Science.gov

Sample records for adaptive spatial intercell

  1. Intercell connector for lithium batteries

    SciTech Connect

    Bruder, A.H.

    1984-10-16

    Laminar batteries of series connected cells comprising lithium anodes and an electrolyte containing a passivating solvent reactive with lithium in which the cells are electrically connected in series by intercell barriers comprising outer layers of electrochemically inert electronically conducting material in contact with the electrochemically active anode and cathode of adjacent cells and a layer of metal foil between the electrochemically inert layers.

  2. Adaptation Driven by Spatial Heterogeneities

    NASA Astrophysics Data System (ADS)

    Hermsen, Rutger

    2011-03-01

    Biological evolution and ecology are intimately linked, because the reproductive success or ``fitness'' of an organism depends crucially on its ecosystem. Yet, most models of evolution (or population genetics) consider homogeneous, fixed-size populations subjected to a constant selection pressure. To move one step beyond such ``mean field'' descriptions, we discuss stochastic models of evolution driven by spatial heterogeneity. We imagine a population whose range is limited by a spatially varying environmental parameter, such as a temperature or the concentration of an antibiotic drug. Individuals in the population replicate, die and migrate stochastically. Also, by mutation, they can adapt to the environmental stress and expand their range. This way, adaptation and niche expansion go hand in hand. This mode of evolution is qualitatively different from the usual notion of a population climbing a fitness gradient. We analytically calculate the rate of adaptation by solving a first passage time problem. Interestingly, the joint effects of reproduction, death, mutation and migration result in two distinct parameter regimes depending on the relative time scales of mutation and migration. We argue that the proposed scenario may be relevant for the rapid evolution of antibiotic resistance. This work was supported by the Center for Theoretical Biological Physics sponsored by the National Science Foundation (NSF) (Grant PHY-0822283).

  3. Spatial adaptation on video display terminals

    SciTech Connect

    Greenhouse, D.S.; Bailey, I.L.; Howarth, P.A.; Berman, S.M.

    1989-01-01

    Spatial adaptation, in the form of a frequency-specific reduction in contrast sensitivity, can occur when the visual system is exposed to certain stimuli. We employed vertical sinusoidal test gratings to investigate adaptation to the horizontal structure of text presented on a standard video display terminal. The parameters of the contrast sensitivity test were selected on the basis of waveform analysis of spatial luminance scans of the text stimulus. We found that subjects exhibited a small, but significant, frequency-specific adaptation consistent with the spatial frequency spectrum of the stimulus. Theoretical and practical significance of this finding are discussed. 6 refs., 4 figs.

  4. Adaptive Assessment of Spatial Abilities. Final Report.

    ERIC Educational Resources Information Center

    Bejar, Isaac I.

    This report summarizes the results of research designed to study the psychometric and technological feasibility of adaptive testing to assess spatial ability. Data was collected from high school students on two types of spatial items: three-dimensional cubes and hidden figure items. The analysis of the three-dimensional cubes focused on the fit of…

  5. Compartmental Neural Simulations with Spatial Adaptivity

    PubMed Central

    Rempe, Michael J.; Spruston, Nelson; Kath, William L.; Chopp, David L.

    2009-01-01

    Since their inception, computational models have become increasingly complex and useful counterparts to laboratory experiments within the field of neuroscience. Today several software programs exist to solve the underlying mathematical system of equations, but such programs typically solve these equations in all parts of a cell (or network of cells) simultaneously, regardless of whether or not all of the cell is active. This approach can be inefficient if only part of the cell is active and many simulations must be performed. We have previously developed a numerical method that provides a framework for spatial adaptivity by making the computations local to individual branches rather than entire cells (Rempe and Chopp, 2006). Once the computation is reduced to the level of branches instead of cells, spatial adaptivity is straightforward: the active regions of the cell are detected and computational effort is focused there, while saving computations in other regions of the cell that are at or near rest. Here we apply the adaptive method to four realistic neuronal simulation scenarios and demonstrate its improved efficiency over non-adaptive methods. We find that the computational cost of the method scales with the amount of activity present in the simulation, rather than the physical size of the system being simulated. For certain problems spatial adaptivity reduces the computation time by up to 80%. PMID:18459041

  6. Novel detector design for reducing intercell x-ray cross-talk in the variable resolution x-ray CT scanner: A Monte Carlo study

    SciTech Connect

    Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza; Zaidi, Habib

    2011-03-15

    Purpose: The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Methods: Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously published design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 deg. to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. Results: The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. Conclusions: The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.

  7. Intercell ohmic contacts for high efficiency multijunction solar converters

    NASA Technical Reports Server (NTRS)

    Zehr, S. W.; Miller, D. L.; Harris, J. S., Jr.

    1979-01-01

    The monolithic multijunction converter is an attractive approach to achieving solar/electric conversion with greater than 30% efficiency. A major technical challenge in the development of such devices is the requirement for low resistance, optically transparent intercell contacts between adjacent junctions. These contacts should transmit, without significant loss, the spectral fraction of the incident sunlight which is not absorbed and converted in the overlying junction materials. Their contact resistances must be low enough to prevent significant I to the 2d power R loss at the designed current density levels. They should also exhibit adequate thermal conductivity to prevent device overheating when subjected to the designed illumination level. Recent encouraging results for the development of such contacts are presented.

  8. Spatial vision of the achromat: spatial frequency and orientation-specific adaptation.

    PubMed Central

    Greenlee, M W; Magnussen, S; Nordby, K

    1988-01-01

    1. The psychophysical technique of selective adaptation to stationary sine-wave gratings of varying spatial frequency and orientation was used to investigate the central processing of spatial information in the visual system of the complete achromat. 2. For adapting spatial frequencies of 1 and 2 cycles/deg, the spatial frequency and orientation selectivity of contrast threshold elevation is similar for achromatic and trichromatic vision. 3. For adapting frequencies below 1 cycle/deg, the achromat shows threshold elevations of normal magnitude with symmetrical spatial frequency and orientation tuning for adapting frequencies as low as 0.09 cycles/deg with 'bandwidth' estimates similar to those found at high frequencies in the trichromat. Below 0.66 cycles/deg no after-effect could be obtained in the trichromat, and the frequency tuning at 0.66 cycles/deg was skewed towards higher frequencies. 4. The interocular transfer of low-frequency adaptation in the achromat was 50%, which is the same value obtained at higher frequencies. 5. The time course of the decay of low spatial frequency adaptation in the achromat was similar to that found at higher frequencies. 6. Control experiments show no low-frequency adaptation in peripheral vision or in central vision in the dark-adapted trichromat indicating that low spatial frequency adaptation cannot be elicited through the rod system of the trichromat. 7. It is proposed that the observed range shift of adaptable spatial frequency mechanisms in the achromat's visual cortex is the result of an arrest at an early stage of sensory development. The visual cortex of the achromat is comparable, with respect to spatial processing, to that of the young, visually normal human infant. PMID:3261791

  9. Interactive spatial tools for the design of regional adaptation strategies.

    PubMed

    Eikelboom, T; Janssen, R

    2013-09-01

    Regional adaptation strategies are plans that consist of feasible measures to shift a region towards a system that is flexible and robust for future climate changes. They apply to regional impacts of climate change and are imbedded in broader planning. Multiple adaptation frameworks and guidelines exist that describe the development stages of regional adaptation strategies. Spatial information plays a key role in the design of adaptation measures as both the effects of climate change as well as many adaptation measures have spatial impacts. Interactive spatial support tools such as drawing, simulation and evaluation tools can assist the development process. This paper presents how to connect tasks derived from the actual development stages to spatial support tools in an interactive multi-stakeholder context. This link helps to decide what spatial tools are suited to support which stages in the development process of regional adaptation strategies. The practical implication of the link is illustrated for three case study workshops in the Netherlands. The regional planning workshops combine expertise from both scientists and stakeholders with an interactive mapping device. This approach triggered participants to share their expertise and stimulated integration of knowledge. PMID:23137917

  10. The spatial scale of local adaptation in a stochastic environment.

    PubMed

    Hadfield, Jarrod D

    2016-07-01

    The distribution of phenotypes in space will be a compromise between adaptive plasticity and local adaptation increasing the fit of phenotypes to local conditions and gene flow reducing that fit. Theoretical models on the evolution of quantitative characters on spatially explicit landscapes have only considered scenarios where optimum trait values change as deterministic functions of space. Here, these models are extended to include stochastic spatially autocorrelated aspects to the environment, and consequently the optimal phenotype. Under these conditions, the regression of phenotype on the environmental variable becomes steeper as the spatial scale on which populations are sampled becomes larger. Under certain deterministic models - such as linear clines - the regression is constant. The way in which the regression changes with spatial scale is informative about the degree of phenotypic plasticity, the relative scale of effective gene flow and the environmental dependency of selection. Connections to temporal models are discussed. PMID:27188689

  11. Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes.

    PubMed

    Forester, Brenna R; Jones, Matthew R; Joost, Stéphane; Landguth, Erin L; Lasky, Jesse R

    2016-01-01

    The spatial structure of the environment (e.g. the configuration of habitat patches) may play an important role in determining the strength of local adaptation. However, previous studies of habitat heterogeneity and local adaptation have largely been limited to simple landscapes, which poorly represent the multiscale habitat structure common in nature. Here, we use simulations to pursue two goals: (i) we explore how landscape heterogeneity, dispersal ability and selection affect the strength of local adaptation, and (ii) we evaluate the performance of several genotype-environment association (GEA) methods for detecting loci involved in local adaptation. We found that the strength of local adaptation increased in spatially aggregated selection regimes, but remained strong in patchy landscapes when selection was moderate to strong. Weak selection resulted in weak local adaptation that was relatively unaffected by landscape heterogeneity. In general, the power of detection methods closely reflected levels of local adaptation. False-positive rates (FPRs), however, showed distinct differences across GEA methods based on levels of population structure. The univariate GEA approach had high FPRs (up to 55%) under limited dispersal scenarios, due to strong isolation by distance. By contrast, multivariate, ordination-based methods had uniformly low FPRs (0-2%), suggesting these approaches can effectively control for population structure. Specifically, constrained ordinations had the best balance of high detection and low FPRs and will be a useful addition to the GEA toolkit. Our results provide both theoretical and practical insights into the conditions that shape local adaptation and how these conditions impact our ability to detect selection. PMID:26576498

  12. Prism adaptation for spatial neglect after stroke: translational practice gaps

    PubMed Central

    Barrett, A. M.; Goedert, Kelly M.; Basso, Julia C.

    2012-01-01

    Spatial neglect increases hospital morbidity and costs in around 50% of the 795,000 people per year in the USA who survive stroke, and an urgent need exists to reduce the care burden of this condition. However, effective acute treatment for neglect has been elusive. In this article, we review 48 studies of a treatment of intense neuroscience interest: prism adaptation training. Due to its effects on spatial motor ‘aiming’, prism adaptation training may act to reduce neglect-related disability. However, research failed, first, to suggest methods to identify the 50–75% of patients who respond to treatment; second, to measure short-term and long-term outcomes in both mechanism-specific and functionally valid ways; third, to confirm treatment utility during the critical first 8 weeks poststroke; and last, to base treatment protocols on systematic dose–response data. Thus, considerable investment in prism adaptation research has not yet touched the fundamentals needed for clinical implementation. We suggest improved standards and better spatial motor models for further research, so as to clarify when, how and for whom prism adaptation should be applied. PMID:22926312

  13. Radiotherapy Adapted to Spatial and Temporal Variability in Tumor Hypoxia

    SciTech Connect

    Sovik, Aste; Malinen, Eirik . E-mail: emalinen@fys.uio.no; Skogmo, Hege K.; Bentzen, Soren M.; Bruland, Oyvind S.; Olsen, Dag Rune

    2007-08-01

    Purpose: To explore the feasibility and clinical potential of adapting radiotherapy to temporal and spatial variations in tumor oxygenation. Methods and Materials: Repeated dynamic contrast enhanced magnetic resonance (DCEMR) images were taken of a canine sarcoma during the course of fractionated radiation therapy. The tumor contrast enhancement was assumed to represent the oxygen distribution. The IMRT plans were retrospectively adapted to the DCEMR images by employing tumor dose redistribution. Optimized nonuniform tumor dose distributions were calculated and compared with a uniform dose distribution delivering the same integral dose to the tumor. Clinical outcome was estimated from tumor control probability (TCP) and normal tissue complication probability (NTCP) modeling. Results: The biologically adapted treatment was found to give a substantial increase in TCP compared with conventional radiotherapy, even when only pretreatment images were used as basis for the treatment planning. The TCP was further increased by repeated replanning during the course of treatment, and replanning twice a week was found to give near optimal TCP. Random errors in patient positioning were found to give a small decrease in TCP, whereas systematic errors were found to reduce TCP substantially. NTCP for the adapted treatment was similar to or lower than for the conventional treatment, both for parallel and serial normal tissue structures. Conclusion: Biologically adapted radiotherapy is estimated to improve treatment outcome of tumors having spatial and temporal variations in radiosensitivity.

  14. Photonic lantern adaptive spatial mode control in LMA fiber amplifiers.

    PubMed

    Montoya, Juan; Aleshire, Chris; Hwang, Christopher; Fontaine, Nicolas K; Velázquez-Benítez, Amado; Martz, Dale H; Fan, T Y; Ripin, Dan

    2016-02-22

    We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By actively adjusting the relative phase of the single-mode inputs, near-unity coherent combination resulting in a single fundamental mode at the output is achieved. PMID:26906999

  15. Spatially-Anisotropic Parallel Adaptive Wavelet Collocation Method

    NASA Astrophysics Data System (ADS)

    Vasilyev, Oleg V.; Brown-Dymkoski, Eric

    2015-11-01

    Despite latest advancements in development of robust wavelet-based adaptive numerical methodologies to solve partial differential equations, they all suffer from two major ``curses'': 1) the reliance on rectangular domain and 2) the ``curse of anisotropy'' (i.e. homogeneous wavelet refinement and inability to have spatially varying aspect ratio of the mesh elements). The new method addresses both of these challenges by utilizing an adaptive anisotropic wavelet transform on curvilinear meshes that can be either algebraically prescribed or calculated on the fly using PDE-based mesh generation. In order to ensure accurate representation of spatial operators in physical space, an additional adaptation on spatial physical coordinates is also performed. It is important to note that when new nodes are added in computational space, the physical coordinates can be approximated by interpolation of the existing solution and additional local iterations to ensure that the solution of coordinate mapping PDEs is converged on the new mesh. In contrast to traditional mesh generation approaches, the cost of adding additional nodes is minimal, mainly due to localized nature of iterative mesh generation PDE solver requiring local iterations in the vicinity of newly introduced points. This work was supported by ONR MURI under grant N00014-11-1-069.

  16. Study on architecture and implementation of adaptive spatial information service

    NASA Astrophysics Data System (ADS)

    Yu, Zhuoyuan; Wang, Yingjie; Luo, Bin

    2007-06-01

    More and more geo-spatial information has been disseminated to the Internet based on WebGIS architecture. Some of these online mapping applications have already been widely used in recent years, such as Google map, MapQuest, go2map, mapbar. However, due to the limitation of web map technology and transmit speed of large geo-spatial data through the Internet, most of these web map systems employ (pyramid-indexed) raster map modeling technology. This method can shorten server's response time but largely reduces the flexibility and visualization effect of the web map provided. It will be difficult for them to adaptively change the map contents or map styles for variant user demands. This paper propose a new system architecture for adaptive web map service by integrating latest network technology and web map technology, such as SVG, Ajax, user modeling. Its main advantages include: Firstly, it is user customized. In this proposed map system, user can design the map contents, styles and interfaces online by themselves; secondly, it is more intelligent. It can record user interactive actions with the system, analyze user profiles, predict user behavior. User's interests will be obtained and tasks will be suggested based on different user models, which are generated from the system. For instance, if a new user login in, the nearest user model will be matched and some interactive suggestions will be provided by the system for the user. It is a more powerful and efficient way for spatial information sharing. This paper first discusses the main system architecture of adaptive spatial information service which consists of three parts: user layer, map application layer and database layer. User layer is distributed on client side which includes Web map (SVG) browser, map renderer and map visualization component. Application layer includes map application server, user interface generation, user analysis and user modeling, etc. Based on user models, map content, style and user

  17. A COMPARISON OF INTERCELL METRICS ON DISCRETE GLOBAL GRID SYSTEMS

    EPA Science Inventory

    A discrete global grid system (DGGS) is a spatial data model that aids in global research by serving as a framework for environmental modeling, monitoring and sampling across the earth at multiple spatial scales. Topological and geometric criteria have been proposed to evaluate a...

  18. Spatial Compression Impairs Prism Adaptation in Healthy Individuals

    PubMed Central

    Scriven, Rachel J.; Newport, Roger

    2013-01-01

    Neglect patients typically present with gross inattention to one side of space following damage to the contralateral hemisphere. While prism-adaptation (PA) is effective in ameliorating some neglect behaviors, the mechanisms involved and their relationship to neglect remain unclear. Recent studies have shown that conscious strategic control (SC) processes in PA may be impaired in neglect patients, who are also reported to show extraordinarily long aftereffects compared to healthy participants. Determining the underlying cause of these effects may be the key to understanding therapeutic benefits. Alternative accounts suggest that reduced SC might result from a failure to detect prism-induced reaching errors properly either because (a) the size of the error is underestimated in compressed visual space or (b) pathologically increased error-detection thresholds reduce the requirement for error correction. The purpose of this study was to model these two alternatives in healthy participants and to examine whether SC and subsequent aftereffects were abnormal compared to standard PA. Each participant completed three PA procedures within a MIRAGE mediated reality environment with direction errors recorded before, during and after adaptation. During PA, visual feedback of the reach could be compressed, perturbed by noise, or represented veridically. Compressed visual space significantly reduced SC and aftereffects compared to control and noise conditions. These results support recent observations in neglect patients, suggesting that a distortion of spatial representation may successfully model neglect and explain neglect performance while adapting to prisms. PMID:23675332

  19. Spatial compression impairs prism adaptation in healthy individuals.

    PubMed

    Scriven, Rachel J; Newport, Roger

    2013-01-01

    Neglect patients typically present with gross inattention to one side of space following damage to the contralateral hemisphere. While prism-adaptation (PA) is effective in ameliorating some neglect behaviors, the mechanisms involved and their relationship to neglect remain unclear. Recent studies have shown that conscious strategic control (SC) processes in PA may be impaired in neglect patients, who are also reported to show extraordinarily long aftereffects compared to healthy participants. Determining the underlying cause of these effects may be the key to understanding therapeutic benefits. Alternative accounts suggest that reduced SC might result from a failure to detect prism-induced reaching errors properly either because (a) the size of the error is underestimated in compressed visual space or (b) pathologically increased error-detection thresholds reduce the requirement for error correction. The purpose of this study was to model these two alternatives in healthy participants and to examine whether SC and subsequent aftereffects were abnormal compared to standard PA. Each participant completed three PA procedures within a MIRAGE mediated reality environment with direction errors recorded before, during and after adaptation. During PA, visual feedback of the reach could be compressed, perturbed by noise, or represented veridically. Compressed visual space significantly reduced SC and aftereffects compared to control and noise conditions. These results support recent observations in neglect patients, suggesting that a distortion of spatial representation may successfully model neglect and explain neglect performance while adapting to prisms. PMID:23675332

  20. Contribution of Cerebellar Sensorimotor Adaptation to Hippocampal Spatial Memory

    PubMed Central

    Passot, Jean-Baptiste; Sheynikhovich, Denis; Duvelle, Éléonore; Arleo, Angelo

    2012-01-01

    Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation. PMID:22485133

  1. Inter-cell interference mitigation in multi-cellular visible light communications.

    PubMed

    Jung, Sun-Young; Kwon, Do-Hoon; Yang, Se-Hoon; Han, Sang-Kook

    2016-04-18

    Inter-cell interference hinders multi-cellular optical wireless communication to support various applications. We proposed and experimentally demonstrated a multicarrier-based cell partitioning scheme, combined with frequency reuse, which could be effective in optical communications although it is inefficient in RF wireless communications. For multicarrier-based cell partitioning, Orthogonal frequency division multiplexing-based multiple access (OFDMA) was employed to accommodate multi-cellular optical wireless communications without a large guard band between adjacent cells and without additional RF components. Moreover, we employed filter bank-based multicarrier (FBMC) to mitigate inter-cell interference generated in OFDMA-based cell partitioning due to asynchronous signals originated from RF path difference. By using FBMC-based cell partitioning, inter-cell interference could be effectively mitigated as well as capacity and spectral efficiency were improved about 1.5 times compared to those of OFDMA. Because no cyclic prefix (CP) is required in FBMC, the improvement factor could be increased if there is a large RF path difference between lighting cells. Moreover, it could be a stronger solution when many neighboring cells exist causing large interference. The proposed multicarrier-based cell partitioning combined with FBMC will effectively support visible light communication (VLC)-based localization-based services (LBS) and indoor positioning system by transparently providing trilateration-based positioning method. PMID:27137289

  2. Lidar imaging with on-the-fly adaptable spatial resolution

    NASA Astrophysics Data System (ADS)

    Riu, J.; Royo, S.

    2013-10-01

    We present our work in the design and construction of a novel type of lidar device capable of measuring 3D range images with an spatial resolution which can be reconfigured through an on-the-fly configuration approach, adjustable by software and on the image area, and which can reach the 2Mpixel value. A double-patented novel concept of scanning system enables to change dynamically the image resolution depending on external information provided by the image captured in a previous cycle or on other sensors like greyscale or hyperspectral 2D imagers. A prototype of an imaging lidar system which can modify its spatial resolution on demand from one image to the next according to the target nature and state has been developed, and indoor and outdoor sample images showing its performance are presented. Applications in object detection, tracking and identification through a real-time adaptable scanning system for each situation and target behaviour are currently being pursued in different areas.

  3. Signal Adaptive System for Space/Spatial-Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Ivanović, Veselin N.; Jovanovski, Srdjan

    2010-12-01

    This paper outlines the development of a multiple-clock-cycle implementation (MCI) of a signal adaptive two-dimensional (2D) system for space/spatial-frequency (S/SF) signal analysis. The design is based on a method for improved S/SF representation of the analyzed 2D signals, also proposed here. The proposed MCI design optimizes critical design performances related to hardware complexity, making it a suitable system for real time implementation on an integrated chip. Additionally, the design allows the implemented system to take a variable number of clock cycles (CLKs) (the only necessary ones regarding desirable—2D Wigner distribution-presentation of autoterms) in different frequency-frequency points during the execution. This ability represents a major advantage of the proposed design which helps to optimize the time required for execution and produce an improved, cross-terms-free S/SF signal representation. The design has been verified by a field-programmable gate array (FPGA) circuit design, capable of performing S/SF analysis of 2D signals in real time.

  4. Non Local Spatial and Angular Matching: Enabling higher spatial resolution diffusion MRI datasets through adaptive denoising.

    PubMed

    St-Jean, Samuel; Coupé, Pierrick; Descoteaux, Maxime

    2016-08-01

    Diffusion magnetic resonance imaging (MRI) datasets suffer from low Signal-to-Noise Ratio (SNR), especially at high b-values. Acquiring data at high b-values contains relevant information and is now of great interest for microstructural and connectomics studies. High noise levels bias the measurements due to the non-Gaussian nature of the noise, which in turn can lead to a false and biased estimation of the diffusion parameters. Additionally, the usage of in-plane acceleration techniques during the acquisition leads to a spatially varying noise distribution, which depends on the parallel acceleration method implemented on the scanner. This paper proposes a novel diffusion MRI denoising technique that can be used on all existing data, without adding to the scanning time. We first apply a statistical framework to convert both stationary and non stationary Rician and non central Chi distributed noise to Gaussian distributed noise, effectively removing the bias. We then introduce a spatially and angular adaptive denoising technique, the Non Local Spatial and Angular Matching (NLSAM) algorithm. Each volume is first decomposed in small 4D overlapping patches, thus capturing the spatial and angular structure of the diffusion data, and a dictionary of atoms is learned on those patches. A local sparse decomposition is then found by bounding the reconstruction error with the local noise variance. We compare against three other state-of-the-art denoising methods and show quantitative local and connectivity results on a synthetic phantom and on an in-vivo high resolution dataset. Overall, our method restores perceptual information, removes the noise bias in common diffusion metrics, restores the extracted peaks coherence and improves reproducibility of tractography on the synthetic dataset. On the 1.2 mm high resolution in-vivo dataset, our denoising improves the visual quality of the data and reduces the number of spurious tracts when compared to the noisy acquisition. Our

  5. RF impedance measurements on the DARHT-II accelerator intercell assembly

    SciTech Connect

    Fawley, William M.; Eylon, Shmuel; Briggs, Richard

    2003-05-05

    We report upon recent experimental measurements made of RF properties of the intercell assembly of the second axis accelerator[1] of Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at LANL. The intercells provide both pumping and diagnostic access to the main DARHT-II beamline. Their design includes a pumping plenum separated from the main beam pipe by return current rods together with RF shielding provided by a copper-coated stainless steel mesh. Measurements using the twin lead technique (see Ref. [2]) at low frequencies (f < 200 MHz) suggest a constant value for the ratio h of the radial and azimuthal magnetic field components to which the transverse impedance is linearly related. We find that these results compare favorably to predictions from a simple analytic, lumped circuit model which includes the effects of the mesh and return current rods. We also present RF loop-to-loop frequency scans above beam pipe cutoff ({approx}600 MHz) showing the existence of many RF modes with relatively high Q's.

  6. Spatial-frequency-contingent color aftereffects: adaptation with one-dimensional stimuli.

    PubMed

    Day, R H; Webster, W R; Gillies, O; Crassini, B

    1992-01-01

    The McCollough effect was shown to be spatial-frequency selective by Lovegrove and Over (1972) after adaptation with vertical colored square-wave gratings separated by 1 octave. Adaptation with slide-presented red and green vertical square-wave gratings separated by 1 octave failed to produce contingent color aftereffects (CAEs). However, when each of these gratings was adapted alone, strong CAEs were produced. Adaptation with vertical colored sine-wave gratings separated by 1 octave also failed to produce CAEs, but strong effects were produced by adaptation with each grating alone. By varying the spatial frequency of the test sine wave, CAEs were found to be tuned for spatial frequency at 2.85 octaves after adaptation of 4 cycles per degree (cpd) and at 2.30 octaves after adaptation of 8 cpd. Adaptation of both vertical and horizontal sine-wave gratings produced strong CAEs, with bandwidths ranging from 1.96 to 2.90 octaves and with lower adapting contrast producing weaker CAEs. These results indicate that the McCollough effect is more broadly tuned for spatial frequency than are simple adaptation effects. PMID:1549425

  7. Complementary adaptive processes contribute to the developmental plasticity of spatial hearing

    PubMed Central

    Keating, Peter; Dahmen, Johannes C.; King, Andrew J.

    2014-01-01

    Spatial hearing evolved independently in mammals and birds, and is thought to adapt to altered developmental input in different ways. We found, however, that ferrets possess multiple forms of plasticity that are expressed according to which spatial cues are available, suggesting that the basis for adaptation may be similar across species. Our results also provide insight into the way sound source location is represented by populations of cortical neurons. PMID:25581359

  8. Genomewide Spatial Correspondence Between Nonsynonymous Divergence and Neutral Polymorphism Reveals Extensive Adaptation in Drosophila

    PubMed Central

    Macpherson, J. Michael; Sella, Guy; Davis, Jerel C.; Petrov, Dmitri A.

    2007-01-01

    The effect of recurrent selective sweeps is a spatially heterogeneous reduction in neutral polymorphism throughout the genome. The pattern of reduction depends on the selective advantage and recurrence rate of the sweeps. Because many adaptive substitutions responsible for these sweeps also contribute to nonsynonymous divergence, the spatial distribution of nonsynonymous divergence also reflects the distribution of adaptive substitutions. Thus, the spatial correspondence between neutral polymorphism and nonsynonymous divergence may be especially informative about the process of adaptation. Here we study this correspondence using genomewide polymorphism data from Drosophila simulans and the divergence between D. simulans and D. melanogaster. Focusing on highly recombining portions of the autosomes, at a spatial scale appropriate to the study of selective sweeps, we find that neutral polymorphism is both lower and, as measured by a new statistic QS, less homogeneous where nonsynonymous divergence is higher and that the spatial structure of this correlation is best explained by the action of strong recurrent selective sweeps. We introduce a method to infer, from the spatial correspondence between polymorphism and divergence, the rate and selective strength of adaptation. Our results independently confirm a high rate of adaptive substitution (∼1/3000 generations) and newly suggest that many adaptations are of surprisingly great selective effect (∼1%), reducing the effective population size by ∼15% even in highly recombining regions of the genome. PMID:18073425

  9. Method and system for spatial data input, manipulation and distribution via an adaptive wireless transceiver

    NASA Technical Reports Server (NTRS)

    Wang, Ray (Inventor)

    2009-01-01

    A method and system for spatial data manipulation input and distribution via an adaptive wireless transceiver. The method and system include a wireless transceiver for automatically and adaptively controlling wireless transmissions using a Waveform-DNA method. The wireless transceiver can operate simultaneously over both the short and long distances. The wireless transceiver is automatically adaptive and wireless devices can send and receive wireless digital and analog data from various sources rapidly in real-time via available networks and network services.

  10. Development of Climate Change Adaptation Platform using Spatial Information

    NASA Astrophysics Data System (ADS)

    Lee, J.; Oh, K. Y.; Lee, M. J.; Han, W. J.

    2014-12-01

    Climate change adaptation has attracted growing attention with the recent extreme weather conditions that affect people around the world. More and more countries, including the Republic of Korea, have begun to hatch adaptation plan to resolve these matters of great concern. They all, meanwhile, have mentioned that it should come first to integrate climate information in all analysed areas. That's because climate information is not independently made through one source; that is to say, the climate information is connected one another in a complicated way. That is the reason why we have to promote integrated climate change adaptation platform before setting up climate change adaptation plan. Therefore, the large-scaled project has been actively launched and worked on. To date, we researched 620 literatures and interviewed 51 government organizations. Based on the results of the researches and interviews, we obtained 2,725 impacts about vulnerability assessment information such as Monitoring and Forecasting, Health, Disaster, Agriculture, Forest, Water Management, Ecosystem, Ocean/Fisheries, Industry/Energy. Among 2,725 impacts, 995 impacts are made into a database until now. This database is made up 3 sub categories like Climate-Exposure, Sensitivity, Adaptive capacity, presented by IPCC. Based on the constructed database, vulnerability assessments were carried out in order to evaluate climate change capacity of local governments all over the country. These assessments were conducted by using web-based vulnerability assessment tool which was newly developed through this project. These results have shown that, metropolitan areas like Seoul, Pusan, Inchon, and so on have high risks more than twice than rural areas. Acknowledgements: The authors appreciate the support that this study has received from "Development of integrated model for climate change impact and vulnerability assessment and strengthening the framework for model implementation ", an initiative of the

  11. The Impact of Spatial Structure on Viral Genomic Diversity Generated during Adaptation to Thermal Stress

    PubMed Central

    Ally, Dilara; Wiss, Valorie R.; Deckert, Gail E.; Green, Danielle; Roychoudhury, Pavitra; Wichman, Holly A.; Brown, Celeste J.; Krone, Stephen M.

    2014-01-01

    Background Most clinical and natural microbial communities live and evolve in spatially structured environments. When changes in environmental conditions trigger evolutionary responses, spatial structure can impact the types of adaptive response and the extent to which they spread. In particular, localized competition in a spatial landscape can lead to the emergence of a larger number of different adaptive trajectories than would be found in well-mixed populations. Our goal was to determine how two levels of spatial structure affect genomic diversity in a population and how this diversity is manifested spatially. Methodology/Principal Findings We serially transferred bacteriophage populations growing at high temperatures (40°C) on agar plates for 550 generations at two levels of spatial structure. The level of spatial structure was determined by whether the physical locations of the phage subsamples were preserved or disrupted at each passage to fresh bacterial host populations. When spatial structure of the phage populations was preserved, there was significantly greater diversity on a global scale with restricted and patchy distribution. When spatial structure was disrupted with passaging to fresh hosts, beneficial mutants were spread across the entire plate. This resulted in reduced diversity, possibly due to clonal interference as the most fit mutants entered into competition on a global scale. Almost all substitutions present at the end of the adaptation in the populations with disrupted spatial structure were also present in the populations with structure preserved. Conclusions/Significance Our results are consistent with the patchy nature of the spread of adaptive mutants in a spatial landscape. Spatial structure enhances diversity and slows fixation of beneficial mutants. This added diversity could be beneficial in fluctuating environments. We also connect observed substitutions and their effects on fitness to aspects of phage biology, and we provide

  12. Poststroke Hemiparesis Impairs the Rate but not Magnitude of Adaptation of Spatial and Temporal Locomotor Features

    PubMed Central

    Savin, Douglas N.; Tseng, Shih-Chiao; Whitall, Jill; Morton, Susanne M.

    2015-01-01

    Background Persons with stroke and hemiparesis walk with a characteristic pattern of spatial and temporal asymmetry that is resistant to most traditional interventions. It was recently shown in nondisabled persons that the degree of walking symmetry can be readily altered via locomotor adaptation. However, it is unclear whether stroke-related brain damage affects the ability to adapt spatial or temporal gait symmetry. Objective Determine whether locomotor adaptation to a novel swing phase perturbation is impaired in persons with chronic stroke and hemiparesis. Methods Participants with ischemic stroke (14) and nondisabled controls (12) walked on a treadmill before, during, and after adaptation to a unilateral perturbing weight that resisted forward leg movement. Leg kinematics were measured bilaterally, including step length and single-limb support (SLS) time symmetry, limb angle center of oscillation, and interlimb phasing, and magnitude of “initial” and “late” locomotor adaptation rates were determined. Results All participants had similar magnitudes of adaptation and similar initial adaptation rates both spatially and temporally. All 14 participants with stroke and baseline asymmetry temporarily walked with improved SLS time symmetry after adaptation. However, late adaptation rates poststroke were decreased (took more strides to achieve adaptation) compared with controls. Conclusions Mild to moderate hemiparesis does not interfere with the initial acquisition of novel symmetrical gait patterns in both the spatial and temporal domains, though it does disrupt the rate at which “late” adaptive changes are produced. Impairment of the late, slow phase of learning may be an important rehabilitation consideration in this patient population. PMID:22367915

  13. Preflight Adaptation Training for Spatial Orientation and Space Motion Sickness

    NASA Technical Reports Server (NTRS)

    Harm, Deborah L.; Parker, Donald E.

    1994-01-01

    Two part-task preflight adaptation trainers (PATs) are being developed at the NASA Johnson Space Center to preadapt astronauts to novel sensory stimulus conditions similar to those present in microgravity to facilitate adaptation to microgravity and readaptation to Earth. This activity is a major component of a general effort to develop countermeasures aimed at minimizing sensory and sensorimotor disturbances and Space Motion Sickness (SMS) associated with adaptation to microgravity and readaptation to Earth. Design principles for the development of the two trainers are discussed, along with a detailed description of both devices. In addition, a summary of four ground-based investigations using one of the trainers to determine the extent to which various novel sensory stimulus conditions produce changes in compensatory eye movement responses, postural equilibrium, motion sickness symptoms, and electrogastric responses are presented. Finally, a brief description of the general concept of dual-adopted states that underly the development of the PATs, and ongoing and future operational and basic research activities are presented.

  14. Spatial-frequency-contingent color aftereffects: adaptation with two-dimensional stimulus patterns.

    PubMed

    Webster, W R; Day, R H; Gillies, O; Crassini, B

    1992-01-01

    The spatial-frequency theory of vision has been supported by adaptation studies using checkerboards in which contingent color aftereffects (CAEs) were produced at fundamental frequencies oriented at 45 degrees to the edges. A replication of this study failed to produce CAEs at the orientation of either the edges or the fundamentals. Using a computer-generated display, no CAEs were produced by adaptation of a square or an oblique checkerboard. But when one type of checkerboard (4 cpd) was adapted alone, CAEs were produced on the adapted checkerboard and on sine-wave gratings aligned with the fundamental and third harmonics of the checkerboard spectrum. Adaptation of a coarser checkerboard (0.80 cpd) produced CAEs aligned with both the edges and the harmonic frequencies. With checkerboards of both frequencies, CAEs were also found on the other type of checkerboard that had not been adapted. This observation raises problems for any edge-detector theory of vision, because there was no adaptation to edges. It was concluded that spatial-frequency mechanisms are operating at both low- and high-spatial frequencies and that an edge mechanism is operative at lower frequencies. The implications of these results are assessed for other theories of spatial vision. PMID:1549426

  15. Spatial adaptation procedures on tetrahedral meshes for unsteady aerodynamic flow calculations

    NASA Technical Reports Server (NTRS)

    Rausch, Russ D.; Batina, John T.; Yang, Henry T. Y.

    1993-01-01

    Spatial adaptation procedures for the accurate and efficient solution of steady and unsteady inviscid flow problems are described. The adaptation procedures were developed and implemented within a three-dimensional, unstructured-grid, upwind-type Euler code. These procedures involve mesh enrichment and mesh coarsening to either add points in high gradient regions of the flow or remove points where they are not needed, respectively, to produce solutions of high spatial accuracy at minimal computational cost. A detailed description of the enrichment and coarsening procedures are presented and comparisons with experimental data for an ONERA M6 wing and an exact solution for a shock-tube problem are presented to provide an assessment of the accuracy and efficiency of the capability. Steady and unsteady results, obtained using spatial adaptation procedures, are shown to be of high spatial accuracy, primarily in that discontinuities such as shock waves are captured very sharply.

  16. Presence of Motor-Intentional Aiming Deficit Predicts Functional Improvement of Spatial Neglect with Prism Adaptation

    PubMed Central

    Goedert, Kelly M.; Chen, Peii; Boston, Raymond C.; Foundas, Anne L.; Barrett, A. M.

    2013-01-01

    Spatial neglect is a debilitating disorder for which there is no agreed upon course of rehabilitation. The lack of consensus on treatment may result from systematic differences in the syndromes’ characteristics, with spatial cognitive deficits potentially affecting perceptual-attentional Where or motor-intentional Aiming spatial processing. Heterogeneity of response to treatment might be explained by different treatment impact on these dissociated deficits: prism adaptation, for example, might reduce Aiming deficits without affecting Where spatial deficits. Here, we tested the hypothesis that classifying patients by their profile of Where-vs-Aiming spatial deficit would predict response to prism adaptation, and specifically that patients with Aiming bias would have better recovery than those with isolated Where bias. We classified the spatial errors of 24 sub-acute right-stroke survivors with left spatial neglect as: 1) isolated Where bias, 2) isolated Aiming bias or 3) both. Participants then completed two weeks of prism adaptation treatment. They also completed the Behavioral Inattention Test (BIT) and Catherine Bergego Scale (CBS) tests of neglect recovery weekly for six weeks. As hypothesized, participants with only Aiming deficits improved on the CBS, whereas, those with only Where deficits did not improve. Participants with both deficits demonstrated intermediate improvement. These results support behavioral classification of spatial neglect patients as a potential valuable tool for assigning targeted, effective early rehabilitation. PMID:24376064

  17. Smart adaptive optic systems using spatial light modulators.

    PubMed

    Clark, N; Banish, M; Ranganath, H S

    1999-01-01

    Many factors contribute to the aberrations induced in an optical system. Atmospheric turbulence between the object and the imaging system, physical or thermal perturbations in optical elements degrade the system's point spread function, and misaligned optics are the primary sources of aberrations that affect image quality. The design of a nonconventional real-time adaptive optic system using a micro-mirror device for wavefront correction is presented. The unconventional compensated imaging system presented offers advantages in speed, cost, power consumption, and weight. A pulsed-coupled neural network is used to as a preprocessor to enhance the performance of the wavefront sensor for low-light applications. Modeling results that characterize the system performance are presented. PMID:18252558

  18. Computational Characterization of Visually Induced Auditory Spatial Adaptation

    PubMed Central

    Wozny, David R.; Shams, Ladan

    2011-01-01

    Recent research investigating the principles governing human perception has provided increasing evidence for probabilistic inference in human perception. For example, human auditory and visual localization judgments closely resemble that of a Bayesian causal inference observer, where the underlying causal structure of the stimuli are inferred based on both the available sensory evidence and prior knowledge. However, most previous studies have focused on characterization of perceptual inference within a static environment, and therefore, little is known about how this inference process changes when observers are exposed to a new environment. In this study we aimed to computationally characterize the change in auditory spatial perception induced by repeated auditory–visual spatial conflict, known as the ventriloquist aftereffect. In theory, this change could reflect a shift in the auditory sensory representations (i.e., shift in auditory likelihood distribution), a decrease in the precision of the auditory estimates (i.e., increase in spread of likelihood distribution), a shift in the auditory bias (i.e., shift in prior distribution), or an increase/decrease in strength of the auditory bias (i.e., the spread of prior distribution), or a combination of these. By quantitatively estimating the parameters of the perceptual process for each individual observer using a Bayesian causal inference model, we found that the shift in the perceived locations after exposure was associated with a shift in the mean of the auditory likelihood functions in the direction of the experienced visual offset. The results suggest that repeated exposure to a fixed auditory–visual discrepancy is attributed by the nervous system to sensory representation error and as a result, the sensory map of space is recalibrated to correct the error. PMID:22069383

  19. Bayesian symmetrical EEG/fMRI fusion with spatially adaptive priors

    PubMed Central

    Luessi, Martin; Babacan, S. Derin; Molina, Rafael; Booth, James R.; Katsaggelos, Aggelos K.

    2011-01-01

    In this paper, we propose a novel symmetrical EEG/fMRI fusion method which combines EEG and fMRI by means of a common generative model. We use a total variation (TV) prior to model the spatial distribution of the cortical current responses and hemodynamic response functions, and utilize spatially adaptive temporal priors to model their temporal shapes. The spatial adaptivity of the prior model allows for adaptation to the local characteristics of the estimated responses and leads to high estimation performance for the cortical current distribution and the hemodynamic response functions. We utilize a Bayesian formulation with a variational Bayesian framework and obtain a fully automatic fusion algorithm. Simulations with synthetic data and experiments with real data from a multimodal study on face perception demonstrate the performance of the proposed method. PMID:21130173

  20. Adaptive spatial combining for passive time-reversed communications.

    PubMed

    Gomes, João; Silva, António; Jesus, Sérgio

    2008-08-01

    Passive time reversal has aroused considerable interest in underwater communications as a computationally inexpensive means of mitigating the intersymbol interference introduced by the channel using a receiver array. In this paper the basic technique is extended by adaptively weighting sensor contributions to partially compensate for degraded focusing due to mismatch between the assumed and actual medium impulse responses. Two algorithms are proposed, one of which restores constructive interference between sensors, and the other one minimizes the output residual as in widely used equalization schemes. These are compared with plain time reversal and variants that employ postequalization and channel tracking. They are shown to improve the residual error and temporal stability of basic time reversal with very little added complexity. Results are presented for data collected in a passive time-reversal experiment that was conducted during the MREA'04 sea trial. In that experiment a single acoustic projector generated a 24-PSK (phase-shift keyed) stream at 200400 baud, modulated at 3.6 kHz, and received at a range of about 2 km on a sparse vertical array with eight hydrophones. The data were found to exhibit significant Doppler scaling, and a resampling-based preprocessing method is also proposed here to compensate for that scaling. PMID:18681595

  1. Spatial Cognitive Performance During Adaptation to Conflicting Tilt-Translation Stimuli as a Sensorimotor Spaceflight Analog

    NASA Technical Reports Server (NTRS)

    Kayanickupuram, A. J.; Ramos, K. A.; Cordova, M. L.; Wood, S. J.

    2009-01-01

    The need to resolve new patterns of sensory feedback in altered gravitoinertial environments requires cognitive processes to develop appropriate reference frames for spatial orientation awareness. The purpose of this study was to examine deficits in spatial cognitive performance during adaptation to conflicting tilt-translation stimuli. Fourteen subjects were tilted within a lighted enclosure that simultaneously translated at one of 3 frequencies. Tilt and translation motion was synchronized to maintain the resultant gravitoinertial force aligned with the longitudinal body axis, resulting in a mismatch analogous to spaceflight in which the canals and vision signal tilt while the otoliths do not. Changes in performance on different spatial cognitive tasks were compared 1) without motion, 2) with tilt motion alone (pitch at 0.15, 0.3 and 0.6 Hz or roll at 0.3 Hz), and 3) with conflicting tilt-translation motion. The adaptation paradigm was continued for up to 30 min or until the onset of nausea. The order of the adaptation conditions were counter-balanced across 4 different test sessions. There was a significant effect of stimulus frequency on both motion sickness and spatial cognitive performance. Only 3 of 14 were able to complete the full 30 min protocol at 0.15 Hz, while 7 of 14 completed 0.3 Hz and 13 of 14 completed 0.6 Hz. There were no changes in simple visual-spatial cognitive tests, e.g., mental rotation or match-to-sample. There were significant deficits during 0.15 Hz adaptation in both accuracy and reaction time during a spatial reference task in which subjects are asked to identify a match of a 3D reoriented cube assemblage. Our results are consistent with antidotal reports of cognitive impairment that are common during sensorimotor adaptation with G-transitions. We conclude that these cognitive deficits stem from the ambiguity of spatial reference frames for central processing of inertial motion cues.

  2. A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Santiago de Chile.

    PubMed

    Inostroza, Luis; Palme, Massimo; de la Barrera, Francisco

    2016-01-01

    Climate change will worsen the high levels of urban vulnerability in Latin American cities due to specific environmental stressors. Some impacts of climate change, such as high temperatures in urban environments, have not yet been addressed through adaptation strategies, which are based on poorly supported data. These impacts remain outside the scope of urban planning. New spatially explicit approaches that identify highly vulnerable urban areas and include specific adaptation requirements are needed in current urban planning practices to cope with heat hazards. In this paper, a heat vulnerability index is proposed for Santiago, Chile. The index was created using a GIS-based spatial information system and was constructed from spatially explicit indexes for exposure, sensitivity and adaptive capacity levels derived from remote sensing data and socio-economic information assessed via principal component analysis (PCA). The objective of this study is to determine the levels of heat vulnerability at local scales by providing insights into these indexes at the intra city scale. The results reveal a spatial pattern of heat vulnerability with strong variations among individual spatial indexes. While exposure and adaptive capacities depict a clear spatial pattern, sensitivity follows a complex spatial distribution. These conditions change when examining PCA results, showing that sensitivity is more robust than exposure and adaptive capacity. These indexes can be used both for urban planning purposes and for proposing specific policies and measures that can help minimize heat hazards in highly dynamic urban areas. The proposed methodology can be applied to other Latin American cities to support policy making. PMID:27606592

  3. Adaptive Spatial Filtering with Principal Component Analysis for Biomedical Photoacoustic Imaging

    NASA Astrophysics Data System (ADS)

    Nagaoka, Ryo; Yamazaki, Rena; Saijo, Yoshifumi

    Photoacoustic (PA) signal is very sensitive to noise generated by peripheral equipment such as power supply, stepping motor or semiconductor laser. Band-pass filter is not effective because the frequency bandwidth of the PA signal also covers the noise frequency. The objective of the present study is to reduce the noise by using an adaptive spatial filter with principal component analysis (PCA).

  4. Signal processing through a generalized module of adaptation and spatial sensing.

    PubMed

    Krishnan, J

    2009-07-01

    Signal transduction in many cellular processes is accompanied by the feature of adaptation, which allows certain key signalling components to respond to temporal and/or spatial variation of external signals, independent of the absolute value of the signal. We extend and formulate a more general module which accounts for robust temporal adaptation and spatial response. In this setting, we examine various aspects of spatial and temporal signalling, as well as the signalling consequences and restrictions imposed by virtue of adaptation. This module is able to exhibit a variety of behaviour in response to temporal, spatial and spatio-temporal inputs. We carefully examine the roles of various parameters in this module and how they affect signal processing and propagation. Overall, we demonstrate how a simple module can account for a range downstream responses to a variety of input signals, and how elucidating the downstream response of many cellular components in systems with such adaptive signalling can be consequently very non-trivial. PMID:19254728

  5. Spatial and temporal aspects of chromatic adaptation and their functional significance for colour constancy.

    PubMed

    Werner, Annette

    2014-11-01

    Illumination in natural scenes changes at multiple temporal and spatial scales: slow changes in global illumination occur in the course of a day, and we encounter fast and localised illumination changes when visually exploring the non-uniform light field of three-dimensional scenes; in addition, very long-term chromatic variations may come from the environment, like for example seasonal changes. In this context, I consider the temporal and spatial properties of chromatic adaptation and discuss their functional significance for colour constancy in three-dimensional scenes. A process of fast spatial tuning in chromatic adaptation is proposed as a possible sensory mechanism for linking colour constancy to the spatial structure of a scene. The observed middlewavelength selectivity of this process is particularly suitable for adaptation to the mean chromaticity and the compensation of interreflections in natural scenes. Two types of sensory colour constancy are distinguished, based on the functional differences of their temporal and spatial scales: a slow type, operating at a global scale for the compensation of the ambient illumination; and a fast colour constancy, which is locally restricted and well suited to compensate region-specific variations in the light field of three dimensional scenes. PMID:25449338

  6. Ensembles of adaptive spatial filters increase BCI performance: an online evaluation

    NASA Astrophysics Data System (ADS)

    Sannelli, Claudia; Vidaurre, Carmen; Müller, Klaus-Robert; Blankertz, Benjamin

    2016-08-01

    Objective: In electroencephalographic (EEG) data, signals from distinct sources within the brain are widely spread by volume conduction and superimposed such that sensors receive mixtures of a multitude of signals. This reduction of spatial information strongly hampers single-trial analysis of EEG data as, for example, required for brain–computer interfacing (BCI) when using features from spontaneous brain rhythms. Spatial filtering techniques are therefore greatly needed to extract meaningful information from EEG. Our goal is to show, in online operation, that common spatial pattern patches (CSPP) are valuable to counteract this problem. Approach: Even though the effect of spatial mixing can be encountered by spatial filters, there is a trade-off between performance and the requirement of calibration data. Laplacian derivations do not require calibration data at all, but their performance for single-trial classification is limited. Conversely, data-driven spatial filters, such as common spatial patterns (CSP), can lead to highly distinctive features; however they require a considerable amount of training data. Recently, we showed in an offline analysis that CSPP can establish a valuable compromise. In this paper, we confirm these results in an online BCI study. In order to demonstrate the paramount feature that CSPP requires little training data, we used them in an adaptive setting with 20 participants and focused on users who did not have success with previous BCI approaches. Main results: The results of the study show that CSPP adapts faster and thereby allows users to achieve better feedback within a shorter time than previous approaches performed with Laplacian derivations and CSP filters. The success of the experiment highlights that CSPP has the potential to further reduce BCI inefficiency. Significance: CSPP are a valuable compromise between CSP and Laplacian filters. They allow users to attain better feedback within a shorter time and thus reduce BCI

  7. Large spatial, temporal, and algorithmic adaptivity for implicit nonlinear finite element analysis

    SciTech Connect

    Engelmann, B.E.; Whirley, R.G.

    1992-07-30

    The development of effective solution strategies to solve the global nonlinear equations which arise in implicit finite element analysis has been the subject of much research in recent years. Robust algorithms are needed to handle the complex nonlinearities that arise in many implicit finite element applications such as metalforming process simulation. The authors experience indicates that robustness can best be achieved through adaptive solution strategies. In the course of their research, this adaptivity and flexibility has been refined into a production tool through the development of a solution control language called ISLAND. This paper discusses aspects of adaptive solution strategies including iterative procedures to solve the global equations and remeshing techniques to extend the domain of Lagrangian methods. Examples using the newly developed ISLAND language are presented to illustrate the advantages of embedding temporal, algorithmic, and spatial adaptivity in a modem implicit nonlinear finite element analysis code.

  8. Adaptive spatial carrier frequency method for fast monitoring optical properties of fibres

    NASA Astrophysics Data System (ADS)

    Sokkar, T. Z. N.; El-Farahaty, K. A.; El-Bakary, M. A.; Omar, E. Z.; Agour, M.; Hamza, A. A.

    2016-05-01

    We present an extension of the adaptive spatial carrier frequency method which is proposed for fast measuring optical properties of fibrous materials. The method can be considered as a two complementary steps. In the first step, the support of the adaptive filter shall be defined. In the second step, the angle between the sample under test and the interference fringe system generated by the utilized interferometer has to be determined. Thus, the support of the optical filter associated with the implementation of the adaptive spatial carrier frequency method is accordingly rotated. This method is experimentally verified by measuring optical properties of polypropylene (PP) fibre with the help of a Mach-Zehnder interferometer. The results show that errors resulting from rotating the fibre with respect to the interference fringes of the interferometer are reduced compared with the traditional band pass filter method. This conclusion was driven by comparing results of the mean refractive index of drown PP fibre at parallel polarization direction obtained from the new and adaptive spatial carrier frequency method.

  9. Spatially adaptive bases in wavelet-based coding of semi-regular meshes

    NASA Astrophysics Data System (ADS)

    Denis, Leon; Florea, Ruxandra; Munteanu, Adrian; Schelkens, Peter

    2010-05-01

    In this paper we present a wavelet-based coding approach for semi-regular meshes, which spatially adapts the employed wavelet basis in the wavelet transformation of the mesh. The spatially-adaptive nature of the transform requires additional information to be stored in the bit-stream in order to allow the reconstruction of the transformed mesh at the decoder side. In order to limit this overhead, the mesh is first segmented into regions of approximately equal size. For each spatial region, a predictor is selected in a rate-distortion optimal manner by using a Lagrangian rate-distortion optimization technique. When compared against the classical wavelet transform employing the butterfly subdivision filter, experiments reveal that the proposed spatially-adaptive wavelet transform significantly decreases the energy of the wavelet coefficients for all subbands. Preliminary results show also that employing the proposed transform for the lowest-resolution subband systematically yields improved compression performance at low-to-medium bit-rates. For the Venus and Rabbit test models the compression improvements add up to 1.47 dB and 0.95 dB, respectively.

  10. The Effects of Adapted Tango on Spatial Cognition and Disease Severity in Parkinson’s Disease

    PubMed Central

    McKee, Kathleen E.; Hackney, Madeleine E.

    2013-01-01

    This study determined effects of community-based adapted tango upon spatial cognition and disease severity in Parkinson’s disease (PD) while controlling for the effects of social interaction. Thirty-three individuals with mild-moderate PD (stage I–III) were assigned to twenty, 90-minute Tango (n=24) or Education (n=9) lessons over 12 weeks. Disease severity, spatial cognition, balance, and fall incidence were evaluated pre-, post-, and 10–12 weeks post-intervention. T-tests and ANOVAs evaluated differences. Twenty-three Tango and 8 Education participants finished. Tango participants improved on disease severity (p=0.008), and spatial cognition (p=0.021) compared to Education participants. Tango participants also improved in balance (p=0.038), and executive function (p=0.012). Gains were maintained 10–12 weeks post-intervention. Multimodal exercise with structured syllabi may improve disease severity and spatial cognition. PMID:24116748

  11. Deployment of spatial attention without moving the eyes is boosted by oculomotor adaptation

    PubMed Central

    Habchi, Ouazna; Rey, Elodie; Mathieu, Romain; Urquizar, Christian; Farnè, Alessandro; Pélisson, Denis

    2015-01-01

    Vertebrates developed sophisticated solutions to select environmental visual information, being capable of moving attention without moving the eyes. A large body of behavioral and neuroimaging studies indicate a tight coupling between eye movements and spatial attention. The nature of this link, however, remains highly debated. Here, we demonstrate that deployment of human covert attention, measured in stationary eye conditions, can be boosted across space by changing the size of ocular saccades to a single position via a specific adaptation paradigm. These findings indicate that spatial attention is more widely affected by oculomotor plasticity than previously thought. PMID:26300755

  12. Application of adaptive optics in complicated and integrated spatial multisensor system and its measurement analysis

    NASA Astrophysics Data System (ADS)

    Ding, Quanxin; Guo, Chunjie; Cai, Meng; Liu, Hua

    2007-12-01

    Adaptive Optics Expand System is a kind of new concept spatial equipment, which concerns system, cybernetics and informatics deeply, and is key way to improve advanced sensors ability. Traditional Zernike Phase Contrast Method is developed, and Accelerated High-level Phase Contrast Theory is established. Integration theory and mathematical simulation is achieved. Such Equipment, which is based on some crucial components, such as, core optical system, multi mode wavefront sensor and so on, is established for AOES advantageous configuration and global design. Studies on Complicated Spatial Multisensor System Integratation and measurement Analysis including error analysis are carried out.

  13. A spatially explicit model simulating western corn rootworm (Coleoptera: Chrysomelidae) adaptation to insect-resistant maize.

    PubMed

    Storer, Nicholas P

    2003-10-01

    A stochastic spatially explicit computer model is described that simulates the adaptation by western corn rootworm, Diabrotica virgifera virgifera LeConte, to rootworm-resistance traits in maize. The model reflects the ecology of the rootworm in much of the corn belt of the United States. It includes functions for crop development, egg and larval mortality, adult emergence, mating, egg laying, mortality and dispersal, and alternative methods of rootworm control, to simulate the population dynamics of the rootworm. Adaptation to the resistance trait is assumed to be controlled by a monogenic diallelic locus, whereby the allele for adaptation varies from incompletely recessive to incompletely dominant, depending on the efficacy of the resistance trait. The model was used to compare the rate at which the adaptation allele spread through the population under different nonresistant maize refuge deployment scenarios, and under different levels of crop resistance. For a given refuge size, the model indicated that placing the nonresistant refuge in a block within a rootworm-resistant field would be likely to delay rootworm adaptation rather longer than planting the refuge in separate fields in varying locations. If a portion of the refuge were to be planted in the same fields or in-field blocks each year, rootworm adaptation would be delayed substantially. Rootworm adaptation rates are also predicted to be greatly affected by the level of crop resistance, because of the expectation of dependence of functional dominance on dose. If the dose of the insecticidal protein in the maize is sufficiently high to kill >90% of heterozygotes and approximately 100% of susceptible homozygotes, the trait is predicted to be much more durable than if the dose is lower. A partial sensitivity analysis showed that parameters relating to adult dispersal affected the rate of pest adaptation. Partial validation of the model was achieved by comparing output of the model with field data on

  14. Hierarchical Multiscale Adaptive Variable Fidelity Wavelet-based Turbulence Modeling with Lagrangian Spatially Variable Thresholding

    NASA Astrophysics Data System (ADS)

    Nejadmalayeri, Alireza

    The current work develops a wavelet-based adaptive variable fidelity approach that integrates Wavelet-based Direct Numerical Simulation (WDNS), Coherent Vortex Simulations (CVS), and Stochastic Coherent Adaptive Large Eddy Simulations (SCALES). The proposed methodology employs the notion of spatially and temporarily varying wavelet thresholding combined with hierarchical wavelet-based turbulence modeling. The transition between WDNS, CVS, and SCALES regimes is achieved through two-way physics-based feedback between the modeled SGS dissipation (or other dynamically important physical quantity) and the spatial resolution. The feedback is based on spatio-temporal variation of the wavelet threshold, where the thresholding level is adjusted on the fly depending on the deviation of local significant SGS dissipation from the user prescribed level. This strategy overcomes a major limitation for all previously existing wavelet-based multi-resolution schemes: the global thresholding criterion, which does not fully utilize the spatial/temporal intermittency of the turbulent flow. Hence, the aforementioned concept of physics-based spatially variable thresholding in the context of wavelet-based numerical techniques for solving PDEs is established. The procedure consists of tracking the wavelet thresholding-factor within a Lagrangian frame by exploiting a Lagrangian Path-Line Diffusive Averaging approach based on either linear averaging along characteristics or direct solution of the evolution equation. This innovative technique represents a framework of continuously variable fidelity wavelet-based space/time/model-form adaptive multiscale methodology. This methodology has been tested and has provided very promising results on a benchmark with time-varying user prescribed level of SGS dissipation. In addition, a longtime effort to develop a novel parallel adaptive wavelet collocation method for numerical solution of PDEs has been completed during the course of the current work

  15. Improving brain-computer interface classification using adaptive common spatial patterns.

    PubMed

    Song, Xiaomu; Yoon, Suk-Chung

    2015-06-01

    Common Spatial Patterns (CSP) is a widely used spatial filtering technique for electroencephalography (EEG)-based brain-computer interface (BCI). It is a two-class supervised technique that needs subject-specific training data. Due to EEG nonstationarity, EEG signal may exhibit significant intra- and inter-subject variation. As a result, spatial filters learned from a subject may not perform well for data acquired from the same subject at a different time or from other subjects performing the same task. Studies have been performed to improve CSP's performance by adding regularization terms into the training. Most of them require target subjects' training data with known class labels. In this work, an adaptive CSP (ACSP) method is proposed to analyze single trial EEG data from single and multiple subjects. The method does not estimate target data's class labels during the adaptive learning and updates spatial filters for both classes simultaneously. The proposed method was evaluated based on a comparison study with the classic CSP and several CSP-based adaptive methods using motor imagery EEG data from BCI competitions. Experimental results indicate that the proposed method can improve the classification performance as compared to the other methods. For circumstances where true class labels of target data are not instantly available, it was examined if adding classified target data to training data would improve the ACSP learning. Experimental results show that it would be better to exclude them from the training data. The proposed ACSP method can be performed in real-time and is potentially applicable to various EEG-based BCI applications. PMID:25909828

  16. Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050

    DOE PAGESBeta

    McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.; Huynh, Timmy N.; Bhaduri, Budhendra L.

