Spectral Doppler estimation utilizing 2-D spatial information and adaptive signal processing.
Ekroll, Ingvild K; Torp, Hans; Løvstakken, Lasse
2012-06-01
The trade-off between temporal and spectral resolution in conventional pulsed wave (PW) Doppler may limit duplex/triplex quality and the depiction of rapid flow events. It is therefore desirable to reduce the required observation window (OW) of the Doppler signal while preserving the frequency resolution. This work investigates how the required observation time can be reduced by adaptive spectral estimation utilizing 2-D spatial information obtained by parallel receive beamforming. Four adaptive estimation techniques were investigated, the power spectral Capon (PSC) method, the amplitude and phase estimation (APES) technique, multiple signal classification (MUSIC), and a projection-based version of the Capon technique. By averaging radially and laterally, the required covariance matrix could successfully be estimated without temporal averaging. Useful PW spectra of high resolution and contrast could be generated from ensembles corresponding to those used in color flow imaging (CFI; OW = 10). For a given OW, the frequency resolution could be increased compared with the Welch approach, in cases in which the transit time was higher or comparable to the observation time. In such cases, using short or long pulses with unfocused or focused transmit, an increase in temporal resolution of up to 4 to 6 times could be obtained in in vivo examples. It was further shown that by using adaptive signal processing, velocity spectra may be generated without high-pass filtering the Doppler signal. With the proposed approach, spectra retrospectively calculated from CFI may become useful for unfocused as well as focused imaging. This application may provide new clinical information by inspection of velocity spectra simultaneously from several spatial locations. PMID:22711413
Eckhard, Timo; Valero, Eva M; Hernández-Andrés, Javier; Schnitzlein, Markus
2014-02-01
The performance of learning-based spectral estimation is greatly influenced by the set of training samples selected to create the reconstruction model. Training sample selection schemes can be categorized into global and local approaches. Most of the previously proposed global training schemes aim to reduce the number of training samples, or a selection of representative samples, to maintain the generality of the training dataset. This work relates to printed ink reflectance estimation for quality assessment in in-line print inspection. We propose what we believe is a novel global training scheme that models a large population of realistic printable ink reflectances. Based on this dataset, we used a recursive top-down algorithm to reject clusters of training samples that do not enhance the performance of a linear least-square regression (pseudoinverse-based estimation) process. A set of experiments with real camera response data of a 12-channel multispectral camera system illustrate the advantages of this selection scheme over some other state-of-the-art algorithms. For our data, our method of global training sample selection outperforms other methods in terms of estimation quality and, more importantly, can quickly handle large datasets. Furthermore, we show that reflectance modeling is a reasonable, convenient tool to generate large training sets for print inspection applications. PMID:24514188
An adaptive spectral estimation technique to detect cavitation in HIFU with high spatial resolution.
Hsieh, Chang-Yu; Probert Smith, Penny; Mayia, Fares; Ye, Guoliang
2011-07-01
In ultrasound-guided high-intensity focused ultrasound (HIFU) therapy, the changes observed on tissue are subtle during treatment; some ultrasound-guided HIFU protocols rely on the observation of significant brightness changes as the indicator of tissue lesions. The occurrence of a distinct hyperechogenic region ("bright-up") around the focus is often associated with acoustic cavitation resulting in microbubble formation, but it may indicate different physical events such as larger bubbles from boiling (known to alter acoustic impedance) or sometimes lesion formation. A reliable method to distinguish and spatially localize these causes within the tissue would assist the control of HIFU delivery, which is the subject of this paper. Spectral analysis of the radio frequency (RF) signal underlying the B-mode image provides more information on the physical cause, but the usual techniques that are methods on the Fourier transform require a long series for good spectral resolution and so they give poor spatial resolution. This paper introduces an active spectral cavitation detection method to attain high spatial resolution (0.15 × 0.15 mm per pixel) through a parametric statistical method (ARMA modeling) used on finite-length data sets, which enables local changes to be identified more easily. This technique uses the characteristics of the signal itself to optimize the model parameters and structure. Its performance is assessed using synthesized cavitation RF data, and it is then demonstrated in ex vivo bovine liver during and after HIFU exposure. The results suggest that good spatial and spectral resolution can be obtained by the design of suitable algorithms. In ultrasound-guided HIFU, the technique provides a useful supplement to B-mode analysis, with no additional time penalty in data acquisition. PMID:21684454
Spectral estimators in elastography.
Konofagou, E E; Varghese, T; Ophir, J
2000-03-01
Like velocity, strain induces a time delay and a time scaling to the received signal. Elastography typically uses time delay techniques to indirectly (i.e. via the displacement estimate) measure tissue strain induced by an applied compression, and considers time scaling as a source of distortion. More recently, we have shown that the time scaling factor can also be spectrally estimated and used as a direct measure of strain. Strain causes a Doppler-like frequency shift and a change in bandwidth of the bandpass power spectrum of the echo signal. Two frequency shift strain estimators are described that have been proven to be more robust but less precise when compared to time delay estimators, both in simulations and experiments. The increased robustness is due to the insensitivity of the spectral techniques to phase decorrelation noise. In this paper we discuss and compare the theoretical and experimental findings obtained with traditional time delay estimators and with the newly proposed spectral methods. PMID:10829698
Power spectral estimation algorithms
NASA Technical Reports Server (NTRS)
Bhatia, Manjit S.
1989-01-01
Algorithms to estimate the power spectrum using Maximum Entropy Methods were developed. These algorithms were coded in FORTRAN 77 and were implemented on the VAX 780. The important considerations in this analysis are: (1) resolution, i.e., how close in frequency two spectral components can be spaced and still be identified; (2) dynamic range, i.e., how small a spectral peak can be, relative to the largest, and still be observed in the spectra; and (3) variance, i.e., how accurate the estimate of the spectra is to the actual spectra. The application of the algorithms based on Maximum Entropy Methods to a variety of data shows that these criteria are met quite well. Additional work in this direction would help confirm the findings. All of the software developed was turned over to the technical monitor. A copy of a typical program is included. Some of the actual data and graphs used on this data are also included.
NASA Technical Reports Server (NTRS)
Lai, Jonathan Y.
1994-01-01
This dissertation focuses on the signal processing problems associated with the detection of hazardous windshears using airborne Doppler radar when weak weather returns are in the presence of strong clutter returns. In light of the frequent inadequacy of spectral-processing oriented clutter suppression methods, we model a clutter signal as multiple sinusoids plus Gaussian noise, and propose adaptive filtering approaches that better capture the temporal characteristics of the signal process. This idea leads to two research topics in signal processing: (1) signal modeling and parameter estimation, and (2) adaptive filtering in this particular signal environment. A high-resolution, low SNR threshold maximum likelihood (ML) frequency estimation and signal modeling algorithm is devised and proves capable of delineating both the spectral and temporal nature of the clutter return. Furthermore, the Least Mean Square (LMS) -based adaptive filter's performance for the proposed signal model is investigated, and promising simulation results have testified to its potential for clutter rejection leading to more accurate estimation of windspeed thus obtaining a better assessment of the windshear hazard.
Adaptive mesh strategies for the spectral element method
NASA Technical Reports Server (NTRS)
Mavriplis, Catherine
1992-01-01
An adaptive spectral method was developed for the efficient solution of time dependent partial differential equations. Adaptive mesh strategies that include resolution refinement and coarsening by three different methods are illustrated on solutions to the 1-D viscous Burger equation and the 2-D Navier-Stokes equations for driven flow in a cavity. Sharp gradients, singularities, and regions of poor resolution are resolved optimally as they develop in time using error estimators which indicate the choice of refinement to be used. The adaptive formulation presents significant increases in efficiency, flexibility, and general capabilities for high order spectral methods.
Spectral procedures for estimating crop biomass
Wanjura, D.F.; Hatfield, J.L.
1985-05-01
Spectral reflectance was measured semi-weekly and used to estimate leaf area and plant dry weight accumulation in cotton, soybeans, and sunflower. Integration of spectral crop growth cycle curves explained up to 95 and 91%, respectively, of the variation in cotton lint yield and dry weight. A theoretical relationship for dry weight accumulation, in which only intercepted radiation or intercepted radiation and solar energy to biomass conversion efficiency were spectrally estimated, explained 99 and 96%, respectively, of the observed plant dry weight variation of the three crops. These results demonstrate the feasibility of predicting crop biomass from spectral measurements collected frequently during the growing season. 15 references.
Adaptable Multivariate Calibration Models for Spectral Applications
THOMAS,EDWARD V.
1999-12-20
Multivariate calibration techniques have been used in a wide variety of spectroscopic situations. In many of these situations spectral variation can be partitioned into meaningful classes. For example, suppose that multiple spectra are obtained from each of a number of different objects wherein the level of the analyte of interest varies within each object over time. In such situations the total spectral variation observed across all measurements has two distinct general sources of variation: intra-object and inter-object. One might want to develop a global multivariate calibration model that predicts the analyte of interest accurately both within and across objects, including new objects not involved in developing the calibration model. However, this goal might be hard to realize if the inter-object spectral variation is complex and difficult to model. If the intra-object spectral variation is consistent across objects, an effective alternative approach might be to develop a generic intra-object model that can be adapted to each object separately. This paper contains recommendations for experimental protocols and data analysis in such situations. The approach is illustrated with an example involving the noninvasive measurement of glucose using near-infrared reflectance spectroscopy. Extensions to calibration maintenance and calibration transfer are discussed.
Spectral moment estimation in MST radars
NASA Technical Reports Server (NTRS)
Woodman, R. F.
1983-01-01
Signal processing techniques used in Mesosphere-Stratosphere-Troposphere (MST) radars are reviewed. Techniques which produce good estimates of the total power, frequency shift, and spectral width of the radar power spectra are considered. Non-linear curve fitting, autocovariance, autocorrelation, covariance, and maximum likelihood estimators are discussed.
