this matter. This article presents a new method able to determine the set of prediction horizon values which ensure stability under the extended predictive control strategy formulation and a particular performance criterion for the design of the DDT generically used in many industrial applications. The practical application of this method is illustrated by means of simulation examples.
ERIC Educational Resources Information Center
Aronson, Isaak; Miller, Joelle
2007-01-01
This article explores the tensions embedded in the implementation of the No Child Left Behind Act of 2001 (NCLB) that pose both opportunities and challenges for biology instruction with implications for all the sciences. It highlights issues that may arise as biology instruction is adapted to "fit" the NCLB mandates with specific focus on biology…
Line energy and the relation between advancing, receding, and young contact angles.
Tadmor, Rafael
2004-08-31
The line energy associated with the triple phase contact line is a function of local surface defects (chemical and topographical); however, it can still be calculated from the advancing and receding contact angles to which those defects give rise. In this study an expression for the line energy associated with the triple phase contact line is developed. The expression relates the line energy to the drop volume, the interfacial energies, and the actual contact angle (be it advancing, receding, or in between). From the expression we can back calculate the equilibrium Young contact angle, theta0, as a function of the maximal advancing, thetaA, and minimal receding, thetaR, contact angles. To keep a certain maximal hysteresis between advancing and receding angles, different line energies are required depending on the three interfacial energies and the drop's volume V. We learn from the obtained expressions that the hysteresis is determined by some dimensionless parameter, K, which is some normalized line energy. The value of K required to keep a constant hysteresis (thetaA-thetaR) rises to infinity as we get closer to theta0 = 90 degrees. PMID:15323516
Tuning the Receding Contact Angle on Hydrogels by Addition of Particles.
Boulogne, François; Ingremeau, François; Limat, Laurent; Stone, Howard A
2016-06-01
Control of the swelling, chemical functionalization, and adhesivity of hydrogels are finding new applications in a wide range of material systems. We investigate experimentally the effect of adsorbed particles on hydrogels on the depinning of contact lines. In our experiments, a water drop containing polystyrene microspheres is deposited on a swelling hydrogel, which leads to the drop absorption and particle deposition. Two regimes are observed: a decreasing drop height with a pinned contact line followed by a receding contact line. We show that increasing the particles concentration increases the duration of the first regime and significantly decreases the total absorption time. The adsorbed particles increase the pinning force at the contact line. Finally, we develop a method to measure the receding contact angle with the consideration of the hydrogel swelling. PMID:27185647
Semiclassical ultraextremal horizons
Matyjasek, Jerzy; Zaslavskii, O.B.
2005-04-15
We examine backreaction of quantum massive fields on multiply-degenerate (ultraextremal) horizons. It is shown that, under influence of the quantum backreaction, the horizon of such a kind moves to a new position near which the metric does not change its asymptotics, so the ultraextremal black holes and cosmological spacetimes do exist as self-consistent solutions of the semiclassical field equations.
ERIC Educational Resources Information Center
Johnson, L.; Smith, R.; Willis, H.; Levine, A.; Haywood, K.
2011-01-01
The internationally recognized series of "Horizon Reports" is part of the New Media Consortium's Horizon Project, a comprehensive research venture established in 2002 that identifies and describes emerging technologies likely to have a large impact over the coming five years on a variety of sectors around the globe. This volume, the "2011 Horizon…
ERIC Educational Resources Information Center
Lo, Mun Ling; Chik, Pakey Pui Man
2016-01-01
In this paper, we aim to differentiate the internal and external horizons of "fusion." "Fusion" in the internal horizon relates to the structure and meaning of the object of learning as experienced by the learner. It clarifies the interrelationships among an object's critical features and aspects. It also illuminates the…
ERIC Educational Resources Information Center
Johnson, L.; Levine, A.; Smith, R.; Stone, S.
2010-01-01
The annual "Horizon Report" describes the continuing work of the New Media Consortium's Horizon Project, a qualitative research project established in 2002 that identifies and describes emerging technologies likely to have a large impact on teaching, learning, or creative inquiry on college and university campuses within the next five years. The…
NASA Astrophysics Data System (ADS)
Batic, Davide; Nicolini, Piero
2010-08-01
We study the stability of the noncommutative Schwarzschild black hole interior by analysing the propagation of a massless scalar field between the two horizons. We show that the spacetime fuzziness triggered by the field higher momenta can cure the classical exponential blue-shift divergence, suppressing the emergence of infinite energy density in a region nearby the Cauchy horizon.
Li, Dandan; Xue, Yahui; Lv, Pengyu; Huang, Shenglin; Lin, Hao; Duan, Huiling
2016-05-14
The microstructure size on textured surfaces of a given solid fraction exhibits an important effect on their properties. To understand the size effect on surface adhesion, we study the receding dynamics of the microscopic three-phase contact lines, the adhesive properties, and the relation between them on microstructured surfaces. Two types of surfaces are used, which are micropillar and micropore, respectively. First, the receding process of the contact line is directly observed by laser scanning confocal microscopy (LSCM), which shows distinct characteristics on the two types of surfaces. The micro contact line experiences pinnning, sliding, and rupture on micropillar-patterned surfaces while no rupture occurs on micropore-patterned surfaces. The three-dimensional morphology of the micromeniscus on the micropillared surfaces and the two-dimensional scanning of the cross-sections of the micromeniscus along the diagonal direction are imaged. Based on the images, the local contact angles around the micropillar at the receding front, and the curvatures of the micro-meniscus are obtained. Then, the adhesive force on these surfaces is measured, which surprisingly shows an increasing trend with the size of the microstructure for micropillared surfaces but no obvious size dependence for micropored surfaces. Wetting hysteresis is also measured to testify the similar trend with the size for the two types of surfaces. Further investigation shows that the monotonic increase of the adhesive force with the increasing size of micropillars is due to the growing difficulty of the detachment of the contact lines. The underlying mechanism responsible for the size dependence of the adhesive force is the enhancement of the local reduced pressure exerted on the top of the micropillar with increasing size, resulting from the concave profile of the outer micromeniscus. PMID:27072295
Interfacial structure and rearrangement of nonionic surfactants near a receding contact line
NASA Astrophysics Data System (ADS)
Luokkala, Barry B.
Surfactant solutions exhibit a wide variety of wetting and dewetting behaviors on high energy surfaces. These behaviors are driven by surfactant self-assemblies at the moving contact line. To probe these self-assemblies, we have undertaken a study of surfactant structure at the three interfaces near a receding contact line. We immerse a hydrophilic silica surface in aqueous solutions of polyethyleneglycol monododecyl ether (C12En, 1 ≤ n ≤ 8) below the critical micelle concentration. The substrate is withdrawn from solution at a speed, U < Ucrit, the critical velocity for pulling a macroscopic film on the solid surface, so that a receding contact line moves across the surface. We determine the area per molecule adsorbed at the solid-liquid and liquid-vapor interfaces, and the structural details of the monolayer deposited to the solid-vapor interface at the receding contact line. We also describe in detail a new technique which we have developed for objectively interpreting data from x-ray reflectivity measurements, our primary tool for probing structure at the solid-vapor interface. We find that the adsorbed amount at the solid-liquid interface is a small-to-negligible contribution to the monolayer deposited at the solid-vapor interface for all n. The primary source of the deposited surfactant is the self-assembled layer at the liquid-vapor interface. The density of the deposited monolayer is substantially less than the density at the liquid-vapor interface. Conservation of mass demands a dividing streamline in the bulk, along which surfactant from the liquid-vapor interface is returned to solution. We note a transition at n = 6 from reversible to partially irreversible adsorption, suggesting the ethylene oxide (EO) head groups begin to behave like PEO polymer for n ≥ 6. At the liquid-vapor interface the area per molecule increases monotonically with n, suggesting increasing disorder in the head group region. The deposited monolayer at the solid
NASA Astrophysics Data System (ADS)
Schenk, Paul; Nimmo, Francis
2016-06-01
The New Horizons mission has revealed Pluto and its moon Charon to be geologically active worlds. The familiar, yet exotic, landforms suggest that geologic processes operate similarly across the Solar System, even in its cold outer reaches.
NASA Technical Reports Server (NTRS)
Jalink, A., Jr. (Inventor)
1973-01-01
A precise method and apparatus for locating the earth's infrared horizon from space that is independent of season and latitude is described. First and second integrations of the earth's radiance profile are made from space to earth with the second delayed with respect to the first. The second integration is multiplied by a predetermined constant R and then compared with the first integration. When the two are equal the horizon is located.
Broom, Donald M
2006-01-01
The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and
Lam, C N C; Wu, R; Li, D; Hair, M L; Neumann, A W
2002-02-25
Two types of experiments were used to study the behavior of both advancing and receding contact angles, namely the dynamic one-cycle contact angle (DOCA) and the dynamic cycling contact angle (DCCA) experiments. For the preliminary study, DOCA measurements of different liquids on different solids were performed using an automated axisymmetric drop shape analysis-profile (ADSA-P). From these experimental results, four patterns of receding contact angle were observed: (1) time-dependent receding contact angle; (2) constant receding contact angle; (3) 'stick/slip'; (4) no receding contact angle. For the purpose of illustration, results from four different solid surfaces are shown. These solids are: FC-732-coated surface; poly(methyl methacrylate/n-butyl methacrylate) [P(MMA/nBMA)]; poly(lactic acid) (DL-PLA); and poly(lactic/glycolic acid) 50/50 (DL-PLGA 50/50). Since most of the surfaces in our studies exhibit time dependence in the receding contact angle, a more extended study was conducted using only FC-732-coated surfaces to better understand the possible causes of decreasing receding contact angle and contact angle hysteresis. Contact angle measurements of 21 liquids from two homologous series (i.e. n-alkanes and 1-alcohols) and octamethylcyclotetrasiloxane (OCMTS) on FC-732-coated surfaces were performed. It is apparent that the contact angle hysteresis decreases with the chain length of the liquid. It was found that the receding contact angle equals the advancing angle when the alkane molecules are infinitely large. These results strongly suggest that the chain length and size of the liquid molecule could contribute to contact angle hysteresis phenomena. Furthermore, DCCA measurements of six liquids from the two homologous series on FC-732-coated surfaces were performed. With these experimental results, one can construe that the time dependence of contact angle hysteresis on relatively smooth and homogeneous surfaces is mainly caused by liquid retention
Proton transfer induced by receding water in Glycine---(Water)2 Complex
NASA Astrophysics Data System (ADS)
Pathak, Rajeev
2011-03-01
We investigate molecular co-operativity in the zwitterionic configuration of Glycine (Gly) with two proximal water molecules, Gly---(Water)2 , by deliberately making one of the water molecules recede from the remaining complex. The consequent intra-molecular proton transfer that renders the zwitterionic configuration into a neutral one is viewed under two scalar field descriptors: Molecular Electrostatic Potential (MESP), reflecting the modifications in the environment and the HOMO (highest occupied molecular orbital) electron density. We quantify the process further by energetics, through a many-body analysis of the interaction energy as well as salient IR spectral signatures associated with the proton-transfer. While we employ the decent MP2/aug-cc-pvDZ level of theory to seek optimal structures, it is gratifying that a prescription within density functional theory (DFT) also provides a reliable description of this process.
NASA Astrophysics Data System (ADS)
Ori, Amos
2016-01-01
Almheiri, Marolf, Polchinski, and Sully pointed out that for a sufficiently old black hole (BH), the set of assumptions known as the complementarity postulates appears to be inconsistent with the assumption of local regularity at the horizon. They concluded that the horizon of an old BH is likely to be the locus of local irregularity, a "firewall". Here I point out that if one adopts a different assumption, namely that semiclassical physics holds throughout its anticipated domain of validity, then the inconsistency is avoided, and the horizon retains its regularity. In this alternative view-point, the vast portion of the original BH information remains trapped inside the BH throughout the semiclassical domain of evaporation, and possibly leaks out later on. This appears to be an inevitable outcome of semiclassical gravity (if assumed to apply throughout its anticipated domain of validity).
NASA Astrophysics Data System (ADS)
Bargatze, L. F.
2015-12-01
Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted
Noguera-Marín, Diego; Moraila-Martínez, Carmen Lucía; Cabrerizo-Vílchez, Miguel; Rodríguez-Valverde, Miguel Angel
2016-02-01
The motion of electrically charged particles under crowding conditions and subjected to evaporation-driven capillary flow might be ruled by collective diffusion. The concentration gradient developed inside an evaporating drop of colloidal suspension may reduce by diffusion the number of particles transported toward the contact line by convection. Unlike self-diffusion coefficient, the cooperative diffusion coefficient of interacting particles becomes more pronounced in crowded environments. In this work, we examined experimentally the role of the collective diffusion of charge-stabilized nanoparticles in colloidal patterning. To decouple the sustained evaporation from the contact line motion, we conducted evaporating menisci experiments with driven receding contact lines at low capillary number. This allowed us to explore convective assembly at fixed and low bulk concentration, which enabled to develop high concentration gradients. At fixed velocity of receding contact line, we explored a variety of substrate-particle systems where the particle-particle electrostatic interaction was changed (via p H) as well as the substrate receding contact angle and the relative humidity. We found that the particle deposition directed by receding contact lines may be controlled by the interplay between evaporative convection and collective diffusion, particularly at low particle concentration. PMID:26920523
NASA Astrophysics Data System (ADS)
Akcay, Sarp
Boosted black holes play an important role in General Relativity (GR), especially in relation to the binary black hole problem. Solving Einstein vac- uum equations in the strong field regime had long been the holy grail of numerical relativity until the significant breakthroughs made in 2005 and 2006. Numerical relativity plays a crucial role in gravitational wave detection by providing numerically generated gravitational waveforms that help search for actual signatures of gravitational radiation exciting laser interferometric de- tectors such as LIGO, VIRGO and GEO600 here on Earth. Binary black holes orbit each other in an ever tightening adiabatic inspiral caused by energy loss due to gravitational radiation emission. As the orbits shrinks, the holes speed up and eventually move at relativistic speeds in the vicinity of each other (separated by ~ 10M or so where 2M is the Schwarzschild radius). As such, one must abandon the Newtonian notion of a point mass on a circular orbit with tangential velocity and replace it with the concept of black holes, cloaked behind spheroidal event horizons that become distorted due to strong gravity, and further appear distorted because of Lorentz effects from the high orbital velocity. Apparent horizons (AHs) are 2-dimensional boundaries that are trapped surfaces. Conceptually, one can think of them as 'quasi-local' definitions for a black hole horizon. This will be explained in more detail in chapter 2. Apparent horizons are especially important in numerical relativity as they provide a computationally efficient way of describing and locating a black hole horizon. For a stationary spacetime, apparent horizons are 2-dimensional cross-sections of the event horizon, which is itself a 3-dimensional null surface in spacetime. Because an AH is a 2-dimensional cross-section of an event horizon, its area remains invariant under distortions due to Lorentz boosts although its shape changes. This fascinating property of the AH can be
Instability of enclosed horizons
NASA Astrophysics Data System (ADS)
Kay, Bernard S.
2015-03-01
We point out that there are solutions to the scalar wave equation on dimensional Minkowski space with finite energy tails which, if they reflect off a uniformly accelerated mirror due to (say) Dirichlet boundary conditions on it, develop an infinite stress-energy tensor on the mirror's Rindler horizon. We also show that, in the presence of an image mirror in the opposite Rindler wedge, suitable compactly supported arbitrarily small initial data on a suitable initial surface will develop an arbitrarily large stress-energy scalar near where the two horizons cross. Also, while there is a regular Hartle-Hawking-Israel-like state for the quantum theory between these two mirrors, there are coherent states built on it for which there are similar singularities in the expectation value of the renormalized stress-energy tensor. We conjecture that in other situations with analogous enclosed horizons such as a (maximally extended) Schwarzschild black hole in equilibrium in a (stationary spherical) box or the (maximally extended) Schwarzschild-AdS spacetime, there will be similar stress-energy singularities and almost-singularities—leading to instability of the horizons when gravity is switched on and matter and gravity perturbations are allowed for. All this suggests it is incorrect to picture a black hole in equilibrium in a box or a Schwarzschild-AdS black hole as extending beyond the past and future horizons of a single Schwarzschild (/Schwarzschild-AdS) wedge. It would thus provide new evidence for 't Hooft's brick wall model while seeming to invalidate the picture in Maldacena's ` Eternal black holes in AdS'. It would thereby also support the validity of the author's matter-gravity entanglement hypothesis and of the paper ` Brick walls and AdS/CFT' by the author and Ortíz.
Spacetimes containing slowly evolving horizons
Kavanagh, William; Booth, Ivan
2006-08-15
Slowly evolving horizons are trapping horizons that are ''almost'' isolated horizons. This paper reviews their definition and discusses several spacetimes containing such structures. These include certain Vaidya and Tolman-Bondi solutions as well as (perturbatively) tidally distorted black holes. Taking into account the mass scales and orders of magnitude that arise in these calculations, we conjecture that slowly evolving horizons are the norm rather than the exception in astrophysical processes that involve stellar-scale black holes.
NASA Astrophysics Data System (ADS)
Tsoumpas, Yannis; Dehaeck, Sam; Rednikov, Alexey; Colinet, Pierre
2014-11-01
Freely receding evaporating sessile droplets of perfectly wetting liquids (HFE-7100, 7200 and 7500), with small finite contact angles induced by evaporation, are studied with a Mach-Zehnder interferometer. Surprisingly, the experimentally obtained profiles turn out to deviate from the classical macroscopic static shape of a sessile droplet (as determined by gravity and capillarity), often used when modeling evaporating droplets. These deviations can be seen in two ways. Namely, either the droplet appears to be inflated as compared to the classical static shape assuming the same contact angle and contact radius, or the apparent contact angle appears lower than the classical static one assuming the same volume and contact radius. In reality, the experimental profiles exhibit a local decrease of the slope near the contact line, which we attribute to the Marangoni effect in an evaporating sessile droplet. In this case, the radially inward (along the liquid-air interface) direction of the flow delivers more liquid to the center of the droplet making it appear inflated. When the Marangoni effect is weak, as in the case of the poorly volatile HFE-7500, no significant influence is noticed on the drop shape. The experimental results are compared with the predictions of a lubrication-type theoretical model that incorporates the evaporation-induced Marangoni flow. Financial support of FP7 Marie Curie MULTIFLOW Network (PITN-GA-2008-214919), ESA/BELSPO-PRODEX, BELSPO- μMAST (IAP 7/38) & FRS-FNRS is gratefully acknowledged.
Evidence for a Receding Dust Sublimation Region around a Supermassive Black Hole
NASA Astrophysics Data System (ADS)
Kishimoto, Makoto; Hönig, Sebastian F.; Antonucci, Robert; Millan-Gabet, Rafael; Barvainis, Richard; Millour, Florentin; Kotani, Takayuki; Tristram, Konrad R. W.; Weigelt, Gerd
2013-10-01
The near-IR emission in Type 1 active galactic nuclei (AGNs) is thought to be dominated by the thermal radiation from dust grains that are heated by the central engine in the UV/optical and are almost at the sublimation temperature. A brightening of the central source can thus further sublimate the innermost dust, leading to an increase in the radius of the near-IR emitting region. Such changes in radius have been indirectly probed by the measurements of the changes in the time lag between the near-IR and UV/optical light variation. Here we report direct evidence for such a receding sublimation region through the near-IR interferometry of the brightest Type 1 AGN in NGC 4151. The increase in radius follows a significant brightening of the central engine with a delay of at least a few years, which is thus the implied destruction timescale of the innermost dust distribution. Compiling historic flux variations and radius measurements, we also infer the reformation timescale for the inner dust distribution to be several years in this galactic nucleus. More specifically and quantitatively, we find that the radius at a given time seems to be correlated with a long-term average of the flux over the previous several (~6) years, instead of the instantaneous flux. Finally, we also report measurements of three more Type 1 AGNs newly observed with the Keck interferometer, as well as the second epoch measurements for three other AGNs.
EVIDENCE FOR A RECEDING DUST SUBLIMATION REGION AROUND A SUPERMASSIVE BLACK HOLE
Kishimoto, Makoto; Tristram, Konrad R. W.; Weigelt, Gerd; Hönig, Sebastian F.; Antonucci, Robert; Millan-Gabet, Rafael; Barvainis, Richard; Millour, Florentin; Kotani, Takayuki
2013-10-01
The near-IR emission in Type 1 active galactic nuclei (AGNs) is thought to be dominated by the thermal radiation from dust grains that are heated by the central engine in the UV/optical and are almost at the sublimation temperature. A brightening of the central source can thus further sublimate the innermost dust, leading to an increase in the radius of the near-IR emitting region. Such changes in radius have been indirectly probed by the measurements of the changes in the time lag between the near-IR and UV/optical light variation. Here we report direct evidence for such a receding sublimation region through the near-IR interferometry of the brightest Type 1 AGN in NGC 4151. The increase in radius follows a significant brightening of the central engine with a delay of at least a few years, which is thus the implied destruction timescale of the innermost dust distribution. Compiling historic flux variations and radius measurements, we also infer the reformation timescale for the inner dust distribution to be several years in this galactic nucleus. More specifically and quantitatively, we find that the radius at a given time seems to be correlated with a long-term average of the flux over the previous several (∼6) years, instead of the instantaneous flux. Finally, we also report measurements of three more Type 1 AGNs newly observed with the Keck interferometer, as well as the second epoch measurements for three other AGNs.
Biessmann, H; Champion, L E; O'Hair, M; Ikenaga, K; Kasravi, B; Mason, J M
1992-01-01
HeT-A elements are a new family of transposable elements in Drosophila that are found exclusively in telomeric regions and in the pericentric heterochromatin. Transposition of these elements onto broken chromosome ends has been implicated in chromosome healing. To monitor the fate of HeT-A elements that had attached to broken ends of the X chromosome, we examined individual X chromosomes from a defined population over a period of 17 generations. The ends of the X chromosomes with new HeT-A additions receded at the same rate as the broken ends before the HeT-A elements attached. In addition, some chromosomes, approximately 1% per generation, had acquired new HeT-A sequences of an average of 6 kb at their ends with oligo(A) tails at the junctions. Thus, the rate of addition of new material per generation matches the observed rate of terminal loss (70-75 bp) caused by incomplete replication at the end of the DNA molecule. One such recently transposed HeT-A element which is at least 12 kb in length has been examined in detail. It contains a single open reading frame of 2.8 kb which codes for a gag-like protein. Images PMID:1330538
Cockell, Charles S; Pybus, David; Olsson-Francis, Karen; Kelly, Laura; Petley, David; Rosser, Nick; Howard, Kieren; Mosselmans, Fred
2011-01-01
Shales play an important role in many earth system processes including coastal erosion, and they form the foundations of many engineering structures. The geobiology of the interior of pyrite-containing receding shale cliffs on the coast of northeast England was examined. The surface of the weathered shales was characterised by a thin layer of disordered authigenic iron oxyhydroxides and localised acicular, platy and aggregated gypsum, which was characterised by Raman spectroscopy, XAS and SEM. These chemical changes are likely to play an important role in causing rock weakening along fractures at the micron scale, which ultimately lead to coastal retreat at the larger scale. The surface of the shale hosts a novel, low-diversity microbial community. The bacterial community was dominated by Proteobacteria, with phylotypes closely associating with Methylocella and other members of the γ-subdivision. The second largest phylogenetic group corresponded to Nitrospira. The archaeal 16S rRNA phylotypes were dominated by a single group of sequences that matched phylotypes reported from South African gold mines and possessed ammonia monooxygenase (amoA) genes. Both the phylogenetic and the mineral data show that acidic microenvironments play an important role in shale weathering, but the shale has a higher microbial diversity than previously described pyritic acid mine drainage sites. The presence of a potentially biogeochemically active microbial population on the rock surface suggests that microorganisms may contribute to early events of shale degradation and coastal erosion. PMID:20683587
Bach, Dominik R.; Furl, Nicholas; Barnes, Gareth; Dolan, Raymond J.