    2015-02-03

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less

  17. Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050

    SciTech Connect

    McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.; Huynh, Timmy N.; Bhaduri, Budhendra L.

    2015-02-03

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.

  18. Human Topological Task Adapted for Rats: Spatial Information Processes of the Parietal Cortex

    PubMed Central

    Goodrich-Hunsaker, Naomi J.; Howard, Brian P.; Hunsaker, Michael R.; Kesner, Raymond P.

    2008-01-01

    Human research has shown that lesions of the parietal cortex disrupt spatial information processing, specifically topological information. Similar findings have been found in nonhumans. It has been difficult to determine homologies between human and non-human mnemonic mechanisms for spatial information processing because methodologies and neuropathology differ. The first objective of the present study was to adapt a previously established human task for rats. The second objective was to better characterize the role of parietal cortex (PC) and dorsal hippocampus (dHPC) for topological spatial information processing. Rats had to distinguish whether a ball inside a ring or a ball outside a ring was the correct, rewarded object. After rats reached criterion on the task (>95%) they were randomly assigned to a lesion group (control, PC, dHPC). Animals were then re-tested. Post-surgery data show that controls were 94% correct on average, dHPC rats were 89% correct on average, and PC rats were 56% correct on average. The results from the present study suggest that the parietal cortex, but not the dHPC processes topological spatial information. The present data are the first to support comparable topological spatial information processes of the parietal cortex in humans and rats. PMID:18571941

  19. Locally adaptive, spatially explicit projection of US population for 2030 and 2050

    PubMed Central

    McKee, Jacob J.; Rose, Amy N.; Bright, Edward A.; Huynh, Timmy; Bhaduri, Budhendra L.

    2015-01-01

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Building on the spatial interpolation technique previously developed for high-resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically informed spatial distribution of projected population of the contiguous United States for 2030 and 2050, depicting one of many possible population futures. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modeled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the US Census’s projection methodology, with the US Census’s official projection as the benchmark. Applications of our model include incorporating multiple various scenario-driven events to produce a range of spatially explicit population futures for suitability modeling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations. PMID:25605882

  20. A spatially adaptive total variation regularization method for electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2015-12-01

    The total variation (TV) regularization method has been used to solve the ill-posed inverse problem of electrical resistance tomography (ERT), owing to its good ability to preserve edges. However, the quality of the reconstructed images, especially in the flat region, is often degraded by noise. To optimize the regularization term and the regularization factor according to the spatial feature and to improve the resolution of reconstructed images, a spatially adaptive total variation (SATV) regularization method is proposed. A kind of effective spatial feature indicator named difference curvature is used to identify which region is a flat or edge region. According to different spatial features, the SATV regularization method can automatically adjust both the regularization term and regularization factor. At edge regions, the regularization term is approximate to the TV functional to preserve the edges; in flat regions, it is approximate to the first-order Tikhonov (FOT) functional to make the solution stable. Meanwhile, the adaptive regularization factor determined by the spatial feature is used to constrain the regularization strength of the SATV regularization method for different regions. Besides, a numerical scheme is adopted for the implementation of the second derivatives of difference curvature to improve the numerical stability. Several reconstruction image metrics are used to quantitatively evaluate the performance of the reconstructed results. Both simulation and experimental results indicate that, compared with the TV (mean relative error 0.288, mean correlation coefficient 0.627) and FOT (mean relative error 0.295, mean correlation coefficient 0.638) regularization methods, the proposed SATV (mean relative error 0.259, mean correlation coefficient 0.738) regularization method can endure a relatively high level of noise and improve the resolution of reconstructed images.

  1. Prism adaptation and spatial neglect: the need for dose-finding studies

    PubMed Central

    Goedert, Kelly M.; Zhang, Jeffrey Y.; Barrett, A. M.

    2015-01-01

    Spatial neglect is a devastating disorder in 50–70% of right-brain stroke survivors, who have problems attending to, or making movements towards, left-sided stimuli, and experience a high risk of chronic dependence. Prism adaptation is a promising treatment for neglect that involves brief, daily visuo-motor training sessions while wearing optical prisms. Its benefits extend to functional behaviors such as dressing, with effects lasting 6 months or longer. Because one to two sessions of prism adaptation induce adaptive changes in both spatial-motor behavior (Fortis et al., 2011) and brain function (Saj et al., 2013), it is possible stroke patients may benefit from treatment periods shorter than the standard, intensive protocol of ten sessions over two weeks—a protocol that is impractical for either US inpatient or outpatient rehabilitation. Demonstrating the effectiveness of a lower dose will maximize the availability of neglect treatment. We present preliminary data suggesting that four to six sessions of prism treatment may induce a large treatment effect, maintained three to four weeks post-treatment. We call for a systematic, randomized clinical trial to establish the minimal effective dose suitable for stroke intervention. PMID:25983688

  2. Prism adaptation and spatial neglect: the need for dose-finding studies.

    PubMed

    Goedert, Kelly M; Zhang, Jeffrey Y; Barrett, A M

    2015-01-01

    Spatial neglect is a devastating disorder in 50-70% of right-brain stroke survivors, who have problems attending to, or making movements towards, left-sided stimuli, and experience a high risk of chronic dependence. Prism adaptation is a promising treatment for neglect that involves brief, daily visuo-motor training sessions while wearing optical prisms. Its benefits extend to functional behaviors such as dressing, with effects lasting 6 months or longer. Because one to two sessions of prism adaptation induce adaptive changes in both spatial-motor behavior (Fortis et al., 2011) and brain function (Saj et al., 2013), it is possible stroke patients may benefit from treatment periods shorter than the standard, intensive protocol of ten sessions over two weeks-a protocol that is impractical for either US inpatient or outpatient rehabilitation. Demonstrating the effectiveness of a lower dose will maximize the availability of neglect treatment. We present preliminary data suggesting that four to six sessions of prism treatment may induce a large treatment effect, maintained three to four weeks post-treatment. We call for a systematic, randomized clinical trial to establish the minimal effective dose suitable for stroke intervention. PMID:25983688

  3. A novel spatially adaptive guide-filter total variation (SAGFTV) regularization for image restoration

    NASA Astrophysics Data System (ADS)

    Fang, Hao; Li, Qian; Huang, Zhenghua

    2015-12-01

    Denoising algorithms based on gradient dependent energy functionals, such as Perona-Malik, total variation and adaptive total variation denoising, modify images towards piecewise constant functions. Although edge sharpness and location is well preserved, important information, encoded in image features like textures or certain details, is often compromised in the process of denoising. In this paper, We propose a novel Spatially Adaptive Guide-Filtering Total Variation (SAGFTV) regularization with image restoration algorithm for denoising images. The guide-filter is extended to the variational formulations of imaging problem, and the spatially adaptive operator can easily distinguish flat areas from texture areas. Our simulating experiments show the improvement of peak signal noise ratio (PSNR), root mean square error (RMSE) and structure similarity increment measurement (SSIM) over other prior algorithms. The results of both simulating and practical experiments are more appealing visually. This type of processing can be used for a variety of tasks in PDE-based image processing and computer vision, and is stable and meaningful from a mathematical viewpoint.

  4. Medical image classification using spatial adjacent histogram based on adaptive local binary patterns.

    PubMed

    Liu, Dong; Wang, Shengsheng; Huang, Dezhi; Deng, Gang; Zeng, Fantao; Chen, Huiling

    2016-05-01

    Medical image recognition is an important task in both computer vision and computational biology. In the field of medical image classification, representing an image based on local binary patterns (LBP) descriptor has become popular. However, most existing LBP-based methods encode the binary patterns in a fixed neighborhood radius and ignore the spatial relationships among local patterns. The ignoring of the spatial relationships in the LBP will cause a poor performance in the process of capturing discriminative features for complex samples, such as medical images obtained by microscope. To address this problem, in this paper we propose a novel method to improve local binary patterns by assigning an adaptive neighborhood radius for each pixel. Based on these adaptive local binary patterns, we further propose a spatial adjacent histogram strategy to encode the micro-structures for image representation. An extensive set of evaluations are performed on four medical datasets which show that the proposed method significantly improves standard LBP and compares favorably with several other prevailing approaches. PMID:27058283

  5. Adaptive Spatial Filtering of Interferometric Data Stack Oriented to Distributed Scatterers

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Xie, C.; Shao, Y.; Yuan, M.

    2013-07-01

    Standard interferometry poses a challenge in non-urban areas due to temporal and spatial decorrelation of the radar signal, where there is high signal noise. Techniques such as Small Baseline Subset Algorithm (SBAS) have been proposed to make use of multiple interferometric combinations to alleviate the problem. However, the interferograms used in SBAS are multilooked with a boxcar (rectangle) filter to reduce phase noise, resulting in a loss of resolution and signal superstition from different objects. In this paper, we proposed a modified adaptive spatial filtering algorithm for accurate estimation of interferogram and coherence without resolution loss even in rural areas, to better support the deformation monitoring with time series interferometric synthetic aperture radar (InSAR) technique. The implemented method identifies the statistically homogenous pixels in a neighbourhood based on the goodness-of-fit test, and then applies an adaptive spatial filtering of interferograms. Three statistical tests for the identification of distributed targets will be presented, applied to real data. PALSAR data of the yellow river delta in China is used for demonstrating the effectiveness of this algorithm in rural areas.

  6. Prismatic Adaptation Induces Plastic Changes onto Spatial and Temporal Domains in Near and Far Space

    PubMed Central

    Patané, Ivan; Farnè, Alessandro; Frassinetti, Francesca

    2016-01-01

    A large literature has documented interactions between space and time suggesting that the two experiential domains may share a common format in a generalized magnitude system (ATOM theory). To further explore this hypothesis, here we measured the extent to which time and space are sensitive to the same sensorimotor plasticity processes, as induced by classical prismatic adaptation procedures (PA). We also exanimated whether spatial-attention shifts on time and space processing, produced through PA, extend to stimuli presented beyond the immediate near space. Results indicated that PA affected both temporal and spatial representations not only in the near space (i.e., the region within which the adaptation occurred), but also in the far space. In addition, both rightward and leftward PA directions caused opposite and symmetrical modulations on time processing, whereas only leftward PA biased space processing rightward. We discuss these findings within the ATOM framework and models that account for PA effects on space and time processing. We propose that the differential and asymmetrical effects following PA may suggest that temporal and spatial representations are not perfectly aligned. PMID:26981286

  7. Spatially adaptive Bayesian wavelet thresholding for speckle removal in medical ultrasound images

    NASA Astrophysics Data System (ADS)

    Hou, Jianhua; Xiong, Chengyi; Chen, Shaoping; He, Xiang

    2007-12-01

    In this paper, a novel spatially adaptive wavelet thresholding method based on Bayesian maximum a posteriori (MAP) criterion is proposed for speckle removal in medical ultrasound (US) images. The method firstly performs logarithmical transform to original speckled ultrasound image, followed by redundant wavelet transform. The proposed method uses the Rayleigh distribution for speckle wavelet coefficients and Laplacian distribution for modeling the statistics of wavelet coefficients due to signal. A Bayesian estimator with analytical formula is derived from MAP estimation, and the resulting formula is proven to be equivalent to soft thresholding in nature which makes the algorithm very simple. In order to exploit the correlation among wavelet coefficients, the parameters of Laplacian model are assumed to be spatially correlated and can be computed from the coefficients in a neighboring window, thus making our method spatially adaptive in wavelet domain. Theoretical analysis and simulation experiment results show that this proposed method can effectively suppress speckle noise in medical US images while preserving as much as possible important signal features and details.

  8. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    PubMed Central

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991

  9. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra.

    PubMed

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991

  10. Spatial orientation, adaptation, and motion sickness in real and virtual environments

    NASA Technical Reports Server (NTRS)

    Dizio, Paul; Lackner, James R.

    1992-01-01

    Reason and Brand (1975) noted that motion sickness occurs in many situations involving either passive body motion or active interaction with the world via indirect sensorimotor interfaces (e.g., prism spectacles). As might be expected, motion sickness is being reported in VEs that involve apparent self-motion through space, the best known examples being flight simulators (Kennedy et al., 1990). The goals of this paper are to introduce the motion-sickness symptomatology; to outline some concepts that are central to theories of motion sickness, spatial orientation, and adaptation; and to discuss the implications of some trends in VE research and development.

  11. [Asymmetry and spatial specificity of auditory aftereffects following adaptation to signals simulating approach and withdrawal of sound sources].

    PubMed

    Malinina, E S

    2014-01-01

    The spatial specificity of auditory approaching and withdrawing aftereffects was investigated in an anechoic chamber. The adapting and testing stimuli were presented from loudspeakers located in front of the subject at the distance of 1.1 m (near) and 4.5 m (far) from the listener's head. Approach and withdrawal of stimuli were simulated by increasing or decreasing the amplitude of the wide-noise impulse sequence. The listeners were required to determine the movement direction of test stimulus following each 5-s adaptation period. The listeners' "withdrawal" responses were used for psychometric functions plotting and for quantitative assessment of auditory aftereffect. The data summarized for all 8 participants indicated that the asymmetry of approaching and withdrawing aftereffects depended on spatial localization of adaptor and test. The asymmetry of aftereffects was largest when adaptor and test were presented from the same loudspeaker (either near or far). Adaptation to the approach induced a directionally dependent displacement of the psychometric functions relative to control condition without adaptation and adaptation to the withdrawal was not. The magnitude of approaching aftereffect was greater when adaptor and test were located in near spatial domain than when they came from far domain. When adaptor and test were presented from the distinct loudspeakers, magnitude approaching aftereffect was decreasing in comparison to the same spatial localization, but after adaptation to withdrawal it was increasing. As a result, the directionally dependent displacements of the psychometric functions relative to control condition were observed after adaptation as to approach and to withdrawal. The discrepancy of the psychometric functions received after adaptation to approach and to withdrawal at near and far spatial domains was greater under the same localization of adaptor and test in comparison to their distinct localization. We assume that the peculiarities of

  12. Demography-based adaptive network model reproduces the spatial organization of human linguistic groups

    NASA Astrophysics Data System (ADS)

    Capitán, José A.; Manrubia, Susanna

    2015-12-01

    The distribution of human linguistic groups presents a number of interesting and nontrivial patterns. The distributions of the number of speakers per language and the area each group covers follow log-normal distributions, while population and area fulfill an allometric relationship. The topology of networks of spatial contacts between different linguistic groups has been recently characterized, showing atypical properties of the degree distribution and clustering, among others. Human demography, spatial conflicts, and the construction of networks of contacts between linguistic groups are mutually dependent processes. Here we introduce an adaptive network model that takes all of them into account and successfully reproduces, using only four model parameters, not only those features of linguistic groups already described in the literature, but also correlations between demographic and topological properties uncovered in this work. Besides their relevance when modeling and understanding processes related to human biogeography, our adaptive network model admits a number of generalizations that broaden its scope and make it suitable to represent interactions between agents based on population dynamics and competition for space.

  13. Adaptive grid artifact reduction in the frequency domain with spatial properties for x-ray images

    NASA Astrophysics Data System (ADS)

    Kim, Dong Sik; Lee, Sanggyun

    2012-03-01

    By applying band-rejection filters (BRFs) in the frequency domain, we can efficiently reduce the grid artifacts, which are caused by using the antiscatter grid in obtaining x-ray digital images. However, if the frequency component of the grid artifact is relatively close to that of the object, then simply applying a BRF may seriously distort the object and cause the ringing artifacts. Since the ringing artifacts are quite dependent on the shape of the object to be recovered in the spatial domain, the spatial property of the x-ray image should be considered in applying BRFs. In this paper, we propose an adaptive filtering scheme, which can cooperate such different properties in the spatial domain. In the spatial domain, we compare several approaches, such as the mangnitude, edge, and frequency-modulation (FM) model-based algorithms, to detect the ringing artifact or the grid artifact component. In order to perform a robust detection whether the ringing artifact is strong or not, we employ the FM model for the extracted signal, which corresponds to a specific grid artifact. A detection of the position for the ringing artifact is then conducted based on the slope detection algorithm, which is commonly used as an FM discriminator in the communication area. However, the detected position of the ringing artifact is not accurate. Hence, in order to obtain an accurate detection result, we combine the edge-based approach with the FM model approach. Numerical result for real x-ray images shows that applying BRFs in the frequency domain in conjunction with the spatial property of the ringing artifact can successfully remove the grid artifact, distorting the object less.

  14. Spectral Doppler estimation utilizing 2-D spatial information and adaptive signal processing.

    PubMed

    Ekroll, Ingvild K; Torp, Hans; Løvstakken, Lasse

    2012-06-01

    The trade-off between temporal and spectral resolution in conventional pulsed wave (PW) Doppler may limit duplex/triplex quality and the depiction of rapid flow events. It is therefore desirable to reduce the required observation window (OW) of the Doppler signal while preserving the frequency resolution. This work investigates how the required observation time can be reduced by adaptive spectral estimation utilizing 2-D spatial information obtained by parallel receive beamforming. Four adaptive estimation techniques were investigated, the power spectral Capon (PSC) method, the amplitude and phase estimation (APES) technique, multiple signal classification (MUSIC), and a projection-based version of the Capon technique. By averaging radially and laterally, the required covariance matrix could successfully be estimated without temporal averaging. Useful PW spectra of high resolution and contrast could be generated from ensembles corresponding to those used in color flow imaging (CFI; OW = 10). For a given OW, the frequency resolution could be increased compared with the Welch approach, in cases in which the transit time was higher or comparable to the observation time. In such cases, using short or long pulses with unfocused or focused transmit, an increase in temporal resolution of up to 4 to 6 times could be obtained in in vivo examples. It was further shown that by using adaptive signal processing, velocity spectra may be generated without high-pass filtering the Doppler signal. With the proposed approach, spectra retrospectively calculated from CFI may become useful for unfocused as well as focused imaging. This application may provide new clinical information by inspection of velocity spectra simultaneously from several spatial locations. PMID:22711413

  15. Prototype adaptive bow-tie filter based on spatial exposure time modulation

    NASA Astrophysics Data System (ADS)

    Badal, Andreu

    2016-03-01

    In recent years, there has been an increased interest in the development of dynamic bow-tie filters that are able to provide patient-specific x-ray beam shaping. We introduce the first physical prototype of a new adaptive bow-tie filter design based on the concept of "spatial exposure time modulation." While most existing bow-tie filters operate by attenuating the radiation beam differently in different locations using partially attenuating objects, the presented filter shapes the radiation field using two movable completely radio-opaque collimators. The aperture and speed of the collimators is modulated in synchrony with the x-ray exposure to selectively block the radiation emitted to different parts of the object. This mode of operation does not allow the reproduction of every possible attenuation profile, but it can reproduce the profile of any object with an attenuation profile monotonically decreasing from the center to the periphery, such as an object with an elliptical cross section. Therefore, the new adaptive filter provides the same advantages as the currently existing static bow-tie filters, which are typically designed to work for a pre-determined cylindrical object at a fixed distance from the source, and provides the additional capability to adapt its performance at image acquisition time to better compensate for the actual diameter and location of the imaged object. A detailed description of the prototype filter, the implemented control methods, and a preliminary experimental validation of its performance are presented.

  16. Adaptive optimal control of highly dissipative nonlinear spatially distributed processes with neuro-dynamic programming.

    PubMed

    Luo, Biao; Wu, Huai-Ning; Li, Han-Xiong

    2015-04-01

    Highly dissipative nonlinear partial differential equations (PDEs) are widely employed to describe the system dynamics of industrial spatially distributed processes (SDPs). In this paper, we consider the optimal control problem of the general highly dissipative SDPs, and propose an adaptive optimal control approach based on neuro-dynamic programming (NDP). Initially, Karhunen-Loève decomposition is employed to compute empirical eigenfunctions (EEFs) of the SDP based on the method of snapshots. These EEFs together with singular perturbation technique are then used to obtain a finite-dimensional slow subsystem of ordinary differential equations that accurately describes the dominant dynamics of the PDE system. Subsequently, the optimal control problem is reformulated on the basis of the slow subsystem, which is further converted to solve a Hamilton-Jacobi-Bellman (HJB) equation. HJB equation is a nonlinear PDE that has proven to be impossible to solve analytically. Thus, an adaptive optimal control method is developed via NDP that solves the HJB equation online using neural network (NN) for approximating the value function; and an online NN weight tuning law is proposed without requiring an initial stabilizing control policy. Moreover, by involving the NN estimation error, we prove that the original closed-loop PDE system with the adaptive optimal control policy is semiglobally uniformly ultimately bounded. Finally, the developed method is tested on a nonlinear diffusion-convection-reaction process and applied to a temperature cooling fin of high-speed aerospace vehicle, and the achieved results show its effectiveness. PMID:25794375

  17. Integrity of medial temporal structures may predict better improvement of spatial neglect with prism adaptation treatment

    PubMed Central

    Goedert, Kelly M.; Shah, Priyanka; Foundas, Anne L.; Barrett, A. M.

    2013-01-01

    Prism adaptation treatment (PAT) is a promising rehabilitative method for functional recovery in persons with spatial neglect. Previous research suggests that PAT improves motor-intentional “aiming” deficits that frequently occur with frontal lesions. To test whether presence of frontal lesions predicted better improvement of spatial neglect after PAT, the current study evaluated neglect-specific improvement in functional activities (assessment with the Catherine Bergego Scale) over time in 21 right-brain-damaged stroke survivors with left-sided spatial neglect. The results demonstrated that neglect patients' functional activities improved after two weeks of PAT and continued improving for four weeks. Such functional improvement did not occur equally in all of the participants: Neglect patients with lesions involving the frontal cortex (n=13) experienced significantly better functional improvement than did those without frontal lesions (n=8). More importantly, voxel-based lesion-behavior mapping (VLBM) revealed that in comparison to the group of patients without frontal lesions, the frontal-lesioned neglect patients had intact regions in the medial temporal areas, the superior temporal areas, and the inferior longitudinal fasciculus. The medial cortical and subcortical areas in the temporal lobe were especially distinguished in the “frontal lesion” group. The findings suggest that the integrity of medial temporal structures may play an important role in supporting functional improvement after PAT. PMID:22941243

  18. Relativistic Flows Using Spatial And Temporal Adaptive Structured Mesh Refinement. I. Hydrodynamics

    SciTech Connect

    Wang, Peng; Abel, Tom; Zhang, Weiqun; /KIPAC, Menlo Park

    2007-04-02

    Astrophysical relativistic flow problems require high resolution three-dimensional numerical simulations. In this paper, we describe a new parallel three-dimensional code for simulations of special relativistic hydrodynamics (SRHD) using both spatially and temporally structured adaptive mesh refinement (AMR). We used method of lines to discrete SRHD equations spatially and used a total variation diminishing (TVD) Runge-Kutta scheme for time integration. For spatial reconstruction, we have implemented piecewise linear method (PLM), piecewise parabolic method (PPM), third order convex essentially non-oscillatory (CENO) and third and fifth order weighted essentially non-oscillatory (WENO) schemes. Flux is computed using either direct flux reconstruction or approximate Riemann solvers including HLL, modified Marquina flux, local Lax-Friedrichs flux formulas and HLLC. The AMR part of the code is built on top of the cosmological Eulerian AMR code enzo, which uses the Berger-Colella AMR algorithm and is parallel with dynamical load balancing using the widely available Message Passing Interface library. We discuss the coupling of the AMR framework with the relativistic solvers and show its performance on eleven test problems.

  19. Demosaicing: heterogeneity-projection hard-decision adaptive interpolation using spectral-spatial correlation

    NASA Astrophysics Data System (ADS)

    Tsai, Chi-Yi; Song, Kai-Tai

    2006-02-01

    A novel heterogeneity-projection hard-decision adaptive interpolation (HPHD-AI) algorithm is proposed in this paper for color reproduction from Bayer mosaic images. The proposed algorithm aims to estimate the optimal interpolation direction and perform hard-decision interpolation, in which the decision is made before interpolation. To do so, a new heterogeneity-projection scheme based on spectral-spatial correlation is proposed to decide the best interpolation direction from the original mosaic image directly. Exploiting the proposed heterogeneity-projection scheme, a hard-decision rule can be designed easily to perform the interpolation. We have compared this technique with three recently proposed demosaicing techniques: Lu's, Gunturk's and Li's methods, by utilizing twenty-five natural images from Kodak PhotoCD. The experimental results show that HPHD-AI outperforms all of them in both PSNR values and S-CIELab ▵Ε* ab measures.

  20. Non-equilibrium molecular dynamics simulation of nanojet injection with adaptive-spatial decomposition parallel algorithm.

    PubMed

    Shin, Hyun-Ho; Yoon, Woong-Sup

    2008-07-01

    An Adaptive-Spatial Decomposition parallel algorithm was developed to increase computation efficiency for molecular dynamics simulations of nano-fluids. Injection of a liquid argon jet with a scale of 17.6 molecular diameters was investigated. A solid annular platinum injector was also solved simultaneously with the liquid injectant by adopting a solid modeling technique which incorporates phantom atoms. The viscous heat was naturally discharged through the solids so the liquid boiling problem was avoided with no separate use of temperature controlling methods. Parametric investigations of injection speed, wall temperature, and injector length were made. A sudden pressure drop at the orifice exit causes flash boiling of the liquid departing the nozzle exit with strong evaporation on the surface of the liquids, while rendering a slender jet. The elevation of the injection speed and the wall temperature causes an activation of the surface evaporation concurrent with reduction in the jet breakup length and the drop size. PMID:19051924

  1. Adaptive electron beam shaping using a photoemission gun and spatial light modulator

    NASA Astrophysics Data System (ADS)

    Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.; Kiefer, Jacob; Bazarov, Ivan

    2015-02-01

    The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam image to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.

  2. Adaptive spatial filtering of daytime sky noise in a satellite quantum key distribution downlink receiver

    NASA Astrophysics Data System (ADS)

    Gruneisen, Mark T.; Sickmiller, Brett A.; Flanagan, Michael B.; Black, James P.; Stoltenberg, Kurt E.; Duchane, Alexander W.

    2016-02-01

    Spatial filtering is an important technique for reducing sky background noise in a satellite quantum key distribution downlink receiver. Atmospheric turbulence limits the extent to which spatial filtering can reduce sky noise without introducing signal losses. Using atmospheric propagation and compensation simulations, the potential benefit of adaptive optics (AO) to secure key generation (SKG) is quantified. Simulations are performed assuming optical propagation from a low-Earth-orbit satellite to a terrestrial receiver that includes AO. Higher-order AO correction is modeled assuming a Shack-Hartmann wavefront sensor and a continuous-face-sheet deformable mirror. The effects of atmospheric turbulence, tracking, and higher-order AO on the photon capture efficiency are simulated using statistical representations of turbulence and a time-domain wave-optics hardware emulator. SKG rates are calculated for a decoy-state protocol as a function of the receiver field of view for various strengths of turbulence, sky radiances, and pointing angles. The results show that at fields of view smaller than those discussed by others, AO technologies can enhance SKG rates in daylight and enable SKG where it would otherwise be prohibited as a consequence of background optical noise and signal loss due to propagation and turbulence effects.

  3. Spatial aggregation across ephemeral resource patches in insect communities: an adaptive response to natural enemies?

    PubMed

    Rohlfs, Marko; Hoffmeister, Thomas S

    2004-08-01

    Although an increase in competition is a common cost associated with intraspecific crowding, spatial aggregation across food-limited resource patches is a widespread phenomenon in many insect communities. Because intraspecific aggregation of competing insect larvae across, e.show $132#g. fruits, dung, mushrooms etc., is an important means by which many species can coexist (aggregation model of species coexistence), there is a strong need to explore the mechanisms that contribute to the maintenance of this kind of spatial resource exploitation. In the present study, by using Drosophila-parasitoid interactions as a model system, we tested the hypothesis whether intraspecific aggregation reflects an adaptive response to natural enemies. Most of the studies that have hitherto been carried out on Drosophila-parasitoid interactions used an almost two-dimensional artificial host environment, where host larvae could not escape from parasitoid attacks, and have demonstrated positive density-dependent parasitism risk. To test whether these studies captured the essence of such interactions, we used natural breeding substrates (decaying fruits). In a first step, we analysed the parasitism risk of Drosophila larvae on a three-dimensional substrate in natural fly communities in the field, and found that the risk of parasitism decreased with increasing host larval density (inverse density dependence). In a second step, we analysed the parasitism risk of Drosophila subobscura larvae on three breeding substrate types exposed to the larval parasitoids Asobara tabida and Leptopilina heterotoma. We found direct density-dependent parasitism on decaying sloes, inverse density dependence on plums, and a hump-shaped relationship between fly larval density and parasitism risk on crab apples. On crab apples and plums, fly larvae benefited from a density-dependent refuge against the parasitoids. While the proportion of larvae feeding within the fruit tissues increased with larval density

  4. A comparison of adaptive sampling designs and binary spatial models: A simulation study using a census of Bromus inermis

    USGS Publications Warehouse

    Irvine, Kathryn M.; Thornton, Jamie; Backus, Vickie M.; Hohmann, Matthew G.; Lehnhoff, Erik A.; Maxwell, Bruce D.; Michels, Kurt; Rew, Lisa

    2013-01-01

    Commonly in environmental and ecological studies, species distribution data are recorded as presence or absence throughout a spatial domain of interest. Field based studies typically collect observations by sampling a subset of the spatial domain. We consider the effects of six different adaptive and two non-adaptive sampling designs and choice of three binary models on both predictions to unsampled locations and parameter estimation of the regression coefficients (species–environment relationships). Our simulation study is unique compared to others to date in that we virtually sample a true known spatial distribution of a nonindigenous plant species, Bromus inermis. The census of B. inermis provides a good example of a species distribution that is both sparsely (1.9 % prevalence) and patchily distributed. We find that modeling the spatial correlation using a random effect with an intrinsic Gaussian conditionally autoregressive prior distribution was equivalent or superior to Bayesian autologistic regression in terms of predicting to un-sampled areas when strip adaptive cluster sampling was used to survey B. inermis. However, inferences about the relationships between B. inermis presence and environmental predictors differed between the two spatial binary models. The strip adaptive cluster designs we investigate provided a significant advantage in terms of Markov chain Monte Carlo chain convergence when trying to model a sparsely distributed species across a large area. In general, there was little difference in the choice of neighborhood, although the adaptive king was preferred when transects were randomly placed throughout the spatial domain.

  5. Contrast enhancement in microscopy of human thyroid tumors by means of acousto-optic adaptive spatial filtering

    NASA Astrophysics Data System (ADS)

    Yushkov, Konstantin B.; Molchanov, Vladimir Y.; Belousov, Pavel V.; Abrosimov, Aleksander Y.

    2016-01-01

    We report a method for edge enhancement in the images of transparent samples using analog image processing in coherent light. The experimental technique is based on adaptive spatial filtering with an acousto-optic tunable filter in a telecentric optical system. We demonstrate processing of microscopic images of unstained and stained histological sections of human thyroid tumor with improved contrast.

  6. Conductivity image enhancement in MREIT using adaptively weighted spatial averaging filter

    PubMed Central

    2014-01-01

    Background In magnetic resonance electrical impedance tomography (MREIT), we reconstruct conductivity images using magnetic flux density data induced by externally injected currents. Since we extract magnetic flux density data from acquired MR phase images, the amount of measurement noise increases in regions of weak MR signals. Especially for local regions of MR signal void, there may occur excessive amounts of noise to deteriorate the quality of reconstructed conductivity images. In this paper, we propose a new conductivity image enhancement method as a postprocessing technique to improve the image quality. Methods Within a magnetic flux density image, the amount of noise varies depending on the position-dependent MR signal intensity. Using the MR magnitude image which is always available in MREIT, we estimate noise levels of measured magnetic flux density data in local regions. Based on the noise estimates, we adjust the window size and weights of a spatial averaging filter, which is applied to reconstructed conductivity images. Without relying on a partial differential equation, the new method is fast and can be easily implemented. Results Applying the novel conductivity image enhancement method to experimental data, we could improve the image quality to better distinguish local regions with different conductivity contrasts. From phantom experiments, the estimated conductivity values had 80% less variations inside regions of homogeneous objects. Reconstructed conductivity images from upper and lower abdominal regions of animals showed much less artifacts in local regions of weak MR signals. Conclusion We developed the fast and simple method to enhance the conductivity image quality by adaptively adjusting the weights and window size of the spatial averaging filter using MR magnitude images. Since the new method is implemented as a postprocessing step, we suggest adopting it without or with other preprocessing methods for application studies where conductivity

  7. Simulation of mid-infrared clutter rejection. 1: One-dimensional LMS spatial filter and adaptive threshold algorithms.

    PubMed

    Longmire, M S; Milton, A F; Takken, E H

    1982-11-01

    Several 1-D signal processing techniques have been evaluated by simulation with a digital computer using high-spatial-resolution (0.15 mrad) noise data gathered from back-lit clouds and uniform sky with a scanning data collection system operating in the 4.0-4.8-microm spectral band. Two ordinary bandpass filters and a least-mean-square (LMS) spatial filter were evaluated in combination with a fixed or adaptive threshold algorithm. The combination of a 1-D LMS filter and a 1-D adaptive threshold sensor was shown to reject extreme cloud clutter effectively and to provide nearly equal signal detection in a clear and cluttered sky, at least in systems whose NEI (noise equivalent irradiance) exceeds 1.5 x 10(-13) W/cm(2) and whose spatial resolution is better than 0.15 x 0.36 mrad. A summary gives highlights of the work, key numerical results, and conclusions. PMID:20396326

  8. Adaptive Bessel-autocorrelation of ultrashort pulses with phase-only spatial light modulators

    NASA Astrophysics Data System (ADS)

    Huferath-von Luepke, Silke; Bock, Martin; Grunwald, Ruediger

    2009-06-01

    Recently, we proposed a new approach of a noncollinear correlation technique for ultrashort-pulsed coherent optical signals which was referred to as Bessel-autocorrelator (BAC). The BAC-principle combines the advantages of Bessellike nondiffracting beams like stable propagation, angular robustness and self-reconstruction with the principle of temporal autocorrelation. In comparison to other phase-sensitive measuring techniques, autocorrelation is most straightforward and time-effective because of non-iterative data processing. The analysis of nonlinearly converted fringe patterns of pulsed Bessel-like beams reveals their temporal signature from details of fringe envelopes. By splitting the beams with axicon arrays into multiple sub-beams, transversal resolution is approximated. Here we report on adaptive implementations of BACs with improved phase resolution realized by phase-only liquid-crystal-on-silicon spatial light modulators (LCoS-SLMs). Programming microaxicon phase functions in gray value maps enables for a flexible variation of phase and geometry. Experiments on the diagnostics of few-cycle pulses emitted by a mode-locked Ti:sapphire laser oscillator at wavelengths around 800 nm with 2D-BAC and angular tuned BAC were performed. All-optical phase shift BAC and fringe free BAC approaches are discussed.

  9. Evolution of cooperation in the spatial public goods game with adaptive reputation assortment

    NASA Astrophysics Data System (ADS)

    Chen, Mei-huan; Wang, Li; Sun, Shi-wen; Wang, Juan; Xia, Cheng-yi

    2016-01-01

    We present a new spatial public goods game model, which takes the individual reputation and behavior diversity into account at the same time, to investigate the evolution of cooperation. Initially, each player x will be endowed with an integer Rx between 1 and Rmax to characterize his reputation value, which will be adaptively varied according to the strategy action at each time step. Then, the agents play the game and the system proceeds in accordance with a Fermi-like rule, in which a multiplicative factor (wy) to denote the individual difference to perform the strategy transfer will be placed before the traditional Fermi probability. For influential participants, wy is set to be 1.0, but be a smaller value w (0 < w < 1) for non-influential ones. Large quantities of simulations demonstrate that the cooperation behavior will be obviously influenced by the reputation threshold (RC), and the greater the threshold, the higher the fraction of cooperators. The origin of promotion of cooperation will be attributed to the fact that the larger reputation threshold renders the higher heterogeneity in the fraction of two types of players and strategy spreading capability. Our work is conducive to a better understanding of the emergence of cooperation within many real-world systems.

  10. Fine-granularity and spatially-adaptive regularization for projection-based image deblurring.

    PubMed

    Li, Xin

    2011-04-01

    This paper studies two classes of regularization strategies to achieve an improved tradeoff between image recovery and noise suppression in projection-based image deblurring. The first is based on a simple fact that r-times Landweber iteration leads to a fixed level of regularization, which allows us to achieve fine-granularity control of projection-based iterative deblurring by varying the value r. The regularization behavior is explained by using the theory of Lagrangian multiplier for variational schemes. The second class of regularization strategy is based on the observation that various regularized filters can be viewed as nonexpansive mappings in the metric space. A deeper understanding about different regularization filters can be gained by probing into their asymptotic behavior--the fixed point of nonexpansive mappings. By making an analogy to the states of matter in statistical physics, we can observe that different image structures (smooth regions, regular edges and textures) correspond to different fixed points of nonexpansive mappings when the temperature(regularization) parameter varies. Such an analogy motivates us to propose a deterministic annealing based approach toward spatial adaptation in projection-based image deblurring. Significant performance improvements over the current state-of-the-art schemes have been observed in our experiments, which substantiates the effectiveness of the proposed regularization strategies. PMID:20876018

  11. Adaptive spatial compounding for improving ultrasound images of the epidural space on human subjects

    NASA Astrophysics Data System (ADS)

    Tran, Denis; Hor, King-Wei; Kamani, Allaudin; Lessoway, Vickie; Rohling, Robert N.

    2008-03-01

    Administering epidural anesthesia can be a difficult procedure, especially for inexperienced physicians. The use of ultrasound imaging can help by showing the location of the key surrounding structures: the ligamentum flavum and the lamina of the vertebrae. The anatomical depiction of the interface between ligamentum flavum and epidural space is currently limited by speckle and anisotropic reflection. Previous work on phantoms showed that adaptive spatial compounding with non-rigid registration can improve the depiction of these features. This paper describes the development of an updated compounding algorithm and results from a clinical study. Average-based compounding may obscure anisotropic reflectors that only appear at certain beam angles, so a new median-based compounding technique is developed. In order to reduce the computational cost of the registration process, a linear prediction algorithm is used to reduce the search space for registration. The algorithms are tested on 20 human subjects. Comparisons are made among the reference image plus combinations of different compounding methods, warping and linear prediction. The gradient of the bone surfaces, the Laplacian of the ligamentum flavum, and the SNR and CNR are used to quantitatively assess the visibility of the features in the processed images. The results show a significant improvement in quality when median-based compounding with warping is used to align the set of beam-steered images and combine them. The improvement of the features makes detection of the epidural space easier.

  12. Advantages and limitations of the spatially adaptive program SAPRO in clinical perimetry.

    PubMed

    Fankhauser, F; Funkhouser, A; Kwasniewska, S

    1986-05-01

    The SAPRO program devised for the OCTOPUS 201 automated perimeter, consists of a number of program components. It is designed to be used on the Octopus 201 computer. In its measurement mode, it employs an algorithm which achieves high speed and efficiency. This is made possible by a threshold bracketing strategy which is simpler than the normal OCTOPUS bracketing. Moreover, three grids with test location distributions of increasing resolution are superimposed in succession on the whole or on part of the visual field to be analyzed. Out of the distribution of test locations, only those which fulfill a number of criteria are actually utilized. These criteria must be given and are adaptable to any given clinical problem. As a result, despite the high spatial resolution achieved, only a fraction of the test locations are utilized using SAPRO as compared with a program using a fixed pattern of test locations. The algorithm is thus able to imitate human intelligence, which tends to concentrate stimuli at places which appear to be relevant for the solution of a problem. The results of program SAPRO are disturbed by short- and long-term fluctuations. Their validity is limited, in a manner similar to that encountered in any other threshold determination procedure. A number of printout modes is available which are oriented towards an optimal understanding of the information contained in various examinations. These principles will be illustrated by one case of inactive disseminated chorioretinitis. PMID:3755124

  13. Adaptive Optics with a Liquid-Crystal-on-Silicon Spatial Light Modulator and Its Behavior in Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Shirai, Tomohiro; Takeno, Kohei; Arimoto, Hidenobu; Furukawa, Hiromitsu

    2009-07-01

    An adaptive optics system with a brand-new device of a liquid-crystal-on-silicon (LCOS) spatial light modulator (SLM) and its behavior in in vivo imaging of the human retina are described. We confirmed by experiments that closed-loop correction of ocular aberrations of the subject's eye was successfully achieved at the rate of 16.7 Hz in our system to obtain a clear retinal image in real time. The result suggests that an LCOS SLM is one of the promising candidates for a wavefront corrector in a prospective commercial ophthalmic instrument with adaptive optics.

  14. Retrieval of Brain Tumors by Adaptive Spatial Pooling and Fisher Vector Representation

    PubMed Central

    Huang, Meiyan; Huang, Wei; Jiang, Jun; Zhou, Yujia; Yang, Ru; Zhao, Jie; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan

    2016-01-01

    Content-based image retrieval (CBIR) techniques have currently gained increasing popularity in the medical field because they can use numerous and valuable archived images to support clinical decisions. In this paper, we concentrate on developing a CBIR system for retrieving brain tumors in T1-weighted contrast-enhanced MRI images. Specifically, when the user roughly outlines the tumor region of a query image, brain tumor images in the database of the same pathological type are expected to be returned. We propose a novel feature extraction framework to improve the retrieval performance. The proposed framework consists of three steps. First, we augment the tumor region and use the augmented tumor region as the region of interest to incorporate informative contextual information. Second, the augmented tumor region is split into subregions by an adaptive spatial division method based on intensity orders; within each subregion, we extract raw image patches as local features. Third, we apply the Fisher kernel framework to aggregate the local features of each subregion into a respective single vector representation and concatenate these per-subregion vector representations to obtain an image-level signature. After feature extraction, a closed-form metric learning algorithm is applied to measure the similarity between the query image and database images. Extensive experiments are conducted on a large dataset of 3604 images with three types of brain tumors, namely, meningiomas, gliomas, and pituitary tumors. The mean average precision can reach 94.68%. Experimental results demonstrate the power of the proposed algorithm against some related state-of-the-art methods on the same dataset. PMID:27273091

  15. Spatial assignment of symmetry adapted perturbation theory interaction energy components: The atomic SAPT partition

    NASA Astrophysics Data System (ADS)

    Parrish, Robert M.; Sherrill, C. David

    2014-07-01

    We develop a physically-motivated assignment of symmetry adapted perturbation theory for intermolecular interactions (SAPT) into atom-pairwise contributions (the A-SAPT partition). The basic precept of A-SAPT is that the many-body interaction energy components are computed normally under the formalism of SAPT, following which a spatially-localized two-body quasiparticle interaction is extracted from the many-body interaction terms. For electrostatics and induction source terms, the relevant quasiparticles are atoms, which are obtained in this work through the iterative stockholder analysis (ISA) procedure. For the exchange, induction response, and dispersion terms, the relevant quasiparticles are local occupied orbitals, which are obtained in this work through the Pipek-Mezey procedure. The local orbital atomic charges obtained from ISA additionally allow the terms involving local orbitals to be assigned in an atom-pairwise manner. Further summation over the atoms of one or the other monomer allows for a chemically intuitive visualization of the contribution of each atom and interaction component to the overall noncovalent interaction strength. Herein, we present the intuitive development and mathematical form for A-SAPT applied in the SAPT0 approximation (the A-SAPT0 partition). We also provide an efficient series of algorithms for the computation of the A-SAPT0 partition with essentially the same computational cost as the corresponding SAPT0 decomposition. We probe the sensitivity of the A-SAPT0 partition to the ISA grid and convergence parameter, orbital localization metric, and induction coupling treatment, and recommend a set of practical choices which closes the definition of the A-SAPT0 partition. We demonstrate the utility and computational tractability of the A-SAPT0 partition in the context of side-on cation-π interactions and the intercalation of DNA by proflavine. A-SAPT0 clearly shows the key processes in these complicated noncovalent interactions, in

  16. Retrieval of Brain Tumors by Adaptive Spatial Pooling and Fisher Vector Representation.

    PubMed

    Cheng, Jun; Yang, Wei; Huang, Meiyan; Huang, Wei; Jiang, Jun; Zhou, Yujia; Yang, Ru; Zhao, Jie; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan

    2016-01-01

    Content-based image retrieval (CBIR) techniques have currently gained increasing popularity in the medical field because they can use numerous and valuable archived images to support clinical decisions. In this paper, we concentrate on developing a CBIR system for retrieving brain tumors in T1-weighted contrast-enhanced MRI images. Specifically, when the user roughly outlines the tumor region of a query image, brain tumor images in the database of the same pathological type are expected to be returned. We propose a novel feature extraction framework to improve the retrieval performance. The proposed framework consists of three steps. First, we augment the tumor region and use the augmented tumor region as the region of interest to incorporate informative contextual information. Second, the augmented tumor region is split into subregions by an adaptive spatial division method based on intensity orders; within each subregion, we extract raw image patches as local features. Third, we apply the Fisher kernel framework to aggregate the local features of each subregion into a respective single vector representation and concatenate these per-subregion vector representations to obtain an image-level signature. After feature extraction, a closed-form metric learning algorithm is applied to measure the similarity between the query image and database images. Extensive experiments are conducted on a large dataset of 3604 images with three types of brain tumors, namely, meningiomas, gliomas, and pituitary tumors. The mean average precision can reach 94.68%. Experimental results demonstrate the power of the proposed algorithm against some related state-of-the-art methods on the same dataset. PMID:27273091

  17. Spatial assignment of symmetry adapted perturbation theory interaction energy components: The atomic SAPT partition

    SciTech Connect

    Parrish, Robert M.; Sherrill, C. David

    2014-07-28

    We develop a physically-motivated assignment of symmetry adapted perturbation theory for intermolecular interactions (SAPT) into atom-pairwise contributions (the A-SAPT partition). The basic precept of A-SAPT is that the many-body interaction energy components are computed normally under the formalism of SAPT, following which a spatially-localized two-body quasiparticle interaction is extracted from the many-body interaction terms. For electrostatics and induction source terms, the relevant quasiparticles are atoms, which are obtained in this work through the iterative stockholder analysis (ISA) procedure. For the exchange, induction response, and dispersion terms, the relevant quasiparticles are local occupied orbitals, which are obtained in this work through the Pipek-Mezey procedure. The local orbital atomic charges obtained from ISA additionally allow the terms involving local orbitals to be assigned in an atom-pairwise manner. Further summation over the atoms of one or the other monomer allows for a chemically intuitive visualization of the contribution of each atom and interaction component to the overall noncovalent interaction strength. Herein, we present the intuitive development and mathematical form for A-SAPT applied in the SAPT0 approximation (the A-SAPT0 partition). We also provide an efficient series of algorithms for the computation of the A-SAPT0 partition with essentially the same computational cost as the corresponding SAPT0 decomposition. We probe the sensitivity of the A-SAPT0 partition to the ISA grid and convergence parameter, orbital localization metric, and induction coupling treatment, and recommend a set of practical choices which closes the definition of the A-SAPT0 partition. We demonstrate the utility and computational tractability of the A-SAPT0 partition in the context of side-on cation-π interactions and the intercalation of DNA by proflavine. A-SAPT0 clearly shows the key processes in these complicated noncovalent interactions, in

  18. Excitation and Adaptation in Bacteria–a Model Signal Transduction System that Controls Taxis and Spatial Pattern Formation

    PubMed Central

    Othmer, Hans G.; Xin, Xiangrong; Xue, Chuan

    2013-01-01

    The machinery for transduction of chemotactic stimuli in the bacterium E. coli is one of the most completely characterized signal transduction systems, and because of its relative simplicity, quantitative analysis of this system is possible. Here we discuss models which reproduce many of the important behaviors of the system. The important characteristics of the signal transduction system are excitation and adaptation, and the latter implies that the transduction system can function as a “derivative sensor” with respect to the ligand concentration in that the DC component of a signal is ultimately ignored if it is not too large. This temporal sensing mechanism provides the bacterium with a memory of its passage through spatially- or temporally-varying signal fields, and adaptation is essential for successful chemotaxis. We also discuss some of the spatial patterns observed in populations and indicate how cell-level behavior can be embedded in population-level descriptions. PMID:23624608

  19. Adapting Existing Spatial Data Sets to New Uses: An Example from Energy Modeling

    SciTech Connect

    Johanesson, G; Stewart, J S; Barr, C; Sabeff, L B; George, R; Heimiller, D; Milbrandt, A

    2006-06-23

    Energy modeling and analysis often relies on data collected for other purposes such as census counts, atmospheric and air quality observations, and economic projections. These data are available at various spatial and temporal scales, which may be different from those needed by the energy modeling community. If the translation from the original format to the format required by the energy researcher is incorrect, then resulting models can produce misleading conclusions. This is of increasing importance, because of the fine resolution data required by models for new alternative energy sources such as wind and distributed generation. This paper addresses the matter by applying spatial statistical techniques which improve the usefulness of spatial data sets (maps) that do not initially meet the spatial and/or temporal requirements of energy models. In particular, we focus on (1) aggregation and disaggregation of spatial data, (2) imputing missing data and (3) merging spatial data sets.

  20. Spatial perception changes associated with space flight: implications for adaptation to altered inertial environments.

    PubMed

    Parker, Donald E

    2003-01-01

    Preparation for extended travel by astronauts within the Solar System, including a possible manned mission to Mars, requires more complete understanding of adaptation to altered inertial environments. Improved understanding is needed to support development and evaluation of interventions to facilitate adaptations during transitions between those environments. Travel to another planet escalates the adaptive challenge because astronauts will experience prolonged exposure to microgravity before encountering a novel gravitational environment. This challenge would have to be met without ground support at the landing site. Evaluation of current adaptive status as well as intervention efficacy can be performed using perceptual, eye movement and postural measures. Due to discrepancies of adaptation magnitude and time-course among these measures, complete understanding of adaptation processes, as well as intervention evaluation, requires examination of all three. Previous research and theory that provide models for comprehending adaptation to altered inertial environments are briefly examined. Reports from astronauts of selected pre- in- and postflight self-motion illusions are described. The currently controversial tilt-translation reinterpretation hypothesis is reviewed and possible resolutions to the controversy are proposed. Finally, based on apparent gaps in our current knowledge, further research is proposed to achieve a more complete understanding of adaptation as well as to develop effective counter-measures. PMID:15096676

  1. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  2. Adaptive filtering in spatial vision: evidence from feature marking in plaids.

    PubMed

    Georgeson, M A; Meese, T S

    1999-01-01

    Much evidence shows that early vision employs an array of spatial filters tuned for different spatial frequencies and orientations. We suggest that for moderately low spatial frequencies these preliminary filters are not treated independently, but are used to perform grouping and segmentation in the patchwise Fourier domain. For example, consider a stationary plaid made from two superimposed sinusoidal gratings of the same contrast and spatial frequency oriented +/- 45 degrees from vertical. Most of the energy in a wavelet-like (e.g. simple-cell) transform of this stimulus is in the oblique orientations, but typically it looks like a compound structure containing blurred vertical and horizontal edges. This checkerboard structure corresponds with the locations of zero crossings in the output of an isotropic (circular) filter, synthesised from the linear sum of a set of oriented basis-filters (Georgeson, 1992 Proceedings of the Royal Society of London, Series B 249 235-245). However, the addition of a third harmonic in square-wave phase causes almost complete perceptual segmentation of the plaid into two overlapping oblique gratings. Here we confirm this result psychophysically using a feature-marking technique, and argue that this perceptual segmentation cannot be understood in terms of the zero crossings marked in the output of any static linear filter that is sensitive to all of the plaid's components. If it is assumed that zero crossings or similar are an appropriate feature-primitive in human vision, our results require a flexible process that combines and segments early basis-filters according to prevailing image conditions. Thus, we suggest that combination and segmentation of spatial filters in the patchwise Fourier domain underpins the perceptual segmentation observed in our experiments. Under this kind of image-processing scheme, registration across spatial scales occurs at the level of spatial filters, before features are extracted. This contrasts with

  3. BEHAVIORAL ADAPTATIONS TO SPATIALLY INTERMITTENT STREAMS BY THE LONGFIN DACE, 'AGOSIA CHRYSOGASTER', (CYPRINIDAE)

    EPA Science Inventory

    The spatially intermittent stream, with areas containing surface water separated by lengths of dry streambed, represents a common aquatic habitat in the Sonoran Desert. The longfin dace (Agosia chrysogaster) is the only fish to utilize this habitat consistently. Behavioral adapta...

  4. Perception of auditory, visual, and egocentric spatial alignment adapts differently to changes in eye position.

    PubMed

    Cui, Qi N; Razavi, Babak; O'Neill, William E; Paige, Gary D

    2010-02-01

    Vision and audition represent the outside world in spatial synergy that is crucial for guiding natural activities. Input conveying eye-in-head position is needed to maintain spatial congruence because the eyes move in the head while the ears remain head-fixed. Recently, we reported that the human perception of auditory space shifts with changes in eye position. In this study, we examined whether this phenomenon is 1) dependent on a visual fixation reference, 2) selective for frequency bands (high-pass and low-pass noise) related to specific auditory spatial channels, 3) matched by a shift in the perceived straight-ahead (PSA), and 4) accompanied by a spatial shift for visual and/or bimodal (visual and auditory) targets. Subjects were tested in a dark echo-attenuated chamber with their heads fixed facing a cylindrical screen, behind which a mobile speaker/LED presented targets across the frontal field. Subjects fixated alternating reference spots (0, +/-20 degrees ) horizontally or vertically while either localizing targets or indicating PSA using a laser pointer. Results showed that the spatial shift induced by ocular eccentricity is 1) preserved for auditory targets without a visual fixation reference, 2) generalized for all frequency bands, and thus all auditory spatial channels, 3) paralleled by a shift in PSA, and 4) restricted to auditory space. Findings are consistent with a set-point control strategy by which eye position governs multimodal spatial alignment. The phenomenon is robust for auditory space and egocentric perception, and highlights the importance of controlling for eye position in the examination of spatial perception and behavior. PMID:19846626

  5. Adaptive DCT-based filtering of images corrupted by spatially correlated noise

    NASA Astrophysics Data System (ADS)

    Ponomarenko, Nikolay N.; Lukin, Vladimir V.; Zelensky, Aleksandr A.; Astola, Jaakko T.; Egiazarian, Karen O.

    2008-02-01

    Majority of image filtering techniques are designed under assumption that noise is of special, a priori known type and it is i.i.d., i.e. spatially uncorrelated. However, in many practical situations the latter assumption is not true due to several reasons. Moreover, spatial correlation properties of noise might be rather different and a priori unknown. Then the assumption that noise is i.i.d. under real conditions of spatially correlated noise commonly leads to considerable decrease of a used filter effectiveness in comparison to a case if this spatial correlation is taken into account. Our paper deals with two basic aspects. The first one is how to modify a denoising algorithm, in particular, a discrete cosine transform (DCT) based filter in order to incorporate a priori or preliminarily obtained knowledge of spatial correlation characteristics of noise. The second aspect is how to estimate spatial correlation characteristics of noise for a given image with appropriate accuracy and robustness under condition that there is some a priori information about, at least, noise type and statistics like variance (for additive noise case) or relative variance (for multiplicative noise). We also present simulation results showing the effectiveness (the benefit) of taking into consideration noise correlation properties.

  6. Spatial, Hysteretic, and Adaptive Host-Guest Chemistry in a Metal-Organic Framework with Open Watson-Crick Sites.

    PubMed

    Cai, Hong; Li, Mian; Lin, Xiao-Rong; Chen, Wei; Chen, Guang-Hui; Huang, Xiao-Chun; Li, Dan

    2015-09-01

    Biological and artificial molecules and assemblies capable of supramolecular recognition, especially those with nucleobase pairing, usually rely on autonomous or collective binding to function. Advanced site-specific recognition takes advantage of cooperative spatial effects, as in local folding in protein-DNA binding. Herein, we report a new nucleobase-tagged metal-organic framework (MOF), namely ZnBTCA (BTC=benzene-1,3,5-tricarboxyl, A=adenine), in which the exposed Watson-Crick faces of adenine residues are immobilized periodically on the interior crystalline surface. Systematic control experiments demonstrated the cooperation of the open Watson-Crick sites and spatial effects within the nanopores, and thermodynamic and kinetic studies revealed a hysteretic host-guest interaction attributed to mild chemisorption. We further exploited this behavior for adenine-thymine binding within the constrained pores, and a globally adaptive response of the MOF host was observed. PMID:26178173

  7. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  8. Adapting geostatistics to analyze spatial and temporal trends in weed populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geostatistics were originally developed in mining to estimate the location, abundance and quality of ore over large areas from soil samples to optimize future mining efforts. Here, some of these methods were adapted to weeds to account for a limited distribution area (i.e., inside a field), variatio...

  9. Spatially adaptive stochastic methods for fluid–structure interactions subject to thermal fluctuations in domains with complex geometries

    SciTech Connect

    Plunkett, Pat; Hu, Jonathan; Siefert, Christopher; Atzberger, Paul J.

    2014-11-15

    We develop stochastic mixed finite element methods for spatially adaptive simulations of fluid–structure interactions when subject to thermal fluctuations. To account for thermal fluctuations, we introduce a discrete fluctuation–dissipation balance condition to develop compatible stochastic driving fields for our discretization. We perform analysis that shows our condition is sufficient to ensure results consistent with statistical mechanics. We show the Gibbs–Boltzmann distribution is invariant under the stochastic dynamics of the semi-discretization. To generate efficiently the required stochastic driving fields, we develop a Gibbs sampler based on iterative methods and multigrid to generate fields with O(N) computational complexity. Our stochastic methods provide an alternative to uniform discretizations on periodic domains that rely on Fast Fourier Transforms. To demonstrate in practice our stochastic computational methods, we investigate within channel geometries having internal obstacles and no-slip walls how the mobility/diffusivity of particles depends on location. Our methods extend the applicability of fluctuating hydrodynamic approaches by allowing for spatially adaptive resolution of the mechanics and for domains that have complex geometries relevant in many applications.