Simultaneous Spectral Temporal Adaptive Raman Spectrometer - SSTARS
NASA Technical Reports Server (NTRS)
Blacksberg, Jordana
2010-01-01
Raman spectroscopy is a prime candidate for the next generation of planetary instruments, as it addresses the primary goal of mineralogical analysis, which is structure and composition. However, large fluorescence return from many mineral samples under visible light excitation can render Raman spectra unattainable. Using the described approach, Raman and fluorescence, which occur on different time scales, can be simultaneously obtained from mineral samples using a compact instrument in a planetary environment. This new approach is taken based on the use of time-resolved spectroscopy for removing the fluorescence background from Raman spectra in the laboratory. In the SSTARS instrument, a visible excitation source (a green, pulsed laser) is used to generate Raman and fluorescence signals in a mineral sample. A spectral notch filter eliminates the directly reflected beam. A grating then disperses the signal spectrally, and a streak camera provides temporal resolution. The output of the streak camera is imaged on the CCD (charge-coupled device), and the data are read out electronically. By adjusting the sweep speed of the streak camera, anywhere from picoseconds to milliseconds, it is possible to resolve Raman spectra from numerous fluorescence spectra in the same sample. The key features of SSTARS include a compact streak tube capable of picosecond time resolution for collection of simultaneous spectral and temporal information, adaptive streak tube electronics that can rapidly change from one sweep rate to another over ranges of picoseconds to milliseconds, enabling collection of both Raman and fluorescence signatures versus time and wavelength, and Synchroscan integration that allows for a compact, low-power laser without compromising ultimate sensitivity.
Perceptual Adaptation of Voice Gender Discrimination with Spectrally Shifted Vowels
ERIC Educational Resources Information Center
Li, Tianhao; Fu, Qian-Jie
2011-01-01
Purpose: To determine whether perceptual adaptation improves voice gender discrimination of spectrally shifted vowels and, if so, which acoustic cues contribute to the improvement. Method: Voice gender discrimination was measured for 10 normal-hearing subjects, during 5 days of adaptation to spectrally shifted vowels, produced by processing the…
Noise Reduction using Frequency Sub-Band Adaptive Spectral Subtraction
NASA Technical Reports Server (NTRS)
Kozel, David
2000-01-01
A frequency sub-band based adaptive spectral subtraction algorithm is developed to remove noise from noise-corrupted speech signals. A single microphone is used to obtain both the noise-corrupted speech and the estimate of the statistics of the noise. The statistics of the noise are estimated during time frames that do not contain speech. These statistics are used to determine if future time frames contain speech. During speech time frames, the algorithm determines which frequency sub-bands contain useful speech information and which frequency sub-bands contain only noise. The frequency sub-bands, which contain only noise, are subtracted off at a larger proportion so the noise does not compete with the speech information. Simulation results are presented.
Statistics of the Spectral Kurtosis Estimator
NASA Astrophysics Data System (ADS)
Nita, Gelu M.; Gary, Dale E.
2010-05-01
Spectral kurtosis (SK) is a statistical approach for detecting and removing radio-frequency interference (RFI) in radio astronomy data. In this article, the statistical properties of the SK estimator are investigated and all moments of its probability density function are analytically determined. These moments provide a means to determine the tail probabilities of the estimator that are essential to defining the thresholds for RFI discrimination. It is shown that, for a number of accumulated spectra M>=24, the first SK standard moments satisfy the conditions required by a Pearson type IV probability density function (pdf), which is shown to accurately reproduce the observed distributions. The cumulative function (CF) of the Pearson type IV is then found, in both analytical and numerical forms, suitable for accurate estimation of the tail probabilities of the SK estimator. This same framework is also shown to be applicable to the related time-domain kurtosis (TDK) estimator, whose pdf corresponds to Pearson type IV when the number of time-domain samples is M>=46. The pdf and CF also are determined for this case.
Adaptive vehicle motion estimation and prediction
NASA Astrophysics Data System (ADS)
Zhao, Liang; Thorpe, Chuck E.
1999-01-01
Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.
A proposed mechanism for rapid adaptation to spectrally distorted speech.
Azadpour, Mahan; Balaban, Evan
2015-07-01
The mechanisms underlying perceptual adaptation to severely spectrally-distorted speech were studied by training participants to comprehend spectrally-rotated speech, which is obtained by inverting the speech spectrum. Spectral-rotation produces severe distortion confined to the spectral domain while preserving temporal trajectories. During five 1-hour training sessions, pairs of participants attempted to extract spoken messages from the spectrally-rotated speech of their training partner. Data on training-induced changes in comprehension of spectrally-rotated sentences and identification/discrimination of spectrally-rotated phonemes were used to evaluate the plausibility of three different classes of underlying perceptual mechanisms: (1) phonemic remapping (the formation of new phonemic categories that specifically incorporate spectrally-rotated acoustic information); (2) experience-dependent generation of a perceptual "inverse-transform" that compensates for spectral-rotation; and (3) changes in cue weighting (the identification of sets of acoustic cues least affected by spectral-rotation, followed by a rapid shift in perceptual emphasis to favour those cues, combined with the recruitment of the same type of "perceptual filling-in" mechanisms used to disambiguate speech-in-noise). Results exclusively support the third mechanism, which is the only one predicting that learning would specifically target temporally-dynamic cues that were transmitting phonetic information most stably in spite of spectral-distortion. No support was found for phonemic remapping or for inverse-transform generation. PMID:26233005
J-adaptive estimation with estimated noise statistics
NASA Technical Reports Server (NTRS)
Jazwinski, A. H.; Hipkins, C.
1973-01-01
The J-adaptive sequential estimator is extended to include simultaneous estimation of the noise statistics in a model for system dynamics. This extension completely automates the estimator, eliminating the requirement of an analyst in the loop. Simulations in satellite orbit determination demonstrate the efficacy of the sequential estimation algorithm.
Spectral abundance fraction estimation of materials using Kalman filters
NASA Astrophysics Data System (ADS)
Wang, Su; Chang, Chein; Jensen, Janet L.; Jensen, James O.
2004-12-01
Kalman filter has been widely used in statistical signal processing for parameter estimation. Although a Kalman filter approach has been recently developed for spectral unmixing, referred to as Kalman filter-based linear unmixing (KFLU), its applicability to spectral characterization within a single pixel vector has not been explored. This paper presents a new application of Kalman filtering in spectral estimation and quantification. It develops a Kalman filter-based spectral signature esimator (KFSSE) which is different from the KFLU in the sense that the former performs a Kalman filter wavelength by wavelength across a spectral signature as opposed to the latter which implements a Kalman filter pixel vector by pixel vector in an image cube. The idea of the KFSSE is to implement the state equation to characterize the true spectral signature, while the measurement equation is being used to describe the spectral signature to be processed. Additionally, since a Kalman filter can accurately estimate spectral abundance fraction of a signature, our proposed KFSSE can further used for spectral quantification for subpixel targets and mixed pixel vectors, called Kalman filter-based spectral quantifier (KFSQ). Such spectral quantification is particularly important for chemical/biological defense which requires quantification of detected agents for damage control assessment. Several different types of hyperspectral data are used for experiments to demonstrate the ability of the KFSSE in estimation of spectral signature and the utility of the KFSQ in spectral quantification.
Applications of adaptive state estimation theory
NASA Technical Reports Server (NTRS)
Moose, R. L.; Vanlandingham, H. F.; Mccabe, D. H.
1980-01-01
Two main areas of application of adaptive state estimation theory are presented. Following a review of the basic estimation approach, its application to both the control of nonlinear plants and to the problem of tracking maneuvering targets is presented. Results are brought together from these two areas of investigation to provide insight into the wide range of possible applications of the general estimation method.
Adaptive spectral imager for space-based sensing
NASA Astrophysics Data System (ADS)
Vujkovic-Cvijin, Pajo; Goldstein, Neil; Fox, Marsha J.; Higbee, Shawn D.; Becker, Latika S.; Ooi, Teng K.
2006-05-01
Optical sensors aboard space vehicles designated to perform seeker functions need to generate multispectral images in the mid-wave infrared (MWIR) and long-wave infrared (LWIR) spectral regions in order to investigate and classify man-made space objects, and to distinguish them relative to the interfering scene clutter. The spectral imager part of the sensor collects spectral signatures of the observed objects in order to extract information on surface emissivity and target temperature, both important parameters for object-discrimination algorithms. The Adaptive Spectral Imager described in this paper fulfills two functions simultaneously: one output produces instantaneous two-dimensional polychromatic imagery for object acquisition and tracking, while the other output produces multispectral images for object discrimination and classification. The spectral and temporal resolution of the data produced by the spectral imager are adjustable in real time, making it possible to achieve optimum tradeoff between different sensing functions to match dynamic monitoring requirements during a mission. The system has high optical collection efficiency, with output data rates limited only by the readout speed of the detector array. The instrument has no macro-scale moving parts, and can be built in a robust, small-volume and lightweight package, suitable for integration with space vehicles. The technology is also applicable to multispectral imaging applications in diverse areas such as surveillance, agriculture, process control, and biomedical imaging, and can be adapted for use in any spectral domain from the ultraviolet (UV) to the LWIR region.
NASA Astrophysics Data System (ADS)
Goldstein, Neil; Fox, Marsha; Adler-Golden, Steven; Gregor, Brian
2013-03-01
Field test results are presented for a prototype long-wave adaptive imager that provides both hyperspectral imagery and contrast imagery based on the direct application of hyperspectral detection algorithms in hardware. Programmable spatial light modulators are used to provide both spectral and spatial resolution using a single element detector. Programmable spectral and spatial detection filters can be used to superimpose any possible analog spectral detection filter on the image. In this work, we demonstrate three modes of operation, including hyperspectral imagery, and one and two-dimensional imagery using a generalized matched filter for detection of a specific target gas within the scene.
An adaptive pseudo-spectral method for reaction diffusion problems
NASA Technical Reports Server (NTRS)
Bayliss, A.; Gottlieb, D.; Matkowsky, B. J.; Minkoff, M.
1987-01-01
The spectral interpolation error was considered for both the Chebyshev pseudo-spectral and Galerkin approximations. A family of functionals I sub r (u), with the property that the maximum norm of the error is bounded by I sub r (u)/J sub r, where r is an integer and J is the degree of the polynomial approximation, was developed. These functionals are used in the adaptive procedure whereby the problem is dynamically transformed to minimize I sub r (u). The number of collocation points is then chosen to maintain a prescribed error bound. The method is illustrated by various examples from combustion problems in one and two dimensions.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang
2016-02-01
Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses
Reference data set for camera spectral sensitivity estimation.