2015-01-01
Rising sound intensity often signals an approaching sound source and can serve as a powerful warning cue, eliciting phasic attention, perception biases and emotional responses. How the evaluation of approaching sounds unfolds over time remains elusive. Here, we capitalised on the temporal resolution of magnetoencephalograpy (MEG) to investigate in humans a dynamic encoding of perceiving approaching and receding sounds. We compared magnetic responses to intensity envelopes of complex sounds to those of white noise sounds, in which intensity change is not perceived as approaching. Sustained magnetic fields over temporal sensors tracked intensity change in complex sounds in an approximately linear fashion, an effect not seen for intensity change in white noise sounds, or for overall intensity. Hence, these fields are likely to track approach/recession, but not the apparent (instantaneous) distance of the sound source, or its intensity as such. As a likely source of this activity, the bilateral inferior temporal gyrus and right temporo-parietal junction emerged. Our results indicate that discrete temporal cortical areas parametrically encode behavioural significance in moving sound sources where the signal unfolded in a manner reminiscent of evidence accumulation. This may help an understanding of how acoustic percepts are evaluated as behaviourally relevant, where our results highlight a crucial role of cortical areas. PMID:26226395
Herbig-Haro objects in the receding lobe of the L 1551 outflow
NASA Technical Reports Server (NTRS)
Graham, J. A.; Rubin, Vera C.
1992-01-01
A spectrum has been obtained of two Herbig-Haro objects which are seen against the receding lobe of the bipolar outflow within the dark cloud Lynds 1551. Positive heliocentric velocities up to 90 km/s have been measured from the H-alpha line which point to an association of these emission knots with the embedded infrared source L 1551-IRS 5 rather than with other young stellar objects in this part of the sky. There is a velocity range of 50-100 km/s within each object. (S II) lambda 6716 is also detected at a strength of about 50 pct of H-alpha. Along the entire length of the slit there is broad H-alpha emission with strength about four times that normally seen in emission from the night sky. This feature partially resolves into two components, one of which we suggest is from the general Galactic field, and the other from extended bow-shock emission.
NASA Technical Reports Server (NTRS)
Schaefer, Bradley E.; Liller, William
1990-01-01
Variations in astronomical refraction near the horizon are examined. Sunset timings, a sextant mounted on a tripod, and a temperature profile are utilized to derive the variations in refraction data, collected from 7 locations. It is determined that the refraction ranges from 0.234 to 1.678 deg with an rms deviation of 0.16, and it is observed that the variation is larger than previously supposed. Some applications for the variation of refraction value are discussed.
NASA Astrophysics Data System (ADS)
Cottrell, Paul Edward
There is a lack of research in the area of hedging future contracts, especially in illiquid or very volatile market conditions. It is important to understand the volatility of the oil and currency markets because reduced fluctuations in these markets could lead to better hedging performance. This study compared different hedging methods by using a hedging error metric, supplementing the Receding Horizontal Control and Stochastic Programming (RHCSP) method by utilizing the London Interbank Offered Rate with the Levy process. The RHCSP hedging method was investigated to determine if improved hedging error was accomplished compared to the Black-Scholes, Leland, and Whalley and Wilmott methods when applied on simulated, oil, and currency futures markets. A modified RHCSP method was also investigated to determine if this method could significantly reduce hedging error under extreme market illiquidity conditions when applied on simulated, oil, and currency futures markets. This quantitative study used chaos theory and emergence for its theoretical foundation. An experimental research method was utilized for this study with a sample size of 506 hedging errors pertaining to historical and simulation data. The historical data were from January 1, 2005 through December 31, 2012. The modified RHCSP method was found to significantly reduce hedging error for the oil and currency market futures by the use of a 2-way ANOVA with a t test and post hoc Tukey test. This study promotes positive social change by identifying better risk controls for investment portfolios and illustrating how to benefit from high volatility in markets. Economists, professional investment managers, and independent investors could benefit from the findings of this study.
NASA Astrophysics Data System (ADS)
Yang, Chao Yuan
2012-05-01
Anomalous decelerations of spacecraft Pioneer-10,11,etc could be interpreted as signal delay effect between speed of gravity and that of light as reflected in virtual scale, similar to covarying virtual scale effect in relative motion (http://arxiv.org/html/math-ph/0001019v5).A finite speed of gravity faster than light could be inferred (http://arXiv.org/html/physics/0001034v2). Measurements of gravitational variations by paraconical pendulum during a total solar eclipse infer the same(http://arXiv.org/html/physics/0001034v9). A finite Superluminal speed of gravity is the necessary condition to imply that there exists gravitational horizon (GH). Such "GH" of our Universe would stretch far beyond the cosmic event horizon of light. Dark energy may be owing to mutually interactive gravitational horizons of cousin universes. Sufficient condition for the conjecture is that the dark energy would be increasing with age of our Universe since accelerated expansion started about 5 Gyr ago, since more and more arrivals of "GH" of distant cousin universes would interact with "GH" of our Universe. The history of dark energy variations between then and now would be desirable(http://arXiv.org/html/physics/0001034). In "GH" conjecture, the neighborhood of cousin universes would be likely boundless in 4D-space-time without begining or end. The dark energy would keep all universes in continually accelerated expansion to eventual fragmentation. Fragments would crash and merge into bangs, big or small, to form another generation of cousin universes. These scenarios might offer a clue to what was before the big bang.
NASA Technical Reports Server (NTRS)
2007-01-01
Artist's concept of the New Horizons spacecraft as it approaches Pluto and its largest moon, Charon, in July 2015. The craft's miniature cameras, radio science experiment, ultraviolet and infrared spectrometers and space plasma experiments will characterize the global geology and geomorphology of Pluto and Charon, map their surface compositions and temperatures, and examine Pluto's atmosphere in detail. The spacecraft's most prominent design feature is a nearly 7-foot (2.1-meter) dish antenna, through which it will communicate with Earth from as far as 4.7 billion miles (7.5 billion kilometers) away.
Internet's critical path horizon
NASA Astrophysics Data System (ADS)
Valverde, S.; Solé, R. V.
2004-03-01
Internet is known to display a highly heterogeneous structure and complex fluctuations in its traffic dynamics. Congestion seems to be an inevitable result of user's behavior coupled to the network dynamics and it effects should be minimized by choosing appropriate routing strategies. But what are the requirements of routing depth in order to optimize the traffic flow? In this paper we analyse the behavior of Internet traffic with a topologically realistic spatial structure as described in a previous study [S.-H. Yook et al., Proc. Natl Acad. Sci. USA 99, 13382 (2002)]. The model involves self-regulation of packet generation and different levels of routing depth. It is shown that it reproduces the relevant key, statistical features of Internet's traffic. Moreover, we also report the existence of a critical path horizon defining a transition from low-efficient traffic to highly efficient flow. This transition is actually a direct consequence of the web's small world architecture exploited by the routing algorithm. Once routing tables reach the network diameter, the traffic experiences a sudden transition from a low-efficient to a highly-efficient behavior. It is conjectured that routing policies might have spontaneously reached such a compromise in a distributed manner. Internet would thus be operating close to such critical path horizon.
Horizon thermodynamics and spacetime mappings
NASA Astrophysics Data System (ADS)
Faraoni, Valerio; Vitagliano, Vincenzo
2014-03-01
When black holes are dynamical, event horizons are replaced by apparent and trapping horizons. Conformal and Kerr-Schild transformations are widely used in relation to dynamical black holes, and we study the behavior under such transformations of quantities related to the thermodynamics of these horizons, such as the Misner-Sharp-Hernandez mass (internal energy), the Kodama vector, surface gravity, and temperature. The transformation properties are not those expected on the basis of naive arguments.
HORIZON SENSING (PROPOSAL NO.51)
Larry G. Stolarczyk
2003-07-01
Real-time horizon sensing on continuous mining machines is becoming an industry tool. Installation and testing of production-grade Horizon Sensor (HS) systems continued this quarter at Monterey Coal Company (ExxonMobil), Mountain Coal Company West Elk Mine (Arch), and Ohio Valley Coal Company (OVC). Monitoring of system function, user experience, and mining benefits is ongoing. All horizon sensor components have finished MSHA (U.S.) and IEC (International) certification.
HORIZON SENSING (PROPOSAL NO.51)
Larry G. Stolarczyk
2003-07-30
Real-time horizon sensing on continuous mining (CM) machines is becoming an industry tool. Installation and testing of production-grade Horizon Sensor (HS) systems has been ongoing this quarter at Monterey Coal Company (ExxonMobil), Mountain Coal Company West Elk Mine (Arch), Deserado Mining Company (Blue Mountain Energy), and The Ohio Valley Coal Company (TOVCC). Monitoring of system function, user experience, and mining benefits is ongoing. All horizon sensor components have finished MSHA (U.S.) and IEC (International) certification.
Transverse deformations of extreme horizons
NASA Astrophysics Data System (ADS)
Li, Carmen; Lucietti, James
2016-04-01
We consider the inverse problem of determining all extreme black hole solutions to the Einstein equations with a prescribed near-horizon geometry. We investigate this problem by considering infinitesimal deformations of the near-horizon geometry along transverse null geodesics. We show that, up to a gauge transformation, the linearised Einstein equations reduce to an elliptic PDE for the extrinsic curvature of a cross-section of the horizon. We deduce that for a given near-horizon geometry there exists a finite dimensional moduli space of infinitesimal transverse deformations. We then establish a uniqueness theorem for transverse deformations of the extreme Kerr horizon. In particular, we prove that the only smooth axisymmetric transverse deformation of the near-horizon geometry of extreme Kerr, such that cross-sections of the horizon are marginally trapped surfaces, corresponds to that of the extreme Kerr black hole. Furthermore, we determine all smooth and biaxisymmetric transverse deformations of the near-horizon geometry of the five-dimensional extreme Myers-Perry black hole with equal angular momenta. We find a three parameter family of solutions such that cross-sections of the horizon are marginally trapped, which is more general than the known black hole solutions. We discuss the possibility that they correspond to new five-dimensional vacuum black holes.
Technologies on the Horizon: Teachers Respond to the Horizon Report
ERIC Educational Resources Information Center
Hodges, Charles B.; Prater, Alyssa H.
2014-01-01
The purpose of this study was to investigate teachers' beliefs regarding the integration of technologies from the 2011 K-12 edition of the "Horizon Report" into their local, public school contexts. Teachers read the "Horizon Report" and then participated in an asynchronous, threaded discussion focusing on technologies they…
Koenderink, Jan
2014-12-20
The problem of "distortionless" viewing with terrestrial telescopic systems (mainly "binoculars") remains problematic. The so called "globe effect" is only partially counteracted in modern designs. Theories addressing the phenomenon have never reached definitive closure. In this paper, we show that exact distortionless viewing with terrestrial telescopic systems is not possible in general, but that it is in principle possible in-very frequent in battle field and marine applications-the case of horizon scanning. However, this involves cylindrical optical elements. For opto-electronic systems, a full solution is more readily feasible. The solution involves a novel interpretation of the relevant constraints and objectives. For final design decisions, it is not necessary to rely on a corpus of psychophysical (or ergonomic) data, although one has to decide whether the instrument is intended as an extension of the eye or as a "pictorial" device. PMID:25608206
Harrison, Sarah; Kachru, Shamit; Wang, Huajia; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC
2012-04-24
Via the AdS/CFT correspondence, ground states of field theories at finite charge density are mapped to extremal black brane solutions. Studies of simple gravity + matter systems in this context have uncovered wide new classes of extremal geometries. The Lifshitz metrics characterizing field theories with non-trivial dynamical critical exponent z {ne} 1 emerge as one common endpoint in doped holographic toy models. However, the Lifshitz horizon exhibits mildly singular behaviour - while curvature invariants are finite, there are diverging tidal forces. Here we show that in some of the simplest contexts where Lifshitz metrics emerge, Einstein-Maxwell-dilaton theories, generic corrections lead to a replacement of the Lifshitz metric, in the deep infrared, by a re-emergent AdS{sub 2} x R{sup 2} geometry. Thus, at least in these cases, the Lifshitz scaling characterizes the physics over a wide range of energy scales, but the mild singularity is cured by quantum or stringy effects.
Fluctuating black hole horizons
NASA Astrophysics Data System (ADS)
Mei, Jianwei
2013-10-01
In this paper we treat the black hole horizon as a physical boundary to the spacetime and study its dynamics following from the Gibbons-Hawking-York boundary term. Using the Kerr black hole as an example we derive an effective action that describes, in the large wave number limit, a massless Klein-Gordon field living on the average location of the boundary. Complete solutions can be found in the small rotation limit of the black hole. The formulation suggests that the boundary can be treated in the same way as any other matter contributions. In particular, the angular momentum of the boundary matches exactly with that of the black hole, suggesting an interesting possibility that all charges (including the entropy) of the black hole are carried by the boundary. Using this as input, we derive predictions on the Planck scale properties of the boundary.
NASA Astrophysics Data System (ADS)
Fountain, Glen H.; Kusnierkiewicz, David Y.; Hersman, Christopher B.; Herder, Timothy S.; Coughlin, Thomas B.; Gibson, William C.; Clancy, Deborah A.; Deboy, Christopher C.; Hill, T. Adrian; Kinnison, James D.; Mehoke, Douglas S.; Ottman, Geffrey K.; Rogers, Gabe D.; Stern, S. Alan; Stratton, James M.; Vernon, Steven R.; Williams, Stephen P.
2008-10-01
The New Horizons spacecraft was launched on 19 January 2006. The spacecraft was designed to provide a platform for seven instruments designated by the science team to collect and return data from Pluto in 2015. The design meets the requirements established by the National Aeronautics and Space Administration (NASA) Announcement of Opportunity AO-OSS-01. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration consistent with meeting the AO requirement of returning data prior to the year 2020. The spacecraft subsystems were designed to meet tight resource allocations (mass and power) yet provide the necessary control and data handling finesse to support data collection and return when the one-way light time during the Pluto fly-by is 4.5 hours. Missions to the outer regions of the solar system (where the solar irradiance is 1/1000 of the level near the Earth) require a radioisotope thermoelectric generator (RTG) to supply electrical power. One RTG was available for use by New Horizons. To accommodate this constraint, the spacecraft electronics were designed to operate on approximately 200 W. The travel time to Pluto put additional demands on system reliability. Only after a flight time of approximately 10 years would the desired data be collected and returned to Earth. This represents the longest flight duration prior to the return of primary science data for any mission by NASA. The spacecraft system architecture provides sufficient redundancy to meet this requirement with a probability of mission success of greater than 0.85. The spacecraft is now on its way to Pluto, with an arrival date of 14 July 2015. Initial in-flight tests have verified that the spacecraft will meet the design requirements.
The Horizon Report. 2007 Edition
ERIC Educational Resources Information Center
New Media Consortium, 2007
2007-01-01
This fourth edition of the New Media Consortium's (NMC) annual "Horizon Report" describes the continuing work of the Horizon Project, a research-oriented effort that seeks to identify and describe emerging technologies likely to have a large impact on teaching, learning, or creative expression within higher education. Drawing on ongoing…
The Horizon Report. 2006 Edition
ERIC Educational Resources Information Center
New Media Consortium, 2006
2006-01-01
This third edition of the New Media Consortium's (NMC) annual "Horizon Report" describes the continuing work of the Horizon Project, a research-oriented effort that seeks to identify and describe emerging technologies likely to have a large impact on teaching, learning, or creative expression within higher education. Drawing on ongoing discussions…
The Horizon Report. 2004 Edition
ERIC Educational Resources Information Center
New Media Consortium, 2004
2004-01-01
This first edition of the New Media Consortium's (NMC) annual "Horizon Report" details findings of the Horizon Project, a research-oriented effort that seeks to identify and describe emerging technologies likely to have a large impact on teaching, learning, or creative expression within higher education. Drawing on an ongoing series of interviews…
The Horizon Report. 2005 Edition
ERIC Educational Resources Information Center
New Media Consortium, 2005
2005-01-01
This second edition of the New Media Consortium's (NMC) annual "Horizon Report" describes the continuing work of the Horizon Project, a research-oriented effort that seeks to identify and describe emerging technologies likely to have a large impact on teaching, learning, or creative expression within higher education. Drawing on an ongoing series…
NASA Astrophysics Data System (ADS)
Rode, Matthias; Gitschthaler, Christoph; Schnepfleitner, Harald; Kellerer-Pirklbauer, Andreas; Sass, Oliver
2014-05-01
The Northern Calcareous Alps cover a large area of the Austrian Alps forming a boundary zone between the Alpine Foreland to the north and the crystalline Central Alps to the south. Generally, climate in this area is more maritime compared to the mountain ranges further south. Few small glaciers are to be found mostly on north-facing slopes. The Northern Calcareous Alps reach maximum elevations of about 3000 m asl. Some of highest summits are to be found are located in the Dachstein Massif reaching 2995 m asl (47° 28' 32″ N, 13° 36' 23″ E). Occurrence, thickness and thermal regime of permafrost at this mountain massif are widely unknown and knowledge is based on simulations only. In contrast, the glaciation changes at this mountain massif (e.g. Schladminger and Hallstätter glaciers) have been well documented for decades. Within the framework of the research project ROCKING ALPS - dealing with frost weathering and rockfall in alpine regions - knowledge of permafrost distribution in the headwalls surrounding the receding glaciers is substantial to understand rock decay. For this reason, several techniques have been applied in order to detect bedrock permafrost. During the winter of 2012 22 i-buttons (temperature sensors) were attached to rock walls with different orientations but at similar elevations (2600-2700 m asl). Most of these sites were later covered by an insulating winter snow cover therefore allowing the calculation of the base temperature of the winter snow cover (BTS). These BTS data have been used as a first indicator of permafrost presence. In selected rock walls of several mountains in the massif - Koppenkarstein (2863 m asl), Dirndln (2829 m asl) and Gjaidstein (2794 m asl) - additional 2D-geoelectric surveys (five ERT profiles with a length of 100 m and 2 m electrode spacing) were measured in summer 2013. The high resistivities (> 50.000 ohm.m) at about 1.5 m depth and deeper strongly suggest permafrost existence inside the bedrock at all
Schouten, Ben; Troje, Nikolaus F.; Vroomen, Jean; Verfaillie, Karl
2011-01-01
Background The focus in the research on biological motion perception traditionally has been restricted to the visual modality. Recent neurophysiological and behavioural evidence, however, supports the idea that actions are not represented merely visually but rather audiovisually. The goal of the present study was to test whether the perceived in-depth orientation of depth-ambiguous point-light walkers (plws) is affected by the presentation of looming or receding sounds synchronized with the footsteps. Methodology/Principal Findings In Experiment 1 orthographic frontal/back projections of plws were presented either without sound or with sounds of which the intensity level was rising (looming), falling (receding) or stationary. Despite instructions to ignore the sounds and to only report the visually perceived in-depth orientation, plws accompanied with looming sounds were more often judged to be facing the viewer whereas plws paired with receding sounds were more often judged to be facing away from the viewer. To test whether the effects observed in Experiment 1 act at a perceptual level rather than at the decisional level, in Experiment 2 observers perceptually compared orthographic plws without sound or paired with either looming or receding sounds to plws without sound but with perspective cues making them objectively either facing towards or facing away from the viewer. Judging whether either an orthographic plw or a plw with looming (receding) perspective cues is visually most looming becomes harder (easier) when the orthographic plw is paired with looming sounds. Conclusions/Significance The present results suggest that looming and receding sounds alter the judgements of the in-depth orientation of depth-ambiguous point-light walkers. While looming sounds are demonstrated to act at a perceptual level and make plws look more looming, it remains a challenge for future research to clarify at what level in the processing hierarchy receding sounds affect how
Social pharmacology: expanding horizons.
Maiti, Rituparna; Alloza, José Luis
2014-01-01
In the current modern and global society, social changes are in constant evolution due to scientific progress (technology, culture, customs, and hygiene) and produce the freedom in individuals to take decisions by themselves or with their doctors toward drug consumption. In the arena of marketed drug products which includes society, individual, administration, and pharmaceutical industry, the young discipline emerged is social pharmacology or sociopharmacology. This science arises from clinical pharmacology, and deals with different parameters, which are important in creating knowledge on marketed drugs. However, the scope of "social pharmacology" is not covered by the so-called "Phase IV" alone, but it is the science that handles the postmarketing knowledge of drugs. The social pharmacology studies the "life cycle" of any marketed pharmaceutical product in the social terrain, and evaluates the effects of the real environment under circumstances totally different in the drug development process. Therefore, there are far-reaching horizons, plural, and shared predictions among health professionals and other, for beneficial use of a drug, toward maximizing the benefits of therapy, while minimizing negative social consequences. PMID:24987168
Social Pharmacology: Expanding horizons
Maiti, Rituparna; Alloza, José Luis
2014-01-01
In the current modern and global society, social changes are in constant evolution due to scientific progress (technology, culture, customs, and hygiene) and produce the freedom in individuals to take decisions by themselves or with their doctors toward drug consumption. In the arena of marketed drug products which includes society, individual, administration, and pharmaceutical industry, the young discipline emerged is social pharmacology or sociopharmacology. This science arises from clinical pharmacology, and deals with different parameters, which are important in creating knowledge on marketed drugs. However, the scope of “social pharmacology” is not covered by the so-called “Phase IV” alone, but it is the science that handles the postmarketing knowledge of drugs. The social pharmacology studies the “life cycle” of any marketed pharmaceutical product in the social terrain, and evaluates the effects of the real environment under circumstances totally different in the drug development process. Therefore, there are far-reaching horizons, plural, and shared predictions among health professionals and other, for beneficial use of a drug, toward maximizing the benefits of therapy, while minimizing negative social consequences. PMID:24987168
Near-horizon Kerr magnetosphere
NASA Astrophysics Data System (ADS)
Gralla, Samuel E.; Lupsasca, Alexandru; Strominger, Andrew
2016-05-01
We exploit the near-horizon conformal symmetry of rapidly spinning black holes to determine universal properties of their magnetospheres. Analytic expressions are derived for the limiting form of the magnetosphere in the near-horizon region. The symmetry is shown to imply that the black hole Meissner effect holds for free Maxwell fields but is generically violated for force-free fields. We further show that in the extremal limit, near-horizon plasma particles are infinitely boosted relative to accretion flow. Active galactic nuclei powered by rapidly spinning black holes are therefore natural sites for high-energy particle collisions.
HORIZON SENSING (PROPOSAL No.51)
Larry G. Stolarczyk, Sc.D.
2002-04-30
Real-time horizon sensing on continuous mining machines is becoming an industry tool. Installation and testing of production-grade HS systems has been ongoing this quarter at Monterey Coal Company (EXXON), FMC Trona, Twentymile Coal Company (RAG America), and SASOL Coal. Detailed monitoring of system function, user experience, and mining benefits is ongoing. All horizon sensor components have finished MSHA (U.S.) and IEC (International) certification.
Intrinsic geometry of a tidally deformed Kerr horizon
NASA Astrophysics Data System (ADS)
Poisson, Eric
2013-04-01
The intrinsic metric of a tidally deformed black-hole horizon can be presented in a coordinate system adapted to the horizon's null generators, with one coordinate acting as a running parameter along each generator, and two coordinates acting as constant generator labels. The metric is invariant under reparametrizations of the generators, and as such the horizon's intrinsic geometry is known to be gauge invariant. We consider a Kerr black hole deformed by a slowly-evolving external tidal field, and describe the intrinsic geometry of its event horizon in terms of the electric and magnetic tidal moments that characterize the tidal environment. When the black hole is slowly rotating, the horizon's geometry can be described in terms of a deviation from an otherwise spherical surface, and the deformation can be characterized by gauge invariant Love numbers. Some aspects of this tidal deformation have direct analogues in Newtonian physics. Some do not, and I will describe the similarities and differences between the tidal deformation of rotating black holes in general relativity and rotating fluid bodies in Newtonian physics.
Deepwater Horizon Situation Report #5
2010-06-10
At approximately 11:00 pm EDT April 20, 2010 an explosion occurred aboard the Deepwater Horizon mobile offshore drilling unit (MODU) located 52 miles Southeast of Venice, LA and 130 miles southeast of New Orleans, LA. The MODU was drilling an exploratory well and was not producing oil at the time of the incident. The Deepwater Horizon MODU sank 1,500 feet northwest of the well site. Detailed information on response and recovery operations can be found at: http://www.deepwaterhorizonresponse.com/go/site/2931/
Brian Cox
2010-09-01
The National Ignition Facility, the world's largest laser system, located at Lawrence Livermore National Laboratory, was featured in the BBC broadcast "Horizon" hosted by physicist Brian Cox. Here is the NIF portion of the program, which was entitled "Can We Make A Star On Earth?" This video is used with the express permission of the BBC.
Common Ground: Expanding Our Horizons.
ERIC Educational Resources Information Center
McDevitt, Michele J.
