NASA Technical Reports Server (NTRS)
Rogers, David
1991-01-01
G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.
Prediction of longitudinal dispersion coefficient using multivariate adaptive regression splines
NASA Astrophysics Data System (ADS)
Haghiabi, Amir Hamzeh
2016-07-01
In this paper, multivariate adaptive regression splines (MARS) was developed as a novel soft-computing technique for predicting longitudinal dispersion coefficient (D L ) in rivers. As mentioned in the literature, experimental dataset related to D L was collected and used for preparing MARS model. Results of MARS model were compared with multi-layer neural network model and empirical formulas. To define the most effective parameters on D L , the Gamma test was used. Performance of MARS model was assessed by calculation of standard error indices. Error indices showed that MARS model has suitable performance and is more accurate compared to multi-layer neural network model and empirical formulas. Results of the Gamma test and MARS model showed that flow depth (H) and ratio of the mean velocity to shear velocity (u/u ∗) were the most effective parameters on the D L .
Prediction of longitudinal dispersion coefficient using multivariate adaptive regression splines
NASA Astrophysics Data System (ADS)
Haghiabi, Amir Hamzeh
2016-07-01
In this paper, multivariate adaptive regression splines (MARS) was developed as a novel soft-computing technique for predicting longitudinal dispersion coefficient ( D L ) in rivers. As mentioned in the literature, experimental dataset related to D L was collected and used for preparing MARS model. Results of MARS model were compared with multi-layer neural network model and empirical formulas. To define the most effective parameters on D L , the Gamma test was used. Performance of MARS model was assessed by calculation of standard error indices. Error indices showed that MARS model has suitable performance and is more accurate compared to multi-layer neural network model and empirical formulas. Results of the Gamma test and MARS model showed that flow depth ( H) and ratio of the mean velocity to shear velocity ( u/ u ∗) were the most effective parameters on the D L .
Technology Transfer Automated Retrieval System (TEKTRAN)
Advanced mathematical models have the potential to capture the complex metabolic and physiological processes that result in heat production, or energy expenditure (EE). Multivariate adaptive regression splines (MARS), is a nonparametric method that estimates complex nonlinear relationships by a seri...
NASA Astrophysics Data System (ADS)
Rounaghi, Mohammad Mahdi; Abbaszadeh, Mohammad Reza; Arashi, Mohammad
2015-11-01
One of the most important topics of interest to investors is stock price changes. Investors whose goals are long term are sensitive to stock price and its changes and react to them. In this regard, we used multivariate adaptive regression splines (MARS) model and semi-parametric splines technique for predicting stock price in this study. The MARS model as a nonparametric method is an adaptive method for regression and it fits for problems with high dimensions and several variables. semi-parametric splines technique was used in this study. Smoothing splines is a nonparametric regression method. In this study, we used 40 variables (30 accounting variables and 10 economic variables) for predicting stock price using the MARS model and using semi-parametric splines technique. After investigating the models, we select 4 accounting variables (book value per share, predicted earnings per share, P/E ratio and risk) as influencing variables on predicting stock price using the MARS model. After fitting the semi-parametric splines technique, only 4 accounting variables (dividends, net EPS, EPS Forecast and P/E Ratio) were selected as variables effective in forecasting stock prices.
NASA Astrophysics Data System (ADS)
Nieto, Paulino José García; Antón, Juan Carlos Álvarez; Vilán, José Antonio Vilán; García-Gonzalo, Esperanza
2014-10-01
The aim of this research work is to build a regression model of the particulate matter up to 10 micrometers in size (PM10) by using the multivariate adaptive regression splines (MARS) technique in the Oviedo urban area (Northern Spain) at local scale. This research work explores the use of a nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) which has the ability to approximate the relationship between the inputs and outputs, and express the relationship mathematically. In this sense, hazardous air pollutants or toxic air contaminants refer to any substance that may cause or contribute to an increase in mortality or serious illness, or that may pose a present or potential hazard to human health. To accomplish the objective of this study, the experimental dataset of nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3) and dust (PM10) were collected over 3 years (2006-2008) and they are used to create a highly nonlinear model of the PM10 in the Oviedo urban nucleus (Northern Spain) based on the MARS technique. One main objective of this model is to obtain a preliminary estimate of the dependence between PM10 pollutant in the Oviedo urban area at local scale. A second aim is to determine the factors with the greatest bearing on air quality with a view to proposing health and lifestyle improvements. The United States National Ambient Air Quality Standards (NAAQS) establishes the limit values of the main pollutants in the atmosphere in order to ensure the health of healthy people. Firstly, this MARS regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the main pollutants in the Oviedo urban area. Secondly, the main advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, on the basis of
An Implementation of Bayesian Adaptive Regression Splines (BARS) in C with S and R Wrappers.
Wallstrom, Garrick; Liebner, Jeffrey; Kass, Robert E
2008-06-01
BARS (DiMatteo, Genovese, and Kass 2001) uses the powerful reversible-jump MCMC engine to perform spline-based generalized nonparametric regression. It has been shown to work well in terms of having small mean-squared error in many examples (smaller than known competitors), as well as producing visually-appealing fits that are smooth (filtering out high-frequency noise) while adapting to sudden changes (retaining high-frequency signal). However, BARS is computationally intensive. The original implementation in S was too slow to be practical in certain situations, and was found to handle some data sets incorrectly. We have implemented BARS in C for the normal and Poisson cases, the latter being important in neurophysiological and other point-process applications. The C implementation includes all needed subroutines for fitting Poisson regression, manipulating B-splines (using code created by Bates and Venables), and finding starting values for Poisson regression (using code for density estimation created by Kooperberg). The code utilizes only freely-available external libraries (LAPACK and BLAS) and is otherwise self-contained. We have also provided wrappers so that BARS can be used easily within S or R. PMID:19777145
Splines for Diffeomorphic Image Regression
Singh, Nikhil; Niethammer, Marc
2016-01-01
This paper develops a method for splines on diffeomorphisms for image regression. In contrast to previously proposed methods to capture image changes over time, such as geodesic regression, the method can capture more complex spatio-temporal deformations. In particular, it is a first step towards capturing periodic motions for example of the heart or the lung. Starting from a variational formulation of splines the proposed approach allows for the use of temporal control points to control spline behavior. This necessitates the development of a shooting formulation for splines. Experimental results are shown for synthetic and real data. The performance of the method is compared to geodesic regression. PMID:25485370
Nieto, P J García; Antón, J C Álvarez; Vilán, J A Vilán; García-Gonzalo, E
2015-05-01
The aim of this research work is to build a regression model of air quality by using the multivariate adaptive regression splines (MARS) technique in the Oviedo urban area (northern Spain) at a local scale. To accomplish the objective of this study, the experimental data set made up of nitrogen oxides (NO x ), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3), and dust (PM10) was collected over 3 years (2006-2008). The US National Ambient Air Quality Standards (NAAQS) establishes the limit values of the main pollutants in the atmosphere in order to ensure the health of healthy people. Firstly, this MARS regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the main pollutants in the Oviedo urban area. Secondly, the main advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, on the basis of these numerical calculations, using the MARS technique, conclusions of this research work are exposed. PMID:25414030
NASA Astrophysics Data System (ADS)
Ahmadlou, M.; Delavar, M. R.; Tayyebi, A.; Shafizadeh-Moghadam, H.
2015-12-01
Land use change (LUC) models used for modelling urban growth are different in structure and performance. Local models divide the data into separate subsets and fit distinct models on each of the subsets. Non-parametric models are data driven and usually do not have a fixed model structure or model structure is unknown before the modelling process. On the other hand, global models perform modelling using all the available data. In addition, parametric models have a fixed structure before the modelling process and they are model driven. Since few studies have compared local non-parametric models with global parametric models, this study compares a local non-parametric model called multivariate adaptive regression spline (MARS), and a global parametric model called artificial neural network (ANN) to simulate urbanization in Mumbai, India. Both models determine the relationship between a dependent variable and multiple independent variables. We used receiver operating characteristic (ROC) to compare the power of the both models for simulating urbanization. Landsat images of 1991 (TM) and 2010 (ETM+) were used for modelling the urbanization process. The drivers considered for urbanization in this area were distance to urban areas, urban density, distance to roads, distance to water, distance to forest, distance to railway, distance to central business district, number of agricultural cells in a 7 by 7 neighbourhoods, and slope in 1991. The results showed that the area under the ROC curve for MARS and ANN was 94.77% and 95.36%, respectively. Thus, ANN performed slightly better than MARS to simulate urban areas in Mumbai, India.
Technology Transfer Automated Retrieval System (TEKTRAN)
Accurate, nonintrusive, and inexpensive techniques are needed to measure energy expenditure (EE) in free-living populations. Our primary aim in this study was to validate cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS) models based on observable participant cha...
NASA Astrophysics Data System (ADS)
Emamgolizadeh, S.; Bateni, S. M.; Shahsavani, D.; Ashrafi, T.; Ghorbani, H.
2015-10-01
The soil cation exchange capacity (CEC) is one of the main soil chemical properties, which is required in various fields such as environmental and agricultural engineering as well as soil science. In situ measurement of CEC is time consuming and costly. Hence, numerous studies have used traditional regression-based techniques to estimate CEC from more easily measurable soil parameters (e.g., soil texture, organic matter (OM), and pH). However, these models may not be able to adequately capture the complex and highly nonlinear relationship between CEC and its influential soil variables. In this study, Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS) were employed to estimate CEC from more readily measurable soil physical and chemical variables (e.g., OM, clay, and pH) by developing functional relations. The GEP- and MARS-based functional relations were tested at two field sites in Iran. Results showed that GEP and MARS can provide reliable estimates of CEC. Also, it was found that the MARS model (with root-mean-square-error (RMSE) of 0.318 Cmol+ kg-1 and correlation coefficient (R2) of 0.864) generated slightly better results than the GEP model (with RMSE of 0.270 Cmol+ kg-1 and R2 of 0.807). The performance of GEP and MARS models was compared with two existing approaches, namely artificial neural network (ANN) and multiple linear regression (MLR). The comparison indicated that MARS and GEP outperformed the MLP model, but they did not perform as good as ANN. Finally, a sensitivity analysis was conducted to determine the most and the least influential variables affecting CEC. It was found that OM and pH have the most and least significant effect on CEC, respectively.
The Analysis of Internet Addiction Scale Using Multivariate Adaptive Regression Splines
Kayri, M
2010-01-01
Background: Determining real effects on internet dependency is too crucial with unbiased and robust statistical method. MARS is a new non-parametric method in use in the literature for parameter estimations of cause and effect based research. MARS can both obtain legible model curves and make unbiased parametric predictions. Methods: In order to examine the performance of MARS, MARS findings will be compared to Classification and Regression Tree (C&RT) findings, which are considered in the literature to be efficient in revealing correlations between variables. The data set for the study is taken from “The Internet Addiction Scale” (IAS), which attempts to reveal addiction levels of individuals. The population of the study consists of 754 secondary school students (301 female, 443 male students with 10 missing data). MARS 2.0 trial version is used for analysis by MARS method and C&RT analysis was done by SPSS. Results: MARS obtained six base functions of the model. As a common result of these six functions, regression equation of the model was found. Over the predicted variable, MARS showed that the predictors of daily Internet-use time on average, the purpose of Internet-use, grade of students and occupations of mothers had a significant effect (P< 0.05). In this comparative study, MARS obtained different findings from C&RT in dependency level prediction. Conclusion: The fact that MARS revealed extent to which the variable, which was considered significant, changes the character of the model was observed in this study. PMID:23113038
Modeling of topographic effects on Antarctic sea ice using multivariate adaptive regression splines
NASA Technical Reports Server (NTRS)
De Veaux, Richard D.; Gordon, Arnold L.; Comiso, Joey C.; Bacherer, Nadine E.
1993-01-01
The role of seafloor topography in the spatial variations of the southern ocean sea ice cover as observed (every other day) by the Nimbus 7 scanning multichannel microwave radiometer satellite in the years 1980, 1983, and 1984 is studied. Bottom bathymetry can affect sea ice surface characteristics because of the basically barotropic circulation of the ocean south of the Antarctic Circumpolar current. The main statistical tool used to quantify this effect is a local nonparametric regression model of sea ice concentration as a function of the depth and its first two derivatives in both meridional and zonal directions. First, we model the relationship of bathymetry to sea ice concentration in two sudy areas, one over the Maud Rise and the other over the Ross Sea shelf region. The multiple correlation coefficient is found to average 44% in the Maud Rise study area and 62% in the Ross Sea study area over the years 1980, 1983, and 1984. Second, a strategy of dividing the entire Antarctic region into an overlapping mosaic of small areas, or windows is considered. Keeping the windows small reduces the correlation of bathymetry with other factors such as wind, sea temperature, and distance to the continent. We find that although the form of the model varies from window to window due to the changing role of other relevant environmental variables, we are left with a spatially consistent ordering of the relative importance of the topographic predictors. For a set of three representative days in the Austral winter of 1980, the analysis shows that an average of 54% of the spatial variation in sea ice concentration over the entire ice cover can be attributed to topographic variables. The results thus support the hypothesis that there is a sea ice to bottom bathymetry link. However this should not undermine the considerable influence of wind, current, and temperature which affect the ice distribution directly and are partly responsible for the observed bathymetric effects.
NASA Astrophysics Data System (ADS)
Kisi, Ozgur
2015-09-01
Pan evaporation (Ep) modeling is an important issue in reservoir management, regional water resources planning and evaluation of drinking-water supplies. The main purpose of this study is to investigate the accuracy of least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 Model Tree (M5Tree) in modeling Ep. The first part of the study focused on testing the ability of the LSSVM, MARS and M5Tree models in estimating the Ep data of Mersin and Antalya stations located in Mediterranean Region of Turkey by using cross-validation method. The LSSVM models outperformed the MARS and M5Tree models in estimating Ep of Mersin and Antalya stations with local input and output data. The average root mean square error (RMSE) of the M5Tree and MARS models was decreased by 24-32.1% and 10.8-18.9% using LSSVM models for the Mersin and Antalya stations, respectively. The ability of three different methods was examined in estimation of Ep using input air temperature, solar radiation, relative humidity and wind speed data from nearby station in the second part of the study (cross-station application without local input data). The results showed that the MARS models provided better accuracy than the LSSVM and M5Tree models with respect to RMSE, mean absolute error (MAE) and determination coefficient (R2) criteria. The average RMSE accuracy of the LSSVM and M5Tree was increased by 3.7% and 16.5% using MARS. In the case of without local input data, the average RMSE accuracy of the LSSVM and M5Tree was respectively increased by 11.4% and 18.4% using MARS. In the third part of the study, the ability of the applied models was examined in Ep estimation using input and output data of nearby station. The results reported that the MARS models performed better than the other models with respect to RMSE, MAE and R2 criteria. The average RMSE of the LSSVM and M5Tree was respectively decreased by 54% and 3.4% using MARS. The overall results indicated that
A Spline Regression Model for Latent Variables
ERIC Educational Resources Information Center
Harring, Jeffrey R.
2014-01-01
Spline (or piecewise) regression models have been used in the past to account for patterns in observed data that exhibit distinct phases. The changepoint or knot marking the shift from one phase to the other, in many applications, is an unknown parameter to be estimated. As an extension of this framework, this research considers modeling the…
NASA Astrophysics Data System (ADS)
Kisi, Ozgur; Parmar, Kulwinder Singh
2016-03-01
This study investigates the accuracy of least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5Tree) in modeling river water pollution. Various combinations of water quality parameters, Free Ammonia (AMM), Total Kjeldahl Nitrogen (TKN), Water Temperature (WT), Total Coliform (TC), Fecal Coliform (FC) and Potential of Hydrogen (pH) monitored at Nizamuddin, Delhi Yamuna River in India were used as inputs to the applied models. Results indicated that the LSSVM and MARS models had almost same accuracy and they performed better than the M5Tree model in modeling monthly chemical oxygen demand (COD). The average root mean square error (RMSE) of the LSSVM and M5Tree models was decreased by 1.47% and 19.1% using MARS model, respectively. Adding TC input to the models did not increase their accuracy in modeling COD while adding FC and pH inputs to the models generally decreased the accuracy. The overall results indicated that the MARS and LSSVM models could be successfully used in estimating monthly river water pollution level by using AMM, TKN and WT parameters as inputs.
NASA Astrophysics Data System (ADS)
Durmaz, Murat; Karslioglu, Mahmut Onur
2015-04-01
There are various global and regional methods that have been proposed for the modeling of ionospheric vertical total electron content (VTEC). Global distribution of VTEC is usually modeled by spherical harmonic expansions, while tensor products of compactly supported univariate B-splines can be used for regional modeling. In these empirical parametric models, the coefficients of the basis functions as well as differential code biases (DCBs) of satellites and receivers can be treated as unknown parameters which can be estimated from geometry-free linear combinations of global positioning system observables. In this work we propose a new semi-parametric multivariate adaptive regression B-splines (SP-BMARS) method for the regional modeling of VTEC together with satellite and receiver DCBs, where the parametric part of the model is related to the DCBs as fixed parameters and the non-parametric part adaptively models the spatio-temporal distribution of VTEC. The latter is based on multivariate adaptive regression B-splines which is a non-parametric modeling technique making use of compactly supported B-spline basis functions that are generated from the observations automatically. This algorithm takes advantage of an adaptive scale-by-scale model building strategy that searches for best-fitting B-splines to the data at each scale. The VTEC maps generated from the proposed method are compared numerically and visually with the global ionosphere maps (GIMs) which are provided by the Center for Orbit Determination in Europe (CODE). The VTEC values from SP-BMARS and CODE GIMs are also compared with VTEC values obtained through calibration using local ionospheric model. The estimated satellite and receiver DCBs from the SP-BMARS model are compared with the CODE distributed DCBs. The results show that the SP-BMARS algorithm can be used to estimate satellite and receiver DCBs while adaptively and flexibly modeling the daily regional VTEC.
Butte, Nancy F.; Wong, William W.; Adolph, Anne L.; Puyau, Maurice R.; Vohra, Firoz A.; Zakeri, Issa F.
2010-01-01
Accurate, nonintrusive, and inexpensive techniques are needed to measure energy expenditure (EE) in free-living populations. Our primary aim in this study was to validate cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS) models based on observable participant characteristics, heart rate (HR), and accelerometer counts (AC) for prediction of minute-by-minute EE, and hence 24-h total EE (TEE), against a 7-d doubly labeled water (DLW) method in children and adolescents. Our secondary aim was to demonstrate the utility of CSTS and MARS to predict awake EE, sleep EE, and activity EE (AEE) from 7-d HR and AC records, because these shorter periods are not verifiable by DLW, which provides an estimate of the individual's mean TEE over a 7-d interval. CSTS and MARS models were validated in 60 normal-weight and overweight participants (ages 5–18 y). The Actiheart monitor was used to simultaneously measure HR and AC. For prediction of TEE, mean absolute errors were 10.7 ± 307 kcal/d and 18.7 ± 252 kcal/d for CSTS and MARS models, respectively, relative to DLW. Corresponding root mean square error values were 305 and 251 kcal/d for CSTS and MARS models, respectively. Bland-Altman plots indicated that the predicted values were in good agreement with the DLW-derived TEE values. Validation of CSTS and MARS models based on participant characteristics, HR monitoring, and accelerometry for the prediction of minute-by-minute EE, and hence 24-h TEE, against the DLW method indicated no systematic bias and acceptable limits of agreement for pediatric groups and individuals under free-living conditions. PMID:20573939
Butte, Nancy F; Wong, William W; Adolph, Anne L; Puyau, Maurice R; Vohra, Firoz A; Zakeri, Issa F
2010-08-01
Accurate, nonintrusive, and inexpensive techniques are needed to measure energy expenditure (EE) in free-living populations. Our primary aim in this study was to validate cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS) models based on observable participant characteristics, heart rate (HR), and accelerometer counts (AC) for prediction of minute-by-minute EE, and hence 24-h total EE (TEE), against a 7-d doubly labeled water (DLW) method in children and adolescents. Our secondary aim was to demonstrate the utility of CSTS and MARS to predict awake EE, sleep EE, and activity EE (AEE) from 7-d HR and AC records, because these shorter periods are not verifiable by DLW, which provides an estimate of the individual's mean TEE over a 7-d interval. CSTS and MARS models were validated in 60 normal-weight and overweight participants (ages 5-18 y). The Actiheart monitor was used to simultaneously measure HR and AC. For prediction of TEE, mean absolute errors were 10.7 +/- 307 kcal/d and 18.7 +/- 252 kcal/d for CSTS and MARS models, respectively, relative to DLW. Corresponding root mean square error values were 305 and 251 kcal/d for CSTS and MARS models, respectively. Bland-Altman plots indicated that the predicted values were in good agreement with the DLW-derived TEE values. Validation of CSTS and MARS models based on participant characteristics, HR monitoring, and accelerometry for the prediction of minute-by-minute EE, and hence 24-h TEE, against the DLW method indicated no systematic bias and acceptable limits of agreement for pediatric groups and individuals under free-living conditions. PMID:20573939
Zakeri, Issa F.; Adolph, Anne L.; Puyau, Maurice R.; Vohra, Firoz A.; Butte, Nancy F.
2013-01-01
Prediction equations of energy expenditure (EE) using accelerometers and miniaturized heart rate (HR) monitors have been developed in older children and adults but not in preschool-aged children. Because the relationships between accelerometer counts (ACs), HR, and EE are confounded by growth and maturation, age-specific EE prediction equations are required. We used advanced technology (fast-response room calorimetry, Actiheart and Actigraph accelerometers, and miniaturized HR monitors) and sophisticated mathematical modeling [cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS)] to develop models for the prediction of minute-by-minute EE in 69 preschool-aged children. CSTS and MARS models were developed by using participant characteristics (gender, age, weight, height), Actiheart (HR+AC_x) or ActiGraph parameters (AC_x, AC_y, AC_z, steps, posture) [x, y, and z represent the directional axes of the accelerometers], and their significant 1- and 2-min lag and lead values, and significant interactions. Relative to EE measured by calorimetry, mean percentage errors predicting awake EE (−1.1 ± 8.7%, 0.3 ± 6.9%, and −0.2 ± 6.9%) with CSTS models were slightly higher than with MARS models (−0.7 ± 6.0%, 0.3 ± 4.8%, and −0.6 ± 4.6%) for Actiheart, ActiGraph, and ActiGraph+HR devices, respectively. Predicted awake EE values were within ±10% for 81–87% of individuals for CSTS models and for 91–98% of individuals for MARS models. Concordance correlation coefficients were 0.936, 0.931, and 0.943 for CSTS EE models and 0.946, 0.948, and 0.940 for MARS EE models for Actiheart, ActiGraph, and ActiGraph+HR devices, respectively. CSTS and MARS models should prove useful in capturing the complex dynamics of EE and movement that are characteristic of preschool-aged children. PMID:23190760
Balshi, M. S.; McGuire, A.D.; Duffy, P.; Flannigan, M.; Walsh, J.; Melillo, J.
2009-01-01
Fire is a common disturbance in the North American boreal forest that influences ecosystem structure and function. The temporal and spatial dynamics of fire are likely to be altered as climate continues to change. In this study, we ask the question: how will area burned in boreal North America by wildfire respond to future changes in climate? To evaluate this question, we developed temporally and spatially explicit relationships between air temperature and fuel moisture codes derived from the Canadian Fire Weather Index System to estimate annual area burned at 2.5?? (latitude ?? longitude) resolution using a Multivariate Adaptive Regression Spline (MARS) approach across Alaska and Canada. Burned area was substantially more predictable in the western portion of boreal North America than in eastern Canada. Burned area was also not very predictable in areas of substantial topographic relief and in areas along the transition between boreal forest and tundra. At the scale of Alaska and western Canada, the empirical fire models explain on the order of 82% of the variation in annual area burned for the period 1960-2002. July temperature was the most frequently occurring predictor across all models, but the fuel moisture codes for the months June through August (as a group) entered the models as the most important predictors of annual area burned. To predict changes in the temporal and spatial dynamics of fire under future climate, the empirical fire models used output from the Canadian Climate Center CGCM2 global climate model to predict annual area burned through the year 2100 across Alaska and western Canada. Relative to 1991-2000, the results suggest that average area burned per decade will double by 2041-2050 and will increase on the order of 3.5-5.5 times by the last decade of the 21st century. To improve the ability to better predict wildfire across Alaska and Canada, future research should focus on incorporating additional effects of long-term and successional
Semisupervised feature selection via spline regression for video semantic recognition.
Han, Yahong; Yang, Yi; Yan, Yan; Ma, Zhigang; Sebe, Nicu; Zhou, Xiaofang
2015-02-01
To improve both the efficiency and accuracy of video semantic recognition, we can perform feature selection on the extracted video features to select a subset of features from the high-dimensional feature set for a compact and accurate video data representation. Provided the number of labeled videos is small, supervised feature selection could fail to identify the relevant features that are discriminative to target classes. In many applications, abundant unlabeled videos are easily accessible. This motivates us to develop semisupervised feature selection algorithms to better identify the relevant video features, which are discriminative to target classes by effectively exploiting the information underlying the huge amount of unlabeled video data. In this paper, we propose a framework of video semantic recognition by semisupervised feature selection via spline regression (S(2)FS(2)R) . Two scatter matrices are combined to capture both the discriminative information and the local geometry structure of labeled and unlabeled training videos: A within-class scatter matrix encoding discriminative information of labeled training videos and a spline scatter output from a local spline regression encoding data distribution. An l2,1 -norm is imposed as a regularization term on the transformation matrix to ensure it is sparse in rows, making it particularly suitable for feature selection. To efficiently solve S(2)FS(2)R , we develop an iterative algorithm and prove its convergency. In the experiments, three typical tasks of video semantic recognition, such as video concept detection, video classification, and human action recognition, are used to demonstrate that the proposed S(2)FS(2)R achieves better performance compared with the state-of-the-art methods. PMID:25608288
NASA Astrophysics Data System (ADS)
Harp, D. R.; Pawar, R.
2014-12-01
Depleted oil and gas reserves have abandoned wellbore densities up to 10 per square kilometer (Crow, 2010). These locations are considered to have favorable geological structure and properties for CO2 sequestration. To understand the risk of CO2 leakage along these abandoned wellbores requires the simulation of a comprehensive set of realizations encompassing the potential scenarios. The simulations must capture transient, 3D, multi-phase effects (i.e. supercritical, liquid, and gas CO2 phases along with liquid reservoir and aquifer fluids), and include capillary and buoyant flow. Performing a large number of these simulations becomes computationally burdensome. In order to reduce this computational burden, regression approaches have been used to develop computationally efficient reduced order models to try to capture the general trends of the simulations. In these approaches, model inputs and outputs are collected from the transient simulations at each time step. Recognizing that many of the inputs to the regression approach come from time series (i.e. pressures and CO2 saturations) and that all of the outputs are time series (i.e. CO2 and brine flow rates), we develop a time-series matching approach. In this approach, CO2 and brine flow rate time series are estimated given input time series and parameters by averaging the flow rates of the collected simulations weighted by the similarity of their input time series and parameter. Similarity of both time series and parameters is calculated by the Euclidean distance. Euclidean distances are converted to a generalized likelihood metric, and used to weight the flow-rate time-series averages. We present a comparison of this time series matching approach to the MARS algorithm.
Proteomics Improves the Prediction of Burns Mortality: Results from Regression Spline Modeling
Finnerty, Celeste C.; Ju, Hyunsu; Spratt, Heidi; Victor, Sundar; Jeschke, Marc G.; Hegde, Sachin; Bhavnani, Suresh K.; Luxon, Bruce A.; Brasier, Allan R.; Herndon, David N.
2012-01-01
Prediction of mortality in severely burned patients remains unreliable. Although clinical covariates and plasma protein abundance have been used with varying degrees of success, the triad of burn size, inhalation injury, and age remains the most reliable predictor. We investigated the effect of combining proteomics variables with these three clinical covariates on prediction of mortality in burned children. Serum samples were collected from 330 burned children (burns covering >25% of the total body surface area) between admission and the time of the first operation for clinical chemistry analyses and proteomic assays of cytokines. Principal component analysis revealed that serum protein abundance and the clinical covariates each provided independent information regarding patient survival. To determine whether combining proteomics with clinical variables improves prediction of patient mortality, we used multivariate adaptive regression splines, since the relationships between analytes and mortality were not linear. Combining these factors increased overall outcome prediction accuracy from 52% to 81% and area under the receiver operating characteristic curve from 0.82 to 0.95. Thus, the predictive accuracy of burns mortality is substantially improved by combining protein abundance information with clinical covariates in a multivariate adaptive regression splines classifier, a model currently being validated in a prospective study. PMID:22686201
Determination of airplane model structure from flight data using splines and stepwise regression
NASA Technical Reports Server (NTRS)
Klein, V.; Batterson, J. G.