Darrodi, Maryam Mohammadzadeh; Finlayson, Graham; Goodman, Teresa; Mackiewicz, Michal
2015-03-01
In this article, we describe a spectral sensitivity measurement procedure at the National Physical Laboratory, London, with the aim of obtaining ground truth spectral sensitivity functions for Nikon D5100 and Sigma SD1 Merill cameras. The novelty of our data is that the potential measurement errors are estimated at each wavelength. We determine how well the measured spectral sensitivity functions represent the actual camera sensitivity functions (as a function of wavelength). The second contribution of this paper is to test the performance of various leading sensor estimation techniques implemented from the literature using measured and synthetic data and also evaluate them based on ground truth data for the two cameras. We conclude that the estimation techniques tested are not sufficiently accurate when compared with our measured ground truth data and that there remains significant scope to improve estimation algorithms for spectral estimation. To help in this endeavor, we will make all our data available online for the community. PMID:26366649
Yield estimation from hyperspectral imagery using Spectral Angle Mapper (SAM)
Technology Transfer Automated Retrieval System (TEKTRAN)
Vegetation indices (VIs) derived from remotely sensed imagery are commonly used to estimate crop yields. Spectral angle mapper (SAM) provides an alternative approach to quantifying the spectral differences among all pixels in imagery and therefore has the potential for mapping yield variability. The...
Xu, Haojie; Lu, Yunfeng; Zhu, Shanan
2014-01-01
It is of significance to assess the dynamic spectral causality among physiological signals. Several practical estimators adapted from spectral Granger causality have been exploited to track dynamic causality based on the framework of time-varying multivariate autoregressive (tvMVAR) models. The non-zero covariance of the model’s residuals has been used to describe the instantaneous effect phenomenon in some causality estimators. However, for the situations with Gaussian residuals in some autoregressive models, it is challenging to distinguish the directed instantaneous causality if the sufficient prior information about the “causal ordering” is missing. Here, we propose a new algorithm to assess the time-varying causal ordering of tvMVAR model under the assumption that the signals follow the same acyclic causal ordering for all time lags and to estimate the instantaneous effect factor (IEF) value in order to track the dynamic directed instantaneous connectivity. The time-lagged adaptive directed transfer function (ADTF) is also estimated to assess the lagged causality after removing the instantaneous effect. In the present study, we firstly investigated the performance of the causal-ordering estimation algorithm and the accuracy of IEF value. Then, we presented the results of IEF and time-lagged ADTF method by comparing with the conventional ADTF method through simulations of various propagation models. Statistical analysis results suggest that the new algorithm could accurately estimate the causal ordering and give a good estimation of the IEF values in the Gaussian residual conditions. Meanwhile, the time-lagged ADTF approach is also more accurate in estimating the time-lagged dynamic interactions in a complex nervous system after extracting the instantaneous effect. In addition to the simulation studies, we applied the proposed method to estimate the dynamic spectral causality on real visual evoked potential (VEP) data in a human subject. Its usefulness in
Estimation of agronomic variables using spectral signatures
NASA Technical Reports Server (NTRS)
Goel, N. S.; Thompson, R. L.
1984-01-01
Techniques for the determination of leaf area index or leaf angle distribution from remote-sensing canopy-reflectance (CR) measurements are developed on the basis of empirical models relating CR to parameters such as soil and vegetation spectral properties, solar flux, and viewing angle. A general procedure for inverting CR models is presented and applied to the models of Suits (1972), Verhoef and Bunnik (1981), and Norman (1979) in the IR range. Numerical results for a soybean canopy are compared in a table, and the error sensitivity of the inverted models is shown to be relatively high, requiring the use of ancillary data such as soil reflectance, leaf reflectance, and leaf transmittance.
Accurate Biomass Estimation via Bayesian Adaptive Sampling
NASA Technical Reports Server (NTRS)
Wheeler, Kevin R.; Knuth, Kevin H.; Castle, Joseph P.; Lvov, Nikolay
2005-01-01
The following concepts were introduced: a) Bayesian adaptive sampling for solving biomass estimation; b) Characterization of MISR Rahman model parameters conditioned upon MODIS landcover. c) Rigorous non-parametric Bayesian approach to analytic mixture model determination. d) Unique U.S. asset for science product validation and verification.
Adaptive compressed sensing for spectral-domain optical coherence tomography
NASA Astrophysics Data System (ADS)
Wang, Yi; Chen, Xiaodong; Wang, Ting; Li, Hongxiao; Yu, Daoyin
2014-03-01
Spectral-domain optical coherence tomography (SD-OCT) is a non-contact and non-invasive method for measuring the change of biological tissues caused by pathological changes of body. CCD with huge number of pixels is usually used in SD-OCT to increase the detecting depth, thus enhancing the hardness of data transmission and storage. The usage of compressed sensing (CS) in SD-OCT is able to reduce the trouble of large data transfer and storage, thus eliminating the complexity of processing system. The traditional CS uses the same sampling model for SD-OCT images of different tissue, leading to reconstruction images with different quality. We proposed a CS with adaptive sampling model. The new model is based on uniform sampling model, and the interference spectral of SD-OCT is considered to adjust the local sampling ratio. Compared with traditional CS, adaptive CS can modify the sampling model for images of different tissue according to different interference spectral, getting reconstruction images with high quality without changing sampling model.
Optimal spectral tracking--adapting to dynamic regime change.
Brittain, John-Stuart; Halliday, David M
2011-01-30
Real world data do not always obey the statistical restraints imposed upon them by sophisticated analysis techniques. In spectral analysis for instance, an ergodic process--the interchangeability of temporal for spatial averaging--is assumed for a repeat-trial design. Many evolutionary scenarios, such as learning and motor consolidation, do not conform to such linear behaviour and should be approached from a more flexible perspective. To this end we previously introduced the method of optimal spectral tracking (OST) in the study of trial-varying parameters. In this extension to our work we modify the OST routines to provide an adaptive implementation capable of reacting to dynamic transitions in the underlying system state. In so doing, we generalise our approach to characterise both slow-varying and rapid fluctuations in time-series, simultaneously providing a metric of system stability. The approach is first applied to a surrogate dataset and compared to both our original non-adaptive solution and spectrogram approaches. The adaptive OST is seen to display fast convergence and desirable statistical properties. All three approaches are then applied to a neurophysiological recording obtained during a study on anaesthetic monitoring. Local field potentials acquired from the posterior hypothalamic region of a deep brain stimulation patient undergoing anaesthesia were analysed. The characterisation of features such as response delay, time-to-peak and modulation brevity are considered. PMID:21115043
Spectral reflectance estimation using a six-color scanner
NASA Astrophysics Data System (ADS)
Tominaga, Shoji; Kohno, Satoshi; Kakinuma, Hirokazu; Nohara, Fuminori; Horiuchi, Takahiko
2009-01-01
A method is proposed for estimating the spectral reflectance function of an object surface by using a six-color scanner. The scanner is regarded as a six-band spectral imaging system, since it captures six color channels in total from two separate scans using two difference lamps. First, we describe the basic characteristics of the imaging systems for a HP color scanner and a multiband camera used for comparison. Second, we describe a computational method for recovering surface-spectral reflectances from the noisy sensor outputs. A LMMSE estimator is presented as an optimal estimator. We discuss the reflectance estimation for non-flat surfaces with shading effect. A solution method is presented for the reliable reflectance estimation. Finally, the performance of the proposed method is examined in detail on experiments using the Macbeth Color Checker and non-flat objects.
Adaptive link selection algorithms for distributed estimation
NASA Astrophysics Data System (ADS)
Xu, Songcen; de Lamare, Rodrigo C.; Poor, H. Vincent
2015-12-01
This paper presents adaptive link selection algorithms for distributed estimation and considers their application to wireless sensor networks and smart grids. In particular, exhaustive search-based least mean squares (LMS) / recursive least squares (RLS) link selection algorithms and sparsity-inspired LMS / RLS link selection algorithms that can exploit the topology of networks with poor-quality links are considered. The proposed link selection algorithms are then analyzed in terms of their stability, steady-state, and tracking performance and computational complexity. In comparison with the existing centralized or distributed estimation strategies, the key features of the proposed algorithms are as follows: (1) more accurate estimates and faster convergence speed can be obtained and (2) the network is equipped with the ability of link selection that can circumvent link failures and improve the estimation performance. The performance of the proposed algorithms for distributed estimation is illustrated via simulations in applications of wireless sensor networks and smart grids.
Spectral Irradiance Estimation in the Near Infrared
NASA Astrophysics Data System (ADS)
Woolley, R. C.
2003-12-01
Currently, photometric data in the near IR is publicly available in only a few select wavelength bands from sources such as IRAS, 2Mass, and the MSX point source catalog. Efforts have been made to construct composite spectra using existing photometry by Martin Cohen (1995) and Michael P. Egan (1996). Astrometric and photometric databases in various wavelength bands are needed as a tool for improving pointing accuracy and calibration of space-based infrared observations. Methods for extrapolating and interpolating existing photometry in order to produce these databases are not as straightforward as previously expected. Spectral irradiance in the IR region deviates greatly from the standard Planck function and is dominated by absorption and emission in the stellar atmosphere. Since most stars that are bright in the IR are late K and M class stars (often variable), this problem is compounded. In this poster a rough method is put forth to extrapolate irradiances from existing 2Mass magnitudes and B-V temperatures. A more rigorous analysis as well as observational data are needed to verify the results.
Adaptive Filter-bank Approach to Restoration and Spectral Analysis of Gapped Data
NASA Astrophysics Data System (ADS)
Stoica, Petre; Larsson, Erik G.; Li, Jian
2000-10-01
The main topic of this paper is the nonparametric estimation of complex (both amplitude and phase) spectra from gapped data, as well as the restoration of such data. The focus is on the extension of the APES (amplitude and phase estimation) approach to data sequences with gaps. APES, which is one of the most successful existing nonparametric approaches to the spectral analysis of full data sequences, uses a bank of narrowband adaptive (both frequency and data dependent) filters to estimate the spectrum. A recent interpretation of this approach showed that the filterbank used by APES and the resulting spectrum minimize a least-squares (LS) fitting criterion between the filtered sequence and its spectral decomposition. The extended approach, which is called GAPES for somewhat obvious reasons, capitalizes on the aforementioned interpretation: it minimizes the APES-LS fitting criterion with respect to the missing data as well. This should be a sensible thing to do whenever the full data sequence is stationary, and hence the missing data have the same spectral content as the available data. We use both simulated and real data examples to show that GAPES estimated spectra and interpolated data sequences have excellent accuracy. We also show the performance gain achieved by GAPES over two of the most commonly used approaches for gapped-data spectral analysis, viz., the periodogram and the parametric CLEAN method. This work was partly supported by the Swedish Foundation for Strategic Research.