In "Common Ground: Dialogue, Understanding, and the Teaching of Composition," Kurt Spellmeyer seeks to familiarize students and teachers with the linguistic and cultural no-man's-land separating them. Reinstating the value of two writing conventions often used by traditional students--expressive and commonplaces--can help expand on the horizons of…
New Horizons in Education, 2000.
ERIC Educational Resources Information Center
Ho, Kwok Keung, Ed.
2000-01-01
This document contains the May and November 2000 issues of "New Horizons in Education," with articles in English and Chinese. The May issue includes the following articles: "A Key to Successful Environmental Education: Teacher Trainees' Attitude, Behaviour, and Knowledge" (Kevin Chung Wai Lui, Eric Po Keung Tsang, Sing Lai Chan); "Critical…
NASA Technical Reports Server (NTRS)
Delgado, Luis G.
2011-01-01
This slide presentation reviews the trajectory that will take the New Horizons Mission to Pluto. Included are photographs of the spacecraft, the launch vehicle, the assembled vehicle as it is being moved to the launch pad and the launch. Also shown are diagrams of the assembled parts with identifying part names.
Brian Cox
2010-01-12
The National Ignition Facility, the world's largest laser system, located at Lawrence Livermore National Laboratory, was featured in the BBC broadcast "Horizon" hosted by physicist Brian Cox. Here is the NIF portion of the program, which was entitled "Can We Make A Star On Earth?" This video is used with the express permission of the BBC.
The Malcolm horizon: History and future
NASA Technical Reports Server (NTRS)
Malcolm, R.
1984-01-01
The development of the Malcolm Horizon, a peripheral vision horizon used in flight simulation, is discussed. A history of the horizon display is presented as well as a brief overview of vision physiology, and the role balance plays is spatial orientation. Avenues of continued research in subconscious cockpit instrumentation are examined.
Fermion tunneling from dynamical horizons
NASA Astrophysics Data System (ADS)
Di Criscienzo, R.; Vanzo, L.
2008-06-01
The instability against emission of fermionic particles by the trapping horizon of an evolving black hole is analyzed and confirmed using the Hamilton-Jacobi tunneling method. This method automatically selects one special expression for the surface gravity of a changing horizon. The results also apply to point masses embedded in an expanding universe. As a bonus of the tunneling method, we gain the insight that the surface gravity still defines a temperature parameter as long as the evolution is sufficiently slow that the black-hole pass through a sequence of quasi-equilibrium states, and that black holes should be semi-classically unstable even in a hypothetical world without bosonic fields.
Penrose inequality and apparent horizons
Ben-Dov, Ishai
2004-12-15
A spherically symmetric spacetime is presented with an initial data set that is asymptotically flat, satisfies the dominant energy condition, and such that on this initial data M<{radical}(A/16{pi}), where M is the total mass and A is the area of the apparent horizon. This provides a counterexample to a commonly stated version of the Penrose inequality, though it does not contradict the true Penrose inequality.
New Horizons Tracks an Asteroid
NASA Technical Reports Server (NTRS)
2007-01-01
The two 'spots' in this image are a composite of two images of asteroid 2002 JF56 taken on June 11 and June 12, 2006, with the Multispectral Visible Imaging Camera (MVIC) component of the New Horizons Ralph imager. In the bottom image, taken when the asteroid was about 3.36 million kilometers (2.1 million miles) away from the spacecraft, 2002 JF56 appears like a dim star. At top, taken at a distance of about 1.34 million kilometers (833,000 miles), the object is more than a factor of six brighter. The best current, estimated diameter of the asteroid is approximately 2.5 kilometers.
The asteroid observation was a chance for the New Horizons team to test the spacecraft's ability to track a rapidly moving object. On June 13 New Horizons came to within about 102,000 kilometers of the small asteroid, when the spacecraft was nearly 368 million kilometers (228 million miles) from the Sun and about 273 million kilometers (170 million miles) from Earth.
New Horizons Launch Contingency Effort
NASA Astrophysics Data System (ADS)
Chang, Yale; Lear, Matthew H.; McGrath, Brian E.; Heyler, Gene A.; Takashima, Naruhisa; Owings, W. Donald
2007-01-01
On 19 January 2006 at 2:00 PM EST, the NASA New Horizons spacecraft (SC) was launched from the Cape Canaveral Air Force Station (CCAFS), FL, onboard an Atlas V 551/Centaur/STAR™ 48B launch vehicle (LV) on a mission to explore the Pluto Charon planetary system and possibly other Kuiper Belt Objects. It carried a single Radioisotope Thermoelectric Generator (RTG). As part of the joint NASA/US Department of Energy (DOE) safety effort, contingency plans were prepared to address the unlikely events of launch accidents leading to a near-pad impact, a suborbital reentry, an orbital reentry, or a heliocentric orbit. As the implementing organization. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) had expanded roles in the New Horizons launch contingency effort over those for the Cassini mission and Mars Exploration Rovers missions. The expanded tasks included participation in the Radiological Control Center (RADCC) at the Kennedy Space Center (KSC), preparation of contingency plans, coordination of space tracking assets, improved aerodynamics characterization of the RTG's 18 General Purpose Heat Source (GPHS) modules, and development of spacecraft and RTG reentry breakup analysis tools. Other JHU/APL tasks were prediction of the Earth impact footprints (ElFs) for the GPHS modules released during the atmospheric reentry (for purposes of notification and recovery), prediction of the time of SC reentry from a potential orbital decay, pre-launch dissemination of ballistic coefficients of various possible reentry configurations, and launch support of an Emergency Operations Center (EOC) on the JHU/APL campus. For the New Horizons launch, JHU/APL personnel at the RADCC and at the EOC were ready to implement any real-time launch contingency activities. A successful New Horizons launch and interplanetary injection precluded any further contingency actions. The New Horizons launch contingency was an interagency effort by several organizations. This paper
NASA Astrophysics Data System (ADS)
Cusumano, Salvatore J.; Fiorino, Steven T.; Bartell, Richard J.; Krizo, Matthew J.; Bailey, William F.; Beauchamp, Rebecca L.; Marciniak, Michael A.
2011-01-01
The Air Force Institute of Technology's Center for Directed Energy developed the High Energy Laser End-to-End Operational Simulation (HELEEOS) model in part to quantify the performance variability in laser propagation created by the natural environment during dynamic engagements. As such, HELEEOS includes a fast-calculating, first principles, worldwide surface-to-100 km, atmospheric propagation, and characterization package. This package enables the creation of profiles of temperature, pressure, water vapor content, optical turbulence, atmospheric particulates, and hydrometeors as they relate to line-by-line layer transmission, path, and background radiance at wavelengths from the ultraviolet to radio frequencies. In the current paper an example of a unique high fidelity simulation of a bistatic, time-varying five band multispectral remote observation of energy delivered on a distant and receding test object is presented for noncloudy conditions with aerosols. The multispectral example emphasizes atmospheric effects using HELEEOS, the interaction of the energy and the test object, the observed reflectance, and subsequent hot spot generated. A model of a sensor suite located on the surface is included to collect the diffuse reflected in-band laser radiation and the emitted radiance of the hot spot in four separate and spatially offset midwave infrared and longwave infrared bands. Particular care is taken in modeling the bidirectional reflectance distribution function of the delivered energy/target interaction to account for both the coupling of energy into the test object and the changes in reflectance as a function of temperature. The architecture supports any platform-target-observer geometry, geographic location, season, and time of day, and it provides for correct contributions of the sky-earth background. The simulation accurately models the thermal response, kinetics, turbulence, base disturbance, diffraction, and signal-to-noise ratios.
LaRue, Michelle A.; Ainley, David G.; Swanson, Matt; Dugger, Katie M.; Lyber, Phil O'B.; Barton, Kerry; Ballard, Grant
2013-01-01
There will be winners and losers as climate change alters the habitats of polar organisms. For an Adélie penguin (Pygoscelis adeliae) colony on Beaufort Island (Beaufort), part of a cluster of colonies in the southern Ross Sea, we report a recent population increase in response to increased nesting habitat as glaciers have receded. Emigration rates of birds banded as chicks on Beaufort to colonies on nearby Ross Island decreased after 2005 as available habitat on Beaufort increased, leading to altered dynamics of the metapopulation. Using aerial photography beginning in 1958 and modern satellite imagery, we measured change in area of available nesting habitat and population size of the Beaufort colony. Population size varied with available habitat, and both increased rapidly since the 1990s. In accord with glacial retreat, summer temperatures at nearby McMurdo Station increased by ~0.50°C per decade since the mid-1980s. Although the Ross Sea is likely to be the last ocean with an intact ecosystem, the recent retreat of ice fields at Beaufort that resulted in increased breeding habitat exemplifies a process that has been underway in the Ross Sea during the entire Holocene. Furthermore, our results are in line with predictions that major ice shelves and glaciers will retreat rapidly elsewhere in the Antarctic, potentially leading to increased breeding habitat for Adélie penguins. Results further indicated that satellite imagery may be used to estimate large changes in Adélie penguin populations, facilitating our understanding of metapopulation dynamics and environmental factors that influence regional populations.
LaRue, Michelle A.; Ainley, David G.; Swanson, Matt; Dugger, Katie M.; Lyver, Phil O′B.; Barton, Kerry; Ballard, Grant
2013-01-01
There will be winners and losers as climate change alters the habitats of polar organisms. For an Adélie penguin (Pygoscelis adeliae) colony on Beaufort Island (Beaufort), part of a cluster of colonies in the southern Ross Sea, we report a recent population increase in response to increased nesting habitat as glaciers have receded. Emigration rates of birds banded as chicks on Beaufort to colonies on nearby Ross Island decreased after 2005 as available habitat on Beaufort increased, leading to altered dynamics of the metapopulation. Using aerial photography beginning in 1958 and modern satellite imagery, we measured change in area of available nesting habitat and population size of the Beaufort colony. Population size varied with available habitat, and both increased rapidly since the 1990s. In accord with glacial retreat, summer temperatures at nearby McMurdo Station increased by ∼0.50°C per decade since the mid-1980s. Although the Ross Sea is likely to be the last ocean with an intact ecosystem, the recent retreat of ice fields at Beaufort that resulted in increased breeding habitat exemplifies a process that has been underway in the Ross Sea during the entire Holocene. Furthermore, our results are in line with predictions that major ice shelves and glaciers will retreat rapidly elsewhere in the Antarctic, potentially leading to increased breeding habitat for Adélie penguins. Results further indicated that satellite imagery may be used to estimate large changes in Adélie penguin populations, facilitating our understanding of metapopulation dynamics and environmental factors that influence regional populations. PMID:23573267
LaRue, Michelle A; Ainley, David G; Swanson, Matt; Dugger, Katie M; Lyver, Phil O'B; Barton, Kerry; Ballard, Grant
2013-01-01
There will be winners and losers as climate change alters the habitats of polar organisms. For an Adélie penguin (Pygoscelis adeliae) colony on Beaufort Island (Beaufort), part of a cluster of colonies in the southern Ross Sea, we report a recent population increase in response to increased nesting habitat as glaciers have receded. Emigration rates of birds banded as chicks on Beaufort to colonies on nearby Ross Island decreased after 2005 as available habitat on Beaufort increased, leading to altered dynamics of the metapopulation. Using aerial photography beginning in 1958 and modern satellite imagery, we measured change in area of available nesting habitat and population size of the Beaufort colony. Population size varied with available habitat, and both increased rapidly since the 1990s. In accord with glacial retreat, summer temperatures at nearby McMurdo Station increased by ~0.50 °C per decade since the mid-1980s. Although the Ross Sea is likely to be the last ocean with an intact ecosystem, the recent retreat of ice fields at Beaufort that resulted in increased breeding habitat exemplifies a process that has been underway in the Ross Sea during the entire Holocene. Furthermore, our results are in line with predictions that major ice shelves and glaciers will retreat rapidly elsewhere in the Antarctic, potentially leading to increased breeding habitat for Adélie penguins. Results further indicated that satellite imagery may be used to estimate large changes in Adélie penguin populations, facilitating our understanding of metapopulation dynamics and environmental factors that influence regional populations. PMID:23573267
Topological deformation of isolated horizons
Liko, Tomas
2008-03-15
We show that the Gauss-Bonnet term can have physical effects in four dimensions. Specifically, the entropy of a black hole acquires a correction term that is proportional to the Euler characteristic of the cross sections of the horizon. While this term is constant for a single black hole, it will be a nontrivial function for a system with dynamical topologies such as black-hole mergers: it is shown that for certain values of the Gauss-Bonnet parameter, the second law of black-hole mechanics can be violated.
New Horizons: Bridge to the Beginning - to Pluto and Beyond
NASA Astrophysics Data System (ADS)
Weir, H. M.; Hallau, K. G.; Seaton, P.; Beisser, K.; New Horizons Education; Public Outreach Team
2010-12-01
Launched on Jan. 19, 2006, NASA’s New Horizons mission to Pluto and the Kuiper Belt will help us understand worlds at the edge of our solar system by making the first reconnaissance of Pluto and Charon - a "double planet" and the last planet in our solar system to be visited by spacecraft. However, New Horizons’ closest approach to Pluto will not occur until July 14, 2015, and the majority of the craft's time over the next 5 years will be spent in "hibernation." The Education and Public Outreach (EPO) team, however, will not be hibernating as we wait for New Horizons to reach its destination. With three distinct tools-- Educator Fellows, online learning modules and a planetarium program--the team seeks to excite and engage teachers, students and the public with information about the journey to Pluto and beyond. In the past year, the specially selected educators who participate as New Horizons Educator Fellows have trained more than 1,000 teachers across the U.S. on the New Horizons mission and the science behind it. Thousands more students, parents, educators, and citizens have learned about New Horizons from the mission's scientists, engineers and outreach professionals. New Horizons Fellows also distribute another EPO tool: online learning modules. These classroom-ready learning modules consist of educator guides, student handouts, detailed activities, and potential adaptations for students with special needs or disabilities. Some also offer online interactives to convey complex and dynamic concepts. The modules are web-accessible for both students and teachers, and are aligned with relevant national standards. The third tool is a highly visual way to engage the general public and supplement educational programs: a planetarium program that highlights the New Horizons mission from launch to destination Pluto. This program focuses on the engineering design of the spacecraft, with a focus on the concept of the electromagnetic spectrum. In the unique environment
Variable horizon in a peridynamic medium
Silling, Stewart A.; Littlewood, David J.; Seleson, Pablo
2015-12-10
Here, a notion of material homogeneity is proposed for peridynamic bodies with variable horizon but constant bulk properties. A relation is derived that scales the force state according to the position-dependent horizon while keeping the bulk properties unchanged. Using this scaling relation, if the horizon depends on position, artifacts called ghost forces may arise in a body under a homogeneous deformation. These artifacts depend on the second derivative of the horizon and can be reduced by employing a modified equilibrium equation using a new quantity called the partial stress. Bodies with piecewise constant horizon can be modeled without ghost forces by using a simpler technique called a splice. As a limiting case of zero horizon, both the partial stress and splice techniques can be used to achieve local-nonlocal coupling. Computational examples, including dynamic fracture in a one-dimensional model with local-nonlocal coupling, illustrate the methods.
Variable horizon in a peridynamic medium.
Silling, Stewart Andrew; Littlewood, David John; Seleson, Pablo
2014-10-01
A notion of material homogeneity is proposed for peridynamic bodies with vari- able horizon but constant bulk properties. A relation is derived that scales the force state according to the position-dependent horizon while keeping the bulk properties un- changed. Using this scaling relation, if the horizon depends on position, artifacts called ghost forces may arise in a body under homogeneous deformation. These artifacts de- pend on the second derivative of horizon and can be reduced by use of a modified equilibrium equation using a new quantity called the partial stress . Bodies with piece- wise constant horizon can be modeled without ghost forces by using a technique called a splice between the regions. As a limiting case of zero horizon, both partial stress and splice techniques can be used to achieve local-nonlocal coupling. Computational examples, including dynamic fracture in a one-dimensional model with local-nonlocal coupling, illustrate the methods.
Variable horizon in a peridynamic medium
Silling, Stewart A.; Littlewood, David J.; Seleson, Pablo
2015-12-10
Here, a notion of material homogeneity is proposed for peridynamic bodies with variable horizon but constant bulk properties. A relation is derived that scales the force state according to the position-dependent horizon while keeping the bulk properties unchanged. Using this scaling relation, if the horizon depends on position, artifacts called ghost forces may arise in a body under a homogeneous deformation. These artifacts depend on the second derivative of the horizon and can be reduced by employing a modified equilibrium equation using a new quantity called the partial stress. Bodies with piecewise constant horizon can be modeled without ghost forcesmore » by using a simpler technique called a splice. As a limiting case of zero horizon, both the partial stress and splice techniques can be used to achieve local-nonlocal coupling. Computational examples, including dynamic fracture in a one-dimensional model with local-nonlocal coupling, illustrate the methods.« less
Smooth horizons and quantum ripples
NASA Astrophysics Data System (ADS)
Golovnev, Alexey
2015-05-01
Black holes are unique objects which allow for meaningful theoretical studies of strong gravity and even quantum gravity effects. An infalling and a distant observer would have very different views on the structure of the world. However, a careful analysis has shown that it entails no genuine contradictions for physics, and the paradigm of observer complementarity has been coined. Recently this picture was put into doubt. In particular, it was argued that in old black holes a firewall must form in order to protect the basic principles of quantum mechanics. This AMPS paradox has already been discussed in a vast number of papers with different attitudes and conclusions. Here we want to argue that a possible source of confusion is the neglect of quantum gravity effects. Contrary to widespread perception, it does not necessarily mean that effective field theory is inapplicable in rather smooth neighbourhoods of large black hole horizons. The real offender might be an attempt to consistently use it over the huge distances from the near-horizon zone of old black holes to the early radiation. We give simple estimates to support this viewpoint and show how the Page time and (somewhat more speculative) scrambling time do appear.
Theory underlying the peripheral vision horizon device
NASA Technical Reports Server (NTRS)
Money, K. E.
1984-01-01
Peripheral Vision Horizon Device (PVHD) theory states that the likelihood of pilot disorientation in flight is reduced by providing an artificial horizon that provides orientation information to peripheral vision. In considering the validity of the theory, three areas are explored: the use of an artificial horizon device over some other flight instrument; the use of peripheral vision over foveal vision; and the evidence that peripheral vision is well suited to the processing of orientation information.
Automatic detection of sea-sky horizon line and small targets in maritime infrared imagery
NASA Astrophysics Data System (ADS)
Kong, Xiangyu; Liu, Lei; Qian, Yunsheng; Cui, Minjie
2016-05-01
It is usually difficult but important to extract distant targets from sea clutters and clouds since the targets are small compared to the pixel field of view. In this paper, an algorithm based on wavelet transformation is proposed for automatic detection of small targets under the maritime background. We recognize that the distant small targets generally appear near the sea-sky horizon line and noises lie along the direction of sea-sky horizon line. So the sea-sky horizon is located firstly by examining the approximate image of a Haar wavelet decomposition of the original image. And the equation of the sea-sky horizon is set up, no matter whether the sea-sky horizon is horizontal or not. Since the sea-sky horizon is located, not only the potential area but also the strip direction of noise is got. Then the modified mutual wavelet energy combination algorithm is applied to extract targets with targets being marked by red windows. Computer simulations are shown to validate the great adaptability of the sea-sky horizon line detection and the accuracy of the small targets detection. The algorithm should be useful to engineers and scientists to design precise guidance or maritime monitoring system.
Spectroscopy of a weakly isolated horizon
NASA Astrophysics Data System (ADS)
Chen, Ge-Rui; Huang, Yong-Chang
2016-06-01
The spectroscopy of a weakly isolated horizon has been investigated. We obtain an equally spaced entropy spectrum with its quantum equal to the one given by Bekenstein (Phys Rev D 7:2333, 1973). We demonstrate that the quantization of entropy and area is a generic property of horizons which exists in a wide class of spacetimes admitting weakly isolated horizons. Our method based on the tunneling method also indicates that the entropy quantum of black hole horizons is closely related to Hawking temperature.
The NMC Horizon Report: 2014 Library Edition
ERIC Educational Resources Information Center
Johnson, L.; Adams Becker, S.; Estrada, V.; Freeman, A.
2014-01-01
The internationally recognized "NMC Horizon Report" series and regional "NMC Technology Outlooks" are part of the NMC Horizon Project, a 12-year effort established in 2002 that annually identifies and describes emerging technologies likely to have a large impact over the coming five years in every sector of education around the…
Reconceptualizing Knowledge at the Mathematical Horizon
ERIC Educational Resources Information Center
Zazkis, Rina; Mamolo, Ami
2011-01-01
This article extends the notion of "knowledge at the mathematical horizon" or "horizon knowledge" introduced by Ball and colleagues as a part of teachers' subject matter knowledge. Our focus is on teachers' mathematical knowledge beyond the school curriculum, that is, on mathematics learnt during undergraduate college or university studies. We…
The Horizon Report: 2010 Museum Edition
ERIC Educational Resources Information Center
Johnson, L.; Witchey, H.; Smith, R.; Levine, A.; Haywood, K.
2010-01-01
The internationally recognized series of "Horizon Reports" is part of the New Media Consortium's Horizon Project, a comprehensive research venture established in 2002 that identifies and describes emerging technologies likely to have a large impact over the coming five years on a variety of sectors around the globe. This volume, the "2010 Horizon…
Expanding your horizons in science and mathematics
NASA Technical Reports Server (NTRS)
Palmer, Cynthia E. A.
1995-01-01
The purpose of the 'Expanding Your Horizons in Science and Mathematics' program is to interest young women in grades six through twelve in a variety of careers where mathematics and science are important. Progress in encouraging young women to take courses in mathematics, science, and technological subjects is discussed. Also included are adult, student, and organizational information packets used for 'Expanding Your Horizons' conferences.
Horizon Report: 2009 Economic Development Edition
ERIC Educational Resources Information Center
Johnson, L.; Levine, A.; Scott, C.; Smith, R.; Stone, S.
2009-01-01
The New Media Consortium's Horizon Project is an ongoing research project that seeks to identify and describe emerging technologies likely to have a large impact in education and other industries around the world over a five-year time period. The chief products of the project are the "Horizon Reports", an annual series of publications that…
Horizon Report: 2010 K-12 Edition
ERIC Educational Resources Information Center
Johnson, L.; Smith, R.; Levine, A.; Haywood, K.
2010-01-01
The "Horizon Report" series is the most visible outcome of the New Media Consortium's Horizon Project, an ongoing research effort established in 2002 that identifies and describes emerging technologies likely to have a large impact on teaching, learning, research, or creative expression within education around the globe. This volume, the "2010…
The NMC Horizon Report: 2015 Museum Edition
ERIC Educational Resources Information Center
Johnson, L.; Adams Becker, S.; Estrada, V.; Freeman, A.
2015-01-01
The internationally recognized series of "Horizon Reports" is part of the New Media Consortium's Horizon Project, a comprehensive research venture established in 2002 that identifies and describes emerging technologies likely to have a large impact over the coming years on a variety of sectors around the globe. This "2015 Horizon…
Quasilocal approach to general universal horizons
NASA Astrophysics Data System (ADS)
Maciel, Alan
2016-05-01
Theories of gravity with a preferred foliation usually display arbitrarily fast signal propagation, changing the black hole definition. A new inescapable barrier, the universal horizon, has been defined and many static and spherically symmetric examples have been studied in the literature. Here, we translate the usual definition of the universal horizon in terms of an optical scalar built with the preferred flow defined by the preferred spacetime foliation. The new expression has the advantages of being of quasilocal nature and independent of specific spacetime symmetries in order to be well defined. Therefore, we propose it as a definition for general quasilocal universal horizons. Using the new formalism, we show that there is no universal analog of cosmological horizons for Friedmann-Lemaître-Robertson-Walker models for any scale factor function, and we also state that quasilocal universal horizons are restricted to trapped regions of the spacetime. Using the evolution equation, we analyze the formation of universal horizons under a truncated Hořava-Lifshitz theory, in spherical symmetry, showing the existence of regions in parameter space where the universal horizon formation cannot be smooth from the center, under some physically reasonable assumptions. We conclude with our view on the next steps for the understanding of black holes in nonrelativistic gravity theories.