  10. Spatially adaptive stochastic methods for fluid-structure interactions subject to thermal fluctuations in domains with complex geometries

    SciTech Connect

    Plunkett, Pat; Hu, Jonathan; Siefert, Christopher; Atzberger, Paul J.

    2014-08-07

    We develop stochastic mixed finite element methods for spatially adaptive simulations of fluid–structure interactions when subject to thermal fluctuations. To account for thermal fluctuations, we introduce a discrete fluctuation–dissipation balance condition to develop compatible stochastic driving fields for our discretization. We also perform analysis that shows our condition is sufficient to ensure results consistent with statistical mechanics. We show the Gibbs–Boltzmann distribution is invariant under the stochastic dynamics of the semi-discretization. To generate efficiently the required stochastic driving fields, we develop a Gibbs sampler based on iterative methods and multigrid to generate fields with O(N) computational complexity. Our stochastic methods provide an alternative to uniform discretizations on periodic domains that rely on Fast Fourier Transforms. To demonstrate in practice our stochastic computational methods, we investigate within channel geometries having internal obstacles and no-slip walls how the mobility/diffusivity of particles depends on location. Furthermore, our methods extend the applicability of fluctuating hydrodynamic approaches by allowing for spatially adaptive resolution of the mechanics and for domains that have complex geometries relevant in many applications.

  11. [Effect of spatial location on the generality of block-wise conflict adaptation between different types of scripts].

    PubMed

    Watanabe, Yurina; Yoshizaki, Kazuhito

    2014-10-01

    This study aimed to investigate the generality of conflict adaptation associated with block-wise conflict frequency between two types of stimulus scripts (Kanji and Hiragana). To this end, we examined whether the modulation of the compatibility effect with one type of script depending on block-wise conflict frequency (75% versus 25% generalized to the other type of script whose block-wise conflict frequency was kept constant (50%), using the Spatial Stroop task. In Experiment 1, 16 participants were required to identify the target orientation (up or down) presented in the upper or lower visual-field. The results showed that block-wise conflict adaptation with one type of stimulus script generalized to the other. The procedure in Experiment 2 was the same as that in Experiment 1, except that the presentation location differed between the two types of stimulus scripts. We did not find a generalization from one script to the other. These results suggest that presentation location is a critical factor contributing to the generality of block-wise conflict adaptation. PMID:25486848

  12. [Effect of spatial location on the generality of block-wise conflict adaptation between different types of scripts].

    PubMed

    Watanabe, Yurina; Yoshizaki, Kazuhito

    2014-10-01

    This study aimed to investigate the generality of conflict adaptation associated with block-wise conflict frequency between two types of stimulus scripts (Kanji and Hiragana). To this end, we examined whether the modulation of the compatibility effect with one type of script depending on block-wise conflict frequency (75% versus 25% generalized to the other type of script whose block-wise conflict frequency was kept constant (50%), using the Spatial Stroop task. In Experiment 1, 16 participants were required to identify the target orientation (up or down) presented in the upper or lower visual-field. The results showed that block-wise conflict adaptation with one type of stimulus script generalized to the other. The procedure in Experiment 2 was the same as that in Experiment 1, except that the presentation location differed between the two types of stimulus scripts. We did not find a generalization from one script to the other. These results suggest that presentation location is a critical factor contributing to the generality of block-wise conflict adaptation. PMID:25508979

  13. An adaptive spectral estimation technique to detect cavitation in HIFU with high spatial resolution.

    PubMed

    Hsieh, Chang-Yu; Probert Smith, Penny; Mayia, Fares; Ye, Guoliang

    2011-07-01

    In ultrasound-guided high-intensity focused ultrasound (HIFU) therapy, the changes observed on tissue are subtle during treatment; some ultrasound-guided HIFU protocols rely on the observation of significant brightness changes as the indicator of tissue lesions. The occurrence of a distinct hyperechogenic region ("bright-up") around the focus is often associated with acoustic cavitation resulting in microbubble formation, but it may indicate different physical events such as larger bubbles from boiling (known to alter acoustic impedance) or sometimes lesion formation. A reliable method to distinguish and spatially localize these causes within the tissue would assist the control of HIFU delivery, which is the subject of this paper. Spectral analysis of the radio frequency (RF) signal underlying the B-mode image provides more information on the physical cause, but the usual techniques that are methods on the Fourier transform require a long series for good spectral resolution and so they give poor spatial resolution. This paper introduces an active spectral cavitation detection method to attain high spatial resolution (0.15 × 0.15 mm per pixel) through a parametric statistical method (ARMA modeling) used on finite-length data sets, which enables local changes to be identified more easily. This technique uses the characteristics of the signal itself to optimize the model parameters and structure. Its performance is assessed using synthesized cavitation RF data, and it is then demonstrated in ex vivo bovine liver during and after HIFU exposure. The results suggest that good spatial and spectral resolution can be obtained by the design of suitable algorithms. In ultrasound-guided HIFU, the technique provides a useful supplement to B-mode analysis, with no additional time penalty in data acquisition. PMID:21684454

  14. Simulating spatial adaption of groundwater pumping on seawater intrusion in coastal regions

    NASA Astrophysics Data System (ADS)

    Grundmann, Jens; Ladwig, Robert; Schütze, Niels; Walther, Marc

    2016-04-01

    Coastal aquifer systems are used intensively to meet the growing demands for water in those regions. They are especially at risk for the intrusion of seawater due to aquifer overpumping, limited groundwater replenishment and unsustainable groundwater management which in turn also impacts the social and economical development of coastal regions. One example is the Al-Batinah coastal plain in northern Oman where irrigated agriculture is practiced by lots of small scaled farms in different distances from the sea, each of them pumping their water from coastal aquifer. Due to continuous overpumping and progressing saltwater intrusion farms near the coast had to close since water for irrigation got too saline. For investigating appropriate management options numerical density dependent groundwater modelling is required which should also portray the adaption of groundwater abstraction schemes on the water quality. For addressing this challenge a moving inner boundary condition is implemented in the numerical density dependent groundwater model which adjusts the locations for groundwater abstraction according to the position of the seawater intrusion front controlled by thresholds of relative chloride concentration. The adaption process is repeated for each management cycle within transient model simulations and allows for considering feedbacks with the consumers e.g. the agriculture by moving agricultural farms more inland or towards the sea if more fertile soils at the coast could be recovered. For finding optimal water management strategies efficiently, the behaviour of the numerical groundwater model for different extraction and replenishment scenarios is approximated by an artificial neural network using a novel approach for state space surrogate model development. Afterwards the derived surrogate is coupled with an agriculture module within a simulation based water management optimisation framework to achieve optimal cropping pattern and water abstraction schemes

  15. Spatial and temporal variation of an ice-adapted predator's feeding ecology in a changing Arctic marine ecosystem.

    PubMed

    Yurkowski, David J; Ferguson, Steven H; Semeniuk, Christina A D; Brown, Tanya M; Muir, Derek C G; Fisk, Aaron T

    2016-03-01

    Spatial and temporal variation can confound interpretations of relationships within and between species in terms of diet composition, niche size, and trophic position (TP). The cause of dietary variation within species is commonly an ontogenetic niche shift, which is a key dynamic influencing community structure. We quantified spatial and temporal variations in ringed seal (Pusa hispida) diet, niche size, and TP during ontogeny across the Arctic-a rapidly changing ecosystem. Stable carbon and nitrogen isotope analysis was performed on 558 liver and 630 muscle samples from ringed seals and on likely prey species from five locations ranging from the High to the Low Arctic. A modest ontogenetic diet shift occurred, with adult ringed seals consuming more forage fish (approximately 80 versus 60 %) and having a higher TP than subadults, which generally decreased with latitude. However, the degree of shift varied spatially, with adults in the High Arctic presenting a more restricted niche size and consuming more Arctic cod (Boreogadus saida) than subadults (87 versus 44 %) and adults at the lowest latitude (29 %). The TPs of adult and subadult ringed seals generally decreased with latitude (4.7-3.3), which was mainly driven by greater complexity in trophic structure within the zooplankton communities. Adult isotopic niche size increased over time, likely due to the recent circumpolar increases in subarctic forage fish distribution and abundance. Given the spatial and temporal variability in ringed seal foraging ecology, ringed seals exhibit dietary plasticity as a species, suggesting adaptability in terms of their diet to climate change. PMID:26210748

  16. Adaptive, spatially-varying aberration correction for real-time holographic projectors.

    PubMed

    Kaczorowski, Andrzej; Gordon, George S D; Wilkinson, Timothy D

    2016-07-11

    A method of generating an aberration- and distortion-free wide-angle holographically projected image in real time is presented. The target projector is first calibrated using an automated adaptive-optical mechanism. The calibration parameters are then fed into the hologram generation program, which applies a novel piece-wise aberration correction algorithm. The method is found to offer hologram generation times up to three orders of magnitude faster than the standard method. A projection of an aberration- and distortion-free image with a field of view of 90x45 degrees is demonstrated. The implementation on a mid-range GPU achieves high resolution at a frame rate up to 12fps. The presented methods are automated and can be performed on any holographic projector. PMID:27410846

  17. Spatial Structure and Lamarckian Adaptation Explain Extreme Genetic Diversity at CRISPR Locus

    PubMed Central

    Haerter, Jan O.; Sneppen, Kim

    2012-01-01

    ABSTRACT Even within similar bacterial strains, it has been found that the clustered, regularly interspaced short palindromic repeat (CRISPR) shows a large variability of spacers. Modeling bacterial strains with different levels of immunity to infection by a single virulent phage, we find that coexistence in a well-mixed environment is possible only when these levels are distinctly different. When bacterial strains are similar, one subpopulation collapses. In the case of bacteria with various levels of CRISPR immunity to a range of phages, small differences in spacer composition will accordingly be suppressed under well-mixed conditions. Using a numerical model of populations spreading in space, we predict that it is the Lamarckian nature of CRISPR evolution that combines with spatial correlations to sustain the experimentally observed distribution of spacer diversity. PMID:22807565

  18. Spatial structure and Lamarckian adaptation explain extreme genetic diversity at CRISPR locus.

    PubMed

    Haerter, Jan O; Sneppen, Kim

    2012-01-01

    Even within similar bacterial strains, it has been found that the clustered, regularly interspaced short palindromic repeat (CRISPR) shows a large variability of spacers. Modeling bacterial strains with different levels of immunity to infection by a single virulent phage, we find that coexistence in a well-mixed environment is possible only when these levels are distinctly different. When bacterial strains are similar, one subpopulation collapses. In the case of bacteria with various levels of CRISPR immunity to a range of phages, small differences in spacer composition will accordingly be suppressed under well-mixed conditions. Using a numerical model of populations spreading in space, we predict that it is the Lamarckian nature of CRISPR evolution that combines with spatial correlations to sustain the experimentally observed distribution of spacer diversity. PMID:22807565

  19. Amoeboid migration mode adaption in quasi-3D spatial density gradients of varying lattice geometry

    NASA Astrophysics Data System (ADS)

    Gorelashvili, Mari; Emmert, Martin; Hodeck, Kai F.; Heinrich, Doris

    2014-07-01

    Cell migration processes are controlled by sensitive interaction with external cues such as topographic structures of the cell’s environment. Here, we present systematically controlled assays to investigate the specific effects of spatial density and local geometry of topographic structure on amoeboid migration of Dictyostelium discoideum cells. This is realized by well-controlled fabrication of quasi-3D pillar fields exhibiting a systematic variation of inter-pillar distance and pillar lattice geometry. By time-resolved local mean-squared displacement analysis of amoeboid migration, we can extract motility parameters in order to elucidate the details of amoeboid migration mechanisms and consolidate them in a two-state contact-controlled motility model, distinguishing directed and random phases. Specifically, we find that directed pillar-to-pillar runs are found preferably in high pillar density regions, and cells in directed motion states sense pillars as attractive topographic stimuli. In contrast, cell motion in random probing states is inhibited by high pillar density, where pillars act as obstacles for cell motion. In a gradient spatial density, these mechanisms lead to topographic guidance of cells, with a general trend towards a regime of inter-pillar spacing close to the cell diameter. In locally anisotropic pillar environments, cell migration is often found to be damped due to competing attraction by different pillars in close proximity and due to lack of other potential stimuli in the vicinity of the cell. Further, we demonstrate topographic cell guidance reflecting the lattice geometry of the quasi-3D environment by distinct preferences in migration direction. Our findings allow to specifically control amoeboid cell migration by purely topographic effects and thus, to induce active cell guidance. These tools hold prospects for medical applications like improved wound treatment, or invasion assays for immune cells.

  20. Population Processes at Multiple Spatial Scales Maintain Diversity and Adaptation in the Linum marginale - Melampsora lini Association

    PubMed Central

    Nemri, Adnane; Barrett, Luke G.; Laine, Anna-Liisa; Burdon, Jeremy J.; Thrall, Peter H.

    2012-01-01

    Host-pathogen coevolution is a major driver of species diversity, with an essential role in the generation and maintenance of genetic variation in host resistance and pathogen infectivity. Little is known about how resistance and infectivity are structured across multiple geographic scales and what eco-evolutionary processes drive these patterns. Across southern Australia, the wild flax Linum marginale is frequently attacked by its rust fungus Melampsora lini. Here, we compare the genetic and phenotypic structure of resistance and infectivity among population pairs from two regions where environmental differences associate with specific life histories and mating systems. We find that both host and pathogen populations are genetically distinct between these regions. The region with outcrossing hosts and pathogens that go through asexual cycles followed by sexual reproduction showed greater diversity of resistance and infectivity phenotypes, higher levels of resistance and less clumped within-population spatial distribution of resistance. However, in the region where asexual pathogens infect selfing hosts, pathogens were more infective and better adapted to sympatric hosts. Our findings largely agree with expectations based on the distinctly different host mating systems in the two regions, with a likely advantage for hosts undergoing recombination. For the pathogen in this system, sexual reproduction may primarily be a survival mechanism in the region where it is observed. While it appears to potentially have adverse effects on local adaptation in the short term, it may be necessary for longer-term coevolution with outcrossing hosts. PMID:22859978

  1. High-Spatial-Resolution Imaging Combining High-Order Adaptive Optics, Frame Selection, and Speckle Masking Reconstruction

    NASA Astrophysics Data System (ADS)

    Denker, Carsten; Mascarinas, Dulce; Xu, Yan; Cao, Wenda; Yang, Guo; Wang, Haimin; Goode, Philip R.; Rimmele, Thomas

    2005-04-01

    We present, for the first time, high-spatial-resolution observations combining high-order adaptive optics (AO), frame selection, and post-facto image correction via speckle masking. The data analysis is based on observations of solar active region NOAA 10486 taken with the Dunn Solar Telescope (DST) at the Sacramento Peak Observatory (SPO) of the National Solar Observatory (NSO) on 29 October 2003. The high Strehl ratio encountered in AO corrected short-exposure images provides highly improved signal-to-noise ratios leading to a superior recovery of the object’s Fourier phases. This allows reliable detection of small-scale solar features near the diffraction limit of the telescope. Speckle masking imaging provides access to high-order wavefront aberrations, which predominantly originate at high atmospheric layers and are only partially corrected by the AO system. In addition, the observations provided qualitative measures of the image correction away from the lock point of the AO system. We further present a brief inspection of the underlying imaging theory discussing the limitations and prospects of this multi-faceted image reconstruction approach in terms of the recovery of spatial information, photometric accuracy, and spectroscopic applications.

  2. Adaptive deployment of spatial and feature-based attention before saccades

    PubMed Central

    White, Alex L.; Rolfs, Martin; Carrasco, Marisa

    2012-01-01

    What you see depends not only on where you are looking but also on where you will look next. The pre-saccadic attention shift is an automatic enhancement of visual sensitivity at the target of the next saccade. We investigated whether and how perceptual factors independent of the oculomotor plan modulate pre-saccadic attention within and across trials. Observers made saccades to one (the target) of six patches of moving dots and discriminated a brief luminance pulse (the probe) that appeared at an unpredictable location. Sensitivity to the probe was always higher at the target’s location (spatial attention), and this attention effect was stronger if the previous probe appeared at the previous target’s location. Furthermore, sensitivity was higher for probes moving in directions similar to the target’s direction (feature-based attention), but only when the previous probe moved in the same direction as the previous target. Therefore, implicit cognitive processes permeate pre-saccadic attention, so that–contingent on recent experience–it flexibly distributes resources to potentially relevant locations and features. PMID:23147690

  3. Adaptive spatial compounding for improving ultrasound images of the epidural space

    NASA Astrophysics Data System (ADS)

    Tran, Denis; Kamani, Allaudin; Lessoway, Vickie; Rohling, Robert N.

    2007-03-01

    Epidural anesthesia can be a difficult procedure, especially for inexperienced physicians. The use of ultrasound imaging can help by depicting the location of the epidural space to choose the needle trajectory appropriately. Anatomical features in the lower back are not always clearly visible because of speckle poor reflection from structures at certain angles, and shadows from bony surfaces. Spatial compounding has the potential to reduce speckle and emphasize structures by averaging a number of images taken at different isonation angles. However, the beam-steered images are not perfectly aligned due to non-constant speed of sound causing refraction errors. This means compounding can blur features. A non-rigid registration method, called warping, shifts each block of pixels of the beam-steered images in order to find the best alignment to the reference image without beam-steering. By applying warping, the features become sharper after compounding. To emphasize features further, edge detection is also applied to the individual images in order to select the best features for compounding. The warping and edge detection parameters are calculated in real-time for each acquired image. In order to reduce computational complexity, linear prediction of the warping vectors is used. The algorithm is tested on a phantom of the lower back with a linear probe. Qualitative comparisons are made among the original plus combinations of compounding, warping, edge detection and linear prediction. The linear gradient and Laplacian of a Gaussian are used to quantitatively assess the visibility of the bone boundaries and ligamentum flavum on the processed images. The results show a significant improvement in quality.

  4. SDN-controlled topology-reconfigurable optical mobile fronthaul architecture for bidirectional CoMP and low latency inter-cell D2D in the 5G mobile era.

    PubMed

    Cvijetic, Neda; Tanaka, Akihiro; Kanonakis, Konstantinos; Wang, Ting

    2014-08-25

    We demonstrate the first SDN-controlled optical topology-reconfigurable mobile fronthaul (MFH) architecture for bidirectional coordinated multipoint (CoMP) and low latency inter-cell device-to-device (D2D) connectivity in the 5G mobile networking era. SDN-based OpenFlow control is used to dynamically instantiate the CoMP and inter-cell D2D features as match/action combinations in control plane flow tables of software-defined optical and electrical switching elements. Dynamic re-configurability is thereby introduced into the optical MFH topology, while maintaining back-compatibility with legacy fiber deployments. 10 Gb/s peak rates with <7 μs back-to-back transmission latency and 29.6 dB total power budget are experimentally demonstrated, confirming the attractiveness of the new approach for optical MFH of future 5G mobile systems. PMID:25321284

  5. Cerebellar cathodal tDCS interferes with recalibration and spatial realignment during prism adaptation procedure in healthy subjects.

    PubMed

    Panico, Francesco; Sagliano, Laura; Grossi, Dario; Trojano, Luigi

    2016-06-01

    The aim of this study is to clarify the specific role of the cerebellum during prism adaptation procedure (PAP), considering its involvement in early prism exposure (i.e., in the recalibration process) and in post-exposure phase (i.e., in the after-effect, related to spatial realignment). For this purpose we interfered with cerebellar activity by means of cathodal transcranial direct current stimulation (tDCS), while young healthy individuals were asked to perform a pointing task on a touch screen before, during and after wearing base-left prism glasses. The distance from the target dot in each trial (in terms of pixels) on horizontal and vertical axes was recorded and served as an index of accuracy. Results on horizontal axis, that was shifted by prism glasses, revealed that participants who received cathodal stimulation showed increased rightward deviation from the actual position of the target while wearing prisms and a larger leftward deviation from the target after prisms removal. Results on vertical axis, in which no shift was induced, revealed a general trend in the two groups to improve accuracy through the different phases of the task, and a trend, more visible in cathodal stimulated participants, to worsen accuracy from the first to the last movements in each phase. Data on horizontal axis allow to confirm that the cerebellum is involved in all stages of PAP, contributing to early strategic recalibration process, as well as to spatial realignment. On vertical axis, the improving performance across the different stages of the task and the worsening accuracy within each task phase can be ascribed, respectively, to a learning process and to the task-related fatigue. PMID:27031676

  6. Performance Evaluation in Heterogeneous Networks Employing Time-Domain Inter-Cell Interference Coordination and Cell Range Expansion for LTE-Advanced Downlink

    NASA Astrophysics Data System (ADS)

    Shirakabe, Masashige; Morimoto, Akihito; Miki, Nobuhiko

    In Long-Term Evolution (LTE)-Advanced, heterogeneous networks where femtocells and picocells are overlaid onto macrocells are extensively discussed in addition to traditional well-planned macrocell deployment to improve further the system throughput. In heterogeneous network deployment, combined usage of inter-cell interference coordination (ICIC) and cell range expansion (CRE) is very effective in improving the system and cell-edge throughput. In this combined usage, the fraction of the sets of user equipment (UEs) connected to the picocells, which are controlled through CRE, and that connected to macrocells affect the gain from the ICIC. Therefore, this paper evaluates the throughput performance of different offset values for CRE and different amounts of protected resources for ICIC in picocell deployments in LTE-Advanced downlink. Simulation results (2-10 picocells and 30 UEs are located within 1 macrocell) assuming a full buffer traffic model show that when the CRE offset value is set between 8 to 20dB, almost the same user throughput performance is obtained by allocating the appropriate resources to protect UEs that connect to the picocells. Furthermore, the appropriate resource ratio is derived based on the fraction of UEs connected to the picocells through CRE, the fraction of UEs connected to the macrocell, and the number of picocells under the simulation conditions.

  7. Behavioral Regulation, Visual Spatial Maturity in Kindergarten, and the Relationship of School Adaptation in the First Grade for a Sample of Turkish Children.

    PubMed

    Özer, Serap

    2016-04-01

    Behavioral regulation has recently become an important variable in research looking at kindergarten and first-grade achievement of children in private and public schools. The purpose of this study was to examine a measure of behavioral regulation, the Head Toes Knees Shoulders Task, and to evaluate its relationship with visual spatial maturity at the end of kindergarten. Later, in first grade, teachers were asked to rate the children (N = 82) in terms of academic and behavioral adaptation. Behavioral regulation and visual spatial maturity were significantly different between the two school types, but ratings by the teachers in the first grade were affected by children's visual spatial maturity rather than by behavioral regulation. Socioeducational opportunities provided by the two types of schools may be more important to school adaptation than behavioral regulation. PMID:27154368

  8. Closed-loop adaptive optics using a spatial light modulator for sensing and compensating of optical aberrations in ophthalmic applications

    NASA Astrophysics Data System (ADS)

    Akondi, Vyas; Jewel, Md. Atikur Rahman; Vohnsen, Brian

    2014-09-01

    Sensing and compensating of optical aberrations in closed-loop mode using a single spatial light modulator (SLM) for ophthalmic applications is demonstrated. Notwithstanding the disadvantages of the SLM, in certain cases, this multitasking capability of the device makes it advantageous over existing deformable mirrors (DMs), which are expensive and in general used for aberration compensation alone. A closed-loop adaptive optics (AO) system based on a single SLM was built. Beam resizing optics were used to utilize the large active area of the device and hence make it feasible to generate 137 active subapertures for wavefront sensing. While correcting Zernike aberrations up to fourth order introduced with the help of a DM (for testing purposes), diffraction-limited resolution was achieved. It is shown that matched filter and intensity-weighted centroiding techniques stand out among others. Closed-loop wavefront correction of aberrations in backscattered light from the eyes of three healthy human subjects was demonstrated after satisfactory results were obtained using an artificial eye, which was simulated with a short focal length lens and a sheet of white paper as diffuser. It is shown that the closed-loop AO system based on a single SLM is capable of diffraction-limited correction for ophthalmic applications.

  9. Spatial pattern of adaptive and neutral genetic diversity across different biomes in the lesser anteater (Tamandua tetradactyla).

    PubMed

    Clozato, Camila L; Mazzoni, Camila J; Moraes-Barros, Nadia; Morgante, João S; Sommer, Simone

    2015-11-01

    The genes of the major histocompatibility complex (MHC) code for proteins involved in antigen recognition and activation of the adaptive immune response and are thought to be regulated by natural selection, especially due to pathogen-driven selective pressure. In this study, we investigated the spatial distribution of MHC class II DRB exon 2 gene diversity of the lesser anteater (Tamandua tetradactyla) across five Brazilian biomes using next-generation sequencing and compared the MHC pattern with that of neutral markers (microsatellites). We found a noticeable high level of diversity in DRB (60 amino acid alleles in 65 individuals) and clear signatures of historical positive selection acting on this gene. Higher allelic richness and proportion of private alleles were found in rain forest biomes, especially Amazon forest, a megadiverse biome, possibly harboring greater pathogen richness as well. Neutral markers, however, showed a similar pattern to DRB, demonstrating the strength of demography as an additional force to pathogen-driven selection in shaping MHC diversity and structure. This is the first characterization and description of diversity of a MHC gene for any member of the magna-order Xenarthra, one of the basal lineages of placental mammals. PMID:26640672

  10. How urban system vulnerabilities to flooding could be assessed to improve resilience and adaptation in spatial planning

    NASA Astrophysics Data System (ADS)

    Pasi, Riccardo; Viavattene, Christophe; La Loggia, Goffredo

    2016-04-01

    Natural hazards damage assets and infrastructure inducing disruptions to urban functions and key daily services. These disruptions may be short or long with a variable spatial scale of impact. From an urban planning perspective, measuring these disruptions and their consequences at an urban scale is fundamental in order to develop more resilient cities. Whereas the assessment of physical vulnerabilities and direct damages is commonly addressed, new methodologies for assessing the systemic vulnerability at the urban scale are required to reveal these disruptions and their consequences. Physical and systemic vulnerability should be measured in order to reflect the multifaceted fragility of cities in the face of external stress, both in terms of the natural/built environment and socio-economic sphere. Additionally, a systemic approach allows the consideration of vulnerability across different spatial scales, as impacts may vary and be transmitted across local, regional or national levels. Urban systems are spatially distributed and the nature of this can have significant effects on flood impacts. The proposed approach identifies the vulnerabilities of flooding within urban contexts, including both in terms of single elementary units (buildings, infrastructures, people, etc.) and systemic functioning (urban functions and daily life networks). Direct losses are appraised initially using conventional methodologies (e.g. depth-damage functions). This aims to both understand the spatial distribution of physical vulnerability and associated losses and, secondly, to identify the most vulnerable building types and ways to improve the physical adaptation of our cities, proposing changes to building codes, design principles and other municipal regulation tools. The subsequent systemic approach recognises the city as a collection of sub-systems or functional units (such as neighbourhoods and suburbs) providing key daily services for inhabitants (e.g. healthcare facilities

  11. Spatial patterns of neutral and functional genetic variations reveal patterns of local adaptation in raccoon (Procyon lotor) populations exposed to raccoon rabies.

    PubMed

    Kyle, Christopher J; Rico, Yessica; Castillo, Sarrah; Srithayakumar, Vythegi; Cullingham, Catherine I; White, Bradley N; Pond, Bruce A

    2014-05-01

    Local adaptation is necessary for population survival and depends on the interplay between responses to selective forces and demographic processes that introduce or retain adaptive and maladaptive attributes. Host-parasite systems are dynamic, varying in space and time, where both host and parasites must adapt to their ever-changing environment in order to survive. We investigated patterns of local adaptation in raccoon populations with varying temporal exposure to the raccoon rabies virus (RRV). RRV infects approximately 85% of the population when epizootic and has been presumed to be completely lethal once contracted; however, disease challenge experiments and varying spatial patterns of RRV spread suggest some level of immunity may exist. We first assessed patterns of local adaptation in raccoon populations along the eastern seaboard of North America by contrasting spatial patterns of neutral (microsatellite loci) and functional, major histocompatibility complex (MHC) genetic diversity and structure. We explored variation of MHC allele frequencies in the light of temporal population exposure to RRV (0-60 years) and specific RRV strains in infected raccoons. Our results revealed high levels of MHC variation (66 DRB exon 2 alleles) and pronounced genetic structure relative to neutral microsatellite loci, indicative of local adaptation. We found a positive association linking MHC genetic diversity and temporal RRV exposure, but no association with susceptibility and resistance to RRV strains. These results have implications for landscape epidemiology studies seeking to predict the spread of RRV and present an example of how population demographics influence the degree to which populations adapt to local selective pressures. PMID:24655158

  12. The association of physical activity to neural adaptability during visuo-spatial processing in healthy elderly adults: A multiscale entropy analysis.

    PubMed

    Wang, Chun-Hao; Tsai, Chia-Liang; Tseng, Philip; Yang, Albert C; Lo, Men-Tzung; Peng, Chung-Kang; Wang, Hsin-Yi; Muggleton, Neil G; Juan, Chi-Hung; Liang, Wei-Kuang

    2014-10-29

    Physical activity has been shown to benefit brain and cognition in late adulthood. However, this effect is still unexplored in terms of brain signal complexity, which reflects the level of neural adaptability and efficiency during cognitive processing that cannot be acquired via averaged neuroelectric signals. Here we employed multiscale entropy analysis (MSE) of electroencephalography (EEG), a new approach that conveys important information related to the temporal dynamics of brain signal complexity across multiple time scales, to reveal the association of physical activity with neural adaptability and efficiency in elderly adults. A between-subjects design that included 24 participants (aged 66.63±1.31years; female=12) with high physical activity and 24 age- and gender-matched low physical activity participants (aged 67.29±1.20years) was conducted to examine differences related to physical activity in performance and MSE of EEG signals during a visuo-spatial cognition task. We observed that physically active elderly adults had better accuracy on both visuo-spatial attention and working memory conditions relative to their sedentary counterparts. Additionally, these physically active elderly adults displayed greater MSE values at larger time scales at the Fz electrode in both attention and memory conditions. The results suggest that physical activity may be beneficial for adaptability of brain systems in tasks involving visuo-spatial information. MSE thus might be a promising approach to test the effects of the benefits of exercise on cognition. PMID:25463141

  13. Adaptively Forward Modelling the Spatial Magnetic Effects Due to a Magnetized Structure by Tesseroids in Spherical Coordinate System

    NASA Astrophysics Data System (ADS)

    Du, Jinsong; Chen, Chao

    2015-04-01

    The continually accumulated magnetic measurements and also the reliable global lithospheric magnetic anomaly field models obtained by CHAMP satellite and Swarm constellation of three satellites, now present a requirement and also a challenge to develop the realistic forward modeling methods for the magnetic effects (i.e. magnetic potential, vector and gradient tensor) that take into account the curvature of the Earth. The spatial discretization by a series of elementary tesseroids (spherical prisms, SPs) is utilized to approximate the complex magnetized source by the principle of superposition and saturate the source volume without "holes". Since there is no analytic solution for the magnetic effects of the SP, we explicitly present three kinds of efficient forward modeling methods for approximate calculation using Taylor's series expansion (TSE) to fourth-order, Gauss-Legendre quadrature integration (GLQI) and approximations by Cartesian elements including the magnetic dipole (MD) and rectangular prism (RP). Our derived new formulas do not suffer from the polar singularity and using the approximate approaches and subdivision technique, therefore, can be employed for any computing point with a required level of accuracy on the globe. Both theoretical analysis and numerical investigations suggest that the accuracy of modeling by the SP is significantly dependent on its geometric shape (i.e. size, latitude and depth) and particularly the distance between the source and the observation (DSO for short). Accuracies of forward modeling by all methods are relatively worse near the source but better far away the source. Besides, the numerical analysis shows that the error of magnetic potential is lower than those of magnetic vector and gradient tensor, and that of the gradient tensor is the highest but the error's decay of the tensor is the fastest. Analysis of accuracy shows that MD method is equivalent to GLQI when node is zero, and TSE method is nearly equivalent to

  14. Three dimensional adaptive meshing scheme applied to the control of the spatial representation of complex field pattern in electromagnetics

    NASA Astrophysics Data System (ADS)

    Grosges, T.; Borouchaki, H.; Barchiesi, D.

    2010-12-01

    We present an improved adaptive mesh process based on Riemannian transformation to control the accuracy in high field gradient representation for diffraction problems. Such an adaptive meshing is applied in representing the electromagnetic intensity around a metallic submicronic spherical particle, which is known to present high gradients in limited zones of space including the interference pattern of the electromagnetic field. We show that, the precision of the field variation being controlled, this improved scheme permits drastically decreasing the computational time as well as the memory requirements by adapting the number and the position of nodes where the electromagnetic field must be computed and represented.

  15. Assessing The Spatial Dependence of Adaptive Loci in 43 European and Western Asian Goat Breeds Using AFLP Markers

    PubMed Central

    Negrini, Riccardo; Nicoloso, Letizia; Crepaldi, Paola; Ajmone-Marsan, Paolo

    2014-01-01

    Background During the past decades, neutral DNA markers have been extensively employed to study demography, population genetics and structure in livestock, but less interest has been devoted to the evaluation of livestock adaptive potential through the identification of genomic regions likely to be under natural selection. Methodology/Principal findings Landscape genomics can greatly benefit the entire livestock system through the identification of genotypes better adapted to specific or extreme environmental conditions. Therefore we analyzed 101 AFLP markers in 43 European and Western Asian goat breeds both with Matsam software, based on a correlative approach (SAM), and with Mcheza and Bayescan, two FST based software able to detect markers carrying signatures of natural selection. Matsam identified four loci possibly under natural selection – also confirmed by FST-outlier methods – and significantly associated with environmental variables such as diurnal temperature range, frequency of precipitation, relative humidity and solar radiation. Conclusions/Significance These results show that landscape genomics can provide useful information on the environmental factors affecting the adaptive potential of livestock living in specific climatic conditions. Besides adding conservation value to livestock genetic resources, this knowledge may lead to the development of novel molecular tools useful to preserve the adaptive potential of local breeds during genetic improvement programs, and to increase the adaptability of industrial breeds to changing environments. PMID:24497965

  16. A Socio-Ecological Approach for Identifying and Contextualising Spatial Ecosystem-Based Adaptation Priorities at the Sub-National Level

    PubMed Central

    Bourne, Amanda; Holness, Stephen; Holden, Petra; Scorgie, Sarshen; Donatti, Camila I.; Midgley, Guy

    2016-01-01

    Climate change adds an additional layer of complexity to existing sustainable development and biodiversity conservation challenges. The impacts of global climate change are felt locally, and thus local governance structures will increasingly be responsible for preparedness and local responses. Ecosystem-based adaptation (EbA) options are gaining prominence as relevant climate change solutions. Local government officials seldom have an appropriate understanding of the role of ecosystem functioning in sustainable development goals, or access to relevant climate information. Thus the use of ecosystems in helping people adapt to climate change is limited partially by the lack of information on where ecosystems have the highest potential to do so. To begin overcoming this barrier, Conservation South Africa in partnership with local government developed a socio-ecological approach for identifying spatial EbA priorities at the sub-national level. Using GIS-based multi-criteria analysis and vegetation distribution models, the authors have spatially integrated relevant ecological and social information at a scale appropriate to inform local level political, administrative, and operational decision makers. This is the first systematic approach of which we are aware that highlights spatial priority areas for EbA implementation. Nodes of socio-ecological vulnerability are identified, and the inclusion of areas that provide ecosystem services and ecological resilience to future climate change is innovative. The purpose of this paper is to present and demonstrate a methodology for combining complex information into user-friendly spatial products for local level decision making on EbA. The authors focus on illustrating the kinds of products that can be generated from combining information in the suggested ways, and do not discuss the nuance of climate models nor present specific technical details of the model outputs here. Two representative case studies from rural South Africa

  17. A Socio-Ecological Approach for Identifying and Contextualising Spatial Ecosystem-Based Adaptation Priorities at the Sub-National Level.

    PubMed

    Bourne, Amanda; Holness, Stephen; Holden, Petra; Scorgie, Sarshen; Donatti, Camila I; Midgley, Guy

    2016-01-01

    Climate change adds an additional layer of complexity to existing sustainable development and biodiversity conservation challenges. The impacts of global climate change are felt locally, and thus local governance structures will increasingly be responsible for preparedness and local responses. Ecosystem-based adaptation (EbA) options are gaining prominence as relevant climate change solutions. Local government officials seldom have an appropriate understanding of the role of ecosystem functioning in sustainable development goals, or access to relevant climate information. Thus the use of ecosystems in helping people adapt to climate change is limited partially by the lack of information on where ecosystems have the highest potential to do so. To begin overcoming this barrier, Conservation South Africa in partnership with local government developed a socio-ecological approach for identifying spatial EbA priorities at the sub-national level. Using GIS-based multi-criteria analysis and vegetation distribution models, the authors have spatially integrated relevant ecological and social information at a scale appropriate to inform local level political, administrative, and operational decision makers. This is the first systematic approach of which we are aware that highlights spatial priority areas for EbA implementation. Nodes of socio-ecological vulnerability are identified, and the inclusion of areas that provide ecosystem services and ecological resilience to future climate change is innovative. The purpose of this paper is to present and demonstrate a methodology for combining complex information into user-friendly spatial products for local level decision making on EbA. The authors focus on illustrating the kinds of products that can be generated from combining information in the suggested ways, and do not discuss the nuance of climate models nor present specific technical details of the model outputs here. Two representative case studies from rural South Africa

  18. Spatial Structure and Climatic Adaptation in African Maize Revealed by Surveying SNP Diversity in Relation to Global Breeding and Landrace Panels

    PubMed Central

    Westengen, Ola T.; Berg, Paul R.; Kent, Matthew P.; Brysting, Anne K.

    2012-01-01

    Background Climate change threatens maize productivity in sub-Saharan Africa. To ensure food security, access to locally adapted genetic resources and varieties is an important adaptation measure. Most of the maize grown in Africa is a genetic mix of varieties introduced at different historic times following the birth of the trans-Atlantic economy, and knowledge about geographic structure and local adaptations is limited. Methodology A panel of 48 accessions of maize representing various introduction routes and sources of historic and recent germplasm introductions in Africa was genotyped with the MaizeSNP50 array. Spatial genetic structure and genetic relationships in the African panel were analysed separately and in the context of a panel of 265 inbred lines representing global breeding material (based on 26,900 SNPs) and a panel of 1127 landraces from the Americas (270 SNPs). Environmental association analysis was used to detect SNPs associated with three climatic variables based on the full 43,963 SNP dataset. Conclusions The genetic structure is consistent between subsets of the data and the markers are well suited for resolving relationships and admixture among the accessions. The African accessions are structured in three clusters reflecting historical and current patterns of gene flow from the New World and within Africa. The Sahelian cluster reflects original introductions of Meso-American landraces via Europe and a modern introduction of temperate breeding material. The Western cluster reflects introduction of Coastal Brazilian landraces, as well as a Northeast-West spread of maize through Arabic trade routes across the continent. The Eastern cluster most strongly reflects gene flow from modern introduced tropical varieties. Controlling for population history in a linear model, we identify 79 SNPs associated with maximum temperature during the growing season. The associations located in genes of known importance for abiotic stress tolerance are

  19. Spatial variation in osteon population density at the human femoral midshaft: histomorphometric adaptations to habitual load environment.

    PubMed

    Gocha, Timothy P; Agnew, Amanda M

    2016-05-01

    Intracortical remodeling, and the osteons it produces, is one aspect of the bone microstructure that is influenced by and, in turn, can influence its mechanical properties. Previous research examining the spatial distribution of intracortical remodeling density across the femoral midshaft has been limited to either considering only small regions of the cortex or, when looking at the entirety of the cortex, considering only a single individual. This study examined the spatial distribution of all remodeling events (intact osteons, fragmentary osteons, and resorptive bays) across the entirety of the femoral midshaft in a sample of 30 modern cadaveric donors. The sample consisted of 15 males and 15 females, aged 21-97 years at time of death. Using geographic information systems software, the femoral cortex was subdivided radially into thirds and circumferentially into octants, and the spatial location of all remodeling events was marked. Density maps and calculation of osteon population density in cortical regions of interest revealed that remodeling density is typically highest in the periosteal third of the bone, particularly in the lateral and anterolateral regions of the cortex. Due to modeling drift, this area of the midshaft femur has some of the youngest primary tissue, which consequently reveals that the lateral and anterolateral regions of the femoral midshaft have higher remodeling rates than elsewhere in the cortex. This is likely the result of tension/shear forces and/or greater strain magnitudes acting upon the anterolateral femur, which results in a greater amount of microdamage in need of repair than is seen in the medial and posterior regions of the femoral midshaft, which are more subject to compressive forces and/or lesser strain magnitudes. PMID:26708961

  20. Effect of spatial configuration of an extended nonlinear Kierstead-Slobodkin reaction-transport model with adaptive numerical scheme.

    PubMed

    Owolabi, Kolade M; Patidar, Kailash C

    2016-01-01

    In this paper, we consider the numerical simulations of an extended nonlinear form of Kierstead-Slobodkin reaction-transport system in one and two dimensions. We employ the popular fourth-order exponential time differencing Runge-Kutta (ETDRK4) schemes proposed by Cox and Matthew (J Comput Phys 176:430-455, 2002), that was modified by Kassam and Trefethen (SIAM J Sci Comput 26:1214-1233, 2005), for the time integration of spatially discretized partial differential equations. We demonstrate the supremacy of ETDRK4 over the existing exponential time differencing integrators that are of standard approaches and provide timings and error comparison. Numerical results obtained in this paper have granted further insight to the question 'What is the minimal size of the spatial domain so that the population persists?' posed by Kierstead and Slobodkin (J Mar Res 12:141-147, 1953), with a conclusive remark that the population size increases with the size of the domain. In attempt to examine the biological wave phenomena of the solutions, we present the numerical results in both one- and two-dimensional space, which have interesting ecological implications. Initial data and parameter values were chosen to mimic some existing patterns. PMID:27064984

  1. Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration.

    PubMed

    King-Smith, P E; Carden, D

    1976-07-01

    We show how the processes of visual detection and of temporal and spatial summation may be analyzed in terms of parallel luminance (achromatic) and opponent-color systems; a test flash is detected if it exceeds the threshold of either system. The spectral sensitivity of the luminance system may be determined by a flicker method, and has a single broad peak near 555 nm; the spectral sensitivity of the opponent-color system corresponds to the color recognition threshold, and has three peaks at about 440, 530, and 600 nm (on a white background). The temporal and spatial integration of the opponent-color system are generally greater than for the luminance system; further, a white background selectively depresses the sensitivity of the luminance system relative to the opponent-color system. Thus relatively large (1 degree) and long (200 msec) spectral test flashes on a white background are detected by the opponent-color system except near 570 nm; the contribution of the luminance system becomes more prominent if the size or duration of the test flash is reduced, or if the white background is extinguished. The present analysis is discussed in relation to Stiles' model of independent eta mechanisms. PMID:978286

  2. A Keck Adaptive Optics Survey of a Representative Sample of Gravitationally Lensed Star-forming Galaxies: High Spatial Resolution Studies of Kinematics and Metallicity Gradients

    NASA Astrophysics Data System (ADS)

    Leethochawalit, Nicha; Jones, Tucker A.; Ellis, Richard S.; Stark, Daniel P.; Richard, Johan; Zitrin, Adi; Auger, Matthew

    2016-04-01

    We discuss spatially resolved emission line spectroscopy secured for a total sample of 15 gravitationally lensed star-forming galaxies at a mean redshift of z≃ 2 based on Keck laser-assisted adaptive optics observations undertaken with the recently improved OSIRIS integral field unit (IFU) spectrograph. By exploiting gravitationally lensed sources drawn primarily from the CASSOWARY survey, we sample these sub-L{}* galaxies with source-plane resolutions of a few hundred parsecs ensuring well-sampled 2D velocity data and resolved variations in the gas-phase metallicity. Such high spatial resolution data offer a critical check on the structural properties of larger samples derived with coarser sampling using multiple-IFU instruments. We demonstrate how kinematic complexities essential to understanding the maturity of an early star-forming galaxy can often only be revealed with better sampled data. Although we include four sources from our earlier work, the present study provides a more representative sample unbiased with respect to emission line strength. Contrary to earlier suggestions, our data indicate a more diverse range of kinematic and metal gradient behavior inconsistent with a simple picture of well-ordered rotation developing concurrently with established steep metal gradients in all but merging systems. Comparing our observations with the predictions of hydrodynamical simulations suggests that gas and metals have been mixed by outflows or other strong feedback processes, flattening the metal gradients in early star-forming galaxies.

  3. The impact of spatial scale and habitat configuration on patterns of trait variation and local adaptation in a wild plant parasite.

    PubMed

    Tack, Ayco J M; Horns, Felix; Laine, Anna-Liisa

    2014-01-01

    Theory indicates that spatial scale and habitat configuration are fundamental for coevolutionary dynamics and how diversity is maintained in host-pathogen interactions. Yet, we lack empirical data to translate the theory to natural host-parasite systems. In this study, we conduct a multiscale cross-inoculation study using the specialist wild plant pathogen Podosphaera plantaginis on its host plant Plantago lanceolata. We apply the same sampling scheme to a region with highly fragmented (Åland) and continuous (Saaremaa) host populations. Although theory predicts higher parasite virulence in continuous regions, we did not detect differences in traits conferring virulence among the regions. Patterns of adaptation were highly scale dependent. We detected parasite maladaptation among regions, and among populations separated by intermediate distances (6.0-40.0 km) within the fragmented region. In contrast, parasite performance did not vary significantly according to host origin in the continuous landscape. For both regions, differentiation among populations was much larger for genetic variation than for phenotypic variation, indicating balancing selection maintaining phenotypic variation within populations. Our findings illustrate the critical role of spatial scale and habitat configuration in driving host-parasite coevolution. The absence of more aggressive strains in the continuous landscape, in contrast to theoretical predictions, has major implications for long-term decision making in conservation, agriculture, and public health. PMID:24372603

  4. Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems.

    PubMed

    Correia, Carlos M; Teixeira, Joel

    2014-12-01

    Computationally efficient wave-front reconstruction techniques for astronomical adaptive-optics (AO) systems have seen great development in the past decade. Algorithms developed in the spatial-frequency (Fourier) domain have gathered much attention, especially for high-contrast imaging systems. In this paper we present the Wiener filter (resulting in the maximization of the Strehl ratio) and further develop formulae for the anti-aliasing (AA) Wiener filter that optimally takes into account high-order wave-front terms folded in-band during the sensing (i.e., discrete sampling) process. We employ a continuous spatial-frequency representation for the forward measurement operators and derive the Wiener filter when aliasing is explicitly taken into account. We further investigate and compare to classical estimates using least-squares filters the reconstructed wave-front, measurement noise, and aliasing propagation coefficients as a function of the system order. Regarding high-contrast systems, we provide achievable performance results as a function of an ensemble of forward models for the Shack-Hartmann wave-front sensor (using sparse and nonsparse representations) and compute point-spread-function raw intensities. We find that for a 32×32 single-conjugated AOs system the aliasing propagation coefficient is roughly 60% of the least-squares filters, whereas the noise propagation is around 80%. Contrast improvements of factors of up to 2 are achievable across the field in the H band. For current and next-generation high-contrast imagers, despite better aliasing mitigation, AA Wiener filtering cannot be used as a standalone method and must therefore be used in combination with optical spatial filters deployed before image formation actually takes place. PMID:25606767

  5. A Novel approach to monitor chlorophyll-a concentration using an adaptive model from MODIS data at 250 metres spatial resolution

    NASA Astrophysics Data System (ADS)

    El Alem, A.; Chokmani, K.; Laurion, I.; El Adlouni, S.

    2013-12-01

    Occurrence and extent of Harmful Algal Bloom (HAB) has increased in inland water bodies around the world. The appearance of these blooms reflects the advanced state of eutrophication of several aquatic systems caused by urban, agricultural, and industrial development. Algal blooms, especially those cyanobacterial origins, are capable to produce and release toxins, threatening human and animal health, quality of drinking water, and recreational water bodies. Conventional monitoring networks, based on infrequent sampling in a few fixed monitoring stations, cannot provide the information needed as HABs are spatially and temporally heterogeneous. Remote sensing represents an interesting alternative to provide the required spatial and temporal coverage. The usefulness of air-borne and satellite remote sensing data to detect HABs was demonstrated since three decades ago, and since several empirical and semi-empirical models, using satellite imagery, were developed to estimate chlorophyll-a concentration [Chl-a] as a proxy to detect bloom proliferations. However, most of those models presented several weaknesses that are generally linked to the range of [Chl-a] to be estimated. Indeed, models originally calibrated for high [Chl-a] fail to estimate low concentrations and vice versa. In this study, an adaptive model to estimate [Chl-a], spread over a wide range of concentrations, is developed for optically complex inland water bodies based on combination of water spectral response classification and three developed semi-empirical algorithms using a multivariate regression. Three distinct water types (low, medium, and high [Chl-a]) are first identified using the Classification and Regression Tree (CART) method performed on remote sensing reflectance over a dataset of 44 [Chl-a] samples collected from Lakes over Quebec province. Based on the water classification, a specific multivariate model to each water type is developed using the same dataset and the MODIS data at 250-m

  6. Coping with Spatial Heterogeneity and Temporal Variability in Resources and Risks: Adaptive Movement Behaviour by a Large Grazing Herbivore

    PubMed Central

    Martin, Jodie; Benhamou, Simon; Yoganand, K.; Owen-Smith, Norman

    2015-01-01

    Movement is a key mean for mobile species to cope with heterogeneous environments. While in herbivorous mammals large-scale migration has been widely investigated, fine-scale movement responses to local variations in resources and predation risk remain much less studied, especially in savannah environments. We developed a novel approach based on complementary movement metrics (residence time, frequency of visits and regularity of visits) to relate movement patterns of a savannah grazer, the blue wildebeest Connochaetes taurinus, to fine-scale variations in food availability, predation risk and water availability in the Kruger National Park, South Africa. Wildebeests spent more time in grazing lawns where the grass is of higher quality but shorter than in seep zones, where the grass is of lower quality but more abundant. Although the daily distances moved were longer during the wet season compared to the dry season, the daily net displacement was lower, and the residence time higher, indicating a more frequent occurrence of area-concentred searching. In contrast, during the late dry season the foraging sessions were more fragmented and wildebeests moved more frequently between foraging areas. Surprisingly, predation risk appeared to be the second factor, after water availability, influencing movement during the dry season, when resources are limiting and thus expected to influence movement more. Our approach, using complementary analyses of different movement metrics, provided an integrated view of changes in individual movement with varying environmental conditions and predation risk. It makes it possible to highlight the adaptive behavioral decisions made by wildebeest to cope with unpredictable environmental variations and provides insights for population conservation. PMID:25719494

  7. Spatial and seasonal toxicity in a stormwater management facility: evidence obtained by adapting an integrated sediment quality assessment approach.

    PubMed

    Tixier, Guillaume; Rochfort, Quintin; Grapentine, Lee; Marsalek, Jiri; Lafont, Michel

    2012-12-15

    Stormwater ponds have been widely used to control increased surface runoff resulting from urbanization, and to enhance runoff quality. As receiving waters, they are impacted by intermittent stormwater pollution while also serving as newly created aquatic habitats, which partly offset changes of aquatic ecosystems and their biodiversity by urbanization. Thus, determining ecological risks in stormwater ponds is important for the preservation and rehabilitation of biodiversity in urban areas. Limitations of the conventional toxicity assessment techniques in stormwater ponds have led us to use the sediment quality triad approach with the specific analyses of oligochaetes. The latter analyses build on the earlier work by the Cemagref (Lyon, France) and use the oligochaetes as bioindicators of the sediment quality. This integrative approach was tested at eight sites in the Terraview-Willowfield stormwater facility in Toronto, Ontario, in all four seasons (summer 2008-spring 2009). The facility receives direct runoff from the MacDonald-Cartier freeway with a traffic intensity of 340,000 vehicles/d. Sediment chemistry results indicate that several heavy metals and PAH compounds exceeded the Ontario sediment quality guidelines in the facility. Regardless of the season, laboratory bioassays revealed a strong spatial variation in sediment toxicity along the flow path from the inlet to the outlet, agreeing with decreasing concentrations of contaminants in sediment, especially of heavy metals. However, in situ assessments of the benthic macroinvertebrate community structure and in particular of the oligochaete community revealed an overriding influence of seasonally varying toxicity. This seasonal pattern was described as high toxicity in spring and recovery in fall and corresponded to the influx and flushing-out of road salts and of several heavy metals within the facility. PMID:22212882

  8. Reconstructing Cone-beam CT with Spatially Varying Qualities for Adaptive Radiotherapy, a Proof-of-Principle Study1

    PubMed Central

    Lu, Wenting; Yan, Hao; Gu, Xuejun; Tian, Zhen; Luo, Ouyang; Yang, Liu; Zhou, Linghong; Cervino, Laura; Wang, Jing; Jiang, Steve; Jia, Xun

    2014-01-01

    With the aim of maximally reducing imaging dose while meeting requirements for adaptive radiation therapy (ART), we propose in this paper a new cone beam CT (CBCT) acquisition and reconstruction method that delivers images with a low noise level inside a region of interest (ROI) and a relatively high noise level outside the ROI. The acquired projection images include two groups: densely sampled projections at a low exposure with a large field of view (FOV) and sparsely sampled projections at a high exposure with a small FOV corresponding to the ROI. A new algorithm combining the conventional filtered back-projection algorithm and the tight-frame iterative reconstruction algorithm is also designed to reconstruct the CBCT based on these projection data. We have validated our method on a simulated head-and-neck (HN) patient case, a semi-real experiment conducted on a HN cancer patient under a full-fan scan mode, as well as a Catphan phantom under a half-fan scan mode. Relative root-mean-square errors (RRMSE) of less than 3% for the entire image and ~1% within the ROI compared to the ground truth have been observed. These numbers demonstrate the ability of our proposed method to reconstruct high-quality images inside the ROI. As for the part outside ROI, although the images are relatively noisy, it can still provide sufficient information for radiation dose calculations in ART. Dose distributions calculated on our CBCT image and on a standard CBCT image are in agreement, with a mean relative difference of 0.082% inside the ROI and 0.038% outside the ROI. Compared with the standard clinical CBCT scheme, an imaging dose reduction of approximately 3–6 times inside the ROI was achieved, as well as an 8 times outside the ROI. Regarding computational efficiency, it takes 1–3 min to reconstruct a CBCT image depending on the number of projections used. These results indicate that the proposed method has the potential for application in ART. PMID:25255957

  9. Reconstructing cone-beam CT with spatially varying qualities for adaptive radiotherapy: a proof-of-principle study

    NASA Astrophysics Data System (ADS)

    Lu, Wenting; Yan, Hao; Gu, Xuejun; Tian, Zhen; Ouyang, Luo; Yang, Liu; Zhou, Linghong; Cervino, Laura; Wang, Jing; Jiang, Steve; Jia, Xun

    2014-10-01

    With the aim of maximally reducing imaging dose while meeting requirements for adaptive radiation therapy (ART), we propose in this paper a new cone beam CT (CBCT) acquisition and reconstruction method that delivers images with a low noise level inside a region of interest (ROI) and a relatively high noise level outside the ROI. The acquired projection images include two groups: densely sampled projections at a low exposure with a large field of view (FOV) and sparsely sampled projections at a high exposure with a small FOV corresponding to the ROI. A new algorithm combining the conventional filtered back-projection algorithm and the tight-frame iterative reconstruction algorithm is also designed to reconstruct the CBCT based on these projection data. We have validated our method on a simulated head-and-neck (HN) patient case, a semi-real experiment conducted on a HN cancer patient under a full-fan scan mode, as well as a Catphan phantom under a half-fan scan mode. Relative root-mean-square errors (RRMSEs) of less than 3% for the entire image and ~1% within the ROI compared to the ground truth have been observed. These numbers demonstrate the ability of our proposed method to reconstruct high-quality images inside the ROI. As for the part outside ROI, although the images are relatively noisy, it can still provide sufficient information for radiation dose calculations in ART. Dose distributions calculated on our CBCT image and on a standard CBCT image are in agreement, with a mean relative difference of 0.082% inside the ROI and 0.038% outside the ROI. Compared with the standard clinical CBCT scheme, an imaging dose reduction of approximately 3-6 times inside the ROI was achieved, as well as an 8 times outside the ROI. Regarding computational efficiency, it takes 1-3 min to reconstruct a CBCT image depending on the number of projections used. These results indicate that the proposed method has the potential for application in ART.

  10. Implications of the spatial dependence of the single-event-upset threshold in SRAMs measured with a pulsed laser

    SciTech Connect

    Buchner, S. SFA Inc., Landover, MD ); Langworthy, J.B.; Stapor, W.J.; Campbell, A.B. ); Rivet, S. )

    1994-12-01

    Pulsed laser light was used to measure single event upset (SEU) thresholds for a large number of memory cells in both CMOS and bipolar SRAMs. Results showed that small variations in intercell upset threshold could not explain the gradual rise in the curve of cross section versus linear energy transfer (LET). The memory cells exhibited greater intracell variations implying that the charge collection efficiency within a memory cell varies spatially and contributes substantially to the shape of the curve of cross section versus LET. The results also suggest that the pulsed laser can be used for hardness-assurance measurements on devices with sensitive areas larger than the diameter of the laser beam.

  11. Long-term sensorimotor and therapeutical effects of a mild regime of prism adaptation in spatial neglect. A double-blind RCT essay.

    PubMed

    Rode, G; Lacour, S; Jacquin-Courtois, S; Pisella, L; Michel, C; Revol, P; Alahyane, N; Luauté, J; Gallagher, S; Halligan, P; Pélisson, D; Rossetti, Y

    2015-04-01

    Spatial neglect (SN) is commonly associated with poor functional outcome. Adaptation to a rightward optical deviation of vision has been shown to benefit to SN rehabilitation. The neurophysiological foundations and the optimal modalities of prism adaptation (PA) therapy however remain to be validated. This study is aimed at exploring the long-term sensory-motor, cognitive and functional effects produced by weekly PA sessions over a period of four weeks. A double-blind, monocentric randomized and controlled trial (RCT) was carried out. Twenty patients with left SN secondary to stroke were included, 10 in the "prism" group and 10 in the "control" group. The sensory-motor effects of PA were evaluated by measurement of manual and visual straight-ahead, and also by precision of pointing without visual feedback before and after each PA session. The functional independence measure (FIM) was evaluated before and at 1, 3 and 6 months after PA, while SN severity was assessed using the Behavioural Inattention Test (BIT) before and 6 months after PA. Before the intervention, only manual straight-ahead pointing constituted a reproducible sensory-motor measurement. During prism exposure, a questionnaire showed that not a single patient were aware of the direct effects of optical deviation on pointing movement performance. The sensory-motor after-effects produced by the PA produced a more rapid reduction of the rightward manual straight-ahead, which was secondarily followed by visual straight-ahead. These sensory-motor effects helped to clarify the action mechanisms of PA on SN. At the conclusion of the 6-month follow-up, the two groups showed similar improvement, indicating that a weekly PA session over 4 weeks was not sufficient to produce long-term functional benefit. This improvement was correlated with the evolution of visual straight-ahead, which can be proposed as a marker for patients outcome. PMID:25543183

  12. A Scale-Adaptive Approach for Spatially-Varying Urban Morphology Characterization in Boundary Layer Parametrization Using Multi-Resolution Analysis

    NASA Astrophysics Data System (ADS)

    Mouzourides, P.; Kyprianou, A.; Neophytou, M. K.-A.