A Spectral Adaptive Mesh Refinement Method for the Burgers equation
NASA Astrophysics Data System (ADS)
Nasr Azadani, Leila; Staples, Anne
2013-03-01
Adaptive mesh refinement (AMR) is a powerful technique in computational fluid dynamics (CFD). Many CFD problems have a wide range of scales which vary with time and space. In order to resolve all the scales numerically, high grid resolutions are required. The smaller the scales the higher the resolutions should be. However, small scales are usually formed in a small portion of the domain or in a special period of time. AMR is an efficient method to solve these types of problems, allowing high grid resolutions where and when they are needed and minimizing memory and CPU time. Here we formulate a spectral version of AMR in order to accelerate simulations of a 1D model for isotropic homogenous turbulence, the Burgers equation, as a first test of this method. Using pseudo spectral methods, we applied AMR in Fourier space. The spectral AMR (SAMR) method we present here is applied to the Burgers equation and the results are compared with the results obtained using standard solution methods performed using a fine mesh.
Comparison of spectral estimators for characterizing fractionated atrial electrograms
2013-01-01
Background Complex fractionated atrial electrograms (CFAE) acquired during atrial fibrillation (AF) are commonly assessed using the discrete Fourier transform (DFT), but this can lead to inaccuracy. In this study, spectral estimators derived by averaging the autocorrelation function at lags were compared to the DFT. Method Bipolar CFAE of at least 16 s duration were obtained from pulmonary vein ostia and left atrial free wall sites (9 paroxysmal and 10 persistent AF patients). Power spectra were computed using the DFT and three other methods: 1. a novel spectral estimator based on signal averaging (NSE), 2. the NSE with harmonic removal (NSH), and 3. the autocorrelation function average at lags (AFA). Three spectral parameters were calculated: 1. the largest fundamental spectral peak, known as the dominant frequency (DF), 2. the DF amplitude (DA), and 3. the mean spectral profile (MP), which quantifies noise floor level. For each spectral estimator and parameter, the significance of the difference between paroxysmal and persistent AF was determined. Results For all estimators, mean DA and mean DF values were higher in persistent AF, while the mean MP value was higher in paroxysmal AF. The differences in means between paroxysmals and persistents were highly significant for 3/3 NSE and NSH measurements and for 2/3 DFT and AFA measurements (p<0.001). For all estimators, the standard deviation in DA and MP values were higher in persistent AF, while the standard deviation in DF value was higher in paroxysmal AF. Differences in standard deviations between paroxysmals and persistents were highly significant in 2/3 NSE and NSH measurements, in 1/3 AFA measurements, and in 0/3 DFT measurements. Conclusions Measurements made from all four spectral estimators were in agreement as to whether the means and standard deviations in three spectral parameters were greater in CFAEs acquired from paroxysmal or in persistent AF patients. Since the measurements were consistent, use of
Spectral estimates of solar radiation intercepted by corn canopies
NASA Technical Reports Server (NTRS)
Bauer, M. E. (Principal Investigator); Daughtry, C. S. T.; Gallo, K. P.
1982-01-01
Reflectance factor data were acquired with a Landsat band radiometer throughout two growing seasons for corn (Zea mays L.) canopies differing in planting dates, populations, and soil types. Agronomic data collected included leaf area index (LAI), biomass, development stage, and final grain yields. The spectral variable, greenness, was associated with 78 percent of the variation in LAI over all treatments. Single observations of LAI or greenness have limited value in predicting corn yields. The proportions of solar radiation intercepted (SRI) by these canopies were estimated using either measured LAI or greenness. Both SRI estimates, when accumulated over the growing season, accounted for approximately 65 percent of the variation in yields. Models which simulated the daily effects of weather and intercepted solar radiation on growth had the highest correlations to grain yields. This concept of estimating intercepted solar radiation using spectral data represents a viable approach for merging spectral and meteorological data for crop yield models.
Estimation of Wheat Agronomic Parameters using New Spectral Indices
Jin, Xiu-liang; Diao, Wan-ying; Xiao, Chun-hua; Wang, Fang-yong; Chen, Bing; Wang, Ke-ru; Li, Shao-kun
2013-01-01
Crop agronomic parameters (leaf area index (LAI), nitrogen (N) uptake, total chlorophyll (Chl) content ) are very important for the prediction of crop growth. The objective of this experiment was to investigate whether the wheat LAI, N uptake, and total Chl content could be accurately predicted using spectral indices collected at different stages of wheat growth. Firstly, the product of the optimized soil-adjusted vegetation index and wheat biomass dry weight (OSAVI×BDW) were used to estimate LAI, N uptake, and total Chl content; secondly, BDW was replaced by spectral indices to establish new spectral indices (OSAVI×OSAVI, OSAVI×SIPI, OSAVI×CIred edge, OSAVI×CIgreen mode and OSAVI×EVI2); finally, we used the new spectral indices for estimating LAI, N uptake, and total Chl content. The results showed that the new spectral indices could be used to accurately estimate LAI, N uptake, and total Chl content. The highest R2 and the lowest RMSEs were 0.711 and 0.78 (OSAVI×EVI2), 0.785 and 3.98 g/m2 (OSAVI×CIred edge) and 0.846 and 0.65 g/m2 (OSAVI×CIred edge) for LAI, nitrogen uptake and total Chl content, respectively. The new spectral indices performed better than the OSAVI alone, and the problems of a lack of sensitivity at earlier growth stages and saturation at later growth stages, which are typically associated with the OSAVI, were improved. The overall results indicated that this new spectral indices provided the best approximation for the estimation of agronomic indices for all growth stages of wheat. PMID:24023639
Optimal estimation of spectral reflectance based on metamerism
NASA Astrophysics Data System (ADS)
Chou, Tzren-Ru; Lin, Wei-Ju
2012-01-01
In this paper, we proposed an accurate estimation method for spectral reflectance of objects captured in an image. The spectral reflectance is simply modeled by a linear combination of three basic spectrums of R, G, and B colors respectively, named as spectral reflective bases of objects, which are acquired by solving a linear system based on the principle of color metamerism. Some experiments were performed to evaluate the accuracy of the estimated spectral reflectance of objects. The average mean square error of 24 colors in Macbeth checker between we simulated and the measured is 0.0866, and the maximum is 0.310. In addition, the average color difference of the 24 colors is less than 1.5 under the D65 illuminant. There are 13 colors having their color difference values less than 1, and other 8 colors having the values during the range of 1 and 2. Only three colors are relatively larger, with the differences of 2.558, 4.130 and 2.569, from the colors of No. 2, No. 13, and No. 18 in Macbeth checker respectively. Furthermore, the computational cost of this spectral estimation is very low and suitable for many practical applications in real time.
[Optimized Spectral Indices Based Estimation of Forage Grass Biomass].
An, Hai-bo; Li, Fei; Zhao, Meng-li; Liu, Ya-jun
2015-11-01
As an important indicator of forage production, aboveground biomass will directly illustrate the growth of forage grass. Therefore, Real-time monitoring biomass of forage grass play a crucial role in performing suitable grazing and management in artificial and natural grassland. However, traditional sampling and measuring are time-consuming and labor-intensive. Recently, development of hyperspectral remote sensing provides the feasibility in timely and nondestructive deriving biomass of forage grass. In the present study, the main objectives were to explore the robustness of published and optimized spectral indices in estimating biomass of forage grass in natural and artificial pasture. The natural pasture with four grazing density (control, light grazing, moderate grazing and high grazing) was designed in desert steppe, and different forage cultivars with different N rate were conducted in artificial forage fields in Inner Mongolia. The canopy reflectance and biomass in each plot were measured during critical stages. The result showed that, due to the influence in canopy structure and biomass, the canopy reflectance have a great difference in different type of forage grass. The best performing spectral index varied in different species of forage grass with different treatments (R² = 0.00-0.69). The predictive ability of spectral indices decreased under low biomass of desert steppe, while red band based spectral indices lost sensitivity under moderate-high biomass of forage maize. When band combinations of simple ratio and normalized difference spectral indices were optimized in combined datasets of natural and artificial grassland, optimized spectral indices significant increased predictive ability and the model between biomass and optimized spectral indices had the highest R² (R² = 0.72) compared to published spectral indices. Sensitive analysis further confirmed that the optimized index had the lowest noise equivalent and were the best performing index in
Fast adaptive estimation of multidimensional psychometric functions.
DiMattina, Christopher
2015-01-01
Recently in vision science there has been great interest in understanding the perceptual representations of complex multidimensional stimuli. Therefore, it is becoming very important to develop methods for performing psychophysical experiments with multidimensional stimuli and efficiently estimating psychometric models that have multiple free parameters. In this methodological study, I analyze three efficient implementations of the popular Ψ method for adaptive data collection, two of which are novel approaches to psychophysical experiments. Although the standard implementation of the Ψ procedure is intractable in higher dimensions, I demonstrate that my implementations generalize well to complex psychometric models defined in multidimensional stimulus spaces and can be implemented very efficiently on standard laboratory computers. I show that my implementations may be of particular use for experiments studying how subjects combine multiple cues to estimate sensory quantities. I discuss strategies for speeding up experiments and suggest directions for future research in this rapidly growing area at the intersection of cognitive science, neuroscience, and machine learning. PMID:26200886
Spectral estimation on a sphere in geophysics and cosmology
NASA Astrophysics Data System (ADS)
Dahlen, F. A.; Simons, Frederik J.
2008-09-01
We address the problem of estimating the spherical-harmonic power spectrum of a statistically isotropic scalar signal from noise-contaminated data on a region of the unit sphere. Three different methods of spectral estimation are considered: (i) the spherical analogue of the one-dimensional (1-D) periodogram, (ii) the maximum-likelihood method and (iii) a spherical analogue of the 1-D multitaper method. The periodogram exhibits strong spectral leakage, especially for small regions of area A << 4π, and is generally unsuitable for spherical spectral analysis applications, just as it is in 1-D. The maximum-likelihood method is particularly useful in the case of nearly-whole-sphere coverage, A ~ 4π, and has been widely used in cosmology to estimate the spectrum of the cosmic microwave background radiation from spacecraft observations. The spherical multitaper method affords easy control over the fundamental trade-off between spectral resolution and variance, and is easily implemented regardless of the region size, requiring neither non-linear iteration nor large-scale matrix inversion. As a result, the method is ideally suited for most applications in geophysics, geodesy or planetary science, where the objective is to obtain a spatially localized estimate of the spectrum of a signal from noisy data within a pre-selected and typically small region.