Production and decay of evolving horizons
NASA Astrophysics Data System (ADS)
Nielsen, Alex B.; Visser, Matt
2006-07-01
We consider a simple physical model for an evolving horizon that is strongly interacting with its environment, exchanging arbitrarily large quantities of matter with its environment in the form of both infalling material and outgoing Hawking radiation. We permit fluxes of both lightlike and timelike particles to cross the horizon, and ask how the horizon grows and shrinks in response to such flows. We place a premium on providing a clear and straightforward exposition with simple formulae. To be able to handle such a highly dynamical situation in a simple manner we make one significant physical restriction—that of spherical symmetry—and two technical mathematical restrictions: (1) we choose to slice the spacetime in such a way that the spacetime foliations (and hence the horizons) are always spherically symmetric. (2) Furthermore, we adopt Painlevé Gullstrand coordinates (which are well suited to the problem because they are nonsingular at the horizon) in order to simplify the relevant calculations. Of course physics results are ultimately independent of the choice of coordinates, but this particular coordinate system yields a clean physical interpretation of the relevant physics. We find particularly simple forms for surface gravity, and for the first and second law of black hole thermodynamics, in this general evolving horizon situation. Furthermore, we relate our results to Hawking's apparent horizon, Ashtekar and co-worker's isolated and dynamical horizons, and Hayward's trapping horizon. The evolving black hole model discussed here will be of interest, both from an astrophysical viewpoint in terms of discussing growing black holes and from a purely theoretical viewpoint in discussing black hole evaporation via Hawking radiation.
NEW HORIZONS IN SENSOR DEVELOPMENT
Intille, Stephen S.; Lester, Jonathan; Sallis, James F.; Duncan, Glen
2011-01-01
Background Accelerometery and other sensing technologies are important tools for physical activity measurement. Engineering advances have allowed developers to transform clunky, uncomfortable, and conspicuous monitors into relatively small, ergonomic, and convenient research tools. New devices can be used to collect data on overall physical activity and in some cases posture, physiological state, and location, for many days or weeks from subjects during their everyday lives. In this review article, we identify emerging trends in several types of monitoring technologies and gaps in the current state of knowledge. Best practices The only certainty about the future of activity sensing technologies is that researchers must anticipate and plan for change. We propose a set of best practices that may accelerate adoption of new devices and increase the likelihood that data being collected and used today will be compatible with new datasets and methods likely to appear on the horizon. Future directions We describe several technology-driven trends, ranging from continued miniaturization of devices that provide gross summary information about activity levels and energy expenditure, to new devices that provide highly detailed information about the specific type, amount, and location of physical activity. Some devices will take advantage of consumer technologies, such as mobile phones, to detect and respond to physical activity in real time, creating new opportunities in measurement, remote compliance monitoring, data-driven discovery, and intervention. PMID:22157771
[Visual illusions and moving horizon].
Zhdan'ko, I M; Chulaevskiĭ, A O; Kovalenko, P A
2012-09-01
Results of psychological "additional investigation" of the crash of Boeing-737, "Aeroflot-Nord" on 14.09.2008 near Perm are presented. 37 pilots from the one of the leading airline companies sensed the attitude and rolling out the aircraft to the forward flight under the moving horizon with straight display of bank and tangage (view from the aircraft to the ground) in model conditions. 29 pilots (78.4%) made a mistake at determining the roll direction and tangage, they made a mistake at determining the roll direction 61 times (16.4%) and 44 times at determining the tangage direction, in other words they confused left and right bank and also nose-up and nose-down. Visual illusions of mobility of space and handling of ground (instead of aircraft) during the flight were revealed in pilots. These illusions may be the important cause of the following crashes. The necessity of "back" faultless display of bank in all aircrafts of civil aviation and development of computer complex for training of visual spatial orientation is proved. PMID:23156114
Black holes with bottle-shaped horizons
NASA Astrophysics Data System (ADS)
Chen, Yu; Teo, Edward
2016-06-01
We present a new class of four-dimensional AdS black holes with noncompact event horizons of finite area. The event horizons are topologically spheres with one puncture, with the puncture pushed to infinity in the form of a cusp. Because of the shape of their event horizons, we call such black holes "black bottles." The solution was obtained as a special case of the Plebański-Demiański solution, and may describe either static or rotating black bottles. For certain ranges of parameters, an acceleration horizon may also appear in the space-time. We study the full parameter space of the solution, and the various limiting cases that arise. In particular, we show how the rotating black hole recently discovered by Klemm arises as a special limit.
Horizon Entropy from Quantum Gravity Condensates
NASA Astrophysics Data System (ADS)
Oriti, Daniele; Pranzetti, Daniele; Sindoni, Lorenzo
2016-05-01
We construct condensate states encoding the continuum spherically symmetric quantum geometry of a horizon in full quantum gravity, i.e., without any classical symmetry reduction, in the group field theory formalism. Tracing over the bulk degrees of freedom, we show how the resulting reduced density matrix manifestly exhibits a holographic behavior. We derive a complete orthonormal basis of eigenstates for the reduced density matrix of the horizon and use it to compute the horizon entanglement entropy. By imposing consistency with the horizon boundary conditions and semiclassical thermodynamical properties, we recover the Bekenstein-Hawking entropy formula for any value of the Immirzi parameter. Our analysis supports the equivalence between the von Neumann (entanglement) entropy interpretation and the Boltzmann (statistical) one.
Horizon Entropy from Quantum Gravity Condensates.
Oriti, Daniele; Pranzetti, Daniele; Sindoni, Lorenzo
2016-05-27
We construct condensate states encoding the continuum spherically symmetric quantum geometry of a horizon in full quantum gravity, i.e., without any classical symmetry reduction, in the group field theory formalism. Tracing over the bulk degrees of freedom, we show how the resulting reduced density matrix manifestly exhibits a holographic behavior. We derive a complete orthonormal basis of eigenstates for the reduced density matrix of the horizon and use it to compute the horizon entanglement entropy. By imposing consistency with the horizon boundary conditions and semiclassical thermodynamical properties, we recover the Bekenstein-Hawking entropy formula for any value of the Immirzi parameter. Our analysis supports the equivalence between the von Neumann (entanglement) entropy interpretation and the Boltzmann (statistical) one. PMID:27284642
Information Horizons in Complex Networks
NASA Astrophysics Data System (ADS)
Sneppen, Kim
2005-03-01
We investigate how the structure constrain specific communication in social-, man-made and biological networks. We find that human networks of governance and collaboration are predictable on teat-a-teat level, reflecting well defined pathways, but globally inefficient (1). In contrast, the Internet tends to have better overall communication abilities, more alternative pathways, and is therefore more robust. Between these extremes are the molecular network of living organisms. Further, for most real world networks we find that communication ability is favored by topology on small distances, but disfavored at larger distances (2,3,4). We discuss the topological implications in terms of modularity and the positioning of hubs in the networks (5,6). Finally we introduce some simple models which demonstarte how communication may shape the structure of in particular man made networks (7,8). 1) K. Sneppen, A. Trusina, M. Rosvall (2004). Hide and seek on complex networks [cond-mat/0407055] 2) M. Rosvall, A. Trusina, P. Minnhagen and K. Sneppen (2004). Networks and Cities: An Information Perspective [cond-mat/0407054]. In PRL. 3) A. Trusina, M. Rosvall, K. Sneppen (2004). Information Horizons in Networks. [cond-mat/0412064] 4) M. Rosvall, P. Minnhagen, K. Sneppen (2004). Navigating Networks with Limited Information. [cond-mat/0412051] 5) S. Maslov and K. Sneppen (2002). Specificity and stability in topology of protein networks Science 296, 910-913 [cond-mat/0205380]. 6) A. Trusina, S. Maslov, P. Minnhagen, K. Sneppen Hierarchy Measures in Complex Networks. Phys. Rev. Lett. 92, 178702 [cond-mat/0308339]. 7) M. Rosvall and K. Sneppen (2003). Modeling Dynamics of Information Networks. Phys. Rev. Lett. 91, 178701 [cond-mat/0308399]. 8) B-J. Kim, A. Trusina, P. Minnhagen, K. Sneppen (2003). Self Organized Scale-Free Networks from Merging and Regeneration. nlin.AO/0403006. In European Journal of Physics.
NASA Technical Reports Server (NTRS)
Wehner, R.
1972-01-01
Experimental data, on the visual orientation of desert ants toward astromenotactic courses and horizon landmarks involving the cooperation of different direction finding systems, are given. Attempts were made to: (1) determine if the ants choose a compromise direction between astromenotactic angles and the direction toward horizon landmarks when both angles compete with each other or whether they decide alternatively; (2) analyze adaptations of the visual system to the special demands of direction finding by astromenotactic orientation or pattern recognition; and (3) determine parameters of visual learning behavior. Results show separate orientation mechanisms are responsible for the orientation of the ant toward astromenotactic angles and horizon landmarks. If both systems compete with each other, the ants switch over from one system to the other and do not perform a compromise direction.
Star-Paths, Stones and Horizon Astronomy
NASA Astrophysics Data System (ADS)
Brady, Bernadette
2015-05-01
Archaeoastronomers tend to approach ancient monuments focusing on the landscape and the horizon calendar events of sun and moon and, due to problems with precession, generally ignore the movement of the stars. However, locating the position of solar calendar points on the horizon can have other uses apart from calendar and/or cosmological purposes. This paper firstly suggests that the stars do not need to be ignored. By considering the evidence of the Phaenomena, a sky poem by Aratus of Soli, a third century BC Greek poet, and his use of second millennium BC star lore fragments, this paper argues that the stars were a part of the knowledge of horizon astronomy. Aratus' poem implied that the horizon astronomy of the late Neolithic and Bronze Age periods included knowledge of star-paths or 'linear constellations' that were defined by particular horizon calendar events and other azimuths. Knowledge of such star-paths would have enabled navigation and orientation, and by using permanent markers, constructed or natural, to define these paths, they were immune to precession as the stones could redefine a star-path for a future generation. Finally the paper presents other possible intentions behind the diverse orientation of passage tombs and some megalithic sites.
On the Bartnik mass of apparent horizons
NASA Astrophysics Data System (ADS)
Mantoulidis, Christos; Schoen, Richard
2015-10-01
In this paper we characterize the intrinsic geometry of apparent horizons (outermost marginally outer trapped surfaces) in asymptotically flat spacetimes; that is, the Riemannian metrics on the two sphere which can arise. Furthermore we determine the minimal ADM mass of a spacetime containing such an apparent horizon. The results are conveniently formulated in terms of the quasi-local mass introduced by Bartnik (1989 Phys. Rev. Lett. 62 2346-8). The Hawking mass provides a lower bound for Bartnik’s quasilocal mass on apparent horizons by way of Penrose’s conjecture on time symmetric slices, proven in 1997 by Huisken and Ilmanen (2001 J. Differ. Geom. 59 353-437) and in full generality in 1999 by Bray (2001 J. Differ. Geom. 59 177-267). We compute Bartnik’s mass for all non-degenerate apparent horizons and show that it coincides with the Hawking mass. As a corollary we disprove a conjecture due to Gibbons in the spirit of Thorne’s hoop conjecture (Gibbons 2009 arXiv:0903.1580), and construct a new large class of examples of apparent horizons with the integral of the negative part of the Gauss curvature arbitrarily large.
Holography of 3D flat cosmological horizons.
Bagchi, Arjun; Detournay, Stéphane; Fareghbal, Reza; Simón, Joan
2013-04-01
We provide a first derivation of the Bekenstein-Hawking entropy of 3D flat cosmological horizons in terms of the counting of states in a dual field theory. These horizons appear in the flat limit of nonextremal rotating Banados-Teitleboim-Zanelli black holes and are remnants of the inner horizons. They also satisfy the first law of thermodynamics. We study flat holography as a limit of AdS(3)/CFT(2) to semiclassically compute the density of states in the dual theory, which is given by a contraction of a 2D conformal field theory, exactly reproducing the bulk entropy in the limit of large charges. We comment on how the dual theory reproduces the bulk first law and how cosmological bulk excitations are matched with boundary quantum numbers. PMID:25166977
East Rim of Endeavour Crater on Horizon
NASA Technical Reports Server (NTRS)
2009-01-01
[figure removed for brevity, see original site]
A high point on the distant eastern rim of Endeavour Crater is visible on the horizon in this image taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity on March 8, 2009, during the 1,821st Martian day, or sol, of the rover's mission on Mars.
That portion of Endeavour's rim is about 34 kilometers (21 miles) away from Opportunity's position west of the crater when the image was taken. The width of the image covers approximately one degree of the horizon.
North Rim of Endeavour Crater on Horizon
NASA Technical Reports Server (NTRS)
2009-01-01
[figure removed for brevity, see original site]
A northern portion of the rim of Endeavour Crater is visible on the horizon of this image taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity on March 7, 2009, during the 1,820st Martian day, or sol, of the rover's mission on Mars.
That portion of Endeavour's rim is about 20 kilometers (12 miles) away from Opportunity's position west of the crater when the image was taken. The width of the image covers approximately one degree of the horizon.
Expanding your horizons in science and mathematics
NASA Technical Reports Server (NTRS)
1985-01-01
Through the presentation of its Expanding Your Horizons in Science and Mathematics career education conferences for secondary school young women, the Math/Science Network continues its efforts to remove the educational, psychological, and cultural barriers which prevent women from entering math-and science-based careers. The Expanding Your Horizons conferences were presented on 77 college, university and high school campuses across the United States. This year, these unique one day conferences reached 15,500 students, 3,000 parents and educators, and involved 3,000 career women who volunteered their services as conference planners, workshop leaders, speakers, and role models.
Hair-brane ideas on the horizon
NASA Astrophysics Data System (ADS)
Martinec, Emil J.; Niehoff, Ben E.
2015-11-01
We continue an examination of the microstate geometries program begun in arXiv:1409.6017, focussing on the role of branes that wrap the cycles which degenerate when a throat in the geometry deepens and a horizon forms. An associated quiver quantum mechanical model of minimally wrapped branes exhibits a non-negligible fraction of the gravitational entropy, which scales correctly as a function of the charges. The results suggest a picture of AdS3/CFT2 duality wherein the long string that accounts for BTZ black hole entropy in the CFT description, can also be seen to inhabit the horizon of BPS black holes on the gravity side.
Horizons and plane waves: A review
Hubeny, Veronika E.; Rangamani, Mukund
2003-11-06
We review the attempts to construct black hole/string solutions in asymptotically plane wave spacetimes. First, we demonstrate that geometries admitting a covariantly constant null Killing vector cannot admit event horizons, which implies that pp-waves can't describe black holes. However, relaxing the symmetry requirements allows us to generate solutions which do possess regular event horizons while retaining the requisite asymptotic properties. In particular, we present two solution generating techniques and use them to construct asymptotically plane wave black string/brane geometries.
Evidence for a sedimentary siloxane horizon
Pellenbarg, R.E.; Tevault, D.E.
1986-07-01
Selected samples from two Puget Sound sediment cores have been analyzed for poly(organo)siloxanes(silicones). One core was 60 years old at 30-cm depth (ages by lead-210 dating) and showed no evidence for silicones there. The second, 15 years old at depth, exhibited silicones at depth. Clearly shown is evidence for a siloxane horizon in theses two cores, with the presence of the horizon directly related to the fact that silicones have been in widespread use only since World War II. All samples were analyzed by solvent extraction and diffuse reflectance Fourier transform infrared spectrometry. 10 references, 2 figures, 1 table.
Aerosol physical properties from satellite horizon inversion
NASA Technical Reports Server (NTRS)
Gray, C. R.; Malchow, H. L.; Merritt, D. C.; Var, R. E.; Whitney, C. K.
1973-01-01
The feasibility is investigated of determining the physical properties of aerosols globally in the altitude region of 10 to 100 km from a satellite horizon scanning experiment. The investigation utilizes a horizon inversion technique previously developed and extended. Aerosol physical properties such as number density, size distribution, and the real and imaginary components of the index of refraction are demonstrated to be invertible in the aerosol size ranges (0.01-0.1 microns), (0.1-1.0 microns), (1.0-10 microns). Extensions of previously developed radiative transfer models and recursive inversion algorithms are displayed.
Hair from the Isolated Horizon Perspective
NASA Astrophysics Data System (ADS)
Corichi, A.; Sudarsky, D.
2002-12-01
The recently introduced Isolated Horizons (IH) formalism has become a powerful tool for realistic black hole physics. In particular, it generalizes the zeroth and first laws of black hole mechanics in terms of quasi-local quantities and serves as a starting point for quantum entropy calculations. In this note we consider theories which admit hair, and analyze some new results that the IH provides, when considering solitons and stationary solutions. Furthermore, the IH formalism allows to state uniqueness conjectures (i.e. horizon 'no-hair conjectures') for the existence of solutions.
GRAVITY: getting to the event horizon of Sgr A*
NASA Astrophysics Data System (ADS)
Eisenhauer, F.; Perrin, G.; Brandner, W.; Straubmeier, C.; Richichi, A.; Gillessen, S.; Berger, J. P.; Hippler, S.; Eckart, A.; Schöller, M.; Rabien, S.; Cassaing, F.; Lenzen, R.; Thiel, M.; Clénet, Y.; Ramos, J. R.; Kellner, S.; Fédou, P.; Baumeister, H.; Hofmann, R.; Gendron, E.; Boehm, A.; Bartko, H.; Haubois, X.; Klein, R.; Dodds-Eden, K.; Houairi, K.; Hormuth, F.; Gräter, A.; Jocou, L.; Naranjo, V.; Genzel, R.; Kervella, P.; Henning, T.; Hamaus, N.; Lacour, S.; Neumann, U.; Haug, M.; Malbet, F.; Laun, W.; Kolmeder, J.; Paumard, T.; Rohloff, R.-R.; Pfuhl, O.; Perraut, K.; Ziegleder, J.; Rouan, D.; Rousset, G.
2008-07-01
We present the second-generation VLTI instrument GRAVITY, which currently is in the preliminary design phase. GRAVITY is specifically designed to observe highly relativistic motions of matter close to the event horizon of Sgr A*, the massive black hole at center of the Milky Way. We have identified the key design features needed to achieve this goal and present the resulting instrument concept. It includes an integrated optics, 4-telescope, dual feed beam combiner operated in a cryogenic vessel; near infrared wavefront sensing adaptive optics; fringe tracking on secondary sources within the field of view of the VLTI and a novel metrology concept. Simulations show that the planned design matches the scientific needs; in particular that 10Âµas astrometry is feasible for a source with a magnitude of K=15 like Sgr A*, given the availability of suitable phase reference sources.
Space Launch Initiative: New Capabilities ... New Horizons
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.
2002-01-01
This paper presents NASA's Space Launch Initiative (SLI) with new capabilities and new horizons. The topics include: 1) Integrated Space Transportation Plan; 2) SLI: The Work of an Nation; 3) SLI Goals and Status; 4) Composites and Materials; and 5) SLI & DoD/USAF Collaboration. This paper is presented in viewgraph form.
Space Launch Initiative: New Capabilities - New Horizons
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel; Smith, Dennis E. (Technical Monitor)
2002-01-01
This paper presents NASA's Space Launch Initiative (SLI) with new capabilities and new horizons. The topics include: 1) Integrated Space Transportation Plan; 2) SLI: The Work of a Nation; 3) SLI Goals and Status; 4) Composites and Materials; and 5) SLI and DOD/USAF Collaboration. This paper is in viewgraph form.
Automatic star-horizon angle measurement system
NASA Technical Reports Server (NTRS)
Koerber, K.; Koso, D. A.; Nardella, P. C.
1969-01-01
Automatic star horizontal angle measuring aid for general navigational use incorporates an Apollo type sextant. The eyepiece of the sextant is replaced with two light detectors and appropriate circuitry. The device automatically determines the angle between a navigational star and a unique point on the earths horizon as seen on a spacecraft.
The NMC Horizon Report: 2013 Museum Edition
ERIC Educational Resources Information Center
Johnson, L.; Adams Becker, S.; Freeman, A.
2013-01-01
The "NMC Horizon Report: 2013 Museum Edition," is a co-production with the Marcus Institute for Digital Education in the Arts (MIDEA), and examines six emerging technologies for their potential impact on and use in education and interpretation within the museum environment: BYOD (Bring Your Own Device), crowdsourcing, electronic…
Gateway's Horizon: A Center of Excellence
ERIC Educational Resources Information Center
Herring, Jayne; Colony, Lee
2007-01-01
This article describes Gateway Technical College's Horizon Center for Transportation Technology, located in Kenosha, Wisconsin, which was the product of collaboration with business and industry, community support and a U.S. Department of Labor (DOL) grant. The center, which opened this fall, is a prime example of a sustainable community…
On the differentiability order of horizons
NASA Astrophysics Data System (ADS)
Szeghy, D.
2016-06-01
Let M be a time oriented Lorentzian manifold and H\\subset M a horizon. We will show that the differentiability order of the horizon can change only once along a generator, i.e. the following holds. If γ :I\\to H is a generator, thus, an inextendable past directed light-like geodesic on the horizon, where I=(α ,β ) or [α ,β ), then there exists a unique parameter {t}0\\in [α ,β ] and a positive integer k≥slant 1 such that the following is true. The horizon H is exactly of class {C}k at γ (t), for every t\\in ({t}0,β ), moreover H is only differentiable, but not of class {C}1 at every point γ (t), for which t\\in (α ,{t}0]. Moreover, if γ (α ) is the endpoint of only one generator then for a suitable space-like submanifold R\\subset H the first cut point of R along γ is γ (α ). Furthermore, all the points γ (t), for which t\\in [α ,{t}0], are non-injectivity points of R along γ . Moreover, if H is smooth at an interior point of γ, then H is smooth at every point of γ. MSC 53C50
New Concepts on the Educational Horizon.
ERIC Educational Resources Information Center
Gilchrist, Robert S.; Mitchell, Edna
Four dimensions in education provide a basis for discussing future horizons: (1) curriculum development, (2) teacher education, (3) administration and organization, and (4) research and development. These areas are interdependent, and one cannot be improved or changed without affecting the other areas. Within these areas, some of the broad changes…
New Horizons in Mathematics and Science Education.
ERIC Educational Resources Information Center
Thorson, Annette, Ed.
2001-01-01
This journal, intended for classroom teachers, provides a collection of essays organized around the theme of new horizons in mathematics and science education as well as a guide to instructional materials related to the theme. Topics addressed in the essays include digital libraries, the future of science curricula, integrated curricula, and…
Agriculture’s Ethical Horizon, book review
Technology Transfer Automated Retrieval System (TEKTRAN)
Roughly 6.5 billion people inhabit the earth, but over 1 billion people regularly go hungry. This food shortfall poses an ethical dilemma for agriculture, and Agriculture's Ethical Horizon grapples with this dilemma. It argues that agricultural productivity has been the quintessential value of agr...
Apparent horizons in binary black hole spacetimes
NASA Astrophysics Data System (ADS)
Shoemaker, Deirdre Marie
Over the last decade, advances in computing technology and numerical techniques have lead to the possible theoretical prediction of astrophysically relevant waveforms in numerical simulations. With the building of gravitational wave detectors such as the Laser Interferometric Gravitational-Wave Observatory, we stand at the epoch that will usher in the first experimental study of strong field general relativity. One candidate source for ground based detection of gravitational waveforms, the orbit and merger of two black holes, is of great interest to the relativity community. The binary black hole problem is the two-body problem in general relativity. It is a stringent dynamical test of the theory. The problem involves the evolution of the Einstein equation, a complex system of non-linear, dynamic, elliptic-hyperbolic equations intractable in closed form. Numerical relativists are now developing the technology to evolve the Einstein equation using numerical simulations. The generation of these numerical I codes is a ``theoretical laboratory'' designed to study strong field phenomena in general relativity. This dissertation reports the successful development and application of the first multiple apparent horizon tracker applied to the generic binary black hole problem. I have developed a method that combines a level set of surfaces with a curvature flow method. This method, which I call the level flow method, locates the surfaces of any apparent horizons in the spacetime. The surface location then is used to remove the singularities from the computational domain in the evolution code. I establish the following set of criteria desired in an apparent horizon tracker: (1)The robustness of the tracker due to its lack of dependence on small changes to the initial guess; (2)The generality of the tracker in its applicability to generic spacetimes including multiple back hole spacetimes; and (3)The efficiency of the tracker algorithm in CPU time. I demonstrate the apparent
The Pluto System As Seen By New Horizons Spacecraft
The Pluto system as NASA’s New Horizons spacecraft saw it in July 2015. This animation, made with real images taken by New Horizons, begins with Pluto flying in for its close-up on July 14; we then...