    2013-12-01

    Urban morphology characterization is crucial for the parametrization of boundary-layer development over urban areas. One complexity in such a characterization is the three-dimensional variation of the urban canopies and textures, which are customarily reduced to and represented by one-dimensional varying parametrization such as the aerodynamic roughness length and zero-plane displacement . The scope of the paper is to provide novel means for a scale-adaptive spatially-varying parametrization of the boundary layer by addressing this 3-D variation. Specifically, the 3-D variation of urban geometries often poses questions in the multi-scale modelling of air pollution dispersion and other climate or weather-related modelling applications that have not been addressed yet, such as: (a) how we represent urban attributes (parameters) appropriately for the multi-scale nature and multi-resolution basis of weather numerical models, (b) how we quantify the uniqueness of an urban database in the context of modelling urban effects in large-scale weather numerical models, and (c) how we derive the impact and influence of a particular building in pre-specified sub-domain areas of the urban database. We illustrate how multi-resolution analysis (MRA) addresses and answers the afore-mentioned questions by taking as an example the Central Business District of Oklahoma City. The selection of MRA is motivated by its capacity for multi-scale sampling; in the MRA the "urban" signal depicting a city is decomposed into an approximation, a representation at a higher scale, and a detail, the part removed at lower scales to yield the approximation. Different levels of approximations were deduced for the building height and planar packing density . A spatially-varying characterization with a scale-adaptive capacity is obtained for the boundary-layer parameters (aerodynamic roughness length and zero-plane displacement ) using the MRA-deduced results for the building height and the planar packing

  13. Subaru adaptive-optics high-spatial-resolution infrared K- and L'-band imaging search for deeply buried dual AGNs in merging galaxies

    SciTech Connect

    Imanishi, Masatoshi; Saito, Yuriko

    2014-01-01

    We present the results of infrared K- (2.2 μm) and L'-band (3.8 μm) high-spatial-resolution (<0.''2) imaging observations of nearby gas- and dust-rich infrared luminous merging galaxies, assisted by the adaptive optics system on the Subaru 8.2 m telescope. We investigate the presence and frequency of red K – L' compact sources, which are sensitive indicators of active galactic nuclei (AGNs), including AGNs that are deeply buried in gas and dust. We observed 29 merging systems and confirmed at least one AGN in all but one system. However, luminous dual AGNs were detected in only four of the 29 systems (∼14%), despite our method's being sensitive to buried AGNs. For multiple nuclei sources, we compared the estimated AGN luminosities with supermassive black hole (SMBH) masses inferred from large-aperture K-band stellar emission photometry in individual nuclei. We found that mass accretion rates onto SMBHs are significantly different among multiple SMBHs, such that larger-mass SMBHs generally show higher mass accretion rates when normalized to SMBH mass. Our results suggest that non-synchronous mass accretion onto SMBHs in gas- and dust-rich infrared luminous merging galaxies hampers the observational detection of kiloparsec-scale multiple active SMBHs. This could explain the significantly smaller detection fraction of kiloparsec-scale dual AGNs when compared with the number expected from simple theoretical predictions. Our results also indicate that mass accretion onto SMBHs is dominated by local conditions, rather than by global galaxy properties, reinforcing the importance of observations to our understanding of how multiple SMBHs are activated and acquire mass in gas- and dust-rich merging galaxies.

  14. Spatial Ecology of Bacteria at the Microscale in Soil

    PubMed Central

    Raynaud, Xavier; Nunan, Naoise

    2014-01-01

    Despite an exceptional number of bacterial cells and species in soils, bacterial diversity seems to have little effect on soil processes, such as respiration or nitrification, that can be affected by interactions between bacterial cells. The aim of this study is to understand how bacterial cells are distributed in soil to better understand the scaling between cell-to-cell interactions and what can be measured in a few milligrams, or more, of soil. Based on the analysis of 744 images of observed bacterial distributions in soil thin sections taken at different depths, we found that the inter-cell distance was, on average 12.46 µm and that these inter-cell distances were shorter near the soil surface (10.38 µm) than at depth (>18 µm), due to changes in cell densities. These images were also used to develop a spatial statistical model, based on Log Gaussian Cox Processes, to analyse the 2D distribution of cells and construct realistic 3D bacterial distributions. Our analyses suggest that despite the very high number of cells and species in soil, bacteria only interact with a few other individuals. For example, at bacterial densities commonly found in bulk soil (108 cells g−1 soil), the number of neighbours a single bacterium has within an interaction distance of ca. 20 µm is relatively limited (120 cells on average). Making conservative assumptions about the distribution of species, we show that such neighbourhoods contain less than 100 species. This value did not change appreciably as a function of the overall diversity in soil, suggesting that the diversity of soil bacterial communities may be species-saturated. All in all, this work provides precise data on bacterial distributions, a novel way to model them at the micrometer scale as well as some new insights on the degree of interactions between individual bacterial cells in soils. PMID:24489873

  15. Generalization of Prism Adaptation

    ERIC Educational Resources Information Center

    Redding, Gordon M.; Wallace, Benjamin

    2006-01-01

    Prism exposure produces 2 kinds of adaptive response. Recalibration is ordinary strategic remapping of spatially coded movement commands to rapidly reduce performance error. Realignment is the extraordinary process of transforming spatial maps to bring the origins of coordinate systems into correspondence. Realignment occurs when spatial…

  16. Adapting Japanese Lesson Study to Enhance the Teaching and Learning of Geometry and Spatial Reasoning in Early Years Classrooms: A Case Study

    ERIC Educational Resources Information Center

    Moss, Joan; Hawes, Zachary; Naqvi, Sarah; Caswell, Beverly

    2015-01-01

    Increased efforts are needed to meet the demand for high quality mathematics in early years classrooms. Despite the foundational role of geometry and spatial reasoning for later mathematics success, the strand receives inadequate instructional time and is limited to concepts of static geometry. Moreover, early years teachers typically lack both…

  17. Adaptive compensation of atmospheric turbulence utilizing an interferometric wave-front sensor and a high-resolution MEMS-based spatial light modulator

    SciTech Connect

    Baker, K; Stappaerts, E; Gavel, D; Tucker, J; Silva, D; Wilks, S; Olivier, S; Olsen, J

    2004-08-12

    Horizontal path correction of optical beam propagation presents a severe challenge to adaptive optics systems due to the short transverse coherence length and the high degree of scintillation incurred by propagation along these paths. The system presented operates with nearly monochromatic light. It does not require a global reconstruction of the phase, thereby eliminating issues with branch points and making its performance relatively unaffected by scintillation. The systems pixel count, 1024, and relatively high correction speed, in excess of 800 Hz, enable its use for correction of horizontal path beam propagation. We present results from laboratory and field tests of the system in which we have achieved Strehl ratios greater than 0.5.

  18. Bidirectional regulation of the cAMP response element binding protein encodes spatial map alignment in prism-adapting barn owls.

    PubMed

    Nichols, Grant S; DeBello, William M

    2008-10-01

    The barn owl midbrain contains mutually aligned maps of auditory and visual space. Throughout life, map alignment is maintained through the actions of an instructive signal that encodes the magnitude of auditory-visual mismatch. The intracellular signaling pathways activated by this signal are unknown. Here we tested the hypothesis that CREB (cAMP response element-binding protein) provides a cell-specific readout of instructive information. Owls were fitted with prismatic or control spectacles and provided rich auditory-visual experience: hunting live mice. CREB activation was analyzed within 30 min of hunting using phosphorylation state-specific CREB (pCREB) and CREB antibodies, confocal imaging, and immunofluorescence measurements at individual cell nuclei. In control owls or prism-adapted owls, which experience small instructive signals, the frequency distributions of pCREB/CREB values obtained for cell nuclei within the external nucleus of the inferior colliculus (ICX) were unimodal. In contrast, in owls adapting to prisms or readapting to normal conditions, the distributions were bimodal: certain cells had received a signal that positively regulated CREB and, by extension, transcription of CREB-dependent genes, whereas others received a signal that negatively regulated it. These changes were restricted to the subregion of the inferior colliculus that received optically displaced input, the rostral ICX, and were not evident in the caudal ICX or central nucleus. Finally, the topographic pattern of CREB regulation was patchy, not continuous, as expected from the actions of a topographically precise signal encoding discrete events. These results support a model in which the magnitude of CREB activation within individual cells provides a readout of the instructive signal that guides plasticity and learning. PMID:18829948

  19. Advanced Adaptive Optics Technology Development

    SciTech Connect

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  20. Spatial analysis of soil subsidence in peat meadow areas in Friesland in relation to land and water management, climate change, and adaptation.

    PubMed

    Brouns, Karlijn; Eikelboom, Tessa; Jansen, Peter C; Janssen, Ron; Kwakernaak, Cees; van den Akker, Jan J H; Verhoeven, Jos T A

    2015-02-01

    Dutch peatlands have been subsiding due to peat decomposition, shrinkage and compression, since their reclamation in the 11th century. Currently, subsidence amounts to 1-2 cm/year. Water management in these areas is complex and costly, greenhouse gases are being emitted, and surface water quality is relatively poor. Regional and local authorities and landowners responsible for peatland management have recognized these problems. In addition, the Netherlands Royal Meteorological Institute predicts higher temperatures and drier summers, which both are expected to enhance peat decomposition. Stakeholder workshops have been organized in three case study areas in the province of Friesland to exchange knowledge on subsidence and explore future subsidence rates and the effects of land use and management changes on subsidence rates. Subsidence rates were up to 3 cm/year in deeply drained parcels and increased when we included climate change in the modeling exercises. This means that the relatively thin peat layers in this province (ca 1 m) would shrink or even disappear by the end of the century when current practices continue. Adaptation measures were explored, such as extensive dairy farming and the production of new crops in wetter conditions, but little experience has been gained on best practices. The workshops have resulted in useful exchange of ideas on possible measures and their consequences for land use and water management in the three case study areas. The province and the regional water board will use the results to develop land use and water management policies for the next decades. PMID:25351830

  1. Spatial Analysis of Soil Subsidence in Peat Meadow Areas in Friesland in Relation to Land and Water Management, Climate Change, and Adaptation

    NASA Astrophysics Data System (ADS)

    Brouns, Karlijn; Eikelboom, Tessa; Jansen, Peter C.; Janssen, Ron; Kwakernaak, Cees; van den Akker, Jan J. H.; Verhoeven, Jos T. A.

    2015-02-01

    Dutch peatlands have been subsiding due to peat decomposition, shrinkage and compression, since their reclamation in the 11th century. Currently, subsidence amounts to 1-2 cm/year. Water management in these areas is complex and costly, greenhouse gases are being emitted, and surface water quality is relatively poor. Regional and local authorities and landowners responsible for peatland management have recognized these problems. In addition, the Netherlands Royal Meteorological Institute predicts higher temperatures and drier summers, which both are expected to enhance peat decomposition. Stakeholder workshops have been organized in three case study areas in the province of Friesland to exchange knowledge on subsidence and explore future subsidence rates and the effects of land use and management changes on subsidence rates. Subsidence rates were up to 3 cm/year in deeply drained parcels and increased when we included climate change in the modeling exercises. This means that the relatively thin peat layers in this province (ca 1 m) would shrink or even disappear by the end of the century when current practices continue. Adaptation measures were explored, such as extensive dairy farming and the production of new crops in wetter conditions, but little experience has been gained on best practices. The workshops have resulted in useful exchange of ideas on possible measures and their consequences for land use and water management in the three case study areas. The province and the regional water board will use the results to develop land use and water management policies for the next decades.

  2. Understanding hydrologic budgets, dynamics in an arid basin and explore spatial scaling properties using Process-based Adaptive Watershed Simulator (PAWS)

    NASA Astrophysics Data System (ADS)

    Fang, K.; Shen, C.; Salve, R.

    2013-12-01

    The Southern California hot desert hosts a fragile ecosystem as well as a range of human economic activities, primarily mining, energy production and recreation. This inland arid landscape is characterized by occasional intensive precipitation events and year-round strong potential evapotranspiration. In this landscape, water and especially groundwater is vital for ecosystem functions and human use. However, the impact of recent development on the sustainability of groundwater resources in the area has not been thoroughly investigated. We apply an integrated, physically-based hydrologic-land surface model, the Process-based Adaptive Watershed Simulator + Community Land Model (PAWS+CLM) to evaluate the sustainability of the groundwater resources in the area. We elucidate the spatio-temporal patterns of hydrologic fluxes and budgets. The modeling results indicate that mountain front recharge is the essential recharging mechanism for the alluvial aquifer. Although pumping activities do not exceed annual-average recharge values, they are still expected to contribute significantly to groundwater drawdown in business-as-usual scenario. The impact of groundwater withdrawals is significant on the desert ecosystem. The relative importance of groundwater flow on NPP rises significantly as compared to other ecosystems. We further evaluate the fractal scaling properties of soil moisture in this very arid system and found the relationship to be much more static in time than that found in a humid continental climate system. The scaling exponents can be predicted using simple functions of the mean. Therefore, multi-scale model based on coarse-resolution surrogate model is expected to perform well in this system. The modeling result is also important for assessing the groundwater sustainability and impact of human activities in the desert environment.

  3. In situ adaptive response to climate and habitat quality variation: spatial and temporal variation in European badger (Meles meles) body weight.

    PubMed

    Byrne, Andrew W; Fogarty, Ursula; O'Keeffe, James; Newman, Chris

    2015-09-01

    Variation in climatic and habitat conditions can affect populations through a variety of mechanisms, and these relationships can act at different temporal and spatial scales. Using post-mortem badger body weight records from 15 878 individuals captured across the Republic of Ireland (7224 setts across ca. 15 000 km(2) ; 2009-2012), we employed a hierarchical multilevel mixed model to evaluate the effects of climate (rainfall and temperature) and habitat quality (landscape suitability), while controlling for local abundance (unique badgers caught/sett/year). Body weight was affected strongly by temperature across a number of temporal scales (preceding month or season), with badgers being heavier if preceding temperatures (particularly during winter/spring) were warmer than the long-term seasonal mean. There was less support for rainfall across different temporal scales, although badgers did exhibit heavier weights when greater rainfall occurred one or 2 months prior to capture. Badgers were also heavier in areas with higher landscape habitat quality, modulated by the number of individuals captured per sett, consistent with density-dependent effects reducing weights. Overall, the mean badger body weight of culled individuals rose during the study period (2009-2012), more so for males than for females. With predicted increases in temperature, and rainfall, augmented by ongoing agricultural land conversion in this region, we project heavier individual badger body weights in the future. Increased body weight has been associated with higher fecundity, recruitment and survival rates in badgers, due to improved food availability and energetic budgets. We thus predict that climate change could increase the badger population across the Republic of Ireland. Nevertheless, we emphasize that, locally, populations could still be vulnerable to extreme weather variability coupled with detrimental agricultural practice, including population management. PMID:25846328

  4. Spatial Query for Planetary Data

    NASA Technical Reports Server (NTRS)

    Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.

    2011-01-01

    Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.

  5. Phase Adaptation and Correction by Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Tiziani, Hans J.

    2010-04-01

    Adaptive optical elements and systems for imaging or laser beam propagation are used for some time in particular in astronomy, where the image quality is degraded by atmospheric turbulence. In astronomical telescopes a deformable mirror is frequently used to compensate wavefront-errors due to deformations of the large mirror, vibrations as well as turbulence and hence to increase the image quality. In the last few years interesting elements like Spatial Light Modulators, SLM's, such as photorefractive crystals, liquid crystals and micro mirrors and membrane mirrors were introduced. The development of liquid crystals and micro mirrors was driven by data projectors as consumer products. They contain typically a matrix of individually addressable pixels of liquid crystals and flip mirrors respectively or more recently piston mirrors for special applications. Pixel sizes are in the order of a few microns and therefore also appropriate as active diffractive elements in digital holography or miniature masks. Although liquid crystals are mainly optimized for intensity modulation; they can be used for phase modulation. Adaptive optics is a technology for beam shaping and wavefront adaptation. The application of spatial light modulators for wavefront adaptation and correction and defect analysis as well as sensing will be discussed. Dynamic digital holograms are generated with liquid crystal devices (LCD) and used for wavefront correction as well as for beam shaping and phase manipulation, for instance. Furthermore, adaptive optics is very useful to extend the measuring range of wavefront sensors and for the wavefront adaptation in order to measure and compare the shape of high precision aspherical surfaces.

  6. Adaptive wiener image restoration kernel

    DOEpatents

    Yuan, Ding

    2007-06-05

    A method and device for restoration of electro-optical image data using an adaptive Wiener filter begins with constructing imaging system Optical Transfer Function, and the Fourier Transformations of the noise and the image. A spatial representation of the imaged object is restored by spatial convolution of the image using a Wiener restoration kernel.

  7. Telescope Adaptive Optics Code

    SciTech Connect

    Phillion, D.

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The default parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST

  8. Adaptive Management

    EPA Science Inventory

    Adaptive management is an approach to natural resource management that emphasizes learning through management where knowledge is incomplete, and when, despite inherent uncertainty, managers and policymakers must act. Unlike a traditional trial and error approach, adaptive managem...

  9. Adaptation to (non)valent task disturbance.

    PubMed

    Kunde, Wilfried; Augst, Susanne; Kleinsorge, Thomas

    2012-12-01

    The cognitive system adapts to disturbances caused by task-irrelevant information. For example, interference due to irrelevant spatial stimulation (e.g., the spatial Simon effect) typically diminishes right after a spatially incongruent event. These adaptation effects reflect processes that help to overcome the impact of task-irrelevant information. Interference with (or interruption of) task processing can also result from valent (i.e., positive or negative) stimuli, such as in the "affective Simon" task. In the present study, we tested whether the resolution of valence-based task disturbances generalizes to the resolution of other cognitive (spatial) types of interference, and vice versa. Experiments 1 and 2 explored the interplay of adaptation effects triggered by spatial and affective interference. Incongruent spatial information modified the spatial Simon effect but not affective interference effects, whereas incongruent affective information modified affective interference effects to some extent, but not spatial Simon effects. In Experiment 3, we investigated the interplay of adaptation effects triggered by spatial interference and by the interruption of task processing from valent information that did not overlap with the main task ("emotional Stroop" effect). Again we observed domain-specific adaptation for the spatial Simon effect but found no evidence for cross-domain modulations. We assume that the processes used to resolve task disturbance from irrelevant affective and spatial information operate in largely independent manners. PMID:22936069

  10. Lossless Video Sequence Compression Using Adaptive Prediction

    NASA Technical Reports Server (NTRS)

    Li, Ying; Sayood, Khalid

    2007-01-01

    We present an adaptive lossless video compression algorithm based on predictive coding. The proposed algorithm exploits temporal, spatial, and spectral redundancies in a backward adaptive fashion with extremely low side information. The computational complexity is further reduced by using a caching strategy. We also study the relationship between the operational domain for the coder (wavelet or spatial) and the amount of temporal and spatial redundancy in the sequence being encoded. Experimental results show that the proposed scheme provides significant improvements in compression efficiencies.

  11. Rewarding imperfect motor performance reduces adaptive changes.

    PubMed

    van der Kooij, K; Overvliet, K E

    2016-06-01

    Could a pat on the back affect motor adaptation? Recent studies indeed suggest that rewards can boost motor adaptation. However, the rewards used were typically reward gradients that carried quite detailed information about performance. We investigated whether simple binary rewards affected how participants learned to correct for a visual rotation of performance feedback in a 3D pointing task. To do so, we asked participants to align their unseen hand with virtual target cubes in alternating blocks with and without spatial performance feedback. Forty participants were assigned to one of two groups: a 'spatial only' group, in which the feedback consisted of showing the (perturbed) endpoint of the hand, or to a 'spatial & reward' group, in which a reward could be received in addition to the spatial feedback. In addition, six participants were tested in a 'reward only' group. Binary reward was given when the participants' hand landed in a virtual 'hit area' that was adapted to individual performance to reward about half the trials. The results show a typical pattern of adaptation in both the 'spatial only' and the 'spatial & reward' groups, whereas the 'reward only' group was unable to adapt. The rewards did not affect the overall pattern of adaptation in the 'spatial & reward' group. However, on a trial-by-trial basis, the rewards reduced adaptive changes to spatial errors. PMID:26758721

  12. Spatial cognition

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary Kister; Remington, Roger

    1988-01-01

    Spatial cognition is the ability to reason about geometric relationships in the real (or a metaphorical) world based on one or more internal representations of those relationships. The study of spatial cognition is concerned with the representation of spatial knowledge, and our ability to manipulate these representations to solve spatial problems. Spatial cognition is utilized most critically when direct perceptual cues are absent or impoverished. Examples are provided of how human spatial cognitive abilities impact on three areas of space station operator performance: orientation, path planning, and data base management. A videotape provides demonstrations of relevant phenomena (e.g., the importance of orientation for recognition of complex, configural forms). The presentation is represented by abstract and overhead visuals only.

  13. Adaptive SPECT

    PubMed Central

    Barrett, Harrison H.; Furenlid, Lars R.; Freed, Melanie; Hesterman, Jacob Y.; Kupinski, Matthew A.; Clarkson, Eric; Whitaker, Meredith K.

    2008-01-01

    Adaptive imaging systems alter their data-acquisition configuration or protocol in response to the image information received. An adaptive pinhole single-photon emission computed tomography (SPECT) system might acquire an initial scout image to obtain preliminary information about the radiotracer distribution and then adjust the configuration or sizes of the pinholes, the magnifications, or the projection angles in order to improve performance. This paper briefly describes two small-animal SPECT systems that allow this flexibility and then presents a framework for evaluating adaptive systems in general, and adaptive SPECT systems in particular. The evaluation is in terms of the performance of linear observers on detection or estimation tasks. Expressions are derived for the ideal linear (Hotelling) observer and the ideal linear (Wiener) estimator with adaptive imaging. Detailed expressions for the performance figures of merit are given, and possible adaptation rules are discussed. PMID:18541485

  14. Myopes experience greater contrast adaptation during reading.

    PubMed

    McGonigle, Colm; van der Linde, Ian; Pardhan, Shahina; Engel, Stephen A; Mallen, Edward A H; Allen, Peter M

    2016-04-01

    In this study, we investigated whether reading influences contrast adaptation differently in young adult emmetropic and myopic participants at the spatial frequencies created by text rows and character strokes. Pre-adaptation contrast sensitivity was measured for test gratings with spatial frequencies of 1cdeg(-1) and 4cdeg(-1), presented horizontally and vertically. Participants then adapted to reading text corresponding to the horizontal "row frequency" of text (1cdeg(-1)), and vertical "stroke frequency" of the characters (4cdeg(-1)) for 180s. Following this, post-adaptation contrast sensitivity was measured. Twenty young adults (10 myopes, 10 emmetropes) optimally corrected for the viewing distance participated. There was a significant reduction in logCS post-text adaptation (relative to pre-adaptation logCS) at the row frequency (1cdeg(-1) horizontal) but not at the stroke frequency (4cdeg(-1) vertical). logCS changes due to adaptation at 1cdeg(-1) horizontal were significant in both emmetropes and myopes. Comparing the two refractive groups, myopic participants showed significantly greater adaptation compared to emmetropic participants. Reading text on a screen induces contrast adaptation in young adult observers. Myopic participants were found to exhibit greater contrast adaptation than emmetropes at the spatial frequency corresponding to the text row frequency. No contrast adaptation was observed at the text stroke frequency in either participant group. The greater contrast adaptation experienced by myopes after reading warrants further investigation to better understand the relationship between near work and myopia development. PMID:26804636

  15. Spatial Displays and Spatial Instruments

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R. (Editor); Kaiser, Mary K. (Editor); Grunwald, Arthur J. (Editor)

    1989-01-01

    The conference proceedings topics are divided into two main areas: (1) issues of spatial and picture perception raised by graphical electronic displays of spatial information; and (2) design questions raised by the practical experience of designers actually defining new spatial instruments for use in new aircraft and spacecraft. Each topic is considered from both a theoretical and an applied direction. Emphasis is placed on discussion of phenomena and determination of design principles.

  16. Pulse front adaptive optics in multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The accurate focusing of ultrashort laser pulses is extremely important in multiphoton microscopy. Using adaptive optics to manipulate the incident ultrafast beam in either the spectral or spatial domain can introduce significant benefits when imaging. Here we introduce pulse front adaptive optics: manipulating an ultrashort pulse in both the spatial and temporal domains. A deformable mirror and a spatial light modulator are operated in concert to modify contours of constant intensity in space and time within an ultrashort pulse. Through adaptive control of the pulse front, we demonstrate an enhancement in the measured fluorescence from a two photon microscope.

  17. Spatial Techniques

    NASA Astrophysics Data System (ADS)

    Jabeur, Nafaa; Sahli, Nabil

    The environment, including the Earth and the immense space, is recognized to be the main source of useful information for human beings. During several decades, the acquisition of data from this environment was constrained by tools and techniques with limited capabilities. However, thanks to continuous technological advances,spatial data are available in huge quantities for different applications. The technological advances have been achieved in terms of hardware and software as well. They are allowing for better accuracy and availability, which in turn improves the quality and quantity of useful knowledge that can be extracted from the environment. They have been applied to geography, resulting in geospatial techniques. Applied to both science and technology, geospatial techniques resulted in areas of expertise, such as land surveying, cartography, navigation, remote sensing, Geographic Infor-mation Systems (GISs), and Global Positioning Systems (GPSs). They had evolved quickly with advances in computing, satellite technology and a growing demand to understand our global environment. In this chapter, we will discuss three important techniques that are widely used in spatial data acquisition and analysis: GPS and remote sensing techniques that are used to collect spatial data and a GIS that is used to store, manipulate, analyze, and visualize spatial data. Later in this book, we will discuss the techniques that are currently available for spatial knowledge discovery.

  18. Adaptive sensor fusion

    NASA Astrophysics Data System (ADS)

    Kadar, Ivan

    1995-07-01

    A perceptual reasoning system adaptively extracting, associating, and fusing information from multiple sources, at various levels of abstraction, is considered as the building block for the next generation of surveillance systems. A system architecture is presented which makes use of both centralized and distributed predetection fusion combined with intelligent monitor and control coupling both on-platform and off-board track and decision level fusion results. The goal of this system is to create a `gestalt fused sensor system' whose information product is greater than the sum of the information products from the individual sensors and has performance superior to either individual or a sub-group of combined sensors. The application of this architectural concept to the law enforcement arena (e.g. drug interdiction) utilizing multiple spatially and temporally diverse surveillance platforms and/or information sources, is used to illustrate the benefits of the adaptive perceptual reasoning system concept.

  19. Telescope Adaptive Optics Code

    Energy Science and Technology Software Center (ESTSC)

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The defaultmore » parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST« less

  20. Adaptive Development

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The goal of this research is to develop and demonstrate innovative adaptive seal technologies that can lead to dramatic improvements in engine performance, life, range, and emissions, and enhance operability for next generation gas turbine engines. This work is concentrated on the development of self-adaptive clearance control systems for gas turbine engines. Researchers have targeted the high-pressure turbine (HPT) blade tip seal location for following reasons: Current active clearance control (ACC) systems (e.g., thermal case-cooling schemes) cannot respond to blade tip clearance changes due to mechanical, thermal, and aerodynamic loads. As such they are prone to wear due to the required tight running clearances during operation. Blade tip seal wear (increased clearances) reduces engine efficiency, performance, and service life. Adaptive sealing technology research has inherent impact on all envisioned 21st century propulsion systems (e.g. distributed vectored, hybrid and electric drive propulsion concepts).

  1. Spatial networks

    NASA Astrophysics Data System (ADS)

    Barthélemy, Marc

    2011-02-01

    Complex systems are very often organized under the form of networks where nodes and edges are embedded in space. Transportation and mobility networks, Internet, mobile phone networks, power grids, social and contact networks, and neural networks, are all examples where space is relevant and where topology alone does not contain all the information. Characterizing and understanding the structure and the evolution of spatial networks is thus crucial for many different fields, ranging from urbanism to epidemiology. An important consequence of space on networks is that there is a cost associated with the length of edges which in turn has dramatic effects on the topological structure of these networks. We will thoroughly explain the current state of our understanding of how the spatial constraints affect the structure and properties of these networks. We will review the most recent empirical observations and the most important models of spatial networks. We will also discuss various processes which take place on these spatial networks, such as phase transitions, random walks, synchronization, navigation, resilience, and disease spread.

  2. Adapting Animals.

    ERIC Educational Resources Information Center

    Wedman, John; Wedman, Judy

    1985-01-01

    The "Animals" program found on the Apple II and IIe system master disk can be adapted for use in the mathematics classroom. Instructions for making the necessary changes and suggestions for using it in lessons related to geometric shapes are provided. (JN)

  3. Adaptive Thresholds

    SciTech Connect

    Bremer, P. -T.

    2014-08-26

    ADAPT is a topological analysis code that allow to compute local threshold, in particular relevance based thresholds for features defined in scalar fields. The initial target application is vortex detection but the software is more generally applicable to all threshold based feature definitions.

  4. Adaptive homeostasis.

    PubMed

    Davies, Kelvin J A

    2016-06-01

    Homeostasis is a central pillar of modern Physiology. The term homeostasis was invented by Walter Bradford Cannon in an attempt to extend and codify the principle of 'milieu intérieur,' or a constant interior bodily environment, that had previously been postulated by Claude Bernard. Clearly, 'milieu intérieur' and homeostasis have served us well for over a century. Nevertheless, research on signal transduction systems that regulate gene expression, or that cause biochemical alterations to existing enzymes, in response to external and internal stimuli, makes it clear that biological systems are continuously making short-term adaptations both to set-points, and to the range of 'normal' capacity. These transient adaptations typically occur in response to relatively mild changes in conditions, to programs of exercise training, or to sub-toxic, non-damaging levels of chemical agents; thus, the terms hormesis, heterostasis, and allostasis are not accurate descriptors. Therefore, an operational adjustment to our understanding of homeostasis suggests that the modified term, Adaptive Homeostasis, may be useful especially in studies of stress, toxicology, disease, and aging. Adaptive Homeostasis may be defined as follows: 'The transient expansion or contraction of the homeostatic range in response to exposure to sub-toxic, non-damaging, signaling molecules or events, or the removal or cessation of such molecules or events.' PMID:27112802

  5. Pulse front control with adaptive optics

    NASA Astrophysics Data System (ADS)

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The focusing of ultrashort laser pulses is extremely important for processes including microscopy, laser fabrication and fundamental science. Adaptive optic elements, such as liquid crystal spatial light modulators or membrane deformable mirrors, are routinely used for the correction of aberrations in these systems, leading to improved resolution and efficiency. Here, we demonstrate that adaptive elements used with ultrashort pulses should not be considered simply in terms of wavefront modification, but that changes to the incident pulse front can also occur. We experimentally show how adaptive elements may be used to engineer pulse fronts with spatial resolution.

  6. Spatial alexia.

    PubMed

    Ardila, A; Rosselli, M

    1994-05-01

    Twenty-one patients with right hemisphere damage were studied (11 men, 10 women; average age = 41.33; range = 19-65). Patients were divided in two groups: pre-Rolandic (six patients) and retro-Rolandic (15 patients) right hemisphere damage. A special reading test was given to each patient. The observed errors included: literal errors (substitutions, additions, and omissions of letters), substitutions of syllables and pseudowords for meaningful words, left hemispatial neglect, confabulation, splitting of words, verbal errors (substitutions, additions, and omission of words), grouping of letters belonging to two different words, misuse of punctuation marks, and errors in following lines. It was proposed that spatial alexia is characterized by: (1) some difficulties in the recognition of the spatial orientation in letters; (2) left hemispatial neglect; (3) tendency to "complete" the sense of words and sentences; (4) inability to follow lines when reading texts, and sequentially explore the spatial distribution of the written material; and (5) grouping and fragmentation of words, most likely as a consequence of the inability to interpret the relative value of spaces between letters correctly. PMID:7960468

  7. Connector adapter

    NASA Technical Reports Server (NTRS)

    Hacker, Scott C. (Inventor); Dean, Richard J. (Inventor); Burge, Scott W. (Inventor); Dartez, Toby W. (Inventor)

    2007-01-01

    An adapter for installing a connector to a terminal post, wherein the connector is attached to a cable, is presented. In an embodiment, the adapter is comprised of an elongated collet member having a longitudinal axis comprised of a first collet member end, a second collet member end, an outer collet member surface, and an inner collet member surface. The inner collet member surface at the first collet member end is used to engage the connector. The outer collet member surface at the first collet member end is tapered for a predetermined first length at a predetermined taper angle. The collet includes a longitudinal slot that extends along the longitudinal axis initiating at the first collet member end for a predetermined second length. The first collet member end is formed of a predetermined number of sections segregated by a predetermined number of channels and the longitudinal slot.

  8. Adaptive sampler

    DOEpatents

    Watson, Bobby L.; Aeby, Ian

    1982-01-01

    An adaptive data compression device for compressing data having variable frequency content, including a plurality of digital filters for analyzing the content of the data over a plurality of frequency regions, a memory, and a control logic circuit for generating a variable rate memory clock corresponding to the analyzed frequency content of the data in the frequency region and for clocking the data into the memory in response to the variable rate memory clock.

  9. Adaptive sampler

    DOEpatents

    Watson, B.L.; Aeby, I.

    1980-08-26

    An adaptive data compression device for compressing data is described. The device has a frequency content, including a plurality of digital filters for analyzing the content of the data over a plurality of frequency regions, a memory, and a control logic circuit for generating a variable rate memory clock corresponding to the analyzed frequency content of the data in the frequency region and for clocking the data into the memory in response to the variable rate memory clock.

  10. Adaptive antennas

    NASA Astrophysics Data System (ADS)

    Barton, P.

    1987-04-01

    The basic principles of adaptive antennas are outlined in terms of the Wiener-Hopf expression for maximizing signal to noise ratio in an arbitrary noise environment; the analogy with generalized matched filter theory provides a useful aid to understanding. For many applications, there is insufficient information to achieve the above solution and thus non-optimum constrained null steering algorithms are also described, together with a summary of methods for preventing wanted signals being nulled by the adaptive system. The three generic approaches to adaptive weight control are discussed; correlation steepest descent, weight perturbation and direct solutions based on sample matrix conversion. The tradeoffs between hardware complexity and performance in terms of null depth and convergence rate are outlined. The sidelobe cancellor technique is described. Performance variation with jammer power and angular distribution is summarized and the key performance limitations identified. The configuration and performance characteristics of both multiple beam and phase scan array antennas are covered, with a brief discussion of performance factors.

  11. Topological Anderson insulator induced by inter-cell hopping disorder

    SciTech Connect

    Lv, Shu-Hui; Song, Juntao Li, Yu-Xian

    2013-11-14

    We have studied in detail the influence of same-orbit and different-orbit hopping disorders in HgTe/CdTe quantum wells. Intriguingly, similar to the behavior of the on-site Anderson disorder, a phase transition from a topologically trivial phase to a topological phase is induced at a proper strength of the same-orbit hopping disorder. For different-orbit hopping disorder, however, the phase transition does not occur. The results have been analytically verified by using effective medium theory. A consistent conclusion can be obtained by comparing phase diagrams, conductance, and conductance fluctuations. In addition, the influence of Rashba spin-orbit interaction (RSOI) on the system has been studied for different types of disorder, and the RSOI shows different influence on topological phase at different disorders. The topological phase induced by same-orbit hopping disorder is more robust against the RSOI than that induced by on-site Anderson disorder. For different-orbit hopping disorder, no matter whether the RSOI is included or not, the phase transition does not occur. The results indicate, whether or not the topological Anderson insulator can be observed depends on a competition between the different types of the disorder as well as the strength of the RSOI in a system.

  12. Effects of Intraframe Distortion on Measures of Cone Mosaic Geometry from Adaptive Optics Scanning Light Ophthalmoscopy

    PubMed Central

    Cooper, Robert F.; Sulai, Yusufu N.; Dubis, Adam M.; Chui, Toco Y.; Rosen, Richard B.; Michaelides, Michel; Dubra, Alfredo; Carroll, Joseph

    2016-01-01

    Purpose To characterize the effects of intraframe distortion due to involuntary eye motion on measures of cone mosaic geometry derived from adaptive optics scanning light ophthalmoscope (AOSLO) images. Methods We acquired AOSLO image sequences from 20 subjects at 1.0, 2.0, and 5.0° temporal from fixation. An expert grader manually selected 10 minimally distorted reference frames from each 150-frame sequence for subsequent registration. Cone mosaic geometry was measured in all registered images (n = 600) using multiple metrics, and the repeatability of these metrics was used to assess the impact of the distortions from each reference frame. In nine additional subjects, we compared AOSLO-derived measurements to those from adaptive optics (AO)-fundus images, which do not contain system-imposed intraframe distortions. Results We observed substantial variation across subjects in the repeatability of density (1.2%–8.7%), inter-cell distance (0.8%–4.6%), percentage of six-sided Voronoi cells (0.8%–10.6%), and Voronoi cell area regularity (VCAR) (1.2%–13.2%). The average of all metrics extracted from AOSLO images (with the exception of VCAR) was not significantly different than those derived from AO-fundus images, though there was variability between individual images. Conclusions Our data demonstrate that the intraframe distortion found in AOSLO images can affect the accuracy and repeatability of cone mosaic metrics. It may be possible to use multiple images from the same retinal area to approximate a “distortionless” image, though more work is needed to evaluate the feasibility of this approach. Translational Relevance Even in subjects with good fixation, images from AOSLOs contain intraframe distortions due to eye motion during scanning. The existence of these artifacts emphasizes the need for caution when interpreting results derived from scanning instruments. PMID:26933523

  13. Mathematical Modeling of spatial disease variables by Spatial Fuzzy Logic for Spatial Decision Support Systems

    NASA Astrophysics Data System (ADS)

    Platz, M.; Rapp, J.; Groessler, M.; Niehaus, E.; Babu, A.; Soman, B.

    2014-11-01

    A Spatial Decision Support System (SDSS) provides support for decision makers and should not be viewed as replacing human intelligence with machines. Therefore it is reasonable that decision makers are able to use a feature to analyze the provided spatial decision support in detail to crosscheck the digital support of the SDSS with their own expertise. Spatial decision support is based on risk and resource maps in a Geographic Information System (GIS) with relevant layers e.g. environmental, health and socio-economic data. Spatial fuzzy logic allows the representation of spatial properties with a value of truth in the range between 0 and 1. Decision makers can refer to the visualization of the spatial truth of single risk variables of a disease. Spatial fuzzy logic rules that support the allocation of limited resources according to risk can be evaluated with measure theory on topological spaces, which allows to visualize the applicability of this rules as well in a map. Our paper is based on the concept of a spatial fuzzy logic on topological spaces that contributes to the development of an adaptive Early Warning And Response System (EWARS) providing decision support for the current or future spatial distribution of a disease. It supports the decision maker in testing interventions based on available resources and apply risk mitigation strategies and provide guidance tailored to the geo-location of the user via mobile devices. The software component of the system would be based on open source software and the software developed during this project will also be in the open source domain, so that an open community can build on the results and tailor further work to regional or international requirements and constraints. A freely available EWARS Spatial Fuzzy Logic Demo was developed wich enables a user to visualize risk and resource maps based on individual data in several data formats.

  14. Spatial organization of cooperation

    NASA Astrophysics Data System (ADS)

    Desprat, Nicolas

    The structure of the environment spatially confines bacteria inside groups where they live and evolve with their siblings. This population structure may not only select for individual abilities but also for group properties that would eventually enhance the fitness of the colony. In poor media, we might think that maximizing the contact with the environment would maximize the fitness of individual cells. However, we will show that the microcolony of P. aeruginosa adapts its morphogenesis to maximize cell-cell contacts rather than cell-environment interactions when iron becomes scarce in the environment. In this case, reducing the surface of exchange with the environment allows to limit the loss of secreted molecules required to efficiently fetch extracelllular iron at very low concentration.

  15. An adaptive level set method

    SciTech Connect

    Milne, R.B.

    1995-12-01

    This thesis describes a new method for the numerical solution of partial differential equations of the parabolic type on an adaptively refined mesh in two or more spatial dimensions. The method is motivated and developed in the context of the level set formulation for the curvature dependent propagation of surfaces in three dimensions. In that setting, it realizes the multiple advantages of decreased computational effort, localized accuracy enhancement, and compatibility with problems containing a range of length scales.

  16. Hybrid Surface Mesh Adaptation for Climate Modeling

    SciTech Connect

    Khamayseh, Ahmed K; de Almeida, Valmor F; Hansen, Glen

    2008-01-01

    Solution-driven mesh adaptation is becoming quite popular for spatial error control in the numerical simulation of complex computational physics applications, such as climate modeling. Typically, spatial adaptation is achieved by element subdivision (h adaptation) with a primary goal of resolving the local length scales of interest. A second, less-popular method of spatial adaptivity is called "mesh motion" (r adaptation); the smooth repositioning of mesh node points aimed at resizing existing elements to capture the local length scales. This paper proposes an adaptation method based on a combination of both element subdivision and node point repositioning (rh adaptation). By combining these two methods using the notion of a mobility function, the proposed approach seeks to increase the flexibility and extensibility of mesh motion algorithms while providing a somewhat smoother transition between refined regions than is produced by element subdivision alone. Further, in an attempt to support the requirements of a very general class of climate simulation applications, the proposed method is designed to accommodate unstructured, polygonal mesh topologies in addition to the most popular mesh types.

  17. Hybrid Surface Mesh Adaptation for Climate Modeling

    SciTech Connect

    Ahmed Khamayseh; Valmor de Almeida; Glen Hansen

    2008-10-01

    Solution-driven mesh adaptation is becoming quite popular for spatial error control in the numerical simulation of complex computational physics applications, such as climate modeling. Typically, spatial adaptation is achieved by element subdivision (h adaptation) with a primary goal of resolving the local length scales of interest. A second, less-popular method of spatial adaptivity is called “mesh motion” (r adaptation); the smooth repositioning of mesh node points aimed at resizing existing elements to capture the local length scales. This paper proposes an adaptation method based on a combination of both element subdivision and node point repositioning (rh adaptation). By combining these two methods using the notion of a mobility function, the proposed approach seeks to increase the flexibility and extensibility of mesh motion algorithms while providing a somewhat smoother transition between refined regions than is produced by element subdivision alone. Further, in an attempt to support the requirements of a very general class of climate simulation applications, the proposed method is designed to accommodate unstructured, polygonal mesh topologies in addition to the most popular mesh types.

  18. Adaptive Optics for Large Telescopes

    SciTech Connect

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  19. Parallel Adaptive Mesh Refinement Library

    NASA Technical Reports Server (NTRS)

    Mac-Neice, Peter; Olson, Kevin

    2005-01-01

    Parallel Adaptive Mesh Refinement Library (PARAMESH) is a package of Fortran 90 subroutines designed to provide a computer programmer with an easy route to extension of (1) a previously written serial code that uses a logically Cartesian structured mesh into (2) a parallel code with adaptive mesh refinement (AMR). Alternatively, in its simplest use, and with minimal effort, PARAMESH can operate as a domain-decomposition tool for users who want to parallelize their serial codes but who do not wish to utilize adaptivity. The package builds a hierarchy of sub-grids to cover the computational domain of a given application program, with spatial resolution varying to satisfy the demands of the application. The sub-grid blocks form the nodes of a tree data structure (a quad-tree in two or an oct-tree in three dimensions). Each grid block has a logically Cartesian mesh. The package supports one-, two- and three-dimensional models.

  20. Multichannel Spatial Auditory Display for Speed Communications

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Erbe, Tom

    1994-01-01

    A spatial auditory display for multiple speech communications was developed at NASA/Ames Research Center. Input is spatialized by the use of simplifiedhead-related transfer functions, adapted for FIR filtering on Motorola 56001 digital signal processors. Hardware and firmware design implementations are overviewed for the initial prototype developed for NASA-Kennedy Space Center. An adaptive staircase method was used to determine intelligibility levels of four-letter call signs used by launch personnel at NASA against diotic speech babble. Spatial positions at 30 degree azimuth increments were evaluated. The results from eight subjects showed a maximum intelligibility improvement of about 6-7 dB when the signal was spatialized to 60 or 90 degree azimuth positions.

  1. Multichannel spatial auditory display for speech communications

    NASA Technical Reports Server (NTRS)

    Begault, D. R.; Erbe, T.; Wenzel, E. M. (Principal Investigator)

    1994-01-01

    A spatial auditory display for multiple speech communications was developed at NASA/Ames Research Center. Input is spatialized by the use of simplified head-related transfer functions, adapted for FIR filtering on Motorola 56001 digital signal processors. Hardware and firmware design implementations are overviewed for the initial prototype developed for NASA-Kennedy Space Center. An adaptive staircase method was used to determine intelligibility levels of four-letter call signs used by launch personnel at NASA against diotic speech babble. Spatial positions at 30 degrees azimuth increments were evaluated. The results from eight subjects showed a maximum intelligibility improvement of about 6-7 dB when the signal was spatialized to 60 or 90 degrees azimuth positions.

  2. Interference between adaptation to double steps and adaptation to rotated feedback in spite of differences in directional selectivity.

    PubMed

    Schmitz, Gerd

    2016-06-01

    Two key features of sensorimotor adaptation are the directional selectivity of adaptive changes and the interference of adaptations to opposite directions. The present study investigated whether directional selectivity and interference of adaptation are related to executive functions and whether these phenomena differ between two methods for visuomotor adaptation. Subjects adapted at three target directions to clockwise or counterclockwise rotated feedback or to clockwise or counterclockwise target displacements (double steps). Both adaptation methods induce rotations of movement trajectories into the same direction, but provide visual information differently. The results showed that adaptation progressed differently between three targets. When movements adapted clockwise, adaptation was best at the most clockwise located target, and when movements adapted counterclockwise, it was best at the most counterclockwise located target, suggesting that spatial generalization between target directions is related to the direction of motor adaptation. The two adaptation methods produced different adaptation patterns, which indicate a further impact of visual information. A second adaptation to the other and opposite-directed discordance was worse than naive adaptation and washed out the aftereffects from the first adaptation, confirming that both adaptation methods interfered. Executive functions were significant covariate for overall interference and interference of target-specific adaptation. The results suggest that directional selectivity of adaptation is shaped by the direction of motor adaptation and the visual information provided. The interference of both adaptation methods indicates that they share adaptive mechanisms for recalibration. The interference is the lower the better subjects are able to cognitively switch between tasks and to inhibit prepotent responses. Therefore, cognitive functions seem to be involved in the inhibition of non-adequate sensorimotor

  3. Neuromapping: Inflight Evaluation of Cognition and Adaptability

    NASA Technical Reports Server (NTRS)

    Kofman, I. S.; De Dios, Y. E.; Lawrence, K.; Schade, A.; Reschke, M. F.; Bloomberg, J. J.; Wood, S. J.; Mulavara, A. P.; Seidle, R. D.

    2016-01-01

    In consideration of the health and performance of crewmembers during flight and postflight, we are conducting a controlled prospective longitudinal study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor, cognitive, and neural changes. Previous studies investigating sensorimotor adaptation to the microgravity environment longitudinally inflight have shown reduction in the ability to perform complex dual tasks. In this study we perform a series of tests investigating the longitudinal effects of adaptation to the microgravity environment and how it affects spatial cognition, manual visuo-motor adaption and dual tasking.

  4. ADAPTATION AND ADAPTABILITY, THE BELLEFAIRE FOLLOWUP STUDY.

    ERIC Educational Resources Information Center

    ALLERHAND, MELVIN E.; AND OTHERS

    A RESEARCH TEAM STUDIED INFLUENCES, ADAPTATION, AND ADAPTABILITY IN 50 POORLY ADAPTING BOYS AT BELLEFAIRE, A REGIONAL CHILD CARE CENTER FOR EMOTIONALLY DISTURBED CHILDREN. THE TEAM ATTEMPTED TO GAUGE THE SUCCESS OF THE RESIDENTIAL TREATMENT CENTER IN TERMS OF THE PSYCHOLOGICAL PATTERNS AND ROLE PERFORMANCES OF THE BOYS DURING INDIVIDUAL CASEWORK…

  5. Spatial Encounters: Exercises in Spatial Awareness.

    ERIC Educational Resources Information Center

    New Mexico Univ., Albuquerque.

    This series of activities on spatial relationships was designed to help users acquire the skills of spatial visualization and orientation and to improve their effectiveness in applying those skills. The series contains an introduction to spatial orientation with several self-directed activities to help improve that skill. It also contains seven…

  6. Adaptive Image Denoising by Mixture Adaptation.

    PubMed

    Luo, Enming; Chan, Stanley H; Nguyen, Truong Q

    2016-10-01

    We propose an adaptive learning procedure to learn patch-based image priors for image denoising. The new algorithm, called the expectation-maximization (EM) adaptation, takes a generic prior learned from a generic external database and adapts it to the noisy image to generate a specific prior. Different from existing methods that combine internal and external statistics in ad hoc ways, the proposed algorithm is rigorously derived from a Bayesian hyper-prior perspective. There are two contributions of this paper. First, we provide full derivation of the EM adaptation algorithm and demonstrate methods to improve the computational complexity. Second, in the absence of the latent clean image, we show how EM adaptation can be modified based on pre-filtering. The experimental results show that the proposed adaptation algorithm yields consistently better denoising results than the one without adaptation and is superior to several state-of-the-art algorithms. PMID:27416593

  7. Coherent Digital Holographic Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng

    A new type of adaptive optics (AO) based on the principles of digital holography (DH) is proposed and developed for the use in wide-field and confocal retinal imaging. Digital holographic adaptive optics (DHAO) dispenses with the wavefront sensor and wavefront corrector of the conventional AO system. DH is an emergent imaging technology that gives direct numerical access to the phase of the optical field, thus allowing precise control and manipulation of the optical field. Incorporation of DH in an ophthalmic imaging system can lead to versatile imaging capabilities at substantially reduced complexity and cost of the instrument. A typical conventional AO system includes several critical hardware pieces: spatial light modulator, lenslet array, and a second CCD camera in addition to the camera for imaging. The proposed DHAO system replaces these hardware components with numerical processing for wavefront measurement and compensation of aberration through the principles of DH. (Abstract shortened by UMI.).

  8. Adapting populations in space: clonal interference and genetic diversity

    NASA Astrophysics Data System (ADS)

    Weissman, Daniel; Barton, Nick

    Most species inhabit ranges much larger than the scales over which individuals interact. How does this spatial structure interact with adaptive evolution? We consider a simple model of a spatially-extended, adapting population and show that, while clonal interference severely limits the adaptation of purely asexual populations, even rare recombination is enough to allow adaptation at rates approaching those of well-mixed populations. We also find that the genetic hitchhiking produced by the adaptive alleles sweeping through the population has strange effects on the patterns of genetic diversity. In large spatial ranges, even low rates of adaptation cause all individuals in the population to rapidly trace their ancestry back to individuals living in a small region in the center of the range. The probability of fixation of an allele is thus strongly dependent on the allele's spatial location, with alleles from the center favored. Surprisingly, these effects are seen genome-wide (instead of being localized to the regions of the genome undergoing the sweeps). The spatial concentration of ancestry produces a power-law dependence of relatedness on distance, so that even individuals sampled far apart are likely to be fairly closely related, masking the underlying spatial structure.

  9. Spatial attention systems in spatial neglect.

    PubMed

    Karnath, Hans-Otto

    2015-08-01

    It has been established that processes relating to 'spatial attention' are implemented at cortical level by goal-directed (top-down) and stimulus-driven (bottom-up) networks. Spatial neglect in brain-damaged individuals has been interpreted as a distinguished exemplar for a disturbance of these processes. The present paper elaborates this assumption. Functioning of the two attentional networks seem to dissociate in spatial neglect; behavioral studies of patients' orienting and exploration behavior point to a disturbed stimulus-driven but preserved goal-directed attention system. When a target suddenly appears somewhere in space, neglect patients demonstrate disturbed detection and orienting if it is located in contralesional direction. In contrast, if neglect patients explore a scene with voluntarily, top-down controlled shifts of spatial attention, they perform movements that are oriented into all spatial directions without any direction-specific disturbances. The paper thus argues that not the top-down control of spatial attention itself, rather a body-related matrix on top of which this process is executed, seems affected. In that sense, the traditional role of spatial neglect as a stroke model for 'spatial attention' requires adjustment. Beyond its insights into the human stimulus-driven attentional system, the disorder most notably provides vistas in how our brain encodes topographical information and organizes spatially oriented action - including the top-down control of spatial attention - in relation to body position. PMID:26004064

  10. Adaptive Color Constancy Using Faces.

    PubMed

    Bianco, Simone; Schettini, Raimondo

    2014-08-01

    In this work we design an adaptive color constancy algorithm that, exploiting the skin regions found in faces, is able to estimate and correct the scene illumination. The algorithm automatically switches from global to spatially varying color correction on the basis of the illuminant estimations on the different faces detected in the image. An extensive comparison with both global and local color constancy algorithms is carried out to validate the effectiveness of the proposed algorithm in terms of both statistical and perceptual significance on a large heterogeneous data set of RAW images containing faces. PMID:26353334

  11. Parallel Adaptive Multi-Mechanics Simulations using Diablo

    SciTech Connect

    Parsons, D; Solberg, J

    2004-12-03

    Coupled multi-mechanics simulations (such as thermal-stress and fluidstructure interaction problems) are of substantial interest to engineering analysts. In addition, adaptive mesh refinement techniques present an attractive alternative to current mesh generation procedures and provide quantitative error bounds that can be used for model verification. This paper discusses spatially adaptive multi-mechanics implicit simulations using the Diablo computer code. (U)

  12. The Development of Spatial Frequency Biases in Face Recognition

    ERIC Educational Resources Information Center

    Leonard, Hayley C.; Karmiloff-Smith, Annette; Johnson, Mark H.

    2010-01-01

    Previous research has suggested that a mid-band of spatial frequencies is critical to face recognition in adults, but few studies have explored the development of this bias in children. We present a paradigm adapted from the adult literature to test spatial frequency biases throughout development. Faces were presented on a screen with particular…

  13. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.

  14. Habituation of visual adaptation

    PubMed Central

    Dong, Xue; Gao, Yi; Lv, Lili; Bao, Min

    2016-01-01

    Our sensory system adjusts its function driven by both shorter-term (e.g. adaptation) and longer-term (e.g. learning) experiences. Most past adaptation literature focuses on short-term adaptation. Only recently researchers have begun to investigate how adaptation changes over a span of days. This question is important, since in real life many environmental changes stretch over multiple days or longer. However, the answer to the question remains largely unclear. Here we addressed this issue by tracking perceptual bias (also known as aftereffect) induced by motion or contrast adaptation across multiple daily adaptation sessions. Aftereffects were measured every day after adaptation, which corresponded to the degree of adaptation on each day. For passively viewed adapters, repeated adaptation attenuated aftereffects. Once adapters were presented with an attentional task, aftereffects could either reduce for easy tasks, or initially show an increase followed by a later decrease for demanding tasks. Quantitative analysis of the decay rates in contrast adaptation showed that repeated exposure of the adapter appeared to be equivalent to adaptation to a weaker stimulus. These results suggest that both attention and a non-attentional habituation-like mechanism jointly determine how adaptation develops across multiple daily sessions. PMID:26739917

  15. Habituation of visual adaptation.

    PubMed

    Dong, Xue; Gao, Yi; Lv, Lili; Bao, Min

    2016-01-01

    Our sensory system adjusts its function driven by both shorter-term (e.g. adaptation) and longer-term (e.g. learning) experiences. Most past adaptation literature focuses on short-term adaptation. Only recently researchers have begun to investigate how adaptation changes over a span of days. This question is important, since in real life many environmental changes stretch over multiple days or longer. However, the answer to the question remains largely unclear. Here we addressed this issue by tracking perceptual bias (also known as aftereffect) induced by motion or contrast adaptation across multiple daily adaptation sessions. Aftereffects were measured every day after adaptation, which corresponded to the degree of adaptation on each day. For passively viewed adapters, repeated adaptation attenuated aftereffects. Once adapters were presented with an attentional task, aftereffects could either reduce for easy tasks, or initially show an increase followed by a later decrease for demanding tasks. Quantitative analysis of the decay rates in contrast adaptation showed that repeated exposure of the adapter appeared to be equivalent to adaptation to a weaker stimulus. These results suggest that both attention and a non-attentional habituation-like mechanism jointly determine how adaptation develops across multiple daily sessions. PMID:26739917

  16. Spatially adaptive migration tomography for multistatic GPR imaging

    DOEpatents

    Paglieroni, David W; Beer, N. Reginald

    2013-08-13

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  17. Expressing Adaptation Strategies Using Adaptation Patterns

    ERIC Educational Resources Information Center

    Zemirline, N.; Bourda, Y.; Reynaud, C.

    2012-01-01

    Today, there is a real challenge to enable personalized access to information. Several systems have been proposed to address this challenge including Adaptive Hypermedia Systems (AHSs). However, the specification of adaptation strategies remains a difficult task for creators of such systems. In this paper, we consider the problem of the definition…

  18. Differentiating Spatial Memory from Spatial Transformations

    ERIC Educational Resources Information Center

    Street, Whitney N.; Wang, Ranxiao Frances

    2014-01-01

    The perspective-taking task is one of the most common paradigms used to study the nature of spatial memory, and better performance for certain orientations is generally interpreted as evidence of spatial representations using these reference directions. However, performance advantages can also result from the relative ease in certain…

  19. Perceptually-Based Adaptive JPEG Coding

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Rosenholtz, Ruth; Null, Cynthia H. (Technical Monitor)

    1996-01-01

    An extension to the JPEG standard (ISO/IEC DIS 10918-3) allows spatial adaptive coding of still images. As with baseline JPEG coding, one quantization matrix applies to an entire image channel, but in addition the user may specify a multiplier for each 8 x 8 block, which multiplies the quantization matrix, yielding the new matrix for the block. MPEG 1 and 2 use much the same scheme, except there the multiplier changes only on macroblock boundaries. We propose a method for perceptual optimization of the set of multipliers. We compute the perceptual error for each block based upon DCT quantization error adjusted according to contrast sensitivity, light adaptation, and contrast masking, and pick the set of multipliers which yield maximally flat perceptual error over the blocks of the image. We investigate the bitrate savings due to this adaptive coding scheme and the relative importance of the different sorts of masking on adaptive coding.

  20. Audiovisual time perception is spatially specific.

    PubMed

    Heron, James; Roach, Neil W; Hanson, James V M; McGraw, Paul V; Whitaker, David

    2012-05-01

    Our sensory systems face a daily barrage of auditory and visual signals whose arrival times form a wide range of audiovisual asynchronies. These temporal relationships constitute an important metric for the nervous system when surmising which signals originate from common external events. Internal consistency is known to be aided by sensory adaptation: repeated exposure to consistent asynchrony brings perceived arrival times closer to simultaneity. However, given the diverse nature of our audiovisual environment, functionally useful adaptation would need to be constrained to signals that were generated together. In the current study, we investigate the role of two potential constraining factors: spatial and contextual correspondence. By employing an experimental design that allows independent control of both factors, we show that observers are able to simultaneously adapt to two opposing temporal relationships, provided they are segregated in space. No such recalibration was observed when spatial segregation was replaced by contextual stimulus features (in this case, pitch and spatial frequency). These effects provide support for dedicated asynchrony mechanisms that interact with spatially selective mechanisms early in visual and auditory sensory pathways. PMID:22367399

  1. Discrete adaptive zone light elements (DAZLE): a new approach to adaptive imaging

    NASA Astrophysics Data System (ADS)

    Kellogg, Robert L.; Escuti, Michael J.