Estimating neugebauer primaries for multi-channel spectral printing modeling
NASA Astrophysics Data System (ADS)
Slavuj, Radovan; Coppel, Ludovic G.; Olen, Melissa; Hardeberg, Jon Yngve
2014-02-01
Multichannel printer modeling has been an active area of research in the field of spectral printing. The most commonly used models for characterization of such systems are the spectral Neugebauer (SN) and its extensions. This work addresses issues that can arise during calibration and testing of the SN model when modelling a 7-colorant printer. Since most substrates are limited in their capacity to take in large amount of ink, it is not always possible to print all colorant combinations necessary to determine the Neugebauer primaries (NP). A common solution is to estimate the nonprintable Neugebauer primaries from the single colorant primaries using the Kubelka-Munk (KM) optical model. In this work we test whether a better estimate can be obtained using general radiative transfer theory, which better represents the angular variation of the reflectance from highly absorbing media, and takes surface scattering into account. For this purpose we use the DORT2002 model. We conclude DORT2002 does not offer significant improvements over KM in the estimation of the NPs, but a significant improvement is obtained when using a simple surface scattering model. When the estimated primaries are used as inputs to the SN model instead of measured ones, it is found the SN model performs the same or better in terms of color difference and spectral error. If the mixed measured and estimated primaries are used as inputs to the SN model, it performs better than using either measured or estimated.
Induction machine faults detection using stator current parametric spectral estimation
NASA Astrophysics Data System (ADS)
El Bouchikhi, El Houssin; Choqueuse, Vincent; Benbouzid, Mohamed
2015-02-01
Current spectrum analysis is a proven technique for fault diagnosis in electrical machines. Current spectral estimation is usually performed using classical techniques such as periodogram (FFT) or its extensions. However, these techniques have several drawbacks since their frequency resolution is limited and additional post-processing algorithms are required to extract a relevant fault detection criterion. Therefore, this paper proposes a new parametric spectral estimator that fully exploits the faults sensitive frequencies. The proposed technique is based on the maximum likelihood estimator (MLE) and offers high-resolution capabilities. Based on this approach, a fault criterion is derived for detecting several fault types. The proposed technique is assessed using simulation signals, issued from a coupled electromagnetic circuits approach-based simulation tool for mechanical unbalance and electrical asymmetry faults detection. It is afterward validated using experiments on a 0.75-kW induction machine test bed for the particular case of bearing faults.
Yield estimation of sugarcane based on agrometeorological-spectral models
NASA Technical Reports Server (NTRS)
Rudorff, Bernardo Friedrich Theodor; Batista, Getulio Teixeira
1990-01-01
This work has the objective to assess the performance of a yield estimation model for sugarcane (Succharum officinarum). The model uses orbital gathered spectral data along with yield estimated from an agrometeorological model. The test site includes the sugarcane plantations of the Barra Grande Plant located in Lencois Paulista municipality in Sao Paulo State. Production data of four crop years were analyzed. Yield data observed in the first crop year (1983/84) were regressed against spectral and agrometeorological data of that same year. This provided the model to predict the yield for the following crop year i.e., 1984/85. The model to predict the yield of subsequent years (up to 1987/88) were developed similarly, incorporating all previous years data. The yield estimations obtained from these models explained 69, 54, and 50 percent of the yield variation in the 1984/85, 1985/86, and 1986/87 crop years, respectively. The accuracy of yield estimations based on spectral data only (vegetation index model) and on agrometeorological data only (agrometeorological model) were also investigated.
Empirical performance of the spectral independent morphological adaptive classifier
NASA Astrophysics Data System (ADS)
Montgomery, Joel B.; Montgomery, Christine T.; Sanderson, Richard B.; McCalmont, John F.
2008-04-01
Effective missile warning and countermeasures continue to be an unfulfilled goal for the Air Force including the wider military and civilian aerospace community. To make the necessary detection and jamming timeframes dictated by today's proliferated missiles and near-term upgraded threats, sensors with required sensitivity, field of regard, and spatial resolution are being pursued in conjunction with advanced processing techniques allowing for detection and discrimination beyond 10 km. The greatest driver of any missile warning system is detection and correct declaration, in which all targets need to be detected with a high confidence and with very few false alarms. Generally, imaging sensors are limited in their detection capability by the presence of heavy background clutter, sun glints, and inherent sensor noise. Many threat environments include false alarm sources like burning fuels, flares, exploding ordinance, and industrial emitters. Spectral discrimination has been shown to be one of the most effective methods of improving the performance of typical missile warning sensors, particularly for heavy clutter situations. Its utility has been demonstrated in the field and on-board multiple aircraft. Utilization of the background and clutter spectral content, coupled with additional spatial and temporal filtering techniques, have yielded robust adaptive real-time algorithms to increase signal-to-clutter ratios against point targets, and thereby to increase detection range. The algorithm outlined is the result of continued work with reported results against visible missile tactical data. The results are summarized and compared in terms of computational cost expected to be implemented on a real-time field-programmable gate array (FPGA) processor.
Adaptive Detection of Point-Like Targets in Spectrally Symmetric Interference
NASA Astrophysics Data System (ADS)
De Maio, Antonio; Orlando, Danilo; Hao, Chengpeng; Foglia, Goffredo
2016-06-01
We address adaptive radar detection of targets embedded in ground clutter dominated environments characterized by a symmetrically structured power spectral density. At the design stage, we leverage on the spectrum symmetry for the interference to come up with decision schemes capable of capitalizing the a-priori information on the covariance structure. To this end, we prove that the detection problem at hand can be formulated in terms of real variables and, then, we apply design procedures relying on the GLRT, the Rao test, and the Wald test. Specifically, the estimates of the unknown parameters under the target presence hypothesis are obtained through an iterative optimization algorithm whose convergence and quality guarantee is thoroughly proved. The performance analysis, both on simulated and on real radar data, confirms the superiority of the considered architectures over their conventional counterparts which do not take advantage of the clutter spectral symmetry.
Respiratory impedance spectral estimation for digitally created random noise.
Davis, K A; Lutchen, K R
1991-01-01
Measurement of respiratory input mechanical impedance (Zrs) is noninvasive, requires minimal subject cooperation, and contains information related to mechanical lung function. A common approach to measure Zrs is to apply random noise pressure signals at the airway opening, measure the resulting flow variations, and then estimate Zrs using Fast-Fourier Transform (FFT) techniques. The goal of this study was to quantify how several signal processing issues affect the quality of a Zrs spectral estimate when the input pressure sequence is created digitally. Random noise driven pressure and flow time domain data were simulated for three models, which permitted predictions of Zrs characteristics previously reported from 0-4, 4-32, and 4-200 Hz. Then, the quality of the Zrs estimate was evaluated as a function of the number of runs ensemble averaged, windowing, flow signal-to-noise ratio (SNR), and pressure spectral magnitude shape magnitude of P(j omega). For a magnitude of P(j omega) with uniform power distribution and a SNR less than 100, the 0-4 Hz and 4-200 Hz Zrs estimates for 10 runs were poor (minimum coherence gamma 2 less than 0.75) particularly where Zrs is high. When the SNR greater than 200 and 10 runs were averaged, the minimum gamma 2 greater than 0.95. However, when magnitude of P(j omega) was matched to magnitude of Zrs, gamma 2 greater than 0.91 even for 5 runs and a SNR of 20. For data created digitally with equally spaced spectral content, the rectangular window was superior to the Hanning. Finally, coherence alone may not be a reliable measure of Zrs quality because coherence is only an estimate itself. We conclude that an accurate estimate of Zrs is best obtained by matching magnitude of P(j omega) to magnitude of Zin (subject and speaker) and using rectangular windowing. PMID:2048776
Estimation of spectral emissivity in the thermal infrared
NASA Technical Reports Server (NTRS)
Kryskowski, David; Maxwell, J. R.
1993-01-01
A number of algorithms are available in the literature that attempt to remove most of the effects of temperature from thermal multispectral data where the final goal is to extract emissivity differences. Early approaches include adjacent spectral band ratioing, broad band radiance normalization and the use of one band where emissivities are generally high (e.g., 11 to 12 micrometers) to determine the temperature. More recent work has produced two techniques that use data averaging to extract temperature to leave a quantity related to emissivity changes. These two techniques have been investigated and compared and appear to provide reasonable results. The analysis presented in this paper develops a thermal IR multispectral temperature/emissivity estimation procedure based on formal estimation theory, Gaussian statistics, and a stochastic radiance signal model including the effects of both temperature and emissivity. The importance of this work is that this is an optimal estimation procedure which will provide minimum variance estimates of temperature and emissivity changes directly. Section 2 discusses optimal linear spectral emissivity estimation and Section 3 is a summary.
NASA Astrophysics Data System (ADS)
Dat, Tran Huy; Takeda, Kazuya; Itakura, Fumitada
We present a multichannel speech enhancement method based on MAP speech spectral magnitude estimation using a generalized gamma model of speech prior distribution, where the model parameters are adapted from actual noisy speech in a frame-by-frame manner. The utilization of a more general prior distribution with its online adaptive estimation is shown to be effective for speech spectral estimation in noisy environments. Furthermore, the multi-channel information in terms of cross-channel statistics are shown to be useful to better adapt the prior distribution parameters to the actual observation, resulting in better performance of speech enhancement algorithm. We tested the proposed algorithm in an in-car speech database and obtained significant improvements of the speech recognition performance, particularly under non-stationary noise conditions such as music, air-conditioner and open window.
Adaptive camouflage in the VIS and IR spectral range: main principles and mechanisms
NASA Astrophysics Data System (ADS)
Schwarz, Alexander
2015-10-01
This paper presents a survey of main applicable technical principles and mechanisms for adaptive camouflage in the visible (VIS) and infrared (IR) spectral ranges. All principles are described by their operation method and technical data such as the active spectral range, the degree and speed of adaptation, weight, power consumption, robustness, usability, lifetime, technology readiness level (TRL) etc.. The paper allows to compare the different principles and to assess them with regard to an application to an adaptive camouflage system.
Spectral estimators of absorbed photosynthetically active radiation in corn canopies
NASA Technical Reports Server (NTRS)
Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.
1985-01-01
Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a Landsat MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95 percent of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50 percent of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73 percent of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.
Spectral estimators of absorbed photosynthetically active radiation in corn canopies
NASA Technical Reports Server (NTRS)
Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.
1984-01-01
Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a LANDSAT MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95% of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50% of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73% of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.
Seeing red in cyclic stratigraphy: Spectral noise estimation for astrochronology
NASA Astrophysics Data System (ADS)
Meyers, Stephen R.