1983-01-01
A procedure for the determination of airplane model structure from flight data is presented. The model is based on a polynomial spline representation of the aerodynamic coefficients, and the procedure is implemented by use of a stepwise regression. First, a form of the aerodynamic force and moment coefficients amenable to the utilization of splines is developed. Next, expressions for the splines in one and two variables are introduced. Then the steps in the determination of an aerodynamic model structure and the estimation of parameters are discussed briefly. The focus is on the application to flight data of the techniques developed.
Non-Stationary Hydrologic Frequency Analysis using B-Splines Quantile Regression
NASA Astrophysics Data System (ADS)
Nasri, B.; St-Hilaire, A.; Bouezmarni, T.; Ouarda, T.
2015-12-01
Hydrologic frequency analysis is commonly used by engineers and hydrologists to provide the basic information on planning, design and management of hydraulic structures and water resources system under the assumption of stationarity. However, with increasing evidence of changing climate, it is possible that the assumption of stationarity would no longer be valid and the results of conventional analysis would become questionable. In this study, we consider a framework for frequency analysis of extreme flows based on B-Splines quantile regression, which allows to model non-stationary data that have a dependence on covariates. Such covariates may have linear or nonlinear dependence. A Markov Chain Monte Carlo (MCMC) algorithm is used to estimate quantiles and their posterior distributions. A coefficient of determination for quantiles regression is proposed to evaluate the estimation of the proposed model for each quantile level. The method is applied on annual maximum and minimum streamflow records in Ontario, Canada. Climate indices are considered to describe the non-stationarity in these variables and to estimate the quantiles in this case. The results show large differences between the non-stationary quantiles and their stationary equivalents for annual maximum and minimum discharge with high annual non-exceedance probabilities. Keywords: Quantile regression, B-Splines functions, MCMC, Streamflow, Climate indices, non-stationarity.
Technology Transfer Automated Retrieval System (TEKTRAN)
Genetic parameters were estimated with REML for individual test-day milk, fat, and protein yields and SCS with a random regression cubic spline model. Test-day records of Holstein cows that calved from 1994 through early 1999 were obtained from Dairy Records Management Systems in Raleigh, North Car...
An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics
NASA Astrophysics Data System (ADS)
Nguyen-Thanh, N.; Muthu, J.; Zhuang, X.; Rabczuk, T.
2014-02-01
An adaptive three-dimensional isogeometric formulation based on rational splines over hierarchical T-meshes (RHT-splines) for problems in elasto-statics and elasto-dynamics is presented. RHT-splines avoid some short-comings of NURBS-based formulations; in particular they allow for adaptive h-refinement with ease. In order to drive the adaptive refinement, we present a recovery-based error estimator for RHT-splines. The method is applied to several problems in elasto-statics and elasto-dynamics including three-dimensional modeling of thin structures. The results are compared to analytical solutions and results of NURBS based isogeometric formulations.
Regression Splines in the Time-Dependent Coefficient Rates Model for Recurrent Event Data
Amorim, Leila D.; Cai, Jianwen; Zeng, Donglin; Barreto, Maurício L.
2009-01-01
SUMMARY Many epidemiologic studies involve the occurrence of recurrent events and much attention has been given for the development of modelling techniques that take into account the dependence structure of multiple event data. This paper presents a time-dependent coefficient rates model that incorporates regression splines in its estimation procedure. Such method would be appropriate in situations where the effect of an exposure or covariates changes over time in recurrent event data settings. The finite sample properties of the estimators are studied via simulation. Using data from a randomized community trial that was designed to evaluate the effect of vitamin A supplementation on recurrent diarrheal episodes in small children, we model the functional form of the treatment effect on the time to the occurrence of diarrhea. The results describe how this effect varies over time. In summary, we observed a major impact of the vitamin A supplementation on diarrhea after 2 months of the dosage, with the effect diminishing after the third dosage. The proposed method can be viewed as a flexible alternative to the marginal rates model with constant effect in situations where the effect of interest may vary over time. PMID:18696748
Algebraic grid adaptation method using non-uniform rational B-spline surface modeling
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, B. K.
1992-01-01
An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
1993-01-01
A split spline screw type payload fastener assembly, including three identical male and female type split spline sections, is discussed. The male spline sections are formed on the head of a male type spline driver. Each of the split male type spline sections has an outwardly projecting load baring segment including a convex upper surface which is adapted to engage a complementary concave surface of a female spline receptor in the form of a hollow bolt head. Additionally, the male spline section also includes a horizontal spline releasing segment and a spline tightening segment below each load bearing segment. The spline tightening segment consists of a vertical web of constant thickness. The web has at least one flat vertical wall surface which is designed to contact a generally flat vertically extending wall surface tab of the bolt head. Mutual interlocking and unlocking of the male and female splines results upon clockwise and counter clockwise turning of the driver element.
Self-Adaptive Induction of Regression Trees.
Fidalgo-Merino, Raúl; Núñez, Marlon
2011-08-01
A new algorithm for incremental construction of binary regression trees is presented. This algorithm, called SAIRT, adapts the induced model when facing data streams involving unknown dynamics, like gradual and abrupt function drift, changes in certain regions of the function, noise, and virtual drift. It also handles both symbolic and numeric attributes. The proposed algorithm can automatically adapt its internal parameters and model structure to obtain new patterns, depending on the current dynamics of the data stream. SAIRT can monitor the usefulness of nodes and can forget examples from selected regions, storing the remaining ones in local windows associated to the leaves of the tree. On these conditions, current regression methods need a careful configuration depending on the dynamics of the problem. Experimentation suggests that the proposed algorithm obtains better results than current algorithms when dealing with data streams that involve changes with different speeds, noise levels, sampling distribution of examples, and partial or complete changes of the underlying function. PMID:21263164
2012-01-01
Background We wanted to compare growth differences between 13 Escherichia coli strains exposed to various concentrations of the growth inhibitor lactoferrin in two different types of broth (Syncase and Luria-Bertani (LB)). To carry this out, we present a simple statistical procedure that separates microbial growth curves that are due to natural random perturbations and growth curves that are more likely caused by biological differences. Bacterial growth was determined using optical density data (OD) recorded for triplicates at 620 nm for 18 hours for each strain. Each resulting growth curve was divided into three equally spaced intervals. We propose a procedure using linear spline regression with two knots to compute the slopes of each interval in the bacterial growth curves. These slopes are subsequently used to estimate a 95% confidence interval based on an appropriate statistical distribution. Slopes outside the confidence interval were considered as significantly different from slopes within. We also demonstrate the use of related, but more advanced methods known collectively as generalized additive models (GAMs) to model growth. In addition to impressive curve fitting capabilities with corresponding confidence intervals, GAM’s allow for the computation of derivatives, i.e. growth rate estimation, with respect to each time point. Results The results from our proposed procedure agreed well with the observed data. The results indicated that there were substantial growth differences between the E. coli strains. Most strains exhibited improved growth in the nutrient rich LB broth compared to Syncase. The inhibiting effect of lactoferrin varied between the different strains. The atypical enteropathogenic aEPEC-2 grew, on average, faster in both broths than the other strains tested while the enteroinvasive strains, EIEC-6 and EIEC-7 grew slower. The enterotoxigenic ETEC-5 strain, exhibited exceptional growth in Syncase broth, but slower growth in LB broth
Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors
Woodard, Dawn B.; Crainiceanu, Ciprian; Ruppert, David
2013-01-01
We propose a new method for regression using a parsimonious and scientifically interpretable representation of functional predictors. Our approach is designed for data that exhibit features such as spikes, dips, and plateaus whose frequency, location, size, and shape varies stochastically across subjects. We propose Bayesian inference of the joint functional and exposure models, and give a method for efficient computation. We contrast our approach with existing state-of-the-art methods for regression with functional predictors, and show that our method is more effective and efficient for data that include features occurring at varying locations. We apply our methodology to a large and complex dataset from the Sleep Heart Health Study, to quantify the association between sleep characteristics and health outcomes. Software and technical appendices are provided in online supplemental materials. PMID:24293988
A baseline correction algorithm for Raman spectroscopy by adaptive knots B-spline
NASA Astrophysics Data System (ADS)
Wang, Xin; Fan, Xian-guang; Xu, Ying-jie; Wang, Xiu-fen; He, Hao; Zuo, Yong
2015-11-01
The Raman spectroscopy technique is a powerful and non-invasive technique for molecular fingerprint detection which has been widely used in many areas, such as food safety, drug safety, and environmental testing. But Raman signals can be easily corrupted by a fluorescent background, therefore we presented a baseline correction algorithm to suppress the fluorescent background in this paper. In this algorithm, the background of the Raman signal was suppressed by fitting a curve called a baseline using a cyclic approximation method. Instead of the traditional polynomial fitting, we used the B-spline as the fitting algorithm due to its advantages of low-order and smoothness, which can avoid under-fitting and over-fitting effectively. In addition, we also presented an automatic adaptive knot generation method to replace traditional uniform knots. This algorithm can obtain the desired performance for most Raman spectra with varying baselines without any user input or preprocessing step. In the simulation, three kinds of fluorescent background lines were introduced to test the effectiveness of the proposed method. We showed that two real Raman spectra (parathion-methyl and colza oil) can be detected and their baselines were also corrected by the proposed method.
Brown, C; Adcock, A; Azevedo, S; Liebman, J; Bond, E
2010-12-28
Some diagnostics at the National Ignition Facility (NIF), including the Gamma Reaction History (GRH) diagnostic, require multiple channels of data to achieve the required dynamic range. These channels need to be stitched together into a single time series, and they may have non-uniform and redundant time samples. We chose to apply the popular cubic smoothing spline technique to our stitching problem because we needed a general non-parametric method. We adapted one of the algorithms in the literature, by Hutchinson and deHoog, to our needs. The modified algorithm and the resulting code perform a cubic smoothing spline fit to multiple data channels with redundant time samples and missing data points. The data channels can have different, time-varying, zero-mean white noise characteristics. The method we employ automatically determines an optimal smoothing level by minimizing the Generalized Cross Validation (GCV) score. In order to automatically validate the smoothing level selection, the Weighted Sum-Squared Residual (WSSR) and zero-mean tests are performed on the residuals. Further, confidence intervals, both analytical and Monte Carlo, are also calculated. In this paper, we describe the derivation of our cubic smoothing spline algorithm. We outline the algorithm and test it with simulated and experimental data.
Adaptive Confidence Bands for Nonparametric Regression Functions
Cai, T. Tony; Low, Mark; Ma, Zongming
2014-01-01
A new formulation for the construction of adaptive confidence bands in non-parametric function estimation problems is proposed. Confidence bands are constructed which have size that adapts to the smoothness of the function while guaranteeing that both the relative excess mass of the function lying outside the band and the measure of the set of points where the function lies outside the band are small. It is shown that the bands adapt over a maximum range of Lipschitz classes. The adaptive confidence band can be easily implemented in standard statistical software with wavelet support. Numerical performance of the procedure is investigated using both simulated and real datasets. The numerical results agree well with the theoretical analysis. The procedure can be easily modified and used for other nonparametric function estimation models. PMID:26269661
NASA Astrophysics Data System (ADS)
Zhang, X.; Liang, S.; Wang, G.
2015-12-01
Incident solar radiation (ISR) over the Earth's surface plays an important role in determining the Earth's climate and environment. Generally, can be obtained from direct measurements, remotely sensed data, or reanalysis and general circulation models (GCMs) data. Each type of product has advantages and limitations: the surface direct measurements provide accurate but sparse spatial coverage, whereas other global products may have large uncertainties. Ground measurements have been normally used for validation and occasionally calibration, but transforming their "true values" spatially to improve the satellite products is still a new and challenging topic. In this study, an improved thin-plate smoothing spline approach is presented to locally "calibrate" the Global LAnd Surface Satellite (GLASS) ISR product using the reconstructed ISR data from surface meteorological measurements. The influences of surface elevation on ISR estimation was also considered in the proposed method. The point-based surface reconstructed ISR was used as the response variable, and the GLASS ISR product and the surface elevation data at the corresponding locations as explanatory variables to train the thin plate spline model. We evaluated the performance of the approach using the cross-validation method at both daily and monthly time scales over China. We also evaluated estimated ISR based on the thin-plate spline method using independent ground measurements at 10 sites from the Coordinated Enhanced Observation Network (CEON). These validation results indicated that the thin plate smoothing spline method can be effectively used for calibrating satellite derived ISR products using ground measurements to achieve better accuracy.
The purpose of this report is to provide a reference manual that could be used by investigators for making informed use of logistic regression using two methods (standard logistic regression and MARS). The details for analyses of relationships between a dependent binary response ...
Michna, Agata; Braselmann, Herbert; Selmansberger, Martin; Dietz, Anne; Hess, Julia; Gomolka, Maria; Hornhardt, Sabine; Blüthgen, Nils; Zitzelsberger, Horst; Unger, Kristian
2016-01-01
Gene expression time-course experiments allow to study the dynamics of transcriptomic changes in cells exposed to different stimuli. However, most approaches for the reconstruction of gene association networks (GANs) do not propose prior-selection approaches tailored to time-course transcriptome data. Here, we present a workflow for the identification of GANs from time-course data using prior selection of genes differentially expressed over time identified by natural cubic spline regression modeling (NCSRM). The workflow comprises three major steps: 1) the identification of differentially expressed genes from time-course expression data by employing NCSRM, 2) the use of regularized dynamic partial correlation as implemented in GeneNet to infer GANs from differentially expressed genes and 3) the identification and functional characterization of the key nodes in the reconstructed networks. The approach was applied on a time-resolved transcriptome data set of radiation-perturbed cell culture models of non-tumor cells with normal and increased radiation sensitivity. NCSRM detected significantly more genes than another commonly used method for time-course transcriptome analysis (BETR). While most genes detected with BETR were also detected with NCSRM the false-detection rate of NCSRM was low (3%). The GANs reconstructed from genes detected with NCSRM showed a better overlap with the interactome network Reactome compared to GANs derived from BETR detected genes. After exposure to 1 Gy the normal sensitive cells showed only sparse response compared to cells with increased sensitivity, which exhibited a strong response mainly of genes related to the senescence pathway. After exposure to 10 Gy the response of the normal sensitive cells was mainly associated with senescence and that of cells with increased sensitivity with apoptosis. We discuss these results in a clinical context and underline the impact of senescence-associated pathways in acute radiation response of normal
Michna, Agata; Braselmann, Herbert; Selmansberger, Martin; Dietz, Anne; Hess, Julia; Gomolka, Maria; Hornhardt, Sabine; Blüthgen, Nils; Zitzelsberger, Horst; Unger, Kristian
2016-01-01
Gene expression time-course experiments allow to study the dynamics of transcriptomic changes in cells exposed to different stimuli. However, most approaches for the reconstruction of gene association networks (GANs) do not propose prior-selection approaches tailored to time-course transcriptome data. Here, we present a workflow for the identification of GANs from time-course data using prior selection of genes differentially expressed over time identified by natural cubic spline regression modeling (NCSRM). The workflow comprises three major steps: 1) the identification of differentially expressed genes from time-course expression data by employing NCSRM, 2) the use of regularized dynamic partial correlation as implemented in GeneNet to infer GANs from differentially expressed genes and 3) the identification and functional characterization of the key nodes in the reconstructed networks. The approach was applied on a time-resolved transcriptome data set of radiation-perturbed cell culture models of non-tumor cells with normal and increased radiation sensitivity. NCSRM detected significantly more genes than another commonly used method for time-course transcriptome analysis (BETR). While most genes detected with BETR were also detected with NCSRM the false-detection rate of NCSRM was low (3%). The GANs reconstructed from genes detected with NCSRM showed a better overlap with the interactome network Reactome compared to GANs derived from BETR detected genes. After exposure to 1 Gy the normal sensitive cells showed only sparse response compared to cells with increased sensitivity, which exhibited a strong response mainly of genes related to the senescence pathway. After exposure to 10 Gy the response of the normal sensitive cells was mainly associated with senescence and that of cells with increased sensitivity with apoptosis. We discuss these results in a clinical context and underline the impact of senescence-associated pathways in acute radiation response of normal
Hypnotizability as a Function of Repression, Adaptive Regression, and Mood
ERIC Educational Resources Information Center
Silver, Maurice Joseph
1974-01-01
Forty male undergraduates were assessed in a personality assessment session and a hypnosis session. The personality traits studied were repressive style and adaptive regression, while the transitory variable was mood prior to hypnosis. Hypnotizability was a significant interactive function of repressive style and mood, but not of adaptive…
Lloyd, J W; Rook, J S; Braselton, E; Shea, M E
2000-02-01
A study was designed to model the fluctuations of nine specific element concentrations in mammary secretions from periparturient mares over time. During the 1992 foaling season, serial samples of mammary secretions were collected from all 18 pregnant Arabian mares at the Michigan State University equine teaching and research center. Non-linear regression techniques were used to model the relationship between element concentration in mammary secretions and days from foaling (which connected two separate sigmoid curves with a spline function); indicator variables were included for mare and mare parity. Element concentrations in mammary secretions varied significantly during the periparturient period in mares. Both time trends and individual variability explained a significant portion of the variation in these element concentrations. Multiparous mares had lower concentrations of K and Zn, but higher concentrations of Na. Substantial serial and spatial correlation were detected in spite of modeling efforts to avoid the problem. As a result, p-values obtained for parameter estimates were likely biased toward zero. Nonetheless, results of this analysis indicate that monitoring changes in mammary-secretion element concentrations might reasonably be used as a predictor of impending parturition in the mare. In addition, these results suggest that element concentrations warrant attention in the development of neonatal milk-replacement therapies. This study demonstrates that non-linear regression can be used successfully to model time-series data in animal-health management. This approach should be considered by investigators facing similar analytical challenges. PMID:10782599
Adaptive support vector regression for UAV flight control.
Shin, Jongho; Jin Kim, H; Kim, Youdan
2011-01-01
This paper explores an application of support vector regression for adaptive control of an unmanned aerial vehicle (UAV). Unlike neural networks, support vector regression (SVR) generates global solutions, because SVR basically solves quadratic programming (QP) problems. With this advantage, the input-output feedback-linearized inverse dynamic model and the compensation term for the inversion error are identified off-line, which we call I-SVR (inversion SVR) and C-SVR (compensation SVR), respectively. In order to compensate for the inversion error and the unexpected uncertainty, an online adaptation algorithm for the C-SVR is proposed. Then, the stability of the overall error dynamics is analyzed by the uniformly ultimately bounded property in the nonlinear system theory. In order to validate the effectiveness of the proposed adaptive controller, numerical simulations are performed on the UAV model. PMID:20970303
GLOBALLY ADAPTIVE QUANTILE REGRESSION WITH ULTRA-HIGH DIMENSIONAL DATA
Zheng, Qi; Peng, Limin; He, Xuming
2015-01-01
Quantile regression has become a valuable tool to analyze heterogeneous covaraite-response associations that are often encountered in practice. The development of quantile regression methodology for high dimensional covariates primarily focuses on examination of model sparsity at a single or multiple quantile levels, which are typically prespecified ad hoc by the users. The resulting models may be sensitive to the specific choices of the quantile levels, leading to difficulties in interpretation and erosion of confidence in the results. In this article, we propose a new penalization framework for quantile regression in the high dimensional setting. We employ adaptive L1 penalties, and more importantly, propose a uniform selector of the tuning parameter for a set of quantile levels to avoid some of the potential problems with model selection at individual quantile levels. Our proposed approach achieves consistent shrinkage of regression quantile estimates across a continuous range of quantiles levels, enhancing the flexibility and robustness of the existing penalized quantile regression methods. Our theoretical results include the oracle rate of uniform convergence and weak convergence of the parameter estimators. We also use numerical studies to confirm our theoretical findings and illustrate the practical utility of our proposal. PMID:26604424
Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks
NASA Astrophysics Data System (ADS)
Kanevski, Mikhail
2015-04-01
The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press
NASA Technical Reports Server (NTRS)
Zhang, Zhimin; Tomlinson, John; Martin, Clyde
1994-01-01
In this work, the relationship between splines and the control theory has been analyzed. We show that spline functions can be constructed naturally from the control theory. By establishing a framework based on control theory, we provide a simple and systematic way to construct splines. We have constructed the traditional spline functions including the polynomial splines and the classical exponential spline. We have also discovered some new spline functions such as trigonometric splines and the combination of polynomial, exponential and trigonometric splines. The method proposed in this paper is easy to implement. Some numerical experiments are performed to investigate properties of different spline approximations.
Peluso, Marco E M; Munnia, Armelle; Ceppi, Marcello
2014-11-01
Exposures to bisphenol-A, a weak estrogenic chemical, largely used for the production of plastic containers, can affect the rodent behaviour. Thus, we examined the relationships between bisphenol-A and the anxiety-like behaviour, spatial skills, and aggressiveness, in 12 toxicity studies of rodent offspring from females orally exposed to bisphenol-A, while pregnant and/or lactating, by median and linear splines analyses. Subsequently, the meta-regression analysis was applied to quantify the behavioural changes. U-shaped, inverted U-shaped and J-shaped dose-response curves were found to describe the relationships between bisphenol-A with the behavioural outcomes. The occurrence of anxiogenic-like effects and spatial skill changes displayed U-shaped and inverted U-shaped curves, respectively, providing examples of effects that are observed at low-doses. Conversely, a J-dose-response relationship was observed for aggressiveness. When the proportion of rodents expressing certain traits or the time that they employed to manifest an attitude was analysed, the meta-regression indicated that a borderline significant increment of anxiogenic-like effects was present at low-doses regardless of sexes (β)=-0.8%, 95% C.I. -1.7/0.1, P=0.076, at ≤120 μg bisphenol-A. Whereas, only bisphenol-A-males exhibited a significant inhibition of spatial skills (β)=0.7%, 95% C.I. 0.2/1.2, P=0.004, at ≤100 μg/day. A significant increment of aggressiveness was observed in both the sexes (β)=67.9,C.I. 3.4, 172.5, P=0.038, at >4.0 μg. Then, bisphenol-A treatments significantly abrogated spatial learning and ability in males (P<0.001 vs. females). Overall, our study showed that developmental exposures to low-doses of bisphenol-A, e.g. ≤120 μg/day, were associated to behavioural aberrations in offspring. PMID:25242006
Robust, Adaptive Functional Regression in Functional Mixed Model Framework
Zhu, Hongxiao; Brown, Philip J.; Morris, Jeffrey S.
2012-01-01
Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient
A locally adaptive kernel regression method for facies delineation
NASA Astrophysics Data System (ADS)
Fernàndez-Garcia, D.; Barahona-Palomo, M.; Henri, C. V.; Sanchez-Vila, X.
2015-12-01
Facies delineation is defined as the separation of geological units with distinct intrinsic characteristics (grain size, hydraulic conductivity, mineralogical composition). A major challenge in this area stems from the fact that only a few scattered pieces of hydrogeological information are available to delineate geological facies. Several methods to delineate facies are available in the literature, ranging from those based only on existing hard data, to those including secondary data or external knowledge about sedimentological patterns. This paper describes a methodology to use kernel regression methods as an effective tool for facies delineation. The method uses both the spatial and the actual sampled values to produce, for each individual hard data point, a locally adaptive steering kernel function, self-adjusting the principal directions of the local anisotropic kernels to the direction of highest local spatial correlation. The method is shown to outperform the nearest neighbor classification method in a number of synthetic aquifers whenever the available number of hard data is small and randomly distributed in space. In the case of exhaustive sampling, the steering kernel regression method converges to the true solution. Simulations ran in a suite of synthetic examples are used to explore the selection of kernel parameters in typical field settings. It is shown that, in practice, a rule of thumb can be used to obtain suboptimal results. The performance of the method is demonstrated to significantly improve when external information regarding facies proportions is incorporated. Remarkably, the method allows for a reasonable reconstruction of the facies connectivity patterns, shown in terms of breakthrough curves performance.
Li, Xin; Miller, Eric L.; Rappaport, Carey; Silevich, Michael
2000-04-11
A common problem in signal processing is to estimate the structure of an object from noisy measurements linearly related to the desired image. These problems are broadly known as inverse problems. A key feature which complicates the solution to such problems is their ill-posedness. That is, small perturbations in the data arising e.g. from noise can and do lead to severe, non-physical artifacts in the recovered image. The process of stabilizing these problems is known as regularization of which Tikhonov regularization is one of the most common. While this approach leads to a simple linear least squares problem to solve for generating the reconstruction, it has the unfortunate side effect of producing smooth images thereby obscuring important features such as edges. Therefore, over the past decade there has been much work in the development of edge-preserving regularizers. This technique leads to image estimates in which the important features are retained, but computationally the y require the solution of a nonlinear least squares problem, a daunting task in many practical multi-dimensional applications. In this thesis we explore low-order models for reducing the complexity of the re-construction process. Specifically, B-Splines are used to approximate the object. If a ''proper'' collection B-Splines are chosen that the object can be efficiently represented using a few basis functions, the dimensionality of the underlying problem will be significantly decreased. Consequently, an optimum distribution of splines needs to be determined. Here, an adaptive refining and pruning algorithm is developed to solve the problem. The refining part is based on curvature information, in which the intuition is that a relatively dense set of fine scale basis elements should cluster near regions of high curvature while a spares collection of basis vectors are required to adequately represent the object over spatially smooth areas. The pruning part is a greedy search algorithm to find
Keith, Scott W.; Allison, David B.
2014-01-01
This paper details the design, evaluation, and implementation of a framework for detecting and modeling non-linearity between a binary outcome and a continuous predictor variable adjusted for covariates in complex samples. The framework provides familiar-looking parameterizations of output in terms of linear slope coefficients and odds ratios. Estimation methods focus on maximum likelihood optimization of piecewise linear free-knot splines formulated as B-splines. Correctly specifying the optimal number and positions of the knots improves the model, but is marked by computational intensity and numerical instability. Our inference methods utilize both parametric and non-parametric bootstrapping. Unlike other non-linear modeling packages, this framework is designed to incorporate multistage survey sample designs common to nationally representative datasets. We illustrate the approach and evaluate its performance in specifying the correct number of knots under various conditions with an example using body mass index (BMI, kg/m2) and the complex multistage sampling design from the Third National Health and Nutrition Examination Survey to simulate binary mortality outcomes data having realistic non-linear sample-weighted risk associations with BMI. BMI and mortality data provide a particularly apt example and area of application since BMI is commonly recorded in large health surveys with complex designs, often categorized for modeling, and non-linearly related to mortality. When complex sample design considerations were ignored, our method was generally similar to or more accurate than two common model selection procedures, Schwarz’s Bayesian Information Criterion (BIC) and Akaike’s Information Criterion (AIC), in terms of correctly selecting the correct number of knots. Our approach provided accurate knot selections when complex sampling weights were incorporated, while AIC and BIC were not effective under these conditions. PMID:25610831
Technology Transfer Automated Retrieval System (TEKTRAN)
Free-living measurements of 24-h total energy expenditure (TEE) and activity energy expenditure (AEE) are required to better understand the metabolic, physiological, behavioral, and environmental factors affecting energy balance and contributing to the global epidemic of childhood obesity. The spec...
Dissociating Conflict Adaptation from Feature Integration: A Multiple Regression Approach
ERIC Educational Resources Information Center
Notebaert, Wim; Verguts, Tom
2007-01-01
Congruency effects are typically smaller after incongruent than after congruent trials. One explanation is in terms of higher levels of cognitive control after detection of conflict (conflict adaptation; e.g., M. M. Botvinick, T. S. Braver, D. M. Barch, C. S. Carter, & J. D. Cohen, 2001). An alternative explanation for these results is based on…
Adaptation of a Weighted Regression Approach to Evaluate Water Quality Trends in an Estuary
To improve the description of long-term changes in water quality, we adapted a weighted regression approach to analyze a long-term water quality dataset from Tampa Bay, Florida. The weighted regression approach, originally developed to resolve pollutant transport trends in rivers...