    2007-09-01

    New advances in Liquid Crystal Spatial Light Modulators (LCSLM) offer opportunities for large adaptive optics in the midwave infrared spectrum. A light focusing adaptive imaging system, using the zero-order diffraction state of a polarizer-free liquid crystal polarization grating modulator to create millions of high transmittance apertures, is envisioned in a system called DAZLE (Discrete Adaptive Zone Light Elements). DAZLE adaptively selects large sets of LCSLM apertures using the principles of coded masks, embodied in a hybrid Discrete Fresnel Zone Plate (DFZP) design. Issues of system architecture, including factors of LCSLM aperture pattern and adaptive control, image resolution and focal plane array (FPA) matching, and trade-offs between filter bandwidths, background photon noise, and chromatic aberration are discussed.

  2. a New Spatial and Temporal Fusion Model

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Huang, Bo

    2016-06-01

    As Moderate Resolution Imaging Spectroradiometer (MODIS) and Enhanced Thematic Mapper Plus (ETM+) has a tradeoff between the high temporal resolution and high spatial resolution, this paper proposed a spatial and temporal model with auto-regression error correction (AREC) method to blend the two types of images in order to obtain the composed image with both high spatial and temporal resolution. Experiments and validation were conducted on a data set located in Shenzhen, China and compared with Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) in several objective indexes and visual analysis. It was found that AREC could effectively predict the land cover changes and the fusion results had better performances versus the ones of STARFM.

  3. Cognitive adaptations for gathering-related navigation in humans

    PubMed Central

    Krasnow, Max M.; Truxaw, Danielle; Gaulin, Steven J.C.; New, Joshua; Ozono, Hiroki; Uono, Shota; Ueno, Taiji; Minemoto, Kazusa

    2013-01-01

    Current research increasingly suggests that spatial cognition in humans is accomplished by many specialized mechanisms, each designed to solve a particular adaptive problem. A major adaptive problem for our hominin ancestors, particularly females, was the need to efficiently gather immobile foods which could vary greatly in quality, quantity, spatial location and temporal availability. We propose a cognitive model of a navigational gathering adaptation in humans and test its predictions in samples from the US and Japan. Our results are uniformly supportive: the human mind appears equipped with a navigational gathering adaptation that encodes the location of gatherable foods into spatial memory. This mechanism appears to be chronically active in women and activated under explicit motivation in men. PMID:23833551

  4. Adaptation of US maize to temperature variations

    NASA Astrophysics Data System (ADS)

    Butler, Ethan E.; Huybers, Peter

    2013-01-01

    High temperatures are associated with reduced crop yields, and predictions for future warming have raised concerns regarding future productivity and food security. However, the extent to which adaptation can mitigate such heat-related losses remains unclear. Here we empirically demonstrate how maize is locally adapted to hot temperatures across US counties. Using this spatial adaptation as a surrogate for future adaptation, we find that losses to average US maize yields from a 2°C warming would be reduced from 14% to only 6% and that loss in net production is wholly averted. This result does not account for possible changes in temperature variability or water resources, nor does it account for all possible forms of adaptation, but it does show that adaptation is of first-order importance for predicting future changes in yield. Further research should be undertaken regarding the ability to adapt to a changing climate, including analysis of other crops and regions, the application of more sophisticated models of crop development, and field trials employing artificially increased temperature.

  5. Shape and Individual Variability of the Blur Adaptation Curve

    PubMed Central

    Vera-Diaz, Fuensanta A.; Woods, Russell L.; Peli, Eli

    2010-01-01

    We are interested in clinical implications of adaptation to blurred and sharpened images. Therefore, we investigated repeatability, individual variability and characteristics of the adaptation curves in normally-sighted individuals (n=39). The point of subjective neutrality (PSN – the slope of the spatial spectrum of the image that appears normal) following adaptation was measured for each adaptation level and was used to derive individual adaptation curves for each subject. Adaptation curves were fitted with a modified Tukey biweight function as the curves were found to be tumbled-S shaped and asymmetrical for blur and sharp in some subjects. The adaptation curve was found to be an individual characteristic as inter-subject variability exceeds test-retest variability. The existence of individual variability may have implications for the prescription and clinical success of optical devices as well as image enhancement rehabilitation options. PMID:20417657

  6. Spatial distributions of cone inputs to cells of the parvocellular pathway investigated with cone-isolating gratings

    PubMed Central

    Lee, Barry B.; Shapley, Robert M.; Hawken, Michael J.; Sun, Hao

    2014-01-01

    Receptive fields of midget ganglion cells and parvocellular lateral geniculate nucleus (LGN) neurons show color-opponent responses because they receive antagonistic input from the middle- and long-wavelength sensitive cones. It has been controversial as to whether this opponency can derive from random connectivity; if receptive field centers of cells near the fovea are cone-specific due to midget morphology, this would confer some degree of color opponency even with random cone input to the surround. A simple test of this mixed surround hypothesis is to compare spatial frequency tuning curves for luminance gratings and gratings isolating cone input to the receptive field center. If tuning curves for luminance gratings were bandpass, then with the mixed surround hypothesis tuning curves for gratings isolating the receptive field center cone class should also be bandpass, but to a lesser extent than for luminance. Tuning curves for luminance, chromatic, and cone-isolating gratings were measured in macaque retinal ganglion cells and LGN cells. We defined and measured a bandpass index to compare luminance and center cone-isolating tuning curves. Midget retinal ganglion cells and parvocellular LGN cells had bandpass indices between 0.1 and 1 with luminance gratings, but the index was usually near 1 (meaning low-pass tuning) when the receptive field center cone class alone was modulated. This is strong evidence for a considerable degree of cone-specific input to the surround. A fraction of midget and parvocellular cells showed evidence of incomplete specificity. Fitting the data with receptive field models revealed considerable intercell variability, with indications in some cells of a more complex receptive structure than a simple difference of Gaussians model. PMID:22330383

  7. Spatial distributions of cone inputs to cells of the parvocellular pathway investigated with cone-isolating gratings.

    PubMed

    Lee, Barry B; Shapley, Robert M; Hawken, Michael J; Sun, Hao

    2012-02-01

    Receptive fields of midget ganglion cells and parvocellular lateral geniculate nucleus (LGN) neurons show color-opponent responses because they receive antagonistic input from the middle- and long-wavelength sensitive cones. It has been controversial as to whether this opponency can derive from random connectivity; if receptive field centers of cells near the fovea are cone-specific due to midget morphology, this would confer some degree of color opponency even with random cone input to the surround. A simple test of this mixed surround hypothesis is to compare spatial frequency tuning curves for luminance gratings and gratings isolating cone input to the receptive field center. If tuning curves for luminance gratings were bandpass, then with the mixed surround hypothesis tuning curves for gratings isolating the receptive field center cone class should also be bandpass, but to a lesser extent than for luminance. Tuning curves for luminance, chromatic, and cone-isolating gratings were measured in macaque retinal ganglion cells and LGN cells. We defined and measured a bandpass index to compare luminance and center cone-isolating tuning curves. Midget retinal ganglion cells and parvocellular LGN cells had bandpass indices between 0.1 and 1 with luminance gratings, but the index was usually near 1 (meaning low-pass tuning) when the receptive field center cone class alone was modulated. This is strong evidence for a considerable degree of cone-specific input to the surround. A fraction of midget and parvocellular cells showed evidence of incomplete specificity. Fitting the data with receptive field models revealed considerable intercell variability, with indications in some cells of a more complex receptive structure than a simple difference of Gaussians model. PMID:22330383

  8. Strong selection barriers explain microgeographic adaptation in wild salamander populations.

    PubMed

    Richardson, Jonathan L; Urban, Mark C

    2013-06-01

    Microgeographic adaptation occurs when populations evolve divergent fitness advantages across the spatial scales at which focal organisms regularly disperse. Although an increasing number of studies find evidence for microgeographic adaptation, the underlying causes often remain unknown. Adaptive divergence requires some combination of limited gene flow and strong divergent natural selection among populations. In this study, we estimated the relative influence of selection, gene flow, and the spatial arrangement of populations in shaping patterns of adaptive divergence in natural populations of the spotted salamander (Ambystoma maculatum). Within the study region, A. maculatum co-occur with the predatory marbled salamander (Ambystoma opacum) in some ponds, and past studies have established a link between predation risk and adaptive trait variation in A. maculatum. Using 14 microsatellite loci, we found a significant pattern of genetic divergence among A. maculatum populations corresponding to levels of A. opacum predation risk. Additionally, A. maculatum foraging rate was strongly associated with predation risk, genetic divergence, and the spatial relationship of ponds on the landscape. Our results indicate the sorting of adaptive genotypes by selection regime and strongly suggest that substantial selective barriers operate against gene flow. This outcome suggests that microgeographic adaptation in A. maculatum is possible because strong antagonistic selection quickly eliminates maladapted phenotypes despite ongoing and substantial immigration. Increasing evidence for microgeographic adaptation suggests a strong role for selective barriers in counteracting the homogenizing influence of gene flow. PMID:23730765

  9. Adaptive atom-optics in atom interferometry

    NASA Astrophysics Data System (ADS)

    Marable, M. L.; Savard, T. A.; Thomas, J. E.

    1997-02-01

    We suggest a general technique for creating virtual atom-optical elements which are adaptive. The shape and position of these elements is determined by the frequency distribution for optical fields which induce transitions in a high gradient potential. This adaptive method is demonstrated in an all-optical atom interferometer, by creating either a variable optical slit or a variable optical grating which is scanned across the atomic spatial patterns to measure the fringes. This method renders mechanical motion of the interferometer elements unnecessary.

  10. Effects of spatial resolution

    NASA Technical Reports Server (NTRS)

    Abrams, M.

    1982-01-01

    Studies of the effects of spatial resolution on extraction of geologic information are woefully lacking but spatial resolution effects can be examined as they influence two general categories: detection of spatial features per se; and the effects of IFOV on the definition of spectral signatures and on general mapping abilities.

  11. Spatial Language Learning

    ERIC Educational Resources Information Center

    Fu, Zhengling

    2016-01-01

    Spatial language constitutes part of the basic fabric of language. Although languages may have the same number of terms to cover a set of spatial relations, they do not always do so in the same way. Spatial languages differ across languages quite radically, thus providing a real semantic challenge for second language learners. The essay first…

  12. Structured adaptive focusing through scattering media

    NASA Astrophysics Data System (ADS)

    Di Battista, Diego; Ancora, Daniele; Zhang, Haisu; Lemonaki, Krystalia; Avtzi, Stella; Tzortzakis, Stelios; Leonetti, Marco; Zacharakis, Giannis

    2016-03-01

    The combined use of a wavefront modulator and a scattering medium forms an "opaque lens" which forces the light to focus tightly. The adaptive focus has the same shape as the correlation function of the original speckle pattern and it can be generated at defined positions with resolution up to hundreds of nanometers. We have demonstrated that manipulating the speckle pattern spatial components can structure the shape of the focus. Exploiting selectively spatial-frequencies from the speckle components we realized opaque lenses able to produce sub-correlation foci and Bessel beams.

  13. Object size determines the spatial spread of visual time

    PubMed Central

    McGraw, Paul V.; Roach, Neil W.; Whitaker, David

    2016-01-01

    A key question for temporal processing research is how the nervous system extracts event duration, despite a notable lack of neural structures dedicated to duration encoding. This is in stark contrast with the orderly arrangement of neurons tasked with spatial processing. In this study, we examine the linkage between the spatial and temporal domains. We use sensory adaptation techniques to generate after-effects where perceived duration is either compressed or expanded in the opposite direction to the adapting stimulus' duration. Our results indicate that these after-effects are broadly tuned, extending over an area approximately five times the size of the stimulus. This region is directly related to the size of the adapting stimulus—the larger the adapting stimulus the greater the spatial spread of the after-effect. We construct a simple model to test predictions based on overlapping adapted versus non-adapted neuronal populations and show that our effects cannot be explained by any single, fixed-scale neural filtering. Rather, our effects are best explained by a self-scaled mechanism underpinned by duration selective neurons that also pool spatial information across earlier stages of visual processing. PMID:27466452

  14. Object size determines the spatial spread of visual time.

    PubMed

    Fulcher, Corinne; McGraw, Paul V; Roach, Neil W; Whitaker, David; Heron, James

    2016-07-27

    A key question for temporal processing research is how the nervous system extracts event duration, despite a notable lack of neural structures dedicated to duration encoding. This is in stark contrast with the orderly arrangement of neurons tasked with spatial processing. In this study, we examine the linkage between the spatial and temporal domains. We use sensory adaptation techniques to generate after-effects where perceived duration is either compressed or expanded in the opposite direction to the adapting stimulus' duration. Our results indicate that these after-effects are broadly tuned, extending over an area approximately five times the size of the stimulus. This region is directly related to the size of the adapting stimulus-the larger the adapting stimulus the greater the spatial spread of the after-effect. We construct a simple model to test predictions based on overlapping adapted versus non-adapted neuronal populations and show that our effects cannot be explained by any single, fixed-scale neural filtering. Rather, our effects are best explained by a self-scaled mechanism underpinned by duration selective neurons that also pool spatial information across earlier stages of visual processing. PMID:27466452

  15. Spatially-Heterodyned Holography

    SciTech Connect

    Thomas, Clarence E; Hanson, Gregory R

    2006-02-21

    A method of recording a spatially low-frequency heterodyne hologram, including spatially heterodyne fringes for Fourier analysis, includes: splitting a laser beam into a reference beam and an object beam; interacting the object beam with an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digital recording the spatially low-frequency heterodyne hologram; Fourier transforming axes of the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam; cutting off signals around an origin; and performing an inverse Fourier transform.

  16. Eye gaze adaptation under interocular suppression.

    PubMed

    Stein, Timo; Peelen, Marius V; Sterzer, Philipp

    2012-01-01

    The perception of eye gaze is central to social interaction in that it provides information about another person's goals, intentions, and focus of attention. Direction of gaze has been found to reflexively shift the observer's attention in the corresponding direction, and prolonged exposure to averted eye gaze adapts the visual system, biasing perception of subsequent gaze in the direction opposite to the adapting face. Here, we tested the role of conscious awareness in coding eye gaze directions. To this end, we measured aftereffects induced by adapting faces with different eye gaze directions that were presented during continuous flash suppression, a potent interocular suppression technique. In some trials the adapting face was rendered fully invisible, whereas in others it became partially visible. In Experiment 1, the adapting and test faces were presented in identical sizes and to the same eye. Even fully invisible faces were capable of inducing significant eye gaze aftereffects, although these were smaller than aftereffects from partially visible faces. When the adapting and test faces were shown to different eyes in Experiment 2, significant eye gaze aftereffects were still observed for the fully invisible faces, thus showing interocular transfer. Experiment 3 disrupted the spatial correspondence between adapting and test faces by introducing a size change. Under these conditions, aftereffects were restricted to partially visible adapting faces. These results were replicated in Experiment 4 using a blocked adaptation design. Together, these findings indicate that size-dependent low-level components of eye gaze can be represented without awareness, whereas object-centered higher-level representations of eye gaze directions depend on visual awareness. PMID:22753441

  17. Organizational Adaptation and Higher Education.

    ERIC Educational Resources Information Center

    Cameron, Kim S.

    1984-01-01

    Organizational adaptation and types of adaptation needed in academe in the future are reviewed and major conceptual approaches to organizational adaptation are presented. The probable environment that institutions will face in the future that will require adaptation is discussed. (MLW)

  18. Limits to adaptation along environmental gradients.

    PubMed

    Polechová, Jitka; Barton, Nicholas H

    2015-05-19

    Why do species not adapt to ever-wider ranges of conditions, gradually expanding their ecological niche and geographic range? Gene flow across environments has two conflicting effects: although it increases genetic variation, which is a prerequisite for adaptation, gene flow may swamp adaptation to local conditions. In 1956, Haldane proposed that, when the environment varies across space, "swamping" by gene flow creates a positive feedback between low population size and maladaptation, leading to a sharp range margin. However, current deterministic theory shows that, when variance can evolve, there is no such limit. Using simple analytical tools and simulations, we show that genetic drift can generate a sharp margin to a species' range, by reducing genetic variance below the level needed for adaptation to spatially variable conditions. Aided by separation of ecological and evolutionary timescales, the identified effective dimensionless parameters reveal a simple threshold that predicts when adaptation at the range margin fails. Two observable parameters determine the threshold: (i) the effective environmental gradient, which can be measured by the loss of fitness due to dispersal to a different environment; and (ii) the efficacy of selection relative to genetic drift. The theory predicts sharp range margins even in the absence of abrupt changes in the environment. Furthermore, it implies that gradual worsening of conditions across a species' habitat may lead to a sudden range fragmentation, when adaptation to a wide span of conditions within a single species becomes impossible. PMID:25941385

  19. Spatial services grid

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Li, Qi; Cheng, Jicheng

    2005-10-01

    This paper discusses the concept, key technologies and main application of Spatial Services Grid. The technologies of Grid computing and Webservice is playing a revolutionary role in studying the spatial information services. The concept of the SSG (Spatial Services Grid) is put forward based on the SIG (Spatial Information Grid) and OGSA (open grid service architecture). Firstly, the grid computing is reviewed and the key technologies of SIG and their main applications are reviewed. Secondly, the grid computing and three kinds of SIG (in broad sense)--SDG (spatial data grid), SIG (spatial information grid) and SSG (spatial services grid) and their relationships are proposed. Thirdly, the key technologies of the SSG (spatial services grid) is put forward. Finally, three representative applications of SSG (spatial services grid) are discussed. The first application is urban location based services gird, which is a typical spatial services grid and can be constructed on OGSA (Open Grid Services Architecture) and digital city platform. The second application is region sustainable development grid which is the key to the urban development. The third application is Region disaster and emergency management services grid.

  20. Forest climate change Vulnerability and Adaptation Assessment in Himalayas

    NASA Astrophysics Data System (ADS)

    Chitale, V. S.; Shrestha, H. L.; Agarwal, N. K.; Choudhurya, D.; Gilani, H.; Dhonju, H. K.; Murthy, M. S. R.

    2014-11-01

    Forests offer an important basis for creating and safeguarding more climate-resilient communities over Hindu Kush Himalayan region. The forest ecosystem vulnerability assessment to climate change and developing knowledge base to identify and support relevant adaptation strategies is realized as an urgent need. The multi scale adaptation strategies portray increasing complexity with the increasing levels in terms of data requirements, vulnerability understanding and decision making to choose a particular adaptation strategy. We present here how such complexities could be addressed and adaptation decisions could be either directly supported by open source remote sensing based forestry products or geospatial analysis and modelled products. The forest vulnerability assessment under climate change scenario coupled with increasing forest social dependence was studied using IPCC Landscape scale Vulnerability framework in Chitwan-Annapurna Landscape (CHAL) situated in Nepal. Around twenty layers of geospatial information on climate, forest biophysical and forest social dependence data was used to assess forest vulnerability and associated adaptation needs using self-learning decision tree based approaches. The increase in forest fires, evapotranspiration and reduction in productivity over changing climate scenario was observed. The adaptation measures on enhancing productivity, improving resilience, reducing or avoiding pressure with spatial specificity are identified to support suitable decision making. The study provides spatial analytical framework to evaluate multitude of parameters to understand vulnerabilities and assess scope for alternative adaptation strategies with spatial explicitness.

  1. Origins of adaptive immunity.

    PubMed

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity. PMID:21395512

  2. Parallel Anisotropic Tetrahedral Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Darmofal, David L.

    2008-01-01

    An adaptive method that robustly produces high aspect ratio tetrahedra to a general 3D metric specification without introducing hybrid semi-structured regions is presented. The elemental operators and higher-level logic is described with their respective domain-decomposed parallelizations. An anisotropic tetrahedral grid adaptation scheme is demonstrated for 1000-1 stretching for a simple cube geometry. This form of adaptation is applicable to more complex domain boundaries via a cut-cell approach as demonstrated by a parallel 3D supersonic simulation of a complex fighter aircraft. To avoid the assumptions and approximations required to form a metric to specify adaptation, an approach is introduced that directly evaluates interpolation error. The grid is adapted to reduce and equidistribute this interpolation error calculation without the use of an intervening anisotropic metric. Direct interpolation error adaptation is illustrated for 1D and 3D domains.

  3. Gravitational adaptation of animals

    NASA Technical Reports Server (NTRS)

    Smith, A. H.; Burton, R. R.

    1982-01-01

    The effect of gravitational adaptation is studied in a group of five Leghorn cocks which had become physiologically adapted to 2 G after 162 days of centrifugation. After this period of adaptation, they are periodically exposed to a 2 G field, accompanied by five previously unexposed hatch-mates, and the degree of retained acceleration adaptation is estimated from the decrease in lymphocyte frequency after 24 hr at 2 G. Results show that the previously adapted birds exhibit an 84% greater lymphopenia than the unexposed birds, and that the lymphocyte frequency does not decrease to a level below that found at the end of 162 days at 2 G. In addition, the capacity for adaptation to chronic acceleration is found to be highly heritable. An acceleration tolerant strain of birds shows lesser mortality during chronic acceleration, particularly in intermediate fields, although the result of acceleration selection is largely quantitative (a greater number of survivors) rather than qualitative (behavioral or physiological changes).

  4. Technology transfer for adaptation

    NASA Astrophysics Data System (ADS)

    Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia

    2014-09-01

    Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.

  5. Spatially selective photoconductive stimulation of live neurons

    PubMed Central

    Campbell, Jacob; Singh, Dipika; Hollett, Geoffrey; Dravid, Shashank M.; Sailor, Michael J.; Arikkath, Jyothi

    2014-01-01

    Synaptic activity is intimately linked to neuronal structure and function. Stimulation of live cultured primary neurons, coupled with fluorescent indicator imaging, is a powerful technique to assess the impact of synaptic activity on neuronal protein trafficking and function. Current technology for neuronal stimulation in culture include chemical techniques or microelectrode or optogenetic based techniques. While technically powerful, chemical stimulation has limited spatial resolution and microelectrode and optogenetic techniques require specialized equipment and expertise. We report an optimized and improved technique for laser based photoconductive stimulation of live neurons using an inverted confocal microscope that overcomes these limitations. The advantages of this approach include its non-invasive nature and adaptability to temporal and spatial manipulation. We demonstrate that the technique can be manipulated to achieve spatially selective stimulation of live neurons. Coupled with live imaging of fluorescent indicators, this simple and efficient technique should allow for significant advances in neuronal cell biology. PMID:24904287

  6. Reference Device-Assisted Adaptive Location Fingerprinting

    PubMed Central

    Wu, Dongjin; Xia, Linyuan

    2016-01-01

    Location fingerprinting suffers in dynamic environments and needs recalibration from time to time to maintain system performance. This paper proposes an adaptive approach for location fingerprinting. Based on real-time received signal strength indicator (RSSI) samples measured by a group of reference devices, the approach applies a modified Universal Kriging (UK) interpolant to estimate adaptive temporal and environmental radio maps. The modified UK can take the spatial distribution characteristics of RSSI into account. In addition, the issue of device heterogeneity caused by multiple reference devices is further addressed. To compensate the measuring differences of heterogeneous reference devices, differential RSSI metric is employed. Extensive experiments were conducted in an indoor field and the results demonstrate that the proposed approach not only adapts to dynamic environments and the situation of changing APs’ positions, but it is also robust toward measuring differences of heterogeneous reference devices. PMID:27258284

  7. Adaptation as organism design

    PubMed Central

    Gardner, Andy

    2009-01-01

    The problem of adaptation is to explain the apparent design of organisms. Darwin solved this problem with the theory of natural selection. However, population geneticists, whose responsibility it is to formalize evolutionary theory, have long neglected the link between natural selection and organismal design. Here, I review the major historical developments in theory of organismal adaptation, clarifying what adaptation is and what it is not, and I point out future avenues for research. PMID:19793739

  8. Keck adaptive optics: control subsystem

    SciTech Connect

    Brase, J.M.; An, J.; Avicola, K.

    1996-03-08

    Adaptive optics on the Keck 10 meter telescope will provide an unprecedented level of capability in high resolution ground based astronomical imaging. The system is designed to provide near diffraction limited imaging performance with Strehl {gt} 0.3 n median Keck seeing of r0 = 25 cm, T =10 msec at 500 nm wavelength. The system will be equipped with a 20 watt sodium laser guide star to provide nearly full sky coverage. The wavefront control subsystem is responsible for wavefront sensing and the control of the tip-tilt and deformable mirrors which actively correct atmospheric turbulence. The spatial sampling interval for the wavefront sensor and deformable mirror is de=0.56 m which gives us 349 actuators and 244 subapertures. This paper summarizes the wavefront control system and discusses particular issues in designing a wavefront controller for the Keck telescope.

  9. An Adaptable Metric Shapes Perceptual Space.

    PubMed

    Hisakata, Rumi; Nishida, Shin'ya; Johnston, Alan

    2016-07-25

    How do we derive a sense of the separation of points in the world within a space-variant visual system? Visual directions are thought to be coded directly by a process referred to as local sign, in which a neuron acts as a labeled line for the perceived direction associated with its activation [1, 2]. The separations of visual directions, however, are not given, nor are they directly related to the separations of signals on the receptive surface or in the brain, which are modified by retinal and cortical magnification, respectively [3]. To represent the separation of directions veridically, the corresponding neural signals need to be scaled in some way. We considered this scaling process may be influenced by adaptation. Here, we describe a novel adaptation paradigm, which can alter both apparent spatial separation and size. We measured the perceived separation of two dots and the size of geometric figures after adaptation to random dot patterns. We show that adapting to high-density texture not only increases the apparent sparseness (average element separation) of a lower-density pattern, as expected [4], but paradoxically, it reduces the apparent separation of dot pairs and induces apparent shrinkage of geometric form. This demonstrates for the first time a contrary linkage between perceived density and perceived extent. Separation and size appear to be expressed relative to a variable spatial metric whose properties, while not directly observable, are revealed by reductions in both apparent size and texture density. PMID:27426520

  10. Human adaptation to smog

    SciTech Connect

    Evans, G.W. Jacobs, S.V.; Frager, N.B.

    1982-10-01

    This study examined the health effects of human adaptation to photochemical smog. A group of recent arrivals to the Los Angeles air basin were compared to long-term residents of the basin. Evidence for adaptation included greater irritation and respiratory problems among the recent arrivals and desensitization among the long-term residents in their judgments of the severity of the smog problem to their health. There was no evidence for biochemical adaptation as measured by hemoglobin response to oxidant challenge. The results were discussed in terms of psychological adaption to chronic environmental stressors.

  11. Adaptive parallel logic networks

    NASA Technical Reports Server (NTRS)

    Martinez, Tony R.; Vidal, Jacques J.

    1988-01-01

    Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.

  12. Quantifying the Adaptive Cycle

    PubMed Central

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems. PMID:26716453

  13. Decentralized adaptive control

    NASA Technical Reports Server (NTRS)

    Oh, B. J.; Jamshidi, M.; Seraji, H.

    1988-01-01

    A decentralized adaptive control is proposed to stabilize and track the nonlinear, interconnected subsystems with unknown parameters. The adaptation of the controller gain is derived by using model reference adaptive control theory based on Lyapunov's direct method. The adaptive gains consist of sigma, proportional, and integral combination of the measured and reference values of the corresponding subsystem. The proposed control is applied to the joint control of a two-link robot manipulator, and the performance in computer simulation corresponds with what is expected in theoretical development.

  14. A Key Concept: Spatial Organization

    ERIC Educational Resources Information Center

    Kostrowicki, Jerzy

    1975-01-01

    The application of geography to spatial planning is discussed. Concepts presented include the regional concept, the typological concept, and spatial structure, spatial processes, and spatial organization. For address of journal see SO 504 028. (Author/RM)

  15. Spatial capture-recapture

    USGS Publications Warehouse

    Royle, J. Andrew; Chandler, Richard B.; Sollmann, Rahel; Gardner, Beth

    2013-01-01

    Spatial Capture-Recapture provides a revolutionary extension of traditional capture-recapture methods for studying animal populations using data from live trapping, camera trapping, DNA sampling, acoustic sampling, and related field methods. This book is a conceptual and methodological synthesis of spatial capture-recapture modeling. As a comprehensive how-to manual, this reference contains detailed examples of a wide range of relevant spatial capture-recapture models for inference about population size and spatial and temporal variation in demographic parameters. Practicing field biologists studying animal populations will find this book to be a useful resource, as will graduate students and professionals in ecology, conservation biology, and fisheries and wildlife management.

  16. Bilateral basal ganglia activation associated with sensorimotor adaptation.

    PubMed

    Seidler, R D; Noll, D C; Chintalapati, P

    2006-11-01

    Sensorimotor adaptation tasks can be classified into two types. When subjects adapt movements to visual feedback perturbations such as in prism lens adaptation, they perform kinematic adaptations. When subjects adapt movements to force field perturbations such as with robotic manipulanda, they perform kinetic adaptations. Neuroimaging studies have shown basal ganglia involvement in kinetic adaptations, but have found little evidence of basal ganglia involvement in kinematic adaptations, despite reports of deficits in patients with diseases of the basal ganglia, such as Parkinson's and Huntington's disease, in these. In an effort to resolve such apparent discrepancy, we used FMRI to focus on the first few minutes of practice during kinematic adaptation. Human subjects adapted to visuomotor rotations in the context of a joystick aiming task while lying supine in a 3.0 T MRI scanner. As demonstrated previously, early adaptive processes were associated with BOLD activation in the cerebellum and the sensory and motor cortical regions. A novel finding of this study was bilateral basal ganglia activation. This suggests that, at least for early learning, the neural correlates of kinematic adaptation parallel those of other types of skill learning. We observed activation in the right globus pallidus and putamen, along with the right prefrontal, premotor and parietal cortex, which may support spatial cognitive processes of adaptation. We also observed activation in the left globus pallidus and caudate nucleus, along with the left premotor and supplementary motor cortex, which may support the sensorimotor processes of adaptation. These results are the first to demonstrate a clear involvement of basal ganglia activation in this type of kinematic motor adaptation. PMID:16794848

  17. Applying Adaptive Variables in Computerised Adaptive Testing

    ERIC Educational Resources Information Center

    Triantafillou, Evangelos; Georgiadou, Elissavet; Economides, Anastasios A.

    2007-01-01

    Current research in computerised adaptive testing (CAT) focuses on applications, in small and large scale, that address self assessment, training, employment, teacher professional development for schools, industry, military, assessment of non-cognitive skills, etc. Dynamic item generation tools and automated scoring of complex, constructed…

  18. Physiologic adaptation to space - Space adaptation syndrome

    NASA Technical Reports Server (NTRS)

    Vanderploeg, J. M.

    1985-01-01

    The adaptive changes of the neurovestibular system to microgravity, which result in space motion sickness (SMS), are studied. A list of symptoms, which range from vomiting to drowsiness, is provided. The two patterns of symptom development, rapid and gradual, and the duration of the symptoms are described. The concept of sensory conflict and rearrangements to explain SMS is being investigated.

  19. Evolutionary advantages of adaptive rewarding

    NASA Astrophysics Data System (ADS)

    Szolnoki, Attila; Perc, Matjaž

    2012-09-01

    Our well-being depends on both our personal success and the success of our society. The realization of this fact makes cooperation an essential trait. Experiments have shown that rewards can elevate our readiness to cooperate, but since giving a reward inevitably entails paying a cost for it, the emergence and stability of such behavior remains elusive. Here we show that allowing for the act of rewarding to self-organize in dependence on the success of cooperation creates several evolutionary advantages that instill new ways through which collaborative efforts are promoted. Ranging from indirect territorial battle to the spontaneous emergence and destruction of coexistence, phase diagrams and the underlying spatial patterns reveal fascinatingly rich social dynamics that explain why this costly behavior has evolved and persevered. Comparisons with adaptive punishment, however, uncover an Achilles heel of adaptive rewarding, coming from over-aggression, which in turn hinders optimal utilization of network reciprocity. This may explain why, despite its success, rewarding is not as firmly embedded into our societal organization as punishment.

  20. Perceptually adapted MPEG video encoding

    NASA Astrophysics Data System (ADS)

    Bordes, Philippe; Guillotel, Philippe

    2000-06-01

    In picture quality assessment, the amount of distortion perceived by a human observer differs from one region to another according to its particular local content. This subjective perception can be explained/predicted by considering some simple psychovisual properties (masking) of the Human Visual System (HVS). We have implemented a HVS model based on a pyramid decomposition for extracting the spatial frequencies, associated with a multi-resolution motion representation. Then the visibility of the decoded errors is computed by exploiting the Kelly's contrast sensitivity spatio-velocity model. The resulting data is called a 'Quality-map.' Special attention has been paid to temporal/moving effects since, in the case of video sequences, motion strongly influences the subjective quality assessment. The quality of the motion information is thus preponderant. In the second part, two possible uses of these psychovisual properties for improving MPEG video encoding performances are depicted: (1) The pre-processing of the pictures to remove non-visible information using a motion adapted filtering. This process is efficient in term of bits saved and degradation is not significant especially on consumer electronic TV sets. (2) A perceptual quantizer based on a local adaptation scheme in order to obtain Quality-maps as uniform as possible (homogeneous perceived distortion), at constant bit-rate. Further improvements have been considered, especially when the viewer is tracking a moving object in the scene.

  1. Multi-channel spatial auditory display for speech communications

    NASA Technical Reports Server (NTRS)

    Begault, Durand; Erbe, Tom

    1993-01-01

    A spatial auditory display for multiple speech communications was developed at NASA-Ames Research Center. Input is spatialized by use of simplified head-related transfer functions, adapted for FIR filtering on Motorola 56001 digital signal processors. Hardware and firmware design implementations are overviewed for the initial prototype developed for NASA-Kennedy Space Center. An adaptive staircase method was used to determine intelligibility levels of four letter call signs used by launch personnel at NASA, against diotic speech babble. Spatial positions at 30 deg azimuth increments were evaluated. The results from eight subjects showed a maximal intelligibility improvement of about 6 to 7 dB when the signal was spatialized to 60 deg or 90 deg azimuth positions.

  2. Retinal Imaging: Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Goncharov, A. S.; Iroshnikov, N. G.; Larichev, Andrey V.

    This chapter describes several factors influencing the performance of ophthalmic diagnostic systems with adaptive optics compensation of human eye aberration. Particular attention is paid to speckle modulation, temporal behavior of aberrations, and anisoplanatic effects. The implementation of a fundus camera with adaptive optics is considered.

  3. Uncertainty in adaptive capacity

    NASA Astrophysics Data System (ADS)

    Adger, W. Neil; Vincent, Katharine

    2005-03-01

    The capacity to adapt is a critical element of the process of adaptation: it is the vector of resources that represent the asset base from which adaptation actions can be made. Adaptive capacity can in theory be identified and measured at various scales, from the individual to the nation. The assessment of uncertainty within such measures comes from the contested knowledge domain and theories surrounding the nature of the determinants of adaptive capacity and the human action of adaptation. While generic adaptive capacity at the national level, for example, is often postulated as being dependent on health, governance and political rights, and literacy, and economic well-being, the determinants of these variables at national levels are not widely understood. We outline the nature of this uncertainty for the major elements of adaptive capacity and illustrate these issues with the example of a social vulnerability index for countries in Africa. To cite this article: W.N. Adger, K. Vincent, C. R. Geoscience 337 (2005).

  4. Water Resource Adaptation Program

    EPA Science Inventory

    The Water Resource Adaptation Program (WRAP) contributes to the U.S. Environmental Protection Agency’s (U.S. EPA) efforts to provide water resource managers and decision makers with the tools needed to adapt water resources to demographic and economic development, and future clim...

  5. Adaptive Sampling Proxy Application

    Energy Science and Technology Software Center (ESTSC)

    2012-10-22

    ASPA is an implementation of an adaptive sampling algorithm [1-3], which is used to reduce the computational expense of computer simulations that couple disparate physical scales. The purpose of ASPA is to encapsulate the algorithms required for adaptive sampling independently from any specific application, so that alternative algorithms and programming models for exascale computers can be investigated more easily.

  6. Adaptive Wavelet Transforms

    SciTech Connect

    Szu, H.; Hsu, C.

    1996-12-31

    Human sensors systems (HSS) may be approximately described as an adaptive or self-learning version of the Wavelet Transforms (WT) that are capable to learn from several input-output associative pairs of suitable transform mother wavelets. Such an Adaptive WT (AWT) is a redundant combination of mother wavelets to either represent or classify inputs.

  7. Spatial Data Analysis.

    PubMed

    Banerjee, Sudipto

    2016-03-18

    With increasing accessibility to geographic information systems (GIS) software, statisticians and data analysts routinely encounter scientific data sets with geocoded locations. This has generated considerable interest in statistical modeling for location-referenced spatial data. In public health, spatial data routinely arise as aggregates over regions, such as counts or rates over counties, census tracts, or some other administrative delineation. Such data are often referred to as areal data. This review article provides a brief overview of statistical models that account for spatial dependence in areal data. It does so in the context of two applications: disease mapping and spatial survival analysis. Disease maps are used to highlight geographic areas with high and low prevalence, incidence, or mortality rates of a specific disease and the variability of such rates over a spatial domain. They can also be used to detect hot spots or spatial clusters that may arise owing to common environmental, demographic, or cultural effects shared by neighboring regions. Spatial survival analysis refers to the modeling and analysis for geographically referenced time-to-event data, where a subject is followed up to an event (e.g., death or onset of a disease) or is censored, whichever comes first. Spatial survival analysis is used to analyze clustered survival data when the clustering arises from geographical regions or strata. Illustrations are provided in these application domains. PMID:26789381

  8. GRACE: A visual comparison framework for integrated spatial and non-spatial geriatric data.

    PubMed

    Maries, Adrian; Mays, Nathan; Hunt, Meganolson; Wong, Kim F; Layton, William; Boudreau, Robert; Rosano, Caterina; Marai, G Elisabeta

    2013-12-01

    We present the design of a novel framework for the visual integration, comparison, and exploration of correlations in spatial and non-spatial geriatric research data. These data are in general high-dimensional and span both the spatial, volumetric domain--through magnetic resonance imaging volumes--and the non-spatial domain, through variables such as age, gender, or walking speed. The visual analysis framework blends medical imaging, mathematical analysis and interactive visualization techniques, and includes the adaptation of Sparse Partial Least Squares and iterated Tikhonov Regularization algorithms to quantify potential neurologymobility connections. A linked-view design geared specifically at interactive visual comparison integrates spatial and abstract visual representations to enable the users to effectively generate and refine hypotheses in a large, multidimensional, and fragmented space. In addition to the domain analysis and design description, we demonstrate the usefulness of this approach on two case studies. Last, we report the lessons learned through the iterative design and evaluation of our approach, in particular those relevant to the design of comparative visualization of spatial and non-spatial data. PMID:24051859

  9. Adaptation is automatic.

    PubMed

    Samuel, A G; Kat, D

    1998-04-01

    Two experiments were used to test whether selective adaptation for speech occurs automatically or instead requires attentional resources. A control condition demonstrated the usual large identification shifts caused by repeatedly presenting an adapting sound (/wa/, with listeners identifying members of a /ba/-/wa/ test series). Two types of distractor tasks were used: (1) Subjects did a rapid series of arithmetic problems during the adaptation periods (Experiments 1 and 2), or (2) they made a series of rhyming judgments, requiring phonetic coding (Experiment 2). A control experiment (Experiment 3) demonstrated that these tasks normally impose a heavy attentional cost on phonetic processing. Despite this, for both experimental conditions, the observed adaptation effect was just as large as in the control condition. This result indicates that adaptation is automatic, operating at an early, preattentive level. The implications of these results for current models of speech perception are discussed. PMID:9599999

  10. Individual Differences in Spatial Text Processing: High Spatial Ability Can Compensate for Spatial Working Memory Interference

    ERIC Educational Resources Information Center

    Meneghetti, Chiara; Gyselinck, Valerie; Pazzaglia, Francesca; De Beni, Rossana

    2009-01-01

    The present study investigates the relation between spatial ability and visuo-spatial and verbal working memory in spatial text processing. In two experiments, participants listened to a spatial text (Experiments 1 and 2) and a non-spatial text (Experiment 1), at the same time performing a spatial or a verbal concurrent task, or no secondary task.…

  11. Adaptive shaping of cortical response selectivity in the vibrissa pathway

    PubMed Central

    Zheng, He J. V.; Wang, Qi

    2015-01-01

    One embodiment of context-dependent sensory processing is bottom-up adaptation, where persistent stimuli decrease neuronal firing rate over hundreds of milliseconds. Adaptation is not, however, simply the fatigue of the sensory pathway, but shapes the information flow and selectivity to stimulus features. Adaptation enhances spatial discriminability (distinguishing stimulus location) while degrading detectability (reporting presence of the stimulus), for both the ideal observer of the cortex and awake, behaving animals. However, how the dynamics of the adaptation shape the cortical response and this detection and discrimination tradeoff is unknown, as is to what degree this phenomenon occurs on a continuum as opposed to a switching of processing modes. Using voltage-sensitive dye imaging in anesthetized rats to capture the temporal and spatial characteristics of the cortical response to tactile inputs, we showed that the suppression of the cortical response, in both magnitude and spatial spread, is continuously modulated by the increasing amount of energy in the adapting stimulus, which is nonuniquely determined by its frequency and velocity. Single-trial ideal observer analysis demonstrated a tradeoff between detectability and spatial discriminability up to a moderate amount of adaptation, which corresponds to the frequency range in natural whisking. This was accompanied by a decrease in both detectability and discriminability with high-energy adaptation, which indicates a more complex coupling between detection and discrimination than a simple switching of modes. Taken together, the results suggest that adaptation operates on a continuum and modulates the tradeoff between detectability and discriminability that has implications for information processing in ethological contexts. PMID:25787959

  12. Parallel adaptive mesh refinement for electronic structure calculations

    SciTech Connect

    Kohn, S.; Weare, J.; Ong, E.; Baden, S.

    1996-12-01

    We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradients with multigrid preconditioning. We have parallelized our solver using an object-oriented adaptive mesh refinement framework.

  13. Programmable fabrication of spatial structures in a gas jet by laser machining with a spatial light modulator

    SciTech Connect

    Lin, M.-W.; Chen, Y.-M.; Pai, C.-H.; Kuo, C.-C.; Lee, K.-H.; Wang, J.; Chen, S.-Y.; Lin, J.-Y.

    2006-11-15

    Programmable fabrication of longitudinal spatial structures in a gas jet was achieved by using laser machining with a liquid-crystal spatial light modulator as the pattern mask. By this technique single-shot fabrication of arbitrary gas and/or plasma structures is demonstrated, which establishes the crucial step toward raising the designs and applications of high-field plasma devices to the level of adaptive feedback optimization.

  14. Moment equations in spatial evolutionary ecology.

    PubMed

    Lion, Sébastien

    2016-09-21

    How should we model evolution in spatially structured populations? Here, I review an evolutionary ecology approach based on the technique of spatial moment equations. I first provide a mathematical underpinning to the derivation of equations for the densities of various spatial configurations in network-based models. I then show how this spatial ecological framework can be coupled with an adaptive dynamics approach to compute the invasion fitness of a rare mutant in a resident population at equilibrium. Under the additional assumption that mutations have small phenotypic effects, I show that the selection gradient can be expressed as a function of neutral measures of genetic and demographic structure. I discuss the connections between this approach and inclusive fitness theory, as well as the applicability and limits of this technique. My main message is that spatial moment equations can be used as a means to obtain compact qualitative arguments about the evolution of life-history traits for a variety of life cycles. PMID:26555844

  15. Dengue Vectors and their Spatial Distribution

    PubMed Central

    Higa, Yukiko

    2011-01-01

    The distribution of dengue vectors, Ae. aegypti and Ae. albopictus, is affected by climatic factors. In addition, since their life cycles are well adapted to the human environment, environmental changes resulting from human activity such as urbanization exert a great impact on vector distribution. The different responses of Ae. aegypti and Ae albopictus to various environments result in a difference in spatial distribution along north-south and urban-rural gradients, and between the indoors and outdoors. In the north-south gradient, climate associated with survival is an important factor in spatial distribution. In the urban-rural gradient, different distribution reflects a difference in adult niches and is modified by geographic and human factors. The direct response of the two species to the environment around houses is related to different spatial distribution indoors and outdoors. Dengue viruses circulate mainly between human and vector mosquitoes, and the vector presence is a limiting factor of transmission. Therefore, spatial distribution of dengue vectors is a significant concern in the epidemiology of the disease. Current technologies such as GIS, satellite imagery and statistical models allow researchers to predict the spatial distribution of vectors in the changing environment. Although it is difficult to confirm the actual effect of environmental and climate changes on vector abundance and vector-borne diseases, environmental changes caused by humans and human behavioral changes due to climate change can be expected to exert an impact on dengue vectors. Longitudinal monitoring of dengue vectors and viruses is therefore necessary. PMID:22500133

  16. Spatial interpolation approach based on IDW with anisotropic spatial structures

    NASA Astrophysics Data System (ADS)

    Li, Jia; Duan, Ping; Sheng, Yehua; Lv, Haiyang

    2015-12-01

    In many interpolation methods, with its simple interpolation principle, Inverse distance weighted (IDW) interpolation is one of the most common interpolation method. There are anisotropic spatial structures with actual geographical spatial phenomenon. When the IDW interpolation is used, anisotropic spatial structures should be considered. Geostatistical theory has a characteristics of exploring anisotropic spatial structures. In this paper, spatial interpolation approach based on IDW with anisotropic spatial structures is proposed. The DEM data is tested in this paper to prove reliability of the IDW interpolation considering anisotropic spatial structures. Experimental results show that IDW interpolation considering anisotropic spatial structures can improve interpolation precision when sampling data has anisotropic spatial structures feature.

  17. Dynamical Adaptation in Photoreceptors

    PubMed Central

    Clark, Damon A.; Benichou, Raphael; Meister, Markus; Azeredo da Silveira, Rava

    2013-01-01

    Adaptation is at the heart of sensation and nowhere is it more salient than in early visual processing. Light adaptation in photoreceptors is doubly dynamical: it depends upon the temporal structure of the input and it affects the temporal structure of the response. We introduce a non-linear dynamical adaptation model of photoreceptors. It is simple enough that it can be solved exactly and simulated with ease; analytical and numerical approaches combined provide both intuition on the behavior of dynamical adaptation and quantitative results to be compared with data. Yet the model is rich enough to capture intricate phenomenology. First, we show that it reproduces the known phenomenology of light response and short-term adaptation. Second, we present new recordings and demonstrate that the model reproduces cone response with great precision. Third, we derive a number of predictions on the response of photoreceptors to sophisticated stimuli such as periodic inputs, various forms of flickering inputs, and natural inputs. In particular, we demonstrate that photoreceptors undergo rapid adaptation of response gain and time scale, over ∼ 300 ms—i. e., over the time scale of the response itself—and we confirm this prediction with data. For natural inputs, this fast adaptation can modulate the response gain more than tenfold and is hence physiologically relevant. PMID:24244119

  18. Robustness of spatial micronetworks

    NASA Astrophysics Data System (ADS)

    McAndrew, Thomas C.; Danforth, Christopher M.; Bagrow, James P.

    2015-04-01

    Power lines, roadways, pipelines, and other physical infrastructure are critical to modern society. These structures may be viewed as spatial networks where geographic distances play a role in the functionality and construction cost of links. Traditionally, studies of network robustness have primarily considered the connectedness of large, random networks. Yet for spatial infrastructure, physical distances must also play a role in network robustness. Understanding the robustness of small spatial networks is particularly important with the increasing interest in microgrids, i.e., small-area distributed power grids that are well suited to using renewable energy resources. We study the random failures of links in small networks where functionality depends on both spatial distance and topological connectedness. By introducing a percolation model where the failure of each link is proportional to its spatial length, we find that when failures depend on spatial distances, networks are more fragile than expected. Accounting for spatial effects in both construction and robustness is important for designing efficient microgrids and other network infrastructure.

  19. Robustness of spatial micronetworks.

    PubMed

    McAndrew, Thomas C; Danforth, Christopher M; Bagrow, James P

    2015-04-01

    Power lines, roadways, pipelines, and other physical infrastructure are critical to modern society. These structures may be viewed as spatial networks where geographic distances play a role in the functionality and construction cost of links. Traditionally, studies of network robustness have primarily considered the connectedness of large, random networks. Yet for spatial infrastructure, physical distances must also play a role in network robustness. Understanding the robustness of small spatial networks is particularly important with the increasing interest in microgrids, i.e., small-area distributed power grids that are well suited to using renewable energy resources. We study the random failures of links in small networks where functionality depends on both spatial distance and topological connectedness. By introducing a percolation model where the failure of each link is proportional to its spatial length, we find that when failures depend on spatial distances, networks are more fragile than expected. Accounting for spatial effects in both construction and robustness is important for designing efficient microgrids and other network infrastructure. PMID:25974553

  20. The spatial rotator.

    PubMed

    Rasmusson, A; Hahn, U; Larsen, J O; Gundersen, H J G; Jensen, E B Vedel; Nyengaard, J R

    2013-05-01

    This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making the spatial rotator fast to use. Since a 3D probe is involved, it is expected that the spatial rotator will be more efficient than the the nucleator and the planar rotator, which are based on measurements in a single plane. An extensive simulation study shows that the spatial rotator may be more efficient than the traditional local volume estimators. Furthermore, the spatial rotator can be seen as a further development of the Cavalieri estimator, which does not require randomization of sectioning or viewing direction. The tissue may thus be sectioned in any arbitrary direction, making it easy to identify the specific tissue region under study. In order to use the spatial rotator in practice, however, it is necessary to be able to identify intersection points between cell boundaries and test rays in a series of parallel focal planes, also at the peripheral parts of the cell boundaries. In cases where over- and underprojection phenomena are not negligible, they should therefore be corrected for if the spatial rotator is to be applied. If such a correction is not possible, it is needed to avoid these phenomena by using microscopy with increased resolution in the focal plane. PMID:23488880

  1. Children's Spatial Thinking: Does Talk about the Spatial World Matter?

    ERIC Educational Resources Information Center

    Pruden, Shannon M.; Levine, Susan C.; Huttenlocher, Janellen

    2011-01-01

    In this paper we examine the relations between parent spatial language input, children's own production of spatial language, and children's later spatial abilities. Using a longitudinal study design, we coded the use of spatial language (i.e. words describing the spatial features and properties of objects; e.g. big, tall, circle, curvy, edge) from…

  2. Adaptive Optics and NICMOS Uniqueness Space

    SciTech Connect

    Max, C.

    1999-03-22

    As part of the HST Second Decade Study a subgroup consisting of Claire Max, James Beletic, Donald McCarthy, and Keith Noll has analyzed the expected performance of near-infra-red adaptive optics systems on the new generation of 8-10 meter ground-based telescopes, for comparison with HST. In addition the subgroup has polled the adaptive optics community regarding expected adaptive optics performance over the coming five years. Responses have been received from representatives of most of the major telescopes: Gemini, VLT, Keck, LBT, and the MMT, as well as of several operational 3-4 meter telescope AO systems. The present document outlines the conclusions to date, with emphasis on aspects relevant to the NICMOS cryocooler Independent Science Review. In general the near-infra-red capabilities of the new ground-based adaptive optics systems will be complementary to the capabilities of NICMOS. For example NICMOS will have greater H-band sensitivity, broader wavelength coverage, and higher point-spread-function stability, whereas ground-based adaptive optics instruments will have higher spatial and spectral resolution. Section 2 of this report outlines the operational constraints faced by the first generation of adaptive optics (AO) systems on new 8-10 meter telescopes. Section 3 describes the areas of relative strength of near-infra-red observing from the ground via adaptive optics, compared with NICMOS. A Table gives an overview of the main strengths and weaknesses of these current-generation systems. Section 4 gives an indication of ground-based capabilities anticipated in the near future and in five to ten years. Section 5 contains a summary and conclusions.

  3. Spatial Light Amplifier Modulators

    NASA Technical Reports Server (NTRS)

    Eng, Sverre T.; Olsson, N. Anders

    1992-01-01

    Spatial light amplifier modulators (SLAM's) are conceptual devices that effect two-dimensional spatial modulation in optical computing and communication systems. Unlike current spatial light modulators, these provide gain. Optical processors incorporating SLAM's designed to operate in reflection or transmission mode. Each element of planar SLAM array is optical amplifier - surface-emitting diode laser. Array addressed electrically with ac modulating signals superimposed on dc bias currents supplied to lasers. SLAM device provides both desired modulation and enough optical gain to enable splitting of output signal into many optical fibers without excessive loss of power.

  4. Electromagnetic spatial coherence wavelets.

    PubMed

    Castaneda, Roman; Garcia-Sucerquia, Jorge

    2006-01-01

    The recently introduced concept of spatial coherence wavelets is generalized to describe the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows for the analysis of the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides further insight about the causal relationship between the polarization states at different planes along the propagation path. PMID:16478063

  5. Adaptive network countermeasures.

    SciTech Connect

    McClelland-Bane, Randy; Van Randwyk, Jamie A.; Carathimas, Anthony G.; Thomas, Eric D.

    2003-10-01

    This report describes the results of a two-year LDRD funded by the Differentiating Technologies investment area. The project investigated the use of countermeasures in protecting computer networks as well as how current countermeasures could be changed in order to adapt with both evolving networks and evolving attackers. The work involved collaboration between Sandia employees and students in the Sandia - California Center for Cyber Defenders (CCD) program. We include an explanation of the need for adaptive countermeasures, a description of the architecture we designed to provide adaptive countermeasures, and evaluations of the system.

  6. [Adaptive optics for ophthalmology].

    PubMed

    Saleh, M

    2016-04-01

    Adaptive optics is a technology enhancing the visual performance of an optical system by correcting its optical aberrations. Adaptive optics have already enabled several breakthroughs in the field of visual sciences, such as improvement of visual acuity in normal and diseased eyes beyond physiologic limits, and the correction of presbyopia. Adaptive optics technology also provides high-resolution, in vivo imaging of the retina that may eventually help to detect the onset of retinal conditions at an early stage and provide better assessment of treatment efficacy. PMID:27019970

  7. NeuroMapping: Inflight Evaluation of Cognition and Adaptability

    NASA Technical Reports Server (NTRS)

    Kofman, I. S.; De Dios, Y. E.; Lawrence, K.; Schade, A.; Reschke, M. F.; Bloomberg, J. J.; Wood, S. J.; Mulavara, A. P.; Seidler, R. D.

    2016-01-01

    In consideration of the health and performance of crewmembers during flight and postflight, we are conducting a controlled prospective longitudinal study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor, cognitive, and neural changes. Previous studies investigating sensorimotor adaptation to the microgravity environment longitudinally inflight have shown reduction in the ability to perform complex dual tasks. In this study we perform a series of tests investigating the longitudinal effects of adaptation to the microgravity environment and how it affects spatial cognition, manual visuo-motor adaption and dual tasking.

  8. Applications of minimum redundancy arrays in adaptive beamforming

    NASA Astrophysics Data System (ADS)

    Fattouche, M.; Nichols, S. T.; Jorgenson, M. B.

    1991-10-01

    It is shown, through analysis and simulation, that the use of a minimum redundancy array (MRA) in conjunction with an adaptive beamformer results in performance superior to that attained by a comparable system based on an array with uniformly spaced elements, or uniform array (UA) in terms of rejecting interferences located in close angular proximity to the look direction. Further, it is demonstrated that choosing the adaptive elements of a thinned adaptive array (TAA) based on a minimum spatial redundancy criterion, rather than spacing them uniformly, results in improved rejection of main lobe interferences, with negligible degradation in sidelobe interference rejection capabilities.

  9. Adaptive mesh refinement for stochastic reaction-diffusion processes

    SciTech Connect

    Bayati, Basil; Chatelain, Philippe; Koumoutsakos, Petros

    2011-01-01

    We present an algorithm for adaptive mesh refinement applied to mesoscopic stochastic simulations of spatially evolving reaction-diffusion processes. The transition rates for the diffusion process are derived on adaptive, locally refined structured meshes. Convergence of the diffusion process is presented and the fluctuations of the stochastic process are verified. Furthermore, a refinement criterion is proposed for the evolution of the adaptive mesh. The method is validated in simulations of reaction-diffusion processes as described by the Fisher-Kolmogorov and Gray-Scott equations.

  10. Adaptive optics parallel near-confocal scanning ophthalmoscopy.

    PubMed

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2016-08-15

    We present an adaptive optics parallel near-confocal scanning ophthalmoscope (AOPCSO) using a digital micromirror device (DMD). The imaging light is modulated to be a line of point sources by the DMD, illuminating the retina simultaneously. By using a high-speed line camera to acquire the image and using adaptive optics to compensate the ocular wave aberration, the AOPCSO can image the living human eye with cellular level resolution at the frame rate of 100 Hz. AOPCSO has been demonstrated with improved spatial resolution in imaging of the living human retina compared with adaptive optics line scan ophthalmoscopy. PMID:27519106

  11. Call sign intelligibility improvement using a spatial auditory display

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.

    1993-01-01

    A spatial auditory display was used to convolve speech stimuli, consisting of 130 different call signs used in the communications protocol of NASA's John F. Kennedy Space Center, to different virtual auditory positions. An adaptive staircase method was used to determine intelligibility levels of the signal against diotic speech babble, with spatial positions at 30 deg azimuth increments. Non-individualized, minimum-phase approximations of head-related transfer functions were used. The results showed a maximal intelligibility improvement of about 6 dB when the signal was spatialized to 60 deg or 90 deg azimuth positions.

  12. Spatial Data Supply Chains

    NASA Astrophysics Data System (ADS)

    Varadharajulu, P.; Azeem Saqiq, M.; Yu, F.; McMeekin, D. A.; West, G.; Arnold, L.; Moncrieff, S.

    2015-06-01

    This paper describes current research into the supply of spatial data to the end user in as close to real time as possible via the World Wide Web. The Spatial Data Infrastructure paradigm has been discussed since the early 1990s. The concept has evolved significantly since then but has almost always examined data from the perspective of the supplier. It has been a supplier driven focus rather than a user driven focus. The current research being conducted is making a paradigm shift and looking at the supply of spatial data as a supply chain, similar to a manufacturing supply chain in which users play a significant part. A comprehensive consultation process took place within Australia and New Zealand incorporating a large number of stakeholders. Three research projects that have arisen from this consultation process are examining Spatial Data Supply Chains within Australia and New Zealand and are discussed within this paper.

  13. Spatial Visualizing in Children

    ERIC Educational Resources Information Center

    Smothergill, Daniel W.; And Others

    1975-01-01

    Reports four experiments with preschool and elementary school children. The first study involved a localization task and the remaining three required the mental manipulation of spatial information. (Author/SDH)

  14. Geologic spatial analysis

    SciTech Connect

    Thiessen, R.L.; Eliason, J.R.

    1989-01-01

    This report describes the development of geologic spatial analysis research which focuses on conducting comprehensive three-dimensional analysis of regions using geologic data sets that can be referenced by latitude, longitude, and elevation/depth. (CBS)

  15. The genomics of adaptation.

    PubMed

    Radwan, Jacek; Babik, Wiesław

    2012-12-22

    The amount and nature of genetic variation available to natural selection affect the rate, course and outcome of evolution. Consequently, the study of the genetic basis of adaptive evolutionary change has occupied biologists for decades, but progress has been hampered by the lack of resolution and the absence of a genome-level perspective. Technological advances in recent years should now allow us to answer many long-standing questions about the nature of adaptation. The data gathered so far are beginning to challenge some widespread views of the way in which natural selection operates at the genomic level. Papers in this Special Feature of Proceedings of the Royal Society B illustrate various aspects of the broad field of adaptation genomics. This introductory article sets up a context and, on the basis of a few selected examples, discusses how genomic data can advance our understanding of the process of adaptation. PMID:23097510

  16. Adaptations, exaptations, and spandrels.

    PubMed

    Buss, D M; Haselton, M G; Shackelford, T K; Bleske, A L; Wakefield, J C

    1998-05-01

    Adaptation and natural selection are central concepts in the emerging science of evolutionary psychology. Natural selection is the only known causal process capable of producing complex functional organic mechanisms. These adaptations, along with their incidental by-products and a residue of noise, comprise all forms of life. Recently, S. J. Gould (1991) proposed that exaptations and spandrels may be more important than adaptations for evolutionary psychology. These refer to features that did not originally arise for their current use but rather were co-opted for new purposes. He suggested that many important phenomena--such as art, language, commerce, and war--although evolutionary in origin, are incidental spandrels of the large human brain. The authors outline the conceptual and evidentiary standards that apply to adaptations, exaptations, and spandrels and discuss the relative utility of these concepts for psychological science. PMID:9612136

  17. Adaptive Space Structures

    NASA Technical Reports Server (NTRS)

    Wada, B.