2012-09-01
Fundamental to the development of astronomical time scales is the recognition of oscillatory variability within stratigraphic data and its evaluation relative to a null "noise" hypothesis. In this study, Monte Carlo simulations are used to investigate the suitability of two commonly used noise hypotheses (the "conventional" and "robust" AR1 approaches), and the results highlight important limitations in both for cyclostratigraphic application. Perhaps most problematic, the robust AR1 method can result in inflated confidence level estimates and excessive clumping of false positives within the low frequency portion of the spectrum, especially when the underlying noise process has a high lag-1 autocorrelation. Given typical cyclostratigraphic records, this technique will often impose "significant" eccentricity band variability, even in the case of pure AR1 noise. An alternative spectral noise estimation method is proposed to overcome these problems, which simultaneously allows for departures from the AR1 assumption, and obtains high statistical power—that is, the ability to accurately identify astronomical signals when they are present in the data. We apply the method to un-tunedδ18O data from Miocene sediments of the Ceara Rise, indicating statistically significant spectral power at frequencies that are consistent with the published orbital interpretation of Weedon et al. (1997). Furthermore, evaluation of the frequency arrangement of the significant spatial bedding periods, using the average spectral misfit method for astrochronologic testing, reveals that the null hypothesis of no orbital influence can be rejected with a high degree of confidence (the 99.8% confidence level).
Convergence of oscillator spectral estimators for counted-frequency measurements.
NASA Technical Reports Server (NTRS)
Tausworthe, R. C.
1972-01-01
A common intermediary connecting frequency-noise calibration or testing of an oscillator to useful applications is the spectral density of the frequency-deviating process. In attempting to turn test data into predicts of performance characteristics, one is naturally led to estimation of statistical values by sample-mean and sample-variance techniques. However, sample means and sample variances themselves are statistical quantities that do not necessarily converge (in the mean-square sense) to actual ensemble-average means and variances, except perhaps for excessively large sample sizes. This is especially true for the flicker noise component of oscillators. This article shows, for the various types of noises found in oscillators, how sample averages converge (or do not converge) to their statistical counterparts. The convergence rate is shown to be the same for all oscillators of a given spectral type.
Adaptive uniform grayscale coded aperture design for high dynamic range compressive spectral imaging
NASA Astrophysics Data System (ADS)
Diaz, Nelson; Rueda, Hoover; Arguello, Henry
2016-05-01
Imaging spectroscopy is an important area with many applications in surveillance, agriculture and medicine. The disadvantage of conventional spectroscopy techniques is that they collect the whole datacube. In contrast, compressive spectral imaging systems capture snapshot compressive projections, which are the input of reconstruction algorithms to yield the underlying datacube. Common compressive spectral imagers use coded apertures to perform the coded projections. The coded apertures are the key elements in these imagers since they define the sensing matrix of the system. The proper design of the coded aperture entries leads to a good quality in the reconstruction. In addition, the compressive measurements are prone to saturation due to the limited dynamic range of the sensor, hence the design of coded apertures must consider saturation. The saturation errors in compressive measurements are unbounded and compressive sensing recovery algorithms only provide solutions for bounded noise or bounded with high probability. In this paper it is proposed the design of uniform adaptive grayscale coded apertures (UAGCA) to improve the dynamic range of the estimated spectral images by reducing the saturation levels. The saturation is attenuated between snapshots using an adaptive filter which updates the entries of the grayscale coded aperture based on the previous snapshots. The coded apertures are optimized in terms of transmittance and number of grayscale levels. The advantage of the proposed method is the efficient use of the dynamic range of the image sensor. Extensive simulations show improvements in the image reconstruction of the proposed method compared with grayscale coded apertures (UGCA) and adaptive block-unblock coded apertures (ABCA) in up to 10 dB.
Efficient spectral estimation for time series with intermittent gaps
NASA Astrophysics Data System (ADS)
Smith, L. T.; Constable, C.
2009-12-01
Data from magnetic satellites like CHAMP, Ørsted, and Swarm can be used to study electromagnetic induction in Earth’s mantle. Time series of internal and external spherical harmonic coefficients (usually those associated with the predominantly dipolar structure of ring current variations) are used to determine Earth’s electromagnetic response as a function of frequency of the external variations. Inversion of this response can yield information about electrical conductivity variations in Earth’s mantle. The inductive response depends on frequency through skin depth, so it is desirable to work with the longest time series possible. Intermittent gaps in available data complicate attempts to estimate the power or cross spectra and thus the electromagnetic response for satellite records. Complete data series are most effectively analyzed using direct multi-taper spectral estimation, either with prolate multitapers that efficiently minimize broadband bias, or with a set designed to minimize local bias. The latter group have frequently been approximated by sine tapers. Intermittent gaps in data may be patched over using custom designed interpolation. We focus on a different approach, using sets of multitapers explicitly designed to accommodate gaps in the data. The optimization problems for the prolate and minimum bias tapers are altered to allow a specific arrangement of data samples, producing a modified eigenvalue-eigenfunction problem. We have shown that the prolate tapers with gaps and the minimum bias tapers with gaps provide higher resolution spectral estimates with less leakage than spectral averaging of data sections bounded by gaps. Current work is focused on producing efficient algorithms for spectral estimation of data series with gaps. A major limitation is the time and memory needed for the solution of large eigenvalue problems used to calculate the tapers for long time series. Fortunately only a limited set of the largest eigenvalues are needed, and
Alternative techniques for high-resolution spectral estimation of spectrally encoded endoscopy
NASA Astrophysics Data System (ADS)
Mousavi, Mahta; Duan, Lian; Javidi, Tara; Ellerbee, Audrey K.
2015-09-01
Spectrally encoded endoscopy (SEE) is a minimally invasive optical imaging modality capable of fast confocal imaging of internal tissue structures. Modern SEE systems use coherent sources to image deep within the tissue and data are processed similar to optical coherence tomography (OCT); however, standard processing of SEE data via the Fast Fourier Transform (FFT) leads to degradation of the axial resolution as the bandwidth of the source shrinks, resulting in a well-known trade-off between speed and axial resolution. Recognizing the limitation of FFT as a general spectral estimation algorithm to only take into account samples collected by the detector, in this work we investigate alternative high-resolution spectral estimation algorithms that exploit information such as sparsity and the general region position of the bulk sample to improve the axial resolution of processed SEE data. We validate the performance of these algorithms using bothMATLAB simulations and analysis of experimental results generated from a home-built OCT system to simulate an SEE system with variable scan rates. Our results open a new door towards using non-FFT algorithms to generate higher quality (i.e., higher resolution) SEE images at correspondingly fast scan rates, resulting in systems that are more accurate and more comfortable for patients due to the reduced image time.
Spectral estimation of temporal series at unequal intervals.
Abraira, V; Ibarz, J M
1986-06-01
Many biological variables present rhythmic oscillations at different frequencies. Most common techniques, which statistically characterize temporal series and permit the study of these rhythms, require equidistant sampling. However, it is not always possible to register at regular intervals many of the variables under study, either because of the nature of the phenomenon which generates them or because of the difficulty in obtaining the samples. This paper proposes a method for spectral estimation by means of fitting to the cosine functions of sampled variables using a nonuniform point process. PMID:3754801
How Accurately Do Spectral Methods Estimate Effective Elastic Thickness?
NASA Astrophysics Data System (ADS)
Perez-Gussinye, M.; Lowry, A. R.; Watts, A. B.; Velicogna, I.
2002-12-01
The effective elastic thickness, Te, is an important parameter that has the potential to provide information on the long-term thermal and mechanical properties of the the lithosphere. Previous studies have estimated Te using both forward and inverse (spectral) methods. While there is generally good agreement between the results obtained using these methods, spectral methods are limited because they depend on the spectral estimator and the window size chosen for analysis. In order to address this problem, we have used a multitaper technique which yields optimal estimates of the bias and variance of the Bouguer coherence function relating topography and gravity anomaly data. The technique has been tested using realistic synthetic topography and gravity. Synthetic data were generated assuming surface and sub-surface (buried) loading of an elastic plate with fractal statistics consistent with real data sets. The cases of uniform and spatially varying Te are examined. The topography and gravity anomaly data consist of 2000x2000 km grids sampled at 8 km interval. The bias in the Te estimate is assessed from the difference between the true Te value and the mean from analyzing 100 overlapping windows within the 2000x2000 km data grids. For the case in which Te is uniform, the bias and variance decrease with window size and increase with increasing true Te value. In the case of a spatially varying Te, however, there is a trade-off between spatial resolution and variance. With increasing window size the variance of the Te estimate decreases, but the spatial changes in Te are smeared out. We find that for a Te distribution consisting of a strong central circular region of Te=50 km (radius 600 km) and progressively smaller Te towards its edges, the 800x800 and 1000x1000 km window gave the best compromise between spatial resolution and variance. Our studies demonstrate that assumed stationarity of the relationship between gravity and topography data yields good results even in
Experimental demonstration of an adaptive architecture for direct spectral imaging classification.
Dunlop-Gray, Matthew; Poon, Phillip K; Golish, Dathon; Vera, Esteban; Gehm, Michael E
2016-08-01
Spectral imaging is a powerful tool for providing in situ material classification across a spatial scene. Typically, spectral imaging analyses are interested in classification, though often the classification is performed only after reconstruction of the spectral datacube. We present a computational spectral imaging system, the Adaptive Feature-Specific Spectral Imaging Classifier (AFSSI-C), which yields direct classification across the spatial scene without reconstruction of the source datacube. With a dual disperser architecture and a programmable spatial light modulator, the AFSSI-C measures specific projections of the spectral datacube which are generated by an adaptive Bayesian classification and feature design framework. We experimentally demonstrate multiple order-of-magnitude improvement of classification accuracy in low signal-to-noise (SNR) environments when compared to legacy spectral imaging systems. PMID:27505794
Spectral estimates of net radiation and soil heat flux
Daughtry, C.S.T.; Kustas, W.P.; Moran, M.S.; Pinter, P. J., Jr.; Jackson, R. D.; Brown, P.W.; Nichols, W.D.; Gay, L.W.