Adaptation of a weighted regression approach to evaluate water quality trends in anestuary
To improve the description of long-term changes in water quality, a weighted regression approach developed to describe trends in pollutant transport in rivers was adapted to analyze a long-term water quality dataset from Tampa Bay, Florida. The weighted regression approach allows...
Weighted Structural Regression: A Broad Class of Adaptive Methods for Improving Linear Prediction.
ERIC Educational Resources Information Center
Pruzek, Robert M.; Lepak, Greg M.
1992-01-01
Adaptive forms of weighted structural regression are developed and discussed. Bootstrapping studies indicate that the new methods have potential to recover known population regression weights and predict criterion score values routinely better than do ordinary least squares methods. The new methods are scale free and simple to compute. (SLD)
Pax6 in Collembola: Adaptive Evolution of Eye Regression
Hou, Ya-Nan; Li, Sheng; Luan, Yun-Xia
2016-01-01
Unlike the compound eyes in insects, collembolan eyes are comparatively simple: some species have eyes with different numbers of ocelli (1 + 1 to 8 + 8), and some species have no apparent eye structures. Pax6 is a universal master control gene for eye morphogenesis. In this study, full-length Pax6 cDNAs, Fc-Pax6 and Cd-Pax6, were cloned from an eyeless collembolan (Folsomia candida, soil-dwelling) and an eyed one (Ceratophysella denticulata, surface-dwelling), respectively. Their phylogenetic positions are between the two Pax6 paralogs in insects, eyeless (ey) and twin of eyeless (toy), and their protein sequences are more similar to Ey than to Toy. Both Fc-Pax6 and Cd-Pax6 could induce ectopic eyes in Drosophila, while Fc-Pax6 exhibited much weaker transactivation ability than Cd-Pax6. The C-terminus of collembolan Pax6 is indispensable for its transactivation ability, and determines the differences of transactivation ability between Fc-Pax6 and Cd-Pax6. One of the possible reasons is that Fc-Pax6 accumulated more mutations at some key functional sites of C-terminus under a lower selection pressure on eye development due to the dark habitats of F. candida. The composite data provide a first molecular evidence for the monophyletic origin of collembolan eyes, and indicate the eye degeneration of collembolans is caused by adaptive evolution. PMID:26856893
Energy Science and Technology Software Center (ESTSC)
2013-08-29
An analytical model is developed to evaluate the design of a spline coupling. For a given torque and shaft misalignment, the model calculates the number of teeth in contact, tooth loads, stiffnesses, stresses, and safety factors. The analytic model provides essential spline coupling design and modeling information and could be easily integrated into gearbox design and simulation tools.
Algamal, Zakariya Yahya; Lee, Muhammad Hisyam
2015-12-01
Cancer classification and gene selection in high-dimensional data have been popular research topics in genetics and molecular biology. Recently, adaptive regularized logistic regression using the elastic net regularization, which is called the adaptive elastic net, has been successfully applied in high-dimensional cancer classification to tackle both estimating the gene coefficients and performing gene selection simultaneously. The adaptive elastic net originally used elastic net estimates as the initial weight, however, using this weight may not be preferable for certain reasons: First, the elastic net estimator is biased in selecting genes. Second, it does not perform well when the pairwise correlations between variables are not high. Adjusted adaptive regularized logistic regression (AAElastic) is proposed to address these issues and encourage grouping effects simultaneously. The real data results indicate that AAElastic is significantly consistent in selecting genes compared to the other three competitor regularization methods. Additionally, the classification performance of AAElastic is comparable to the adaptive elastic net and better than other regularization methods. Thus, we can conclude that AAElastic is a reliable adaptive regularized logistic regression method in the field of high-dimensional cancer classification. PMID:26520484
Locally-Based Kernal PLS Smoothing to Non-Parametric Regression Curve Fitting
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Trejo, Leonard J.; Wheeler, Kevin; Korsmeyer, David (Technical Monitor)
2002-01-01
We present a novel smoothing approach to non-parametric regression curve fitting. This is based on kernel partial least squares (PLS) regression in reproducing kernel Hilbert space. It is our concern to apply the methodology for smoothing experimental data where some level of knowledge about the approximate shape, local inhomogeneities or points where the desired function changes its curvature is known a priori or can be derived based on the observed noisy data. We propose locally-based kernel PLS regression that extends the previous kernel PLS methodology by incorporating this knowledge. We compare our approach with existing smoothing splines, hybrid adaptive splines and wavelet shrinkage techniques on two generated data sets.
Speaker adaptation of HMMs using evolutionary strategy-based linear regression
NASA Astrophysics Data System (ADS)
Selouani, Sid-Ahmed; O'Shaughnessy, Douglas
2002-05-01
A new framework for speaker adaptation of continuous-density hidden Markov models (HMMs) is introduced. It aims to improve the robustness of speech recognizers by adapting HMM parameters to new conditions (e.g., from new speakers). It describes an optimization technique using an evolutionary strategy for linear regression-based spectral transformation. In classical iterative maximum likelihood linear regression (MLLR), a global transform matrix is estimated to make a general model better match particular target conditions. To permit adaptation on a small amount of data, a regression tree classification is performed. However, an important drawback of MLLR is that the number of regression classes is fixed. The new approach allows the degree of freedom of the global transform to be implicitly variable, as the evolutionary optimization permits the survival of only active classes. The fitness function is evaluated by the phoneme correctness through the evolution steps. The implementation requirements such as chromosome representation, selection function, genetic operators, and evaluation function have been chosen in order to lend more reliability to the global transformation matrix. Triphone experiments used the TIMIT and ARPA-RM1 databases. For new speakers, the new technique achieves 8 percent fewer word errors than the basic MLLR method.
Genomewide Multiple-Loci Mapping in Experimental Crosses by Iterative Adaptive Penalized Regression
Sun, Wei; Ibrahim, Joseph G.; Zou, Fei
2010-01-01
Genomewide multiple-loci mapping can be viewed as a challenging variable selection problem where the major objective is to select genetic markers related to a trait of interest. It is challenging because the number of genetic markers is large (often much larger than the sample size) and there is often strong linkage or linkage disequilibrium between markers. In this article, we developed two methods for genomewide multiple loci mapping: the Bayesian adaptive Lasso and the iterative adaptive Lasso. Compared with eight existing methods, the proposed methods have improved variable selection performance in both simulation and real data studies. The advantages of our methods come from the assignment of adaptive weights to different genetic makers and the iterative updating of these adaptive weights. The iterative adaptive Lasso is also computationally much more efficient than the commonly used marginal regression and stepwise regression methods. Although our methods are motivated by multiple-loci mapping, they are general enough to be applied to other variable selection problems. PMID:20157003
NASA Astrophysics Data System (ADS)
Laksâ, Arne
2015-11-01
B-splines are the de facto industrial standard for surface modelling in Computer Aided design. It is comparable to bend flexible rods of wood or metal. A flexible rod minimize the energy when bending, a third degree polynomial spline curve minimize the second derivatives. B-spline is a nice way of representing polynomial splines, it connect polynomial splines to corner cutting techniques, which induces many nice and useful properties. However, the B-spline representation can be expanded to something we can call general B-splines, i.e. both polynomial and non-polynomial splines. We will show how this expansion can be done, and the properties it induces, and examples of non-polynomial B-spline.
Multivariate Spline Algorithms for CAGD
NASA Technical Reports Server (NTRS)
Boehm, W.
1985-01-01
Two special polyhedra present themselves for the definition of B-splines: a simplex S and a box or parallelepiped B, where the edges of S project into an irregular grid, while the edges of B project into the edges of a regular grid. More general splines may be found by forming linear combinations of these B-splines, where the three-dimensional coefficients are called the spline control points. Univariate splines are simplex splines, where s = 1, whereas splines over a regular triangular grid are box splines, where s = 2. Two simple facts render the development of the construction of B-splines: (1) any face of a simplex or a box is again a simplex or box but of lower dimension; and (2) any simplex or box can be easily subdivided into smaller simplices or boxes. The first fact gives a geometric approach to Mansfield-like recursion formulas that express a B-spline in B-splines of lower order, where the coefficients depend on x. By repeated recursion, the B-spline will be expressed as B-splines of order 1; i.e., piecewise constants. In the case of a simplex spline, the second fact gives a so-called insertion algorithm that constructs the new control points if an additional knot is inserted.
NASA Technical Reports Server (NTRS)
Schiess, J. R.
1994-01-01
Scientific data often contains random errors that make plotting and curve-fitting difficult. The Rational-Spline Approximation with Automatic Tension Adjustment algorithm lead to a flexible, smooth representation of experimental data. The user sets the conditions for each consecutive pair of knots:(knots are user-defined divisions in the data set) to apply no tension; to apply fixed tension; or to determine tension with a tension adjustment algorithm. The user also selects the number of knots, the knot abscissas, and the allowed maximum deviations from line segments. The selection of these quantities depends on the actual data and on the requirements of a particular application. This program differs from the usual spline under tension in that it allows the user to specify different tension values between each adjacent pair of knots rather than a constant tension over the entire data range. The subroutines use an automatic adjustment scheme that varies the tension parameter for each interval until the maximum deviation of the spline from the line joining the knots is less than or equal to a user-specified amount. This procedure frees the user from the drudgery of adjusting individual tension parameters while still giving control over the local behavior of the spline The Rational Spline program was written completely in FORTRAN for implementation on a CYBER 850 operating under NOS. It has a central memory requirement of approximately 1500 words. The program was released in 1988.
Clinical Trials: Spline Modeling is Wonderful for Nonlinear Effects.
Cleophas, Ton J
2016-01-01
Traditionally, nonlinear relationships like the smooth shapes of airplanes, boats, and motor cars were constructed from scale models using stretched thin wooden strips, otherwise called splines. In the past decades, mechanical spline methods have been replaced with their mathematical counterparts. The objective of the study was to study whether spline modeling can adequately assess the relationships between exposure and outcome variables in a clinical trial and also to study whether it can detect patterns in a trial that are relevant but go unobserved with simpler regression models. A clinical trial assessing the effect of quantity of care on quality of care was used as an example. Spline curves consistent of 4 or 5 cubic functions were applied. SPSS statistical software was used for analysis. The spline curves of our data outperformed the traditional curves because (1) unlike the traditional curves, they did not miss the top quality of care given in either subgroup, (2) unlike the traditional curves, they, rightly, did not produce sinusoidal patterns, and (3) unlike the traditional curves, they provided a virtually 100% match of the original values. We conclude that (1) spline modeling can adequately assess the relationships between exposure and outcome variables in a clinical trial; (2) spline modeling can detect patterns in a trial that are relevant but may go unobserved with simpler regression models; (3) in clinical research, spline modeling has great potential given the presence of many nonlinear effects in this field of research and given its sophisticated mathematical refinement to fit any nonlinear effect in the mostly accurate way; and (4) spline modeling should enable to improve making predictions from clinical research for the benefit of health decisions and health care. We hope that this brief introduction to spline modeling will stimulate clinical investigators to start using this wonderful method. PMID:23689089
Knafl, George J; Fennie, Kristopher P; Bova, Carol; Dieckhaus, Kevin; Williams, Ann B
2004-03-15
An adaptive approach to Poisson regression modelling is presented for analysing event data from electronic devices monitoring medication-taking. The emphasis is on applying this approach to data for individual subjects although it also applies to data for multiple subjects. This approach provides for visualization of adherence patterns as well as for objective comparison of actual device use with prescribed medication-taking. Example analyses are presented using data on openings of electronic pill bottle caps monitoring adherence of subjects with HIV undergoing highly active antiretroviral therapies. The modelling approach consists of partitioning the observation period, computing grouped event counts/rates for intervals in this partition, and modelling these event counts/rates in terms of elapsed time after entry into the study using Poisson regression. These models are based on adaptively selected sets of power transforms of elapsed time determined by rule-based heuristic search through arbitrary sets of parametric models, thereby effectively generating a smooth non-parametric regression fit to the data. Models are compared using k-fold likelihood cross-validation. PMID:14981675
Better prediction by use of co-data: adaptive group-regularized ridge regression.
van de Wiel, Mark A; Lien, Tonje G; Verlaat, Wina; van Wieringen, Wessel N; Wilting, Saskia M
2016-02-10
For many high-dimensional studies, additional information on the variables, like (genomic) annotation or external p-values, is available. In the context of binary and continuous prediction, we develop a method for adaptive group-regularized (logistic) ridge regression, which makes structural use of such 'co-data'. Here, 'groups' refer to a partition of the variables according to the co-data. We derive empirical Bayes estimates of group-specific penalties, which possess several nice properties: (i) They are analytical. (ii) They adapt to the informativeness of the co-data for the data at hand. (iii) Only one global penalty parameter requires tuning by cross-validation. In addition, the method allows use of multiple types of co-data at little extra computational effort. We show that the group-specific penalties may lead to a larger distinction between 'near-zero' and relatively large regression parameters, which facilitates post hoc variable selection. The method, termed GRridge, is implemented in an easy-to-use R-package. It is demonstrated on two cancer genomics studies, which both concern the discrimination of precancerous cervical lesions from normal cervix tissues using methylation microarray data. For both examples, GRridge clearly improves the predictive performances of ordinary logistic ridge regression and the group lasso. In addition, we show that for the second study, the relatively good predictive performance is maintained when selecting only 42 variables. PMID:26365903
Interchangeable spline reference guide
Dolin, R.M.
1994-05-01
The WX-Division Integrated Software Tools (WIST) Team evolved from two previous committees, First was the W78 Solid Modeling Pilot Project`s Spline Subcommittee, which later evolved into the Vv`X-Division Spline Committee. The mission of the WIST team is to investigate current CAE engineering processes relating to complex geometry and to develop methods for improving those processes. Specifically, the WIST team is developing technology that allows the Division to use multiple spline representations. We are also updating the contour system (CONSYS) data base to take full advantage of the Division`s expanding electronic engineering process. Both of these efforts involve developing interfaces to commercial CAE systems and writing new software. The WIST team is comprised of members from V;X-11, -12 and 13. This {open_quotes}cross-functional{close_quotes} approach to software development is somewhat new in the Division so an effort is being made to formalize our processes and assure quality at each phase of development. Chapter one represents a theory manual and is one phase of the formal process. The theory manual is followed by a software requirements document, specification document, software verification and validation documents. The purpose of this guide is to present the theory underlying the interchangeable spline technology and application. Verification and validation test results are also presented for proof of principal.
NASA Astrophysics Data System (ADS)
Börger, Klaus; Schmidt, Michael; Dettmering, Denise; Limberger, Marco; Erdogan, Eren; Seitz, Florian; Brandert, Sylvia; Görres, Barbara; Kersten, Wilhelm; Bothmer, Volker; Hinrichs, Johannes; Venzmer, Malte; Mrotzek, Niclas
2016-04-01
Today, the observations of space geodetic techniques are usually available with a rather low latency which applies to space missions observing the solar terrestrial environment, too. Therefore, we can use all these measurements in near real-time to compute and to provide ionosphere information, e.g. the vertical total electron content (VTEC). GSSAC and BGIC support a project aiming at a service for providing ionosphere information. This project is called OPTIMAP, meaning "Operational Tool for Ionosphere Mapping and Prediction"; the scientific work is mainly done by the German Geodetic Research Institute of the Technical University Munich (DGFI-TUM) and the Institute for Astrophysics of the University of Goettingen (IAG). The OPTIMAP strategy for providing ionosphere target quantities of high quality, such as VTEC or the electron density, includes mathematical approaches and tools allowing for the model adaptation to the real observational scenario as a significant improvement w.r.t. the traditional well-established methods. For example, OPTIMAP combines different observation types such as GNSS (GPS, GLONASS), Satellite Altimetry (Jason-2), DORIS as well as radio-occultation measurements (FORMOSAT#3/COSMIC). All these observations run into a Kalman-filter to compute global ionosphere maps, i.e. VTEC, for the current instant of time and as a forecast for a couple of subsequent days. Mathematically, the global VTEC is set up as a series expansion in terms of two-dimensional basis functions defined as tensor products of trigonometric B-splines for longitude and polynomial B-splines for latitude. Compared to the classical spherical harmonics, B-splines have a localizing character and, therefore, can handle an inhomogeneous data distribution properly. Finally, B-splines enable a so-called multi-resolution-representation (MRR) enabling the combination of global and regional modelling approaches. In addition to the geodetic measurements, Sun observations are pre
Performance verification of bivariate regressive adaptive index for structural health monitoring
NASA Astrophysics Data System (ADS)
Su, Su; Kijewski-Correa, Tracy
2007-04-01
This study focuses on data-driven methods for structural health monitoring and introduces a Bivariate Regressive Adaptive INdex (BRAIN) for damage detection in a decentralized, wireless sensor network. BRAIN utilizes a dynamic damage sensitive feature (DSF) that automatically adapts to the data set, extracting the most damage sensitive model features, which vary with location, damage severity, loading condition and model type. This data-driven feature is key to providing the most flexible damage sensitive feature incorporating all available data for a given application to enhance reliability by including heterogeneous sensor arrays. This study will first evaluate several regressive-type models used for time-series damage detection, including common homogeneous formats and newly proposed heterogeneous descriptors and then demonstrate the performance of the newly proposed dynamic DSF against a comparable static DSF. Performance will be validated by documenting their damage success rates on repeated simulations of randomly-excited thin beams with minor levels of damage. It will be shown that BRAIN dramatically increases the detection capabilities over static, homogeneous damage detection frameworks.
Regression-based adaptive sparse polynomial dimensional decomposition for sensitivity analysis
NASA Astrophysics Data System (ADS)
Tang, Kunkun; Congedo, Pietro; Abgrall, Remi
2014-11-01
Polynomial dimensional decomposition (PDD) is employed in this work for global sensitivity analysis and uncertainty quantification of stochastic systems subject to a large number of random input variables. Due to the intimate structure between PDD and Analysis-of-Variance, PDD is able to provide simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to polynomial chaos (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of the standard method unaffordable for real engineering applications. In order to address this problem of curse of dimensionality, this work proposes a variance-based adaptive strategy aiming to build a cheap meta-model by sparse-PDD with PDD coefficients computed by regression. During this adaptive procedure, the model representation by PDD only contains few terms, so that the cost to resolve repeatedly the linear system of the least-square regression problem is negligible. The size of the final sparse-PDD representation is much smaller than the full PDD, since only significant terms are eventually retained. Consequently, a much less number of calls to the deterministic model is required to compute the final PDD coefficients.
An adaptive online learning approach for Support Vector Regression: Online-SVR-FID
NASA Astrophysics Data System (ADS)
Liu, Jie; Zio, Enrico
2016-08-01
Support Vector Regression (SVR) is a popular supervised data-driven approach for building empirical models from available data. Like all data-driven methods, under non-stationary environmental and operational conditions it needs to be provided with adaptive learning capabilities, which might become computationally burdensome with large datasets cumulating dynamically. In this paper, a cost-efficient online adaptive learning approach is proposed for SVR by combining Feature Vector Selection (FVS) and Incremental and Decremental Learning. The proposed approach adaptively modifies the model only when different pattern drifts are detected according to proposed criteria. Two tolerance parameters are introduced in the approach to control the computational complexity, reduce the influence of the intrinsic noise in the data and avoid the overfitting problem of SVR. Comparisons of the prediction results is made with other online learning approaches e.g. NORMA, SOGA, KRLS, Incremental Learning, on several artificial datasets and a real case study concerning time series prediction based on data recorded on a component of a nuclear power generation system. The performance indicators MSE and MARE computed on the test dataset demonstrate the efficiency of the proposed online learning method.
Locally Refined Splines Representation for Geospatial Big Data
NASA Astrophysics Data System (ADS)
Dokken, T.; Skytt, V.; Barrowclough, O.
2015-08-01
When viewed from distance, large parts of the topography of landmasses and the bathymetry of the sea and ocean floor can be regarded as a smooth background with local features. Consequently a digital elevation model combining a compact smooth representation of the background with locally added features has the potential of providing a compact and accurate representation for topography and bathymetry. The recent introduction of Locally Refined B-Splines (LR B-splines) allows the granularity of spline representations to be locally adapted to the complexity of the smooth shape approximated. This allows few degrees of freedom to be used in areas with little variation, while adding extra degrees of freedom in areas in need of more modelling flexibility. In the EU fp7 Integrating Project IQmulus we exploit LR B-splines for approximating large point clouds representing bathymetry of the smooth sea and ocean floor. A drastic reduction is demonstrated in the bulk of the data representation compared to the size of input point clouds. The representation is very well suited for exploiting the power of GPUs for visualization as the spline format is transferred to the GPU and the triangulation needed for the visualization is generated on the GPU according to the viewing parameters. The LR B-splines are interoperable with other elevation model representations such as LIDAR data, raster representations and triangulated irregular networks as these can be used as input to the LR B-spline approximation algorithms. Output to these formats can be generated from the LR B-spline applications according to the resolution criteria required. The spline models are well suited for change detection as new sensor data can efficiently be compared to the compact LR B-spline representation.
Wavelets based on Hermite cubic splines
NASA Astrophysics Data System (ADS)
Cvejnová, Daniela; Černá, Dana; Finěk, Václav
2016-06-01
In 2000, W. Dahmen et al. designed biorthogonal multi-wavelets adapted to the interval [0,1] on the basis of Hermite cubic splines. In recent years, several more simple constructions of wavelet bases based on Hermite cubic splines were proposed. We focus here on wavelet bases with respect to which both the mass and stiffness matrices are sparse in the sense that the number of nonzero elements in any column is bounded by a constant. Then, a matrix-vector multiplication in adaptive wavelet methods can be performed exactly with linear complexity for any second order differential equation with constant coefficients. In this contribution, we shortly review these constructions and propose a new wavelet which leads to improved Riesz constants. Wavelets have four vanishing wavelet moments.
NASA Astrophysics Data System (ADS)
Su, Su; Kijewski-Correa, Tracy; Pando Balandra, Juan Francisco
2009-03-01
This study focuses on embeddable algorithms that operate within multi-scale wireless sensor networks for damage detection in civil infrastructure systems, and in specific, the Bivariate Regressive Adaptive INdex (BRAIN) to detect damage in structures by examining the changes in regressive coefficients of time series models. As its name suggests, BRAIN exploits heterogeneous sensor arrays by a data-driven damage feature (DSF) to enhance detection capability through the use of two types of response data, each with its own unique sensitivities to damage. While previous studies have shown that BRAIN offers more reliable damage detection, a number of factors contributing to its performance are explored herein, including observability, damage proximity/severity, and relative signal strength. These investigations also include an experimental program to determine if performance is maintained when implementing the approaches in physical systems. The results of these investigations will be used to further verify that the use of heterogeneous sensing enhances overall detection capability of such data-driven damage metrics.
Spline screw payload fastening system
NASA Astrophysics Data System (ADS)
Vranish, John M.
1993-09-01
A system for coupling an orbital replacement unit (ORU) to a space station structure via the actions of a robot and/or astronaut is described. This system provides mechanical and electrical connections both between the ORU and the space station structure and between the ORU and the ORU and the robot/astronaut hand tool. Alignment and timing features ensure safe, sure handling and precision coupling. This includes a first female type spline connector selectively located on the space station structure, a male type spline connector positioned on the orbital replacement unit so as to mate with and connect to the first female type spline connector, and a second female type spline connector located on the orbital replacement unit. A compliant drive rod interconnects the second female type spline connector and the male type spline connector. A robotic special end effector is used for mating with and driving the second female type spline connector. Also included are alignment tabs exteriorally located on the orbital replacement unit for berthing with the space station structure. The first and second female type spline connectors each include a threaded bolt member having a captured nut member located thereon which can translate up and down the bolt but are constrained from rotation thereabout, the nut member having a mounting surface with at least one first type electrical connector located on the mounting surface for translating with the nut member. At least one complementary second type electrical connector on the orbital replacement unit mates with at least one first type electrical connector on the mounting surface of the nut member. When the driver on the robotic end effector mates with the second female type spline connector and rotates, the male type spline connector and the first female type spline connector lock together, the driver and the second female type spline connector lock together, and the nut members translate up the threaded bolt members carrying the
Spline screw payload fastening system
NASA Astrophysics Data System (ADS)
Vranish, John M.
1992-09-01
A system for coupling an orbital replacement unit (ORU) to a space station structure via the actions of a robot and/or astronaut is described. This system provides mechanical and electrical connections both between the ORU and the space station structure and between the ORU and the ORU and the robot/astronaut hand tool. Alignment and timing features ensure safe, sure handling and precision coupling. This includes a first female type spline connector selectively located on the space station structure, a male type spline connector positioned on the orbital replacement unit so as to mate with and connect to the first female type spline connector, and a second female type spline connector located on the orbital replacement unit. A compliant drive rod interconnects the second female type spline connector and the male type spline connector. A robotic special end effector is used for mating with and driving the second female type spline connector. Also included are alignment tabs exteriorally located on the orbital replacement unit for berthing with the space station structure. The first and second female type spline connectors each include a threaded bolt member having a captured nut member located thereon which can translate up and down the bolt but are constrained from rotation thereabout, the nut member having a mounting surface with at least one first type electrical connector located on the mounting surface for translating with the nut member. At least one complementary second type electrical connector on the orbital replacement unit mates with at least one first type electrical connector on the mounting surface of the nut member. When the driver on the robotic end effector mates with the second female type spline connector and rotates, the male type spline connector and the first female type spline connector lock together, the driver and the second female type spline connector lock together, and the nut members translate up the threaded bolt members carrying the
Spline screw payload fastening system
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
1993-01-01
A system for coupling an orbital replacement unit (ORU) to a space station structure via the actions of a robot and/or astronaut is described. This system provides mechanical and electrical connections both between the ORU and the space station structure and between the ORU and the ORU and the robot/astronaut hand tool. Alignment and timing features ensure safe, sure handling and precision coupling. This includes a first female type spline connector selectively located on the space station structure, a male type spline connector positioned on the orbital replacement unit so as to mate with and connect to the first female type spline connector, and a second female type spline connector located on the orbital replacement unit. A compliant drive rod interconnects the second female type spline connector and the male type spline connector. A robotic special end effector is used for mating with and driving the second female type spline connector. Also included are alignment tabs exteriorally located on the orbital replacement unit for berthing with the space station structure. The first and second female type spline connectors each include a threaded bolt member having a captured nut member located thereon which can translate up and down the bolt but are constrained from rotation thereabout, the nut member having a mounting surface with at least one first type electrical connector located on the mounting surface for translating with the nut member. At least one complementary second type electrical connector on the orbital replacement unit mates with at least one first type electrical connector on the mounting surface of the nut member. When the driver on the robotic end effector mates with the second female type spline connector and rotates, the male type spline connector and the first female type spline connector lock together, the driver and the second female type spline connector lock together, and the nut members translate up the threaded bolt members carrying the
Using parametric {ital B} splines to fit specular reflectivities
Berk, N.F.; Majkrzak, C.F.
1995-05-01
Parametric {ital B}-spline curves offer a flexible and appropriate mathematical description of scattering length density profiles in specular reflectivity analysis. Profiles combining smooth and sharp features can be defined in low dimensional representations using control points in the density-depth plane which provide graded local influence on profile shape. These profiles exist in vector spaces defined by {ital B}-spline order and parameter knot set, which can be systematically densified during analysis. Such profiles can easily be rendered as adaptive histograms for reflectivity computation. {ital B}-spline order can be chosen to accommodate the asymptotic (large-{ital Q}) behavior indicated by reflectivity data. We describe an interactive fitting strategy in which the Nelder and Mead simplex method is used in the {ital B}-spline control point space to guide the discovery of profiles that can produce given reflectivity data. Examples using actual and simulated spectra are discussed.
Surface deformation over flexible joints using spline blending techniques
NASA Astrophysics Data System (ADS)
Haavardsholm, Birgitte; Bratlie, Jostein; Dalmo, Rune
2014-12-01
Skinning over a skeleton joint is the process of skin deformation based on joint transformation. Popular geometric skinning techniques include implicit linear blending and dual quaternions. Generalized expo-rational B-splines (GERBS) is a blending type spline construction where local functions at each knot are blended by Ck-smooth basis functions. A smooth skinning surface can be constructed over a transformable skeleton joint by combining various types of local surface constructions and applying local Hermite interpolation. Compared to traditional spline methods, increased flexibility and local control with respect to surface deformation can be achieved using the GERBS blending construction. We present a method using a blending-type spline surface for skinning over a flexible joint, where local geometry is individually adapted to achieve natural skin deformation based on skeleton transformations..