    1993-01-01

    The term adaptive structures refers to a structural control approach in which sensors, actuators, electronics, materials, structures, structural concepts, and system-performance-validation strategies are integrated to achieve specific objectives.

  18. Adaptive Management of Ecosystems

    EPA Science Inventory

    Adaptive management is an approach to natural resource management that emphasizes learning through management. As such, management may be treated as experiment, with replication, or management may be conducted in an iterative manner. Although the concept has resonated with many...

  19. Adaptive Heat Engine

    NASA Astrophysics Data System (ADS)

    Allahverdyan, A. E.; Babajanyan, S. G.; Martirosyan, N. H.; Melkikh, A. V.

    2016-07-01

    A major limitation of many heat engines is that their functioning demands on-line control and/or an external fitting between the environmental parameters (e.g., temperatures of thermal baths) and internal parameters of the engine. We study a model for an adaptive heat engine, where—due to feedback from the functional part—the engine's structure adapts to given thermal baths. Hence, no on-line control and no external fitting are needed. The engine can employ unknown resources; it can also adapt to results of its own functioning that make the bath temperatures closer. We determine resources of adaptation and relate them to the prior information available about the environment.

  20. Limits to adaptation

    NASA Astrophysics Data System (ADS)

    Dow, Kirstin; Berkhout, Frans; Preston, Benjamin L.; Klein, Richard J. T.; Midgley, Guy; Shaw, M. Rebecca

    2013-04-01

    An actor-centered, risk-based approach to defining limits to social adaptation provides a useful analytic framing for identifying and anticipating these limits and informing debates over society's responses to climate change.

  1. Rocketing into Adaptive Inquiry.

    ERIC Educational Resources Information Center

    Farenga, Stephen J.; Joyce, Beverly A.; Dowling, Thomas W.

    2002-01-01

    Defines adaptive inquiry and argues for employing this method which allows lessons to be shaped in response to student needs. Illustrates this idea by detailing an activity in which teams of students build rockets. (DDR)

  2. Adaptive Heat Engine.

    PubMed

    Allahverdyan, A E; Babajanyan, S G; Martirosyan, N H; Melkikh, A V

    2016-07-15

    A major limitation of many heat engines is that their functioning demands on-line control and/or an external fitting between the environmental parameters (e.g., temperatures of thermal baths) and internal parameters of the engine. We study a model for an adaptive heat engine, where-due to feedback from the functional part-the engine's structure adapts to given thermal baths. Hence, no on-line control and no external fitting are needed. The engine can employ unknown resources; it can also adapt to results of its own functioning that make the bath temperatures closer. We determine resources of adaptation and relate them to the prior information available about the environment. PMID:27472104

  3. Leak test adapter for containers

    DOEpatents

    Hallett, Brian H.; Hartley, Michael S.

    1996-01-01

    An adapter is provided for facilitating the charging of containers and leak testing penetration areas. The adapter comprises an adapter body and stem which are secured to the container's penetration areas. The container is then pressurized with a tracer gas. Manipulating the adapter stem installs a penetration plug allowing the adapter to be removed and the penetration to be leak tested with a mass spectrometer. Additionally, a method is provided for using the adapter.

  4. Adaptable DC offset correction

    NASA Technical Reports Server (NTRS)

    Golusky, John M. (Inventor); Muldoon, Kelly P. (Inventor)

    2009-01-01

    Methods and systems for adaptable DC offset correction are provided. An exemplary adaptable DC offset correction system evaluates an incoming baseband signal to determine an appropriate DC offset removal scheme; removes a DC offset from the incoming baseband signal based on the appropriate DC offset scheme in response to the evaluated incoming baseband signal; and outputs a reduced DC baseband signal in response to the DC offset removed from the incoming baseband signal.

  5. Robust Adaptive Control

    NASA Technical Reports Server (NTRS)

    Narendra, K. S.; Annaswamy, A. M.

    1985-01-01

    Several concepts and results in robust adaptive control are are discussed and is organized in three parts. The first part surveys existing algorithms. Different formulations of the problem and theoretical solutions that have been suggested are reviewed here. The second part contains new results related to the role of persistent excitation in robust adaptive systems and the use of hybrid control to improve robustness. In the third part promising new areas for future research are suggested which combine different approaches currently known.

  6. Adaptive transfer functions

    SciTech Connect

    Goulding, J.R. )

    1991-01-01

    This paper details the approach and methodology used to build adaptive transfer functions in a feed-forward Back-Propagation neural network, and provides insight into the structure dependent properties of using non-scaled analog inputs. The results of using adaptive transfer functions are shown to outperform conventional architectures in the implementation of a mechanical power transmission gearbox design expert system knowledge base. 4 refs., 4 figs., 1 tab.

  7. Shuffling Adaptive Clinical Trials.

    PubMed

    Gokhale, Sanjay G; Gokhale, Sankalp

    2016-01-01

    Clinical trials are interventional studies on human beings, designed to test the hypothesis for diagnostic techniques, treatments, and disease preventions. Any novel medical technology should be evaluated for its efficacy and safety by clinical trials. The costs associated with developing drugs have increased dramatically over the past decade, and fewer drugs are obtaining regulatory approval. Because of this, the pharmaceutical industry is continually exploring new ways of improving drug developments, and one area of focus is adaptive clinical trial designs. Adaptive designs, which allow for some types of prospectively planned mid-study changes, can improve the efficiency of a trial and maximize the chance of success without undermining validity and integrity of the trial. However it is felt that in adaptive trials; perhaps by using accrued data the actual patient population after the adaptations could deviate from the originally target patient population and so to overcome this drawback; special methods like Bayesian Statistics, predicted probability are used to deduce data-analysis. Here, in this study, mathematical model of a new adaptive design (shuffling adaptive trial) is suggested which uses real-time data, and because there is no gap between expected and observed data, statistical modifications are not needed. Results are obviously clinically relevant. PMID:23751329

  8. Adaptation and perceptual norms

    NASA Astrophysics Data System (ADS)

    Webster, Michael A.; Yasuda, Maiko; Haber, Sara; Leonard, Deanne; Ballardini, Nicole

    2007-02-01

    We used adaptation to examine the relationship between perceptual norms--the stimuli observers describe as psychologically neutral, and response norms--the stimulus levels that leave visual sensitivity in a neutral or balanced state. Adapting to stimuli on opposite sides of a neutral point (e.g. redder or greener than white) biases appearance in opposite ways. Thus the adapting stimulus can be titrated to find the unique adapting level that does not bias appearance. We compared these response norms to subjectively defined neutral points both within the same observer (at different retinal eccentricities) and between observers. These comparisons were made for visual judgments of color, image focus, and human faces, stimuli that are very different and may depend on very different levels of processing, yet which share the property that for each there is a well defined and perceptually salient norm. In each case the adaptation aftereffects were consistent with an underlying sensitivity basis for the perceptual norm. Specifically, response norms were similar to and thus covaried with the perceptual norm, and under common adaptation differences between subjectively defined norms were reduced. These results are consistent with models of norm-based codes and suggest that these codes underlie an important link between visual coding and visual experience.

  9. The Climate Adaptation Frontier

    SciTech Connect

    Preston, Benjamin L

    2013-01-01

    Climate adaptation has emerged as a mainstream risk management strategy for assisting in maintaining socio-ecological systems within the boundaries of a safe operating space. Yet, there are limits to the ability of systems to adapt. Here, we introduce the concept of an adaptation frontier , which is defined as a socio-ecological system s transitional adaptive operating space between safe and unsafe domains. A number of driving forces are responsible for determining the sustainability of systems on the frontier. These include path dependence, adaptation/development deficits, values conflicts and discounting of future loss and damage. The cumulative implications of these driving forces are highly uncertain. Nevertheless, the fact that a broad range of systems already persist at the edge of their frontiers suggests a high likelihood that some limits will eventually be exceeded. The resulting system transformation is likely to manifest as anticipatory modification of management objectives or loss and damage. These outcomes vary significantly with respect to their ethical implications. Successful navigation of the adaptation frontier will necessitate new paradigms of risk governance to elicit knowledge that encourages reflexive reevaluation of societal values that enable or constrain sustainability.

  10. Prism adaptation in schizophrenia.

    PubMed

    Bigelow, Nirav O; Turner, Beth M; Andreasen, Nancy C; Paulsen, Jane S; O'Leary, Daniel S; Ho, Beng-Choon

    2006-08-01

    The prism adaptation test examines procedural learning (PL) in which performance facilitation occurs with practice on tasks without the need for conscious awareness. Dynamic interactions between frontostriatal cortices, basal ganglia, and the cerebellum have been shown to play key roles in PL. Disruptions within these neural networks have also been implicated in schizophrenia, and such disruptions may manifest as impairment in prism adaptation test performance in schizophrenia patients. This study examined prism adaptation in a sample of patients diagnosed with schizophrenia (N=91) and healthy normal controls (N=58). Quantitative indices of performance during prism adaptation conditions with and without visual feedback were studied. Schizophrenia patients were significantly more impaired in adapting to prism distortion and demonstrated poorer quality of PL. Patients did not differ from healthy controls on aftereffects when the prisms were removed, but they had significantly greater difficulties in reorientation. Deficits in prism adaptation among schizophrenia patients may be due to abnormalities in motor programming arising from the disruptions within the neural networks that subserve PL. PMID:16510223

  11. Adaptation through proportion.

    PubMed

    Xiong, Liyang; Shi, Wenjia; Tang, Chao

    2016-01-01

    Adaptation is a ubiquitous feature in biological sensory and signaling networks. It has been suggested that adaptive systems may follow certain simple design principles across diverse organisms, cells and pathways. One class of networks that can achieve adaptation utilizes an incoherent feedforward control, in which two parallel signaling branches exert opposite but proportional effects on the output at steady state. In this paper, we generalize this adaptation mechanism by establishing a steady-state proportionality relationship among a subset of nodes in a network. Adaptation can be achieved by using any two nodes in the sub-network to respectively regulate the output node positively and negatively. We focus on enzyme networks and first identify basic regulation motifs consisting of two and three nodes that can be used to build small networks with proportional relationships. Larger proportional networks can then be constructed modularly similar to LEGOs. Our method provides a general framework to construct and analyze a class of proportional and/or adaptation networks with arbitrary size, flexibility and versatile functional features. PMID:27526863

  12. Adaptive parallel logic networks

    SciTech Connect

    Martinez, T.R.; Vidal, J.J.

    1988-02-01

    This paper presents a novel class of special purpose processors referred to as ASOCS (adaptive self-organizing concurrent systems). Intended applications include adaptive logic devices, robotics, process control, system malfunction management, and in general, applications of logic reasoning. ASOCS combines massive parallelism with self-organization to attain a distributed mechanism for adaptation. The ASOCS approach is based on an adaptive network composed of many simple computing elements (nodes) which operate in a combinational and asynchronous fashion. Problem specification (programming) is obtained by presenting to the system if-then rules expressed as Boolean conjunctions. New rules are added incrementally. In the current model, when conflicts occur, precedence is given to the most recent inputs. With each rule, desired network response is simply presented to the system, following which the network adjusts itself to maintain consistency and parsimony of representation. Data processing and adaptation form two separate phases of operation. During processing, the network acts as a parallel hardware circuit. Control of the adaptive process is distributed among the network nodes and efficiently exploits parallelism.

  13. Selective spatial enhancement: Attentional spotlight size impacts spatial but not temporal perception.

    PubMed

    Goodhew, Stephanie C; Shen, Elizabeth; Edwards, Mark

    2016-08-01

    An important but often neglected aspect of attention is how changes in the attentional spotlight size impact perception. The zoom-lens model predicts that a small ("focal") attentional spotlight enhances all aspects of perception relative to a larger ("diffuse" spotlight). However, based on the physiological properties of the two major classes of visual cells (magnocellular and parvocellular neurons) we predicted trade-offs in spatial and temporal acuity as a function of spotlight size. Contrary to both of these accounts, however, across two experiments we found that attentional spotlight size affected spatial acuity, such that spatial acuity was enhanced for a focal relative to a diffuse spotlight, whereas the same modulations in spotlight size had no impact on temporal acuity. This likely reflects the function of attention: to induce the high spatial resolution of the fovea in periphery, where spatial resolution is poor but temporal resolution is good. It is adaptive, therefore, for the attentional spotlight to enhance spatial acuity, whereas enhancing temporal acuity does not confer the same benefit. PMID:27294427

  14. Adaptive self-calibrating iterative GRAPPA reconstruction.

    PubMed

    Park, Suhyung; Park, Jaeseok

    2012-06-01

    Parallel magnetic resonance imaging in k-space such as generalized auto-calibrating partially parallel acquisition exploits spatial correlation among neighboring signals over multiple coils in calibration to estimate missing signals in reconstruction. It is often challenging to achieve accurate calibration information due to data corruption with noises and spatially varying correlation. The purpose of this work is to address these problems simultaneously by developing a new, adaptive iterative generalized auto-calibrating partially parallel acquisition with dynamic self-calibration. With increasing iterations, under a framework of the Kalman filter spatial correlation is estimated dynamically updating calibration signals in a measurement model and using fixed-point state transition in a process model while missing signals outside the step-varying calibration region are reconstructed, leading to adaptive self-calibration and reconstruction. Noise statistic is incorporated in the Kalman filter models, yielding coil-weighted de-noising in reconstruction. Numerical and in vivo studies are performed, demonstrating that the proposed method yields highly accurate calibration and thus reduces artifacts and noises even at high acceleration. PMID:21994010

  15. Adaptive Mesh Refinement and Adaptive Time Integration for Electrical Wave Propagation on the Purkinje System

    PubMed Central

    Ying, Wenjun; Henriquez, Craig S.

    2015-01-01

    A both space and time adaptive algorithm is presented for simulating electrical wave propagation in the Purkinje system of the heart. The equations governing the distribution of electric potential over the system are solved in time with the method of lines. At each timestep, by an operator splitting technique, the space-dependent but linear diffusion part and the nonlinear but space-independent reactions part in the partial differential equations are integrated separately with implicit schemes, which have better stability and allow larger timesteps than explicit ones. The linear diffusion equation on each edge of the system is spatially discretized with the continuous piecewise linear finite element method. The adaptive algorithm can automatically recognize when and where the electrical wave starts to leave or enter the computational domain due to external current/voltage stimulation, self-excitation, or local change of membrane properties. Numerical examples demonstrating efficiency and accuracy of the adaptive algorithm are presented. PMID:26581455

  16. Convergent Evolution During Local Adaptation to Patchy Landscapes.

    PubMed

    Ralph, Peter L; Coop, Graham

    2015-11-01

    Species often encounter, and adapt to, many patches of similar environmental conditions across their range. Such adaptation can occur through convergent evolution if different alleles arise in different patches, or through the spread of shared alleles by migration acting to synchronize adaptation across the species. The tension between the two reflects the constraint imposed on evolution by the underlying genetic architecture versus how effectively selection and geographic isolation act to inhibit the geographic spread of locally adapted alleles. This paper studies the balance between these two routes to adaptation in a model of continuous environments with patchy selection pressures. We address the following questions: How long does it take for a novel allele to appear in a patch where it is locally adapted through mutation? Or, through migration from another, already adapted patch? Which is more likely to occur, as a function of distance between the patches? What population genetic signal is left by the spread of migrant alleles? To answer these questions we examine the family structure underlying migration-selection equilibrium surrounding an already adapted patch, treating those rare families that reach new patches as spatial branching processes. A main result is that patches further apart than a critical distance will likely evolve independent locally adapted alleles; this distance is proportional to the spatial scale of selection ([Formula: see text], where σ is the dispersal distance and sm is the selective disadvantage of these alleles between patches), and depends linearly on log(sm/μ), where μ is the mutation rate. This provides a way to understand the role of geographic separation between patches in promoting convergent adaptation and the genomic signals it leaves behind. We illustrate these ideas using the convergent evolution of cryptic coloration in the rock pocket mouse, Chaetodipus intermedius, as an empirical example. PMID:26571125

  17. Convergent Evolution During Local Adaptation to Patchy Landscapes

    PubMed Central

    2015-01-01

    Species often encounter, and adapt to, many patches of similar environmental conditions across their range. Such adaptation can occur through convergent evolution if different alleles arise in different patches, or through the spread of shared alleles by migration acting to synchronize adaptation across the species. The tension between the two reflects the constraint imposed on evolution by the underlying genetic architecture versus how effectively selection and geographic isolation act to inhibit the geographic spread of locally adapted alleles. This paper studies the balance between these two routes to adaptation in a model of continuous environments with patchy selection pressures. We address the following questions: How long does it take for a novel allele to appear in a patch where it is locally adapted through mutation? Or, through migration from another, already adapted patch? Which is more likely to occur, as a function of distance between the patches? What population genetic signal is left by the spread of migrant alleles? To answer these questions we examine the family structure underlying migration–selection equilibrium surrounding an already adapted patch, treating those rare families that reach new patches as spatial branching processes. A main result is that patches further apart than a critical distance will likely evolve independent locally adapted alleles; this distance is proportional to the spatial scale of selection (σ/sm, where σ is the dispersal distance and s m is the selective disadvantage of these alleles between patches), and depends linearly on log(s m/μ), where μ is the mutation rate. This provides a way to understand the role of geographic separation between patches in promoting convergent adaptation and the genomic signals it leaves behind. We illustrate these ideas using the convergent evolution of cryptic coloration in the rock pocket mouse, Chaetodipus intermedius, as an empirical example. PMID:26571125

  18. Contributions of Spatial Working Memory to Visuomotor Learning

    ERIC Educational Resources Information Center

    Anguera, Joaquin A.; Reuter-Lorenz, Patricia A.; Willingham, Daniel T.; Seidler, Rachael D.

    2010-01-01

    Previous studies of motor learning have described the importance of cognitive processes during the early stages of learning; however, the precise nature of these processes and their neural correlates remains unclear. The present study investigated whether spatial working memory (SWM) contributes to visuomotor adaptation depending on the stage of…

  19. The Conversational Partner's Perspective Affects Spatial Memory and Descriptions

    ERIC Educational Resources Information Center

    Galati, Alexia; Michael, Christina; Mello, Catherine; Greenauer, Nathan M.; Avraamides, Marios N.

    2013-01-01

    We examined whether people spontaneously represent the partner's viewpoint in spatial memory when it is available in advance and whether they adapt their spontaneous descriptions accordingly. In 18 pairs, Directors studied arrays of objects while: (1) not knowing about having to describe the array to a Matcher, (2) knowing about the subsequent…

  20. Spatial Relative Risk Patterns of Autism Spectrum Disorders in Utah

    ERIC Educational Resources Information Center

    Bakian, Amanda V.; Bilder, Deborah A.; Coon, Hilary; McMahon, William M.

    2015-01-01

    Heightened areas of spatial relative risk for autism spectrum disorders (ASD), or ASD hotspots, in Utah were identified using adaptive kernel density functions. Children ages four, six, and eight with ASD from multiple birth cohorts were identified by the Utah Registry of Autism and Developmental Disabilities. Each ASD case was gender-matched to…

  1. [Perception of approaching and withdrawing sound sources following exposure to broadband noise. The effect of spatial domain].

    PubMed

    2014-01-01

    The spatial specificity of auditory aftereffect was studied after a short-time adaptation (5 s) to the broadband noise (20-20000 Hz). Adapting stimuli were sequences of noise impulses with the constant amplitude, test stimuli--with the constant and changing amplitude: an increase of amplitude of impulses in sequence was perceived by listeners as approach of the sound source, while a decrease of amplitude--as its withdrawal. The experiments were performed in an anechoic chamber. The auditory aftereffect was estimated under the following conditions: the adapting and test stimuli were presented from the loudspeaker located at a distance of 1.1 m from the listeners (the subjectively near spatial domain) or 4.5 m from the listeners (the subjectively near spatial domain) or 4.5 m from the listeners (the subjectively far spatial domain); the adapting and test stimuli were presented from different distances. The obtained data showed that perception of the imitated movement of the sound source in both spatial domains had the common characteristic peculiarities that manifested themselves both under control conditions without adaptation and after adaptation to noise. In the absence of adaptation for both distances, an asymmetry of psychophysical curves was observed: the listeners estimated the test stimuli more often as approaching. The overestimation by listeners of test stimuli as the approaching ones was more pronounced at their presentation from the distance of 1.1 m, i. e., from the subjectively near spatial domain. After adaptation to noise the aftereffects showed spatial specificity in both spatial domains: they were observed only at the spatial coincidence of adapting and test stimuli and were absent at their separation. The aftereffects observed in two spatial domains were similar in direction and value: the listeners estimated the test stimuli more often as withdrawing as compared to control. The result of such aftereffect was restoration of the symmetry of

  2. [Perception of approaching and withdrawing sound sources following exposure to broadband noise. The effect of spatial domain].

    PubMed

    Malinina, E S

    2014-01-01

    The spatial specificity of auditory aftereffect was studied after a short-time adaptation (5 s) to the broadband noise (20-20000 Hz). Adapting stimuli were sequences of noise impulses with the constant amplitude, test stimuli--with the constant and changing amplitude: an increase of amplitude of impulses in sequence was perceived by listeners as approach of the sound source, while a decrease of amplitude--as its withdrawal. The experiments were performed in an anechoic chamber. The auditory aftereffect was estimated under the following conditions: the adapting and test stimuli were presented from the loudspeaker located at a distance of 1.1 m from the listeners (the subjectively near spatial domain) or 4.5 m from the listeners (the subjectively near spatial domain) or 4.5 m from the listeners (the subjectively far spatial domain); the adapting and test stimuli were presented from different distances. The obtained data showed that perception of the imitated movement of the sound source in both spatial domains had the common characteristic peculiarities that manifested themselves both under control conditions without adaptation and after adaptation to noise. In the absence of adaptation for both distances, an asymmetry of psychophysical curves was observed: the listeners estimated the test stimuli more often as approaching. The overestimation by listeners of test stimuli as the approaching ones was more pronounced at their presentation from the distance of 1.1 m, i. e., from the subjectively near spatial domain. After adaptation to noise the aftereffects showed spatial specificity in both spatial domains: they were observed only at the spatial coincidence of adapting and test stimuli and were absent at their separation. The aftereffects observed in two spatial domains were similar in direction and value: the listeners estimated the test stimuli more often as withdrawing as compared to control. The result of such aftereffect was restoration of the symmetry of

  3. Vision, spatial cognition and intellectual disability.

    PubMed

    Giuliani, Fabienne; Schenk, Françoise

    2015-02-01

    Vision is the most synthetic sensory channel and it provides specific information about the relative position of distant landmarks during visual exploration. In this paper we propose that visual exploration, as assessed by the recording of eye movements, offers an original method to analyze spatial cognition and to reveal alternative adaptation strategies in people with intellectual disabilities (ID). Our general assumption is that eye movement exploration may simultaneously reveal whether, why, and how, compensatory strategies point to specific difficulties related to neurological symptoms. An understanding of these strategies will also help in the development of optimal rehabilitation procedures. PMID:25506655

  4. Development and Analysis of a Waffle Constrained Reconstructor (WCR) for Fried Geometry Adaptive Optics Systems

    NASA Astrophysics Data System (ADS)

    Praus, R.

    2014-09-01

    A common difficulty of Fried geometry-based adaptive optics is the build-up of the unsensed spatial wavefront mode called waffle. This paper presents a Fried geometry wavefront reconstructor matrix which ameliorates the impact the waffle mode in closed-loop adaptive optics systems. Typical waffle suppression algorithms employ spatial filters that can adversely affect the adaptive optics system's ability to correct the highest spatial frequencies. Because it is not based on spatial filtering techniques, but on algebraic constraints in the development of the reconstructor matrix itself, the waffle constrained reconstructor does not sacrifice correction of high spatial frequencies in order to reduce waffle. This paper will provide the mathematical development of the waffle constrained reconstructor and provide analysis of its closed-loop performance as compared to other recontructors utilizing high-fidelity wave-optics simulations.

  5. Diffusion on spatial network

    NASA Astrophysics Data System (ADS)

    Hui, Zi; Tang, Xiaoyue; Li, Wei; Greneche, Jean-Marc; Wang, Qiuping A.

    2015-04-01

    In this work, we study the problem of diffusing a product (idea, opinion, disease etc.) among agents on spatial network. The network is constructed by random addition of nodes on the planar. The probability for a previous node to be connected to the new one is inversely proportional to their spatial distance to the power of α. The diffusion rate between two connected nodes is inversely proportional to their spatial distance to the power of β as well. Inspired from the Fick's first law, we introduce the diffusion coefficient to measure the diffusion ability of the spatial network. Using both theoretical analysis and Monte Carlo simulation, we get the fact that the diffusion coefficient always decreases with the increasing of parameter α and β, and the diffusion sub-coefficient follows the power-law of the spatial distance with exponent equals to -α-β+2. Since both short-range diffusion and long-range diffusion exist, we use anomalous diffusion method in diffusion process. We get the fact that the slope index δ in anomalous diffusion is always smaller that 1. The diffusion process in our model is sub-diffusion.

  6. Spatial Transformation of the Vestibulo-Ocular Reflex during Spaceflight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Wood, Scott J.; Reschke, Millard F.

    1996-01-01

    It was hypothesized that the absence of the gravitational reference cues may be responsible for adaptive changes in the vestibulo-ocular reflex (VOR). These changes result in the alteration of the direction of the compensatory slow phase (SP) eye movements in microgravity. In order to test this hypothesis, the direction of the VOR SP relative to head motion was investigated in three astronauts during and after an eight-day orbital flight by passive sinusoidal pitch or yaw angular motion at two frequencies. The results of the inflight and postflight testing are considered. The observed deviation between VOR SP and head motion suggests that spatial transformation in the VOR occurred during adaptation to microgravity. It is considered that, although this spatial transformation might be due to a sensory bias, it may reflect central changes in the reference system used for spatial orientation in microgravity.

  7. Adapting overcomplete wavelet models to natural images

    NASA Astrophysics Data System (ADS)

    Sallee, Phil; Olshausen, Bruno A.

    2003-11-01

    Overcomplete wavelet representations have become increasingly popular for their ability to provide highly sparse and robust descriptions of natural signals. We describe a method for incorporating an overcomplete wavelet representation as part of a statistical model of images which includes a sparse prior distribution over the wavelet coefficients. The wavelet basis functions are parameterized by a small set of 2-D functions. These functions are adapted to maximize the average log-likelihood of the model for a large database of natural images. When adapted to natural images, these functions become selective to different spatial orientations, and they achieve a superior degree of sparsity on natural images as compared with traditional wavelet bases. The learned basis is similar to the Steerable Pyramid basis, and yields slightly higher SNR for the same number of active coefficients. Inference with the learned model is demonstrated for applications such as denoising, with results that compare favorably with other methods.

  8. Adaptation and risk management

    SciTech Connect

    Preston, Benjamin L

    2011-01-01

    Adaptation assessment methods are compatible with the international risk management standard ISO:31000. Risk management approaches are increasingly being recommended for adaptation assessments at both national and local levels. Two orientations to assessments can commonly be identified: top-down and bottom-up, and prescriptive and diagnostic. Combinations of these orientations favor different types of assessments. The choice of orientation can be related to uncertainties in prediction and taking action, in the type of adaptation and in the degree of system stress. Adopting multiple viewpoints is to be encouraged, especially in complex situations. The bulk of current guidance material is consistent with top-down and predictive approaches, thus is most suitable for risk scoping and identification. Abroad range ofmaterial fromwithin and beyond the climate change literature can be used to select methods to be used in assessing and implementing adaptation. The framing of risk, correct formulation of the questions being investigated and assessment methodology are critical aspects of the scoping phase. Only when these issues have been addressed should be issue of specific methods and tools be addressed. The reorientation of adaptation from an assessment focused solely on anthropogenic climate change to broader issues of vulnerability/resilience, sustainable development and disaster risk, especially through a risk management framework, can draw from existing policy and management understanding in communities, professions and agencies, incorporating existing agendas, knowledge, risks, and issues they already face.

  9. Mechanisms of intestinal adaptation.

    PubMed

    Rubin, Deborah C; Levin, Marc S

    2016-04-01

    Following loss of functional small bowel surface area due to surgical resection for therapy of Crohn's disease, ischemia, trauma or other disorders, the remnant gut undergoes a morphometric and functional compensatory adaptive response which has been best characterized in preclinical models. Increased crypt cell proliferation results in increased villus height, crypt depth and villus hyperplasia, accompanied by increased nutrient, fluid and electrolyte absorption. Clinical observations suggest that functional adaptation occurs in humans. In the immediate postoperative period, patients with substantial small bowel resection have massive fluid and electrolyte loss with reduced nutrient absorption. For many patients, the adaptive response permits partial or complete weaning from parenteral nutrition (PN), within two years following resection. However, others have life-long PN dependence. An understanding of the molecular mechanisms that regulate the gut adaptive response is critical for developing novel therapies for short bowel syndrome. Herein we present a summary of key studies that seek to elucidate the mechanisms that regulate post-resection adaptation, focusing on stem and crypt cell proliferation, epithelial differentiation, apoptosis, enterocyte function and the role of growth factors and the enteric nervous system. PMID:27086888

  10. Spatial population structure of Yellowstone bison

    USGS Publications Warehouse

    Olexa, E.M.; Gogan, P.J.P.

    2007-01-01

    Increases in Yellowstone National Park, USA, bison (Bison bison) numbers and shifts in seasonal distribution have resulted in more frequent movements of bison beyond park boundaries and development of an interagency management plan for the Yellowstone bison population. Implementation of the plan under the adaptive management paradigm requires an understanding of the spatial and temporal structure of the population. We used polythetic agglomerative hierarchical cluster analysis of radiolocations obtained from free-ranging bison to investigate seasonal movements and aggregations. We classified radiolocations into 4 periods: annual, peak rut (15 Jul-15 Sep), extended rut (1 Jun-31 Oct), and winter (1 Nov-31 May). We documented spatial separation of Yellowstone bison into 2 segments, the northern and central herds, during all periods. The estimated year-round exchange rate (4.85-5.83%) of instrumented bison varied with the fusion strategy employed. We did not observe exchange between the 2 segments during the peak rut and it varied during the extended rut (2.15-3.23%). We estimated a winter exchange of 4.85-7.77%. The outcome and effectiveness of management actions directed at Yellowstone bison may be affected by spatial segregation and herd affinity within the population. Reductions based on total population size, but not applied to the entire population, may adversely affect one herd while having little effect on the other. Similarly, management actions targeting a segment of the population may benefit from the spatial segregation exhibited.

  11. The effect of space flight on spatial orientation

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Bloomberg, Jacob J.; Harm, Deborah L.; Paloski, William H.; Satake, Hirotaka

    1992-01-01

    Both during and following early space missions, little neurosensory change in the astronauts was noted as a result of their exposure to microgravity. It is believed that this lack of in-flight adaptation in the spatial orientation and perceptual-motor system resulted from short exposure times and limited interaction with the new environment. Parker and Parker (1990) have suggested that while spatial orientation and motion information can be detected by a passive observer, adaptation to stimulus rearrangement is greatly enhanced when the observer moves through or acts on the environment. Experience with the actual consequences of action can be compared with those consequences expected on the basis of prior experience. Space flight today is of longer duration, and space craft volume has increased. These changes have forced the astronauts to interact with the new environment of microgravity, and as a result substantial changes occur in the perceptual and sensory-motor repsonses reflecting adaptation to the stimulus rearrangement of space flight. We are currently evaluating spatial orientation and the perceptual-motor systems' adaptation to microgravity by examining responses of postural control, head and gaze stability during locomotion, goal oriented vestibulo-ocular reflex (VOR), and structured quantitative perceptual reports. Evidence suggests that humans can successfully replace the gravitational reference available on Earth with cues available within the spacecraft or within themselves, but that adaptation to microgravity is not appropriate for a return to Earth. Countermeasures for optimal performance on-orbit and a successful return to earth will require development of preflight and in-flight training to help the astronauts acquire and maintain a dual adaptive state. An understanding of spatial orientation and motion perception, postural control, locomotion, and the VOR will aid in this process.

  12. Spatial Knowledge Capture Library

    Energy Science and Technology Software Center (ESTSC)

    2005-05-16

    The Spatial Knowledge Capture Library is a set of algorithms to capture regularities in shapes and trajectories through space and time. We have applied Spatial Knowledge Capture to model the actions of human experts in spatial domains, such as an AWACS Weapons Director task simulation. The library constructs a model to predict the expert’s response to sets of changing cues, such as the movements and actions of adversaries on a battlefield, The library includes amore » highly configurable feature extraction functionality, which supports rapid experimentation to discover causative factors. We use k-medoid clustering to group similar episodes of behavior, and construct a Markov model of system state transitions induced by agents’ actions.« less

  13. Evolution of adaptation mechanisms: Adaptation energy, stress, and oscillating death.

    PubMed

    Gorban, Alexander N; Tyukina, Tatiana A; Smirnova, Elena V; Pokidysheva, Lyudmila I

    2016-09-21

    In 1938, Selye proposed the notion of adaptation energy and published 'Experimental evidence supporting the conception of adaptation energy.' Adaptation of an animal to different factors appears as the spending of one resource. Adaptation energy is a hypothetical extensive quantity spent for adaptation. This term causes much debate when one takes it literally, as a physical quantity, i.e. a sort of energy. The controversial points of view impede the systematic use of the notion of adaptation energy despite experimental evidence. Nevertheless, the response to many harmful factors often has general non-specific form and we suggest that the mechanisms of physiological adaptation admit a very general and nonspecific description. We aim to demonstrate that Selye׳s adaptation energy is the cornerstone of the top-down approach to modelling of non-specific adaptation processes. We analyze Selye׳s axioms of adaptation energy together with Goldstone׳s modifications and propose a series of models for interpretation of these axioms. Adaptation energy is considered as an internal coordinate on the 'dominant path' in the model of adaptation. The phenomena of 'oscillating death' and 'oscillating remission' are predicted on the base of the dynamical models of adaptation. Natural selection plays a key role in the evolution of mechanisms of physiological adaptation. We use the fitness optimization approach to study of the distribution of resources for neutralization of harmful factors, during adaptation to a multifactor environment, and analyze the optimal strategies for different systems of factors. PMID:26801872

  14. Adaptations for nocturnal and diurnal vision in the hawkmoth lamina.

    PubMed

    Stöckl, Anna L; Ribi, Willi A; Warrant, Eric J

    2016-01-01

    Animals use vision over a wide range of light intensities, from dim starlight to bright sunshine. For animals active in very dim light the visual system is challenged by several sources of visual noise. Adaptations in the eyes, as well as in the neural circuitry, have evolved to suppress the noise and enhance the visual signal, thereby improving vision in dim light. Among neural adaptations, spatial summation of visual signals from neighboring processing units is suggested to increase the reliability of signal detection and thus visual sensitivity. In insects, the likely neural candidates for carrying out spatial summation are the lamina monopolar cells (LMCs) of the first visual processing area of the insect brain (the lamina). We have classified LMCs in three species of hawkmoths with considerably different activity periods but very similar ecology-the diurnal Macroglossum stellatarum, the nocturnal Deilephila elpenor and the crepuscular-nocturnal Manduca sexta. Using this classification, we investigated the anatomical adaptations of hawkmoth LMCs suited for spatial summation. We found that specific types of LMCs have dendrites extending to significantly more neighboring cartridges in the two nocturnal and crepuscular species than in the diurnal species, making these LMC types strong candidates for spatial summation. Moreover, while the absolute number of cartridges visited by the LMCs differed between the two dim-light species, their dendritic extents were very similar in terms of visual angle, possibly indicating a limiting spatial acuity. The overall size of the lamina neuropil did not correlate with the size of its LMCs. PMID:26100612

  15. Adaptive node techniques for Maxwell's equations

    SciTech Connect

    Hewett, D W

    2000-04-01

    The computational mesh in numerical simulation provides a framework on which to monitor the spatial dependence of function and their derivatives. Spatial mesh is therefore essential to the ability to integrate systems in time without loss of fidelity. Several philosophies have emerged to provide such fidelity (Eulerian, Lagrangian, Arbitrary Lagrangian Eulerian ALE, Adaptive Mesh Refinement AMR, and adaptive node generation/deletion). Regardless of the type of mesh, a major difficulty is in setting up the initial mesh. Clearly a high density of grid points is essential in regions of high geometric complexity and/or regions of intense, energetic activity. For some problems, mesh generation is such a crucial part of the problem that it can take as much computational effort as the run itself, and these tasks are now taking weeks of massively parallel CPU time. Mesh generation is no less crucial to electromagnetic calculations. In fact EM problem set up can be even more challenging without the clues given by fluid motion in hydrodynamic systems. When the mesh is advected with the fluid (Lagrangian), mesh points naturally congregate in regions of high activity. Similarly in AMR algorithms, strong gradients in the fluid flow are one of the triggers for mesh refinement. In the hyperbolic Maxwell's equations without advection, mesh point placement/motion is not so intuitive. In fixed geometry systems, it at least feasible to finely mesh high leverage, geometrically challenged areas. For other systems, where the action takes place far from the boundaries and, likely, changes position in time, the options are limited to either using a high resolution (expensive) mesh in all regions that could require such resolution or adaptively generating nodes to resolve the physics as it evolves. The authors have developed a new time of adaptive node technique for Maxwell's equations to deal with this set of issues.

  16. The Spatial Standard Observer

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Ahumada, Albert J, Jr.

    2006-01-01

    The spatial standard observer is a computational model that provides a measure of the visibility of a target in a uniform background image or of the visual discriminability of two images. Standard observers have long been used in science and industry to quantify the discriminability of colors. Color standard observers address the spectral characteristics of visual stimuli, while the spatial standard observer (SSO), as its name indicates, addresses spatial characteristics. The SSO is based on a model of human vision. The SSO was developed in a process that included evaluation of a number of earlier mathematical models that address optical, physiological, and psychophysical aspects of spatial characteristics of human visual perception. Elements of the prior models are incorporated into the SSO, which is formulated as a compromise between accuracy and simplicity. The SSO operates on a digitized monochrome still image or on a pair of such images. The SSO consists of three submodels that operate sequentially on the input image(s): 1. A contrast model, which converts an input monochrome image to a luminance contrast image, wherein luminance values are expressed as excursions from, and normalized to, a mean; 2. A contrast-sensitivity-filter model that includes an oblique-effect filter (which accounts for the decline in contrast sensitivity at oblique viewing angles); and 3. A spatial summation model, in which responses are spatially pooled by raising each pixel to the power beta, adding the results, and raising the sum to the 1/b power. In this model, b=2.9 was found to be a suitable value. The net effect of the SSO is to compute a numerical measure of the perceptual strength of the single image, or of the visible difference (denoted the perceptual distance) between two images. The unit of a measure used in the SSO is the just noticeable difference (JND), which is a standard measure of perceptual discriminability. A target that is just visible has a measure of 1 JND.

  17. Adaptive Optics Imaging and Spectroscopy of Neptune

    NASA Technical Reports Server (NTRS)

    Johnson, Lindley (Technical Monitor); Sromovsky, Lawrence A.

    2005-01-01

    OBJECTIVES: We proposed to use high spectral resolution imaging and spectroscopy of Neptune in visible and near-IR spectral ranges to advance our understanding of Neptune s cloud structure. We intended to use the adaptive optics (AO) system at Mt. Wilson at visible wavelengths to try to obtain the first groundbased observations of dark spots on Neptune; we intended to use A 0 observations at the IRTF to obtain near-IR R=2000 spatially resolved spectra and near-IR A0 observations at the Keck observatory to obtain the highest spatial resolution studies of cloud feature dynamics and atmospheric motions. Vertical structure of cloud features was to be inferred from the wavelength dependent absorption of methane and hydrogen,

  18. Wavefront Control for Extreme Adaptive Optics

    SciTech Connect

    Poyneer, L A

    2003-07-16

    Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.

  19. Cardiovascular adaptation to spaceflight

    NASA Technical Reports Server (NTRS)

    Charles, John B.; Lathers, Claire M.

    1991-01-01

    Data are presented on the rate of adaptation of the human cardiovascular system to conditions of spaceflight, with particular attention given to data obtained during spaceflight in the U.S. Space Shuttle Program. It is pointed out that many of the cardiovascular changes that occurred during spaceflights that lasted from 2 to 11 days can be traced directly to changes in the body fluid volume. The beneficial effects of a fluid loading countermeasure (oral rehydration) and of the supine body position on the heart rate during the spaceflight are demonstrated. It is noted that, after hours or a few days of spaceflight, a state of adaptation is reached, in which the subject is well adapted and appropriately hydrated for the weightless environment. However, the return to the normal gravity of the earth leaves the individual especially sensitive to orthostatic stress.

  20. Cardiovascular adaptation to spaceflight

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Watenpaugh, D. E.

    1996-01-01

    This article reviews recent flight and ground-based studies of cardiovascular adaptation to spaceflight. Prominent features of microgravity exposure include loss of gravitational pressures, relatively low venous pressures, headward fluid shifts, plasma volume loss, and postflight orthostatic intolerance and reduced exercise capacity. Many of these short-term responses to microgravity extend themselves during long-duration microgravity exposure and may be explained by altered pressures (blood and tissue) and fluid balance in local tissues nourished by the cardiovascular system. In this regard, it is particularly noteworthy that tissues of the lower body (e.g., foot) are well adapted to local hypertension on Earth, whereas tissues of the upper body (e.g., head) are not as well adapted to increase in local blood pressure. For these and other reasons, countermeasures for long-duration flight should include reestablishment of higher, Earth-like blood pressures in the lower body.

  1. Embodied spatial cognition.

    PubMed

    Trafton, J Gregory; Harrison, Anthony M

    2011-10-01

    We present a spatial system called Specialized Egocentrically Coordinated Spaces embedded in an embodied cognitive architecture (ACT-R Embodied). We show how the spatial system works by modeling two different developmental findings: gaze-following and Level 1 perspective taking. The gaze-following model is based on an experiment by Corkum and Moore (1998), whereas the Level 1 visual perspective-taking model is based on an experiment by Moll and Tomasello (2006). The models run on an embodied robotic system. PMID:25164505

  2. Planetary Spatial Analyst

    NASA Technical Reports Server (NTRS)

    Keely, Leslie

    2008-01-01

    This is a status report for the project entitled Planetary Spatial Analyst (PSA). This report covers activities from the project inception on October 1, 2007 to June 1, 2008. Originally a three year proposal, PSA was awarded funding for one year and required a revised work statement and budget. At the time of this writing the project is well on track both for completion of work as well as budget. The revised project focused on two objectives: build a solid connection with the target community and implement a prototype software application that provides 3D visualization and spatial analysis technologies for that community. Progress has been made for both of these objectives.

  3. Spatial fluctuation theorem

    NASA Astrophysics Data System (ADS)

    Pérez-Espigares, Carlos; Redig, Frank; Giardinà, Cristian

    2015-08-01

    For non-equilibrium systems of interacting particles and for interacting diffusions in d-dimensions, a novel fluctuation relation is derived. The theorem establishes a quantitative relation between the probabilities of observing two current values in different spatial directions. The result is a consequence of spatial symmetries of the microscopic dynamics, generalizing in this way the Gallavotti-Cohen fluctuation theorem related to the time-reversal symmetry. This new perspective opens up the possibility of direct experimental measurements of fluctuation relations of vectorial observables.

  4. Spatially Extended Modelocking

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Diffey, William M.; Gamble, Lisa; Keys, Andrew S.

    1999-01-01

    We examine the properties of optical fields that are extended in space over transverse dimensions of several meters or more in terms of both multiple spatial modes and also multiple temporal modes. We focus attention on the task of producing and maintaining well defined phase relationships for the set of spatial and temporal modes. In particular, we address operating regimes where the optical fields are not confined within an optical resonator, but still have well defined phase relations through the use of optical field sensing and correction techniques. Special applications of interest occur in safe beaming of optical power and in approaching optical intensities capable of producing nonlinear phenomena in the vacuum.

  5. Adaptive Numerical Algorithms in Space Weather Modeling

    NASA Technical Reports Server (NTRS)

    Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav

    2010-01-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical

  6. Adaptive numerical algorithms in space weather modeling

    NASA Astrophysics Data System (ADS)

    Tóth, Gábor; van der Holst, Bart; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav

    2012-02-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit

  7. Adaptive triangular mesh generation

    NASA Technical Reports Server (NTRS)

    Erlebacher, G.; Eiseman, P. R.

    1984-01-01

    A general adaptive grid algorithm is developed on triangular grids. The adaptivity is provided by a combination of node addition, dynamic node connectivity and a simple node movement strategy. While the local restructuring process and the node addition mechanism take place in the physical plane, the nodes are displaced on a monitor surface, constructed from the salient features of the physical problem. An approximation to mean curvature detects changes in the direction of the monitor surface, and provides the pulling force on the nodes. Solutions to the axisymmetric Grad-Shafranov equation demonstrate the capturing, by triangles, of the plasma-vacuum interface in a free-boundary equilibrium configuration.

  8. Adaptive piezoelectric sensoriactuator

    NASA Technical Reports Server (NTRS)

    Clark, Jr., Robert L. (Inventor); Vipperman, Jeffrey S. (Inventor); Cole, Daniel G. (Inventor)

    1996-01-01

    An adaptive algorithm implemented in digital or analog form is used in conjunction with a voltage controlled amplifier to compensate for the feedthrough capacitance of piezoelectric sensoriactuator. The mechanical response of the piezoelectric sensoriactuator is resolved from the electrical response by adaptively altering the gain imposed on the electrical circuit used for compensation. For wideband, stochastic input disturbances, the feedthrough capacitance of the sensoriactuator can be identified on-line, providing a means of implementing direct-rate-feedback control in analog hardware. The device is capable of on-line system health monitoring since a quasi-stable dynamic capacitance is indicative of sustained health of the piezoelectric element.

  9. Adaptive optics revisited.

    PubMed

    Babcock, H W

    1990-07-20

    From the earliest days and nights of telescopic astronomy, atmospheric turbulence has been a serious detriment to optical performance. The new technology of adaptive optics can overcome this problem by compensating for the wavefront distortion that results from turbulence. The result will be large gains in resolving power and limiting magnitude, closely approaching the theoretical limit. In other words, telescopic images will be very significantly sharpened. Rapid and accelerating progress is being made today by several groups. Adaptive optics, together with the closely related technology of active optics, seems certain to be utilized in large astronomical telescopes of the future. This may entail significant changes in telescope design. PMID:17750109

  10. Learning and Domain Adaptation

    NASA Astrophysics Data System (ADS)

    Mansour, Yishay

    Domain adaptation is a fundamental learning problem where one wishes to use labeled data from one or several source domains to learn a hypothesis performing well on a different, yet related, domain for which no labeled data is available. This generalization across domains is a very significant challenge for many machine learning applications and arises in a variety of natural settings, including NLP tasks (document classification, sentiment analysis, etc.), speech recognition (speakers and noise or environment adaptation) and face recognition (different lighting conditions, different population composition).

  11. Verification of Adaptive Systems

    SciTech Connect

    Pullum, Laura L; Cui, Xiaohui; Vassev, Emil; Hinchey, Mike; Rouff, Christopher; Buskens, Richard

    2012-01-01

    Adaptive systems are critical for future space and other unmanned and intelligent systems. Verification of these systems is also critical for their use in systems with potential harm to human life or with large financial investments. Due to their nondeterministic nature and extremely large state space, current methods for verification of software systems are not adequate to provide a high level of assurance for them. The combination of stabilization science, high performance computing simulations, compositional verification and traditional verification techniques, plus operational monitors, provides a complete approach to verification and deployment of adaptive systems that has not been used before. This paper gives an overview of this approach.

  12. Adaptive Cruise Control (ACC)

    NASA Astrophysics Data System (ADS)

    Reif, Konrad

    Die adaptive Fahrgeschwindigkeitsregelung (ACC, Adaptive Cruise Control) ist eine Weiterentwicklung der konventionellen Fahrgeschwindigkeitsregelung, die eine konstante Fahrgeschwindigkeit einstellt. ACC überwacht mittels eines Radarsensors den Bereich vor dem Fahrzeug und passt die Geschwindigkeit den Gegebenheiten an. ACC reagiert auf langsamer vorausfahrende oder einscherende Fahrzeuge mit einer Reduzierung der Geschwindigkeit, sodass der vorgeschriebene Mindestabstand zum vorausfahrenden Fahrzeug nicht unterschritten wird. Hierzu greift ACC in Antrieb und Bremse ein. Sobald das vorausfahrende Fahrzeug beschleunigt oder die Spur verlässt, regelt ACC die Geschwindigkeit wieder auf die vorgegebene Sollgeschwindigkeit ein (Bild 1). ACC steht somit für eine Geschwindigkeitsregelung, die sich dem vorausfahrenden Verkehr anpasst.

  13. Adaptive background model

    NASA Astrophysics Data System (ADS)

    Lu, Xiaochun; Xiao, Yijun; Chai, Zhi; Wang, Bangping

    2007-11-01

    An adaptive background model aiming at outdoor vehicle detection is presented in this paper. This model is an improved model of PICA (pixel intensity classification algorithm), it classifies pixels into K-distributions by color similarity, and then a hypothesis that the background pixel color appears in image sequence with a high frequency is used to evaluate all the distributions to determine which presents the current background color. As experiments show, the model presented in this paper is a robust, adaptive and flexible model, which can deal with situations like camera motions, lighting changes and so on.

  14. One Hidden Object, Two Spatial Codes: Young Children's Use of Relational and Vector Coding

    ERIC Educational Resources Information Center

    Uttal, David H.; Sandstrom, Lisa B.; Newcombe, Nora S.

    2006-01-01

    An important characteristic of mature spatial cognition is the ability to encode spatial locations in terms of relations among landmarks as well as in terms of vectors that include distance and direction. In this study, we examined children's use of the relation "middle" to code the location of a hidden toy, using a procedure adapted from prior…

  15. Wayfinding in the Blind: Larger Hippocampal Volume and Supranormal Spatial Navigation

    ERIC Educational Resources Information Center

    Fortin, Madeleine; Voss, Patrice; Lord, Catherine; Lassonde, Maryse; Pruessner, Jens; Saint-Amour, Dave; Rainville, Constant; Lepore, Franco

    2008-01-01

    In the absence of visual input, the question arises as to how complex spatial abilities develop and how the brain adapts to the absence of this modality. We explored navigational skills in both early and late blind individuals and structural differences in the hippocampus, a brain region well known to be involved in spatial processing.…

  16. [An improved N-FINDR endmember extraction algorithm based on manifold learning and spatial information].

    PubMed

    Tang, Xiao-yan; Gao, Kun; Ni, Guo-qiang; Zhu, Zhen-yu; Cheng, Hao-bo

    2013-09-01

    An improved N-FINDR endmember extraction algorithm by combining manifold learning and spatial information is presented under nonlinear mixing assumptions. Firstly, adaptive local tangent space alignment is adapted to seek potential intrinsic low-dimensional structures of hyperspectral high-diemensional data and reduce original data into a low-dimensional space. Secondly, spatial preprocessing is used by enhancing each pixel vector in spatially homogeneous areas, according to the continuity of spatial distribution of the materials. Finally, endmembers are extracted by looking for the largest simplex volume. The proposed method can increase the precision of endmember extraction by solving the nonlinearity of hyperspectral data and taking advantage of spatial information. Experimental results on simulated and real hyperspectral data demonstrate that the proposed approach outperformed the geodesic simplex volume maximization (GSVM), vertex component analysis (VCA) and spatial preprocessing N-FINDR method (SPPNFINDR). PMID:24369664

  17. Heredity Factors in Spatial Visualization.

    ERIC Educational Resources Information Center

    Vandenberg, S. G.

    Spatial visualization is not yet clearly understood. Some researchers have concluded that two factors or abilities are involved, spatial orientation and spatial visualization. Different definitions and different tests have been proposed for these two abilities. Several studies indicate that women generally perform more poorly on spatial tests than…

  18. Hybrid Adaptive Flight Control with Model Inversion Adaptation

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2011-01-01

    This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.

  19. Robust Optimal Adaptive Control Method with Large Adaptive Gain

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2009-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.

  20. Sensory adaptation for timing perception

    PubMed Central

    Roseboom, Warrick; Linares, Daniel; Nishida, Shin'ya

    2015-01-01

    Recent sensory experience modifies subjective timing perception. For example, when visual events repeatedly lead auditory events, such as when the sound and video tracks of a movie are out of sync, subsequent vision-leads-audio presentations are reported as more simultaneous. This phenomenon could provide insights into the fundamental problem of how timing is represented in the brain, but the underlying mechanisms are poorly understood. Here, we show that the effect of recent experience on timing perception is not just subjective; recent sensory experience also modifies relative timing discrimination. This result indicates that recent sensory history alters the encoding of relative timing in sensory areas, excluding explanations of the subjective phenomenon based only on decision-level changes. The pattern of changes in timing discrimination suggests the existence of two sensory components, similar to those previously reported for visual spatial attributes: a lateral shift in the nonlinear transducer that maps relative timing into perceptual relative timing and an increase in transducer slope around the exposed timing. The existence of these components would suggest that previous explanations of how recent experience may change the sensory encoding of timing, such as changes in sensory latencies or simple implementations of neural population codes, cannot account for the effect of sensory adaptation on timing perception. PMID:25788590

  1. Adaptation kinetics in bacterial chemotaxis.

    PubMed Central

    Block, S M; Segall, J E; Berg, H C

    1983-01-01

    Cells of Escherichia coli, tethered to glass by a single flagellum, were subjected to constant flow of a medium containing the attractant alpha-methyl-DL-aspartate. The concentration of this chemical was varied with a programmable mixing apparatus over a range spanning the dissociation constant of the chemoreceptor at rates comparable to those experienced by cells swimming in spatial gradients. When an exponentially increasing ramp was turned on (a ramp that increases the chemoreceptor occupancy linearly), the rotational bias of the cells (the fraction of time spent spinning counterclockwise) changed rapidly to a higher stable level, which persisted for the duration of the ramp. The change in bias increased with ramp rate, i.e., with the time rate of change of chemoreceptor occupancy. This behavior can be accounted for by a model for adaptation involving proportional control, in which the flagellar motors respond to an error signal proportional to the difference between the current occupancy and the occupancy averaged over the recent past. Distributions of clockwise and counterclockwise rotation intervals were found to be exponential. This result cannot be explained by a response regular model in which transitions between rotational states are generated by threshold crossings of a regular subject to statistical fluctuation; this mechanism generates distributions with far too many long events. However, the data can be fit by a model in which transitions between rotational states are governed by first-order rate constants. The error signal acts as a bias regulator, controlling the values of these constants. PMID:6339475

  2. Chunking in Spatial Memory

    ERIC Educational Resources Information Center

    Sargent, Jesse; Dopkins, Stephen; Philbeck, John; Chichka, David

    2010-01-01

    In order to gain insight into the nature of human spatial representations, the current study examined how those representations are affected by blind rotation. Evidence was sought on the possibility that whereas certain environmental aspects may be updated independently of one another, other aspects may be grouped (or chunked) together and updated…

  3. Handbook of Spatial Cognition

    ERIC Educational Resources Information Center

    Waller, David, Ed.; Nadel, Lynn, Ed.

    2012-01-01

    Spatial cognition is a branch of cognitive psychology that studies how people acquire and use knowledge about their environment to determine where they are, how to obtain resources, and how to find their way home. Researchers from a wide range of disciplines, including neuroscience, cognition, and sociology, have discovered a great deal about how…

  4. Grounded spatial belief revision.

    PubMed

    Nejasmic, Jelica; Bucher, Leandra; Knauff, Markus

    2015-05-01

    Beliefs frequently undergo revisions, especially when new pieces of information are true but inconsistent with current beliefs. In previous studies, we showed that linguistic asymmetries provided by relational statements, play a crucial role in spatial belief revision. Located objects (LO) are preferably revised compared to reference objects (RO), known as the LO-principle. Here we establish a connection between spatial belief revision and grounded cognition. In three experiments, we explored whether imagined physical object properties influence which object is relocated and which remains at its initial position. Participants mentally revised beliefs about the arrangements of objects which could be envisaged as light and heavy (Experiment 1), small and large (Experiment 2), or movable and immovable (Experiment 3). The results show that intrinsic object properties are differently taken into account during spatial belief revision. Object weight did not alter the LO-principle (Experiment 1), whereas object size was found to influence which object was preferably relocated (Experiment 2). Object movability did not affect relocation preferences but had an effect on relocation durations (Experiment 3). The findings support the simulation hypothesis within the grounded cognition approach and create new connections between the spatial mental model theory of reasoning and the idea of grounded cognition. PMID:25796056

  5. Bayesian Spatial Quantile Regression

    PubMed Central

    Reich, Brian J.; Fuentes, Montserrat; Dunson, David B.

    2013-01-01

    Tropospheric ozone is one of the six criteria pollutants regulated by the United States Environmental Protection Agency under the Clean Air Act and has been linked with several adverse health effects, including mortality. Due to the strong dependence on weather conditions, ozone may be sensitive to climate change and there is great interest in studying the potential effect of climate change on ozone, and how this change may affect public health. In this paper we develop a Bayesian spatial model to predict ozone under different meteorological conditions, and use this model to study spatial and temporal trends and to forecast ozone concentrations under different climate scenarios. We develop a spatial quantile regression model that does not assume normality and allows the covariates to affect the entire conditional distribution, rather than just the mean. The conditional distribution is allowed to vary from site-to-site and is smoothed with a spatial prior. For extremely large datasets our model is computationally infeasible, and we develop an approximate method. We apply the approximate version of our model to summer ozone from 1997–2005 in the Eastern U.S., and use deterministic climate models to project ozone under future climate conditions. Our analysis suggests that holding all other factors fixed, an increase in daily average temperature will lead to the largest increase in ozone in the Industrial Midwest and Northeast. PMID:23459794

  6. Bayesian Spatial Quantile Regression.

    PubMed

    Reich, Brian J; Fuentes, Montserrat; Dunson, David B

    2011-03-01

    Tropospheric ozone is one of the six criteria pollutants regulated by the United States Environmental Protection Agency under the Clean Air Act and has been linked with several adverse health effects, including mortality. Due to the strong dependence on weather conditions, ozone may be sensitive to climate change and there is great interest in studying the potential effect of climate change on ozone, and how this change may affect public health. In this paper we develop a Bayesian spatial model to predict ozone under different meteorological conditions, and use this model to study spatial and temporal trends and to forecast ozone concentrations under different climate scenarios. We develop a spatial quantile regression model that does not assume normality and allows the covariates to affect the entire conditional distribution, rather than just the mean. The conditional distribution is allowed to vary from site-to-site and is smoothed with a spatial prior. For extremely large datasets our model is computationally infeasible, and we develop an approximate method. We apply the approximate version of our model to summer ozone from 1997-2005 in the Eastern U.S., and use deterministic climate models to project ozone under future climate conditions. Our analysis suggests that holding all other factors fixed, an increase in daily average temperature will lead to the largest increase in ozone in the Industrial Midwest and Northeast. PMID:23459794

  7. ECOREGION SPATIAL DATABASE

    EPA Science Inventory

    This spatial database contains boundaries and attributes describing Level III ecoregions in EPA Region 8. The ecoregions shown here have been derived from Omernik (1987) and from refinements of Omernik's framework that have been made for other projects. These ongoing or re...