SETAC launches global horizon scanning/research prioritization project
The SETAC World Council is pleased to announce the initiation of a Global Horizon Scanning and Prioritization Project aimed at identifying geographically specific research needs to address stressor impacts on environmental quality. In recent years, horizon scanning and research ...
Rindler-like Horizon in Spherically Symmetric Spacetime
NASA Astrophysics Data System (ADS)
Yang, Jinbo; He, Tangmei; Zhang, Jingyi
2016-02-01
In this paper, the Rindler-like horizon in a spherically symmetric spacetime is proposed. It is showed that just like the Rindler horizon in Minkowski spacetimes, there is also a Rindler-like horizon to a family of special observers in general spherically symmetric spacetimes. The entropy of this type of horizon is calculated with the thin film brick-wall model. The significance of entropy is discussed. Our results imply some connection between Bekeinstein-Hawking entropy and entanglement entropy.
Rindler-like Horizon in Spherically Symmetric Spacetime
NASA Astrophysics Data System (ADS)
Yang, Jinbo; He, Tangmei; Zhang, Jingyi
2016-07-01
In this paper, the Rindler-like horizon in a spherically symmetric spacetime is proposed. It is showed that just like the Rindler horizon in Minkowski spacetimes, there is also a Rindler-like horizon to a family of special observers in general spherically symmetric spacetimes. The entropy of this type of horizon is calculated with the thin film brick-wall model. The significance of entropy is discussed. Our results imply some connection between Bekeinstein-Hawking entropy and entanglement entropy.
Status of the JPL Horizons Ephemeris System
NASA Astrophysics Data System (ADS)
Giorgini, Jon D.
2015-08-01
Since 1996, the NASA/Jet Propulsion Laboratory on-line Horizons system has provided open access to the latest JPL orbit solutions through customizable ephemeris generation and searches. Currently, high-precision ephemerides for more than 683,000 objects are available: all known solar system bodies, several dozen spacecraft, system barycenters, and some libration points.Since inception, Horizons has produced 150 million ephemeris products in response to 70.4 million connections by 800,000 unique IP addresses. Recent usage is typically 6000 unique users requesting 4,000,000 ephemeris products per month.Horizons is freely accessible without an account and may be used and automated through any of three interfaces: interactive telnet connection, web-browser form, or by sending e-mail command-files.Asteroid and comet ephemerides are numerically integrated on request using JPL's DASTCOM5 database of initial conditions which is kept current by a separate process; as new measurements and discoveries are reported by the Minor Planet Center, they are automatically processed into new JPL orbit solutions. Radar targets and other objects of high interest have their orbit solutions manually examined and updated into the database.For asteroids and comets, SPK files may be dynamically created using Horizons. This is effectively a recording of the integrator output. The binary files may then be efficiently interpolated by user software to exactly reproduce the trajectory without having to duplicate the numerically integrated n-body dynamical model or PPN equations of motion.Other Horizons output is numerical and in the form of plain-text observer, vector, osculating element, and close-approach tables. More than one hundred quantities can be requested in various time-scales and coordinate systems. For asteroids and comets, statistical uncertainties can be mapped to output times to assess position and motion uncertainties.Horizons is consistent with the DE431 solar system solution
Rogue events in the group velocity horizon
Demircan, Ayhan; Amiranashvili, Shalva; Brée, Carsten; Mahnke, Christoph; Mitschke, Fedor; Steinmeyer, Günter
2012-01-01
The concept of rogue waves arises from a mysterious and potentially calamitous phenomenon of oceanic surfaces. There is mounting evidence that they are actually commonplace in a variety of different physical settings. A set of defining criteria has been advanced; this set is of great generality and therefore applicable to a wide class of systems. The question arises naturally whether there are generic mechanisms responsible for extreme events in different systems. Here we argue that under suitable circumstances nonlinear interaction between weak and strong waves results in intermittent giant waves with all the signatures of rogue waves. To obtain these circumstances only a few basic conditions must be met. Then reflection of waves at the so-called group-velocity horizon occurs. The connection between rogue waves and event horizons, seemingly unrelated physical phenomena, is identified as a feature common in many different physical systems. PMID:23152941
Horizon ratio bound for inflationary fluctuations.
Dodelson, Scott; Hui, Lam
2003-09-26
We demonstrate that the gravity wave background amplitude implies a robust upper bound on the wavelength-to-horizon ratio at the end of inflation: lambda/H(-1) less than or approximately equal e(60), as long as the cosmic energy density does not drop faster than radiation subsequent to inflation. This limit implies that N, the number of e-folds between horizon exit and the end of inflation for wave modes of interest, is less, similar 60 plus a model-dependent factor-for vast classes of slow-roll models, N less than or approximately equal 67. As an example, this bound solidifies the tension between observations of the cosmic microwave background anisotropies and chaotic inflation with a phi(4) potential by closing the escape hatch of large N (<62). PMID:14525296
Horizon Missions Technology Study. [for space exploration
NASA Technical Reports Server (NTRS)
Anderson, John L.
1992-01-01
The purpose of the HMT Study was to develop and demonstrate a systematic methodology for identifying and evaluating innovative technology concepts offering revolutionary, breadkthrough-type capabilities for advanced space missions and for assessing their potential mission impact. The methodology is based on identifying the new functional, operational and technology capabilities needed by hypothetical 'Horizon' space missions that have performance requirements that cannot be met, even by extrapolating known space technologies. Nineteen Horizon Missions were selected to represent a collective vision of advanced space missions of the mid-21st century. The missions typically would occur beyond the lifetime of current or planned space assets. The HM methodology and supporting data base may be used for advanced technology planning, advanced mission planning and multidisciplinary studies and analyses.
Dynamical AdS strings across horizons
NASA Astrophysics Data System (ADS)
Ishii, Takaaki; Murata, Keiju
2016-03-01
We examine the nonlinear classical dynamics of a fundamental string in anti-de Sitter spacetime. The string is dual to the flux tube between an external quark-antiquark pair in {N}=4 super Yang-Mills theory. We perturb the string by shaking the endpoints and compute its time evolution numerically. We find that with sufficiently strong perturbations the string continues extending and plunges into the Poincaré horizon. In the evolution, effective horizons are also dynamically created on the string worldsheet. The quark and antiquark are thus causally disconnected, and the string transitions to two straight strings. The forces acting on the endpoints vanish with a power law whose slope depends on the perturbations. The condition for this transition to occur is that energy injection exceeds the static energy between the quark-antiquark pair.
Horizon crossing and inflation with large {eta}
Kinney, William H.
2005-07-15
I examine the standard formalism of calculating curvature perturbations in inflation at horizon crossing, and derive a general relation which must be satisfied for the horizon-crossing formalism to be valid. This relation is satisfied for the usual cases of power-law and slow-roll inflation. I then consider a model for which the relation is strongly violated, and the curvature perturbation evolves rapidly on superhorizon scales. This model has Hubble slow-roll parameter {eta}=3, but predicts a scale-invariant spectrum of density perturbations. I consider the case of hybrid inflation with large {eta}, and show that such solutions do not solve the '{eta} problem' in supergravity. These solutions correspond to field evolution which has not yet relaxed to the inflationary attractor solution, and may make possible new, more natural models on the string landscape.
Finding apparent horizons in numerical relativity
NASA Astrophysics Data System (ADS)
Thornburg, Jonathan
1996-10-01
We review various algorithms for finding apparent horizons in 3+1 numerical relativity. We then focus on one particular algorithm, in which we pose the apparent horizon equation H≡∇ini+Kijninj-K=0 as a nonlinear elliptic (boundary-value) PDE on angular-coordinate space for the horizon shape function r=h(θ,φ), finite difference this PDE, and use Newton's method or a variant to solve the finite difference equations. We describe a method for computing the Jacobian matrix of the finite differenced H(h) sH (sh) function by symbolically differentiating the finite difference equations, giving the Jacobian elements directly in terms of the finite difference molecule coefficients used in computing sH (sh). Assuming the finite differencing scheme commutes with linearization, we show how the Jacobian elements may be computed by first linearizing the continuum H(h) equations, then finite differencing the linearized continuum equations. (This is essentially just the ``Jacobian part'' of the Newton-Kantorovich method for solving nonlinear PDEs.) We tabulate the resulting Jacobian coefficients for a number of different sH (sh) and Jacobian computation schemes. We find this symbolic differentiation method of computing the Jacobian to be much more efficient than the usual numerical-perturbation method, and also much easier to implement than is commonly thought. When solving the discrete sH (sh)=0 equations, we find that Newton's method generally shows robust convergence. However, we find that it has a small (poor) radius of convergence if the initial guess for the horizon position contains significant high-spatial-frequency error components, i.e., angular Fourier components varying as (say) cosmθ with m>~8. (Such components occur naturally if spacetime contains significant amounts of high-frequency gravitational radiation.) We show that this poor convergence behavior is not an artifact of insufficient resolution in the finite difference grid; rather, it appears to be caused
New Horizons Pluto Flyby Guest Operations
NASA Astrophysics Data System (ADS)
Simon, M.; Turney, D.; Fisher, S.; Carr, S. S.
2015-12-01
On July 14, 2015, after 9.5 years of cruise, NASA's New Horizons spacecraft flew past the Pluto system to gather first images humankind had ever seen on Pluto and its five moons. While much has been discovered about the Pluto system since New Horizons launch in 2006, the system has never been imaged at high resolution and anticipation of the "First Light" of the Pluto system had been anticipated by planetary enthusiasts for decades. The Johns Hopkins Applied Physics Laboratory (APL), which built and operates New Horizons, was the focal point for gathering three distinct groups: science and engineering team members; media and public affairs representatives; and invited public, including VIP's. Guest operations activities were focused on providing information primarily to the invited public and VIP's. High level objectives for the Guest Operations team was set to entertain and inform the general public, offer media reaction shots, and to deconflict activities for the guests from media activities wherever possible. Over 2000 people arrived at APL in the days surrounding closest approach for guest, science or media operations tracks. Reaction and coverage of the Guest Operations events was universally positive and global in impact: iconic pictures of the auditorium waving flags during the moment of closest approach were published in media outlets on every continent. Media relations activities ensured coverage in all key media publications targeted for release, such as the New York Times, Science, Le Monde, and Nature. Social and traditional media coverage of the events spanned the globe. Guest operations activities are designed to ensure that a guest has a memorable experience and leaves with a lifelong memory of the mission and their partnership in the activity. Results, lessons learned, and other data from the New Horizons guest operations activity will be presented and analyzed.
Finding KBO flyby targets for New Horizons
NASA Astrophysics Data System (ADS)
Spencer, John; Trilling, David; Buie, Marc; Parker, Alex; Tholen, David; Stern, S. Alan
2014-02-01
We propose to continue the search for Kuiper Belt Objects (KBOs) that can be reached by the New Horizons spacecraft after its 2015 Pluto flyby. This first flyby of a small (~50 km) KBO would revolutionize our understanding of KBOs, providing information that can be extrapolated to hundreds of thousands of similar KBOs. Our 2011 search discovered three objects that could be targeted with only about twice the fuel that New Horizons has available during excellent seeing, but seeing was insufficient to achieve this depth over the entire search area in 2012 or 2013. Deepening the search in 2014, taking advantage of lower star density and the shrinking search area, has a good chance of finding a targetable object given sufficiently good seeing, especially with Hyper Suprime Cam. We expect about 2.5 targetable objects with R less 26.0 in the HSC field of view. We will also refine the orbits of previously discovered objects, including ones that can be observed from a distance by New Horizons on its passage through the Kuiper Belt.
Finding KBO flyby targets for New Horizons
NASA Astrophysics Data System (ADS)
Spencer, John; Trilling, David; Buie, Marc; Parker, Alex; Tholen, David; Stern, S. Alan
2014-08-01
We propose to continue the search for Kuiper Belt Objects (KBOs) that can be reached by the New Horizons spacecraft after its 2015 Pluto flyby, by following up on KBOs discovered in 2014A. The first flyby of a small (~50 km) KBO would revolutionize our understanding of KBOs, providing information that can be extrapolated to hundreds of thousands of similar KBOs. Our 2011 search discovered two objects that could be targeted with less than twice the fuel that New Horizons has available, during excellent seeing, but seeing was insufficient to achieve this depth over the entire search area in 2012 or 2013. Deepening the search with time allocated in 2014A, taking advantage of lower star density and the shrinking search area, has a chance of finding a targetable object given sufficiently good seeing, especially with Hyper Suprime Cam. 2014B follow-up is essential to produce orbits good enough to determine targetability, and allow recovery in 2015. We will also continue to refine the orbits of other previously discovered objects, including ones that can be observed from a distance by New Horizons on its passage through the Kuiper Belt.
Accurate, reliable prototype earth horizon sensor head
NASA Technical Reports Server (NTRS)
Schwarz, F.; Cohen, H.
1973-01-01
The design and performance is described of an accurate and reliable prototype earth sensor head (ARPESH). The ARPESH employs a detection logic 'locator' concept and horizon sensor mechanization which should lead to high accuracy horizon sensing that is minimally degraded by spatial or temporal variations in sensing attitude from a satellite in orbit around the earth at altitudes in the 500 km environ 1,2. An accuracy of horizon location to within 0.7 km has been predicted, independent of meteorological conditions. This corresponds to an error of 0.015 deg-at 500 km altitude. Laboratory evaluation of the sensor indicates that this accuracy is achieved. First, the basic operating principles of ARPESH are described; next, detailed design and construction data is presented and then performance of the sensor under laboratory conditions in which the sensor is installed in a simulator that permits it to scan over a blackbody source against background representing the earth space interface for various equivalent plant temperatures.
Horizon Science Experiment for Mars Global Surveyor
NASA Astrophysics Data System (ADS)
Martin, T. Z.
1997-07-01
The Mars Horizon Sensor Assembly on the MGS orbiter monitors the orientation of the spacecraft relative to the limb by sensing atmospheric emission in the 15 mu m CO2 band. These data are used to maintain nadir pointing for the remote sensing instrument suite. The set of 5.5deg tall triangular fields of view normally straddle the limb, and cover quadrants 90deg apart around the limb. As an engineering device, the MHSA benefits from Mars' atmosphere being spatially bland at 15 mu m. However, these data will carry information about the thermal state of the atmosphere, which is subject to diurnal, seasonal, latitudinal, and dust-storm related variations, as well as possible wave effects. The Mariner 7 IRS, Mariner 9 IRIS, and Viking IRTM all demonstrated such variability. The Horizon Science Experiment (HORSE) is intended to glean new insight into atmospheric variation from the MGS horizon sensors, with continuous data flow to the Earth in the engineering stream, and a rapid buildup of spatial coverage. MHSA data will also be used to monitor atmospheric thermal behavior during the aerobraking of MGS in late 1997.
NASA Astrophysics Data System (ADS)
Smith, Robert J.; Marchant, Jonathan M.
2015-11-01
Whilst Earth-based observations obviously cannot compete with New Horizons’ on-board instrumentation in most regards, the New Horizons data set is essentially a snapshot of Pluto in July 2015. The New Horizons project team therefore coordinated a broad international observing campaign to provide temporal context and to take advantage of the once-in-a-lifetime opportunity to directly link our Earth-based view of Pluto with “ground truth” provided by in situ measurements. This both adds value to existing archival data sets and forms the basis of long term, monitoring as we watch Pluto recede from the Sun over the coming years. We present visible-band (390-940nm) monitoring of the Pluto absorption spectrum over the period July - October 2015 from the Liverpool Telescope (LT). In particular we wished to understand the well-known 6-day fluctuation in the methane ice absorption spectrum which is observable from Earth in relation to the never-before-available high resolution maps of the Pluto surface. The LT is a fully robotic 2.0m optical telescope that automatically and dynamically schedules observations across 30+ observing programmes with a broad instrument suite. It is ideal for both reactive response to dynamic events (such as the fly-by) and long term, stable monitoring with timing constraints individually optimised to the science requirements of each programme. For example past studies of the observed CH4 absorption variability have yielded ambiguity of whether they were caused by real physical changes or geometric observation constraints, in large part because of the uneven time sampling imposed by traditional telescope scheduling.
Horizon of quantum black holes in various dimensions
NASA Astrophysics Data System (ADS)
Casadio, Roberto; Cavalcanti, Rogerio T.; Giugno, Andrea; Mureika, Jonas
2016-09-01
We adapt the horizon wave-function formalism to describe massive static spherically symmetric sources in a general (1 + D)-dimensional space-time, for D > 3 and including the D = 1 case. We find that the probability PBH that such objects are (quantum) black holes behaves similarly to the probability in the (3 + 1) framework for D > 3. In fact, for D ≥ 3, the probability increases towards unity as the mass grows above the relevant D-dimensional Planck scale mD. At fixed mass, however, PBH decreases with increasing D, so that a particle with mass m ≃mD has just about 10% probability to be a black hole in D = 5, and smaller for larger D. This result has a potentially strong impact on estimates of black hole production in colliders. In contrast, for D = 1, we find the probability is comparably larger for smaller masses, but PBH < 0.5, suggesting that such lower dimensional black holes are purely quantum and not classical objects. This result is consistent with recent observations that sub-Planckian black holes are governed by an effective two-dimensional gravitation theory. Lastly, we derive Generalised Uncertainty Principle relations for the black holes under consideration, and find a minimum length corresponding to a characteristic energy scale of the order of the fundamental gravitational mass mD in D > 3. For D = 1 we instead find the uncertainty due to the horizon fluctuations has the same form as the usual Heisenberg contribution, and therefore no fundamental scale exists.
Time Horizon and Social Scale in Communication
NASA Astrophysics Data System (ADS)
Krantz, D. H.
2010-12-01
In 2009 our center (CRED) published a first version of The Psychology of Climate Change Communication. In it, we attempted to summarize facts and concepts from psychological research that could help guide communication. While this work focused on climate change, most of the ideas are at least partly applicable for communication about a variety of natural hazards. Of the many examples in this guide, I mention three. Single-action bias is the human tendency to stop considering further actions that might be needed to deal with a given hazard, once a single action has been taken. Another example is the importance of group affiliation in motivating voluntary contributions to joint action. A third concerns the finding that group participation enhances understanding of probabilistic concepts and promotes action in the face of uncertainty. One current research direction, which goes beyond those included in the above publication, focuses on how time horizons arise in the thinking of individuals and groups, and how these time horizons might influence hazard preparedness. On the one hand, individuals sometimes appear impatient, organizations look for immediate results, and officials fail to look beyond the next election cycle. Yet under some laboratory conditions and in some subcultures, a longer time horizon is adopted. We are interested in how time horizon is influenced by group identity and by the very architecture of planning and decision making. Institutional changes, involving long-term contractual relationships among communities, developers, insurers, and governments, could greatly increase resilience in the face of natural hazards. Communication about hazards, in the context of such long-term contractual relationships might look very different from communication that is first initiated by immediate threat. Another new direction concerns the social scale of institutions and of communication about hazards. Traditionally, insurance contracts share risk among a large
The horizon of the lightest black hole
NASA Astrophysics Data System (ADS)
Calmet, Xavier; Casadio, Roberto
2015-09-01
We study the properties of the poles of the resummed graviton propagator obtained by resumming bubble matter diagrams which correct the classical graviton propagator. These poles have been previously interpreted as black holes precursors. Here, we show using the horizon wave-function formalism that these poles indeed have properties which make them compatible with being black hole precursors. In particular, when modeled with a Breit-Wigner distribution, they have a well-defined gravitational radius. The probability that the resonance is inside its own gravitational radius, and thus that it is a black hole, is about one half. Our results confirm the interpretation of these poles as black hole precursors.
Generic isolated horizons and their applications
Ashtekar; Beetle; Dreyer; Fairhurst; Krishnan; Lewandowski; Wisniewski
2000-10-23
The notion of isolated horizons is extended to allow for distortion and rotation. Space-times containing a black hole, itself in equilibrium but possibly surrounded by radiation, satisfy these conditions. The framework has three types of applications: (i) it provides new tools to extract physics from strong field geometry; (ii) it leads to a generalization of the zeroth and first laws of black hole mechanics and sheds new light on the "origin" of the first law; and (iii) it serves as a point of departure for black hole entropy calculations in nonperturbative quantum gravity. PMID:11030951
Peripheral Vision Horizon Display (PVHD). Corrected Copy
NASA Technical Reports Server (NTRS)
1984-01-01
A Canadian invention, the peripheral vision horizon display (PVHD), shows promise in alleviating vertigo or disorientation in pilots flying under instrument conditions and easing the piloting task when flying in weather or other conditions requiring close attention to aircraft attitude instruments. A diversity of research and applied work was being done to investigate and validate the benefits of the PVHD during the years immediately preceding this conference. Organizers of the conference were able to assemble a group of outstanding presenters representing academic, industrial, and military. The theoretical foundation and applied use of the PVHD are discussed, and results from operational tests are presented.
Art, the Urban Skyscraper, and Horizon Astronomy
NASA Astrophysics Data System (ADS)
Mooney, J. D.
2016-01-01
This presentation delineates the historiography and the iconography of my urban public sculptures which use skyscrapers as today's standing stones, markers for horizon astronomy. From 1977 to the present time, my work has engaged the public to “look up and see.” Through ephemeral works in the sky and over the water to large-scale rooftop sculptures in Los Angeles, Chicago, Atlanta, and Europe, viewers are oriented to the Milky Way, the summer triangle, and other celestial phenomena. This new urban scale art, transformative in context and gesture, has become part of the new cultural landscape.
Prolate horizons and the Penrose inequality
Tippett, Benjamin K.
2009-05-15
The Penrose inequality has so far been proven in cases of spherical symmetry and in cases of zero extrinsic curvature. The next simplest case worth exploring would be nonspherical, nonrotating black holes with nonzero extrinsic curvature. Following Karkowski et al.'s construction of prolate black holes, we define initial data on an asymptotically flat spacelike 3-surface with nonzero extrinsic curvature that may be chosen freely. This gives us the freedom to define the location of the apparent horizon such that the Penrose inequality is violated. We show that the dominant energy condition is violated at the poles for all cases considered.
Black hole thermodynamics from Euclidean horizon constraints.
Carlip, S
2007-07-13
To explain black hole thermodynamics in quantum gravity, one must introduce constraints to ensure that a black hole is actually present. I show that for a large class of black holes, such "horizon constraints" allow the use of conformal field theory techniques to compute the density of states, reproducing the Bekenstein-Hawking entropy in a nearly model-independent manner. One standard string theory approach to black hole entropy arises as a special case, lending support to the claim that the mechanism may be "universal." I argue that the relevant degrees of freedom are Goldstone-boson-like excitations arising from the weak breaking of symmetry by the constraints. PMID:17678209
European scientists' proposals for HORIZON 2000+
NASA Astrophysics Data System (ADS)
1994-10-01
This programme, which has been given the name Horizon 2000+, will be presented to the press at 0900h on Monday 17 October 1994 at ESA Headquarters in Paris by Professor Lodewijk Woltjer, who chaired the committee of European scientific community representatives set up to consider the proposals submitted, and Professor Roger Bonnet, ESA's Science Programme Director. Journalists wishing to attend this press breakfast are requested to complete and return the attached form, if possible by fax: (33.1) 42.73.76.90.
78 FR 54298 - Horizons ETFs Management (USA) LLC and Horizons ETF Trust; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-03
.... Applicants currently intend that the initial series of the Trust will be the Horizons Active Global Dividend... through either the NSCC or DTC; or (ii) in the case of Funds holding non-U.S. investment (``Global Funds... holder of Shares of a Global Fund would be subject to unfavorable income tax treatment if the...
Killing horizons around a uniformly accelerating and rotating particle
Farhoosh, H.; Zimmerman, R.L.
1980-08-15
The structure of the Killing horizon surrounding a uniformly accelerating and rotating particle which is emitting gravitational radiation is investigated. When expressed in terms of a coordinate system which is rigidly fixed to the particle undergoing uniform acceleration, the two inner horizons and ergoregion are similar to the horizons and ergoregion in the Kerr solution. These compact surfaces are distorted by the acceleration, being elongated in the forward direction and contracted in the backward direction. In addition to the two horizons that are similar to the Kerr solution, there is an additional noncompact horizon and an additional ergoregion which are caused by the acceleration. In general, the two ergoregions are disjoint, but as the acceleration parameter is sufficiently increased these ergoregions coalesce. A further increase of the acceleration will cause the two outer horizons to become degenerate and the ergoregion to vanish. An increase in the rotation parameter causes effects similar to those in the Kerr metric.