NASA Astrophysics Data System (ADS)
Iliev, I. P.; Gocheva-Ilieva, S. G.
2013-02-01
Due to advancement in computing technology researchers are focusing onto novel predictive models and techniques for improving the design and performance of the devices. This study examines a recently developed high-powered SrBr2 laser excited in a nanosecond pulse longitudinal He-SrBr2 discharge. Based on the accumulated experiment data, a new approach is proposed for determining the relationship between laser output power and basic laser characteristics: geometric design, supplied electric power, helium pressure, etc. Piece-wise linear and nonlinear statistical models have been built with the help of the flexible predictive MARS technique. It is shown that the best nonlinear MARS model containing second degree terms provides the best description of the examined data, demonstrating a coefficient of determination of over 99%. The resulting theoretical models are used to estimate and predict the experiment as well as to analyze the local behavior of the relationships between laser output power and input laser characteristics. The second order model is applied to the design and optimization of the laser in order to enhance laser generation.
Technology Transfer Automated Retrieval System (TEKTRAN)
Prediction equations of energy expenditure (EE) using accelerometers and miniaturized heart rate (HR) monitors have been developed in older children and adults but not in preschool-aged children. Because the relationships between accelerometer counts (ACs), HR, and EE are confounded by growth and ma...
Mathematical research on spline functions
NASA Technical Reports Server (NTRS)
Horner, J. M.
1973-01-01
One approach in spline functions is to grossly estimate the integrand in J and exactly solve the resulting problem. If the integrand in J is approximated by Y" squared, the resulting problem lends itself to exact solution, the familiar cubic spline. Another approach is to investigate various approximations to the integrand in J and attempt to solve the resulting problems. The results are described.
NASA Astrophysics Data System (ADS)
Zheng, Zhihui; Gao, Lei; Xiao, Liping; Zhou, Bin; Gao, Shibo
2015-12-01
Our purpose is to develop a detection algorithm capable of searching for generic interest objects in real time without large training sets and long-time training stages. Instead of the classical sliding window object detection paradigm, we employ an objectness measure to produce a small set of candidate windows efficiently using Binarized Normed Gradients and a Laplacian of Gaussian-like filter. We then extract Locally Adaptive Regression Kernels (LARKs) as descriptors both from a model image and the candidate windows which measure the likeness of a pixel to its surroundings. Using a matrix cosine similarity measure, the algorithm yields a scalar resemblance map, indicating the likelihood of similarity between the model and the candidate windows. By employing nonparametric significance tests and non-maxima suppression, we detect the presence of objects similar to the given model. Experiments show that the proposed detection paradigm can automatically detect the presence, the number, as well as location of similar objects to the given model. The high quality and efficiency of our method make it suitable for real time multi-category object detection applications.
An adaptive regression mixture model for fMRI cluster analysis.
Oikonomou, Vangelis P; Blekas, Konstantinos
2013-04-01
Functional magnetic resonance imaging (fMRI) has become one of the most important techniques for studying the human brain in action. A common problem in fMRI analysis is the detection of activated brain regions in response to an experimental task. In this work we propose a novel clustering approach for addressing this issue using an adaptive regression mixture model. The main contribution of our method is the employment of both spatial and sparse properties over the body of the mixture model. Thus, the clustering approach is converted into a maximum a posteriori estimation approach, where the expectation-maximization algorithm is applied for model training. Special care is also given to estimate the kernel scalar parameter per cluster of the design matrix by presenting a multi-kernel scheme. In addition an incremental training procedure is presented so as to make the approach independent on the initialization of the model parameters. The latter also allows us to introduce an efficient stopping criterion of the process for determining the optimum brain activation area. To assess the effectiveness of our method, we have conducted experiments with simulated and real fMRI data, where we have demonstrated its ability to produce improved performance and functional activation detection capabilities. PMID:23047865
Theory, computation, and application of exponential splines
NASA Technical Reports Server (NTRS)
Mccartin, B. J.
1981-01-01
A generalization of the semiclassical cubic spline known in the literature as the exponential spline is discussed. In actuality, the exponential spline represents a continuum of interpolants ranging from the cubic spline to the linear spline. A particular member of this family is uniquely specified by the choice of certain tension parameters. The theoretical underpinnings of the exponential spline are outlined. This development roughly parallels the existing theory for cubic splines. The primary extension lies in the ability of the exponential spline to preserve convexity and monotonicity present in the data. Next, the numerical computation of the exponential spline is discussed. A variety of numerical devices are employed to produce a stable and robust algorithm. An algorithm for the selection of tension parameters that will produce a shape preserving approximant is developed. A sequence of selected curve-fitting examples are presented which clearly demonstrate the advantages of exponential splines over cubic splines.
NASA Astrophysics Data System (ADS)
Yang, Jianhong; Yi, Cancan; Xu, Jinwu; Ma, Xianghong
2015-05-01
A new LIBS quantitative analysis method based on analytical line adaptive selection and Relevance Vector Machine (RVM) regression model is proposed. First, a scheme of adaptively selecting analytical line is put forward in order to overcome the drawback of high dependency on a priori knowledge. The candidate analytical lines are automatically selected based on the built-in characteristics of spectral lines, such as spectral intensity, wavelength and width at half height. The analytical lines which will be used as input variables of regression model are determined adaptively according to the samples for both training and testing. Second, an LIBS quantitative analysis method based on RVM is presented. The intensities of analytical lines and the elemental concentrations of certified standard samples are used to train the RVM regression model. The predicted elemental concentration analysis results will be given with a form of confidence interval of probabilistic distribution, which is helpful for evaluating the uncertainness contained in the measured spectra. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples have been carried out. The multiple correlation coefficient of the prediction was up to 98.85%, and the average relative error of the prediction was 4.01%. The experiment results showed that the proposed LIBS quantitative analysis method achieved better prediction accuracy and better modeling robustness compared with the methods based on partial least squares regression, artificial neural network and standard support vector machine.
Aerodynamic influence coefficient method using singularity splines.
NASA Technical Reports Server (NTRS)
Mercer, J. E.; Weber, J. A.; Lesferd, E. P.
1973-01-01
A new numerical formulation with computed results, is presented. This formulation combines the adaptability to complex shapes offered by paneling schemes with the smoothness and accuracy of the loading function methods. The formulation employs a continuous distribution of singularity strength over a set of panels on a paneled wing. The basic distributions are independent, and each satisfies all of the continuity conditions required of the final solution. These distributions are overlapped both spanwise and chordwise (termed 'spline'). Boundary conditions are satisfied in a least square error sense over the surface using a finite summing technique to approximate the integral.
NASA Astrophysics Data System (ADS)
Ijima, Yusuke; Nose, Takashi; Tachibana, Makoto; Kobayashi, Takao
In this paper, we propose a rapid model adaptation technique for emotional speech recognition which enables us to extract paralinguistic information as well as linguistic information contained in speech signals. This technique is based on style estimation and style adaptation using a multiple-regression HMM (MRHMM). In the MRHMM, the mean parameters of the output probability density function are controlled by a low-dimensional parameter vector, called a style vector, which corresponds to a set of the explanatory variables of the multiple regression. The recognition process consists of two stages. In the first stage, the style vector that represents the emotional expression category and the intensity of its expressiveness for the input speech is estimated on a sentence-by-sentence basis. Next, the acoustic models are adapted using the estimated style vector, and then standard HMM-based speech recognition is performed in the second stage. We assess the performance of the proposed technique in the recognition of simulated emotional speech uttered by both professional narrators and non-professional speakers.
Adaptive multitrack reconstruction for particle trajectories based on fuzzy c-regression models
NASA Astrophysics Data System (ADS)
Niu, Li-Bo; Li, Yu-Lan; Huang, Meng; Fu, Jian-Qiang; He, Bin; Li, Yuan-Jing
2015-03-01
In this paper, an approach to straight and circle track reconstruction is presented, which is suitable for particle trajectories in an homogenous magnetic field (or 0 T) or Cherenkov rings. The method is based on fuzzy c-regression models, where the number of the models stands for the track number. The approximate number of tracks and a rough evaluation of the track parameters given by Hough transform are used to initiate the fuzzy c-regression models. The technique effectively represents a merger between track candidates finding and parameters fitting. The performance of this approach is tested by some simulated data under various scenarios. Results show that this technique is robust and could provide very accurate results efficiently. Supported by National Natural Science Foundation of China (11275109)
Aerodynamic influence coefficient method using singularity splines
NASA Technical Reports Server (NTRS)
Mercer, J. E.; Weber, J. A.; Lesferd, E. P.
1974-01-01
A numerical lifting surface formulation, including computed results for planar wing cases is presented. This formulation, referred to as the vortex spline scheme, combines the adaptability to complex shapes offered by paneling schemes with the smoothness and accuracy of loading function methods. The formulation employes a continuous distribution of singularity strength over a set of panels on a paneled wing. The basic distributions are independent, and each satisfied all the continuity conditions required of the final solution. These distributions are overlapped both spanwise and chordwise. Boundary conditions are satisfied in a least square error sense over the surface using a finite summing technique to approximate the integral. The current formulation uses the elementary horseshoe vortex as the basic singularity and is therefore restricted to linearized potential flow. As part of the study, a non planar development was considered, but the numerical evaluation of the lifting surface concept was restricted to planar configurations. Also, a second order sideslip analysis based on an asymptotic expansion was investigated using the singularity spline formulation.
A Nonlinear Adaptive Beamforming Algorithm Based on Least Squares Support Vector Regression
Wang, Lutao; Jin, Gang; Li, Zhengzhou; Xu, Hongbin
2012-01-01
To overcome the performance degradation in the presence of steering vector mismatches, strict restrictions on the number of available snapshots, and numerous interferences, a novel beamforming approach based on nonlinear least-square support vector regression machine (LS-SVR) is derived in this paper. In this approach, the conventional linearly constrained minimum variance cost function used by minimum variance distortionless response (MVDR) beamformer is replaced by a squared-loss function to increase robustness in complex scenarios and provide additional control over the sidelobe level. Gaussian kernels are also used to obtain better generalization capacity. This novel approach has two highlights, one is a recursive regression procedure to estimate the weight vectors on real-time, the other is a sparse model with novelty criterion to reduce the final size of the beamformer. The analysis and simulation tests show that the proposed approach offers better noise suppression capability and achieve near optimal signal-to-interference-and-noise ratio (SINR) with a low computational burden, as compared to other recently proposed robust beamforming techniques.
Spline interpolation on unbounded domains
NASA Astrophysics Data System (ADS)
Skeel, Robert D.
2016-06-01
Spline interpolation is a splendid tool for multiscale approximation on unbounded domains. In particular, it is well suited for use by the multilevel summation method (MSM) for calculating a sum of pairwise interactions for a large set of particles in linear time. Outlined here is an algorithm for spline interpolation on unbounded domains that is efficient and elegant though not so simple. Further gains in efficiency are possible via quasi-interpolation, which compromises collocation but with minimal loss of accuracy. The MSM, which may also be of value for continuum models, embodies most of the best features of both hierarchical clustering methods (tree methods, fast multipole methods, hierarchical matrix methods) and FFT-based 2-level methods (particle-particle particle-mesh methods, particle-mesh Ewald methods).
Spline screw multiple rotations mechanism
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
1993-01-01
A system for coupling two bodies together and for transmitting torque from one body to another with mechanical timing and sequencing is reported. The mechanical timing and sequencing is handled so that the following criteria are met: (1) the bodies are handled in a safe manner and nothing floats loose in space, (2) electrical connectors are engaged as long as possible so that the internal processes can be monitored throughout by sensors, and (3) electrical and mechanical power and signals are coupled. The first body has a splined driver for providing the input torque. The second body has a threaded drive member capable of rotation and limited translation. The embedded drive member will mate with and fasten to the splined driver. The second body has an embedded bevel gear member capable of rotation and limited translation. This bevel gear member is coaxial with the threaded drive member. A compression spring provides a preload on the rotating threaded member, and a thrust bearing is used for limiting the translation of the bevel gear member so that when the bevel gear member reaches the upward limit of its translation the two bodies are fully coupled and the bevel gear member then rotates due to the input torque transmitted from the splined driver through the threaded drive member to the bevel gear member. An output bevel gear with an attached output drive shaft is embedded in the second body and meshes with the threaded rotating bevel gear member to transmit the input torque to the output drive shaft.
Spline screw multiple rotations mechanism
NASA Astrophysics Data System (ADS)
Vranish, John M.
1993-12-01
A system for coupling two bodies together and for transmitting torque from one body to another with mechanical timing and sequencing is reported. The mechanical timing and sequencing is handled so that the following criteria are met: (1) the bodies are handled in a safe manner and nothing floats loose in space, (2) electrical connectors are engaged as long as possible so that the internal processes can be monitored throughout by sensors, and (3) electrical and mechanical power and signals are coupled. The first body has a splined driver for providing the input torque. The second body has a threaded drive member capable of rotation and limited translation. The embedded drive member will mate with and fasten to the splined driver. The second body has an embedded bevel gear member capable of rotation and limited translation. This bevel gear member is coaxial with the threaded drive member. A compression spring provides a preload on the rotating threaded member, and a thrust bearing is used for limiting the translation of the bevel gear member so that when the bevel gear member reaches the upward limit of its translation the two bodies are fully coupled and the bevel gear member then rotates due to the input torque transmitted from the splined driver through the threaded drive member to the bevel gear member. An output bevel gear with an attached output drive shaft is embedded in the second body and meshes with the threaded rotating bevel gear member to transmit the input torque to the output drive shaft.
Zhang, Yan-jun; Liu, Wen-zhe; Fu, Xing-hu; Bi, Wei-hong
2015-10-01
According to the high precision extracting characteristics of scattering spectrum in Brillouin optical time domain reflection optical fiber sensing system, this paper proposes a new algorithm based on flies optimization algorithm with adaptive mutation and generalized regression neural network. The method takes advantages of the generalized regression neural network which has the ability of the approximation ability, learning speed and generalization of the model. Moreover, by using the strong search ability of flies optimization algorithm with adaptive mutation, it can enhance the learning ability of the neural network. Thus the fitting degree of Brillouin scattering spectrum and the extraction accuracy of frequency shift is improved. Model of actual Brillouin spectrum are constructed by Gaussian white noise on theoretical spectrum, whose center frequency is 11.213 GHz and the linewidths are 40-50, 30-60 and 20-70 MHz, respectively. Comparing the algorithm with the Levenberg-Marquardt fitting method based on finite element analysis, hybrid algorithm particle swarm optimization, Levenberg-Marquardt and the least square method, the maximum frequency shift error of the new algorithm is 0.4 MHz, the fitting degree is 0.991 2 and the root mean square error is 0.024 1. The simulation results show that the proposed algorithm has good fitting degree and minimum absolute error. Therefore, the algorithm can be used on distributed optical fiber sensing system based on Brillouin optical time domain reflection, which can improve the fitting of Brillouin scattering spectrum and the precision of frequency shift extraction effectively. PMID:26904844
NASA Astrophysics Data System (ADS)
Liu, Jiaqi; Han, Jing; Zhang, Yi; Bai, Lianfa
2015-10-01
Locally adaptive regression kernels model can describe the edge shape of images accurately and graphic trend of images integrally, but it did not consider images' color information while the color is an important element of an image. Therefore, we present a novel method of target recognition based on 3-D-color-space locally adaptive regression kernels model. Different from the general additional color information, this method directly calculate the local similarity features of 3-D data from the color image. The proposed method uses a few examples of an object as a query to detect generic objects with incompact, complex and changeable shapes. Our method involves three phases: First, calculating the novel color-space descriptors from the RGB color space of query image which measure the likeness of a voxel to its surroundings. Salient features which include spatial- dimensional and color -dimensional information are extracted from said descriptors, and simplifying them to construct a non-similar local structure feature set of the object class by principal components analysis (PCA). Second, we compare the salient features with analogous features from the target image. This comparison is done using a matrix generalization of the cosine similarity measure. Then the similar structures in the target image are obtained using local similarity structure statistical matching. Finally, we use the method of non-maxima suppression in the similarity image to extract the object position and mark the object in the test image. Experimental results demonstrate that our approach is effective and accurate in improving the ability to identify targets.
Stochastic dynamic models and Chebyshev splines
Fan, Ruzong; Zhu, Bin; Wang, Yuedong
2015-01-01
In this article, we establish a connection between a stochastic dynamic model (SDM) driven by a linear stochastic differential equation (SDE) and a Chebyshev spline, which enables researchers to borrow strength across fields both theoretically and numerically. We construct a differential operator for the penalty function and develop a reproducing kernel Hilbert space (RKHS) induced by the SDM and the Chebyshev spline. The general form of the linear SDE allows us to extend the well-known connection between an integrated Brownian motion and a polynomial spline to a connection between more complex diffusion processes and Chebyshev splines. One interesting special case is connection between an integrated Ornstein–Uhlenbeck process and an exponential spline. We use two real data sets to illustrate the integrated Ornstein–Uhlenbeck process model and exponential spline model and show their estimates are almost identical. PMID:26045632
Borowsky, Richard
2013-01-01
The forces driving the evolutionary loss or simplification of traits such as vision and pigmentation in cave animals are still debated. Three alternative hypotheses are direct selection against the trait, genetic drift, and indirect selection due to antagonistic pleiotropy. Recent work establishes that Astyanax cavefish exhibit vibration attraction behavior (VAB), a presumed behavioral adaptation to finding food in the dark not exhibited by surface fish. Genetic analysis revealed two regions in the genome with quantitative trait loci (QTL) for both VAB and eye size. These observations were interpreted as genetic evidence that selection for VAB indirectly drove eye regression through antagonistic pleiotropy and, further, that this is a general mechanism to account for regressive evolution. These conclusions are unsupported by the data; the analysis fails to establish pleiotropy and ignores the numerous other QTL that map to, and potentially interact, in the same regions. It is likely that all three forces drive evolutionary change. We will be able to distinguish among them in individual cases only when we have identified the causative alleles and characterized their effects. PMID:23844714
Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations
NASA Astrophysics Data System (ADS)
Buffa, A.; Sangalli, G.; Vázquez, R.
2014-01-01
In this paper we introduce methods for electromagnetic wave propagation, based on splines and on T-splines. We define spline spaces which form a De Rham complex and following the isogeometric paradigm, we map them on domains which are (piecewise) spline or NURBS geometries. We analyze their geometric and topological structure, as related to the connectivity of the underlying mesh, and we present degrees of freedom together with their physical interpretation. The theory is then extended to the case of meshes with T-junctions, leveraging on the recent theory of T-splines. The use of T-splines enhance our spline methods with local refinement capability and numerical tests show the efficiency and the accuracy of the techniques we propose.
Radial spline assembly for antifriction bearings
NASA Technical Reports Server (NTRS)
Moore, Jerry H. (Inventor)
1993-01-01
An outer race carrier is constructed for receiving an outer race of an antifriction bearing assembly. The carrier in turn is slidably fitted in an opening of a support wall to accommodate slight axial movements of a shaft. A plurality of longitudinal splines on the carrier are disposed to be fitted into matching slots in the opening. A deadband gap is provided between sides of the splines and slots, with a radial gap at ends of the splines and slots and a gap between the splines and slots sized larger than the deadband gap. With this construction, operational distortions (slope) of the support wall are accommodated by the larger radial gaps while the deadband gaps maintain a relatively high springrate of the housing. Additionally, side loads applied to the shaft are distributed between sides of the splines and slots, distributing such loads over a larger surface area than a race carrier of the prior art.
B-spline Method in Fluid Dynamics
NASA Technical Reports Server (NTRS)
Botella, Olivier; Shariff, Karim; Mansour, Nagi N. (Technical Monitor)
2001-01-01
B-spline functions are bases for piecewise polynomials that possess attractive properties for complex flow simulations : they have compact support, provide a straightforward handling of boundary conditions and grid nonuniformities, and yield numerical schemes with high resolving power, where the order of accuracy is a mere input parameter. This paper reviews the progress made on the development and application of B-spline numerical methods to computational fluid dynamics problems. Basic B-spline approximation properties is investigated, and their relationship with conventional numerical methods is reviewed. Some fundamental developments towards efficient complex geometry spline methods are covered, such as local interpolation methods, fast solution algorithms on cartesian grid, non-conformal block-structured discretization, formulation of spline bases of higher continuity over triangulation, and treatment of pressure oscillations in Navier-Stokes equations. Application of some of these techniques to the computation of viscous incompressible flows is presented.
Stable Local Volatility Calibration Using Kernel Splines
NASA Astrophysics Data System (ADS)
Coleman, Thomas F.; Li, Yuying; Wang, Cheng
2010-09-01
We propose an optimization formulation using L1 norm to ensure accuracy and stability in calibrating a local volatility function for option pricing. Using a regularization parameter, the proposed objective function balances the calibration accuracy with the model complexity. Motivated by the support vector machine learning, the unknown local volatility function is represented by a kernel function generating splines and the model complexity is controlled by minimizing the 1-norm of the kernel coefficient vector. In the context of the support vector regression for function estimation based on a finite set of observations, this corresponds to minimizing the number of support vectors for predictability. We illustrate the ability of the proposed approach to reconstruct the local volatility function in a synthetic market. In addition, based on S&P 500 market index option data, we demonstrate that the calibrated local volatility surface is simple and resembles the observed implied volatility surface in shape. Stability is illustrated by calibrating local volatility functions using market option data from different dates.
Semiparametric regression during 2003–2007*
Ruppert, David; Wand, M.P.; Carroll, Raymond J.
2010-01-01
Semiparametric regression is a fusion between parametric regression and nonparametric regression that integrates low-rank penalized splines, mixed model and hierarchical Bayesian methodology – thus allowing more streamlined handling of longitudinal and spatial correlation. We review progress in the field over the five-year period between 2003 and 2007. We find semiparametric regression to be a vibrant field with substantial involvement and activity, continual enhancement and widespread application. PMID:20305800
Number systems, α-splines and refinement
NASA Astrophysics Data System (ADS)
Zube, Severinas
2004-12-01
This paper is concerned with the smooth refinable function on a plane relative with complex scaling factor . Characteristic functions of certain self-affine tiles related to a given scaling factor are the simplest examples of such refinable function. We study the smooth refinable functions obtained by a convolution power of such charactericstic functions. Dahlke, Dahmen, and Latour obtained some explicit estimates for the smoothness of the resulting convolution products. In the case α=1+i, we prove better results. We introduce α-splines in two variables which are the linear combination of shifted basic functions. We derive basic properties of α-splines and proceed with a detailed presentation of refinement methods. We illustrate the application of α-splines to subdivision with several examples. It turns out that α-splines produce well-known subdivision algorithms which are based on box splines: Doo-Sabin, Catmull-Clark, Loop, Midedge and some -subdivision schemes with good continuity. The main geometric ingredient in the definition of α-splines is the fundamental domain (a fractal set or a self-affine tile). The properties of the fractal obtained in number theory are important and necessary in order to determine two basic properties of α-splines: partition of unity and the refinement equation.
NASA Astrophysics Data System (ADS)
Fatah, Abd.; Rozaimi
2015-12-01
In this paper, we will discuss about the construction of fuzzy tuning B-spline curve based on fuzzy set theory. The concept of fuzzy tuning in designing this B-spline curve is based on the uncertain knots values which has to be defined first and then the result will be blended together with B-spline function which exists in users presumption in deciding the best knots value of tuning. Therefore, fuzzy set theory especially fuzzy number concepts are used to define the uncertain knots values and then it will be become fuzzy knots values. The Result by using different values of fuzzy knots for constructing a fuzzy tuning of B-spline curves will be illustrated.
An algorithm for natural spline interpolation
NASA Astrophysics Data System (ADS)
Traversoni, Leonardo
1993-01-01
Based on the work of Robin Sibson concerning Natural Neighbor Interpolant, this paper is devoted to incorporate this concept in Spline theory. To do this, first a new concept, the "Covering Spheres", is presented, which is then linked with Sibson's interpolant. Finally, the interpolant is reformulated to present it as a Bernstein polynomial in local coordinates instead of the usual presentation as rational quartics. As a corollary, the whole idea is presented as modified Vertex Splines.
Multivariate spline methods in surface fitting
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr. (Principal Investigator); Schumaker, L. L.
1984-01-01
The use of spline functions in the development of classification algorithms is examined. In particular, a method is formulated for producing spline approximations to bivariate density functions where the density function is decribed by a histogram of measurements. The resulting approximations are then incorporated into a Bayesiaan classification procedure for which the Bayes decision regions and the probability of misclassification is readily computed. Some preliminary numerical results are presented to illustrate the method.
Smoothing two-dimensional Malaysian mortality data using P-splines indexed by age and year
NASA Astrophysics Data System (ADS)
Kamaruddin, Halim Shukri; Ismail, Noriszura
2014-06-01
Nonparametric regression implements data to derive the best coefficient of a model from a large class of flexible functions. Eilers and Marx (1996) introduced P-splines as a method of smoothing in generalized linear models, GLMs, in which the ordinary B-splines with a difference roughness penalty on coefficients is being used in a single dimensional mortality data. Modeling and forecasting mortality rate is a problem of fundamental importance in insurance company calculation in which accuracy of models and forecasts are the main concern of the industry. The original idea of P-splines is extended to two dimensional mortality data. The data indexed by age of death and year of death, in which the large set of data will be supplied by Department of Statistics Malaysia. The extension of this idea constructs the best fitted surface and provides sensible prediction of the underlying mortality rate in Malaysia mortality case.
NASA Astrophysics Data System (ADS)
Samhouri, M.; Al-Ghandoor, A.; Fouad, R. H.
2009-08-01
In this study two techniques, for modeling electricity consumption of the Jordanian industrial sector, are presented: (i) multivariate linear regression and (ii) neuro-fuzzy models. Electricity consumption is modeled as function of different variables such as number of establishments, number of employees, electricity tariff, prevailing fuel prices, production outputs, capacity utilizations, and structural effects. It was found that industrial production and capacity utilization are the most important variables that have significant effect on future electrical power demand. The results showed that both the multivariate linear regression and neuro-fuzzy models are generally comparable and can be used adequately to simulate industrial electricity consumption. However, comparison that is based on the square root average squared error of data suggests that the neuro-fuzzy model performs slightly better for future prediction of electricity consumption than the multivariate linear regression model. Such results are in full agreement with similar work, using different methods, for other countries.
A smoothing algorithm using cubic spline functions
NASA Technical Reports Server (NTRS)
Smith, R. E., Jr.; Price, J. M.; Howser, L. M.
1974-01-01
Two algorithms are presented for smoothing arbitrary sets of data. They are the explicit variable algorithm and the parametric variable algorithm. The former would be used where large gradients are not encountered because of the smaller amount of calculation required. The latter would be used if the data being smoothed were double valued or experienced large gradients. Both algorithms use a least-squares technique to obtain a cubic spline fit to the data. The advantage of the spline fit is that the first and second derivatives are continuous. This method is best used in an interactive graphics environment so that the junction values for the spline curve can be manipulated to improve the fit.
Adaptivity Assessment of Regional Semi-Parametric VTEC Modeling to Different Data Distributions
NASA Astrophysics Data System (ADS)
Durmaz, Murat; Onur Karslıoǧlu, Mahmut
2014-05-01
Semi-parametric modelling of Vertical Total Electron Content (VTEC) combines parametric and non-parametric models into a single regression model for estimating the parameters and functions from Global Positioning System (GPS) observations. The parametric part is related to the Differential Code Biases (DCBs), which are fixed unknown parameters of the geometry-free linear combination (or the so called ionospheric observable). On the other hand, the non-parametric component is referred to the spatio-temporal distribution of VTEC which is estimated by applying the method of Multivariate Adaptive Regression B-Splines (BMARS). BMARS algorithm builds an adaptive model by using tensor product of univariate B-splines that are derived from the data. The algorithm searches for best fitting B-spline basis functions in a scale by scale strategy, where it starts adding large scale B-splines to the model and adaptively decreases the scale for including smaller scale features through a modified Gram-Schmidt ortho-normalization process. Then, the algorithm is extended to include the receiver DCBs where the estimates of the receiver DCBs and the spatio-temporal VTEC distribution can be obtained together in an adaptive semi-parametric model. In this work, the adaptivity of regional semi-parametric modelling of VTEC based on BMARS is assessed in different ground-station and data distribution scenarios. To evaluate the level of adaptivity the resulting DCBs and VTEC maps from different scenarios are compared not only with each other but also with CODE distributed GIMs and DCB estimates .