1990-01-01
Conventional methods of measuring surface energy balance are point measurements and represent only a small area. Remote sensing offers a potential means of measuring outgoing fluxes over large areas at the spatial resolution of the sensor. The objective of this study was to estimate net radiation (Rn) and soil heat flux (G) using remotely sensed multispectral data acquired from an aircraft over large agricultural fields. Ground-based instruments measured Rn and G at nine locations along the flight lines. Incoming fluxes were also measured by ground-based instruments. Outgoing fluxes were estimated using remotely sensed data. Remote Rn, estimated as the algebraic sum of incoming and outgoing fluxes, slightly underestimated Rn measured by the ground-based net radiometers. The mean absolute errors for remote Rn minus measured Rn were less than 7%. Remote G, estimated as a function of a spectral vegetation index and remote Rn, slightly overestimated measured G; however, the mean absolute error for remote G was 13%. Some of the differences between measured and remote values of Rn and G are associated with differences in instrument designs and measurement techniques. The root mean square error for available energy (Rn - G) was 12%. Thus, methods using both ground-based and remotely sensed data can provide reliable estimates of the available energy which can be partitioned into sensible and latent heat under nonadvective conditions. ?? 1990.
Optimizing spectral wave estimates with adjoint-based sensitivity maps
NASA Astrophysics Data System (ADS)
Orzech, Mark; Veeramony, Jay; Flampouris, Stylianos
2014-04-01
A discrete numerical adjoint has recently been developed for the stochastic wave model SWAN. In the present study, this adjoint code is used to construct spectral sensitivity maps for two nearshore domains. The maps display the correlations of spectral energy levels throughout the domain with the observed energy levels at a selected location or region of interest (LOI/ROI), providing a full spectrum of values at all locations in the domain. We investigate the effectiveness of sensitivity maps based on significant wave height ( H s ) in determining alternate offshore instrument deployment sites when a chosen nearshore location or region is inaccessible. Wave and bathymetry datasets are employed from one shallower, small-scale domain (Duck, NC) and one deeper, larger-scale domain (San Diego, CA). The effects of seasonal changes in wave climate, errors in bathymetry, and multiple assimilation points on sensitivity map shapes and model performance are investigated. Model accuracy is evaluated by comparing spectral statistics as well as with an RMS skill score, which estimates a mean model-data error across all spectral bins. Results indicate that data assimilation from identified high-sensitivity alternate locations consistently improves model performance at nearshore LOIs, while assimilation from low-sensitivity locations results in lesser or no improvement. Use of sub-sampled or alongshore-averaged bathymetry has a domain-specific effect on model performance when assimilating from a high-sensitivity alternate location. When multiple alternate assimilation locations are used from areas of lower sensitivity, model performance may be worse than with a single, high-sensitivity assimilation point.
Application of Sequential Interval Estimation to Adaptive Mastery Testing
ERIC Educational Resources Information Center
Chang, Yuan-chin Ivan
2005-01-01
In this paper, we apply sequential one-sided confidence interval estimation procedures with beta-protection to adaptive mastery testing. The procedures of fixed-width and fixed proportional accuracy confidence interval estimation can be viewed as extensions of one-sided confidence interval procedures. It can be shown that the adaptive mastery…
A comparison of spectral estimation methods for the analysis of sibilant fricatives
Reidy, Patrick F.
2015-01-01
It has been argued that, to ensure accurate spectral feature estimates for sibilants, the spectral estimation method should include a low-variance spectral estimator; however, no empirical evaluation of estimation methods in terms of feature estimates has been given. The spectra of /s/ and /ʃ/ were estimated with different methods that varied the pre-emphasis filter and estimator. These methods were evaluated in terms of effects on two features (centroid and degree of sibilance) and on the detection of four linguistic contrasts within these features. Estimation method affected the spectral features but none of the tested linguistic contrasts. PMID:25920873
NASA Technical Reports Server (NTRS)
Barnard, Stephen T.; Simon, Horst; Lasinski, T. A. (Technical Monitor)
1994-01-01
The design of a parallel implementation of multilevel recursive spectral bisection is described. The goal is to implement a code that is fast enough to enable dynamic repartitioning of adaptive meshes.
NASA Astrophysics Data System (ADS)
Tsai, Chi-Yi; Song, Kai-Tai
2006-02-01
A novel heterogeneity-projection hard-decision adaptive interpolation (HPHD-AI) algorithm is proposed in this paper for color reproduction from Bayer mosaic images. The proposed algorithm aims to estimate the optimal interpolation direction and perform hard-decision interpolation, in which the decision is made before interpolation. To do so, a new heterogeneity-projection scheme based on spectral-spatial correlation is proposed to decide the best interpolation direction from the original mosaic image directly. Exploiting the proposed heterogeneity-projection scheme, a hard-decision rule can be designed easily to perform the interpolation. We have compared this technique with three recently proposed demosaicing techniques: Lu's, Gunturk's and Li's methods, by utilizing twenty-five natural images from Kodak PhotoCD. The experimental results show that HPHD-AI outperforms all of them in both PSNR values and S-CIELab ▵Ε* ab measures.
Smallwood, D. O.
1996-01-01
It is shown that the usual method for estimating the coherence functions (ordinary, partial, and multiple) for a general multiple-input! multiple-output problem can be expressed as a modified form of Cholesky decomposition of the cross-spectral density matrix of the input and output records. The results can be equivalently obtained using singular value decomposition (SVD) of the cross-spectral density matrix. Using SVD suggests a new form of fractional coherence. The formulation as a SVD problem also suggests a way to order the inputs when a natural physical order of the inputs is absent.
Informed spectral analysis: audio signal parameter estimation using side information
NASA Astrophysics Data System (ADS)
Fourer, Dominique; Marchand, Sylvain
2013-12-01
Parametric models are of great interest for representing and manipulating sounds. However, the quality of the resulting signals depends on the precision of the parameters. When the signals are available, these parameters can be estimated, but the presence of noise decreases the resulting precision of the estimation. Furthermore, the Cramér-Rao bound shows the minimal error reachable with the best estimator, which can be insufficient for demanding applications. These limitations can be overcome by using the coding approach which consists in directly transmitting the parameters with the best precision using the minimal bitrate. However, this approach does not take advantage of the information provided by the estimation from the signal and may require a larger bitrate and a loss of compatibility with existing file formats. The purpose of this article is to propose a compromised approach, called the 'informed approach,' which combines analysis with (coded) side information in order to increase the precision of parameter estimation using a lower bitrate than pure coding approaches, the audio signal being known. Thus, the analysis problem is presented in a coder/decoder configuration where the side information is computed and inaudibly embedded into the mixture signal at the coder. At the decoder, the extra information is extracted and is used to assist the analysis process. This study proposes applying this approach to audio spectral analysis using sinusoidal modeling which is a well-known model with practical applications and where theoretical bounds have been calculated. This work aims at uncovering new approaches for audio quality-based applications. It provides a solution for challenging problems like active listening of music, source separation, and realistic sound transformations.
Bayesian parameter estimation in spectral quantitative photoacoustic tomography
NASA Astrophysics Data System (ADS)
Pulkkinen, Aki; Cox, Ben T.; Arridge, Simon R.; Kaipio, Jari P.; Tarvainen, Tanja
2016-03-01
Photoacoustic tomography (PAT) is an imaging technique combining strong contrast of optical imaging to high spatial resolution of ultrasound imaging. These strengths are achieved via photoacoustic effect, where a spatial absorption of light pulse is converted into a measurable propagating ultrasound wave. The method is seen as a potential tool for small animal imaging, pre-clinical investigations, study of blood vessels and vasculature, as well as for cancer imaging. The goal in PAT is to form an image of the absorbed optical energy density field via acoustic inverse problem approaches from the measured ultrasound data. Quantitative PAT (QPAT) proceeds from these images and forms quantitative estimates of the optical properties of the target. This optical inverse problem of QPAT is illposed. To alleviate the issue, spectral QPAT (SQPAT) utilizes PAT data formed at multiple optical wavelengths simultaneously with optical parameter models of tissue to form quantitative estimates of the parameters of interest. In this work, the inverse problem of SQPAT is investigated. Light propagation is modelled using the diffusion equation. Optical absorption is described with chromophore concentration weighted sum of known chromophore absorption spectra. Scattering is described by Mie scattering theory with an exponential power law. In the inverse problem, the spatially varying unknown parameters of interest are the chromophore concentrations, the Mie scattering parameters (power law factor and the exponent), and Gruneisen parameter. The inverse problem is approached with a Bayesian method. It is numerically demonstrated, that estimation of all parameters of interest is possible with the approach.
Tracking closely spaced multiple sources via spectral-estimation techniques
NASA Astrophysics Data System (ADS)
Gabriel, W. F.
1982-06-01
Modern spectral-estimation techniques have achieved a level of performance that attracts interest in applications area such as the tracking of multiple spatial sources. In addition to the original "superresolution' capability, these techniques offer an apparent 'absence of sidelobes' characteristic and some reasonable solutions to the difficult radar coherent-source problem that involves a phase-dependent SNR (signal-to-noise ratio) penalty. This report reviews the situation briefly, and it discusses a few of the techniques that have been found useful, including natural or synthetic doppler shifts, non-Toeplitz forward-backward subaperture-shift processing, and recent eigenvalue/eigenvector analysis algorithms. The techniques are applied to multiple-source situations that include mixtures of coherent and noncoherent sources of unequal strengths, with either an 8-or a 12-element linear-array sampling aperture. The first test case involves the estimation of six sources, two of which are 95% correlated. The second test case involves a tracking-simulation display example of four moving sources: three are -10dB coherent sources 95% correlated, and the other is a strong 20-dB noncoherent source. These test cases demonstrate the remarkable improvements obtained with the recent estimation techniques, and they point to the possibilities for real-world applications.
Adaptive optimal spectral range for dynamically changing scene
NASA Astrophysics Data System (ADS)
Pinsky, Ephi; Siman-tov, Avihay; Peles, David
2012-06-01
A novel multispectral video system that continuously optimizes both its spectral range channels and the exposure time of each channel autonomously, under dynamic scenes, varying from short range-clear scene to long range-poor visibility, is currently being developed. Transparency and contrast of high scattering medium of channels with spectral ranges in the near infrared is superior to the visible channels, particularly to the blue range. Longer wavelength spectral ranges that induce higher contrast are therefore favored. Images of 3 spectral channels are fused and displayed for (pseudo) color visualization, as an integrated high contrast video stream. In addition to the dynamic optimization of the spectral channels, optimal real-time exposure time is adjusted simultaneously and autonomously for each channel. A criterion of maximum average signal, derived dynamically from previous frames of the video stream is used (Patent Application - International Publication Number: WO2009/093110 A2, 30.07.2009). This configuration enables dynamic compatibility with the optimal exposure time of a dynamically changing scene. It also maximizes the signal to noise ratio and compensates each channel for the specified value of daylight reflections and sensors response for each spectral range. A possible implementation is a color video camera based on 4 synchronized, highly responsive, CCD imaging detectors, attached to a 4CCD dichroic prism and combined with a common, color corrected, lens. Principal Components Analysis (PCA) technique is then applied for real time "dimensional collapse" in color space, in order to select and fuse, for clear color visualization, the 3 most significant principal channels out of at least 4 characterized by high contrast and rich details in the image data.