Killing horizons around a uniformly accelerating and rotating particle
NASA Astrophysics Data System (ADS)
Farhoosh, Hamid; Zimmerman, Robert L.
1980-08-01
The structure of the Killing horizon surrounding a uniformly accelerating and rotating particle which is emitting gravitational radiation is investigated. When expressed in terms of a coordinate system which is rigidly fixed to the particle undergoing uniform acceleration, the two inner horizons and ergoregion are similar to the horizons and ergoregion in the Kerr solution. These compact surfaces are distorted by the acceleration, being elongated in the forward direction and contracted in the backward direction. In addition to the two horizons that are similar to the Kerr solution, there is an additional noncompact horizon and an additional ergoregion which are caused by the acceleration. In general, the two ergoregions are disjoint, but as the acceleration parameter is sufficiently increased these ergoregions coalesce. A further increase of the acceleration will cause the two outer horizons to become degenerate and the ergoregion to vanish. An increase in the rotation parameter causes effects similar to those in the Kerr metric.
Gribov's horizon and the ghost dressing function
Boucaud, Ph.; Leroy, J. P.; Le Yaouanc, A.; Micheli, J.; Pene, O.; Rodriguez-Quintero, J.
2009-11-01
We study a relation recently derived by K. Kondo at zero momentum between the Zwanziger's horizon function, the ghost dressing function and Kugo's functions u and w. We agree with this result as far as bare quantities are considered. However, assuming the validity of the horizon gap equation, we argue that the solution w(0)=0 is not acceptable since it would lead to a vanishing renormalized ghost dressing function. On the contrary, when the cutoff goes to infinity, u(0){yields}{infinity}, w(0){yields}-{infinity} such that u(0)+w(0){yields}-1. Furthermore w and u are not multiplicatively renormalizable. Relaxing the gap equation allows w(0)=0 with u(0){yields}-1. In both cases the bare ghost dressing function, F(0,{lambda}), goes logarithmically to infinity at infinite cutoff. We show that, although the lattice results provide bare results not so different from the F(0,{lambda})=3 solution, this is an accident due to the fact that the lattice cutoffs lie in the range 1-3 GeV{sup -1}. We show that the renormalized ghost dressing function should be finite and nonzero at zero momentum and can be reliably estimated on the lattice up to powers of the lattice spacing; from published data on a 80{sup 4} lattice at {beta}=5.7 we obtain F{sub R}(0,{mu}=1.5 GeV){approx_equal}2.2.
Energy and information near black hole horizons
Freivogel, Ben
2014-07-01
The central challenge in trying to resolve the firewall paradox is to identify excitations in the near-horizon zone of a black hole that can carry information without injuring a freely falling observer. By analyzing the problem from the point of view of a freely falling observer, I arrive at a simple proposal for the degrees of freedom that carry information out of the black hole. An infalling observer experiences the information-carrying modes as ingoing, negative energy excitations of the quantum fields. In these states, freely falling observers who fall in from infinity do not encounter a firewall, but freely falling observers who begin their free fall from a location close to the horizon are ''frozen'' by a flux of negative energy. When the black hole is ''mined,'' the number of information-carrying modes increases, increasing the negative energy flux in the infalling frame without violating the equivalence principle. Finally, I point out a loophole in recent arguments that an infalling observer must detect a violation of unitarity, effective field theory, or free infall.
Cool horizons lead to information loss
NASA Astrophysics Data System (ADS)
Chowdhury, Borun D.
2013-10-01
There are two evidences for information loss during black hole evaporation: (i) a pure state evolves to a mixed state and (ii) the map from the initial state to final state is non-invertible. Any proposed resolution of the information paradox must address both these issues. The firewall argument focuses only on the first and this leads to order one deviations from the Unruh vacuum for maximally entangled black holes. The nature of the argument does not extend to black holes in pure states. It was shown by Avery, Puhm and the author that requiring the initial state to final state map to be invertible mandates structure at the horizon even for pure states. The proof works if black holes can be formed in generic states and in this paper we show that this is indeed the case. We also demonstrate how models proposed by Susskind, Papadodimas et al. and Maldacena et al. end up making the initial to final state map non-invertible and thus make the horizon "cool" at the cost of unitarity.
Radiation from quantum weakly dynamical horizons in loop quantum gravity.
Pranzetti, Daniele
2012-07-01
We provide a statistical mechanical analysis of quantum horizons near equilibrium in the grand canonical ensemble. By matching the description of the nonequilibrium phase in terms of weakly dynamical horizons with a local statistical framework, we implement loop quantum gravity dynamics near the boundary. The resulting radiation process provides a quantum gravity description of the horizon evaporation. For large black holes, the spectrum we derive presents a discrete structure which could be potentially observable. PMID:23031096
Dynamical horizons: energy, angular momentum, fluxes, and balance laws.
Ashtekar, Abhay; Krishnan, Badri
2002-12-23
Dynamical horizons are considered in full, nonlinear general relativity. Expressions of fluxes of energy and angular momentum carried by gravitational waves across these horizons are obtained. Fluxes are local, the energy flux is positive, and change in the horizon area is related to these fluxes. The flux formulas also give rise to balance laws analogous to the ones obtained by Bondi and Sachs at null infinity and provide generalizations of the first and second laws of black-hole mechanics. PMID:12484807
Horizons versus singularities in spherically symmetric space-times
Bronnikov, K. A.; Elizalde, E.; Odintsov, S. D.; Zaslavskii, O. B.
2008-09-15
We discuss different kinds of Killing horizons possible in static, spherically symmetric configurations and recently classified as 'usual', 'naked', and 'truly naked' ones depending on the near-horizon behavior of transverse tidal forces acting on an extended body. We obtain the necessary conditions for the metric to be extensible beyond a horizon in terms of an arbitrary radial coordinate and show that all truly naked horizons, as well as many of those previously characterized as naked and even usual ones, do not admit an extension and therefore must be considered as singularities. Some examples are given, showing which kinds of matter are able to create specific space-times with different kinds of horizons, including truly naked ones. Among them are fluids with negative pressure and scalar fields with a particular behavior of the potential. We also discuss horizons and singularities in Kantowski-Sachs spherically symmetric cosmologies and present horizon regularity conditions in terms of an arbitrary time coordinate and proper (synchronous) time. It turns out that horizons of orders 2 and higher occur in infinite proper times in the past or future, but one-way communication with regions beyond such horizons is still possible.
Gravitational anomaly and Hawking radiation near a weakly isolated horizon
Wu Xiaoning; Huang Chaoguang; Sun Jiarui
2008-06-15
Based on the idea of the work by Wilczek and his collaborators, we consider the gravitational anomaly near a weakly isolated horizon. We find that there exists a universal choice of tortoise coordinate for any weakly isolated horizon. Under this coordinate, the leading behavior of a quite arbitrary scalar field near a horizon is a 2-dimensional chiral scalar field. This means we can extend the idea of Wilczek and his collaborators to more general cases and show the relation between gravitational anomaly and Hawking radiation is a universal property of a black hole horizon.
Gravitational anomaly and Hawking radiation near a weakly isolated horizon
NASA Astrophysics Data System (ADS)
Wu, Xiaoning; Huang, Chao-Guang; Sun, Jia-Rui
2008-06-01
Based on the idea of the work by Wilczek and his collaborators, we consider the gravitational anomaly near a weakly isolated horizon. We find that there exists a universal choice of tortoise coordinate for any weakly isolated horizon. Under this coordinate, the leading behavior of a quite arbitrary scalar field near a horizon is a 2-dimensional chiral scalar field. This means we can extend the idea of Wilczek and his collaborators to more general cases and show the relation between gravitational anomaly and Hawking radiation is a universal property of a black hole horizon.
Into the Kuiper Belt: New Horizons Post-Pluto
NASA Astrophysics Data System (ADS)
Harrison Parker, Alex; Spencer, John; Benecchi, Susan; Binzel, Richard; Borncamp, David; Buie, Marc; Fuentes, Cesar; Gwyn, Stephen; Kavelaars, JJ; Noll, Keith; Petit, Jean-Marc; Porter, Simon; Showalter, Mark; Stern, S. Alan; Sterner, Ray; Tholen, David; Verbiscer, Anne; Weaver, Hal; Zangari, Amanda
2015-11-01
New Horizons is now beyond Pluto and flying deeper into the Kuiper Belt. In the summer of 2014, a Hubble Space Telescope Large Program identified two candidate Cold Classical Kuiper Belt Objects (KBOs) that were within reach of New Horizons' remaining fuel budget. Here we present the selection of the Kuiper Belt flyby target for New Horizons' post-Pluto mission, our state of knowledge regarding this target and the potential 2019 flyby, the status of New Horizons' targeting maneuver, and prospects for near-future long-range observations of other KBOs.
Criticality and surface tension in rotating horizon thermodynamics
NASA Astrophysics Data System (ADS)
Hansen, Devin; Kubizňák, David; Mann, Robert B.
2016-08-01
We study a modified horizon thermodynamics and the associated criticality for rotating black hole spacetimes. Namely, we show that under a virtual displacement of the black hole horizon accompanied by an independent variation of the rotation parameter, the radial Einstein equation takes a form of a ‘cohomogeneity two’ horizon first law, δ E=Tδ S+{{Ω }}δ J-σ δ A, where E and J are the horizon energy (an analogue of the Misner–Sharp mass) and the horizon angular momentum, Ω is the horizon angular velocity, A is the horizon area, and σ is the surface tension induced by the matter fields. For fixed angular momentum, the above equation simplifies and the more familiar (cohomogeneity one) horizon first law δ E=Tδ S-Pδ V is obtained, where P is the pressure of matter fields and V is the horizon volume. A universal equation of state is obtained in each case and the corresponding critical behavior is studied.
New reagents on the horizon for immune tolerance.
St Clair, E William; Turka, Larry A; Saxon, Andrew; Matthews, Jeffrey B; Sayegh, Mohamed H; Eisenbarth, George S; Bluestone, Jeffrey
2007-01-01
Recent advances in immunology and a growing arsenal of new drugs are bringing the focus of tolerance research from animal models into the clinical setting. The conceptual framework for therapeutic tolerance induction has shifted from a "sledgehammer" approach that relies solely on cellular depletion and cytokine targeting, to a strategy directed toward restoring a functional balance across the immune system, namely the different populations of naive cells, effector and memory cells, and regulatory cells. Unlocking the key to tolerance induction in the future will likely depend on our ability to harness the functions of T regulatory cells. Also, dendritic cells are strategically positioned at the interface between innate and adaptive immunity and may be subject to deliberate medical intervention in a way that can control a chronic inflammatory response. Many reagents with tolerance-inducing potential are currently undergoing clinical testing in transplantation, autoimmune diseases, and allergic diseases, and even more that are on the horizon promise to offer enormous benefits to human health. PMID:16987079
Landsat-4 horizon scanner flight performance
NASA Technical Reports Server (NTRS)
Bilanow, S.; Chen, L. C.
1984-01-01
This paper presents an analysis of the flight data from a new design of horizon scanner flown on Landsat-4. The salient features in the data are described and demonstrated by data plots. High frequency noise must be filtered out to achieve good accuracy, but this is effectively done by 128-point averaging. Sun and moon interference effects are identified. The effects of earth oblateness and spacecraft altitude variations are modeled, and the residual systematic errors are analyzed. Most of the residual errors are apparently explained by the effects of earth radiance variation, with the winter polar regions showing the highest variability in the attitude measurements due to winter stratosphere temperature variations. In general, this sensor provides improved accuracy over those flown on previous missions.
Black Hole Observations - Towards the Event Horizon
NASA Astrophysics Data System (ADS)
Britzen, Silke
Black Holes are probably the most elusive solutions of Einstein's theory of General Relativity. Despite numerous observations of the direct galactic environment and indirect influence of astrophysical black holes (e.g. jets, variable emission across the wavelength spectrum, feedback processes, etc.) -- a direct proof of their existence is still lacking. This article highlights some aspects deduced from many observations and concentrates on the experimental results with regard to black holes with masses from millions to billions of solar masses. The focus will be on the challenges and remaining questions. The Event Horizon Telescopce (EHT) project to image the photon sphere of Sgr A* and its potential is briefly sketched. This instrumental approach shall lead to highest resolution observations of the supermassive black hole at the center of the Milky Way (Sgr A*).
Horizon complementarity in elliptic de Sitter space
NASA Astrophysics Data System (ADS)
Hackl, Lucas; Neiman, Yasha
2015-02-01
We study a quantum field in elliptic de Sitter space dS4/Z2—the spacetime obtained from identifying antipodal points in dS4. We find that the operator algebra and Hilbert space cannot be defined for the entire space, but only for observable causal patches. This makes the system into an explicit realization of the horizon complementarity principle. In the absence of a global quantum theory, we propose a recipe for translating operators and states between observers. This translation involves information loss, in accordance with the fact that two observers see different patches of the spacetime. As a check, we recover the thermal state at the de Sitter temperature as a state that appears the same to all observers. This thermal state arises from the same functional that, in ordinary dS4, describes the Bunch-Davies vacuum.
Opportunity Spies 'Endurance' on the Horizon
NASA Technical Reports Server (NTRS)
2004-01-01
This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows the eastern plains that stretch beyond the small crater where the rover landed. In the distance, the rim of a larger crater dubbed 'Endurance' can be seen.
This color mosaic was taken on the 32nd martian day, or sol, of the rover's mission and spans 20 degrees of the horizon. It was taken while Opportunity was parked at the north end of the outcrop, in front of the rock region dubbed 'El Capitan' and facing east.
The features seen at the horizon are the near and far rims of 'Endurance,' the largest crater within about 6 kilometers (4 miles) of the lander. Using orbital data from the Mars Orbiter Camera on NASA's Mars Global Surveyor spacecraft, scientists estimated the crater to be 160 meters (175 yards) in diameter, and about 720 meters (half a mile) away from the lander.
The highest point visible on 'Endurance' is the highest point on the far wall of the crater; the sun is illuminating the inside of the far wall.
Between the location where the image was taken at 'El Capitan' and 'Endurance' are the flat, smooth Meridiani plains, which scientists believe are blanketed in the iron-bearing mineral called hematite. The dark horizontal feature near the bottom of the picture is a small, five-meter (16-feet) crater, only 50 meters (164 feet) from Opportunity's present position. When the rover leaves the crater some 2 to 3 weeks from now, 'Endurance' is one of several potential destinations.
Air-shower spectroscopy at horizons
NASA Astrophysics Data System (ADS)
Fargion, D.
2006-07-01
Downward cosmic rays are mostly revealed on the ground by their air-showers diluted and filtered secondary μμ traces and/or by their (Cerenkov - Fluorescent) light because of the high altitude numerous and luminous electromagnetic ee,γ shower component. Horizontal and upward air-showers are even more suppressed by deeper atmosphere opacity and by the Earth shadows. In such noise-free horizontal and upward directions rare Ultra High Cosmic rays and rarer neutrino induced air-showers may shine, mostly mediated by resonant PeV ν¯+e→W interactions in air or by higher energy tau air-showers originated by ν skimming the Earth. At high altitude (mountains, planes, balloons) the air density is so rarefied that nearly all common air-showers might be observed at their maximal growth at a tuned altitude and direction. The arrival angle samples different distances and the corresponding most probable primary cosmic ray energy. The larger and larger distances (between observer and C.R. interaction) make wider and wider the shower area and it enlarges the probability of being observed (up to three orders of magnitude more than vertical showers); the observation of a maximal electromagnetic shower development may amplify the signal by two three orders of magnitude (with respect to a suppressed shower at sea level); the peculiar altitude angle range (ten twenty km height and ≃80 90 zenith angle) may disentangle at best the primary cosmic ray energy and composition. Even from existing mountain observatories the up-going air-showers may trace, above the horizons, PeV EeV high energy cosmic rays and, below the horizons, PeV EeV neutrino astronomy: their early signals may be captured in already existing gamma telescopes such as Magic at Canarie, while facing the Earth edges during (useless) cloudy nights.
THERMAL CONDUCTIVITY OF THE POTENTIAL REPOSITORY HORIZON
J.E. BEAN
2004-09-27
The primary purpose of this report is to assess the spatial variability and uncertainty of bulk thermal conductivity in the host horizon for the repository at Yucca Mountain. More specifically, the lithostratigraphic units studied are located within the Topopah Spring Tuff (Tpt) and consist of the upper lithophysal zone (Tptpul), the middle nonlithophysal zone (Tptpmn), the lower lithophysal zone (Tptpll), and the lower nonlithophysal zone (Tptpln). Design plans indicate that approximately 81 percent of the repository will be excavated in the Tptpll, approximately 12 percent in the Tptpmn, and the remainder in the Tptul and Tptpln (BSC 2004 [DIRS 168370]). This report provides three-dimensional geostatistical estimates of the bulk thermal conductivity for the four stratigraphic layers of the repository horizon. The three-dimensional geostatistical estimates of matrix and lithophysal porosity, dry bulk density, and matrix thermal conductivity are also provided. This report provides input to various models and calculations that simulate heat transport through the rock mass. These models include the ''Drift Degradation Analysis, Multiscale Thermohydrologic Model, Ventilation Model and Analysis Report, Igneous Intrusion Impacts on Waste Packages and Waste Forms, Drift-Scale Coupled Processes (DST and TH Seepage) Models'', and ''Drift Scale THM Model''. These models directly or indirectly provide input to the total system performance assessment (TSPA). The main distinguishing characteristic among the lithophysal and nonlithophysal units is the percentage of large-scale (centimeters-meters) voids within the rock. The Tptpul and Tptpll, as their names suggest, have a higher percentage of lithophysae than the Tptpmn and the Tptpln. Understanding the influence of the lithophysae is of great importance to understanding bulk thermal conductivity.
New Horizons Risk Communication Strategy, Planning, Implementation, and Lessons Learned
NASA Technical Reports Server (NTRS)
Dawson, Sandra A.
2006-01-01
This paper discusses the risk communication goals, strategy, planning process and product development for the New Horizons mission, including lessons from the Cassini mission that were applied in that effort, and presents lessons learned from the New Horizons effort that could be applicable to future missions.
The Horizon Report: 2010 Australia-New Zealand Edition
ERIC Educational Resources Information Center
Johnson, L.; Smith, R.; Levine, A.; Haywood, K.
2010-01-01
The internationally recognized series of "Horizon Reports" is part of the New Media Consortium's Horizon Project, a comprehensive research venture established in 2002 that identifies and describes emerging technologies likely to have a large impact over the coming five years on a variety of sectors around the globe. This volume, the "2010 Horizon…
The NMC Horizon Report: 2013 Higher Education Edition
ERIC Educational Resources Information Center
Johnson, L.; Adams Becker, S.; Cummins, M.; Estrada, V.; Freeman, A.; Ludgate, H.
2013-01-01
The internationally recognized "NMC Horizon Report" series and regional "NMC Technology Outlooks" are part of the NMC Horizon Project, a comprehensive research venture established in 2002 that identifies and describes emerging technologies likely to have a large impact over the coming five years in education around the globe.…
The Horizon Report: 2009 Australia-New Zealand Edition
ERIC Educational Resources Information Center
Johnson, L.; Levine, A.; Smith, R.; Smythe, T.; Stone, S.
2009-01-01
The New Media Consortium's Horizon Project is an ongoing research project that aims to identify and describe emerging technologies likely to have a large impact on teaching, learning, or creative inquiry within education around the globe over a five-year time period. The project's central products are the "Horizon Reports", an annual series of…
The NMC Horizon Report: 2013 K-12 Edition
ERIC Educational Resources Information Center
Johnson, L.; Adams Becker, S.; Cummins, M.; Estrada V.; Freeman, A.; Ludgate, H.
2013-01-01
"The NMC Horizon Report" series is the most visible outcome of the New Media Consortium (NMC) Horizon Project, an ongoing research effort established in 2002 that identifies and describes emerging technologies likely to have a large impact on teaching, learning, research, or creative expression within education around the globe. This…
The NMC Horizon Report: 2012 Higher Education Edition
ERIC Educational Resources Information Center
Johnson, L.; Adams, S.; Cummins, M.
2012-01-01
The internationally recognized "NMC Horizon Report" series and regional "NMC Technology Outlooks" are part of the NMC Horizon Project, a comprehensive research venture established in 2002 that identifies and describes emerging technologies likely to have a large impact over the coming five years in education around the globe. This volume, the "NMC…
A Fusion of Horizons: Students' Encounters with "Will and Wave"
ERIC Educational Resources Information Center
Myers, James L.
2006-01-01
In a case study, I applied philosophical hermeneutic principles in an advanced level EFL writing class in Taiwan. A "fusion of horizons" occurs at the junction of two intertwined interpretations: one from our socio-historical tradition and the other from our experience of novel phenomena. I explored students' hermeneutic horizons in relation to…
The NMC Horizon Report: 2011 K-12 Edition
ERIC Educational Resources Information Center
Johnson, L.; Adams, S.; Haywood, K.
2011-01-01
"The NMC Horizon Report" series is the most visible outcome of the New Media Consortium. (NMC) Horizon Project, an ongoing research effort established in 2002 that identifies and describes emerging technologies likely to have a large impact on teaching, learning, research, or creative expression within education around the globe. This volume, "The…
NEW JERSEY APPROACH TO OUTERBRIDGE CROSSING BRIDGE, NOTE DISTANT HORIZON ...
NEW JERSEY APPROACH TO OUTERBRIDGE CROSSING BRIDGE, NOTE DISTANT HORIZON NEW YORK SKYLINE AND ALMOST IN THE MIDDLE OF THE HORIZON THE TWIN TOWERS OF THE VERRAZANO-NARROWS BRIDGE - Outerbridge Crossing Bridge, Spanning Arthur Kill from New Jersey to Staten Island, Staten Island (subdivision), Richmond County, NY
The NMC Horizon Report: 2015 Higher Education Edition
ERIC Educational Resources Information Center
Johnson, L.; Adams Becker, S.; Estrada, V.; Freeman, A.
2015-01-01
The "NMC Horizon Report: 2015 Higher Education Edition" is a collaborative effort between the New Media Consortium (NMC) and the EDUCAUSE Learning Initiative (ELI). This 12th edition describes annual findings from the NMC Horizon Project, an ongoing research project designed to identify and describe emerging technologies likely to have…
The NMC Horizon Report: 2014 K-12 Edition
ERIC Educational Resources Information Center
Johnson, L.; Adams Becker, S.; Estrada, V.; Freeman, A.
2014-01-01
"The NMC Horizon Report" series is the most visible outcome of the New Media Consortium (NMC) Horizon Project, an ongoing research effort established in 2002 that identifies and describes emerging technologies likely to have a large impact on teaching, learning, research, or creative expression within every sector of education in some 65…
Fluctuations in horizon-fluid lead to negative bulk viscosity
NASA Astrophysics Data System (ADS)
Bhattacharya, Swastik; Shankaranarayanan, S.
2016-03-01
Einstein equations projected on to a black-hole horizon give rise to Navier-Stokes equations. Horizon-fluids typically possess unusual features like negative bulk viscosity, and it is not clear whether a statistical-mechanical description exists for such fluids. In this work, we provide an explicit derivation of the Bulk viscosity of the horizon-fluid based on the theory of fluctuations à la Kubo. The main advantage of our approach is that our analysis remains for the most part independent of the details of the underlying microscopic theory and hence the conclusions reached here are model independent. We show that the coefficient of bulk viscosity for the horizon-fluid matches exactly with the value found from the equations of motion for the horizon-fluid.
Observations of the Geometry of Horizon-Based Optical Navigation
NASA Technical Reports Server (NTRS)
Christian, John; Robinson, Shane
2016-01-01
NASA's Orion Project has sparked a renewed interest in horizon-based optical navigation(OPNAV) techniques for spacecraft in the Earth-Moon system. Some approaches have begun to explore the geometry of horizon-based OPNAV and exploit the fact that it is a conic section problem. Therefore, the present paper focuses more deeply on understanding and leveraging the various geometric interpretations of horizon-based OPNAV. These results provide valuable insight into the fundamental workings of OPNAV solution methods, their convergence properties, and associated estimate covariance. Most importantly, the geometry and transformations uncovered in this paper lead to a simple and non-iterative solution to the generic horizon-based OPNAV problem. This represents a significant theoretical advancement over existing methods. Thus, we find that a clear understanding of geometric relationships is central to the prudent design, use, and operation of horizon-based OPNAV techniques.