Spline-Screw Multiple-Rotation Mechanism
NASA Technical Reports Server (NTRS)
Vranish, John M.
1994-01-01
Mechanism functions like combined robotic gripper and nut runner. Spline-screw multiple-rotation mechanism related to spline-screw payload-fastening system described in (GSC-13454). Incorporated as subsystem in alternative version of system. Mechanism functions like combination of robotic gripper and nut runner; provides both secure grip and rotary actuation of other parts of system. Used in system in which no need to make or break electrical connections to payload during robotic installation or removal of payload. More complicated version needed to make and break electrical connections. Mechanism mounted in payload.
General spline filters for discontinuous Galerkin solutions
Peters, Jörg
2015-01-01
The discontinuous Galerkin (dG) method outputs a sequence of polynomial pieces. Post-processing the sequence by Smoothness-Increasing Accuracy-Conserving (SIAC) convolution not only increases the smoothness of the sequence but can also improve its accuracy and yield superconvergence. SIAC convolution is considered optimal if the SIAC kernels, in the form of a linear combination of B-splines of degree d, reproduce polynomials of degree 2d. This paper derives simple formulas for computing the optimal SIAC spline coefficients for the general case including non-uniform knots. PMID:26594090
NASA Astrophysics Data System (ADS)
Chardon, Jérémy; Hingray, Benoit; Favre, Anne-Catherine
2016-04-01
Scenarios of surface weather required for the impact studies have to be unbiased and adapted to the space and time scales of the considered hydro-systems. Hence, surface weather scenarios obtained from global climate models and/or numerical weather prediction models are not really appropriated. Outputs of these models have to be post-processed, which is often carried out thanks to Statistical Downscaling Methods (SDMs). Among those SDMs, approaches based on regression are often applied. For a given station, a regression link can be established between a set of large scale atmospheric predictors and the surface weather variable. These links are then used for the prediction of the latter. However, physical processes generating surface weather vary in time. This is well known for precipitation for instance. The most relevant predictors and the regression link are also likely to vary in time. A better prediction skill is thus classically obtained with a seasonal stratification of the data. Another strategy is to identify the most relevant predictor set and establish the regression link from dates that are similar - or analog - to the target date. In practice, these dates can be selected thanks to an analog model. In this study, we explore the possibility of improving the local performance of an analog model - where the analogy is applied to the geopotential heights 1000 and 500 hPa - using additional local scale predictors for the probabilistic prediction of the Safran precipitation over France. For each prediction day, the prediction is obtained from two GLM regression models - for both the occurrence and the quantity of precipitation - for which predictors and parameters are estimated from the analog dates. Firstly, the resulting combined model noticeably allows increasing the prediction performance by adapting the downscaling link for each prediction day. Secondly, the selected predictors for a given prediction depend on the large scale situation and on the
Schwarz and multilevel methods for quadratic spline collocation
Christara, C.C.; Smith, B.
1994-12-31
Smooth spline collocation methods offer an alternative to Galerkin finite element methods, as well as to Hermite spline collocation methods, for the solution of linear elliptic Partial Differential Equations (PDEs). Recently, optimal order of convergence spline collocation methods have been developed for certain degree splines. Convergence proofs for smooth spline collocation methods are generally more difficult than for Galerkin finite elements or Hermite spline collocation, and they require stronger assumptions and more restrictions. However, numerical tests indicate that spline collocation methods are applicable to a wider class of problems, than the analysis requires, and are very competitive to finite element methods, with respect to efficiency. The authors will discuss Schwarz and multilevel methods for the solution of elliptic PDEs using quadratic spline collocation, and compare these with domain decomposition methods using substructuring. Numerical tests on a variety of parallel machines will also be presented. In addition, preliminary convergence analysis using Schwarz and/or maximum principle techniques will be presented.
Oubida, Regis W.; Gantulga, Dashzeveg; Zhang, Man; Zhou, Lecong; Bawa, Rajesh; Holliday, Jason A.
2015-01-01
Local adaptation to climate in temperate forest trees involves the integration of multiple physiological, morphological, and phenological traits. Latitudinal clines are frequently observed for these traits, but environmental constraints also track longitude and altitude. We combined extensive phenotyping of 12 candidate adaptive traits, multivariate regression trees, quantitative genetics, and a genome-wide panel of SNP markers to better understand the interplay among geography, climate, and adaptation to abiotic factors in Populus trichocarpa. Heritabilities were low to moderate (0.13–0.32) and population differentiation for many traits exceeded the 99th percentile of the genome-wide distribution of FST, suggesting local adaptation. When climate variables were taken as predictors and the 12 traits as response variables in a multivariate regression tree analysis, evapotranspiration (Eref) explained the most variation, with subsequent splits related to mean temperature of the warmest month, frost-free period (FFP), and mean annual precipitation (MAP). These grouping matched relatively well the splits using geographic variables as predictors: the northernmost groups (short FFP and low Eref) had the lowest growth, and lowest cold injury index; the southern British Columbia group (low Eref and intermediate temperatures) had average growth and cold injury index; the group from the coast of California and Oregon (high Eref and FFP) had the highest growth performance and the highest cold injury index; and the southernmost, high-altitude group (with high Eref and low FFP) performed poorly, had high cold injury index, and lower water use efficiency. Taken together, these results suggest variation in both temperature and water availability across the range shape multivariate adaptive traits in poplar. PMID:25870603
Shaft Coupler With Friction and Spline Clutches
NASA Technical Reports Server (NTRS)
Thebert, Glenn W.
1987-01-01
Coupling, developed for rotor of lift/cruise aircraft, employs two clutches for smooth transmission of power from gas-turbine engine to rotor. Prior to ascent, coupling applies friction-type transition clutch that accelerates rotor shaft to speeds matching those of engine shaft. Once shafts synchronized, spline coupling engaged and friction clutch released to provide positive mechanical drive.
Spline smoothing of histograms by linear programming
NASA Technical Reports Server (NTRS)
Bennett, J. O.
1972-01-01
An algorithm for an approximating function to the frequency distribution is obtained from a sample of size n. To obtain the approximating function a histogram is made from the data. Next, Euclidean space approximations to the graph of the histogram using central B-splines as basis elements are obtained by linear programming. The approximating function has area one and is nonnegative.
An algorithm for surface smoothing with rational splines
NASA Technical Reports Server (NTRS)
Schiess, James R.
1987-01-01
Discussed is an algorithm for smoothing surfaces with spline functions containing tension parameters. The bivariate spline functions used are tensor products of univariate rational-spline functions. A distinct tension parameter corresponds to each rectangular strip defined by a pair of consecutive spline knots along either axis. Equations are derived for writing the bivariate rational spline in terms of functions and derivatives at the knots. Estimates of these values are obtained via weighted least squares subject to continuity constraints at the knots. The algorithm is illustrated on a set of terrain elevation data.
Time-Warped Geodesic Regression
Hong, Yi; Singh, Nikhil; Kwitt, Roland; Niethammer, Marc
2016-01-01
We consider geodesic regression with parametric time-warps. This allows, for example, to capture saturation effects as typically observed during brain development or degeneration. While highly-flexible models to analyze time-varying image and shape data based on generalizations of splines and polynomials have been proposed recently, they come at the cost of substantially more complex inference. Our focus in this paper is therefore to keep the model and its inference as simple as possible while allowing to capture expected biological variation. We demonstrate that by augmenting geodesic regression with parametric time-warp functions, we can achieve comparable flexibility to more complex models while retaining model simplicity. In addition, the time-warp parameters provide useful information of underlying anatomical changes as demonstrated for the analysis of corpora callosa and rat calvariae. We exemplify our strategy for shape regression on the Grassmann manifold, but note that the method is generally applicable for time-warped geodesic regression. PMID:25485368
Geha, Makram J.; Keown, Jeffrey F.; Van Vleck, L. Dale
2011-01-01
Milk yield records (305d, 2X, actual milk yield) of 123,639 registered first lactation Holstein cows were used to compare linear regression (y = β0 + β1X + e), quadratic regression, (y = β0 + β1X + β2X2 + e) cubic regression (y = β0 + β1X + β2X2 + β3X3 +e) and fixed factor models, with cubic-spline interpolation models, for estimating the effects of inbreeding on milk yield. Ten animal models, all with herd-year-season of calving as fixed effect, were compared using the Akaike corrected-Information Criterion (AICc). The cubic-spline interpolation model with seven knots had the lowest AICc, whereas for all those labeled as “traditional”, AICc was higher than the best model. Results from fitting inbreeding using a cubic-spline with seven knots were compared to results from fitting inbreeding as a linear covariate or as a fixed factor with seven levels. Estimates of inbreeding effects were not significantly different between the cubic-spline model and the fixed factor model, but were significantly different from the linear regression model. Milk yield decreased significantly at inbreeding levels greater than 9%. Variance component estimates were similar for the three models. Ranking of the top 100 sires with daughter records remained unaffected by the model used. PMID:21931517
Pierson, Jeffery L; Small, Scott R; Rodriguez, Jose A; Kang, Michael N; Glassman, Andrew H
2015-07-01
Design parameters affecting initial mechanical stability of tapered, splined modular titanium stems (TSMTSs) are not well understood. Furthermore, there is considerable variability in contemporary designs. We asked if spline geometry and stem taper angle could be optimized in TSMTS to improve mechanical stability to resist axial subsidence and increase torsional stability. Initial stability was quantified with stems of varied taper angle and spline geometry implanted in a foam model replicating 2cm diaphyseal engagement. Increased taper angle and a broad spline geometry exhibited significantly greater axial stability (+21%-269%) than other design combinations. Neither taper angle nor spline geometry significantly altered initial torsional stability. PMID:25754255
NASA Astrophysics Data System (ADS)
Thomas, D. C.; Scott, M. A.; Evans, J. A.; Tew, K.; Evans, E. J.
2015-02-01
We introduce B\\'{e}zier projection as an element-based local projection methodology for B-splines, NURBS, and T-splines. This new approach relies on the concept of B\\'{e}zier extraction and an associated operation introduced here, spline reconstruction, enabling the use of B\\'{e}zier projection in standard finite element codes. B\\'{e}zier projection exhibits provably optimal convergence and yields projections that are virtually indistinguishable from global $L^2$ projection. B\\'{e}zier projection is used to develop a unified framework for spline operations including cell subdivision and merging, degree elevation and reduction, basis roughening and smoothing, and spline reparameterization. In fact, B\\'{e}zier projection provides a \\emph{quadrature-free} approach to refinement and coarsening of splines. In this sense, B\\'{e}zier projection provides the fundamental building block for $hpkr$-adaptivity in isogeometric analysis.
NASA Astrophysics Data System (ADS)
Peeters, J.; Arroud, G.; Ribbens, B.; Dirckx, J. J. J.; Steenackers, G.
2015-12-01
In non-destructive evaluation the use of finite element models to evaluate structural behavior and experimental setup optimization can complement with the inspector's experience. A new adaptive response surface methodology, especially adapted for thermal problems, is used to update the experimental setup parameters in a finite element model to the state of the test sample measured by pulsed thermography. Poly Vinyl Chloride (PVC) test samples are used to examine the results for thermal insulator models. A comparison of the achieved results is made by changing the target values from experimental pulsed thermography data to a fixed validation model. Several optimizers are compared and discussed with the focus on speed and accuracy. A time efficiency increase of over 20 and an accuracy of over 99.5% are achieved by the choice of the correct parameter sets and optimizer. Proper parameter set selection criteria are defined and the influence of the choice of the optimization algorithm and parameter set on the accuracy and convergence time are investigated.
Spline-Screw Payload-Fastening System
NASA Technical Reports Server (NTRS)
Vranish, John M.
1994-01-01
Payload handed off securely between robot and vehicle or structure. Spline-screw payload-fastening system includes mating female and male connector mechanisms. Clockwise (or counter-clockwise) rotation of splined male driver on robotic end effector causes connection between robot and payload to tighten (or loosen) and simultaneously causes connection between payload and structure to loosen (or tighten). Includes mechanisms like those described in "Tool-Changing Mechanism for Robot" (GSC-13435) and "Self-Aligning Mechanical and Electrical Coupling" (GSC-13430). Designed for use in outer space, also useful on Earth in applications needed for secure handling and secure mounting of equipment modules during storage, transport, and/or operation. Particularly useful in machine or robotic applications.
The basis spline method and associated techniques
Bottcher, C.; Strayer, M.R.
1989-01-01
We outline the Basis Spline and Collocation methods for the solution of Partial Differential Equations. Particular attention is paid to the theory of errors, and the handling of non-self-adjoint problems which are generated by the collocation method. We discuss applications to Poisson's equation, the Dirac equation, and the calculation of bound and continuum states of atomic and nuclear systems. 12 refs., 6 figs.
Parameter Choices for Approximation by Harmonic Splines
NASA Astrophysics Data System (ADS)
Gutting, Martin
2016-04-01
The approximation by harmonic trial functions allows the construction of the solution of boundary value problems in geoscience, e.g., in terms of harmonic splines. Due to their localizing properties regional modeling or the improvement of a global model in a part of the Earth's surface is possible with splines. Fast multipole methods have been developed for some cases of the occurring kernels to obtain a fast matrix-vector multiplication. The main idea of the fast multipole algorithm consists of a hierarchical decomposition of the computational domain into cubes and a kernel approximation for the more distant points. This reduces the numerical effort of the matrix-vector multiplication from quadratic to linear in reference to the number of points for a prescribed accuracy of the kernel approximation. The application of the fast multipole method to spline approximation which also allows the treatment of noisy data requires the choice of a smoothing parameter. We investigate different methods to (ideally automatically) choose this parameter with and without prior knowledge of the noise level. Thereby, the performance of these methods is considered for different types of noise in a large simulation study. Applications to gravitational field modeling are presented as well as the extension to boundary value problems where the boundary is the known surface of the Earth itself.
A natural spline interpolation and exponential parameterization
NASA Astrophysics Data System (ADS)
Kozera, R.; Wilkołazka, M.
2016-06-01
We consider here a natural spline interpolation based on reduced data and the so-called exponential parameterization (depending on parameter λ ∈ [0, 1]). In particular, the latter is studied in the context of the trajectory approximation in arbitrary euclidean space. The term reduced data refers to an ordered collection of interpolation points without provision of the corresponding knots. The numerical verification of the intrinsic asymptotics α(λ) in γ approximation by natural spline γ^3'N is conducted here for regular and sufficiently smooth curve γ sampled more-or-less uniformly. We select in this paper the substitutes for the missing knots according to the exponential parameterization. The outcomes of the numerical tests manifest sharp linear convergence orders α(λ) = 1, for all λ ∈ [0, 1). In addition, the latter results in unexpected left-hand side dis-continuity at λ = 1, since as shown again here a sharp quadratic order α(1) = 2 prevails. Remarkably, the case of α(1)=2 (derived for reduced data) coincides with the well-known asymptotics established for a natural spline to fit non-reduced data determined by the sequence of interpolation points supplemented with the corresponding knots (see e.g. [1]).
Quantitative analysis of dynamic contrast-enhanced MR images based on Bayesian P-splines.
Schmid, Volker J; Whitcher, Brandon; Padhani, Anwar R; Yang, Guang-Zhong
2009-06-01
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is an important tool for detecting subtle kinetic changes in cancerous tissue. Quantitative analysis of DCE-MRI typically involves the convolution of an arterial input function (AIF) with a nonlinear pharmacokinetic model of the contrast agent concentration. Parameters of the kinetic model are biologically meaningful, but the optimization of the nonlinear model has significant computational issues. In practice, convergence of the optimization algorithm is not guaranteed and the accuracy of the model fitting may be compromised. To overcome these problems, this paper proposes a semi-parametric penalized spline smoothing approach, where the AIF is convolved with a set of B-splines to produce a design matrix using locally adaptive smoothing parameters based on Bayesian penalized spline models (P-splines). It has been shown that kinetic parameter estimation can be obtained from the resulting deconvolved response function, which also includes the onset of contrast enhancement. Detailed validation of the method, both with simulated and in vivo data, is provided. PMID:19272996
Yoshizawa, Masato; O'Quin, Kelly E; Jeffery, William R
2013-01-01
Vibration attraction behavior (VAB) is the swimming of fish toward an oscillating object, a behavior that is likely adaptive because it increases foraging efficiency in darkness. VAB is seen in a small proportion of Astyanax surface-dwelling populations (surface fish) but is pronounced in cave-dwelling populations (cavefish). In a recent study, we identified two quantitative trait loci for VAB on Astyanax linkage groups 2 and 17. We also demonstrated that a small population of superficial neuromast sensors located within the eye orbit (EO SN) facilitate VAB, and two quantitative trait loci (QTL) were identified for EO SN that were congruent with those for VAB. Finally, we showed that both VAB and EO SN are negatively correlated with eye size, and that two (of several) QTL for eye size overlap VAB and EO SN QTLs. From these results, we concluded that the adaptive evolution of VAB and EO SN has contributed to the indirect loss of eyes in cavefish, either as a result of pleiotropy or tight physical linkage of the mutations underlying these traits. In a subsequent commentary, Borowsky argues that there is poor experimental support for our conclusions. Specifically, Borowsky states that: (1) linkage groups (LGs) 2 and 17 harbor QTL for many traits and, therefore, no evidence exists for an exclusive interaction among the overlapping VAB, EO SN and eye size QTL; (2) some of the QTL we identified are too broad (>20 cM) to support the hypothesis of correlated evolution due to pleiotropy or hitchhiking; and (3) VAB is unnecessary to explain the indirect evolution of eye-loss since the negative polarity of numerous eye QTL is consistent with direct selection against eyes. Borowsky further argues that (4) it is difficult to envision an evolutionary scenario whereby VAB and EO SN drive eye loss, since the eyes must first be reduced in order to increase the number of EO SN and, therefore, VAB. In this response, we explain why the evidence of one trait influencing eye reduction
Development and flight tests of vortex-attenuating splines
NASA Technical Reports Server (NTRS)
Hastings, E. C., Jr.; Patterson, J. C., Jr.; Shanks, R. E.; Champine, R. A.; Copeland, W. L.; Young, D. C.
1975-01-01
The ground tests and full-scale flight tests conducted during development of the vortex-attenuating spline are described. The flight tests were conducted using a vortex generating aircraft with and without splines; a second aircraft was used to probe the vortices generated in both cases. The results showed that splines significantly reduced the vortex effects, but resulted in some noise and climb performance penalties on the generating aircraft.
Higher-order numerical solutions using cubic splines
NASA Technical Reports Server (NTRS)
Rubin, S. G.; Khosla, P. K.
1976-01-01
A cubic spline collocation procedure was developed for the numerical solution of partial differential equations. This spline procedure is reformulated so that the accuracy of the second-derivative approximation is improved and parallels that previously obtained for lower derivative terms. The final result is a numerical procedure having overall third-order accuracy of a nonuniform mesh. Solutions using both spline procedures, as well as three-point finite difference methods, are presented for several model problems.
On the spline-based wavelet differentiation matrix
NASA Technical Reports Server (NTRS)
Jameson, Leland
1993-01-01
The differentiation matrix for a spline-based wavelet basis is constructed. Given an n-th order spline basis it is proved that the differentiation matrix is accurate of order 2n + 2 when periodic boundary conditions are assumed. This high accuracy, or superconvergence, is lost when the boundary conditions are no longer periodic. Furthermore, it is shown that spline-based bases generate a class of compact finite difference schemes.
Fatigue crack growth monitoring of idealized gearbox spline component using acoustic emission
NASA Astrophysics Data System (ADS)
Zhang, Lu; Ozevin, Didem; Hardman, William; Kessler, Seth; Timmons, Alan
2016-04-01
The spline component of gearbox structure is a non-redundant element that requires early detection of flaws for preventing catastrophic failures. The acoustic emission (AE) method is a direct way of detecting active flaws; however, the method suffers from the influence of background noise and location/sensor based pattern recognition method. It is important to identify the source mechanism and adapt it to different test conditions and sensors. In this paper, the fatigue crack growth of a notched and flattened gearbox spline component is monitored using the AE method in a laboratory environment. The test sample has the major details of the spline component on a flattened geometry. The AE data is continuously collected together with strain gauges strategically positions on the structure. The fatigue test characteristics are 4 Hz frequency and 0.1 as the ratio of minimum to maximum loading in tensile regime. It is observed that there are significant amount of continuous emissions released from the notch tip due to the formation of plastic deformation and slow crack growth. The frequency spectra of continuous emissions and burst emissions are compared to understand the difference of sudden crack growth and gradual crack growth. The predicted crack growth rate is compared with the AE data using the cumulative AE events at the notch tip. The source mechanism of sudden crack growth is obtained solving the inverse mathematical problem from output signal to input signal. The spline component of gearbox structure is a non-redundant element that requires early detection of flaws for preventing catastrophic failures. In this paper, the fatigue crack growth of a notched and flattened gearbox spline component is monitored using the AE method The AE data is continuously collected together with strain gauges. There are significant amount of continuous emissions released from the notch tip due to the formation of plastic deformation and slow crack growth. The source mechanism of
Color management with a hammer: the B-spline fitter
NASA Astrophysics Data System (ADS)
Bell, Ian E.; Liu, Bonny H. P.
2003-01-01
To paraphrase Abraham Maslow: If the only tool you have is a hammer, every problem looks like a nail. We have a B-spline fitter customized for 3D color data, and many problems in color management can be solved with this tool. Whereas color devices were once modeled with extensive measurement, look-up tables and trilinear interpolation, recent improvements in hardware have made B-spline models an affordable alternative. Such device characterizations require fewer color measurements than piecewise linear models, and have uses beyond simple interpolation. A B-spline fitter, for example, can act as a filter to remove noise from measurements, leaving a model with guaranteed smoothness. Inversion of the device model can then be carried out consistently and efficiently, as the spline model is well behaved and its derivatives easily computed. Spline-based algorithms also exist for gamut mapping, the composition of maps, and the extrapolation of a gamut. Trilinear interpolation---a degree-one spline---can still be used after nonlinear spline smoothing for high-speed evaluation with robust convergence. Using data from several color devices, this paper examines the use of B-splines as a generic tool for modeling devices and mapping one gamut to another, and concludes with applications to high-dimensional and spectral data.
Analysis of the boundary conditions of the spline filter
NASA Astrophysics Data System (ADS)
Tong, Mingsi; Zhang, Hao; Ott, Daniel; Zhao, Xuezeng; Song, John
2015-09-01
The spline filter is a standard linear profile filter recommended by ISO/TS 16610-22 (2006). The main advantage of the spline filter is that no end-effects occur as a result of the filter. The ISO standard also provides the tension parameter β =0.625 24 to make the transmission characteristic of the spline filter approximately similar to the Gaussian filter. However, when the tension parameter β is not zero, end-effects appear. To resolve this problem, we analyze 14 different combinations of boundary conditions of the spline filter and propose a set of new boundary conditions in this paper. The new boundary conditions can provide satisfactory end portions of the output form without end-effects for the spline filter while still maintaining the value of β =0.625 24 .
Metal flowing of involute spline cold roll-beating forming
NASA Astrophysics Data System (ADS)
Cui, Fengkui; Wang, Xiaoqiang; Zhang, Fengshou; Xu, Hongyu; Quan, Jianhui; Li, Yan
2013-09-01
The present research on involute spline cold roll-beating forming is mainly about the principles and motion relations of cold roll-beating, the theory of roller design, and the stress and strain field analysis of cold roll-beating, etc. However, the research on law of metal flow in the forming process of involute spline cold roll-beating is rare. According to the principle of involute spline cold roll-beating, the contact model between the rollers and the spline shaft blank in the process of cold roll-beating forming is established, and the theoretical analysis of metal flow in the cold roll-beating deforming region is proceeded. A finite element model of the spline cold roll-beating process is established, the formation mechanism of the involute spline tooth profile in cold roll-beating forming process is studied, and the node flow tracks of the deformation area are analyzed. The experimental research on the metal flow of cold roll-beating spline is conducted, and the metallographic structure variation, grain characteristics and metal flow line of the different tooth profile area are analyzed. The experimental results show that the particle flow directions of the deformable bodies in cold roll-beating deformation area are determined by the minimum moving resistance. There are five types of metal flow rules of the deforming region in the process of cold roll-beating forming. The characteristics of involute spline cold roll-beating forming are given, and the forming mechanism of involute spline cold roll-beating is revealed. This paper researches the law of metal flow in the forming process of involute spline cold roll-beating, which provides theoretical supports for solving the tooth profile forming quality problem.
Spline Approximation of Thin Shell Dynamics
NASA Technical Reports Server (NTRS)
delRosario, R. C. H.; Smith, R. C.
1996-01-01
A spline-based method for approximating thin shell dynamics is presented here. While the method is developed in the context of the Donnell-Mushtari thin shell equations, it can be easily extended to the Byrne-Flugge-Lur'ye equations or other models for shells of revolution as warranted by applications. The primary requirements for the method include accuracy, flexibility and efficiency in smart material applications. To accomplish this, the method was designed to be flexible with regard to boundary conditions, material nonhomogeneities due to sensors and actuators, and inputs from smart material actuators such as piezoceramic patches. The accuracy of the method was also of primary concern, both to guarantee full resolution of structural dynamics and to facilitate the development of PDE-based controllers which ultimately require real-time implementation. Several numerical examples provide initial evidence demonstrating the efficacy of the method.
Implicit B-spline surface reconstruction.
Rouhani, Mohammad; Sappa, Angel D; Boyer, Edmond
2015-01-01
This paper presents a fast and flexible curve, and surface reconstruction technique based on implicit B-spline. This representation does not require any parameterization and it is locally supported. This fact has been exploited in this paper to propose a reconstruction technique through solving a sparse system of equations. This method is further accelerated to reduce the dimension to the active control lattice. Moreover, the surface smoothness and user interaction are allowed for controlling the surface. Finally, a novel weighting technique has been introduced in order to blend small patches and smooth them in the overlapping regions. The whole framework is very fast and efficient and can handle large cloud of points with very low computational cost. The experimental results show the flexibility and accuracy of the proposed algorithm to describe objects with complex topologies. Comparisons with other fitting methods highlight the superiority of the proposed approach in the presence of noise and missing data. PMID:25373084
Spline-Locking Screw Fastening Strategy (SLSFS)
NASA Technical Reports Server (NTRS)
Vranish, John M.
1991-01-01
A fastener was developed by NASA Goddard for efficiently performing assembly, maintenance, and equipment replacement functions in space using either robotic or astronaut means. This fastener, the 'Spline Locking Screw' (SLS) would also have significant commercial value in advanced manufacturing. Commercial (or DoD) products could be manufactured in such a way that their prime subassemblies would be assembled using SLS fasteners. This would permit machines and robots to disconnect and replace these modules/parts with ease, greatly reducing life cycle costs of the products and greatly enhancing the quality, timeliness, and consistency of repairs, upgrades, and remanufacturing. The operation of the basic SLS fastener is detailed, including hardware and test results. Its extension into a comprehensive fastening strategy for NASA use in space is also outlined. Following this, the discussion turns toward potential commercial and government applications and the potential market significance of same.
Spline-locking screw fastening strategy
NASA Technical Reports Server (NTRS)
Vranish, John M.
1992-01-01
A fastener was developed by NASA Goddard for efficiently performing assembly, maintenance, and equipment replacement functions in space using either robotics or astronaut means. This fastener, the 'Spline Locking Screw' (SLS) would also have significant commercial value in advanced space manufacturing. Commercial (or DoD) products could be manufactured in such a way that their prime subassemblies would be assembled using SLS fasteners. This would permit machines and robots to disconnect and replace these modules/parts with ease, greatly reducing life cycle costs of the products and greatly enhancing the quality, timeliness, and consistency of repairs, upgrades, and remanufacturing. The operation of the basic SLS fastener is detailed, including hardware and test results. Its extension into a comprehensive fastening strategy for NASA use in space is also outlined. Following this, the discussion turns toward potential commercial and government applications and the potential market significance of same.