  8. Adaptive Finite Element Methods in Geodynamics

    NASA Astrophysics Data System (ADS)

    Davies, R.; Davies, H.; Hassan, O.; Morgan, K.; Nithiarasu, P.

    2006-12-01

    Adaptive finite element methods are presented for improving the quality of solutions to two-dimensional (2D) and three-dimensional (3D) convection dominated problems in geodynamics. The methods demonstrate the application of existing technology in the engineering community to problems within the `solid' Earth sciences. Two-Dimensional `Adaptive Remeshing': The `remeshing' strategy introduced in 2D adapts the mesh automatically around regions of high solution gradient, yielding enhanced resolution of the associated flow features. The approach requires the coupling of an automatic mesh generator, a finite element flow solver and an error estimator. In this study, the procedure is implemented in conjunction with the well-known geodynamical finite element code `ConMan'. An unstructured quadrilateral mesh generator is utilised, with mesh adaptation accomplished through regeneration. This regeneration employs information provided by an interpolation based local error estimator, obtained from the computed solution on an existing mesh. The technique is validated by solving thermal and thermo-chemical problems with known benchmark solutions. In a purely thermal context, results illustrate that the method is highly successful, improving solution accuracy whilst increasing computational efficiency. For thermo-chemical simulations the same conclusions can be drawn. However, results also demonstrate that the grid based methods employed for simulating the compositional field are not competitive with the other methods (tracer particle and marker chain) currently employed in this field, even at the higher spatial resolutions allowed by the adaptive grid strategies. Three-Dimensional Adaptive Multigrid: We extend the ideas from our 2D work into the 3D realm in the context of a pre-existing 3D-spherical mantle dynamics code, `TERRA'. In its original format, `TERRA' is computationally highly efficient since it employs a multigrid solver that depends upon a grid utilizing a clever

  9. Prism Adaptation in Schizophrenia

    ERIC Educational Resources Information Center

    Bigelow, Nirav O.; Turner, Beth M.; Andreasen, Nancy C.; Paulsen, Jane S.; O'Leary, Daniel S.; Ho, Beng-Choon

    2006-01-01

    The prism adaptation test examines procedural learning (PL) in which performance facilitation occurs with practice on tasks without the need for conscious awareness. Dynamic interactions between frontostriatal cortices, basal ganglia, and the cerebellum have been shown to play key roles in PL. Disruptions within these neural networks have also…

  10. Adaptive Sampling Designs.

    ERIC Educational Resources Information Center

    Flournoy, Nancy

    Designs for sequential sampling procedures that adapt to cumulative information are discussed. A familiar illustration is the play-the-winner rule in which there are two treatments; after a random start, the same treatment is continued as long as each successive subject registers a success. When a failure occurs, the other treatment is used until…

  11. Adapting to the Environment.

    ERIC Educational Resources Information Center

    Kovach, Amy L.

    2003-01-01

    Presents an activity on natural selection and how the peppered moth's adaptive values for their colors changed during the Industrial Revolution in Manchester, England, influencing their survival and ultimately affecting the survival of their offspring. Includes activity objectives. (Author/KHR)

  12. Adaptive sequential controller

    DOEpatents

    El-Sharkawi, Mohamed A.; Xing, Jian; Butler, Nicholas G.; Rodriguez, Alonso

    1994-01-01

    An adaptive sequential controller (50/50') for controlling a circuit breaker (52) or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer (70) provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit (96) compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer (88) provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit (102) produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer.

  13. Adaptive Computerized Instruction.

    ERIC Educational Resources Information Center

    Ray, Roger D.; And Others

    1995-01-01

    Describes an artificially intelligent multimedia computerized instruction system capable of developing a conceptual image of what a student is learning while the student is learning it. It focuses on principles of learning and adaptive behavioral control systems theory upon which the system is designed and demonstrates multiple user modes.…

  14. Adaptive MGS Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Basinger, Scott A.; Bikkannavar, Siddarayappa; Cohen, David; Green, Joseph J.; Lou, John; Ohara, Catherine; Redding, David; Shi, Fang

    2008-01-01

    Adaptive MGS Phase Retrieval software uses the Modified Gerchberg-Saxton (MGS) algorithm, an image-based sensing method that can turn any focal plane science instrument into a wavefront sensor, avoiding the need to use external metrology equipment. Knowledge of the wavefront enables intelligent control of active optical systems.

  15. Adaptive Recreational Equipment.

    ERIC Educational Resources Information Center

    Schilling, Mary Lou, Ed.

    1983-01-01

    Designed for teachers interested in therapeutic recreation, the document lists sources of adaptive recreational equipment and their homemade counterparts. Brief descriptions for ordering or constructing recreational equipment for the visually impaired, poorly coordinated, physically impaired, and mentally retarded are given. Specific adaptations…

  16. Career Adaptability in Childhood

    ERIC Educational Resources Information Center

    Hartung, Paul J.; Porfeli, Erik J.; Vondracek, Fred W.

    2008-01-01

    Childhood marks the dawn of vocational development, involving developmental tasks, transitions, and change. Children must acquire the rudiments of career adaptability to envision a future, make educational and vocational decisions, explore self and occupations, and problem solve. The authors situate child vocational development within human life…

  17. Adapting to Environmental Jolts.

    ERIC Educational Resources Information Center

    Meyer, Alan D.

    1982-01-01

    Examines the reactions of three San Francisco (California) hospitals to the 1975 doctors' strike. Analyzes the anticipatory, responsive, and readjustment phases of the hospitals' adaptations in terms of each hospital's previous market strategy, organizational structure and ideology, and deployment of slack resources, including financial, human,…

  18. Coupled adaptive complex networks

    NASA Astrophysics Data System (ADS)

    Shai, S.; Dobson, S.

    2013-04-01

    Adaptive networks, which combine topological evolution of the network with dynamics on the network, are ubiquitous across disciplines. Examples include technical distribution networks such as road networks and the internet, natural and biological networks, and social science networks. These networks often interact with or depend upon other networks, resulting in coupled adaptive networks. In this paper we study susceptible-infected-susceptible (SIS) epidemic dynamics on coupled adaptive networks, where susceptible nodes are able to avoid contact with infected nodes by rewiring their intranetwork connections. However, infected nodes can pass the disease through internetwork connections, which do not change with time: The dependencies between the coupled networks remain constant. We develop an analytical formalism for these systems and validate it using extensive numerical simulation. We find that stability is increased by increasing the number of internetwork links, in the sense that the range of parameters over which both endemic and healthy states coexist (both states are reachable depending on the initial conditions) becomes smaller. Finally, we find a new stable state that does not appear in the case of a single adaptive network but only in the case of weakly coupled networks, in which the infection is endemic in one network but neither becomes endemic nor dies out in the other. Instead, it persists only at the nodes that are coupled to nodes in the other network through internetwork links. We speculate on the implications of these findings.

  19. Narrative, Adaptation, and Change

    ERIC Educational Resources Information Center

    Bateson, Mary Catherine

    2007-01-01

    This paper explores how individuals and communities orient themselves to the future by the way they story the past. There is a persistent tendency to think of such narratives as factual and therefore stable. The mutability of such narratives is actually a key adaptive characteristic, ranging from complete repression of individual traumas to public…

  20. Adapting Bulls to Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adaptation of bulls used for natural breeding purposes to the Gulf Coast region of the United States including all of Florida is an important topic. Nearly 40% of the U.S. cow/calf population resides in the Gulf Coast and Southeast. Thus, as A.I. is relatively rare, the number of bulls used for ...

  1. Aging and dark adaptation.

    PubMed

    Jackson, G R; Owsley, C; McGwin, G

    1999-11-01

    Older adults have serious difficulty seeing under low illumination and at night, even in the absence of ocular disease. Optical changes in the aged eye, such as pupillary miosis and increased lens density, cannot account for the severity of this problem, and little is known about its neural basis. Dark adaptation functions were measured on 94 adults ranging in age from the 20s to the 80s to assess the rate of rod-mediated sensitivity recovery after exposure to a 98% bleach. Fundus photography and a grading scale were used to characterize macular health in subjects over age 49 in order to control for macular disease. Thresholds for each subject were corrected for lens density based on individual estimates, and pupil diameter was controlled. Results indicated that during human aging there is a dramatic slowing in rod-mediated dark adaptation that can be attributed to delayed rhodopsin regeneration. During the second component of the rod-mediated phase of dark adaptation, the rate of sensitivity recovery decreased 0.02 log unit/min per decade, and the time constant of rhodopsin regeneration increased 8.4 s/decade. The amount of time to reach within 0.3 log units of baseline scotopic sensitivity increased 2.76 min/decade. These aging-related changes in rod-mediated dark adaptation may contribute to night vision problems commonly experienced by the elderly. PMID:10748929

  2. Adaptation in the auditory space map of the barn owl.

    PubMed

    Gutfreund, Yoram; Knudsen, Eric I

    2006-08-01

    Auditory neurons in the owl's external nucleus of the inferior colliculus (ICX) integrate information across frequency channels to create a map of auditory space. This study describes a powerful, sound-driven adaptation of unit responsiveness in the ICX and explores the implications of this adaptation for sensory processing. Adaptation in the ICX was analyzed by presenting lightly anesthetized owls with sequential pairs of dichotic noise bursts. Adaptation occurred in response even to weak, threshold-level sounds and remained strong for more than 100 ms after stimulus offset. Stimulation by one range of sound frequencies caused adaptation that generalized across the entire broad range of frequencies to which these units responded. Identical stimuli were used to test adaptation in the lateral shell of the central nucleus of the inferior colliculus (ICCls), which provides input directly to the ICX. Compared with ICX adaptation, adaptation in the ICCls was substantially weaker, shorter lasting, and far more frequency specific, suggesting that part of the adaptation observed in the ICX was attributable to processes resident to the ICX. The sharp tuning of ICX neurons to space, along with their broad tuning to frequency, allows ICX adaptation to preserve a representation of stimulus location, regardless of the frequency content of the sound. The ICX is known to be a site of visually guided auditory map plasticity. ICX adaptation could play a role in this cross-modal plasticity by providing a short-term memory of the representation of auditory localization cues that could be compared with later-arriving, visual-spatial information from bimodal stimuli. PMID:16707713

  3. Spatial Modulation Improves Performance in CTIS

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H.; Wilson, Daniel W.; Johnson, William R.

    2009-01-01

    Suitably formulated spatial modulation of a scene imaged by a computed-tomography imaging spectrometer (CTIS) has been found to be useful as a means of improving the imaging performance of the CTIS. As used here, "spatial modulation" signifies the imposition of additional, artificial structure on a scene from within the CTIS optics. The basic principles of a CTIS were described in "Improvements in Computed- Tomography Imaging Spectrometry" (NPO-20561) NASA Tech Briefs, Vol. 24, No. 12 (December 2000), page 38 and "All-Reflective Computed-Tomography Imaging Spectrometers" (NPO-20836), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 7a. To recapitulate: A CTIS offers capabilities for imaging a scene with spatial, spectral, and temporal resolution. The spectral disperser in a CTIS is a two-dimensional diffraction grating. It is positioned between two relay lenses (or on one of two relay mirrors) in a video imaging system. If the disperser were removed, the system would produce ordinary images of the scene in its field of view. In the presence of the grating, the image on the focal plane of the system contains both spectral and spatial information because the multiple diffraction orders of the grating give rise to multiple, spectrally dispersed images of the scene. By use of algorithms adapted from computed tomography, the image on the focal plane can be processed into an image cube a three-dimensional collection of data on the image intensity as a function of the two spatial dimensions (x and y) in the scene and of wavelength (lambda). Thus, both spectrally and spatially resolved information on the scene at a given instant of time can be obtained, without scanning, from a single snapshot; this is what makes the CTIS such a potentially powerful tool for spatially, spectrally, and temporally resolved imaging. A CTIS performs poorly in imaging some types of scenes in particular, scenes that contain little spatial or spectral variation. The computed spectra of

  4. The impact of spatial scales and spatial smoothing on the outcome of bayesian spatial model.

    PubMed

    Kang, Su Yun; McGree, James; Mengersen, Kerrie

    2013-01-01

    Discretization of a geographical region is quite common in spatial analysis. There have been few studies into the impact of different geographical scales on the outcome of spatial models for different spatial patterns. This study aims to investigate the impact of spatial scales and spatial smoothing on the outcomes of modelling spatial point-based data. Given a spatial point-based dataset (such as occurrence of a disease), we study the geographical variation of residual disease risk using regular grid cells. The individual disease risk is modelled using a logistic model with the inclusion of spatially unstructured and/or spatially structured random effects. Three spatial smoothness priors for the spatially structured component are employed in modelling, namely an intrinsic Gaussian Markov random field, a second-order random walk on a lattice, and a Gaussian field with Matérn correlation function. We investigate how changes in grid cell size affect model outcomes under different spatial structures and different smoothness priors for the spatial component. A realistic example (the Humberside data) is analyzed and a simulation study is described. Bayesian computation is carried out using an integrated nested Laplace approximation. The results suggest that the performance and predictive capacity of the spatial models improve as the grid cell size decreases for certain spatial structures. It also appears that different spatial smoothness priors should be applied for different patterns of point data. PMID:24146799

  5. Transformational adaptation when incremental adaptations to climate change are insufficient

    PubMed Central

    Kates, Robert W.; Travis, William R.; Wilbanks, Thomas J.

    2012-01-01

    All human–environment systems adapt to climate and its natural variation. Adaptation to human-induced change in climate has largely been envisioned as increments of these adaptations intended to avoid disruptions of systems at their current locations. In some places, for some systems, however, vulnerabilities and risks may be so sizeable that they require transformational rather than incremental adaptations. Three classes of transformational adaptations are those that are adopted at a much larger scale, that are truly new to a particular region or resource system, and that transform places and shift locations. We illustrate these with examples drawn from Africa, Europe, and North America. Two conditions set the stage for transformational adaptation to climate change: large vulnerability in certain regions, populations, or resource systems; and severe climate change that overwhelms even robust human use systems. However, anticipatory transformational adaptation may be difficult to implement because of uncertainties about climate change risks and adaptation benefits, the high costs of transformational actions, and institutional and behavioral actions that tend to maintain existing resource systems and policies. Implementing transformational adaptation requires effort to initiate it and then to sustain the effort over time. In initiating transformational adaptation focusing events and multiple stresses are important, combined with local leadership. In sustaining transformational adaptation, it seems likely that supportive social contexts and the availability of acceptable options and resources for actions are key enabling factors. Early steps would include incorporating transformation adaptation into risk management and initiating research to expand the menu of innovative transformational adaptations. PMID:22509036

  6. New Adaptive Optics Technique Demonstrated

    NASA Astrophysics Data System (ADS)

    2007-03-01

    Enrico Marchetti, the MAD Project Manager. "The system behaviour was very stable and the acquisition and closed loop operations were fast and smooth." ESO PR Photo 19d/07 ESO PR Photo 19d/07 AO Strehl Maps After routine checks on the closed loop stability and preliminary scans of the system parameters, the telescope was pointed to Omega Centauri, a very crowded area in the sky, and an optimal test case for extracting accurate measurements on AO correction performance with good spatial resolution on the FoV. Three 11 magnitude stars within a circle of ~1.5 arcmin diameter were selected as the baseline for wavefront sensing and the MCAO loop was closed successfully. Omega Centauri will be observed for several nights more, in order to test the AO correction in different seeing conditions. "This is a tremendous achievement that opens new perspectives in the era of extremely large telescopes," said Catherine Cesarsky, ESO's Director General. " "I am very proud of the ESO staff and wish to congratulate all involved for their prowess," she added. The MAD images perfectly show the validity of the concept. The image quality was almost uniform over the whole field of view and beautifully corrected for some of the atmospheric turbulence. More Information The Multi-Conjugate Adaptive Optics (MCAO) Demonstrator MAD was built by ESO in collaboration with the Astronomical Observatories of Arcetri and Padova (Italy) and the Faculdade de Ciencias da Universidade de Lisboa (Portugal), as a pathfinder for 2nd generation VLT instrumentation and the European Extremely Large Telescope project. The MCAO technique is based on probing the atmospheric turbulence on a large volume of atmosphere by means of several wavefront sensors (WFS), which point at different locations in the observed field of view, and by means of several deformable mirrors - optically conjugated at different altitudes on the atmosphere above the telescope - which correct for the atmospheric disturbance. The signals provided

  7. Allele surfing promotes microbial adaptation from standing variation.

    PubMed

    Gralka, Matti; Stiewe, Fabian; Farrell, Fred; Möbius, Wolfram; Waclaw, Bartlomiej; Hallatschek, Oskar

    2016-08-01

    The coupling of ecology and evolution during range expansions enables mutations to establish at expanding range margins and reach high frequencies. This phenomenon, called allele surfing, is thought to have caused revolutions in the gene pool of many species, most evidently in microbial communities. It has remained unclear, however, under which conditions allele surfing promotes or hinders adaptation. Here, using microbial experiments and simulations, we show that, starting with standing adaptive variation, range expansions generate a larger increase in mean fitness than spatially uniform population expansions. The adaptation gain results from 'soft' selective sweeps emerging from surfing beneficial mutations. The rate of these surfing events is shown to sensitively depend on the strength of genetic drift, which varies among strains and environmental conditions. More generally, allele surfing promotes the rate of adaptation per biomass produced, which could help developing biofilms and other resource-limited populations to cope with environmental challenges. PMID:27307400

  8. Dynamics of dual prism adaptation: relating novel experimental results to a minimalistic neural model.

    PubMed

    Arévalo, Orlando; Bornschlegl, Mona A; Eberhardt, Sven; Ernst, Udo; Pawelzik, Klaus; Fahle, Manfred

    2013-01-01

    In everyday life, humans interact with a dynamic environment often requiring rapid adaptation of visual perception and motor control. In particular, new visuo-motor mappings must be learned while old skills have to be kept, such that after adaptation, subjects may be able to quickly change between two different modes of generating movements ('dual-adaptation'). A fundamental question is how the adaptation schedule determines the acquisition speed of new skills. Given a fixed number of movements in two different environments, will dual-adaptation be faster if switches ('phase changes') between the environments occur more frequently? We investigated the dynamics of dual-adaptation under different training schedules in a virtual pointing experiment. Surprisingly, we found that acquisition speed of dual visuo-motor mappings in a pointing task is largely independent of the number of phase changes. Next, we studied the neuronal mechanisms underlying this result and other key phenomena of dual-adaptation by relating model simulations to experimental data. We propose a simple and yet biologically plausible neural model consisting of a spatial mapping from an input layer to a pointing angle which is subjected to a global gain modulation. Adaptation is performed by reinforcement learning on the model parameters. Despite its simplicity, the model provides a unifying account for a broad range of experimental data: It quantitatively reproduced the learning rates in dual-adaptation experiments for both direct effect, i.e. adaptation to prisms, and aftereffect, i.e. behavior after removal of prisms, and their independence on the number of phase changes. Several other phenomena, e.g. initial pointing errors that are far smaller than the induced optical shift, were also captured. Moreover, the underlying mechanisms, a local adaptation of a spatial mapping and a global adaptation of a gain factor, explained asymmetric spatial transfer and generalization of prism adaptation, as

  9. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, Victor

    1992-01-01

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector.

  10. Spatial Organization of Epigenomes

    PubMed Central

    Dubé, Jonathan Christopher; Wang, Xue Qing David; Dostie, Josée

    2016-01-01

    The role of genome architecture in transcription regulation has become the focus of an increasing number of studies over the past decade. Chromatin organization can have a significant impact on gene expression by promoting or restricting the physical proximity between regulatory DNA elements. Given that any change in chromatin state has the potential to alter DNA folding and the proximity between control elements, the spatial organization of chromatin is inherently linked to its molecular composition. In this review, we explore how modulators of chromatin state and organization might keep gene expression in check. We discuss recent findings and present some of the less well-studied aspects of spatial genome organization such as chromatin dynamics and regulation by non-coding RNAs. PMID:26986719

  11. Spatial Phase Imaging

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Frequently, scientists grow crystals by dissolving a protein in a specific liquid solution, and then allowing that solution to evaporate. The methods used next have been, variously, invasive (adding a dye that is absorbed by the protein), destructive (crushing protein/salt-crystal mixtures and observing differences between the crushing of salt and protein), or costly and time-consuming (X-ray crystallography). In contrast to these methods, a new technology for monitoring protein growth, developed in part through NASA Small Business Innovation Research (SBIR) funding from Marshall Space Flight Center, is noninvasive, nondestructive, rapid, and more cost effective than X-ray analysis. The partner for this SBIR, Photon-X, Inc., of Huntsville, Alabama, developed spatial phase imaging technology that can monitor crystal growth in real time and in an automated mode. Spatial phase imaging scans for flaws quickly and produces a 3-D structured image of a crystal, showing volumetric growth analysis for future automated growth.

  12. Adaptation of spatiotemporal mechanisms by increment and decrement stimuli

    NASA Astrophysics Data System (ADS)

    Purkiss, Todd J.; Demarco, Paul J.

    2002-08-01

    Sawtooth modulation has been used in the past to examine visual sensitivity to luminance increments and decrements. The threshold elevation caused by adaptation depends on the spatial profile of the stimulus field and the polarities of the adaptation and test stimuli. We hypothesized that the adaptation effects reflect a change in the sensitivity of the spatiotemporal channels that detect the stimuli. We used a 2-deg disk centered in a larger surround field. Five levels of contrast between the test field and surround were investigated: equiluminant, three intermediate levels, and dark. At each contrast, observers adapted for 5 s to 2-Hz sawtooth modulation (rapid-on or rapid-off). Immediately after adaptation, thresholds were measured for detection of a single cycle of either a rapid-on or a rapid-off waveform. Varying the contrast of the surround affected observers sensitivity to the polarity of the sawtooth stimulus to the extent that the pattern of sensitivity with the equiluminant surround was the opposite of that with the dark surround. To examine temporal factors, we measured thresholds for slow (500-ms ramps) and fast (8.3-ms pulses) test stimuli. The adaptation effect was preserved with the ramp stimuli but not with the pulse stimuli. Blurring the edge between the test and surround fields in the equiluminant surround condition raised thresholds for all sawtooth test stimuli, suggesting that spatiotemporal channels sensitive to high spatial frequencies and low temporal frequencies facilitate detection in that condition. These findings suggest that adaptation to sawtooth modulation can differentially effect the sensitivity of ON and OFF pathways, but the relative desensitization of each pathway depends on an interaction with the adaptation state of spatiotemporal channels that are involved in detection. 2002 Optical Society of America

  13. Effect of prism adaptation on thermoregulatory control in humans.

    PubMed

    Calzolari, Elena; Gallace, Alberto; Moseley, G Lorimer; Vallar, Giuseppe

    2016-01-01

    The physiological regulation of skin temperature can be modulated not only by autonomic brain regions, but also by a network of higher-level cortical areas involved in the maintenance of a coherent representation of the body. In this study we assessed in healthy participants if the sensorimotor changes taking place during motor adaptation to the lateral displacement of the visual scene induced by wearing prismatic lenses (prism adaptation, PA), and the aftereffects, after prisms' removal, on the ability to process spatial coordinates, were associated with skin temperature regulation changes. We found a difference in thermoregulatory control as a function of the direction of the prism-induced displacement of the visual scene, and the subsequent sensorimotor adaptation. After PA to rightward displacing lenses, with leftward aftereffects (the same directional procedure efficaciously used for ameliorating left spatial neglect in right-brain-damaged patients) the hands' temperature decreased. Conversely, after adaptation to neutral lenses, and PA to leftward displacing lenses, with rightward aftereffects, the temperature of both hands increased. These results suggest a lateral asymmetry in the effects of PA on skin temperature regulation, and a relationship between body spatial representations and homeostatic control in humans. PMID:26354443

  14. Contrast Adaptation Implies Two Spatiotemporal Channels but Three Adapting Processes

    ERIC Educational Resources Information Center

    Langley, Keith; Bex, Peter J.

    2007-01-01

    The contrast gain control model of adaptation predicts that the effects of contrast adaptation correlate with contrast sensitivity. This article reports that the effects of high contrast spatiotemporal adaptors are maximum when adapting around 19 Hz, which is a factor of two or more greater than the peak in contrast sensitivity. To explain the…

  15. 75 FR 57859 - Specially Adapted Housing and Special Home Adaptation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ..., 2009, (74 FR 67145), VA proposed to amend its regulations pertaining to eligibility for specially... AFFAIRS 38 CFR Part 3 RIN 2900-AN21 Specially Adapted Housing and Special Home Adaptation AGENCY... housing and special home adaptation grants. This final rule incorporates certain provisions from...

  16. NEEDS - Information Adaptive System

    NASA Technical Reports Server (NTRS)

    Kelly, W. L.; Benz, H. F.; Meredith, B. D.

    1980-01-01

    The Information Adaptive System (IAS) is an element of the NASA End-to-End Data System (NEEDS) Phase II and is focused toward onboard image processing. The IAS is a data preprocessing system which is closely coupled to the sensor system. Some of the functions planned for the IAS include sensor response nonuniformity correction, geometric correction, data set selection, data formatting, packetization, and adaptive system control. The inclusion of these sensor data preprocessing functions onboard the spacecraft will significantly improve the extraction of information from the sensor data in a timely and cost effective manner, and provide the opportunity to design sensor systems which can be reconfigured in near real-time for optimum performance. The purpose of this paper is to present the preliminary design of the IAS and the plans for its development.

  17. Adaptive control for accelerators

    DOEpatents

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  18. Unconsciously triggered conflict adaptation.

    PubMed

    van Gaal, Simon; Lamme, Victor A F; Ridderinkhof, K Richard

    2010-01-01

    In conflict tasks such as the Stroop, the Eriksen flanker or the Simon task, it is generally observed that the detection of conflict in the current trial reduces the impact of conflicting information in the subsequent trial; a phenomenon termed conflict adaptation. This higher-order cognitive control function has been assumed to be restricted to cases where conflict is experienced consciously. In the present experiment we manipulated the awareness of conflict-inducing stimuli in a metacontrast masking paradigm to directly test this assumption. Conflicting response tendencies were elicited either consciously (through primes that were weakly masked) or unconsciously (strongly masked primes). We demonstrate trial-by-trial conflict adaptation effects after conscious as well as unconscious conflict, which could not be explained by direct stimulus/response repetitions. These findings show that unconscious information can have a longer-lasting influence on our behavior than previously thought and further stretch the functional boundaries of unconscious cognition. PMID:20634898

  19. Bacterial surface adaptation

    NASA Astrophysics Data System (ADS)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  20. Adaptive manifold learning.

    PubMed

    Zhang, Zhenyue; Wang, Jing; Zha, Hongyuan

    2012-02-01

    Manifold learning algorithms seek to find a low-dimensional parameterization of high-dimensional data. They heavily rely on the notion of what can be considered as local, how accurately the manifold can be approximated locally, and, last but not least, how the local structures can be patched together to produce the global parameterization. In this paper, we develop algorithms that address two key issues in manifold learning: 1) the adaptive selection of the local neighborhood sizes when imposing a connectivity structure on the given set of high-dimensional data points and 2) the adaptive bias reduction in the local low-dimensional embedding by accounting for the variations in the curvature of the manifold as well as its interplay with the sampling density of the data set. We demonstrate the effectiveness of our methods for improving the performance of manifold learning algorithms using both synthetic and real-world data sets. PMID:21670485

  1. Intestinal mucosal adaptation

    PubMed Central

    Drozdowski, Laurie; Thomson, Alan BR

    2006-01-01

    Intestinal failure is a condition characterized by malnutrition and/or dehydration as a result of the inadequate digestion and absorption of nutrients. The most common cause of intestinal failure is short bowel syndrome, which occurs when the functional gut mass is reduced below the level necessary for adequate nutrient and water absorption. This condition may be congenital, or may be acquired as a result of a massive resection of the small bowel. Following resection, the intestine is capable of adaptation in response to enteral nutrients as well as other trophic stimuli. Identifying factors that may enhance the process of intestinal adaptation is an exciting area of research with important potential clinical applications. PMID:16937429

  2. Evolutionary adaptation to thermosensation.

    PubMed

    Gracheva, Elena O; Bagriantsev, Sviatoslav N

    2015-10-01

    Organisms continuously evolve to adapt to changing environmental conditions. Chief among these are daily and seasonal temperature fluctuations. Relatively small in terms of real physical values, temperature fluctuations of just a few degrees can profoundly affect organismal functions. In vertebrates, temperature is detected by primary afferents of somatosensory neurons, which express thermo-gated ion channels. Most of our knowledge about temperature receptors comes from seminal studies in mice and rats. Recent work uncovered thermosensory mechanisms in other vertebrates, shedding light onto the diversity of thermosensory adaptations. Here, we summarize molecular mechanisms of thermosensation in different species and discuss the need to use the standard laboratory rodents and non-standard species side-by-side in order to understand fundamental principles of somatosensation. PMID:25698346

  3. Adaptive Algebraic Multigrid Methods

    SciTech Connect

    Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S; Ruge, J

    2004-04-09

    Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.

  4. Die Fledermaus: Regarding Optokinetic Contrast Sensitivity and Light-Adaptation, Chicks Are Mice with Wings

    PubMed Central

    Shi, Qing; Stell, William K.

    2013-01-01

    Background Through adaptation, animals can function visually under an extremely broad range of light intensities. Light adaptation starts in the retina, through shifts in photoreceptor sensitivity and kinetics plus modulation of visual processing in retinal circuits. Although considerable research has been conducted on retinal adaptation in nocturnal species with rod-dominated retinas, such as the mouse, little is known about how cone-dominated avian retinas adapt to changes in mean light intensity. Methodology/Principal Findings We used the optokinetic response to characterize contrast sensitivity (CS) in the chick retina as a function of spatial frequency and temporal frequency at different mean light intensities. We found that: 1) daytime, cone-driven CS was tuned to spatial frequency; 2) nighttime, presumably rod-driven CS was tuned to temporal frequency and spatial frequency; 3) daytime, presumably cone-driven CS at threshold intensity was invariant with temporal and spatial frequency; and 4) daytime photopic CS was invariant with clock time. Conclusion/Significance Light- and dark-adaptational changes in CS were investigated comprehensively for the first time in the cone-dominated retina of an avian, diurnal species. The chick retina, like the mouse retina, adapts by using a “day/night” or “cone/rod” switch in tuning preference during changes in lighting conditions. The chick optokinetic response is an attractive model for noninvasive, behavioral studies of adaptation in retinal circuitry in health and disease. PMID:24098693

  5. Geographic representation in spatial analysis

    NASA Astrophysics Data System (ADS)

    Miller, Harvey J.

    Spatial analysis mostly developed in an era when data was scarce and computational power was expensive. Consequently, traditional spatial analysis greatly simplifies its representations of geography. The rise of geographic information science (GISci) and the changing nature of scientific questions at the end of the 20th century suggest a comprehensive re-examination of geographic representation in spatial analysis. This paper reviews the potential for improved representations of geography in spatial analysis. Existing tools in spatial analysis and new tools available from GISci have tremendous potential for bringing more sophisticated representations of geography to the forefront of spatial analysis theory and application.

  6. Reconfigurable environmentally adaptive computing

    NASA Technical Reports Server (NTRS)

    Coxe, Robin L. (Inventor); Galica, Gary E. (Inventor)

    2008-01-01

    Described are methods and apparatus, including computer program products, for reconfigurable environmentally adaptive computing technology. An environmental signal representative of an external environmental condition is received. A processing configuration is automatically selected, based on the environmental signal, from a plurality of processing configurations. A reconfigurable processing element is reconfigured to operate according to the selected processing configuration. In some examples, the environmental condition is detected and the environmental signal is generated based on the detected condition.

  7. Intelligent adaptive structures

    NASA Technical Reports Server (NTRS)

    Wada, Ben K.

    1990-01-01

    'Intelligent Adaptive Structures' (IAS) refers to structural systems whose geometric and intrinsic structural characteristics can be automatically changed to meet mission requirements with changing operational scenarios. An IAS is composed of actuators, sensors, and a control logic; these are integrated in a distributed fashion within the elements of the structure. The IAS concepts thus far developed for space antennas and other precision structures should be applicable to civil, marine, automotive, and aeronautical structural systems.

  8. Adaptive Structures Flight Experiments

    NASA Technical Reports Server (NTRS)

    Martin, Maurice

    1992-01-01

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  9. Adaptive structures flight experiments

    NASA Astrophysics Data System (ADS)

    Martin, Maurice

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  10. Adaptive optics ophthalmoscopy

    PubMed Central

    Roorda, Austin; Duncan, Jacque L.

    2016-01-01

    This review starts with a brief history and description of adaptive optics (AO) technology, followed by a showcase of the latest capabilities of AO systems for imaging the human retina and an extensive review of the literature on where AO is being used clinically. The review concludes with a discussion on future directions and guidance on usage and interpretation of images from AO systems for the eye. PMID:26973867

  11. Adaptive optical processors.

    PubMed

    Ghosh, A

    1989-06-15

    There are two different approaches for improving the accuracy of analog optical associative processors: postprocessing with a bimodal system and preprocessing with a preconditioner. These two approaches can be combined to develop an adaptive optical multiprocessor that can adjust the computational steps depending on the data and produce solutions of linear algebra problems with a specified accuracy in a given amount of time. PMID:19752909

  12. Adaptive bidirectional associative memories.

    PubMed

    Kosko, B

    1987-12-01

    Bidirectionality, forward and backward information flow, is introduced in neural networks to produce two-way associative search for stored stimulus-response associations (A(i),B(i)). Two fields of neurons, F(A) and F(B), are connected by an n x p synaptic marix M. Passing information through M gives one direction, passing information through its transpose M(T) gives the other. Every matrix is bidirectionally stable for bivalent and for continuous neurons. Paired data (A(i),B(i)) are encoded in M by summing bipolar correlation matrices. The bidirectional associative memory (BAM) behaves as a two-layer hierarchy of symmetrically connected neurons. When the neurons in F(A) and F(B) are activated, the network quickly evolves to a stable state of twopattern reverberation, or pseudoadaptive resonance, for every connection topology M. The stable reverberation corresponds to a system energy local minimum. An adaptive BAM allows M to rapidly learn associations without supervision. Stable short-term memory reverberations across F(A) and F(B) gradually seep pattern information into the long-term memory connections M, allowing input associations (A(i),B(i)) to dig their own energy wells in the network state space. The BAM correlation encoding scheme is extended to a general Hebbian learning law. Then every BAM adaptively resonates in the sense that all nodes and edges quickly equilibrate in a system energy local minimum. A sampling adaptive BAM results when many more training samples are presented than there are neurons in F(B) and F(B), but presented for brief pulses of learning, not allowing learning to fully or nearly converge. Learning tends to improve with sample size. Sampling adaptive BAMs can learn some simple continuous mappings and can rapidly abstract bivalent associations from several noisy gray-scale samples. PMID:20523473

  13. Accelerated adaptive integration method.

    PubMed

    Kaus, Joseph W; Arrar, Mehrnoosh; McCammon, J Andrew

    2014-05-15

    Conformational changes that occur upon ligand binding may be too slow to observe on the time scales routinely accessible using molecular dynamics simulations. The adaptive integration method (AIM) leverages the notion that when a ligand is either fully coupled or decoupled, according to λ, barrier heights may change, making some conformational transitions more accessible at certain λ values. AIM adaptively changes the value of λ in a single simulation so that conformations sampled at one value of λ seed the conformational space sampled at another λ value. Adapting the value of λ throughout a simulation, however, does not resolve issues in sampling when barriers remain high regardless of the λ value. In this work, we introduce a new method, called Accelerated AIM (AcclAIM), in which the potential energy function is flattened at intermediate values of λ, promoting the exploration of conformational space as the ligand is decoupled from its receptor. We show, with both a simple model system (Bromocyclohexane) and the more complex biomolecule Thrombin, that AcclAIM is a promising approach to overcome high barriers in the calculation of free energies, without the need for any statistical reweighting or additional processors. PMID:24780083

  14. Accelerated Adaptive Integration Method

    PubMed Central

    2015-01-01

    Conformational changes that occur upon ligand binding may be too slow to observe on the time scales routinely accessible using molecular dynamics simulations. The adaptive integration method (AIM) leverages the notion that when a ligand is either fully coupled or decoupled, according to λ, barrier heights may change, making some conformational transitions more accessible at certain λ values. AIM adaptively changes the value of λ in a single simulation so that conformations sampled at one value of λ seed the conformational space sampled at another λ value. Adapting the value of λ throughout a simulation, however, does not resolve issues in sampling when barriers remain high regardless of the λ value. In this work, we introduce a new method, called Accelerated AIM (AcclAIM), in which the potential energy function is flattened at intermediate values of λ, promoting the exploration of conformational space as the ligand is decoupled from its receptor. We show, with both a simple model system (Bromocyclohexane) and the more complex biomolecule Thrombin, that AcclAIM is a promising approach to overcome high barriers in the calculation of free energies, without the need for any statistical reweighting or additional processors. PMID:24780083

  15. Vestibulospinal adaptation to microgravity

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.

    1998-01-01

    Human balance control is known to be transiently disrupted after spaceflight; however, the mechanisms responsible for postflight postural ataxia are still under investigation. In this report, we propose a conceptual model of vestibulospinal adaptation based on theoretical adaptive control concepts and supported by the results from a comprehensive study of balance control recovery after spaceflight. The conceptual model predicts that immediately after spaceflight the balance control system of a returning astronaut does not expect to receive gravity-induced afferent inputs and that descending vestibulospinal control of balance is disrupted until the central nervous system is able to cope with the newly available vestibular otolith information. Predictions of the model are tested using data from a study of the neurosensory control of balance in astronauts immediately after landing. In that study, the mechanisms of sensorimotor balance control were assessed under normal, reduced, and/or altered (sway-referenced) visual and somatosensory input conditions. We conclude that the adaptive control model accurately describes the neurobehavioral responses to spaceflight and that similar models of altered sensory, motor, or environmental constraints are needed clinically to predict responses that patients with sensorimotor pathologies may have to various visual-vestibular or changing stimulus environments.

  16. Adaptive Dynamic Bayesian Networks

    SciTech Connect

    Ng, B M

    2007-10-26

    A discrete-time Markov process can be compactly modeled as a dynamic Bayesian network (DBN)--a graphical model with nodes representing random variables and directed edges indicating causality between variables. Each node has a probability distribution, conditional on the variables represented by the parent nodes. A DBN's graphical structure encodes fixed conditional dependencies between variables. But in real-world systems, conditional dependencies between variables may be unknown a priori or may vary over time. Model errors can result if the DBN fails to capture all possible interactions between variables. Thus, we explore the representational framework of adaptive DBNs, whose structure and parameters can change from one time step to the next: a distribution's parameters and its set of conditional variables are dynamic. This work builds on recent work in nonparametric Bayesian modeling, such as hierarchical Dirichlet processes, infinite-state hidden Markov networks and structured priors for Bayes net learning. In this paper, we will explain the motivation for our interest in adaptive DBNs, show how popular nonparametric methods are combined to formulate the foundations for adaptive DBNs, and present preliminary results.

  17. Adaptive building skin structures

    NASA Astrophysics Data System (ADS)

    Del Grosso, A. E.; Basso, P.

    2010-12-01

    The concept of adaptive and morphing structures has gained considerable attention in the recent years in many fields of engineering. In civil engineering very few practical applications are reported to date however. Non-conventional structural concepts like deployable, inflatable and morphing structures may indeed provide innovative solutions to some of the problems that the construction industry is being called to face. To give some examples, searches for low-energy consumption or even energy-harvesting green buildings are amongst such problems. This paper first presents a review of the above problems and technologies, which shows how the solution to these problems requires a multidisciplinary approach, involving the integration of architectural and engineering disciplines. The discussion continues with the presentation of a possible application of two adaptive and dynamically morphing structures which are proposed for the realization of an acoustic envelope. The core of the two applications is the use of a novel optimization process which leads the search for optimal solutions by means of an evolutionary technique while the compatibility of the resulting configurations of the adaptive envelope is ensured by the virtual force density method.

  18. Adaptive colouration in amphibians.

    PubMed

    Rudh, Andreas; Qvarnström, Anna

    2013-01-01

    Amphibians, i.e. salamanders, frogs and caecilians show a wide range of bright colours in combination with contrasting patterns. There is variation among species, populations and also within species and populations. Furthermore, individuals often change colours during developmental stages or in response to environmental factors. This extraordinary variation means that there are excellent opportunities to test hypotheses of the adaptive significance of colours using amphibian species as models. We review the present view of functions of colouration in amphibians with the main focus on relatively unexplored topics. Variation in colouration has been found to play a role in thermoregulation, UV protection, predator avoidance and sexual signalling. However, many proposed cases of adaptive functions of colouration in amphibians remain virtually scientifically unexplored and surprisingly few genes influencing pigmentation or patterning have been detected. We would like to especially encourage more studies that take advantage of recent developments in measurement of visual properties of several possible signalling receivers (e.g. predators, competitors or mates). Future investigations on interactions between behaviour, ecology and vision have the potential to challenge our current view of the adaptive function of colouration in amphibians. PMID:23664831

  19. Climate Change in Central Taiwan: Impact and Adaptive Capacity

    NASA Astrophysics Data System (ADS)

    Ho, Chih-Chao; Chang, Liang-Cheng; Tsai, Chan-Ming

    2013-04-01

    This study aims to evaluate the spatial vulnerability distribution of water resources and propose the adaptive strategies for centeral Taiwan. The main tasks of this study are future water demand estimation, Rainfall trend analysis, climate change impact analysis and adaptive strategy proposing. Future water demand estimation considers the impact of GDP and temperature on domestic use water demand. MK Test, MWP Test and KW Test are used to analyze the variation trend of precipitation, intensity and drought day. The water allocation simulation model build by Vensim are used to analyze climate change impact. Based on impact analysis result, multi-criteria analysis is used to optimize optimal adaptive strategies combination. For Miaoli and Nantou, the furture demand (2031) can be fulfilled under Tiahuahu reservoir and Niaozueitan artificial lake is finished. It is not necessary to propose adaptive strategy. For Taichung, the optimal adaptive combinations for A1B worse case are Water Saving and Futian Domestic Wastewater Treatment Plant. For Changhua, the optimal adaptive strategy for A1B worse case is seawater desalinization. For Yunlin, the optimal adaptive combinations for A1B worse case are Water Saving and tap water pipe replacement.

  20. Adaptive filtering image preprocessing for smart FPA technology

    NASA Astrophysics Data System (ADS)

    Brooks, Geoffrey W.

    1995-05-01

    This paper discusses two applications of adaptive filters for image processing on parallel architectures. The first, based on the results of previously accomplished work, summarizes the analyses of various adaptive filters implemented for pixel-level image prediction. FIR filters, fixed and adaptive IIR filters, and various variable step size algorithms were compared with a focus on algorithm complexity against the ability to predict future pixel values. A gaussian smoothing operation with varying spatial and temporal constants were also applied for comparisons of random noise reductions. The second application is a suggestion to use memory-adaptive IIR filters for detecting and tracking motion within an image. Objects within an image are made of edges, or segments, with varying degrees of motion. An application has been previously published that describes FIR filters connecting pixels and using correlations to determine motion and direction. This implementation seems limited to detecting motion coinciding with FIR filter operation rate and the associated harmonics. Upgrading the FIR structures with adaptive IIR structures can eliminate these limitations. These and any other pixel-level adaptive filtering application require data memory for filter parameters and some basic computational capability. Tradeoffs have to be made between chip real estate and these desired features. System tradeoffs will also have to be made as to where it makes the most sense to do which level of processing. Although smart pixels may not be ready to implement adaptive filters, applications such as these should give the smart pixel designer some long range goals.

  1. Mechanisms of Sensorimotor Adaptation to Centrifugation

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.; Wood, S. J.; Kaufman, G. D.

    1999-01-01

    We postulate that centripetal acceleration induced by centrifugation can be used as an inflight sensorimotor countermeasure to retain and/or promote appropriate crewmember responses to sustained changes in gravito-inertial force conditions. Active voluntary motion is required to promote vestibular system conditioning, and both visual and graviceptor sensory feedback are critical for evaluating internal representations of spatial orientation. The goal of our investigation is to use centrifugation to develop an analog to the conflicting visual/gravito-inertial force environment experienced during space flight, and to use voluntary head movements during centrifugation to study mechanisms of adaptation to altered gravity environments. We address the following two hypotheses: (1) Discordant canal-otolith feedback during head movements in a hypergravity tilted environment will cause a reorganization of the spatial processing required for multisensory integration and motor control, resulting in decreased postural stability upon return to normal gravity environment. (2) Adaptation to this "gravito-inertial tilt distortion" will result in a negative after-effect, and readaptation will be expressed by return of postural stability to baseline conditions. During the third year of our grant we concentrated on examining changes in balance control following 90-180 min of centrifugation at 1.4 9. We also began a control study in which we exposed subjects to 90 min of sustained roll tilt in a static (non-rotating) chair. This allowed us to examine adaptation to roll tilt without the hypergravity induced by centrifugation. To these ends, we addressed the question: Is gravity an internal calibration reference for postural control? The remainder of this report is limited to presenting preliminary findings from this study.

  2. Adaptive subwavelength control of nano-optical fields.

    PubMed

    Aeschlimann, Martin; Bauer, Michael; Bayer, Daniela; Brixner, Tobias; García de Abajo, F Javier; Pfeiffer, Walter; Rohmer, Martin; Spindler, Christian; Steeb, Felix

    2007-03-15

    Adaptive shaping of the phase and amplitude of femtosecond laser pulses has been developed into an efficient tool for the directed manipulation of interference phenomena, thus providing coherent control over various quantum-mechanical systems. Temporal resolution in the femtosecond or even attosecond range has been demonstrated, but spatial resolution is limited by diffraction to approximately half the wavelength of the light field (that is, several hundred nanometres). Theory has indicated that the spatial limitation to coherent control can be overcome with the illumination of nanostructures: the spatial near-field distribution was shown to depend on the linear chirp of an irradiating laser pulse. An extension of this idea to adaptive control, combining multiparameter pulse shaping with a learning algorithm, demonstrated the generation of user-specified optical near-field distributions in an optimal and flexible fashion. Shaping of the polarization of the laser pulse provides a particularly efficient and versatile nano-optical manipulation method. Here we demonstrate the feasibility of this concept experimentally, by tailoring the optical near field in the vicinity of silver nanostructures through adaptive polarization shaping of femtosecond laser pulses and then probing the lateral field distribution by two-photon photoemission electron microscopy. In this combination of adaptive control and nano-optics, we achieve subwavelength dynamic localization of electromagnetic intensity on the nanometre scale and thus overcome the spatial restrictions of conventional optics. This experimental realization of theoretical suggestions opens a number of perspectives in coherent control, nano-optics, nonlinear spectroscopy, and other research fields in which optical investigations are carried out with spatial or temporal resolution. PMID:17361179

  3. An explanatory framework for adaptive personality differences

    PubMed Central

    Wolf, Max; Weissing, Franz J.

    2010-01-01

    We develop a conceptual framework for the understanding of animal personalities in terms of adaptive evolution. We focus on two basic questions. First, why do behavioural types exhibit limited behavioural plasticity, that is, behavioural correlations both across contexts and over time? Second, how can multiple behavioural types coexist within a single population? We emphasize differences in ‘state’ among individuals in combination with state-dependent behaviour. Some states are inherently stable and individual differences in such states can explain stable differences in suites of behaviour if it is adaptive to make behaviour in various contexts dependent on such states. Behavioural stability and cross-context correlations in behaviour are more difficult to explain if individual states are potentially more variable. In such cases stable personalities can result from state-dependent behaviour if state and behaviour mutually reinforce each other by feedback mechanisms. We discuss various evolutionary mechanisms for the maintenance of variation (in states and/or behaviour), including frequency-dependent selection, spatial variation with incomplete matching between habitat and phenotype, bet-hedging in a temporally fluctuating environment, and non-equilibrium dynamics. Although state differences are important, we also discuss how social conventions and social signalling can give rise to adaptive personality differences in the absence of state differences. PMID:21078648

  4. GENERATING SOPHISTICATED SPATIAL SURROGATES USING THE MIMS SPATIAL ALLOCATOR

    EPA Science Inventory

    The Multimedia Integrated Modeling System (MIMS) Spatial Allocator is open-source software for generating spatial surrogates for emissions modeling, changing the map projection of Shapefiles, and performing other types of spatial allocation that does not require the use of a comm...

  5. Visually induced adaptation in three-dimensional organization of primate vestibuloocular reflex

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1998-01-01

    The adaptive plasticity of the spatial organization of the vestibuloocular reflex (VOR) has been investigated in intact and canal-plugged primates using 2-h exposure to conflicting visual (optokinetic, OKN) and vestibular rotational stimuli about mutually orthogonal axes (generating torsional VOR + vertical OKN, torsional VOR + horizontal OKN, vertical VOR + horizontal OKN, and horizontal VOR + vertical OKN). Adaptation protocols with 0.5-Hz (+/-18 degrees ) head movements about either an earth-vertical or an earth-horizontal axis induced orthogonal response components as high as 40-70% of those required for ideal adaptation. Orthogonal response gains were highest at the adapting frequency with phase leads present at lower and phase lags present at higher frequencies. Furthermore, the time course of adaptation, as well as orthogonal response dynamics were similar and relatively independent of the particular visual/vestibular stimulus combination. Low-frequency (0. 05 Hz, vestibular stimulus: +/-60 degrees ; optokinetic stimulus: +/-180 degrees ) adaptation protocols with head movements about an earth-vertical axis induced smaller orthogonal response components that did not exceed 20-40% of the head velocity stimulus (i.e., approximately 10% of that required for ideal adaptation). At the same frequency, adaptation with head movements about an earth-horizontal axis generated large orthogonal responses that reached values as high as 100-120% of head velocity after 2 h of adaptation (i.e., approximately 40% of ideal adaptation gains). The particular spatial and temporal response characteristics after low-frequency, earth-horizontal axis adaptation in both intact and canal-plugged animals strongly suggests that the orienting (and perhaps translational) but not inertial (velocity storage) components of the primate otolith-ocular system exhibit spatial adaptability. Due to the particular nested arrangement of the visual and vestibular stimuli, the optic flow pattern

  6. Subcell resolution in simplex stochastic collocation for spatial discontinuities

    NASA Astrophysics Data System (ADS)

    Witteveen, Jeroen A. S.; Iaccarino, Gianluca

    2013-10-01

    Subcell resolution has been used in the Finite Volume Method (FVM) to obtain accurate approximations of discontinuities in the physical space. Stochastic methods are usually based on local adaptivity for resolving discontinuities in the stochastic dimensions. However, the adaptive refinement in the probability space is ineffective in the non-intrusive uncertainty quantification framework, if the stochastic discontinuity is caused by a discontinuity in the physical space with a random location. The dependence of the discontinuity location in the probability space on the spatial coordinates then results in a staircase approximation of the statistics, which leads to first-order error convergence and an underprediction of the maximum standard deviation. To avoid these problems, we introduce subcell resolution into the Simplex Stochastic Collocation (SSC) method for obtaining a truly discontinuous representation of random spatial discontinuities in the interior of the cells discretizing the probability space. The presented SSC-SR method is based on resolving the discontinuity location in the probability space explicitly as function of the spatial coordinates and extending the stochastic response surface approximations up to the predicted discontinuity location. The applications to a linear advection problem, the inviscid Burgers' equation, a shock tube problem, and the transonic flow over the RAE 2822 airfoil show that SSC-SR resolves random spatial discontinuities with multiple stochastic and spatial dimensions accurately using a minimal number of samples.

  7. Subcell resolution in simplex stochastic collocation for spatial discontinuities

    SciTech Connect

    Witteveen, Jeroen A.S.; Iaccarino, Gianluca

    2013-10-15

    Subcell resolution has been used in the Finite Volume Method (FVM) to obtain accurate approximations of discontinuities in the physical space. Stochastic methods are usually based on local adaptivity for resolving discontinuities in the stochastic dimensions. However, the adaptive refinement in the probability space is ineffective in the non-intrusive uncertainty quantification framework, if the stochastic discontinuity is caused by a discontinuity in the physical space with a random location. The dependence of the discontinuity location in the probability space on the spatial coordinates then results in a staircase approximation of the statistics, which leads to first-order error convergence and an underprediction of the maximum standard deviation. To avoid these problems, we introduce subcell resolution into the Simplex Stochastic Collocation (SSC) method for obtaining a truly discontinuous representation of random spatial discontinuities in the interior of the cells discretizing the probability space. The presented SSC–SR method is based on resolving the discontinuity location in the probability space explicitly as function of the spatial coordinates and extending the stochastic response surface approximations up to the predicted discontinuity location. The applications to a linear advection problem, the inviscid Burgers’ equation, a shock tube problem, and the transonic flow over the RAE 2822 airfoil show that SSC–SR resolves random spatial discontinuities with multiple stochastic and spatial dimensions accurately using a minimal number of samples.

  8. Theory of psychological adaptive modes.

    PubMed

    Lehti, Juha

    2016-05-01

    When an individual is facing a stressor and normal stress-response mechanism cannot guarantee sufficient adaptation, special emotional states, adaptive modes, are activated (for example a depressive reaction). Adaptive modes are involuntary states of mind, they are of comprehensive nature, they interfere with normal functioning, and they cannot be repressed or controlled the same way as many emotions. Their transformational nature differentiates them from other emotional states. The object of the adaptive mode is to optimize the problem-solving abilities according to the situation that has provoked the mode. Cognitions and emotions during the adaptive mode are different than in a normal mental state. These altered cognitions and emotional reactions guide the individual to use the correct coping skills in order to deal with the stressor. Successful adaptation will cause the adaptive mode to fade off since the adaptive mode is no longer necessary, and the process as a whole will lead to raised well-being. However, if the adaptation process is inadequate, then the transformation period is prolonged, and the adaptive mode will turn into a dysfunctional state. Many psychiatric disorders are such maladaptive processes. The maladaptive processes can be turned into functional ones by using adaptive skills that are used in functional adaptive processes. PMID:27063089

  9. A New Look at Adaptation.

    ERIC Educational Resources Information Center

    Buttolph, Diana

    1992-01-01

    Examines terms used to describe the changing of an innovation by an adopter, including reinvention, fidelity, adaptation, and mutual adaptation. Three explanations for adaptation of innovation--interpretation, adopter innovativeness, and generative learning--are discussed; and the theory of generative learning is used to explain internal…

  10. Discovering fuzzy spatial association rules

    NASA Astrophysics Data System (ADS)

    Kacar, Esen; Cicekli, Nihan K.

    2002-03-01

    Discovering interesting, implicit knowledge and general relationships in geographic information databases is very important to understand and use these spatial data. One of the methods for discovering this implicit knowledge is mining spatial association rules. A spatial association rule is a rule indicating certain association relationships among a set of spatial and possibly non-spatial predicates. In the mining process, data is organized in a hierarchical manner. However, in real-world applications it may not be possible to construct a crisp structure for this data, instead some fuzzy structures should be used. Fuzziness, i.e. partial belonging of an item to more than one sub-item in the hierarchy, could be applied to the data itself, and also to the hierarchy of spatial relations. This paper shows that, strong association rules can be mined from large spatial databases using fuzzy concept and spatial relation hierarchies.

  11. Different Dimensions of Spatial Ability.

    ERIC Educational Resources Information Center

    Eliot, John; Hauptman, Anna

    1981-01-01

    Indicates that spatial ability describes a variety of different behaviors and briefly reviews efforts to define intelligence factors and identify processes involved in solving tasks requiring spatial ability. (DS)

  12. Dynamics of Dual Prism Adaptation: Relating Novel Experimental Results to a Minimalistic Neural Model

    PubMed Central

    Arévalo, Orlando; Bornschlegl, Mona A.; Eberhardt, Sven; Ernst, Udo; Pawelzik, Klaus; Fahle, Manfred

    2013-01-01

    In everyday life, humans interact with a dynamic environment often requiring rapid adaptation of visual perception and motor control. In particular, new visuo–motor mappings must be learned while old skills have to be kept, such that after adaptation, subjects may be able to quickly change between two different modes of generating movements (‘dual–adaptation’). A fundamental question is how the adaptation schedule determines the acquisition speed of new skills. Given a fixed number of movements in two different environments, will dual–adaptation be faster if switches (‘phase changes’) between the environments occur more frequently? We investigated the dynamics of dual–adaptation under different training schedules in a virtual pointing experiment. Surprisingly, we found that acquisition speed of dual visuo–motor mappings in a pointing task is largely independent of the number of phase changes. Next, we studied the neuronal mechanisms underlying this result and other key phenomena of dual–adaptation by relating model simulations to experimental data. We propose a simple and yet biologically plausible neural model consisting of a spatial mapping from an input layer to a pointing angle which is subjected to a global gain modulation. Adaptation is performed by reinforcement learning on the model parameters. Despite its simplicity, the model provides a unifying account for a broad range of experimental data: It quantitatively reproduced the learning rates in dual–adaptation experiments for both direct effect, i.e. adaptation to prisms, and aftereffect, i.e. behavior after removal of prisms, and their independence on the number of phase changes. Several other phenomena, e.g. initial pointing errors that are far smaller than the induced optical shift, were also captured. Moreover, the underlying mechanisms, a local adaptation of a spatial mapping and a global adaptation of a gain factor, explained asymmetric spatial transfer and generalization of

  13. Adaptive Optics for Industry and Medicine

    NASA Astrophysics Data System (ADS)

    Dainty, Christopher

    2008-01-01

    pt. 1. Wavefront correctors and control. Liquid crystal lenses for correction of presbyopia (Invited Paper) / Guoqiang Li and Nasser Peyghambarian. Converging and diverging liquid crystal lenses (oral paper) / Andrew X. Kirby, Philip J. W. Hands, and Gordon D. Love. Liquid lens technology for miniature imaging systems: status of the technology, performance of existing products and future trends (invited paper) / Bruno Berge. Carbon fiber reinforced polymer deformable mirrors for high energy laser applications (oral paper) / S. R. Restaino ... [et al.]. Tiny multilayer deformable mirrors (oral paper) / Tatiana Cherezova ... [et al.]. Performance analysis of piezoelectric deformable mirrors (oral paper) / Oleg Soloviev, Mikhail Loktev and Gleb Vdovin. Deformable membrane mirror with high actuator density and distributed control (oral paper) / Roger Hamelinck ... [et al.]. Characterization and closed-loop demonstration of a novel electrostatic membrane mirror using COTS membranes (oral paper) / David Dayton ... [et al.]. Electrostatic micro-deformable mirror based on polymer materials (oral paper) / Frederic Zamkotsian ... [et al.]. Recent progress in CMOS integrated MEMS A0 mirror development (oral paper) / A. Gehner ... [et al.]. Compact large-stroke piston-tip-tilt actuator and mirror (oral paper) / W. Noell ... [et al.]. MEMS deformable mirrors for high performance AO applications (oral paper) / Paul Bierden, Thomas Bifano and Steven Cornelissen. A versatile interferometric test-rig for the investigation and evaluation of ophthalmic AO systems (poster paper) / Steve Gruppetta, Jiang Jian Zhong and Luis Diaz-Santana. Woofer-tweeter adaptive optics (poster paper) / Thomas Farrell and Chris Dainty. Deformable mirrors based on transversal piezoeffect (poster paper) / Gleb Vdovin, Mikhail Loktev and Oleg Soloviev. Low-cost spatial light modulators for ophthalmic applications (poster paper) / Vincente Durán ... [et al.]. Latest MEMS DM developments and the path ahead

  14. Speckle-adaptive VISAR fringe analysis technique

    NASA Astrophysics Data System (ADS)

    Erskine, David

    2015-06-01

    A line-VISAR (velocity interferometer) is an important diagnostic in shock physics, simultaneously measuring many fringe histories of adjacent portions of a target splayed along a line on a target, with fringes recorded vs time and space by a streak camera. Due to laser illumination speckle (spatial intensity variation), target surface unevenness, or rapid spatial variation of target physics, conventional fringe analysis algorithms which do not properly model these variations can suffer from inferred velocity (fringe phase) errors. A speckle-adaptive algorithm has been developed which senses the interferometer and illumination parameters for each individual row (spatial position Y) of the 2d interferogram, so that the interferogram can be compensated for Y-dependent nonfringing intensity, fringe visibility, and nonlinear phase distribution. In numerical simulations and on actual data we have found this individual row-by-row modeling improves the accuracy of the result, compared to a conventional column-by-column analysis approach. Prepared by LLNL under Contract DE-AC52-07NA27344.