NASA Astrophysics Data System (ADS)
Huang, T.; Alarcon, C.; Quach, N. T.
2014-12-01
Capture, curate, and analysis are the typical activities performed at any given Earth Science data center. Modern data management systems must be adaptable to heterogeneous science data formats, scalable to meet the mission's quality of service requirements, and able to manage the life-cycle of any given science data product. Designing a scalable data management doesn't happen overnight. It takes countless hours of refining, refactoring, retesting, and re-architecting. The Horizon data management and workflow framework, developed at the Jet Propulsion Laboratory, is a portable, scalable, and reusable framework for developing high-performance data management and product generation workflow systems to automate data capturing, data curation, and data analysis activities. The NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC)'s Data Management and Archive System (DMAS) is its core data infrastructure that handles capturing and distribution of hundreds of thousands of satellite observations each day around the clock. DMAS is an application of the Horizon framework. The NASA Global Imagery Browse Services (GIBS) is NASA's Earth Observing System Data and Information System (EOSDIS)'s solution for making high-resolution global imageries available to the science communities. The Imagery Exchange (TIE), an application of the Horizon framework, is a core subsystem for GIBS responsible for data capturing and imagery generation automation to support the EOSDIS' 12 distributed active archive centers and 17 Science Investigator-led Processing Systems (SIPS). This presentation discusses our ongoing effort in refining, refactoring, retesting, and re-architecting the Horizon framework to enable data-intensive science and its applications.
76 FR 55427 - Horizon Technology Finance Corporation, et al.; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-07
... COMMISSION Horizon Technology Finance Corporation, et al.; Notice of Application August 31, 2011. AGENCY...(a) of the Act. Applicants: Horizon Technology Finance Corporation (the ``Company''), Horizon Technology Finance Management LLC (the ``Investment Adviser''), Longview SBIC GP LLC (the ``General...
Horizon shells and BMS-like soldering transformations
NASA Astrophysics Data System (ADS)
Blau, Matthias; O'Loughlin, Martin
2016-03-01
We revisit the theory of null shells in general relativity, with a particular emphasis on null shells placed at horizons of black holes. We study in detail the considerable freedom that is available in the case that one solders two metrics together across null hypersurfaces (such as Killing horizons) for which the induced metric is invariant under translations along the null generators. In this case the group of soldering transformations turns out to be infinite dimensional, and these solderings create non-trivial horizon shells containing both massless matter and impulsive gravitational wave components. We also rephrase this result in the language of Carrollian symmetry groups. To illustrate this phenomenon we discuss in detail the example of shells on the horizon of the Schwarzschild black hole (with equal interior and exterior mass), uncovering a rich classical structure at the horizon and deriving an explicit expression for the general horizon shell energy-momentum tensor. In the special case of BMS-like soldering supertranslations we find a conserved shell-energy that is strikingly similar to the standard expression for asymptotic BMS supertranslation charges, suggesting a direct relation between the physical properties of these horizon shells and the recently proposed BMS supertranslation hair of a black hole.
Physical process first law for bifurcate Killing horizons
Amsel, Aaron J.; Marolf, Donald; Virmani, Amitabh
2008-01-15
The physical process version of the first law for black holes states that the passage of energy and angular momentum through the horizon results in a change in area ({kappa}/8{pi}){delta}A={delta}E-{omega}{delta}J, so long as this passage is quasistationary. A similar physical process first law can be derived for any bifurcate Killing horizon in any spacetime dimension d{>=}3 using much the same argument. However, to make this law nontrivial, one must show that sufficiently quasistationary processes do in fact occur. In particular, one must show that processes exist for which the shear and expansion remain small, and in which no new generators are added to the horizon. Thorne, MacDonald, and Price considered related issues when an object falls across a d=4 black hole horizon. By generalizing their argument to arbitrary d{>=}3 and to any bifurcate Killing horizon, we derive a condition under which these effects are controlled and the first law applies. In particular, by providing a nontrivial first law for Rindler horizons, our work completes the parallel between the mechanics of such horizons and those of black holes for d{>=}3. We also comment on the situation for d=2.
Possible New Horizons Fundamental Contribution to Cosmology
NASA Astrophysics Data System (ADS)
Conn Henry, Richard; Murthy, Jayant
2016-01-01
The New Horizons (NH) spacecraft (S. Alan Stern, PI) is now past Pluto, and in our poster we explore the possibility of making observations, using the NH P-Alice ultraviolet spectrometer, of the cosmic diffuse ultraviolet background radiation, particularily at high northern and southern Galactic latitudes. In the paper, "The Mystery of the Cosmic Diffuse Ultraviolet Background Radiation," by Richard Conn Henry, Jayant Murthy, James Overduin, Joshua Tyler, ApJ, 798:14 (25pp), 2015 January 1, we demonstrated the existence of a second component of the diffuse far ultraviolet background radiation beyond that provided by dust-scattered starlight. The critical question is, does that second component (of unknown origin) extend shortward of the Lyman limit of 912 Å? If it does, then it seems likely that we have discovered the source of the reionization of the Universe that occurred some time after recombination. As things stand at the moment, there is no known source that has been demonstrated to be capable of performing the reionization: reionization that clearly did occur. Our current understanding of P-Alice suggests that it may well be capable of demonstrating the presence (or absence) of such ionizing cosmic diffuse radiation. At low Galactic latitudes, all such radiation would be totally erased by the presence, in large quantities, of interstellar neutral hydrogen; this will allow us to test the reality of any such flux that we may discover at higher Galactic latitudes.
Lunar horizon glow and the Clementine mission
NASA Technical Reports Server (NTRS)
Zook, H. A.; Potter, A. E.
1994-01-01
The Clementine spacecraft is to be launched into Earth orbit in late January for subsequent insertion into lunar orbit in late February, 1994. There, its primary mission is to produce -- over a period of about two months -- a new photographic map of the entire surface of the Moon; this will be done, in a variety of wavelengths and spatial resolutions, in a manner greatly superior to that previously accomplished for the whole Moon. It will then go on to fly by and photograph the asteroid Geographos. A secondary goal that has been accepted for this mission is to take a series of photographs designed to capture images of, and determine the brightness and extent of, the Lunar Horizon Glow (LHG). One form of LHG is caused by the solar stimulation of emission from Na and K atoms in the lunar exosphere. The scale height of this exosphere is of the order of 100 km. There are also brighter LHG components, with much smaller scale heights, that appear to be caused by scattered off of an exospheric lunar dust cloud.
Perturbative string thermodynamics near black hole horizons
NASA Astrophysics Data System (ADS)
Mertens, Thomas G.; Verschelde, Henri; Zakharov, Valentin I.
2015-06-01
We provide further computations and ideas to the problem of near-Hagedorn string thermodynamics near (uncharged) black hole horizons, building upon our earlier work [1]. The relevance of long strings to one-loop black hole thermodynamics is emphasized. We then provide an argument in favor of the absence of α'-corrections for the (quadratic) heterotic thermal scalar action in Rindler space. We also compute the large k limit of the cigar orbifold partition functions (for both bosonic and type II superstrings) which allows a better comparison between the flat cones and the cigar cones. A discussion is made on the general McClain-Roth-O'Brien-Tan theorem and on the fact that different torus embeddings lead to different aspects of string thermodynamics. The black hole/string correspondence principle for the 2d black hole is discussed in terms of the thermal scalar. Finally, we present an argument to deal with arbitrary higher genus partition functions, suggesting the breakdown of string perturbation theory (in g s ) to compute thermodynam-ical quantities in black hole spacetimes.
Large Dust Devil on Horizon, Sol 468
NASA Technical Reports Server (NTRS)
2005-01-01
This movie clip shows a large, distant dust devil -- a whirlwind that lofts dust into the air -- as a dark shape on the horizon near the right side of the images. This dust devil was about 5 kilometers (3 miles) away from NASA's Mars Exploration Rover Spirit, and may have been up to 200 meters or yards in diameter. Smaller dust devils closer to the rover appear bright against the dark ground. Spirit's navigation camera took these images on the rover's 468th martian day, or sol (April 27, 2005.) Contrast has been enhanced for anything in the images that changes from frame to frame, that is, for the dust devil. The number of seconds elapsed since the first frame is indicated at lower left of the images, typically 20 seconds between frames.
Scientists expected dust devils since before Spirit landed. The landing area inside Gusev Crater is filled with dark streaks left behind when dust devils pick dust up from an area. It is also filled with bright 'hollows,' which are dust-filled miniature craters. Dust covers most of the terrain. Winds flow into and out of Gusev crater every day. The Sun heats the surface so that the surface is warm to the touch even though the atmosphere at 2 meters (6 feet) above the surface would be chilly. That temperature contrast causes convection. Mixing the dust, winds, and convection can trigger dust devils.
LANDSAT-4 horizon scanner performance evaluation
NASA Technical Reports Server (NTRS)
Bilanow, S.; Chen, L. C.; Davis, W. M.; Stanley, J. P.
1984-01-01
Representative data spans covering a little more than a year since the LANDSAT-4 launch were analyzed to evaluate the flight performance of the satellite's horizon scanner. High frequency noise was filtered out by 128-point averaging. The effects of Earth oblateness and spacecraft altitude variations are modeled, and residual systematic errors are analyzed. A model for the predicted radiance effects is compared with the flight data and deficiencies in the radiance effects modeling are noted. Correction coefficients are provided for a finite Fourier series representation of the systematic errors in the data. Analysis of the seasonal dependence of the coefficients indicates the effects of some early mission problems with the reference attitudes which were computed by the onboard computer using star trackers and gyro data. The effects of sun and moon interference, unexplained anomalies in the data, and sensor noise characteristics and their power spectrum are described. The variability of full orbit data averages is shown. Plots of the sensor data for all the available data spans are included.
Quantum correlations through event horizons: Fermionic versus bosonic entanglement
Martin-Martinez, Eduardo; Leon, Juan
2010-03-15
We disclose the behavior of quantum and classical correlations among all the different spatial-temporal regions of a space-time with an event horizon, comparing fermionic with bosonic fields. We show the emergence of conservation laws for entanglement and classical correlations, pointing out the crucial role that statistics plays in the information exchange (and more specifically, the entanglement tradeoff) across horizons. The results obtained here could shed new light on the problem of information behavior in noninertial frames and in the presence of horizons, giving better insight into the black-hole information paradox.
Quantum correlations through event horizons: Fermionic versus bosonic entanglement
NASA Astrophysics Data System (ADS)
Martín-Martínez, Eduardo; León, Juan
2010-03-01
We disclose the behavior of quantum and classical correlations among all the different spatial-temporal regions of a space-time with an event horizon, comparing fermionic with bosonic fields. We show the emergence of conservation laws for entanglement and classical correlations, pointing out the crucial role that statistics plays in the information exchange (and more specifically, the entanglement tradeoff) across horizons. The results obtained here could shed new light on the problem of information behavior in noninertial frames and in the presence of horizons, giving better insight into the black-hole information paradox.
Horizon scan of global conservation issues for 2011.
Sutherland, William J; Bardsley, Sarah; Bennun, Leon; Clout, Mick; Côté, Isabelle M; Depledge, Michael H; Dicks, Lynn V; Dobson, Andrew P; Fellman, Liz; Fleishman, Erica; Gibbons, David W; Impey, Andrew J; Lawton, John H; Lickorish, Fiona; Lindenmayer, David B; Lovejoy, Thomas E; Nally, Ralph Mac; Madgwick, Jane; Peck, Lloyd S; Pretty, Jules; Prior, Stephanie V; Redford, Kent H; Scharlemann, Jörn P W; Spalding, Mark; Watkinson, Andrew R
2011-01-01
This review describes outcomes of a 2010 horizon-scanning exercise building upon the first exercise conducted in 2009. The aim of both horizon scans was to identify emerging issues that could have substantial impacts on the conservation of biological diversity, and to do so sufficiently early to encourage policy-relevant, practical research on those issues. Our group included professional horizon scanners and researchers affiliated with universities and non- and inter-governmental organizations, including specialists on topics such as invasive species, wildlife diseases and coral reefs. We identified 15 nascent issues, including new greenhouse gases, genetic techniques to eradicate mosquitoes, milk consumption in Asia and societal pessimism. PMID:21126797
Area Theorem and Smoothness of Compact Cauchy Horizons
NASA Astrophysics Data System (ADS)
Minguzzi, E.
2015-10-01
We obtain an improved version of the area theorem for not necessarily differentiable horizons which, in conjunction with a recent result on the completeness of generators, allows us to prove that under the null energy condition every compactly generated Cauchy horizon is smooth and compact. We explore the consequences of this result for time machines, topology change, black holes and cosmic censorship. For instance, it is shown that compact Cauchy horizons cannot form in a non-empty spacetime which satisfies the stable dominant energy condition wherever there is some source content.
Exact event horizon of a black hole merger
NASA Astrophysics Data System (ADS)
Emparan, Roberto; Martínez, Marina
2016-08-01
We argue that the event horizon of a binary black hole merger, in the extreme-mass-ratio limit where one of the black holes is much smaller than the other, can be described in an exact analytic way. This is done by tracing in the Schwarzschild geometry a congruence of null geodesics that approaches a null plane at infinity. Its form can be given explicitly in terms of elliptic functions, and we use it to analyze and illustrate the time-evolution of the horizon along the merger. We identify features such as the line of caustics at which light rays enter the horizon, and the critical point at which the horizons touch. We also compute several quantities that characterize these aspects of the merger.
Complementary and Alternative Medicine (CAM): Expanding Horizons of Health Care
... Past Issues Special Section CAM Expanding Horizons of Health Care Past Issues / Winter 2009 Table of Contents For ... and why it is important to tell your health care providers about your use of CAM. We hope ...
The absence of horizon in black-hole formation
NASA Astrophysics Data System (ADS)
Ho, Pei-Ming
2016-08-01
With the back-reaction of Hawking radiation taken into consideration, the work of Kawai, Matsuo and Yokokura [1] has shown that, under a few assumptions, the collapse of matter does not lead to event horizon nor apparent horizon. In this paper, we relax their assumptions and elaborate on the space-time geometry of a generic collapsing body with spherical symmetry. The geometry outside the collapsing sphere is found to be approximated by the geometry outside the white-hole horizon, hence the collapsing matter remains outside the Schwarzschild radius. As particles in Hawking radiation are created in the vicinity of the collapsing matter, the information loss paradox is alleviated. Assuming that the collapsing body evaporates within finite time, there is no event horizon.
Entanglement entropy of a black hole and isolated horizon
NASA Astrophysics Data System (ADS)
Shi, Jianhua; Hu, Shuangqi; Zhao, Ren
2013-02-01
Using Unruh-Verlinde temperature obtained by entropic force, we directly calculate partition functions of quantum field in Schwarzschild spacetime via quantum statistical method and derive the expression of the black hole statistical entropy. In our calculation the lower limit of integral is the location of isolated horizon introduced in loop quantum gravity and the upper limit of integral is infinity. So the obtained entropy is the statistical entropy from isolated horizon to the infinite. In our calculation there are not the cutoff and approximation. The results showed that, as long as proper Immirzi parameters are selected, the entropy obtained by loop quantum gravity is consistent with the quantum statistical entropy outside the black hole horizon. Therefore the black hole entropy is a quantum entanglement entropy outside the isolated horizon.
Note on electrical and thermodynamic properties of isolated horizons
NASA Astrophysics Data System (ADS)
Chen, Gerui; Wu, Xiaoning; Gao, Sijie
2015-03-01
The electrical laws and Carnot cycle of isolated horizons (IH) are investigated in this paper. We establish Ohm's law and Joule's law of isolated horizons and find that the conceptual picture of black holes (membrane paradigm) can also apply to this kind of quasilocal black holes. We also investigate the geometrical properties near nonrotating IHs and find that under the first-order approximation of r , there exist a Killing vector ∂∂u/ and a Hamiltonian conjugate to it, so this vector can be thought to be a physical observer. We calculate the energy as measured at infinity of a particle at rest outside a nonrotating IH, and we use this result to construct a reversible Carnot cycle with the isolated horizon as a cold reservoir, which confirms the thermodynamic nature of isolated horizons.
JERSEY APPROACH VIADUCT LOOKING EAST, NOTE VERRAZANO TOWERS ON HORIZON ...
JERSEY APPROACH VIADUCT LOOKING EAST, NOTE VERRAZANO TOWERS ON HORIZON TO LEFT - Goethals Bridge, Spanning Arthur Kill from New Jersey to Staten Island, Staten Island (subdivision), Richmond County, NY
Universal properties of the near-horizon optical geometry
NASA Astrophysics Data System (ADS)
Gibbons, G. W.; Warnick, C. M.
2009-03-01
Making use of the fact that the optical geometry near a static nondegenerate Killing horizon is asymptotically hyperbolic, we investigate some universal features of black-hole horizons. Applying the Gauss-Bonnet theorem allows us to establish some general properties of gravitational lensing, valid for all black holes. Hyperbolic geometry allows us to find rates for the loss of scalar, vector, and fermionic “hair” as objects fall quasistatically towards the horizon, extending previous results for Schwarzschild to all static Killing horizons. In the process we find the Liénard-Wiechert potential for hyperbolic space and calculate the force between electrons mediated by neutrinos, extending the flat space result of Feinberg and Sucher. We further demonstrate how these techniques allow us to derive the exact Copson-Linet potential due to a point charge in a Schwarzschild background in a simple fashion.
The Cauchy horizon singularity inside Kerr black holes
NASA Astrophysics Data System (ADS)
Burko, Lior M.; Khanna, Gaurav
2016-03-01
The numerical technology that allows for the careful evolution of linearized fields inside Kerr black holes and the study of their behavior approaching the Cauchy horizon singularity includes a number of interesting aspects. The latter include compactified hyperboloidal coordinates and foliation, mixed type hyperbolic-elliptic PDE, and initial data evolution where all equal-coordinate hypersurfaces are spacelike. We review the need for the numerical technology that allows for the solution of the spin-2 Teukolsky equation inside Kerr black holes, and discuss the main features thereof. We present new results about the numerical properties of the Cauchy horizon singularity and their correspondence with the predictions of perturbative analysis. We then discuss present directions of study, which include the sub-dominant azimuthal modes, approaching the Cauchy horizon singularity along timelike directions, approaching the Marolf-Ori (``outflying'') singularity and the studying the fields along the Cauchy horizon.
Universal properties of the near-horizon optical geometry
Gibbons, G. W.; Warnick, C. M.
2009-03-15
Making use of the fact that the optical geometry near a static nondegenerate Killing horizon is asymptotically hyperbolic, we investigate some universal features of black-hole horizons. Applying the Gauss-Bonnet theorem allows us to establish some general properties of gravitational lensing, valid for all black holes. Hyperbolic geometry allows us to find rates for the loss of scalar, vector, and fermionic ''hair'' as objects fall quasistatically towards the horizon, extending previous results for Schwarzschild to all static Killing horizons. In the process we find the Lienard-Wiechert potential for hyperbolic space and calculate the force between electrons mediated by neutrinos, extending the flat space result of Feinberg and Sucher. We further demonstrate how these techniques allow us to derive the exact Copson-Linet potential due to a point charge in a Schwarzschild background in a simple fashion.
Cutoffs, stretched horizons, and black hole radiators
NASA Astrophysics Data System (ADS)
Kaloper, Nemanja
2012-11-01
We argue that if the UV cutoff of an effective field theory with many low energy degrees of freedom is of the order, or below, the scale of the stretched horizon in a black hole background, which in turn is significantly lower than the Planck scale, the black hole radiance rate may not be enhanced by the emission of all the light IR modes. Instead, there may be additional suppressions hidden in the UV completion of the field theory, which really control which light modes can be emitted by the black hole. It could turn out that many degrees of freedom cannot be efficiently emitted by the black hole, and so the radiance rate may be much smaller than its estimate based on the counting of the light IR degrees of freedom. If we apply this argument to the Randall-Sundrum II (RS2) brane world, it implies that the emission rates of the low energy conformal field theory modes will be dramatically suppressed: its UV completion is given by the bulk gravity on AdS5×S5, and the only bulk modes which could be emitted by a black hole are the 4-dimensional (4D) s waves of bulk modes with small 5-dimensional momentum, or equivalently, small 4D masses. Further, their emission is suppressed by bulk warping, which lowers the radiation rate much below the IR estimate, yielding a radiation flux ˜(TBHL)2LHawking˜(TBH/MPl)2NLHawking, where LHawking is the Hawking radiation rate of a single light species. This follows directly from low conformal field theory cutoff μ˜L-1≪MPl, a large number of modes N≫1 and the fact that 4D gravity in RS2 is induced, MPl2≃Nμ2.
The New Horizons Radio Science Experiment (REX)
NASA Astrophysics Data System (ADS)
Tyler, G. L.; Linscott, I. R.; Bird, M. K.; Hinson, D. P.; Strobel, D. F.; Pätzold, M.; Summers, M. E.; Sivaramakrishnan, K.
2008-10-01
The New Horizons (NH) Radio Science Experiment, REX, is designed to determine the atmospheric state at the surface of Pluto and in the lowest few scale heights. Expected absolute accuracies in n, p, and T at the surface are 4ṡ1019 m-3, 0.1 Pa, and 3 K, respectively, obtained by radio occultation of a 4.2 cm- λ signal transmitted from Earth at 10-30 kW and received at the NH spacecraft. The threshold for ionospheric observations is roughly 2ṡ109 e- m-3. Radio occultation experiments are planned for both Pluto and Charon, but the level of accuracy for the neutral gas is expected to be useful at Pluto only. REX will also measure the nightside 4.2 cm- λ thermal emission from Pluto and Charon during the time NH is occulted. At Pluto, the thermal scan provides about five half-beams across the disk; at Charon, only disk integrated values can be obtained. A combination of two-way tracking and occultation signals will determine the Pluto system mass to about 0.01 percent, and improve the Pluto-Charon mass ratio. REX flight equipment augments the NH radio transceiver used for spacecraft communications and tracking. Implementation of REX required realization of a new CIC-SCIC signal processing algorithm; the REX hardware implementation requires 1.6 W, and has mass of 160 g in 520 cm3. Commissioning tests conducted after NH launch demonstrate that the REX system is operating as expected.
A horizon scan of global conservation issues for 2015.
Sutherland, William J; Clout, Mick; Depledge, Michael; Dicks, Lynn V; Dinsdale, Jason; Entwistle, Abigail C; Fleishman, Erica; Gibbons, David W; Keim, Brandon; Lickorish, Fiona A; Monk, Kathryn A; Ockendon, Nancy; Peck, Lloyd S; Pretty, Jules; Rockström, Johan; Spalding, Mark D; Tonneijck, Femke H; Wintle, Bonnie C
2015-01-01
This paper presents the results of our sixth annual horizon scan, which aims to identify phenomena that may have substantial effects on the global environment, but are not widely known or well understood. A group of professional horizon scanners, researchers, practitioners, and a journalist identified 15 topics via an iterative, Delphi-like process. The topics include a novel class of insecticide compounds, legalisation of recreational drugs, and the emergence of a new ecosystem associated with ice retreat in the Antarctic. PMID:25433442
Supertranslations and Superrotations at the Black Hole Horizon
NASA Astrophysics Data System (ADS)
Donnay, Laura; Giribet, Gaston; González, Hernán A.; Pino, Miguel
2016-03-01
We show that the asymptotic symmetries close to nonextremal black hole horizons are generated by an extension of supertranslations. This group is generated by a semidirect sum of Virasoro and Abelian currents. The charges associated with the asymptotic Killing symmetries satisfy the same algebra. When considering the special case of a stationary black hole, the zero mode charges correspond to the angular momentum and the entropy at the horizon.
A horizon scan of global conservation issues for 2013.