Spline Curves, Wire Frames and Bvalue
NASA Technical Reports Server (NTRS)
Smith, L.; Munchmeyer, F.
1985-01-01
The methods that were developed for wire-frame design are described. The principal tools for control of a curve during interactive design are mathematical ducks. The simplest of these devices is an analog of the draftsman's lead weight that he uses to control a mechanical spline also create Ducks for controlling differential and integral properties of curves were created. Other methods presented include: constructing the end of a Bezier polygon to gain quick and reasonably confident control of the end tangent vector, end curvature and end torsion; keeping the magnitude of unwanted curvature oscillations within tolerance; constructing the railroad curves that appear in many engineering design problems; and controlling the frame to minimize errors at mesh points and to optimize the shapes of the curve elements.
The spline probability hypothesis density filter
NASA Astrophysics Data System (ADS)
Sithiravel, Rajiv; Tharmarasa, Ratnasingham; McDonald, Mike; Pelletier, Michel; Kirubarajan, Thiagalingam
2012-06-01
The Probability Hypothesis Density Filter (PHD) is a multitarget tracker for recursively estimating the number of targets and their state vectors from a set of observations. The PHD filter is capable of working well in scenarios with false alarms and missed detections. Two distinct PHD filter implementations are available in the literature: the Sequential Monte Carlo Probability Hypothesis Density (SMC-PHD) and the Gaussian Mixture Probability Hypothesis Density (GM-PHD) filters. The SMC-PHD filter uses particles to provide target state estimates, which can lead to a high computational load, whereas the GM-PHD filter does not use particles, but restricts to linear Gaussian mixture models. The SMC-PHD filter technique provides only weighted samples at discrete points in the state space instead of a continuous estimate of the probability density function of the system state and thus suffers from the well-known degeneracy problem. This paper proposes a B-Spline based Probability Hypothesis Density (S-PHD) filter, which has the capability to model any arbitrary probability density function. The resulting algorithm can handle linear, non-linear, Gaussian, and non-Gaussian models and the S-PHD filter can also provide continuous estimates of the probability density function of the system state. In addition, by moving the knots dynamically, the S-PHD filter ensures that the splines cover only the region where the probability of the system state is significant, hence the high efficiency of the S-PHD filter is maintained at all times. Also, unlike the SMC-PHD filter, the S-PHD filter is immune to the degeneracy problem due to its continuous nature. The S-PHD filter derivations and simulations are provided in this paper.
Reich, Brian J.; Storlie, Curtis B.; Bondell, Howard D.
2009-01-01
With many predictors, choosing an appropriate subset of the covariates is a crucial, and difficult, step in nonparametric regression. We propose a Bayesian nonparametric regression model for curve-fitting and variable selection. We use the smoothing spline ANOVA framework to decompose the regression function into interpretable main effect and interaction functions. Stochastic search variable selection via MCMC sampling is used to search for models that fit the data well. Also, we show that variable selection is highly-sensitive to hyperparameter choice and develop a technique to select hyperparameters that control the long-run false positive rate. The method is used to build an emulator for a complex computer model for two-phase fluid flow. PMID:19789732
Growth curve analysis for plasma profiles using smoothing splines
Imre, K.
1993-05-01
We are developing a profile analysis code for the statistical estimation of the parametric dependencies of the temperature and density profiles in tokamaks. Our code uses advanced statistical techniques to determine the optimal fit, i.e. the fit which minimized the predictive error. For a forty TFTR Ohmic profile dataset, our preliminary results indicate that the profile shape depends almost exclusively on q[sub a][prime] but that the shape dependencies are not Gaussian. We are now comparing various shape models on the TFTR data. In the first six months, we have completed the core modules of the code, including a B-spline package for variable knot locations, a data-based method to determine the optimal smoothing parameters, self-consistent estimation of the bias errors, and adaptive fitting near the plasma edge. Visualization graphics already include three dimensional surface plots, and discharge by discharge plots of the predicted curves with error bars together with the actual measurements values, and plots of the basis functions with errors.
Fitting multidimensional splines using statistical variable selection techniques
NASA Technical Reports Server (NTRS)
Smith, P. L.
1982-01-01
This report demonstrates the successful application of statistical variable selection techniques to fit splines. Major emphasis is given to knot selection, but order determination is also discussed. Two FORTRAN backward elimination programs using the B-spline basis were developed, and the one for knot elimination is compared in detail with two other spline-fitting methods and several statistical software packages. An example is also given for the two-variable case using a tensor product basis, with a theoretical discussion of the difficulties of their use.
A Simple and Fast Spline Filtering Algorithm for Surface Metrology
Zhang, Hao; Ott, Daniel; Song, John; Tong, Mingsi; Chu, Wei
2015-01-01
Spline filters and their corresponding robust filters are commonly used filters recommended in ISO (the International Organization for Standardization) standards for surface evaluation. Generally, these linear and non-linear spline filters, composed of symmetric, positive-definite matrices, are solved in an iterative fashion based on a Cholesky decomposition. They have been demonstrated to be relatively efficient, but complicated and inconvenient to implement. A new spline-filter algorithm is proposed by means of the discrete cosine transform or the discrete Fourier transform. The algorithm is conceptually simple and very convenient to implement. PMID:26958443
An Examination of New Paradigms for Spline Approximations.
Witzgall, Christoph; Gilsinn, David E; McClain, Marjorie A
2006-01-01
Lavery splines are examined in the univariate and bivariate cases. In both instances relaxation based algorithms for approximate calculation of Lavery splines are proposed. Following previous work Gilsinn, et al. [7] addressing the bivariate case, a rotationally invariant functional is assumed. The version of bivariate splines proposed in this paper also aims at irregularly spaced data and uses Hseih-Clough-Tocher elements based on the triangulated irregular network (TIN) concept. In this paper, the univariate case, however, is investigated in greater detail so as to further the understanding of the bivariate case. PMID:27274917
Monotonicity preserving using GC1 rational quartic spline
NASA Astrophysics Data System (ADS)
Karim, Samsul Ariffin Abdul; Pang, Kong Voon
2012-09-01
This paper proposed GC1 rational quartic spline (quartic numerator and linear denominator) with two parameters to preserve the shape of the monotone data. Simple data dependent constraints will be derived on one of the parameters while the other is free to modify and refine the resultant shape of the data. Both parameters are independent to each other. The method under consideration here, avoid the modification of the derivative when the sufficient condition for the monotonicity are violated as can be noticed in the original construction of C1 rational quartic spline with linear denominator. Numerical comparison between the proposed scheme and C1 rational quartic spline will be given.
NASA Astrophysics Data System (ADS)
Grégoire, G.
2014-12-01
The logistic regression originally is intended to explain the relationship between the probability of an event and a set of covariables. The model's coefficients can be interpreted via the odds and odds ratio, which are presented in introduction of the chapter. The observations are possibly got individually, then we speak of binary logistic regression. When they are grouped, the logistic regression is said binomial. In our presentation we mainly focus on the binary case. For statistical inference the main tool is the maximum likelihood methodology: we present the Wald, Rao and likelihoods ratio results and their use to compare nested models. The problems we intend to deal with are essentially the same as in multiple linear regression: testing global effect, individual effect, selection of variables to build a model, measure of the fitness of the model, prediction of new values… . The methods are demonstrated on data sets using R. Finally we briefly consider the binomial case and the situation where we are interested in several events, that is the polytomous (multinomial) logistic regression and the particular case of ordinal logistic regression.
Hill, G.R.
1987-11-10
A power transmission member is described comprising a radially-extending end wall and a cylindrical axially-extending sleeve connected to the end wall and terminating remote from the end wall in an open end. The sleeve has pressure formed internal and external axially-extending splines formed therein by intermeshing of teeth of a mandrel on which the sleeve is mounted and teeth of a pair of racks slidable therepast. The splines terminate short of the open sleeve end in an unsplined cylindrical ring-shaped lip portion which reduced bellmouth of the splines to within about 0.010 inch along their length.
Broom, Donald M
2006-01-01
The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and
Detail view of redwood spline joinery of woodframe section against ...
Detail view of redwood spline joinery of wood-frame section against adobe addition (measuring tape denotes plumb line from center of top board) - First Theatre in California, Southwest corner of Pacific & Scott Streets, Monterey, Monterey County, CA
Modeling terminal ballistics using blending-type spline surfaces
NASA Astrophysics Data System (ADS)
Pedersen, Aleksander; Bratlie, Jostein; Dalmo, Rune
2014-12-01
We explore using GERBS, a blending-type spline construction, to represent deform able thin-plates and model terminal ballistics. Strategies to construct geometry for different scenarios of terminal ballistics are proposed.
Construction of spline functions in spreadsheets to smooth experimental data
Technology Transfer Automated Retrieval System (TEKTRAN)
A previous manuscript detailed how spreadsheet software can be programmed to smooth experimental data via cubic splines. This addendum corrects a few errors in the previous manuscript and provides additional necessary programming steps. ...
C1 Hermite shape preserving polynomial splines in R3
NASA Astrophysics Data System (ADS)
Gabrielides, Nikolaos C.
2012-06-01
The C 2 variable degree splines1-3 have been proven to be an efficient tool for solving the curve shape-preserving interpolation problem in two and three dimensions. Based on this representation, the current paper proposes a Hermite interpolation scheme, to construct C 1 shape-preserving splines of variable degree. After this, a slight modification of the method leads to a C 1 shape-preserving Hermite cubic spline. Both methods can easily be developed within a CAD system, since they compute directly (without iterations) the B-spline control polygon. They have been implemented and tested within the DNV Software CAD/CAE system GeniE. [Figure not available: see fulltext.
Positivity preserving using GC1 rational quartic spline
NASA Astrophysics Data System (ADS)
Abdul Karim, Samsul Ariffin; Pang, Kong Voon; Hashim, Ishak
2013-04-01
In this paper, we study the shape preserving interpolation for positive data using a rational quartic spline which has a quartic numerator and linear denominator. The rational quartic splines have GC1 continuity at join knots. Simple data dependent constraints are derived on the shape parameters in the description of the rational interpolant. Numerical comparison between the proposed scheme and the existing scheme is discussed. The results indicate that the proposed scheme works well for all tested data sets.
B-Spline Filtering for Automatic Detection of Calcification Lesions in Mammograms
NASA Astrophysics Data System (ADS)
Bueno, G.; Sánchez, S.; Ruiz, M.
2006-10-01
Breast cancer continues to be an important health problem between women population. Early detection is the only way to improve breast cancer prognosis and significantly reduce women mortality. It is by using CAD systems that radiologist can improve their ability to detect, and classify lesions in mammograms. In this study the usefulness of using B-spline based on a gradient scheme and compared to wavelet and adaptative filtering has been investigated for calcification lesion detection and as part of CAD systems. The technique has been applied to different density tissues. A qualitative validation shows the success of the method.
NASA Astrophysics Data System (ADS)
Bargatze, L. F.
2015-12-01
Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted
Huang, Dong; Cabral, Ricardo; De la Torre, Fernando
2016-02-01
Discriminative methods (e.g., kernel regression, SVM) have been extensively used to solve problems such as object recognition, image alignment and pose estimation from images. These methods typically map image features ( X) to continuous (e.g., pose) or discrete (e.g., object category) values. A major drawback of existing discriminative methods is that samples are directly projected onto a subspace and hence fail to account for outliers common in realistic training sets due to occlusion, specular reflections or noise. It is important to notice that existing discriminative approaches assume the input variables X to be noise free. Thus, discriminative methods experience significant performance degradation when gross outliers are present. Despite its obvious importance, the problem of robust discriminative learning has been relatively unexplored in computer vision. This paper develops the theory of robust regression (RR) and presents an effective convex approach that uses recent advances on rank minimization. The framework applies to a variety of problems in computer vision including robust linear discriminant analysis, regression with missing data, and multi-label classification. Several synthetic and real examples with applications to head pose estimation from images, image and video classification and facial attribute classification with missing data are used to illustrate the benefits of RR. PMID:26761740
Coding of images by methods of a spline interpolation
NASA Astrophysics Data System (ADS)
Kozhemyako, Vladimir P.; Maidanuik, V. P.; Etokov, I. A.; Zhukov, Konstantin M.; Jorban, Saleh R.
2000-06-01
In the case of image coding are containing interpolation methods, a linear methods of component forming usually used. However, taking in account the huge speed increasing of a computer and hardware integration power, of special interest was more complicated interpolation methods, in particular spline interpolation. A spline interpolation is known to be a approximation that performed by spline, which consist of polynomial bounds, where a cub parabola usually used. At this article is to perform image analysis by 5 X 5 aperture, result in count rejection of low-frequence component of image: an one base count per 5 X 5 size fragment. The passed source counts were restoring by spline interpolation methods, then formed counts of high-frequence image component, by subtract from counts of initial image a low-frequence component and their quantization. At the final stage Huffman coding performed to divert of statistical redundancy. Spacious set of experiments with various images showed that source compression factor may be founded into limits of 10 - 70, which for majority test images are superlative source compression factor by JPEG standard applications at the same image quality. Investigated research show that spline approximation allow to improve restored image quality and compression factor to compare with linear interpolation. Encoding program modules has work out for BMP-format files, on the Windows and MS-DOS platforms.
Polynomial estimation of the smoothing splines for the new Finnish reference values for spirometry.
Kainu, Annette; Timonen, Kirsi
2016-07-01
Background Discontinuity of spirometry reference values from childhood into adulthood has been a problem with traditional reference values, thus modern modelling approaches using smoothing spline functions to better depict the transition during growth and ageing have been recently introduced. Following the publication of the new international Global Lung Initiative (GLI2012) reference values also new national Finnish reference values have been calculated using similar GAMLSS-modelling, with spline estimates for mean (Mspline) and standard deviation (Sspline) provided in tables. The aim of this study was to produce polynomial estimates for these spline functions to use in lieu of lookup tables and to assess their validity in the reference population of healthy non-smokers. Methods Linear regression modelling was used to approximate the estimated values for Mspline and Sspline using similar polynomial functions as in the international GLI2012 reference values. Estimated values were compared to original calculations in absolute values, the derived predicted mean and individually calculated z-scores using both values. Results Polynomial functions were estimated for all 10 spirometry variables. The agreement between original lookup table-produced values and polynomial estimates was very good, with no significant differences found. The variation slightly increased in larger predicted volumes, but a range of -0.018 to +0.022 litres of FEV1 representing ± 0.4% of maximum difference in predicted mean. Conclusions Polynomial approximations were very close to the original lookup tables and are recommended for use in clinical practice to facilitate the use of new reference values. PMID:27071737
User's guide for Wilson-Fowler spline software: SPLPKG, WFCMPR, WFAPPX - CADCAM-010
Fletcher, S.K.
1985-02-01
The Wilson-Fowler spline is widely used in computer aided manufacturing, but is not available in all commercial CAD/CAM systems. These three programs provide a capability for generating, comparing, and approximating Wilson-Fowler splines. SPLPKG generates a spline passing through given nodes, and computes a piecewise linear approximation to the spline. WFCMPR computes the difference between two splines with common nodes. WFAPPX computes the difference between a spline and a piecewise linear curve. The programs are in Fortran 77 and are machine independent.
Bidirectional Elastic Image Registration Using B-Spline Affine Transformation
Gu, Suicheng; Meng, Xin; Sciurba, Frank C.; Wang, Chen; Kaminski, Naftali; Pu, Jiantao
2014-01-01
A registration scheme termed as B-spline affine transformation (BSAT) is presented in this study to elastically align two images. We define an affine transformation instead of the traditional translation at each control point. Mathematically, BSAT is a generalized form of the affine transformation and the traditional B-Spline transformation (BST). In order to improve the performance of the iterative closest point (ICP) method in registering two homologous shapes but with large deformation, a bi-directional instead of the traditional unidirectional objective / cost function is proposed. In implementation, the objective function is formulated as a sparse linear equation problem, and a sub-division strategy is used to achieve a reasonable efficiency in registration. The performance of the developed scheme was assessed using both two-dimensional (2D) synthesized dataset and three-dimensional (3D) volumetric computed tomography (CT) data. Our experiments showed that the proposed B-spline affine model could obtain reasonable registration accuracy. PMID:24530210
Bidirectional elastic image registration using B-spline affine transformation.
Gu, Suicheng; Meng, Xin; Sciurba, Frank C; Ma, Hongxia; Leader, Joseph; Kaminski, Naftali; Gur, David; Pu, Jiantao
2014-06-01
A registration scheme termed as B-spline affine transformation (BSAT) is presented in this study to elastically align two images. We define an affine transformation instead of the traditional translation at each control point. Mathematically, BSAT is a generalized form of the affine transformation and the traditional B-spline transformation (BST). In order to improve the performance of the iterative closest point (ICP) method in registering two homologous shapes but with large deformation, a bidirectional instead of the traditional unidirectional objective/cost function is proposed. In implementation, the objective function is formulated as a sparse linear equation problem, and a sub-division strategy is used to achieve a reasonable efficiency in registration. The performance of the developed scheme was assessed using both two-dimensional (2D) synthesized dataset and three-dimensional (3D) volumetric computed tomography (CT) data. Our experiments showed that the proposed B-spline affine model could obtain reasonable registration accuracy. PMID:24530210
AnL1 smoothing spline algorithm with cross validation
NASA Astrophysics Data System (ADS)
Bosworth, Ken W.; Lall, Upmanu
1993-08-01
We propose an algorithm for the computation ofL1 (LAD) smoothing splines in the spacesWM(D), with . We assume one is given data of the formyiD(f(ti) +ɛi, iD1,...,N with {itti}iD1N ⊂D, theɛi are errors withE(ɛi)D0, andf is assumed to be inWM. The LAD smoothing spline, for fixed smoothing parameterλ?;0, is defined as the solution,sλ, of the optimization problem (1/N)∑iD1N yi-g(ti +λJM(g), whereJM(g) is the seminorm consisting of the sum of the squaredL2 norms of theMth partial derivatives ofg. Such an LAD smoothing spline,sλ, would be expected to give robust smoothed estimates off in situations where theɛi are from a distribution with heavy tails. The solution to such a problem is a "thin plate spline" of known form. An algorithm for computingsλ is given which is based on considering a sequence of quadratic programming problems whose structure is guided by the optimality conditions for the above convex minimization problem, and which are solved readily, if a good initial point is available. The "data driven" selection of the smoothing parameter is achieved by minimizing aCV(λ) score of the form .The combined LAD-CV smoothing spline algorithm is a continuation scheme in λ↘0 taken on the above SQPs parametrized inλ, with the optimal smoothing parameter taken to be that value ofλ at which theCV(λ) score first begins to increase. The feasibility of constructing the LAD-CV smoothing spline is illustrated by an application to a problem in environment data interpretation.
How to fly an aircraft with control theory and splines
NASA Technical Reports Server (NTRS)
Karlsson, Anders
1994-01-01
When trying to fly an aircraft as smoothly as possible it is a good idea to use the derivatives of the pilot command instead of using the actual control. This idea was implemented with splines and control theory, in a system that tries to model an aircraft. Computer calculations in Matlab show that it is impossible to receive enough smooth control signals by this way. This is due to the fact that the splines not only try to approximate the test function, but also its derivatives. A perfect traction is received but we have to pay in very peaky control signals and accelerations.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
NASA Technical Reports Server (NTRS)
Johnson, C. R., Jr.; Balas, M. J.
1980-01-01
A novel interconnection of distributed parameter system (DPS) identification and adaptive filtering is presented, which culminates in a common statement of coupled autoregressive, moving-average expansion or parallel infinite impulse response configuration adaptive parameterization. The common restricted complexity filter objectives are seen as similar to the reduced-order requirements of the DPS expansion description. The interconnection presents the possibility of an exchange of problem formulations and solution approaches not yet easily addressed in the common finite dimensional lumped-parameter system context. It is concluded that the shared problems raised are nevertheless many and difficult.
Upsilon-quaternion splines for the smooth interpolation of orientations.
Nielson, Gregory M
2004-01-01
We present a new method for smoothly interpolating orientation matrices. It is based upon quaternions and a particular construction of upsilon-spline curves. The new method has tension parameters and variable knot (time) spacing which both prove to be effective in designing and controlling key frame animations. PMID:15384647
Approximation and modeling with ambient B-splines
NASA Astrophysics Data System (ADS)
Lehmann, N.; Maier, L.-B.; Odathuparambil, S.; Reif, U.
2016-06-01
We present a novel technique for solving approximation problems on manifolds in terms of standard tensor product B-splines. This method is easy to implement and provides optimal approximation order. Applications include the representation of smooth surfaces of arbitrary genus.
Radial Splines Would Prevent Rotation Of Bearing Race
NASA Technical Reports Server (NTRS)
Kaplan, Ronald M.; Chokshi, Jaisukhlal V.
1993-01-01
Interlocking fine-pitch ribs and grooves formed on otherwise flat mating end faces of housing and outer race of rolling-element bearing to be mounted in housing, according to proposal. Splines bear large torque loads and impose minimal distortion on raceway.
Computation Of An Optimal Laser Cavity Using Splines
NASA Astrophysics Data System (ADS)
Pantelic, Dejan V.; Janevski, Zoran D.
1989-03-01
As an attempt to improve the efficiency of a solid state laser cavity, a non-elliptical cavity is proposed. Efficiency was calculated by the ray trace method and the cavity was simulated using a novel approach with splines. Computation shows that substantial gain in efficiency can be achieved for a close coupled configuration.
Extension of spline wavelets element method to membrane vibration analysis
NASA Astrophysics Data System (ADS)
Wu, C. W.; Chen, W.-H.
1996-05-01
The B-spline wavelets element technique developed by Chen and Wu (1995a) is extended to the membrane vibration analysis. The tensor product of the finite splines and spline wavelets expansions in different resolutions is applied in the development of a curved quadrilateral element. Unlike the process of direct wavelets adding in the previous work, the elemental displacement field represented by the coefficients of wavelets expansions is transformed into edges and internal modes via elemental geometric conditions and “two-scale relations”. The “multiple stages two-scale sequence” of quadratic B-spline function is provided to accelerate the sequential transformations between different resolution levels of wavelets. The hierarchical property of wavelets basis approximation is also reserved in this extension. For membrane vibration problems where variations lack regularity at certain lower vibration modes, the present element can still effectively provide accurate results through a multi-level solving procedure. Some numerical examples are studied to demonstrate the proposed element.
Modelling Childhood Growth Using Fractional Polynomials and Linear Splines
Tilling, Kate; Macdonald-Wallis, Corrie; Lawlor, Debbie A.; Hughes, Rachael A.; Howe, Laura D.
2014-01-01
Background There is increasing emphasis in medical research on modelling growth across the life course and identifying factors associated with growth. Here, we demonstrate multilevel models for childhood growth either as a smooth function (using fractional polynomials) or a set of connected linear phases (using linear splines). Methods We related parental social class to height from birth to 10 years of age in 5,588 girls from the Avon Longitudinal Study of Parents and Children (ALSPAC). Multilevel fractional polynomial modelling identified the best-fitting model as being of degree 2 with powers of the square root of age, and the square root of age multiplied by the log of age. The multilevel linear spline model identified knot points at 3, 12 and 36 months of age. Results Both the fractional polynomial and linear spline models show an initially fast rate of growth, which slowed over time. Both models also showed that there was a disparity in length between manual and non-manual social class infants at birth, which decreased in magnitude until approximately 1 year of age and then increased. Conclusions Multilevel fractional polynomials give a more realistic smooth function, and linear spline models are easily interpretable. Each can be used to summarise individual growth trajectories and their relationships with individual-level exposures. PMID:25413651
A new kind of splines and their use for fast ray-tracing in reflective cavities
NASA Astrophysics Data System (ADS)
Pantelic, Dejan V.; Janevski, Zoran D.
1989-08-01
In this paper we are presenting a new kind of splines that are very effective in ray-tracing applications. They are designed in such a way to enable the fast and efficient computation of line-spline intersections (line representing the light ray, and spline representing the reflective cavity). These splines are piecewise parabolic polynomials, but with additional degrees of freedom. Polynomial sections of the spline can be rotated to a certain angle (each section has its own angle of rotation), enabling thus the continuity of the first derivative.
Steganalysis using logistic regression
NASA Astrophysics Data System (ADS)
Lubenko, Ivans; Ker, Andrew D.
2011-02-01
We advocate Logistic Regression (LR) as an alternative to the Support Vector Machine (SVM) classifiers commonly used in steganalysis. LR offers more information than traditional SVM methods - it estimates class probabilities as well as providing a simple classification - and can be adapted more easily and efficiently for multiclass problems. Like SVM, LR can be kernelised for nonlinear classification, and it shows comparable classification accuracy to SVM methods. This work is a case study, comparing accuracy and speed of SVM and LR classifiers in detection of LSB Matching and other related spatial-domain image steganography, through the state-of-art 686-dimensional SPAM feature set, in three image sets.
A spline-based tool to assess and visualize the calibration of multiclass risk predictions.
Van Hoorde, K; Van Huffel, S; Timmerman, D; Bourne, T; Van Calster, B
2015-04-01
When validating risk models (or probabilistic classifiers), calibration is often overlooked. Calibration refers to the reliability of the predicted risks, i.e. whether the predicted risks correspond to observed probabilities. In medical applications this is important because treatment decisions often rely on the estimated risk of disease. The aim of this paper is to present generic tools to assess the calibration of multiclass risk models. We describe a calibration framework based on a vector spline multinomial logistic regression model. This framework can be used to generate calibration plots and calculate the estimated calibration index (ECI) to quantify lack of calibration. We illustrate these tools in relation to risk models used to characterize ovarian tumors. The outcome of the study is the surgical stage of the tumor when relevant and the final histological outcome, which is divided into five classes: benign, borderline malignant, stage I, stage II-IV, and secondary metastatic cancer. The 5909 patients included in the study are randomly split into equally large training and test sets. We developed and tested models using the following algorithms: logistic regression, support vector machines, k nearest neighbors, random forest, naive Bayes and nearest shrunken centroids. Multiclass calibration plots are interesting as an approach to visualizing the reliability of predicted risks. The ECI is a convenient tool for comparing models, but is less informative and interpretable than calibration plots. In our case study, logistic regression and random forest showed the highest degree of calibration, and the naive Bayes the lowest. PMID:25579635
Akima splines for minimization of breathing interference in aortic rheography data
NASA Astrophysics Data System (ADS)
Tsoy, Maria O.; Stiukhina, Elena S.; Klochkov, Victor A.; Postnov, Dmitry E.
2015-03-01
The elimination of low-frequency noise of breath and motion artifacts is one of the most difficult challenges of preprocessing rheographic signal. The data filtering is the conventional way to separate useful signal from noise and interferences. Conventionally, linear filtering is used to easy design and implementation. However, in some cases such techniques are difficult, if possible, to apply, since the data frequency range is overlapped with one of interferences. Specifically, it happens in aortic rheography, where some breathing process and pulmonary blood flow contributions are unavoidable. We suggest an alternative approach for breathing interference reduction, based on adaptive reconstruction of baseline deviation. Specifically, the computational scheme based on multiple calculation of Akima splines is suggested, implemented using C# language and validated using surrogate data. The applications of proposed technique to the real data processing deliver the better quality of aortic valve opening detection.
Hierarchical Volume Representation with 3{radical}2 Subdivision and Trivariate B-Spline Wavelets
Linsen, L; Gray, JT; Pascucci, V; Duchaineau, M; Hamann, B
2002-01-11
Multiresolution methods provide a means for representing data at multiple levels of detail. They are typically based on a hierarchical data organization scheme and update rules needed for data value computation. We use a data organization that is based on what we call n{radical}2 subdivision. The main advantage of subdivision, compared to quadtree (n = 2) or octree (n = 3) organizations, is that the number of vertices is only doubled in each subdivision step instead of multiplied by a factor of four or eight, respectively. To update data values we use n-variate B-spline wavelets, which yields better approximations for each level of detail. We develop a lifting scheme for n = 2 and n = 3 based on the n{radical}2-subdivision scheme. We obtain narrow masks that could also provide a basis for view-dependent visualization and adaptive refinement.