  15. Adapting unmanned aerial vehicles for turbulence measurement

    NASA Astrophysics Data System (ADS)

    Witte, Brandon; Helvey, Jacob; Mullen, Jon; Thamann, Michael; Bailey, Sean

    2015-11-01

    We describe the approach of using highly instrumented and autonomous unmanned aerial vehicles (UAVs) to spatially interrogate the atmospheric boundary layer's turbulent flow structure. This approach introduces new capabilities not available in contemporary micro-meteorological measurement techniques such as instrumented towers, balloons, and manned aircraft. A key advantage in utilizing UAVs as an atmospheric turbulence research tool is that it reduces the reliance on assumptions regarding temporal evolution of the turbulence inherent within Taylor's frozen flow hypothesis by facilitating the ability to spatially sample the flow field over a wide range of spatial scales. In addition, UAVs offer the ability to measure in a wide range of boundary conditions and distance from the earth's surface, the ability to gather many boundary layer thicknesses of data during brief periods of statistical quasi-stationarity, and the ability to acquire data where and when it is needed. We describe recent progress made in manufacturing purpose-built airframes and adapting pre-fabricated airframes for these measurements by integrating sensors into those airframes and developing data analysis techniques to isolate the atmospheric turbulence from the measured velocity signal. This research is supported by NSF Award CBET-1351411.

  16. Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail

    2015-04-01

    The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press

  17. PSF halo reduction in adaptive optics using dynamic pupil masking.

    PubMed

    Osborn, James; Myers, Richard M; Love, Gordon D

    2009-09-28

    We describe a method to reduce residual speckles in an adaptive optics system which add to the halo of the point spread function (PSF). The halo is particularly problematic in astronomical applications involving the detection of faint companions. Areas of the pupil are selected where the residual wavefront aberrations are large and these are masked using a spatial light modulator. The method is also suitable for smaller telescopes without adaptive optics as a relatively simple method to increase the resolution of the telescope. We describe the principle of the technique and show simulation results. PMID:19907514

  18. Robust quantum spatial search

    NASA Astrophysics Data System (ADS)

    Tulsi, Avatar

    2016-07-01

    Quantum spatial search has been widely studied with most of the study focusing on quantum walk algorithms. We show that quantum walk algorithms are extremely sensitive to systematic errors. We present a recursive algorithm which offers significant robustness to certain systematic errors. To search N items, our recursive algorithm can tolerate errors of size O(1{/}√{ln N}) which is exponentially better than quantum walk algorithms for which tolerable error size is only O(ln N{/}√{N}). Also, our algorithm does not need any ancilla qubit. Thus our algorithm is much easier to implement experimentally compared to quantum walk algorithms.

  19. Spatial Manipulation with Microfluidics

    PubMed Central

    Lin, Benjamin; Levchenko, Andre

    2015-01-01

    Biochemical gradients convey information through space, time, and concentration, and are ultimately capable of spatially resolving distinct cellular phenotypes, such as differentiation, proliferation, and migration. How these gradients develop, evolve, and function during development, homeostasis, and various disease states is a subject of intense interest across a variety of disciplines. Microfluidic technologies have become essential tools for investigating gradient sensing in vitro due to their ability to precisely manipulate fluids on demand in well-controlled environments at cellular length scales. This review will highlight their utility for studying gradient sensing along with relevant applications to biology. PMID:25905100

  20. Spatial manipulation with microfluidics.

    PubMed

    Lin, Benjamin; Levchenko, Andre

    2015-01-01

    Biochemical gradients convey information through space, time, and concentration, and are ultimately capable of spatially resolving distinct cellular phenotypes, such as differentiation, proliferation, and migration. How these gradients develop, evolve, and function during development, homeostasis, and various disease states is a subject of intense interest across a variety of disciplines. Microfluidic technologies have become essential tools for investigating gradient sensing in vitro due to their ability to precisely manipulate fluids on demand in well-controlled environments at cellular length scales. This review will highlight their utility for studying gradient sensing along with relevant applications to biology. PMID:25905100

  1. Robust quantum spatial search

    NASA Astrophysics Data System (ADS)

    Tulsi, Avatar

    2016-04-01

    Quantum spatial search has been widely studied with most of the study focusing on quantum walk algorithms. We show that quantum walk algorithms are extremely sensitive to systematic errors. We present a recursive algorithm which offers significant robustness to certain systematic errors. To search N items, our recursive algorithm can tolerate errors of size O(1{/}√{N}) which is exponentially better than quantum walk algorithms for which tolerable error size is only O(ln N{/}√{N}) . Also, our algorithm does not need any ancilla qubit. Thus our algorithm is much easier to implement experimentally compared to quantum walk algorithms.

  2. Spatial Premise Integration in Hindi

    ERIC Educational Resources Information Center

    Mishra, Ramesh Kumar

    2007-01-01

    Spatial reasoning or locating objects in a spatial space has long been an important area of research in cognitive science because analyzing space categorically and finding objects is a fundamental act of mental perception and cognition. Premise integration in tasks of spatial reasoning has recently received considerable research attention. This is…

  3. Contour Integration across Spatial Frequency

    ERIC Educational Resources Information Center

    Persike, Malte; Olzak, Lynn A.; Meinhardt, Gunter

    2009-01-01

    Association field models of contour integration suggest that local band-pass elements are spatially grouped to global contours within limited bands of spatial frequency (Field, Hayes, & Hess, 1993). While results for local orientation and spacing variation render support for AF models, effects of spatial frequency (SF) have rarely been addressed.…

  4. Thinking About Walking: Effects of Conscious Correction Versus Distraction on Locomotor Adaptation

    PubMed Central

    Malone, Laura A.

    2010-01-01

    Control of the human walking pattern normally requires little thought, with conscious control used only in the face of a challenging environment or a perturbation. We have previously shown that people can adapt spatial and temporal aspects of walking to a sustained perturbation generated by a split-belt treadmill. Here we tested whether conscious correction of walking, versus distraction from it, modifies adaptation. Conscious correction of stepping may expedite the adaptive process and help to form a new walking pattern. However, because walking is normally an automatic process, it is possible that conscious effort could interfere with adaptation, whereas distraction might improve it by removing competing voluntary control. Three groups of subjects were studied: a control group was given no specific instructions, a conscious correction group was instructed how to step and given intermittent visual feedback of stepping during adaptation, and a distraction group performed a dual-task during adaptation. After adaptation, retention of aftereffects was assessed in all groups during normal treadmill walking without conscious effort, feedback, or distraction. We found that conscious correction speeds adaptation, whereas distraction slows it. Subjects trained with distraction retained aftereffects longest, suggesting that the training used during adaptation predicts the time course of deadaptation. An unexpected finding was that these manipulations affected the adaptation rate of spatial but not temporal elements of walking. Thus conscious processes can preferentially access the spatial walking pattern. It may be that spatial and temporal controls of locomotion are accessible through distinct neural circuits, with the former being most sensitive to conscious effort or distraction. PMID:20147417

  5. Adaptive nonlinear flight control

    NASA Astrophysics Data System (ADS)

    Rysdyk, Rolf Theoduor

    1998-08-01

    Research under supervision of Dr. Calise and Dr. Prasad at the Georgia Institute of Technology, School of Aerospace Engineering. has demonstrated the applicability of an adaptive controller architecture. The architecture successfully combines model inversion control with adaptive neural network (NN) compensation to cancel the inversion error. The tiltrotor aircraft provides a specifically interesting control design challenge. The tiltrotor aircraft is capable of converting from stable responsive fixed wing flight to unstable sluggish hover in helicopter configuration. It is desirable to provide the pilot with consistency in handling qualities through a conversion from fixed wing flight to hover. The linear model inversion architecture was adapted by providing frequency separation in the command filter and the error-dynamics, while not exiting the actuator modes. This design of the architecture provides for a model following setup with guaranteed performance. This in turn allowed for convenient implementation of guaranteed handling qualities. A rigorous proof of boundedness is presented making use of compact sets and the LaSalle-Yoshizawa theorem. The analysis allows for the addition of the e-modification which guarantees boundedness of the NN weights in the absence of persistent excitation. The controller is demonstrated on the Generic Tiltrotor Simulator of Bell-Textron and NASA Ames R.C. The model inversion implementation is robustified with respect to unmodeled input dynamics, by adding dynamic nonlinear damping. A proof of boundedness of signals in the system is included. The effectiveness of the robustification is also demonstrated on the XV-15 tiltrotor. The SHL Perceptron NN provides a more powerful application, based on the universal approximation property of this type of NN. The SHL NN based architecture is also robustified with the dynamic nonlinear damping. A proof of boundedness extends the SHL NN augmentation with robustness to unmodeled actuator

  6. A hierarchical structure for automatic meshing and adaptive FEM analysis

    NASA Technical Reports Server (NTRS)

    Kela, Ajay; Saxena, Mukul; Perucchio, Renato

    1987-01-01

    A new algorithm for generating automatically, from solid models of mechanical parts, finite element meshes that are organized as spatially addressable quaternary trees (for 2-D work) or octal trees (for 3-D work) is discussed. Because such meshes are inherently hierarchical as well as spatially addressable, they permit efficient substructuring techniques to be used for both global analysis and incremental remeshing and reanalysis. The global and incremental techniques are summarized and some results from an experimental closed loop 2-D system in which meshing, analysis, error evaluation, and remeshing and reanalysis are done automatically and adaptively are presented. The implementation of 3-D work is briefly discussed.

  7. Adaptation in Collaborative Governance Regimes

    NASA Astrophysics Data System (ADS)

    Emerson, Kirk; Gerlak, Andrea K.

    2014-10-01

    Adaptation and the adaptive capacity of human and environmental systems have been of central concern to natural and social science scholars, many of whom characterize and promote the need for collaborative cross-boundary systems that are seen as flexible and adaptive by definition. Researchers who study collaborative governance systems in the public administration, planning and policy literature have paid less attention to adaptive capacity specifically and institutional adaptation in general. This paper bridges the two literatures and finds four common dimensions of capacity, including structural arrangements, leadership, knowledge and learning, and resources. In this paper, we focus on institutional adaptation in the context of collaborative governance regimes and try to clarify and distinguish collaborative capacity from adaptive capacity and their contributions to adaptive action. We posit further that collaborative capacities generate associated adaptive capacities thereby enabling institutional adaptation within collaborative governance regimes. We develop these distinctions and linkages between collaborative and adaptive capacities with the help of an illustrative case study in watershed management within the National Estuary Program.

  8. Adaptation in collaborative governance regimes.

    PubMed

    Emerson, Kirk; Gerlak, Andrea K

    2014-10-01

    Adaptation and the adaptive capacity of human and environmental systems have been of central concern to natural and social science scholars, many of whom characterize and promote the need for collaborative cross-boundary systems that are seen as flexible and adaptive by definition. Researchers who study collaborative governance systems in the public administration, planning and policy literature have paid less attention to adaptive capacity specifically and institutional adaptation in general. This paper bridges the two literatures and finds four common dimensions of capacity, including structural arrangements, leadership, knowledge and learning, and resources. In this paper, we focus on institutional adaptation in the context of collaborative governance regimes and try to clarify and distinguish collaborative capacity from adaptive capacity and their contributions to adaptive action. We posit further that collaborative capacities generate associated adaptive capacities thereby enabling institutional adaptation within collaborative governance regimes. We develop these distinctions and linkages between collaborative and adaptive capacities with the help of an illustrative case study in watershed management within the National Estuary Program. PMID:25073764

  9. Renal adaptation during hibernation

    PubMed Central

    Martin, Sandra L.; Jain, Swati; Keys, Daniel; Edelstein, Charles L.

    2013-01-01

    Hibernators periodically undergo profound physiological changes including dramatic reductions in metabolic, heart, and respiratory rates and core body temperature. This review discusses the effect of hypoperfusion and hypothermia observed during hibernation on glomerular filtration and renal plasma flow, as well as specific adaptations in renal architecture, vasculature, the renin-angiotensin system, and upregulation of possible protective mechanisms during the extreme conditions endured by hibernating mammals. Understanding the mechanisms of protection against organ injury during hibernation may provide insights into potential therapies for organ injury during cold storage and reimplantation during transplantation. PMID:24049148

  10. Adaptive Optical Scanning Holography

    PubMed Central

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  11. Adaptive Transfer Function Networks

    SciTech Connect

    Goulding, J.R. |

    1993-06-01

    Real-time pattern classification and time-series forecasting applications continue to drive artificial neural network (ANN) technology. As ANNs increase in complexity, the throughput of digital computer simulations decreases. A novel ANN, the Adaptive Transfer Function Network (ATF-Net), directly addresses the issue of throughput. ATF-Nets are global mapping equations generated by the superposition of ensembles of neurodes having arbitrary continuous functions receiving encoded input data. ATF-Nets may be implemented on parallel digital computers. An example is presented which illustrates a four-fold increase in computational throughput.

  12. Adaptive Transfer Function Networks

    SciTech Connect

    Goulding, J.R. Portland State Univ., OR . Dept. of Electrical Engineering)

    1993-01-01

    Real-time pattern classification and time-series forecasting applications continue to drive artificial neural network (ANN) technology. As ANNs increase in complexity, the throughput of digital computer simulations decreases. A novel ANN, the Adaptive Transfer Function Network (ATF-Net), directly addresses the issue of throughput. ATF-Nets are global mapping equations generated by the superposition of ensembles of neurodes having arbitrary continuous functions receiving encoded input data. ATF-Nets may be implemented on parallel digital computers. An example is presented which illustrates a four-fold increase in computational throughput.

  13. Adaptive Optical Scanning Holography.

    PubMed

    Tsang, P W M; Poon, Ting-Chung; Liu, J-P

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  14. Adaptive Algebraic Smoothers

    SciTech Connect

    Philip, Bobby; Chartier, Dr Timothy

    2012-01-01

    methods based on Local Sensitivity Analysis (LSA). The method can be used in the context of geometric and algebraic multigrid methods for constructing smoothers, and in the context of Krylov methods for constructing block preconditioners. It is suitable for both constant and variable coecient problems. Furthermore, the method can be applied to systems arising from both scalar and coupled system partial differential equations (PDEs), as well as linear systems that do not arise from PDEs. The simplicity of the method will allow it to be easily incorporated into existing multigrid and Krylov solvers while providing a powerful tool for adaptively constructing methods tuned to a problem.

  15. Reentry vehicle adaptive telemetry

    SciTech Connect

    Kidner, R.E.

    1993-09-01

    In RF telemetry (TM) the allowable RF bandwidth limits the amount of data in the telemetered data set. Typically the data set is less than ideal to accommodate all aspects of a test. In the case of diagnostic data, the compromise often leaves insufficient diagnostic data when problems occur. As a solution, intelligence was designed into a TM, allowing it to adapt to changing data requirements. To minimize the computational requirements for an intelligent TM, a fuzzy logic inference engine was developed. This reference engine was simulated on a PC and then loaded into a TM hardware package for final testing.

  16. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    Much of human reasoning is approximate in nature. Formal models of reasoning traditionally try to be precise and reject the fuzziness of concepts in natural use and replace them with non-fuzzy scientific explicata by a process of precisiation. As an alternate to this approach, it has been suggested that rather than regard human reasoning processes as themselves approximating to some more refined and exact logical process that can be carried out with mathematical precision, the essence and power of human reasoning is in its capability to grasp and use inexact concepts directly. This view is supported by the widespread fuzziness of simple everyday terms (e.g., near tall) and the complexity of ordinary tasks (e.g., cleaning a room). Spatial reasoning is an area where humans consistently reason approximately with demonstrably good results. Consider the case of crossing a traffic intersection. We have only an approximate idea of the locations and speeds of various obstacles (e.g., persons and vehicles), but we nevertheless manage to cross such traffic intersections without any harm. The details of our mental processes which enable us to carry out such intricate tasks in such apparently simple manner are not well understood. However, it is that we try to incorporate such approximate reasoning techniques in our computer systems. Approximate spatial reasoning is very important for intelligent mobile agents (e.g., robots), specially for those operating in uncertain or unknown or dynamic domains.

  17. Spatial representation of soundscape

    NASA Astrophysics Data System (ADS)

    Boubezari, Mohammed; Bento Coelho, Jos-Luis

    2001-05-01

    For the last 30 years the concept of soundscape has been largely adopted in many scientific disciplines and by the urban experts for the benefit of a better comprehension and management of the sound environment. However, the spatial representation of the soundscape as a simple tool for the description, management or composition of sound environment is always needed. In this article a method is presented for the spatial sound representation with differentiated sources. The first results are shown. This method gives an account of the soundscape as close as possible to the way it can be perceived by the listener in each location. This method generates qualitative sound maps in a reduced urban scale, based on in situ measurements and on the implication of the measuring subject perception. The maps are sufficient enough to isolate many sound sources of the overall sound field. In this manner, sound quality refers to the sound attribute of a perceived object. It is neither an aesthetic judgment nor traditional psychoacoustics criteria. Concrete examples of application to squares in the city of Lisbon will be shown and discussed. The limits and the prospects of such a qualitative representation will also be presented and discussed.

  18. Spatial cyclotron damping

    NASA Technical Reports Server (NTRS)

    Olson, C. L.

    1970-01-01

    To examine spatial electron cyclotron damping in a uniform Vlasov plasma, it is noted that the plasma response to a steady-state transverse excitation consists of several terms (dielectric-pole, free-streaming, and branch-cut), but that the cyclotron-damped pole term is the dominant term for z l = c/w sub ce provided (w sub pe/w sub ce) squared (c/a) is much greater than 1. If the latter inequality does not hold, then the free-streaming and branch-cut terms persist well past z = c/w sub ce as w sub 1 approaches w sub ce, making experimental measurement of cyclotron damping essentially impossible. Considering only (w sub pe/w sub ce) squared (c/a) is much greater than 1, it is shown how collisional effects should be estimated and how a finite-width excitation usually has little effect on the cyclotron-damped part of the response. Criteria is established concerning collisional damping, measurable damping length sizes, and allowed uncertainty in the magnetic field Beta. Results of numerical calculations, showing the regions in the appropriate parameter spaces that meet these criteria, are presented. From these results, one can determine the feasibility of, or propose parameter values for, an experiment designed to measure spatial cyclotron damping. It is concluded that the electron temperature T sub e should be at least 1 ev., and preferably 10 ev. or higher, for a successful experiment.

  19. A local coastal adaptation pathway

    NASA Astrophysics Data System (ADS)

    Barnett, J.; Graham, S.; Mortreux, C.; Fincher, R.; Waters, E.; Hurlimann, A.

    2014-12-01

    Local governments are not adapting to sea-level rise because it is difficult to build consensus on the need for change and the best way to implement it. In theory, adaptation pathways can resolve this impasse. Adaptation pathways are a sequence of linked strategies that are triggered by a change in environmental conditions, and in which initial decisions can have low regrets and preserve options for future generations. We report on a project that sought to empirically test the relevance and feasibility of a local pathway for adapting to sea-level rise. We find that triggers of change that have social impacts are salient to local people, and developing a local adaptation pathway helps build consensus among diverse constituencies. Our results show that adaptation pathways are feasible at the local scale, offering a low-risk, low-cost way to begin the long process of adaptation to sea-level rise.

  20. Classifying climate change adaptation frameworks

    NASA Astrophysics Data System (ADS)

    Armstrong, Jennifer

    2014-05-01

    Complex socio-ecological demographics are factors that must be considered when addressing adaptation to the potential effects of climate change. As such, a suite of deployable climate change adaptation frameworks is necessary. Multiple frameworks that are required to communicate the risks of climate change and facilitate adaptation. Three principal adaptation frameworks have emerged from the literature; Scenario - Led (SL), Vulnerability - Led (VL) and Decision - Centric (DC). This study aims to identify to what extent these adaptation frameworks; either, planned or deployed are used in a neighbourhood vulnerable to climate change. This work presents a criterion that may be used as a tool for identifying the hallmarks of adaptation frameworks and thus enabling categorisation of projects. The study focussed on the coastal zone surrounding the Sizewell nuclear power plant in Suffolk in the UK. An online survey was conducted identifying climate change adaptation projects operating in the study area. This inventory was analysed to identify the hallmarks of each adaptation project; Levels of dependency on climate model information, Metrics/units of analysis utilised, Level of demographic knowledge, Level of stakeholder engagement, Adaptation implementation strategies and Scale of adaptation implementation. The study found that climate change adaptation projects could be categorised, based on the hallmarks identified, in accordance with the published literature. As such, the criterion may be used to establish the matrix of adaptation frameworks present in a given area. A comprehensive summary of the nature of adaptation frameworks in operation in a locality provides a platform for further comparative analysis. Such analysis, enabled by the criterion, may aid the selection of appropriate frameworks enhancing the efficacy of climate change adaptation.

  1. Adapting agriculture to climate change: a review

    NASA Astrophysics Data System (ADS)

    Anwar, Muhuddin Rajin; Liu, De Li; Macadam, Ian; Kelly, Georgina

    2013-07-01

    The agricultural sector is highly vulnerable to future climate changes and climate variability, including increases in the incidence of extreme climate events. Changes in temperature and precipitation will result in changes in land and water regimes that will subsequently affect agricultural productivity. Given the gradual change of climate in the past, historically, farmers have adapted in an autonomous manner. However, with large and discrete climate change anticipated by the end of this century, planned and transformational changes will be needed. In light of these, the focus of this review is on farm-level and farmers responses to the challenges of climate change both spatially and over time. In this review of adapting agriculture to climate change, the nature, extent, and causes of climate change are analyzed and assessed. These provide the context for adapting agriculture to climate change. The review identifies the binding constraints to adaptation at the farm level. Four major priority areas are identified to relax these constraints, where new initiatives would be required, i.e., information generation and dissemination to enhance farm-level awareness, research and development (R&D) in agricultural technology, policy formulation that facilitates appropriate adaptation at the farm level, and strengthening partnerships among the relevant stakeholders. Forging partnerships among R&D providers, policy makers, extension agencies, and farmers would be at the heart of transformational adaptation to climate change at the farm level. In effecting this transformational change, sustained efforts would be needed for the attendant requirements of climate and weather forecasting and innovation, farmer's training, and further research to improve the quality of information, invention, and application in agriculture. The investment required for these would be highly significant. The review suggests a sequenced approach through grouping research initiatives into short

  2. Fully scalable video transmission using the SSM adaptation framework

    NASA Astrophysics Data System (ADS)

    Mukherjee, Debargha; Chen, Peisong; Hsiang, Shih-Ta; Woods, John W.; Said, Amir

    2003-06-01

    Recently a methodology for representation and adaptation of arbitrary scalable bit-streams in a fully content non-specific manner has been proposed on the basis of a universal model for all scalable bit-streams called Scalable Structured Meta-formats (SSM). According to this model, elementary scalable bit-streams are naturally organized in a symmetric multi-dimensional logical structure. The model parameters for a specific bit-stream along with information guiding decision-making among possible adaptation choices are represented in a binary or XML descriptor to accompany the bit-stream flowing downstream. The capabilities and preferences of receiving terminals flow upstream and are also specified in binary or XML form to represent constraints that guide adaptation. By interpreting the descriptor and the constraint specifications, a universal adaptation engine sitting on a network node can adapt the content appropriately to suit the specified needs and preferences of recipients, without knowledge of the specifics of the content, its encoding and/or encryption. In this framework, different adaptation infrastructures are no longer needed for different types of scalable media. In this work, we show how this framework can be used to adapt fully scalable video bit-streams, specifically ones obtained by the fully scalable MC-EZBC video coding system. MC-EZBC uses a 3-D subband/wavelet transform that exploits correlation by filtering along motion trajectories, to obtain a 3-dimensional scalable bit-stream combining temporal, spatial and SNR scalability in a compact bit-stream. Several adaptation use cases are presented to demonstrate the flexibility and advantages of a fully scalable video bit-stream when used in conjunction with a network adaptation engine for transmission.

  3. Spatially-varying IIR filter banks for image coding

    NASA Technical Reports Server (NTRS)

    Chung, Wilson C.; Smith, Mark J. T.

    1992-01-01

    This paper reports on the application of spatially variant infinite impulse response (IIR) filter banks to subband image coding. The new filter bank is based on computationally efficient recursive polyphase decompositions that dynamically change in response to the input signal. In the absence of quantization, reconstruction can be made exact. However, by proper choice of an adaptation scheme, we show that subband image coding based on time varying filter banks can yield improvement over the use of conventional filter banks.

  4. Spatial Models for Virtual Networks

    NASA Astrophysics Data System (ADS)

    Janssen, Jeannette

    This paper discusses the use of spatial graph models for the analysis of networks that do not have a direct spatial reality, such as web graphs, on-line social networks, or citation graphs. In a spatial graph model, nodes are embedded in a metric space, and link formation depends on the relative position of nodes in the space. It is argued that spatial models form a good basis for link mining: assuming a spatial model, the link information can be used to infer the spatial position of the nodes, and this information can then be used for clustering and recognition of node similarity. This paper gives a survey of spatial graph models, and discusses their suitability for link mining.

  5. Axioms of adaptivity

    PubMed Central

    Carstensen, C.; Feischl, M.; Page, M.; Praetorius, D.

    2014-01-01

    This paper aims first at a simultaneous axiomatic presentation of the proof of optimal convergence rates for adaptive finite element methods and second at some refinements of particular questions like the avoidance of (discrete) lower bounds, inexact solvers, inhomogeneous boundary data, or the use of equivalent error estimators. Solely four axioms guarantee the optimality in terms of the error estimators. Compared to the state of the art in the temporary literature, the improvements of this article can be summarized as follows: First, a general framework is presented which covers the existing literature on optimality of adaptive schemes. The abstract analysis covers linear as well as nonlinear problems and is independent of the underlying finite element or boundary element method. Second, efficiency of the error estimator is neither needed to prove convergence nor quasi-optimal convergence behavior of the error estimator. In this paper, efficiency exclusively characterizes the approximation classes involved in terms of the best-approximation error and data resolution and so the upper bound on the optimal marking parameters does not depend on the efficiency constant. Third, some general quasi-Galerkin orthogonality is not only sufficient, but also necessary for the R-linear convergence of the error estimator, which is a fundamental ingredient in the current quasi-optimality analysis due to Stevenson 2007. Finally, the general analysis allows for equivalent error estimators and inexact solvers as well as different non-homogeneous and mixed boundary conditions. PMID:25983390

  6. Insect--plant adaptations.

    PubMed

    Southwood, T R

    1984-01-01

    The adaptation of insects to plants probably commenced in the early Permian period, though most current associations will be more recent. A major burst of adaptation must have followed the rise of the Angiosperms in the Cretaceous period, though some particular associations are as recent as this century. Living plants form a large proportion of the potential food in most habitats, though insects have had to overcome certain general hurdles to live and feed on them. Insects affect the reproduction and survival of plants, and thus the diversity of plant secondary chemicals may have evolved as a response. Where an insect species has a significant effect on a plant species that is its only host, coevolution may be envisaged. A spectacular example is provided by Heliconius butterflies and passion flower vines, studied by L.E. Gilbert and others. But such cases may be likened to 'vortices in the evolutionary stream': most plant species are influenced by a range of phytophagous insects so that selection will be for general defences--a situation termed diffuse coevolution. Evidence is presented on recent host-plant shifts to illustrate both the restrictions and the flexibility in current insect-plant associations. PMID:6559112

  7. Bayesian Adaptive Exploration

    NASA Astrophysics Data System (ADS)

    Loredo, Thomas J.

    2004-04-01

    I describe a framework for adaptive scientific exploration based on iterating an Observation-Inference-Design cycle that allows adjustment of hypotheses and observing protocols in response to the results of observation on-the-fly, as data are gathered. The framework uses a unified Bayesian methodology for the inference and design stages: Bayesian inference to quantify what we have learned from the available data and predict future data, and Bayesian decision theory to identify which new observations would teach us the most. When the goal of the experiment is simply to make inferences, the framework identifies a computationally efficient iterative ``maximum entropy sampling'' strategy as the optimal strategy in settings where the noise statistics are independent of signal properties. Results of applying the method to two ``toy'' problems with simulated data-measuring the orbit of an extrasolar planet, and locating a hidden one-dimensional object-show the approach can significantly improve observational efficiency in settings that have well-defined nonlinear models. I conclude with a list of open issues that must be addressed to make Bayesian adaptive exploration a practical and reliable tool for optimizing scientific exploration.

  8. Adaptive finite volume methods for time-dependent P.D.E.S.

    SciTech Connect

    Ware, J.; Berzins, M.

    1995-12-31

    The aim of adaptive methods for time-dependent p.d.e.s is to control the numerical error so that it is less than a user-specified tolerance. This error depends on the spatial discretization method, the spatial mesh, the method of time integration and the timestep. The spatial discretization method and positioning of the spatial mesh points should attempt to ensure that the spatial error is controlled to meet the user`s requirements. It is then desirable to integrate the o.d.e. system in time with sufficient accuracy so that the temporal error does not corrupt the spatial accuracy or the reliability of the spatial error estimates. This paper is concerned with the development of a prototype algorithm of this type, based on a cell-centered triangular finite volume scheme, for two space dimensional convection-dominated problems.

  9. Adaptive optical filter

    DOEpatents

    Whittemore, Stephen Richard

    2013-09-10

    Imaging systems include a detector and a spatial light modulator (SLM) that is coupled so as to control image intensity at the detector based on predetermined detector limits. By iteratively adjusting SLM element values, image intensity at one or all detector elements or portions of an imaging detector can be controlled to be within limits. The SLM can be secured to the detector at a spacing such that the SLM is effectively at an image focal plane. In some applications, the SLM can be adjusted to impart visible or hidden watermarks to images or to reduce image intensity at one or a selected set of detector elements so as to reduce detector blooming

  10. Video quality pooling adaptive to perceptual distortion severity.

    PubMed

    Park, Jincheol; Seshadrinathan, Kalpana; Lee, Sanghoon; Bovik, Alan Conrad

    2013-02-01

    It is generally recognized that severe video distortions that are transient in space and/or time have a large effect on overall perceived video quality. In order to understand this phenomena, we study the distribution of spatio-temporally local quality scores obtained from several video quality assessment (VQA) algorithms on videos suffering from compression and lossy transmission over communication channels. We propose a content adaptive spatial and temporal pooling strategy based on the observed distribution. Our method adaptively emphasizes "worst" scores along both the spatial and temporal dimensions of a video sequence and also considers the perceptual effect of large-area cohesive motion flow such as egomotion. We demonstrate the efficacy of the method by testing it using three different VQA algorithms on the LIVE Video Quality database and the EPFL-PoliMI video quality database. PMID:23008260

  11. Light adaptation alters inner retinal inhibition to shape OFF retinal pathway signaling.

    PubMed

    Mazade, Reece E; Eggers, Erika D

    2016-06-01

    The retina adjusts its signaling gain over a wide range of light levels. A functional result of this is increased visual acuity at brighter luminance levels (light adaptation) due to shifts in the excitatory center-inhibitory surround receptive field parameters of ganglion cells that increases their sensitivity to smaller light stimuli. Recent work supports the idea that changes in ganglion cell spatial sensitivity with background luminance are due in part to inner retinal mechanisms, possibly including modulation of inhibition onto bipolar cells. To determine how the receptive fields of OFF cone bipolar cells may contribute to changes in ganglion cell resolution, the spatial extent and magnitude of inhibitory and excitatory inputs were measured from OFF bipolar cells under dark- and light-adapted conditions. There was no change in the OFF bipolar cell excitatory input with light adaptation; however, the spatial distributions of inhibitory inputs, including both glycinergic and GABAergic sources, became significantly narrower, smaller, and more transient. The magnitude and size of the OFF bipolar cell center-surround receptive fields as well as light-adapted changes in resting membrane potential were incorporated into a spatial model of OFF bipolar cell output to the downstream ganglion cells, which predicted an increase in signal output strength with light adaptation. We show a prominent role for inner retinal spatial signals in modulating the modeled strength of bipolar cell output to potentially play a role in ganglion cell visual sensitivity and acuity. PMID:26912599

  12. Asymmetric generalization in adaptation to target displacement errors in humans and in a neural network model.

    PubMed

    Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher; Gail, Alexander

    2015-04-01

    Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement ("jump") consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. PMID:25609106

  13. Adaptive EAGLE dynamic solution adaptation and grid quality enhancement

    NASA Technical Reports Server (NTRS)

    Luong, Phu Vinh; Thompson, J. F.; Gatlin, B.; Mastin, C. W.; Kim, H. J.

    1992-01-01

    In the effort described here, the elliptic grid generation procedure in the EAGLE grid code was separated from the main code into a subroutine, and a new subroutine which evaluates several grid quality measures at each grid point was added. The elliptic grid routine can now be called, either by a computational fluid dynamics (CFD) code to generate a new adaptive grid based on flow variables and quality measures through multiple adaptation, or by the EAGLE main code to generate a grid based on quality measure variables through static adaptation. Arrays of flow variables can be read into the EAGLE grid code for use in static adaptation as well. These major changes in the EAGLE adaptive grid system make it easier to convert any CFD code that operates on a block-structured grid (or single-block grid) into a multiple adaptive code.

  14. Adaptive differential pulse-code modulation with adaptive bit allocation

    NASA Astrophysics Data System (ADS)

    Frangoulis, E. D.; Yoshida, K.; Turner, L. F.

    1984-08-01

    Studies have been conducted regarding the possibility to obtain good quality speech at data rates in the range from 16 kbit/s to 32 kbit/s. The techniques considered are related to adaptive predictive coding (APC) and adaptive differential pulse-code modulation (ADPCM). At 16 kbit/s adaptive transform coding (ATC) has also been used. The present investigation is concerned with a new method of speech coding. The described method employs adaptive bit allocation, similar to that used in adaptive transform coding, together with adaptive differential pulse-code modulation, employing first-order prediction. The new method has the objective to improve the quality of the speech over that which can be obtained with conventional ADPCM employing a fourth-order predictor. Attention is given to the ADPCM-AB system, the design of a subjective test, and the application of switched preemphasis to ADPCM.

  15. Radiation efficiency of a guitar top plate linked with edge or corner modes and intercell cancellation.

    PubMed

    Torres, Jesús Alejandro; Boullosa, Ricardo R

    2011-07-01

    This paper was based on a theoretical framework to determine strong and weak radiation by a guitar top plate, vibrating through deflections hard to analyze: multipolar mode shapes. The air-structure interaction was examined in terms of edge modes or corner modes, and considering even or odd number modes. A numerical model was implemented and experimentally calibrated, exhibiting several advantages exploring the coupling between vibratory and acoustic waves in a top plate. Two analyses were applied detecting high or low radiation efficiency for the structure. First, the addition of volume velocity for odd numbers of poles and cancellation for even numbers were examined. In fact, both behaviors can happen at the same time, as it was shown for a corner radiator case used as an example. Second, the ratio between bending and acoustic wavenumbers was explored. To illustrate the importance of this ratio, some theoretical features of a more efficient radiator than the corner mode were exposed in an edge mode example. Labeling multipolar mode shapes as efficient or inefficient radiators showed to be a useful alternative analyzing the top plate behavior. It can be applied knowing the nodal lines of the vibration pattern and estimating the bending and acoustic wavelengths. PMID:21786920

  16. Saccade Adaptation and Visual Uncertainty

    PubMed Central

    Souto, David; Gegenfurtner, Karl R.; Schütz, Alexander C.

    2016-01-01

    Visual uncertainty may affect saccade adaptation in two complementary ways. First, an ideal adaptor should take into account the reliability of visual information for determining the amount of correction, predicting that increasing visual uncertainty should decrease adaptation rates. We tested this by comparing observers' direction discrimination and adaptation rates in an intra-saccadic-step paradigm. Second, clearly visible target steps may generate a slower adaptation rate since the error can be attributed to an external cause, instead of an internal change in the visuo-motor mapping that needs to be compensated. We tested this prediction by measuring saccade adaptation to different step sizes. Most remarkably, we found little correlation between estimates of visual uncertainty and adaptation rates and no slower adaptation rates with more visible step sizes. Additionally, we show that for low contrast targets backward steps are perceived as stationary after the saccade, but that adaptation rates are independent of contrast. We suggest that the saccadic system uses different position signals for adapting dysmetric saccades and for generating a trans-saccadic stable visual percept, explaining that saccade adaptation is found to be independent of visual uncertainty. PMID:27252635

  17. Effects of incomplete adaptation and disturbance in adaptive control.

    NASA Technical Reports Server (NTRS)

    Lindorff, D. P.

    1972-01-01

    In this paper consideration is given to the effects of disturbance and incomplete parameter adaptation on the performance of adaptive control systems in which Liapunov theory is used in deriving the control law. A design equation for the bounded error is derived. It is further shown that parameters in the adaptive controller may not converge in the presence of disturbance unless the input signal has a rich enough frequency constant. Design examples are presented.

  18. Spatial Standard Observer

    NASA Technical Reports Server (NTRS)

    Watson, Andrw B. (Inventor)

    2010-01-01

    The present invention relates to devices and methods for the measurement and/or for the specification of the perceptual intensity of a visual image. or the perceptual distance between a pair of images. Grayscale test and reference images are processed to produce test and reference luminance images. A luminance filter function is convolved with the reference luminance image to produce a local mean luminance reference image . Test and reference contrast images are produced from the local mean luminance reference image and the test and reference luminance images respectively, followed by application of a contrast sensitivity filter. The resulting images are combined according to mathematical prescriptions to produce a Just Noticeable Difference, JND value, indicative of a Spatial Standard Observer. SSO. Some embodiments include masking functions. window functions. special treatment for images lying on or near border and pre-processing of test images.

  19. Spatial cognition and navigation

    NASA Technical Reports Server (NTRS)

    Aretz, Anthony J.

    1989-01-01

    An experiment that provides data for the development of a cognitive model of pilot flight navigation is described. The experiment characterizes navigational awareness as the mental alignment of two frames of reference: (1) the ego centered reference frame that is established by the forward view out of the cockpit and (2) the world centered reference frame that is established by the aircraft's location on a map. The data support a model involving at least two components: (1) the perceptual encoding of the navigational landmarks and (2) the mental rotation of the map's world reference frame into alignment with the ego centered reference frame. The quantitative relationships of these two factors are provided as possible inputs for a computational model of spatial cognition during flight navigation.

  20. Spatial Standard Observer

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    2012-01-01

    The present invention relates to devices and methods for the measurement and/or for the specification of the perceptual intensity of a visual image, or the perceptual distance between a pair of images. Grayscale test and reference images are processed to produce test and reference luminance images. A luminance filter function is convolved with the reference luminance image to produce a local mean luminance reference image. Test and reference contrast images are produced from the local mean luminance reference image and the test and reference luminance images respectively, followed by application of a contrast sensitivity filter. The resulting images are combined according to mathematical prescriptions to produce a Just Noticeable Difference, JND value, indicative of a Spatial Standard Observer, SSO. Some embodiments include masking functions, window functions, special treatment for images lying on or near borders and pre-processing of test images.

  1. Spatial Pinning Control

    NASA Astrophysics Data System (ADS)

    Frasca, Mattia; Buscarino, Arturo; Rizzo, Alessandro; Fortuna, Luigi

    2012-05-01

    In this Letter, we introduce the concept of spatial pinning control for a network of mobile chaotic agents. In a planar space, N agents move as random walkers and interact according to a time-varying r-disk proximity graph. A control input is applied only to those agents which enter a given area, called control region. The control is effective in driving all the agents to a reference evolution and has better performance than pinning control on a fixed set of agents. We derive analytical conditions on the relative size of the control region and the agent density for the global convergence of the system to the reference evolution and study the system under different regimes inherited by the velocity.

  2. Practical aspects of spatially high accurate methods

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.; Mitchell, Curtis R.; Walters, Robert W.

    1992-01-01

    The computational qualities of high order spatially accurate methods for the finite volume solution of the Euler equations are presented. Two dimensional essentially non-oscillatory (ENO), k-exact, and 'dimension by dimension' ENO reconstruction operators are discussed and compared in terms of reconstruction and solution accuracy, computational cost and oscillatory behavior in supersonic flows with shocks. Inherent steady state convergence difficulties are demonstrated for adaptive stencil algorithms. An exact solution to the heat equation is used to determine reconstruction error, and the computational intensity is reflected in operation counts. Standard MUSCL differencing is included for comparison. Numerical experiments presented include the Ringleb flow for numerical accuracy and a shock reflection problem. A vortex-shock interaction demonstrates the ability of the ENO scheme to excel in simulating unsteady high-frequency flow physics.

  3. Cryptography based on spatial chaotic system

    NASA Astrophysics Data System (ADS)

    Sun, Fuyan; Lü, Zongwang

    2010-08-01

    Encryption of images is different from that of texts due to some intrinsic features of images such as bulk data capacity and high redundancy, which is generally difficult to handle by traditional methods. This paper proposes a new spatial chaos system(SCS), which is investigated by conducting FIPS 140-1 statistic test, and is especially useful for encryption of digital images. It is shown how to adapt a two dimensional(2D) ergodic matrix obtained from SCS to permute the positions of image pixels and confuse the relationship between the cipher image and plain image simultaneously. Experimental results show that the performance and security of the proposed cryptographic system are better than those of existing lower dimensional chaotic cryptographic systems.

  4. Resolving coastal conflicts using marine spatial planning.

    PubMed

    Tuda, Arthur O; Stevens, Tim F; Rodwell, Lynda D

    2014-01-15

    We applied marine spatial planning (MSP) to manage conflicts in a multi-use coastal area of Kenya. MSP involves several steps which were supported by using geographical information systems (GISs), multi-criteria decision analysis (MCDA) and optimization. GIS was used in identifying overlapping coastal uses and mapping conflict hotspots. MCDA was used to incorporate the preferences of user groups and managers into a formal decision analysis procedure. Optimization was applied in generating optimal allocation alternatives to competing uses. Through this analysis three important objectives that build a foundation for future planning of Kenya's coastal waters were achieved: 1) engaging competing stakeholders; 2) illustrating how MSP can be adapted to aid decision-making in multi-use coastal regions; and 3) developing a draft coastal use allocation plan. The successful application of MSP to resolve conflicts in coastal regions depends on the level of stakeholder involvement, data availability and the existing knowledge base. PMID:24361729

  5. Tilt aftereffect following adaptation to translational Glass patterns

    PubMed Central

    Pavan, Andrea; Hocketstaller, Johanna; Contillo, Adriano; Greenlee, Mark W.

    2016-01-01

    Glass patterns (GPs) consist of randomly distributed dot pairs (dipoles) whose orientations are determined by specific geometric transforms. We assessed whether adaptation to stationary oriented translational GPs suppresses the activity of orientation selective detectors producing a tilt aftereffect (TAE). The results showed that adaptation to GPs produces a TAE similar to that reported in previous studies, though reduced in amplitude. This suggests the involvement of orientation selective mechanisms. We also measured the interocular transfer (IOT) of the GP-induced TAE and found an almost complete IOT, indicating the involvement of orientation selective and binocularly driven units. In additional experiments, we assessed the role of attention in TAE from GPs. The results showed that distraction during adaptation similarly modulates the TAE after adapting to both GPs and gratings. Moreover, in the case of GPs, distraction is likely to interfere with the adaptation process rather than with the spatial summation of local dipoles. We conclude that TAE from GPs possibly relies on visual processing levels in which the global orientation of GPs has been encoded by neurons that are mostly binocularly driven, orientation selective and whose adaptation-related neural activity is strongly modulated by attention. PMID:27005949

  6. Tilt aftereffect following adaptation to translational Glass patterns.

    PubMed

    Pavan, Andrea; Hocketstaller, Johanna; Contillo, Adriano; Greenlee, Mark W

    2016-01-01

    Glass patterns (GPs) consist of randomly distributed dot pairs (dipoles) whose orientations are determined by specific geometric transforms. We assessed whether adaptation to stationary oriented translational GPs suppresses the activity of orientation selective detectors producing a tilt aftereffect (TAE). The results showed that adaptation to GPs produces a TAE similar to that reported in previous studies, though reduced in amplitude. This suggests the involvement of orientation selective mechanisms. We also measured the interocular transfer (IOT) of the GP-induced TAE and found an almost complete IOT, indicating the involvement of orientation selective and binocularly driven units. In additional experiments, we assessed the role of attention in TAE from GPs. The results showed that distraction during adaptation similarly modulates the TAE after adapting to both GPs and gratings. Moreover, in the case of GPs, distraction is likely to interfere with the adaptation process rather than with the spatial summation of local dipoles. We conclude that TAE from GPs possibly relies on visual processing levels in which the global orientation of GPs has been encoded by neurons that are mostly binocularly driven, orientation selective and whose adaptation-related neural activity is strongly modulated by attention. PMID:27005949

  7. Adaptive multiresolution modeling of groundwater flow in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Malenica, Luka; Gotovac, Hrvoje; Srzic, Veljko; Andric, Ivo

    2016-04-01

    Proposed methodology was originally developed by our scientific team in Split who designed multiresolution approach for analyzing flow and transport processes in highly heterogeneous porous media. The main properties of the adaptive Fup multi-resolution approach are: 1) computational capabilities of Fup basis functions with compact support capable to resolve all spatial and temporal scales, 2) multi-resolution presentation of heterogeneity as well as all other input and output variables, 3) accurate, adaptive and efficient strategy and 4) semi-analytical properties which increase our understanding of usually complex flow and transport processes in porous media. The main computational idea behind this approach is to separately find the minimum number of basis functions and resolution levels necessary to describe each flow and transport variable with the desired accuracy on a particular adaptive grid. Therefore, each variable is separately analyzed, and the adaptive and multi-scale nature of the methodology enables not only computational efficiency and accuracy, but it also describes subsurface processes closely related to their understood physical interpretation. The methodology inherently supports a mesh-free procedure, avoiding the classical numerical integration, and yields continuous velocity and flux fields, which is vitally important for flow and transport simulations. In this paper, we will show recent improvements within the proposed methodology. Since "state of the art" multiresolution approach usually uses method of lines and only spatial adaptive procedure, temporal approximation was rarely considered as a multiscale. Therefore, novel adaptive implicit Fup integration scheme is developed, resolving all time scales within each global time step. It means that algorithm uses smaller time steps only in lines where solution changes are intensive. Application of Fup basis functions enables continuous time approximation, simple interpolation calculations across

  8. Workshop on adaptive grid methods for fusion plasmas

    SciTech Connect

    Wiley, J.C.

    1995-07-01

    The author describes a general `hp` finite element method with adaptive grids. The code was based on the work of Oden, et al. The term `hp` refers to the method of spatial refinement (h), in conjunction with the order of polynomials used as a part of the finite element discretization (p). This finite element code seems to handle well the different mesh grid sizes occuring between abuted grids with different resolutions.

  9. Coherence Resonance of Small World Networks with Adaptive Coupling

    NASA Astrophysics Data System (ADS)

    Miyakawa, Kenji

    2015-06-01

    The phenomenon of coherence resonance (CR) in small world networks with adaptive coupling is investigated by modeling a real experimental situation with a photosensitive Belousov-Zhabotinsky reaction. We show that both spatial synchronization and temporal coherence of noise-induced firings can be considerably improved by adjusting control parameters, such as the degree of connectivity and the coupling strength. A small fraction of possible long-range connections is enough to obtain a great enhancement in CR.

  10. Adaptive SAR ATR problem set (AdaptSAPS)

    NASA Astrophysics Data System (ADS)

    Wise, Angela R.; Fitzgerald, Donna; Ross, Timothy D.

    2004-09-01

    A strong and growing interest in systems that adapt to changing circumstances was evident in panel discussions at the "Algorithms for SAR Imagery" Conference of the AeroSense Symposium in April 2003, with DARPA, Air Force, industry and academia participation. As a result, Conference Co-Chair Mr. Ed Zelnio suggested producing a dynamic model to create problem sets suitable for adaptive system research and development. Such a problem set provides a framework for the overall problem, including organization of operating conditions, performance measures and specific test cases. It is hoped that this AdaptSAPS framework will help provide the community with a more concrete base for discussing adaptation in SAR imagery exploitation. AdaptSAPS Version 1.0 was produced by the AFRL COMPASE and SDMS organizations and posted on 5 August 2003. AdaptSAPS consists of over a dozen MatLab programs that allow the user to create "missions" with SAR data of varying complexities and then present that test data one image at a time, first as unexploited imagery and then later with the exploitation results that an ATR could use for adaptation in an operational environment. AdaptSAPS keeps track of performance results and reports performance measures. This paper describes AdaptSAPS - its application process and possible improvements as a problem set.

  11. Landscape genomics of Sphaeralcea ambigua in the Mojave Desert: a multivariate, spatially-explicit approach to guide ecological restoration

    USGS Publications Warehouse

    Shryock, Daniel F.; Havrilla, Caroline A.; DeFalco, Lesley; Esque, Todd C.; Custer, Nathan; Wood, Troy E.

    2015-01-01

    Local adaptation influences plant species’ responses to climate change and their performance in ecological restoration. Fine-scale physiological or phenological adaptations that direct demographic processes may drive intraspecific variability when baseline environmental conditions change. Landscape genomics characterize adaptive differentiation by identifying environmental drivers of adaptive genetic variability and mapping the associated landscape patterns. We applied such an approach to Sphaeralcea ambigua, an important restoration plant in the arid southwestern United States, by analyzing variation at 153 amplified fragment length polymorphism loci in the context of environmental gradients separating 47 Mojave Desert populations. We identified 37 potentially adaptive loci through a combination of genome scan approaches. We then used a generalized dissimilarity model (GDM) to relate variability in potentially adaptive loci with spatial gradients in temperature, precipitation, and topography. We identified non-linear thresholds in loci frequencies driven by summer maximum temperature and water stress, along with continuous variation corresponding to temperature seasonality. Two GDM-based approaches for mapping predicted patterns of local adaptation are compared. Additionally, we assess uncertainty in spatial interpolations through a novel spatial bootstrapping approach. Our study presents robust, accessible methods for deriving spatially-explicit models of adaptive genetic variability in non-model species that will inform climate change modelling and ecological restoration.

  12. Adapting livestock management to spatio-temporal heterogeneity in semi-arid rangelands.

    PubMed

    Jakoby, O; Quaas, M F; Baumgärtner, S; Frank, K

    2015-10-01

    Management strategies in rotational grazing systems differ in their level of complexity and adaptivity. Different components of such grazing strategies are expected to allow for adaptation to environmental heterogeneities in space and time. However, most models investigating general principles of rangeland management strategies neglect spatio-temporal system properties including seasonality and spatial heterogeneity of environmental variables. We developed an ecological-economic rangeland model that combines a spatially explicit farm structure with intra-annual time steps. This allows investigating different management components in rotational grazing systems (including stocking and rotation rules) and evaluating their effect on the ecological and economic states of semi-arid grazing systems. Our results show that adaptive stocking is less sensitive to overstocking compared to a constant stocking strategy. Furthermore, the rotation rule becomes important only at stocking numbers that maximize expected income. Altogether, the best of the tested strategies is adaptive stocking combined with a rotation that adapts to both spatial forage availability and seasonality. This management strategy maximises mean income and at the same time maintains the rangeland in a viable condition. However, we could also show that inappropriate adaptation that neglects seasonality even leads to deterioration. Rangelands characterised by higher inter-annual climate variability show a higher risk of income losses under a non-adaptive stocking rule, and non-adaptive rotation is least able to buffer increasing climate variability. Overall, all important system properties including seasonality and spatial heterogeneity of available resources need to be considered when designing an appropriate rangeland management system. Resulting adaptive rotational grazing strategies can be valuable for improving management and mitigating income risks. PMID:26241933

  13. Intelligent Context-Aware and Adaptive Interface for Mobile LBS

    PubMed Central

    Feng, Jiangfan; Liu, Yanhong

    2015-01-01

    Context-aware user interface plays an important role in many human-computer Interaction tasks of location based services. Although spatial models for context-aware systems have been studied extensively, how to locate specific spatial information for users is still not well resolved, which is important in the mobile environment where location based services users are impeded by device limitations. Better context-aware human-computer interaction models of mobile location based services are needed not just to predict performance outcomes, such as whether people will be able to find the information needed to complete a human-computer interaction task, but to understand human processes that interact in spatial query, which will in turn inform the detailed design of better user interfaces in mobile location based services. In this study, a context-aware adaptive model for mobile location based services interface is proposed, which contains three major sections: purpose, adjustment, and adaptation. Based on this model we try to describe the process of user operation and interface adaptation clearly through the dynamic interaction between users and the interface. Then we show how the model applies users' demands in a complicated environment and suggested the feasibility by the experimental results. PMID:26457077

  14. Toward reflexive climate adaptation research

    DOE PAGESBeta

    Preston, Benjamin L.; Rickards, Lauren; Fünfgeld, Hartmut; Keenan, Rodney J.

    2015-06-22

    Climate adaptation research is expanding very quickly within an increasingly reflexive society where the relationship between academia and other social institutions is in a state of flux. Tensions exist between the two dominant research orientations of research about and research for adaptation. In particular, the research community is challenged to develop processes for successfully executing transdisciplinary research for adaptation when academic institutions and researchers are largely structured around traditional, disciplinary expertise and funding models. One tool for helping to manage this tension is a third, more reflexive, orientation toward adaptation research that is emerging in the literature. Finally, this newmore » ‘research on adaptation research’ promises to help enhance understanding of the research enterprise itself and how it can become more adaptive.« less

  15. Toward reflexive climate adaptation research

    SciTech Connect

    Preston, Benjamin L.; Rickards, Lauren; Fünfgeld, Hartmut; Keenan, Rodney J.

    2015-06-22

    Climate adaptation research is expanding very quickly within an increasingly reflexive society where the relationship between academia and other social institutions is in a state of flux. Tensions exist between the two dominant research orientations of research about and research for adaptation. In particular, the research community is challenged to develop processes for successfully executing transdisciplinary research for adaptation when academic institutions and researchers are largely structured around traditional, disciplinary expertise and funding models. One tool for helping to manage this tension is a third, more reflexive, orientation toward adaptation research that is emerging in the literature. Finally, this new ‘research on adaptation research’ promises to help enhance understanding of the research enterprise itself and how it can become more adaptive.

  16. Adaptive challenges in medical practices.

    PubMed

    Daiker, Barbara L

    2013-01-01

    The purpose of this qualitative grounded theory study was to describe the theoretical structures of the strategies used by medical practices to navigate adaptive challenges. The process of responding to adaptive challenges in five medical practices was studied using a grounded theory approach, collecting data from interviews with the organizations' leaders and managers. The leadership of these medical practices had successfully navigated adaptive challenges within two years of the study. The analysis revealed a model that describes the key elements in finding solutions to adaptive challenges. The model was named the Adaptation Solution Dynamic, which explains the elements of Rational Tools, Relationship Commitment, and Achievement Drive. The findings from the results of this study provide a theoretical basis for studying how leaders support identifying solutions to adaptive challenges. PMID:23866647

  17. The adaptable lyonsite structure.

    PubMed

    Smit, Jared P; Stair, Peter C; Poeppelmeier, Kenneth R

    2006-08-01

    Crystal frameworks that can accommodate a wide range of elements, oxidation states, and stoichiometries are an important component of solid-state chemistry. These frameworks allow for unique comparisons of different metal-cation compositions with identical atomic arrangements. The mineral Lyonsite, alpha-Cu(3)Fe(4)(VO(4))(6), is emerging as the archetypal framework structure for a large class of materials, similar to known frameworks such as perovskite, garnet, apatite, and spinel. The new lyonsite-type oxides Li(2.82)Hf(0.795)Mo(3)O(12) and Li(3.35)Ta(0.53)Mo(3)O(12), in which hafnium and tantalum retain their highest oxidation states, are presented to advance the concept of the lyonsite structure as an adaptable framework. PMID:16755622

  18. SAR based adaptive GMTI

    NASA Astrophysics Data System (ADS)

    Vu, Duc; Guo, Bin; Xu, Luzhou; Li, Jian

    2010-04-01

    We consider ground moving target indication (GMTI) and target velocity estimation based on multi-channel synthetic aperture radar (SAR) images. Via forming velocity versus cross-range images, we show that small moving targets can be detected even in the presence of strong stationary ground clutter. Moreover, the velocities of the moving targets can be estimated, and the misplaced moving targets can be placed back to their original locations based on the estimated velocities. Adaptive beamforming techniques, including Capon and generalizedlikelihood ratio test (GLRT), are used to form velocity versus cross-range images for each range bin of interest. The velocity estimation ambiguities caused by the multi-channel array geometry are analyzed. We also demonstrate the effectiveness of our approaches using the Air Force Research Laboratory (AFRL) publicly-released Gotcha SAR based GMTI data set.

  19. Adaptive Femtosecond Quantum Control

    NASA Astrophysics Data System (ADS)

    Gerber, Gustav

    2003-03-01

    Obtaining active control over the dynamics of quantum-mechanical systems is a fascinating perspective in modern physics. A promising tool for this purpose is available with femtosecond laser technologies. The intrinsically broad spectral distribution and the phase function of femtosecond laser pulses can be specifically manipulated by pulse shapers to drive molecular systems coherently into the desired reaction pathways [1]. The approach of adaptive femtosecond quantum control follows the suggestion of Judson and Rabitz [2], in which a computer-controlled pulse shaper is used in combination with a learning algorithm [3] and direct feedback from the experiment to achieve coherent control over quantum-mechanical processes in an automated fashion, without requiring any model for the system's response. This technique can be applied to the control of gas-phase photodissociation processes [4]. Different bond-cleaving reactions can be preferentially selected, resulting in chemically different products. Prior knowledge about molecular Hamiltonians or reaction mechanisms is not required in this automated control loop, and this scheme works for complex systems. Adaptive pulse-shaping techniques can be transferred to the control of photoprocesses in the liquid phase as well, motivated by the wish to achieve control at particle densities high enough for (bimolecular) synthetic-chemical applications. Chemically selective molecular excitation is achieved by many-parameter adaptive quantum control [5], despite the failure of typical single-parameter approaches (such as wavelength control, intensity control, or linear chirp control). This experiment demonstrates that photoprocesses in two different molecular species can be controlled simultaneously. Applications are envisioned in bimolecular reaction control where specific educt molecules could selectively be "activated" for purposes of chemical synthesis. A new technological development further increases the possibilities and

  20. Auto adaptative laser welding

    SciTech Connect

    Coste, F.; Fabbro, R.; Douay, D.; Sabatier, L.; Lacote, D.

    1996-12-31

    The weld preparation in a laboratory environment for laser welding concerning edge misalignments, edge or gap preparation is no longer valid for industrial configurations where these different parameters are not accurately controlled. Therefore in that case, the achievement of consistent qualities of processing, requires the use of sensors for seam tracking and gap recognition. The authors discuss here preliminary experiments involving the use of these elements in order to pilot a scanning head in view of strongly reducing the precision requirements for gap preparation. This set-up is the first step in the development of an auto-adaptative device for laser welding which will be composed of seam tracking and recognition sensors, scanning laser head and a filler wire device.