Sutherland, William J; Bardsley, Sarah; Clout, Mick; Depledge, Michael H; Dicks, Lynn V; Fellman, Liz; Fleishman, Erica; Gibbons, David W; Keim, Brandon; Lickorish, Fiona; Margerison, Ceri; Monk, Kathryn A; Norris, Kenneth; Peck, Lloyd S; Prior, Stephanie V; Scharlemann, Jörn P W; Spalding, Mark D; Watkinson, Andrew R
2013-01-01
This paper presents the findings of our fourth annual horizon-scanning exercise, which aims to identify topics that increasingly may affect conservation of biological diversity. The 15 issues were identified via an iterative, transferable process by a team of professional horizon scanners, researchers, practitioners, and a journalist. The 15 topics include the commercial use of antimicrobial peptides, thorium-fuelled nuclear power, and undersea oil production. PMID:23219597
Supertranslations and Superrotations at the Black Hole Horizon.
Donnay, Laura; Giribet, Gaston; González, Hernán A; Pino, Miguel
2016-03-01
We show that the asymptotic symmetries close to nonextremal black hole horizons are generated by an extension of supertranslations. This group is generated by a semidirect sum of Virasoro and Abelian currents. The charges associated with the asymptotic Killing symmetries satisfy the same algebra. When considering the special case of a stationary black hole, the zero mode charges correspond to the angular momentum and the entropy at the horizon. PMID:26991167
Optical Navigation Preparations for New Horizons Pluto Flyby
NASA Technical Reports Server (NTRS)
Owen, William M., Jr.; Dumont, Philip J.; Jackman, Coralie D.
2012-01-01
The New Horizons spacecraft will encounter Pluto and its satellites in July 2015. As was the case for the Voyager encounters with Jupiter, Saturn, Uranus and Neptune, mission success will depend heavily on accurate spacecraft navigation, and accurate navigation will be impossible without the use of pictures of the Pluto system taken by the onboard cameras. We describe the preparations made by the New Horizons optical navigators: picture planning, image processing algorithms, software development and testing, and results from in-flight imaging.
Thermodynamics of cosmological horizons in f(T) gravity
Bamba, Kazuharu; Geng, Chao-Qiang E-mail: geng@phys.nthu.edu.tw
2011-11-01
We explore thermodynamics of the apparent horizon in f(T) gravity with both equilibrium and non-equilibrium descriptions. We find the same dual equilibrium/non-equilibrium formulation for f(T) as for f(R) gravity. In particular, we show that the second law of thermodynamics can be satisfied for the universe with the same temperature outside and inside the apparent horizon.
Deformation of codimension-2 surfaces and horizon thermodynamics
NASA Astrophysics Data System (ADS)
Cao, Li-Ming
2011-03-01
The deformation equation of a spacelike submanifold with an arbitrary codimension is given by a general construction without using local frames. In the case of codimension-1, this equation reduces to the evolution equation of the extrinsic curvature of a spacelike hypersurface. In the more interesting case of codimension-2, after selecting a local null frame, this deformation equation reduces to the well known (cross) focusing equations. We show how the thermodynamics of trapping horizons is related to these deformation equations in two different formalisms: with and without introducing quasilocal energy. In the formalism with the quasilocal energy, the Hawking mass in four dimension is generalized to higher dimension, and it is found that the deformation of this energy inside a marginal surface can be also decomposed into the contributions from matter fields and gravitational radiation as in the four dimension. In the formalism without the quasilocal energy, we generalize the definition of slowly evolving future outer trapping horizons proposed by Booth to past trapping horizons. The dynamics of the trapping horizons in FLRW universe is given as an example. Especially, the slowly evolving past trapping horizon in the FLRW universe has close relation to the scenario of slow-roll inflation. Up to the second order of the slowly evolving parameter in this generalization, the temperature (surface gravity) associated with the slowly evolving trapping horizon in the FLRW universe is essentially the same as the one defined by using the quasilocal energy.
Adaptive management is an approach to natural resource management that emphasizes learning through management where knowledge is incomplete, and when, despite inherent uncertainty, managers and policymakers must act. Unlike a traditional trial and error approach, adaptive managem...
Beyond the veil: Inner horizon instability and holography
Balasubramanian, Vijay; Levi, Thomas S.
2004-11-15
We show that scalar perturbations of the eternal, rotating Banados-Teitelboim-Zanelli (BTZ) black hole should lead to an instability of the inner (Cauchy) horizon, preserving strong cosmic censorship. Because of backscattering from the geometry, plane-wave modes have a divergent stress tensor at the event horizon, but suitable wave packets avoid this difficulty, and are dominated at late times by quasinormal behavior. The wave packets have cuts in the complexified coordinate plane that are controlled by requirements of continuity, single-valuedness, and positive energy. Due to a focusing effect, regular wave packets nevertheless have a divergent stress energy at the inner horizon, signaling an instability. We propose that this instability, which is localized behind the event horizon, is detected holographically as a breakdown in the semiclassical computation of dual conformal field theory (CFT) expectation values in which the analytic behavior of wave packets in the complexified coordinate plane plays an integral role. In the dual field theory, this is interpreted as an encoding of physics behind the horizon in the entanglement between otherwise independent CFTs.
Quantization of Horizon Entropy and the Thermodynamics of Spacetime
NASA Astrophysics Data System (ADS)
Skákala, Jozef
2014-06-01
This is a review of my work published in the papers of Skakala (JHEP 1201:144, 2012; JHEP 1206:094, 2012) and Chirenti et al. (Phys. Rev. D 86:124008, 2012; Phys. Rev. D 87:044034, 2013). It offers a more detailed discussion of the results than the accounts in those papers, and it links my results to some conclusions recently reached by other authors. It also offers some new arguments supporting the conclusions in the cited articles. The fundamental idea of this work is that the semiclassical quantization of the black hole entropy, as suggested by Bekenstein (Phys. Rev. D 7:2333-2346, 1973), holds (at least) generically for the spacetime horizons. We support this conclusion by two separate arguments: (1) we generalize Bekenstein's lower bound on the horizon area transition to a much wider class of horizons than only the black-hole horizon, and (2) we obtain the same entropy spectra via the asymptotic quasi-normal frequencies of some particular spherically symmetric multi-horizon spacetimes (in the way proposed by Maggiore (Phys. Rev. Lett. 100:141301, 2008)). The main result of this paper supports the conclusions derived by Kothawalla et al. (Phys. Rev. D 78:104018, 2008) and Kwon and Nam (Class. Quant. Grav. 28:035007, 2011), on the basis of different arguments.
Dynamical horizon entropy and equilibrium thermodynamics of generalized gravity theories
Wu Shaofeng; Ge Xianhui; Yang Guohong; Zhang Pengming
2010-02-15
We study the relation between the thermodynamics and field equations of generalized gravity theories on the dynamical trapping horizon with sphere symmetry. We assume the entropy of a dynamical horizon as the Noether charge associated with the Kodama vector and point out that it satisfies the second law when a Gibbs equation holds. We generalize two kinds of Gibbs equations to Gauss-Bonnet gravity on any trapping horizon. Based on the quasilocal gravitational energy found recently for f(R) gravity and scalar-tensor gravity in some special cases, we also build up the Gibbs equations, where the nonequilibrium entropy production, which is usually invoked to balance the energy conservation, is just absorbed into the modified Wald entropy in the Friedmann-Robertson-Walker spacetime with slowly varying horizon. Moreover, the equilibrium thermodynamic identity remains valid for f(R) gravity in a static spacetime. Our work provides an alternative treatment to reinterpret the nonequilibrium correction and supports the idea that the horizon thermodynamics is universal for generalized gravity theories.
Multi-scale path planning for reduced environmental impact of aviation
NASA Astrophysics Data System (ADS)
Campbell, Scot Edward
A future air traffic management system capable of rerouting aircraft trajectories in real-time in response to transient and evolving events would result in increased aircraft efficiency, better utilization of the airspace, and decreased environmental impact. Mixed-integer linear programming (MILP) is used within a receding horizon framework to form aircraft trajectories which mitigate persistent contrail formation, avoid areas of convective weather, and seek a minimum fuel solution. Areas conducive to persistent contrail formation and areas of convective weather occur at disparate temporal and spatial scales, and thereby require the receding horizon controller to be adaptable to multi-scale events. In response, a novel adaptable receding horizon controller was developed to account for multi-scale disturbances, as well as generate trajectories using both a penalty function approach for obstacle penetration and hard obstacle avoidance constraints. A realistic aircraft fuel burn model based on aircraft data and engine performance simulations is used to form the cost function in the MILP optimization. The performance of the receding horizon algorithm is tested through simulation. A scalability analysis of the algorithm is conducted to ensure the tractability of the path planner. The adaptable receding horizon algorithm is shown to successfully negotiate multi-scale environments with performance exceeding static receding horizon solutions. The path planner is applied to realistic scenarios involving real atmospheric data. A single flight example for persistent contrail mitigation shows that fuel burn increases 1.48% when approximately 50% of persistent contrails are avoided, but 6.19% when 100% of persistent contrails are avoided. Persistent contrail mitigating trajectories are generated for multiple days of data, and the research shows that 58% of persistent contrails are avoided with a 0.48% increase in fuel consumption when averaged over a year.
Asymptotically Lifshitz spacetimes with universal horizons in (1 +2 ) dimensions
NASA Astrophysics Data System (ADS)
Basu, Sayandeb; Bhattacharyya, Jishnu; Mattingly, David; Roberson, Matthew
2016-03-01
Hořava gravity theory possesses global Lifshitz space as a solution and has been conjectured to provide a natural framework for Lifshitz holography. We derive the conditions on the two-derivative Hořava gravity Lagrangian that are necessary for static, asymptotically Lifshitz spacetimes with flat transverse dimensions to contain a universal horizon, which plays a similar thermodynamic role as the Killing horizon in general relativity. Specializing to z =2 in 1 +2 dimensions, we then numerically construct such regular solutions over the whole spacetime. We calculate the mass for these solutions and show that, unlike the asymptotically anti-de Sitter case, the first law applied to the universal horizon is straightforwardly compatible with a thermodynamic interpretation.
Thermodynamics of event horizons in (2+1)-dimensional gravity
Reznik, B. )
1992-03-15
Although gravity in 2+1 dimensions is very different in nature from gravity in 3+1 dimensions, it is shown that the laws of thermodynamics for event horizons can be manifested also for (2+1)-dimensional gravity. The validity of the classical laws of horizon mechanics is verified in general and exemplified for the (2+1)-dimensional analogues of Reissner-Nordstroem and Schwarzschild--de Sitter spacetimes. We find that the entropy is given by 1/4{ital L}, where {ital L} is the length of the horizon. A consequence of having consistent thermodynamics is that the second law fixes the sign of Newton's constant to be positive.
Black hole thermodynamics from near-horizon conformal quantum mechanics
Camblong, Horacio E.; Ordonez, Carlos R.
2005-05-15
The thermodynamics of black holes is shown to be directly induced by their near-horizon conformal invariance. This behavior is exhibited using a scalar field as a probe of the black hole gravitational background, for a general class of metrics in D spacetime dimensions (with D{>=}4). The ensuing analysis is based on conformal quantum mechanics, within a hierarchical near-horizon expansion. In particular, the leading conformal behavior provides the correct quantum statistical properties for the Bekenstein-Hawking entropy, with the near-horizon physics governing the thermodynamics from the outset. Most importantly: (i) this treatment reveals the emergence of holographic properties; (ii) the conformal coupling parameter is shown to be related to the Hawking temperature; and (iii) Schwarzschild-like coordinates, despite their 'coordinate singularity', can be used self-consistently to describe the thermodynamics of black holes.
Deepwater Horizon oil spill monitoring using airborne multispectral infrared imagery
NASA Astrophysics Data System (ADS)
Shen, Sylvia S.; Lewis, Paul E.
2011-06-01
On April 28, 2010, the Environmental Protection Agency's (EPA) Airborne Spectral Photometric Environmental Collection Technology (ASPECT) aircraft was deployed to Gulfport, Mississippi to provide airborne remotely sensed air monitoring and situational awareness data and products in response to the Deepwater Horizon oil spill disaster. The ASPECT aircraft was released from service on August 9, 2010 after having flown over 85 missions that included over 325 hours of flight operation. This paper describes several advanced analysis capabilities specifically developed for the Deepwater Horizon mission to correctly locate, identify, characterize, and quantify surface oil using ASPECT's multispectral infrared data. The data products produced using these advanced analysis capabilities provided the Deepwater Horizon Incident Command with a capability that significantly increased the effectiveness of skimmer vessel oil recovery efforts directed by the U.S. Coast Guard, and were considered by the Incident Command as key situational awareness information.
Adaptivity and smart algorithms for fluid-structure interaction
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley
1990-01-01
This paper reviews new approaches in CFD which have the potential for significantly increasing current capabilities of modeling complex flow phenomena and of treating difficult problems in fluid-structure interaction. These approaches are based on the notions of adaptive methods and smart algorithms, which use instantaneous measures of the quality and other features of the numerical flowfields as a basis for making changes in the structure of the computational grid and of algorithms designed to function on the grid. The application of these new techniques to several problem classes are addressed, including problems with moving boundaries, fluid-structure interaction in high-speed turbine flows, flow in domains with receding boundaries, and related problems.
Priority Questions and Horizon Scanning for Conservation: A Comparative Study
Kark, Salit; Sutherland, William J.; Shanas, Uri; Klass, Keren; Achisar, Hila; Dayan, Tamar; Gavrieli, Yael; Justo-Hanani, Ronit; Mandelik, Yael; Orion, Nir; Pargament, David; Portman, Michelle; Reisman-Berman, Orna; Safriel, Uriel N.; Schaffer, Gad; Steiner, Noa; Tauber, Israel; Levin, Noam
2016-01-01
Several projects aimed at identifying priority issues for conservation with high relevance to policy have recently been completed in several countries. Two major types of projects have been undertaken, aimed at identifying (i) policy-relevant questions most imperative to conservation and (ii) horizon scanning topics, defined as emerging issues that are expected to have substantial implications for biodiversity conservation and policy in the future. Here, we provide the first overview of the outcomes of biodiversity and conservation-oriented projects recently completed around the world using this framework. We also include the results of the first questions and horizon scanning project completed for a Mediterranean country. Overall, the outcomes of the different projects undertaken (at the global scale, in the UK, US, Canada, Switzerland and in Israel) were strongly correlated in terms of the proportion of questions and/or horizon scanning topics selected when comparing different topic areas. However, some major differences were found across regions. There was large variation among regions in the percentage of proactive (i.e. action and response oriented) versus descriptive (non-response oriented) priority questions and in the emphasis given to socio-political issues. Substantial differences were also found when comparing outcomes of priority questions versus horizon scanning projects undertaken for the same region. For example, issues related to climate change, human demography and marine ecosystems received higher priority as horizon scanning topics, while ecosystem services were more emphasized as current priority questions. We suggest that future initiatives aimed at identifying priority conservation questions and horizon scanning topics should allow simultaneous identification of both current and future priority issues, as presented here for the first time. We propose that further emphasis on social-political issues should be explicitly integrated into future
Priority Questions and Horizon Scanning for Conservation: A Comparative Study.
Kark, Salit; Sutherland, William J; Shanas, Uri; Klass, Keren; Achisar, Hila; Dayan, Tamar; Gavrieli, Yael; Justo-Hanani, Ronit; Mandelik, Yael; Orion, Nir; Pargament, David; Portman, Michelle; Reisman-Berman, Orna; Safriel, Uriel N; Schaffer, Gad; Steiner, Noa; Tauber, Israel; Levin, Noam
2016-01-01
Several projects aimed at identifying priority issues for conservation with high relevance to policy have recently been completed in several countries. Two major types of projects have been undertaken, aimed at identifying (i) policy-relevant questions most imperative to conservation and (ii) horizon scanning topics, defined as emerging issues that are expected to have substantial implications for biodiversity conservation and policy in the future. Here, we provide the first overview of the outcomes of biodiversity and conservation-oriented projects recently completed around the world using this framework. We also include the results of the first questions and horizon scanning project completed for a Mediterranean country. Overall, the outcomes of the different projects undertaken (at the global scale, in the UK, US, Canada, Switzerland and in Israel) were strongly correlated in terms of the proportion of questions and/or horizon scanning topics selected when comparing different topic areas. However, some major differences were found across regions. There was large variation among regions in the percentage of proactive (i.e. action and response oriented) versus descriptive (non-response oriented) priority questions and in the emphasis given to socio-political issues. Substantial differences were also found when comparing outcomes of priority questions versus horizon scanning projects undertaken for the same region. For example, issues related to climate change, human demography and marine ecosystems received higher priority as horizon scanning topics, while ecosystem services were more emphasized as current priority questions. We suggest that future initiatives aimed at identifying priority conservation questions and horizon scanning topics should allow simultaneous identification of both current and future priority issues, as presented here for the first time. We propose that further emphasis on social-political issues should be explicitly integrated into future
A Horizon Scan of Global Conservation Issues for 2016.
Sutherland, William J; Broad, Steven; Caine, Jacqueline; Clout, Mick; Dicks, Lynn V; Doran, Helen; Entwistle, Abigail C; Fleishman, Erica; Gibbons, David W; Keim, Brandon; LeAnstey, Becky; Lickorish, Fiona A; Markillie, Paul; Monk, Kathryn A; Mortimer, Diana; Ockendon, Nancy; Pearce-Higgins, James W; Peck, Lloyd S; Pretty, Jules; Rockström, Johan; Spalding, Mark D; Tonneijck, Femke H; Wintle, Bonnie C; Wright, Katherine E
2016-01-01
This paper presents the results of our seventh annual horizon scan, in which we aimed to identify issues that could have substantial effects on global biological diversity in the future, but are not currently widely well known or understood within the conservation community. Fifteen issues were identified by a team that included researchers, practitioners, professional horizon scanners, and journalists. The topics include use of managed bees as transporters of biological control agents, artificial superintelligence, electric pulse trawling, testosterone in the aquatic environment, building artificial oceanic islands, and the incorporation of ecological civilization principles into government policies in China. PMID:26688445
Near-horizon solution for Dvali-Gabadadze-Porrati perturbations
Sawicki, Ignacy; Song, Yong-Seon; Hu, Wayne
2007-03-15
We develop a scaling ansatz for the master equation in Dvali, Gabadadze, Porrati cosmologies, which allows us to solve the equations of motion for perturbations off the brane during periods when the on-brane evolution is scale free. This allows us to understand the behavior of the gravitational potentials outside the horizon at high redshifts and close to the horizon today. We confirm that the results of Koyama and Maartens are valid at scales relevant for observations such as galaxy-ISW correlations. At larger scales, there is an additional suppression of the potential which reduces the growth rate even further and would strengthen the integrated Sachs-Wolf effect.
Earth, Meet Pluto: The New Horizons Education and Communications Partnership
NASA Astrophysics Data System (ADS)
Buckley, M.
2015-12-01
The unique partnership between the NASA New Horizons education/communications and public affairs programs tapped into the excitement of visiting an unexplored planet in a new region of the solar system - resulting in unprecedented public participation in and coverage of a planetary mission. With a range of hands-on learning experiences, Web materials and online , the program provided opportunities for students, educators, museums, science centers, the media, Web surfers and other members of the public to ride along on the first mission to Pluto and the Kuiper Belt. The programs leveraged resources, materials and expertise to address a wide range of traditional and nontraditional audiences while providing consistent messages and information on this historic NASA endeavor. The E/C program included a variety of formal lesson plans and learning materials — based on New Horizons science and engineering goals, and aligned with National Research Council's National Science Education Standards — that continue to help students in grades K-12 learn more about science, technology, engineering and mathematics. College students designed and built an actual flight instrument on New Horizons and held internships with the spacecraft integration and test team. New Horizons E/C programs went well beyond the classroom, from a chance for people to send their names to Pluto on board the New Horizons spacecraft before launch, to opportunities for the public to access milestone events and the first-ever close-up views of Pluto in places such as museums, science centers and libraries, TV and the Web — as well as thousands who attended interactive "Plutopalooza" road shows across the country. Teamed with E/C was the public affairs strategy to communicate New Horizons news and messages to media, mission stakeholders, the scientific community and the public. These messages include various aspects of New Horizons, including the progress of the mission and key milestones and achievements
A horizon scan of global conservation issues for 2014.
Sutherland, William J; Aveling, Rosalind; Brooks, Thomas M; Clout, Mick; Dicks, Lynn V; Fellman, Liz; Fleishman, Erica; Gibbons, David W; Keim, Brandon; Lickorish, Fiona; Monk, Kathryn A; Mortimer, Diana; Peck, Lloyd S; Pretty, Jules; Rockström, Johan; Rodríguez, Jon Paul; Smith, Rebecca K; Spalding, Mark D; Tonneijck, Femke H; Watkinson, Andrew R
2014-01-01
This paper presents the output of our fifth annual horizon-scanning exercise, which aims to identify topics that increasingly may affect conservation of biological diversity, but have yet to be widely considered. A team of professional horizon scanners, researchers, practitioners, and a journalist identified 15 topics which were identified via an iterative, Delphi-like process. The 15 topics include a carbon market induced financial crash, rapid geographic expansion of macroalgal cultivation, genetic control of invasive species, probiotic therapy for amphibians, and an emerging snake fungal disease. PMID:24332318
A horizon scan of global conservation issues for 2014
Sutherland, William J.; Aveling, Rosalind; Brooks, Thomas M.; Clout, Mick; Dicks, Lynn V.; Fellman, Liz; Fleishman, Erica; Gibbons, David W.; Keim, Brandon; Lickorish, Fiona; Monk, Kathryn A.; Mortimer, Diana; Peck, Lloyd S.; Pretty, Jules; Rockström, Johan; Rodríguez, Jon Paul; Smith, Rebecca K.; Spalding, Mark D.; Tonneijck, Femke H.; Watkinson, Andrew R.
2014-01-01
This paper presents the output of our fifth annual horizon-scanning exercise, which aims to identify topics that increasingly may affect conservation of biological diversity, but have yet to be widely considered. A team of professional horizon scanners, researchers, practitioners, and a journalist identified 15 topics which were identified via an iterative, Delphi-like process. The 15 topics include a carbon market induced financial crash, rapid geographic expansion of macroalgal cultivation, genetic control of invasive species, probiotic therapy for amphibians, and an emerging snake fungal disease. PMID:24332318
Robust Consumption-Investment Problem on Infinite Horizon
Zawisza, Dariusz
2015-12-15
In our paper we consider an infinite horizon consumption-investment problem under a model misspecification in a general stochastic factor model. We formulate the problem as a stochastic game and finally characterize the saddle point and the value function of that game using an ODE of semilinear type, for which we provide a proof of an existence and uniqueness theorem for its solution. Such equation is interested on its own right, since it generalizes many other equations arising in various infinite horizon optimization problems.
Barrett, Harrison H.; Furenlid, Lars R.; Freed, Melanie; Hesterman, Jacob Y.; Kupinski, Matthew A.; Clarkson, Eric; Whitaker, Meredith K.
2008-01-01
Adaptive imaging systems alter their data-acquisition configuration or protocol in response to the image information received. An adaptive pinhole single-photon emission computed tomography (SPECT) system might acquire an initial scout image to obtain preliminary information about the radiotracer distribution and then adjust the configuration or sizes of the pinholes, the magnifications, or the projection angles in order to improve performance. This paper briefly describes two small-animal SPECT systems that allow this flexibility and then presents a framework for evaluating adaptive systems in general, and adaptive SPECT systems in particular. The evaluation is in terms of the performance of linear observers on detection or estimation tasks. Expressions are derived for the ideal linear (Hotelling) observer and the ideal linear (Wiener) estimator with adaptive imaging. Detailed expressions for the performance figures of merit are given, and possible adaptation rules are discussed. PMID:18541485
Through the looking glass: why the `cosmic horizon' is not a horizon
NASA Astrophysics Data System (ADS)
van Oirschot, Pim; Kwan, Juliana; Lewis, Geraint F.
2010-06-01
The present standard model of cosmology, Λ cold dark matter (ΛCDM), contains some intriguing coincidences. Not only are the dominant contributions to the energy density approximately of the same order at the present epoch, but we also note that contrary to the emergence of cosmic acceleration as a recent phenomenon, the time-averaged value of the deceleration parameter over the age of the Universe is nearly zero. Curious features like these in ΛCDM give rise to a number of alternate cosmologies being proposed to remove them, including models with an equation of state w = -1/3. In this paper, we examine the validity of some of these alternate models and we also address some persistent misconceptions about the Hubble sphere and the event horizon that lead to erroneous conclusions about cosmology. Research undertaken as part of the Commonwealth Cosmology Initiative (CCI: http://www.thecci.org), an international collaboration supported by the Australian Research Council. E-mail: pimvanoirschot@gmail.com