Data approximation using a blending type spline construction
Dalmo, Rune; Bratlie, Jostein
2014-11-18
Generalized expo-rational B-splines (GERBS) is a blending type spline construction where local functions at each knot are blended together by C{sup k}-smooth basis functions. One way of approximating discrete regular data using GERBS is by partitioning the data set into subsets and fit a local function to each subset. Partitioning and fitting strategies can be devised such that important or interesting data points are interpolated in order to preserve certain features. We present a method for fitting discrete data using a tensor product GERBS construction. The method is based on detection of feature points using differential geometry. Derivatives, which are necessary for feature point detection and used to construct local surface patches, are approximated from the discrete data using finite differences.
On the role of exponential splines in image interpolation.
Kirshner, Hagai; Porat, Moshe
2009-10-01
A Sobolev reproducing-kernel Hilbert space approach to image interpolation is introduced. The underlying kernels are exponential functions and are related to stochastic autoregressive image modeling. The corresponding image interpolants can be implemented effectively using compactly-supported exponential B-splines. A tight l(2) upper-bound on the interpolation error is then derived, suggesting that the proposed exponential functions are optimal in this regard. Experimental results indicate that the proposed interpolation approach with properly-tuned, signal-dependent weights outperforms currently available polynomial B-spline models of comparable order. Furthermore, a unified approach to image interpolation by ideal and nonideal sampling procedures is derived, suggesting that the proposed exponential kernels may have a significant role in image modeling as well. Our conclusion is that the proposed Sobolev-based approach could be instrumental and a preferred alternative in many interpolation tasks. PMID:19520639
Monotonicity preserving splines using rational Ball cubic interpolation
NASA Astrophysics Data System (ADS)
Zakaria, Wan Zafira Ezza Wan; Jamal, Ena; Ali, Jamaludin Md.
2015-10-01
In scientific application and Computer Aided Design (CAD), users usually need to generate a spline passing through a given set of data which preserves certain shape properties of the data such as positivity, monotonicity or convexity [1]. The required curves have to be a smooth shape-preserving interpolation. In this paper a rational cubic spline in Ball representation is developed to generate an interpolant that preserves monotonicity. In this paper to control the shape of the interpolant three shape parameters are introduced. The shape parameters in the description of the rational cubic interpolation are subjected to monotonicity constrained. The necessary and sufficient conditions of the rational cubic interpolation are derived and visually the proposed rational cubic interpolant gives a very pleasing result.
High-order numerical solutions using cubic splines
NASA Technical Reports Server (NTRS)
Rubin, S. G.; Khosla, P. K.
1975-01-01
The cubic spline collocation procedure for the numerical solution of partial differential equations was reformulated so that the accuracy of the second-derivative approximation is improved and parallels that previously obtained for lower derivative terms. The final result is a numerical procedure having overall third-order accuracy for a nonuniform mesh and overall fourth-order accuracy for a uniform mesh. Application of the technique was made to the Burger's equation, to the flow around a linear corner, to the potential flow over a circular cylinder, and to boundary layer problems. The results confirmed the higher-order accuracy of the spline method and suggest that accurate solutions for more practical flow problems can be obtained with relatively coarse nonuniform meshes.
Tensorial Basis Spline Collocation Method for Poisson's Equation
NASA Astrophysics Data System (ADS)
Plagne, Laurent; Berthou, Jean-Yves
2000-01-01
This paper aims to describe the tensorial basis spline collocation method applied to Poisson's equation. In the case of a localized 3D charge distribution in vacuum, this direct method based on a tensorial decomposition of the differential operator is shown to be competitive with both iterative BSCM and FFT-based methods. We emphasize the O(h4) and O(h6) convergence of TBSCM for cubic and quintic splines, respectively. We describe the implementation of this method on a distributed memory parallel machine. Performance measurements on a Cray T3E are reported. Our code exhibits high performance and good scalability: As an example, a 27 Gflops performance is obtained when solving Poisson's equation on a 2563 non-uniform 3D Cartesian mesh by using 128 T3E-750 processors. This represents 215 Mflops per processors.
Regression-based oxides of nitrogen predictors for three diesel engine technologies.
Chen, Xiaohan; Schmid, Natalia A; Wang, Lijuan; Clark, Nigel N
2010-01-01
Models of diesel engine emissions such as oxides of nitrogen (NO(x)) are valuable when they can predict instantaneous values because they can be incorporated into whole vehicle models, support inventory predictions, and assist in developing superior engine and aftertreatment control strategies. Recent model-year diesel engines using multiple injection strategies, exhaust gas recirculation, and variable geometry turbocharging may have more transient sensitivity and demand more sophisticated modeling than for legacy engines. Emissions data from 1992, 1999, and 2004 model-year U.S. truck engines were modeled separately using a linear approach (with transient terms) and multivariate adaptive regression splines (MARS), an adaptive piece-wise regression approach that has limited prior use for emissions prediction. Six input variables based on torque, speed, power, and their derivatives were used for MARS. Emissions time delay was considered for both models. Manifold air temperature (MAT) and manifold air pressure (MAP) were further used in NO(x) modeling to build a plug-in model. The predictive performance for instantaneous NO(x) on part of the certification transient test procedure (Federal Test Procedure [FTP]) of the 2004 engine MARS was lower (R2 = 0.949) than the performance for the 1992 (R2 = 0.981) and 1999 (R2 = 0.988) engines. Linear regression performed similarly for the 1992 and 1999 engines but performed poorly (R2 = 0.896) for the 2004 engine. The MARS performance varied substantially when data from different cycles were used. Overall, the MAP and MAT plug-in model trained by MARS was the best, but the performance differences between LR and MARS were not substantial. PMID:20102037
Stiffness calculation and application of spline-ball bearing
NASA Astrophysics Data System (ADS)
Gu, Bo-Zhong; Zhou, Yu-Ming; Yang, De-Hua
2006-12-01
Spline-ball bearing is widely adopted in large precision instruments because of its distinctive performance. For the sake of carrying out detail investigation of a full instrument system, practical stiffness formulae of such bearing are introduced with elastic contact mechanics, which are successfully applied for calculating the stiffness of the bearing used in astronomical telescope. Appropriate treatment of the stiffness of such bearing in the finite element analysis is also discussed and illustrated.
Control theory and splines, applied to signature storage
NASA Technical Reports Server (NTRS)
Enqvist, Per
1994-01-01
In this report the problem we are going to study is the interpolation of a set of points in the plane with the use of control theory. We will discover how different systems generate different kinds of splines, cubic and exponential, and investigate the effect that the different systems have on the tracking problems. Actually we will see that the important parameters will be the two eigenvalues of the control matrix.
Application of integrodifferential splines to solving an interpolation problem
NASA Astrophysics Data System (ADS)
Burova, I. G.; Rodnikova, O. V.
2014-12-01
This paper deals with cases when the values of derivatives of a function are given at grid nodes or the values of integrals of a function over grid intervals are known. Polynomial and trigonometric integrodifferential splines for computing the value of a function from given values of its nodal derivatives and/or from its integrals over grid intervals are constructed. Error estimates are obtained, and numerical results are presented.
Explicit B-spline regularization in diffeomorphic image registration
Tustison, Nicholas J.; Avants, Brian B.
2013-01-01
Diffeomorphic mappings are central to image registration due largely to their topological properties and success in providing biologically plausible solutions to deformation and morphological estimation problems. Popular diffeomorphic image registration algorithms include those characterized by time-varying and constant velocity fields, and symmetrical considerations. Prior information in the form of regularization is used to enforce transform plausibility taking the form of physics-based constraints or through some approximation thereof, e.g., Gaussian smoothing of the vector fields [a la Thirion's Demons (Thirion, 1998)]. In the context of the original Demons' framework, the so-called directly manipulated free-form deformation (DMFFD) (Tustison et al., 2009) can be viewed as a smoothing alternative in which explicit regularization is achieved through fast B-spline approximation. This characterization can be used to provide B-spline “flavored” diffeomorphic image registration solutions with several advantages. Implementation is open source and available through the Insight Toolkit and our Advanced Normalization Tools (ANTs) repository. A thorough comparative evaluation with the well-known SyN algorithm (Avants et al., 2008), implemented within the same framework, and its B-spline analog is performed using open labeled brain data and open source evaluation tools. PMID:24409140
ERIC Educational Resources Information Center
Pedrini, D. T.; Pedrini, Bonnie C.
Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…
Flexible regression models over river networks
O’Donnell, David; Rushworth, Alastair; Bowman, Adrian W; Marian Scott, E; Hallard, Mark
2014-01-01
Many statistical models are available for spatial data but the vast majority of these assume that spatial separation can be measured by Euclidean distance. Data which are collected over river networks constitute a notable and commonly occurring exception, where distance must be measured along complex paths and, in addition, account must be taken of the relative flows of water into and out of confluences. Suitable models for this type of data have been constructed based on covariance functions. The aim of the paper is to place the focus on underlying spatial trends by adopting a regression formulation and using methods which allow smooth but flexible patterns. Specifically, kernel methods and penalized splines are investigated, with the latter proving more suitable from both computational and modelling perspectives. In addition to their use in a purely spatial setting, penalized splines also offer a convenient route to the construction of spatiotemporal models, where data are available over time as well as over space. Models which include main effects and spatiotemporal interactions, as well as seasonal terms and interactions, are constructed for data on nitrate pollution in the River Tweed. The results give valuable insight into the changes in water quality in both space and time. PMID:25653460
On the functional equivalence of fuzzy inference systems and spline-based networks.
Hunt, K J; Haas, R; Brown, M
1995-06-01
The conditions under which spline-based networks are functionally equivalent to the Takagi-Sugeno-model of fuzzy inference are formally established. We consider a generalized form of basis function network whose basis functions are splines. The result admits a wide range of fuzzy membership functions which are commonly encountered in fuzzy systems design. We use the theoretical background of functional equivalence to develop a hybrid fuzzy-spline net for inverse dynamic modeling of a hydraulically driven robot manipulator. PMID:7496588
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyu; Li, Qingbo; Zhang, Guangjun
2013-11-01
In this paper, a modified single-index signal regression (mSISR) method is proposed to construct a nonlinear and practical model with high-accuracy. The mSISR method defines the optimal penalty tuning parameter in P-spline signal regression (PSR) as initial tuning parameter and chooses the number of cycles based on minimizing root mean squared error of cross-validation (RMSECV). mSISR is superior to single-index signal regression (SISR) in terms of accuracy, computation time and convergency. And it can provide the character of the non-linearity between spectra and responses in a more precise manner than SISR. Two spectra data sets from basic research experiments, including plant chlorophyll nondestructive measurement and human blood glucose noninvasive measurement, are employed to illustrate the advantages of mSISR. The results indicate that the mSISR method (i) obtains the smooth and helpful regression coefficient vector, (ii) explicitly exhibits the type and amount of the non-linearity, (iii) can take advantage of nonlinear features of the signals to improve prediction performance and (iv) has distinct adaptability for the complex spectra model by comparing with other calibration methods. It is validated that mSISR is a promising nonlinear modeling strategy for multivariate calibration.
Design Evaluation of Wind Turbine Spline Couplings Using an Analytical Model: Preprint
Guo, Y.; Keller, J.; Wallen, R.; Errichello, R.; Halse, C.; Lambert, S.
2015-02-01
Articulated splines are commonly used in the planetary stage of wind turbine gearboxes for transmitting the driving torque and improving load sharing. Direct measurement of spline loads and performance is extremely challenging because of limited accessibility. This paper presents an analytical model for the analysis of articulated spline coupling designs. For a given torque and shaft misalignment, this analytical model quickly yields insights into relationships between the spline design parameters and resulting loads; bending, contact, and shear stresses; and safety factors considering various heat treatment methods. Comparisons of this analytical model against previously published computational approaches are also presented.
Ren, K
1990-07-01
A new numerical method of determining potentiometric titration end-points is presented. It consists in calculating the coefficients of approximative spline functions describing the experimental data (e.m.f., volume of titrant added). The end-point (the inflection point of the curve) is determined by calculating zero points of the second derivative of the approximative spline function. This spline function, unlike rational spline functions, is free from oscillations and its course is largely independent of random errors in e.m.f. measurements. The proposed method is useful for direct analysis of titration data and especially as a basis for construction of microcomputer-controlled automatic titrators. PMID:18964999
Simulation study for model performance of multiresponse semiparametric regression
NASA Astrophysics Data System (ADS)
Wibowo, Wahyu; Haryatmi, Sri; Budiantara, I. Nyoman
2015-12-01
The objective of this paper is to evaluate the performance of multiresponse semiparametric regression model based on both of the function types and sample sizes. In general, multiresponse semiparametric regression model consists of parametric and nonparametric functions. This paper focuses on both linear and quadratic functions for parametric components and spline function for nonparametric component. Moreover, this model could also be seen as a spline semiparametric seemingly unrelated regression model. Simulation study is conducted by evaluating three combinations of parametric and nonparametric components, i.e. linear-trigonometric, quadratic-exponential, and multiple linear-polynomial functions respectively. Two criterias are used for assessing the model performance, i.e. R-square and Mean Square Error (MSE). The results show that both of the function types and sample sizes have significantly influenced to the model performance. In addition, this multiresponse semiparametric regression model yields the best performance at the small sample size and combination between multiple linear and polynomial functions as parametric and nonparametric components respectively. Moreover, the model performances at the big sample size tend to be similar for any combination of parametric and nonparametric components.
Achieving high data reduction with integral cubic B-splines
NASA Technical Reports Server (NTRS)
Chou, Jin J.
1993-01-01
During geometry processing, tangent directions at the data points are frequently readily available from the computation process that generates the points. It is desirable to utilize this information to improve the accuracy of curve fitting and to improve data reduction. This paper presents a curve fitting method which utilizes both position and tangent direction data. This method produces G(exp 1) non-rational B-spline curves. From the examples, the method demonstrates very good data reduction rates while maintaining high accuracy in both position and tangent direction.
Use of tensor product splines in magnet optimization
Davey, K.R. )
1999-05-01
Variational Metrics and other direct search techniques have proved useful in magnetic optimization. At least one technique used in magnetic optimization is to first fit the data of the desired optimization parameter to the data. If this fit is smoothly differentiable, a number of powerful techniques become available for the optimization. The author shows the usefulness of tensor product splines in accomplishing this end. Proper choice of augmented knot placement not only makes the fit very accurate, but allows for differentiation. Thus the gradients required with direct optimization in divariate and trivariate applications are robustly generated.
n-dimensional non uniform rational b-splines for metamodeling
Turner, Cameron J; Crawford, Richard H
2008-01-01
Non Uniform Rational B-splines (NURBs) have unique properties that make them attractive for engineering metamodeling applications. NURBs are known to accurately model many different continuous curve and surface topologies in 1- and 2-variate spaces. However, engineering metamodels of the design space often require hypervariate representations of multidimensional outputs. In essence, design space metamodels are hyperdimensional constructs with a dimensionality determined by their input and output variables. To use NURBs as the basis for a metamodel in a hyperdimensional space, traditional geometric fitting techniques must be adapted to hypervariate and hyperdimensional spaces composed of both continuous and discontinuous variable types. In this paper, they describe the necessary adaptations for the development of a NURBs-based metamodel called a Hyperdimensional Performance Model or HyPerModel. HyPerModels are capable of accurately and reliably modeling nonlinear hyperdimensional objects defined by both continuous and discontinuous variables of a wide variety of topologies, such as those that define typical engineering design spaces. They demonstrate this ability by successfully generating accurate HyPerModels of 10 trial functions laying the foundation for future work with N-dimensional NURBs in design space applications.
N-dimensional non uniform rational B-splines for metamodeling
Turner, Cameron J; Crawford, Richard H
2008-01-01
Non Uniform Rational B-splines (NURBs) have unique properties that make them attractive for engineering metamodeling applications. NURBs are known to accurately model many different continuous curve and surface topologies in 1-and 2-variate spaces. However, engineering metamodels of the design space often require hypervariate representations of multidimensional outputs. In essence, design space metamodels are hyperdimensional constructs with a dimensionality determined by their input and output variables. To use NURBs as the basis for a metamodel in a hyperdimensional space, traditional geometric fitting techniques must be adapted to hypervariate and hyperdimensional spaces composed of both continuous and discontinuous variable types. In this paper, we describe the necessary adaptations for the development of a NURBs-based metamodel called a Hyperdimensional Performance Model or HyPerModel. HyPerModels are capable of accurately and reliably modeling nonlinear hyperdimensional objects defined by both continuous and discontinuous variables of a wide variety of topologies, such as those that define typical engineering design spaces. We demonstrate this ability by successfully generating accurate HyPerModels of 10 trial functions laying the foundation for future work with N-dimensional NURBs in design space applications.
Systolic algorithms for B-spline patch generation
Megson, G.M. )
1991-03-01
This paper describes a systolic array for constructing the blending functions of B-spline curves and surfaces to be 7k times faster than the equivalent sequential computation. The array requires just 5k inner product cell equivalents, where k - 1 is the maximum degree of the blending function polynomials. This array is then used as a basis for a composite systolic architecture for generating single or multiple points on a B-spline curve or surface. The total hardware requirement is bounded by 5 max (k, l) + 3 (max(m,n) + 1) inner product cells and O(mn) registers, where m and n are the numbers of control points in the two available directions. The hardware can be reduced to 5 max(k, l) + max(m,n) + 1 if each component of a point is generated by separate passes of data through the array. Equations for the array speed-up are given and likely speed-ups for different sized patches considered.
Spacecraft Orbit Determination with The B-spline Approximation Method
NASA Astrophysics Data System (ADS)
Song, Ye-zhi; Huang, Yong; Hu, Xiao-gong; Li, Pei-jia; Cao, Jian-feng
2014-04-01
It is known that the dynamical orbit determination is the most common way to get the precise orbits of spacecraft. However, it is hard to build up the precise dynamical model of spacecraft sometimes. In order to solve this problem, the technique of the orbit determination with the B-spline approximation method based on the theory of function approximation is presented in this article. In order to verify the effectiveness of this method, simulative orbit determinations in the cases of LEO (Low Earth Orbit), MEO (Medium Earth Orbit), and HEO (Highly Eccentric Orbit) satellites are performed, and it is shown that this method has a reliable accuracy and stable solution. The approach can be performed in both the conventional celestial coordinate system and the conventional terrestrial coordinate system. The spacecraft's position and velocity can be calculated directly with the B-spline approximation method, it needs not to integrate the dynamical equations, nor to calculate the state transfer matrix, thus the burden of calculations in the orbit determination is reduced substantially relative to the dynamical orbit determination method. The technique not only has a certain theoretical significance, but also can serve as a conventional algorithm in the spacecraft orbit determination.
Spacecraft Orbit Determination with B Spline Approximation Method
NASA Astrophysics Data System (ADS)
Song, Y. Z.; Huang, Y.; Hu, X. G.; Li, P. J.; Cao, J. F.
2013-07-01
It is known that the dynamical orbit determination is the most common way to get the precise orbit of spacecraft. However, it is hard to describe the precise orbit of spacecraft sometimes. In order to solve this problem, the technique of the orbit determination with the B spline approximation method based on the theory of function approximation is presented in this article. Several simulation cases of the orbit determination including LEO (Low Earth Orbit), MEO (Medium Earth Orbit), and HEO (Highly Eccentric Orbit) satellites are performed, and it is shown that the accuracy of this method is reliable and stable.The approach can be performed in the conventional celestial coordinate system and conventional terrestrial coordinate system.The spacecraft's position and velocity can be calculated directly with the B spline approximation method, which means that it is unnecessary to integrate the dynamics equations and variational equations. In that case, it makes the calculation amount of orbit determination reduce substantially relative to the dynamical orbit determination method. The technique not only has a certain theoretical significance, but also can be as a conventional algorithm in the spacecraft orbit determination.
An analytic reconstruction method for PET based on cubic splines
NASA Astrophysics Data System (ADS)
Kastis, George A.; Kyriakopoulou, Dimitra; Fokas, Athanasios S.
2014-03-01
PET imaging is an important nuclear medicine modality that measures in vivo distribution of imaging agents labeled with positron-emitting radionuclides. Image reconstruction is an essential component in tomographic medical imaging. In this study, we present the mathematical formulation and an improved numerical implementation of an analytic, 2D, reconstruction method called SRT, Spline Reconstruction Technique. This technique is based on the numerical evaluation of the Hilbert transform of the sinogram via an approximation in terms of 'custom made' cubic splines. It also imposes sinogram thresholding which restricts reconstruction only within object pixels. Furthermore, by utilizing certain symmetries it achieves a reconstruction time similar to that of FBP. We have implemented SRT in the software library called STIR and have evaluated this method using simulated PET data. We present reconstructed images from several phantoms. Sinograms have been generated at various Poison noise levels and 20 realizations of noise have been created at each level. In addition to visual comparisons of the reconstructed images, the contrast has been determined as a function of noise level. Further analysis includes the creation of line profiles when necessary, to determine resolution. Numerical simulations suggest that the SRT algorithm produces fast and accurate reconstructions at realistic noise levels. The contrast is over 95% in all phantoms examined and is independent of noise level.
NASA Astrophysics Data System (ADS)
Khoury, S.; Ibdah, H.; Sayfy, A.
2013-10-01
A mixed approach, based on cubic B-spline collocation and asymptotic boundary conditions (ABCs), is presented for the numerical solution of an extended class of two-point linear boundary value problems (BVPs) over an infinite interval as well as a system of BVPs. The condition at infinity is reduced to an asymptotic boundary condition that approaches the required value at infinity over a large finite interval. The resulting problem is handled using an adaptive spline collocation approach constructed over uniform meshes. The rate of convergence is verified numerically to be of fourth-order. The efficiency and applicability of the method are demonstrated by applying the strategy to a number of examples. The numerical solutions are compared with existing analytical solutions.
Linsen, L; Pascucci, V; Duchaineau, M A; Hamann, B; Joy, K I
2002-11-19
Multiresolution methods for representing data at multiple levels of detail are widely used for large-scale two- and three-dimensional data sets. We present a four-dimensional multiresolution approach for time-varying volume data. This approach supports a hierarchy with spatial and temporal scalability. The hierarchical data organization is based on 4{radical}2 subdivision. The n{radical}2-subdivision scheme only doubles the overall number of grid points in each subdivision step. This fact leads to fine granularity and high adaptivity, which is especially desirable in the spatial dimensions. For high-quality data approximation on each level of detail, we use quadrilinear B-spline wavelets. We present a linear B-spline wavelet lighting scheme based on n{radical}2 subdivision to obtain narrow masks for the update rules. Narrow masks provide a basis for out-of-core data exploration techniques and view-dependent visualization of sequences of time steps.
Samuels, Marina A; Reed, Matthew P; Arbogast, Kristy B; Seacrist, Thomas
2016-01-01
Designing motor vehicle safety systems requires knowledge of whole body kinematics during dynamic loading for occupants of varying size and age, often obtained from sled tests with postmortem human subjects and human volunteers. Recently, we reported pediatric and adult responses in low-speed (<4 g) automotive-like impacts, noting reductions in maximum excursion with increasing age. Since the time-based trajectory shape is also relevant for restraint design, this study quantified the time-series trajectories using basis splines and developed a statistical model for predicting trajectories as a function of body dimension or age. Previously collected trajectories of the head, spine, and pelvis were modeled using cubic basis splines with eight control points. A principal component analysis was conducted on the control points and related to erect seated height using a linear regression model. The resulting statistical model quantified how trajectories became shorter and flatter with increasing body size, corresponding to the validation data-set. Trajectories were then predicted for erect seated heights corresponding to pediatric and adult anthropomorphic test devices (ATDs), thus generating performance criteria for the ATDs based on human response. This statistical model can be used to predict trajectories for a subject of specified anthropometry and utilized in subject-specific computational models of occupant response. PMID:26428257
Lee, Myung Hee; Liu, Yufeng
2013-12-01
The continuum regression technique provides an appealing regression framework connecting ordinary least squares, partial least squares and principal component regression in one family. It offers some insight on the underlying regression model for a given application. Moreover, it helps to provide deep understanding of various regression techniques. Despite the useful framework, however, the current development on continuum regression is only for linear regression. In many applications, nonlinear regression is necessary. The extension of continuum regression from linear models to nonlinear models using kernel learning is considered. The proposed kernel continuum regression technique is quite general and can handle very flexible regression model estimation. An efficient algorithm is developed for fast implementation. Numerical examples have demonstrated the usefulness of the proposed technique. PMID:24058224
ERIC Educational Resources Information Center
Woods, Carol M.; Thissen, David
2006-01-01
The purpose of this paper is to introduce a new method for fitting item response theory models with the latent population distribution estimated from the data using splines. A spline-based density estimation system provides a flexible alternative to existing procedures that use a normal distribution, or a different functional form, for the…
NASA Astrophysics Data System (ADS)
Mitra, Jhimli; Marti, Robert; Oliver, Arnau; Llado, Xavier; Vilanova, Joan C.; Meriaudeau, Fabrice
2011-03-01
This paper provides a comparison of spline-based registration methods applied to register interventional Trans Rectal Ultrasound (TRUS) and pre-acquired Magnetic Resonance (MR) prostate images for needle guided prostate biopsy. B-splines and Thin-plate Splines (TPS) are the most prevalent spline-based approaches to achieve deformable registration. Pertaining to the strategic selection of correspondences for the TPS registration, we use an automatic method already proposed in our previous work to generate correspondences in the MR and US prostate images. The method exploits the prostate geometry with the principal components of the segmented prostate as the underlying framework and involves a triangulation approach. The correspondences are generated with successive refinements and Normalized Mutual Information (NMI) is employed to determine the optimal number of correspondences required to achieve TPS registration. B-spline registration with successive grid refinements are consecutively applied for a significant comparison of the impact of the strategically chosen correspondences on the TPS registration against the uniform B-spline control grids. The experimental results are validated on 4 patient datasets. Dice Similarity Coefficient (DSC) is used as a measure of the registration accuracy. Average DSC values of 0.97+/-0.01 and 0.95+/-0.03 are achieved for the TPS and B-spline registrations respectively. B-spline registration is observed to be more computationally expensive than the TPS registration with average execution times of 128.09 +/- 21.7 seconds and 62.83 +/- 32.77 seconds respectively for images with maximum width of 264 pixels and a maximum height of 211 pixels.
TWO-LEVEL TIME MARCHING SCHEME USING SPLINES FOR SOLVING THE ADVECTION EQUATION. (R826371C004)
A new numerical algorithm using quintic splines is developed and analyzed: quintic spline Taylor-series expansion (QSTSE). QSTSE is an Eulerian flux-based scheme that uses quintic splines to compute space derivatives and Taylor series expansion to march in time. The new scheme...
Efficient Shape Priors for Spline-Based Snakes.
Delgado-Gonzalo, Ricard; Schmitter, Daniel; Uhlmann, Virginie; Unser, Michael
2015-11-01
Parametric active contours are an attractive approach for image segmentation, thanks to their computational efficiency. They are driven by application-dependent energies that reflect the prior knowledge on the object to be segmented. We propose an energy involving shape priors acting in a regularization-like manner. Thereby, the shape of the snake is orthogonally projected onto the space that spans the affine transformations of a given shape prior. The formulation of the curves is continuous, which provides computational benefits when compared with landmark-based (discrete) methods. We show that this approach improves the robustness and quality of spline-based segmentation algorithms, while its computational overhead is negligible. An interactive and ready-to-use implementation of the proposed algorithm is available and was successfully tested on real data in order to segment Drosophila flies and yeast cells in microscopic images. PMID:26353353
Modeling human spine using dynamic spline approach for vibrational simulation
NASA Astrophysics Data System (ADS)
Valentini, Pier Paolo
2012-12-01
This paper deals with the description of an innovative numerical dynamic model of the human spine for vibrational behavior assessment. The modeling approach is based on the use of the dynamic spline formalism in order to achieve a condensed description requiring a smaller set of variables but maintaining the nonlinear characteristic and the accuracy of a fully multibody dynamic model. The methodology has been validated by comparing the modal behavior of the spine sub-assembly to other models available in literature. Moreover, the proposed dynamic sub-system has been integrated into a two dimensional multibody model of a seated vehicle occupant in order to compute the seat-to-head transmissibility. This characteristic has been compared to those obtained using other spine sub-models. Both modal behavior and acceleration transmissibility computed with the proposed approach show a very good accordance with others coming from more complex models.
An Algebraic Spline Model of Molecular Surfaces for Energetic Computations
Zhao, Wenqi; Bajaj, Chandrajit; Xu, Guoliang
2009-01-01
In this paper, we describe a new method to generate a smooth algebraic spline (AS) approximation of the molecular surface (MS) based on an initial coarse triangulation derived from the atomic coordinate information of the biomolecule, resident in the PDB (Protein data bank). Our method first constructs a triangular prism scaffold covering the PDB structure, and then generates a piecewise polynomial F on the Bernstein-Bezier (BB) basis within the scaffold. An ASMS model of the molecular surface is extracted as the zero contours of F which is nearly C1 and has dual implicit and parametric representations. The dual representations allow us easily do the point sampling on the ASMS model and apply it to the accurate estimation of the integrals involved in the electrostatic solvation energy computations. Meanwhile comparing with the trivial piecewise linear surface model, fewer number of sampling points are needed for the ASMS, which effectively reduces the complexity of the energy estimation. PMID:21519111
Imre, K.
1993-05-01
We are developing a profile analysis code for the statistical estimation of the parametric dependencies of the temperature and density profiles in tokamaks. Our code uses advanced statistical techniques to determine the optimal fit, i.e. the fit which minimized the predictive error. For a forty TFTR Ohmic profile dataset, our preliminary results indicate that the profile shape depends almost exclusively on q{sub a}{prime} but that the shape dependencies are not Gaussian. We are now comparing various shape models on the TFTR data. In the first six months, we have completed the core modules of the code, including a B-spline package for variable knot locations, a data-based method to determine the optimal smoothing parameters, self-consistent estimation of the bias errors, and adaptive fitting near the plasma edge. Visualization graphics already include three dimensional surface plots, and discharge by discharge plots of the predicted curves with error bars together with the actual measurements values, and plots of the basis functions with errors.
Sensorless Interaction Force Control Based on B-Spline Function for Human-Robot Systems
NASA Astrophysics Data System (ADS)
Mitsantisuk, Chowarit; Katsura, Seiichiro; Ohishi, Kiyoshi
In this paper, to provide precise force sensation of human operator, a twin direct-drive motor system with wire rope mechanism has been developed. The human-robot interaction force and the wire rope tension are independently controlled in acceleration dimension by realizing the dual disturbance observer based on modal space design. In the common mode, it is utilized for control of vibration suppression and wire rope tension. In the differential mode, the purity of human external force with compensation of friction force is obtained. This mode is useful for control of the interaction force of human. Furthermore, the human-robot system that has the ability of support of human interaction force is also proposed. The interaction force generation based on B-spline function is applied to automatically adjust the smooth force command corresponding to the adaptive parameters.
To analyze the human movement stroke, the multi-sensor scheme is applied to fuse both two motor encoders and acceleration sensor signal by using Kalman filter. From the experimental results, the ability to design different level of assistive force makes it well suited to customized training programs due to time and human movement constraints.
Eberly, Lynn E
2007-01-01
This chapter describes multiple linear regression, a statistical approach used to describe the simultaneous associations of several variables with one continuous outcome. Important steps in using this approach include estimation and inference, variable selection in model building, and assessing model fit. The special cases of regression with interactions among the variables, polynomial regression, regressions with categorical (grouping) variables, and separate slopes models are also covered. Examples in microbiology are used throughout. PMID:18450050
NASA Astrophysics Data System (ADS)
Curà, Francesca; Mura, Andrea
2013-11-01
Tooth stiffness is a very important parameter in studying both static and dynamic behaviour of spline couplings and gears. Many works concerning tooth stiffness calculation are available in the literature, but experimental results are very rare, above all considering spline couplings. In this work experimental values of spline coupling tooth stiffness have been obtained by means of a special hexapod measuring device. Experimental results have been compared with the corresponding theoretical and numerical ones. Also the effect of angular misalignments between hub and shaft has been investigated in the experimental planning.
Quintic nonpolynomial spline solutions for fourth order two-point boundary value problem
NASA Astrophysics Data System (ADS)
Ramadan, M. A.; Lashien, I. F.; Zahra, W. K.
2009-04-01
In this paper, we develop quintic nonpolynomial spline methods for the numerical solution of fourth order two-point boundary value problems. Using this spline function a few consistency relations are derived for computing approximations to the solution of the problem. The present approach gives better approximations and generalizes all the existing polynomial spline methods up to order four. This approach has less computational cost. Convergence analysis of these methods is discussed. Two numerical examples are included to illustrate the practical usefulness of our methods.
Higher-order numerical solutions using cubic splines. [for partial differential equations
NASA Technical Reports Server (NTRS)
Rubin, S. G.; Khosla, P. K.
1975-01-01
A cubic spline collocation procedure has recently been developed for the numerical solution of partial differential equations. In the present paper, this spline procedure is reformulated so that the accuracy of the second-derivative approximation is improved and parallels that previously obtained for lower derivative terms. The final result is a numerical procedure having overall third-order accuracy for a non-uniform mesh and overall fourth-order accuracy for a uniform mesh. Solutions using both spline procedures, as well as three-point finite difference methods, will be presented for several model problems.-
Daly, Don S.; Anderson, Kevin K.; White, Amanda M.; Gonzalez, Rachel M.; Varnum, Susan M.; Zangar, Richard C.
2008-07-14
Background: A microarray of enzyme-linked immunosorbent assays, or ELISA microarray, predicts simultaneously the concentrations of numerous proteins in a small sample. These predictions, however, are uncertain due to processing error and biological variability. Making sound biological inferences as well as improving the ELISA microarray process require require both concentration predictions and creditable estimates of their errors. Methods: We present a statistical method based on monotonic spline statistical models, penalized constrained least squares fitting (PCLS) and Monte Carlo simulation (MC) to predict concentrations and estimate prediction errors in ELISA microarray. PCLS restrains the flexible spline to a fit of assay intensity that is a monotone function of protein concentration. With MC, both modeling and measurement errors are combined to estimate prediction error. The spline/PCLS/MC method is compared to a common method using simulated and real ELISA microarray data sets. Results: In contrast to the rigid logistic model, the flexible spline model gave credible fits in almost all test cases including troublesome cases with left and/or right censoring, or other asymmetries. For the real data sets, 61% of the spline predictions were more accurate than their comparable logistic predictions; especially the spline predictions at the extremes of the prediction curve. The relative errors of 50% of comparable spline and logistic predictions differed by less than 20%. Monte Carlo simulation rendered acceptable asymmetric prediction intervals for both spline and logistic models while propagation of error produced symmetric intervals that diverged unrealistically as the standard curves approached horizontal asymptotes. Conclusions: The spline/PCLS/MC method is a flexible, robust alternative to a logistic/NLS/propagation-of-error method to reliably predict protein concentrations and estimate their errors. The spline method simplifies model selection and fitting
Curve fitting and modeling with splines using statistical variable selection techniques
NASA Technical Reports Server (NTRS)
Smith, P. L.
1982-01-01
The successful application of statistical variable selection techniques to fit splines is demonstrated. Major emphasis is given to knot selection, but order determination is also discussed. Two FORTRAN backward elimination programs, using the B-spline basis, were developed. The program for knot elimination is compared in detail with two other spline-fitting methods and several statistical software packages. An example is also given for the two-variable case using a tensor product basis, with a theoretical discussion of the difficulties of their use.
Energy Science and Technology Software Center (ESTSC)
2015-09-09
The NCCS Regression Test Harness is a software package that provides a framework to perform regression and acceptance testing on NCCS High Performance Computers. The package is written in Python and has only the dependency of a Subversion repository to store the regression tests.
Orthogonal Regression and Equivariance.
ERIC Educational Resources Information Center
Blankmeyer, Eric
Ordinary least-squares regression treats the variables asymmetrically, designating a dependent variable and one or more independent variables. When it is not obvious how to make this distinction, a researcher may prefer to use orthogonal regression, which treats the variables symmetrically. However, the usual procedure for orthogonal regression is…
Unitary Response Regression Models
ERIC Educational Resources Information Center
Lipovetsky, S.
2007-01-01
The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…
Demosaicing Based on Directional Difference Regression and Efficient Regression Priors.
Wu, Jiqing; Timofte, Radu; Van Gool, Luc
2016-08-01
Color demosaicing is a key image processing step aiming to reconstruct the missing pixels from a recorded raw image. On the one hand, numerous interpolation methods focusing on spatial-spectral correlations have been proved very efficient, whereas they yield a poor image quality and strong visible artifacts. On the other hand, optimization strategies, such as learned simultaneous sparse coding and sparsity and adaptive principal component analysis-based algorithms, were shown to greatly improve image quality compared with that delivered by interpolation methods, but unfortunately are computationally heavy. In this paper, we propose efficient regression priors as a novel, fast post-processing algorithm that learns the regression priors offline from training data. We also propose an independent efficient demosaicing algorithm based on directional difference regression, and introduce its enhanced version based on fused regression. We achieve an image quality comparable to that of the state-of-the-art methods for three benchmarks, while being order(s) of magnitude faster. PMID:27254866
NASA Astrophysics Data System (ADS)
Tanaka, Satoyuki; Okada, Hiroshi; Okazawa, Shigenobu
2012-07-01
This study develops a wavelet Galerkin method (WGM) that uses B-spline wavelet bases for application to solid mechanics problems. A fictitious domain is often adopted to treat general boundaries in WGMs. In the analysis, the body is extended to its exterior but very low stiffness is applied to the exterior region. The stiffness matrix in the WGM becomes singular without the use of a fictitious domain. The problem arises from the lack of linear independence of the basis functions. A technique to remove basis functions that can be represented by the superposition of the other basis functions is proposed. The basis functions are automatically eliminated in the pre conditioning step. An adaptive strategy is developed using the proposed technique. The solution is refined by superposing finer wavelet functions. Numerical examples of solid mechanics problems are presented to demonstrate the multiresolution properties of the WGM.
Chevalier, Paul; Bouchon, Patrick; Pardo, Fabrice; Haïdar, Riad
2014-08-01
Focusing light onto nanostructures thanks to spherical lenses is a first step in enhancing the field and is widely used in applications. Nonetheless, the electromagnetic response of such nanostructures, which have subwavelength patterns, to a focused beam cannot be described by the simple ray tracing formalism. Here, we present a method for computing the response to a focused beam, based on the B-spline modal method adapted to nanostructures in conical mounting. The eigenmodes are computed in each layer for both polarizations and are then combined for the computation of scattering matrices. The simulation of a Gaussian focused beam is obtained thanks to a truncated decomposition into plane waves computed on a single period, which limits the computation burden. PMID:25121523
Quiet Clean Short-haul Experimental Engine (QCSEE). Ball spline pitch change mechanism design report
NASA Technical Reports Server (NTRS)
1978-01-01
Detailed design parameters are presented for a variable-pitch change mechanism. The mechanism is a mechanical system containing a ball screw/spline driving two counteracting master bevel gears meshing pinion gears attached to each of 18 fan blades.
Penalized Spline: a General Robust Trajectory Model for ZIYUAN-3 Satellite
NASA Astrophysics Data System (ADS)
Pan, H.; Zou, Z.
2016-06-01
Owing to the dynamic imaging system, the trajectory model plays a very important role in the geometric processing of high resolution satellite imagery. However, establishing a trajectory model is difficult when only discrete and noisy data are available. In this manuscript, we proposed a general robust trajectory model, the penalized spline model, which could fit trajectory data well and smooth noise. The penalized parameter λ controlling the smooth and fitting accuracy could be estimated by generalized cross-validation. Five other trajectory models, including third-order polynomials, Chebyshev polynomials, linear interpolation, Lagrange interpolation and cubic spline, are compared with the penalized spline model. Both the sophisticated ephemeris and on-board ephemeris are used to compare the orbit models. The penalized spline model could smooth part of noise, and accuracy would decrease as the orbit length increases. The band-to-band misregistration of ZiYuan-3 Dengfeng and Faizabad multispectral images is used to evaluate the proposed method. With the Dengfeng dataset, the third-order polynomials and Chebyshev approximation could not model the oscillation, and introduce misregistration of 0.57 pixels misregistration in across-track direction and 0.33 pixels in along-track direction. With the Faizabad dataset, the linear interpolation, Lagrange interpolation and cubic spline model suffer from noise, introducing larger misregistration than the approximation models. Experimental results suggest the penalized spline model could model the oscillation and smooth noise.
Registration of sliding objects using direction dependent B-splines decomposition
NASA Astrophysics Data System (ADS)
Delmon, V.; Rit, S.; Pinho, R.; Sarrut, D.
2013-03-01
Sliding motion is a challenge for deformable image registration because it leads to discontinuities in the sought deformation. In this paper, we present a method to handle sliding motion using multiple B-spline transforms. The proposed method decomposes the sought deformation into sliding regions to allow discontinuities at their interfaces, but prevents unrealistic solutions by forcing those interfaces to match. The method was evaluated on 16 lung cancer patients against a single B-spline transform approach and a multi B-spline transforms approach without the sliding constraint at the interface. The target registration error (TRE) was significantly lower with the proposed method (TRE = 1.5 mm) than with the single B-spline approach (TRE = 3.7 mm) and was comparable to the multi B-spline approach without the sliding constraint (TRE = 1.4 mm). The proposed method was also more accurate along region interfaces, with 37% less gaps and overlaps when compared to the multi B-spline transforms without the sliding constraint. This work was presented in part at the 4th International Workshop on Pulmonary Image Analysis during the Medical Image Computing and Computer Assisted Intervention (MICCAI) in Toronto, Canada (2011).
Exact sampling of the unobserved covariates in Bayesian spline models for measurement error problems
Carroll, Raymond J.
2015-01-01
In truncated polynomial spline or B-spline models where the covariates are measured with error, a fully Bayesian approach to model fitting requires the covariates and model parameters to be sampled at every Markov chain Monte Carlo iteration. Sampling the unobserved covariates poses a major computational problem and usually Gibbs sampling is not possible. This forces the practitioner to use a Metropolis–Hastings step which might suffer from unacceptable performance due to poor mixing and might require careful tuning. In this article we show for the cases of truncated polynomial spline or B-spline models of degree equal to one, the complete conditional distribution of the covariates measured with error is available explicitly as a mixture of double-truncated normals, thereby enabling a Gibbs sampling scheme. We demonstrate via a simulation study that our technique performs favorably in terms of computational efficiency and statistical performance. Our results indicate up to 62 and 54 % increase in mean integrated squared error efficiency when compared to existing alternatives while using truncated polynomial splines and B-splines respectively. Furthermore, there is evidence that the gain in efficiency increases with the measurement error variance, indicating the proposed method is a particularly valuable tool for challenging applications that present high measurement error. We conclude with a demonstration on a nutritional epidemiology data set from the NIH-AARP study and by pointing out some possible extensions of the current work. PMID:27418743
Penalized solutions to functional regression problems
Harezlak, Jaroslaw; Coull, Brent A.; Laird, Nan M.; Magari, Shannon R.; Christiani, David C.
2007-01-01
SUMMARY Recent technological advances in continuous biological monitoring and personal exposure assessment have led to the collection of subject-specific functional data. A primary goal in such studies is to assess the relationship between the functional predictors and the functional responses. The historical functional linear model (HFLM) can be used to model such dependencies of the response on the history of the predictor values. An estimation procedure for the regression coefficients that uses a variety of regularization techniques is proposed. An approximation of the regression surface relating the predictor to the outcome by a finite-dimensional basis expansion is used, followed by penalization of the coefficients of the neighboring basis functions by restricting the size of the coefficient differences to be small. Penalties based on the absolute values of the basis function coefficient differences (corresponding to the LASSO) and the squares of these differences (corresponding to the penalized spline methodology) are studied. The fits are compared using an extension of the Akaike Information Criterion that combines the error variance estimate, degrees of freedom of the fit and the norm of the bases function coefficients. The performance of the proposed methods is evaluated via simulations. The LASSO penalty applied to the linearly transformed coefficients yields sparser representations of the estimated regression surface, while the quadratic penalty provides solutions with the smallest L2-norm of the basis functions coefficients. Finally, the new estimation procedure is applied to the analysis of the effects of occupational particulate matter (PM) exposure on the heart rate variability (HRV) in a cohort of boilermaker workers. Results suggest that the strongest association between PM exposure and HRV in these workers occurs as a result of point exposures to the increased levels of particulate matter corresponding to smoking breaks. PMID:18552972
Penalized solutions to functional regression problems.
Harezlak, Jaroslaw; Coull, Brent A; Laird, Nan M; Magari, Shannon R; Christiani, David C
2007-06-15
Recent technological advances in continuous biological monitoring and personal exposure assessment have led to the collection of subject-specific functional data. A primary goal in such studies is to assess the relationship between the functional predictors and the functional responses. The historical functional linear model (HFLM) can be used to model such dependencies of the response on the history of the predictor values. An estimation procedure for the regression coefficients that uses a variety of regularization techniques is proposed. An approximation of the regression surface relating the predictor to the outcome by a finite-dimensional basis expansion is used, followed by penalization of the coefficients of the neighboring basis functions by restricting the size of the coefficient differences to be small. Penalties based on the absolute values of the basis function coefficient differences (corresponding to the LASSO) and the squares of these differences (corresponding to the penalized spline methodology) are studied. The fits are compared using an extension of the Akaike Information Criterion that combines the error variance estimate, degrees of freedom of the fit and the norm of the bases function coefficients. The performance of the proposed methods is evaluated via simulations. The LASSO penalty applied to the linearly transformed coefficients yields sparser representations of the estimated regression surface, while the quadratic penalty provides solutions with the smallest L(2)-norm of the basis functions coefficients. Finally, the new estimation procedure is applied to the analysis of the effects of occupational particulate matter (PM) exposure on the heart rate variability (HRV) in a cohort of boilermaker workers. Results suggest that the strongest association between PM exposure and HRV in these workers occurs as a result of point exposures to the increased levels of particulate matter corresponding to smoking breaks. PMID:18552972
van Leeuwen, Nikki; Lingsma, Hester F; de Craen, Anton J M; Nieboer, Daan; Mooijaart, Simon P; Richard, Edo; Steyerberg, Ewout W
2016-07-01
In epidemiology, the regression discontinuity design has received increasing attention recently and might be an alternative to randomized controlled trials (RCTs) to evaluate treatment effects. In regression discontinuity, treatment is assigned above a certain threshold of an assignment variable for which the treatment effect is adjusted in the analysis. We performed simulations and a validation study in which we used treatment effect estimates from an RCT as the reference for a prospectively performed regression discontinuity study. We estimated the treatment effect using linear regression adjusting for the assignment variable both as linear terms and restricted cubic spline and using local linear regression models. In the first validation study, the estimated treatment effect from a cardiovascular RCT was -4.0 mmHg blood pressure (95% confidence interval: -5.4, -2.6) at 2 years after inclusion. The estimated effect in regression discontinuity was -5.9 mmHg (95% confidence interval: -10.8, -1.0) with restricted cubic spline adjustment. Regression discontinuity showed different, local effects when analyzed with local linear regression. In the second RCT, regression discontinuity treatment effect estimates on total cholesterol level at 3 months after inclusion were similar to RCT estimates, but at least six times less precise. In conclusion, regression discontinuity may provide similar estimates of treatment effects to RCT estimates, but requires the assumption of a global treatment effect over the range of the assignment variable. In addition to a risk of bias due to wrong assumptions, researchers need to weigh better recruitment against the substantial loss in precision when considering a study with regression discontinuity versus RCT design. PMID:27031038
Prediction in Multiple Regression.
ERIC Educational Resources Information Center
Osborne, Jason W.
2000-01-01
Presents the concept of prediction via multiple regression (MR) and discusses the assumptions underlying multiple regression analyses. Also discusses shrinkage, cross-validation, and double cross-validation of prediction equations and describes how to calculate confidence intervals around individual predictions. (SLD)
Improved Regression Calibration
ERIC Educational Resources Information Center
Skrondal, Anders; Kuha, Jouni
2012-01-01
The likelihood for generalized linear models with covariate measurement error cannot in general be expressed in closed form, which makes maximum likelihood estimation taxing. A popular alternative is regression calibration which is computationally efficient at the cost of inconsistent estimation. We propose an improved regression calibration…
Gerber, Samuel; Rübel, Oliver; Bremer, Peer-Timo; Pascucci, Valerio; Whitaker, Ross T.
2012-01-01
This paper introduces a novel partition-based regression approach that incorporates topological information. Partition-based regression typically introduce a quality-of-fit-driven decomposition of the domain. The emphasis in this work is on a topologically meaningful segmentation. Thus, the proposed regression approach is based on a segmentation induced by a discrete approximation of the Morse-Smale complex. This yields a segmentation with partitions corresponding to regions of the function with a single minimum and maximum that are often well approximated by a linear model. This approach yields regression models that are amenable to interpretation and have good predictive capacity. Typically, regression estimates are quantified by their geometrical accuracy. For the proposed regression, an important aspect is the quality of the segmentation itself. Thus, this paper introduces a new criterion that measures the topological accuracy of the estimate. The topological accuracy provides a complementary measure to the classical geometrical error measures and is very sensitive to over-fitting. The Morse-Smale regression is compared to state-of-the-art approaches in terms of geometry and topology and yields comparable or improved fits in many cases. Finally, a detailed study on climate-simulation data demonstrates the application of the Morse-Smale regression. Supplementary materials are available online and contain an implementation of the proposed approach in the R package msr, an analysis and simulations on the stability of the Morse-Smale complex approximation and additional tables for the climate-simulation study. PMID:23687424
Gerber, Samuel; Rubel, Oliver; Bremer, Peer -Timo; Pascucci, Valerio; Whitaker, Ross T.
2012-01-19
This paper introduces a novel partition-based regression approach that incorporates topological information. Partition-based regression typically introduces a quality-of-fit-driven decomposition of the domain. The emphasis in this work is on a topologically meaningful segmentation. Thus, the proposed regression approach is based on a segmentation induced by a discrete approximation of the Morse–Smale complex. This yields a segmentation with partitions corresponding to regions of the function with a single minimum and maximum that are often well approximated by a linear model. This approach yields regression models that are amenable to interpretation and have good predictive capacity. Typically, regression estimates are quantified by their geometrical accuracy. For the proposed regression, an important aspect is the quality of the segmentation itself. Thus, this article introduces a new criterion that measures the topological accuracy of the estimate. The topological accuracy provides a complementary measure to the classical geometrical error measures and is very sensitive to overfitting. The Morse–Smale regression is compared to state-of-the-art approaches in terms of geometry and topology and yields comparable or improved fits in many cases. Finally, a detailed study on climate-simulation data demonstrates the application of the Morse–Smale regression. Supplementary Materials are available online and contain an implementation of the proposed approach in the R package msr, an analysis and simulations on the stability of the Morse–Smale complex approximation, and additional tables for the climate-simulation study.
Jalali-Heravi, M; Mani-Varnosfaderani, A; Taherinia, D; Mahmoodi, M M
2012-07-01
The main aim of this work was to assess the ability of Bayesian multivariate adaptive regression splines (BMARS) and Bayesian radial basis function (BRBF) techniques for modelling the gas chromatographic retention indices of volatile components of Artemisia species. A diverse set of molecular descriptors was calculated and used as descriptor pool for modelling the retention indices. The ability of BMARS and BRBF techniques was explored for the selection of the most relevant descriptors and proper basis functions for modelling. The results revealed that BRBF technique is more reproducible than BMARS for modelling the retention indices and can be used as a method for variable selection and modelling in quantitative structure-property relationship (QSPR) studies. It is also concluded that the Markov chain Monte Carlo (MCMC) search engine, implemented in BRBF algorithm, is a suitable method for selecting the most important features from a vast number of them. The values of correlation between the calculated retention indices and the experimental ones for the training and prediction sets (0.935 and 0.902, respectively) revealed the prediction power of the BRBF model in estimating the retention index of volatile components of Artemisia species. PMID:22452344
Evaluation of the spline reconstruction technique for PET
Kastis, George A. Kyriakopoulou, Dimitra; Gaitanis, Anastasios; Fernández, Yolanda; Hutton, Brian F.; Fokas, Athanasios S.
2014-04-15
Purpose: The spline reconstruction technique (SRT), based on the analytic formula for the inverse Radon transform, has been presented earlier in the literature. In this study, the authors present an improved formulation and numerical implementation of this algorithm and evaluate it in comparison to filtered backprojection (FBP). Methods: The SRT is based on the numerical evaluation of the Hilbert transform of the sinogram via an approximation in terms of “custom made” cubic splines. By restricting reconstruction only within object pixels and by utilizing certain mathematical symmetries, the authors achieve a reconstruction time comparable to that of FBP. The authors have implemented SRT in STIR and have evaluated this technique using simulated data from a clinical positron emission tomography (PET) system, as well as real data obtained from clinical and preclinical PET scanners. For the simulation studies, the authors have simulated sinograms of a point-source and three digital phantoms. Using these sinograms, the authors have created realizations of Poisson noise at five noise levels. In addition to visual comparisons of the reconstructed images, the authors have determined contrast and bias for different regions of the phantoms as a function of noise level. For the real-data studies, sinograms of an{sup 18}F-FDG injected mouse, a NEMA NU 4-2008 image quality phantom, and a Derenzo phantom have been acquired from a commercial PET system. The authors have determined: (a) coefficient of variations (COV) and contrast from the NEMA phantom, (b) contrast for the various sections of the Derenzo phantom, and (c) line profiles for the Derenzo phantom. Furthermore, the authors have acquired sinograms from a whole-body PET scan of an {sup 18}F-FDG injected cancer patient, using the GE Discovery ST PET/CT system. SRT and FBP reconstructions of the thorax have been visually evaluated. Results: The results indicate an improvement in FWHM and FWTM in both simulated and real
Schmid, Matthias; Wickler, Florian; Maloney, Kelly O.; Mitchell, Richard; Fenske, Nora; Mayr, Andreas
2013-01-01
Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1). Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures. PMID:23626706
Csébfalvi, Balázs
2010-01-01
In this paper, we demonstrate that quasi-interpolation of orders two and four can be efficiently implemented on the Body-Centered Cubic (BCC) lattice by using tensor-product B-splines combined with appropriate discrete prefilters. Unlike the nonseparable box-spline reconstruction previously proposed for the BCC lattice, the prefiltered B-spline reconstruction can utilize the fast trilinear texture-fetching capability of the recent graphics cards. Therefore, it can be applied for rendering BCC-sampled volumetric data interactively. Furthermore, we show that a separable B-spline filter can suppress the postaliasing effect much more isotropically than a nonseparable box-spline filter of the same approximation power. Although prefilters that make the B-splines interpolating on the BCC lattice do not exist, we demonstrate that quasi-interpolating prefiltered linear and cubic B-spline reconstructions can still provide similar or higher image quality than the interpolating linear box-spline and prefiltered quintic box-spline reconstructions, respectively. PMID:20224143
Revisiting Regression in Autism: Heller's "Dementia Infantilis"
ERIC Educational Resources Information Center
Westphal, Alexander; Schelinski, Stefanie; Volkmar, Fred; Pelphrey, Kevin
2013-01-01
Theodor Heller first described a severe regression of adaptive function in normally developing children, something he termed dementia infantilis, over one 100 years ago. Dementia infantilis is most closely related to the modern diagnosis, childhood disintegrative disorder. We translate Heller's paper, Uber Dementia Infantilis, and discuss…
Gearbox Reliability Collaborative Analytic Formulation for the Evaluation of Spline Couplings
Guo, Y.; Keller, J.; Errichello, R.; Halse, C.
2013-12-01
Gearboxes in wind turbines have not been achieving their expected design life; however, they commonly meet and exceed the design criteria specified in current standards in the gear, bearing, and wind turbine industry as well as third-party certification criteria. The cost of gearbox replacements and rebuilds, as well as the down time associated with these failures, has elevated the cost of wind energy. The National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) was established by the U.S. Department of Energy in 2006; its key goal is to understand the root causes of premature gearbox failures and improve their reliability using a combined approach of dynamometer testing, field testing, and modeling. As part of the GRC program, this paper investigates the design of the spline coupling often used in modern wind turbine gearboxes to connect the planetary and helical gear stages. Aside from transmitting the driving torque, another common function of the spline coupling is to allow the sun to float between the planets. The amount the sun can float is determined by the spline design and the sun shaft flexibility subject to the operational loads. Current standards address spline coupling design requirements in varying detail. This report provides additional insight beyond these current standards to quickly evaluate spline coupling designs.