Smoothed aggregation adaptive spectral element-based algebraic multigrid
Energy Science and Technology Software Center (ESTSC)
2015-01-20
SAAMGE provides parallel methods for building multilevel hierarchies and solvers that can be used for elliptic equations with highly heterogeneous coefficients. Additionally, hierarchy adaptation is implemented allowing solving multiple problems with close coefficients without rebuilding the hierarchy.
J-Adaptive estimation with estimated noise statistics. [for orbit determination
NASA Technical Reports Server (NTRS)
Jazwinski, A. H.; Hipkins, C.
1975-01-01
The J-Adaptive estimator described by Jazwinski and Hipkins (1972) is extended to include the simultaneous estimation of the statistics of the unmodeled system accelerations. With the aid of simulations it is demonstrated that the J-Adaptive estimator with estimated noise statistics can automatically estimate satellite orbits to an accuracy comparable with the data noise levels, when excellent, continuous tracking coverage is available. Such tracking coverage will be available from satellite-to-satellite tracking.
Seeing Beyond Sight: The Adaptive, Feature-Specific, Spectral Imaging Classifier
NASA Astrophysics Data System (ADS)
Dunlop-Gray, Matthew John
Spectral imaging, a combination of spectroscopy and imaging, is a powerful tool for providing in situ material classification across a spatial scene. Typically spectral imaging analyses are interested in classification, though conventionally the classification is performed only after reconstruction of the spectral datacube, which can have upwards of 109 signal elements. In this dissertation, I present a computational spectral imaging system, the Adaptive Feature-Specific Spectral Imaging Classifier (AFSSI-C), which yields direct classification across the spatial scene without reconstruction of the source datacube. With a dual disperser architecture and a programmable spatial light modulator which induces spectral filtering, the AFSSI-C measures specific projections of the spectral datacube which in turn feed an adaptive Bayesian classification and feature design framework. I present my work related to the design, construction, and testing of this instrument, which ultimately demonstrated significantly improved classification accuracy compared to legacy spectral imaging systems by first showing agreement with simulation, and then comparing to expected performance of traditional systems. As a result of its open aperture and adaptive filters, the AFSSI-C achieves 250x better accuracy than pushbroom, whiskbroom, and tunable filter systems for a four-class problem at 0 dB TSNR (task signal-to-noise ratio)---a point where measurement noise is equal to the minimum separation between the library spectra. The AFSSI-C also achieves 100x better accuracy than random projections at 0 dB TSNR.
Estimation of canopy water content with MODIS spectral index
NASA Astrophysics Data System (ADS)
Jiang, Zuoning; Li, Lin; Ustin, Susan L.
2009-08-01
Canopy water content is an important variable for forestry and agriculture management. This study was aimed at building calibration models to estimate vegetation canopy (VC) equivalent water thickness (EWT) from high temporal resolution and large areal coverage MODIS images. The models were developed for a semi-arid area in Arizona (SMEX04) and the best one was applied to MODIS images covering a forest area in Southern Indiana. EWT derived from hyperspectral data in the process of atmospheric correction was used for calibrating MODIS spectral indices. Tested in this study were four vegetation indices: Normalized Difference Water Index (NDWI), Shortwave Infrared Water Stress Index (SIWSI), Normalized Difference Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI), which were designed based on either water (NDWI and SIWSI) or chlorophyll absorptions (NDVI and EVI). Validating these indices on field measured EWT for the SMEX04 site resulted in R2 correlations of 0.7547, 0.7509, 0.7299 and 0.7547, respectively. According to regression equations, however, EWT estimated using NDWI and SIWSI shows a slope more close to 1 than those using NDVI and EVI when validated with ground measured EWT, thus showing a better prediction ability than the two chlorophyll indices. The SIWSI-EWT model was chosen to apply to a time series of MODIS images covering the Southern Indiana areas and the relationship of EWT derived from these images to precipitation was examined.
Finite element error estimation and adaptivity based on projected stresses
Jung, J.
1990-08-01
This report investigates the behavior of a family of finite element error estimators based on projected stresses, i.e., continuous stresses that are a least squared error fit to the conventional Gauss point stresses. An error estimate based on element force equilibrium appears to be quite effective. Examples of adaptive mesh refinement for a one-dimensional problem are presented. Plans for two-dimensional adaptivity are discussed. 12 refs., 82 figs.
NASA Technical Reports Server (NTRS)
Scaife, Bradley James
1999-01-01
In any satellite communication, the Doppler shift associated with the satellite's position and velocity must be calculated in order to determine the carrier frequency. If the satellite state vector is unknown then some estimate must be formed of the Doppler-shifted carrier frequency. One elementary technique is to examine the signal spectrum and base the estimate on the dominant spectral component. If, however, the carrier is spread (as in most satellite communications) this technique may fail unless the chip rate-to-data rate ratio (processing gain) associated with the carrier is small. In this case, there may be enough spectral energy to allow peak detection against a noise background. In this thesis, we present a method to estimate the frequency (without knowledge of the Doppler shift) of a spread-spectrum carrier assuming a small processing gain and binary-phase shift keying (BPSK) modulation. Our method relies on an averaged discrete Fourier transform along with peak detection on spectral match filtered data. We provide theory and simulation results indicating the accuracy of this method. In addition, we will describe an all-digital hardware design based around a Motorola DSP56303 and high-speed A/D which implements this technique in real-time. The hardware design is to be used in NMSU's implementation of NASA's demand assignment, multiple access (DAMA) service.
MUSIC for Multidimensional Spectral Estimation: Stability and Super-Resolution
NASA Astrophysics Data System (ADS)
Liao, Wenjing
2015-12-01
This paper presents a performance analysis of the MUltiple SIgnal Classification (MUSIC) algorithm applied on $D$ dimensional single-snapshot spectral estimation while $s$ true frequencies are located on the continuum of a bounded domain. Inspired by the matrix pencil form, we construct a D-fold Hankel matrix from the measurements and exploit its Vandermonde decomposition in the noiseless case. MUSIC amounts to identifying a noise subspace, evaluating a noise-space correlation function, and localizing frequencies by searching the $s$ smallest local minima of the noise-space correlation function. In the noiseless case, $(2s)^D$ measurements guarantee an exact reconstruction by MUSIC as the noise-space correlation function vanishes exactly at true frequencies. When noise exists, we provide an explicit estimate on the perturbation of the noise-space correlation function in terms of noise level, dimension $D$, the minimum separation among frequencies, the maximum and minimum amplitudes while frequencies are separated by two Rayleigh Length (RL) at each direction. As a by-product the maximum and minimum non-zero singular values of the multidimensional Vandermonde matrix whose nodes are on the unit sphere are estimated under a gap condition of the nodes. Under the 2-RL separation condition, if noise is i.i.d. gaussian, we show that perturbation of the noise-space correlation function decays like $\\sqrt{\\log(\\#(\\mathbf{N}))/\\#(\\mathbf{N})}$ as the sample size $\\#(\\mathbf{N})$ increases. When the separation among frequencies drops below 2 RL, our numerical experiments show that the noise tolerance of MUSIC obeys a power law with the minimum separation of frequencies.
Skorupski, Peter; Chittka, Lars
2011-01-01
Colour vision depends on comparison of signals from photoreceptors with different spectral sensitivities. However, response properties of photoreceptor cells may differ in ways other than spectral tuning. In insects, for example, broadband photoreceptors, with a major sensitivity peak in the green region of the spectrum (>500 nm), drive fast visual processes, which are largely blind to chromatic signals from more narrowly-tuned photoreceptors with peak sensitivities in the blue and UV regions of the spectrum. In addition, electrophysiological properties of the photoreceptor membrane may result in differences in response dynamics of photoreceptors of similar spectral class between species, and different spectral classes within a species. We used intracellular electrophysiological techniques to investigate response dynamics of the three spectral classes of photoreceptor underlying trichromatic colour vision in the bumblebee, Bombus impatiens, and we compare these with previously published data from a related species, Bombus terrestris. In both species, we found significantly faster responses in green, compared with blue- or UV-sensitive photoreceptors, although all 3 photoreceptor types are slower in B. impatiens than in B. terrestris. Integration times for light-adapted B. impatiens photoreceptors (estimated from impulse response half-width) were 11.3±1.6 ms for green photoreceptors compared with 18.6±4.4 ms and 15.6±4.4 for blue and UV, respectively. We also measured photoreceptor input resistance in dark- and light-adapted conditions. All photoreceptors showed a decrease in input resistance during light adaptation, but this decrease was considerably larger (declining to about 22% of the dark value) in green photoreceptors, compared to blue and UV (41% and 49%, respectively). Our results suggest that the conductances associated with light adaptation are largest in green photoreceptors, contributing to their greater temporal processing speed. We suggest that the
Spectral saliency via automatic adaptive amplitude spectrum analysis
NASA Astrophysics Data System (ADS)
Wang, Xiaodong; Dai, Jialun; Zhu, Yafei; Zheng, Haiyong; Qiao, Xiaoyan
2016-03-01
Suppressing nonsalient patterns by smoothing the amplitude spectrum at an appropriate scale has been shown to effectively detect the visual saliency in the frequency domain. Different filter scales are required for different types of salient objects. We observe that the optimal scale for smoothing amplitude spectrum shares a specific relation with the size of the salient region. Based on this observation and the bottom-up saliency detection characterized by spectrum scale-space analysis for natural images, we propose to detect visual saliency, especially with salient objects of different sizes and locations via automatic adaptive amplitude spectrum analysis. We not only provide a new criterion for automatic optimal scale selection but also reserve the saliency maps corresponding to different salient objects with meaningful saliency information by adaptive weighted combination. The performance of quantitative and qualitative comparisons is evaluated by three different kinds of metrics on the four most widely used datasets and one up-to-date large-scale dataset. The experimental results validate that our method outperforms the existing state-of-the-art saliency models for predicting human eye fixations in terms of accuracy and robustness.
Robust time and frequency domain estimation methods in adaptive control
NASA Technical Reports Server (NTRS)
Lamaire, Richard Orville
1987-01-01
A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.
Probability estimation in arithmetic and adaptive-Huffman entropy coders.
Duttweiler, D L; Chamzas, C
1995-01-01
Entropy coders, such as Huffman and arithmetic coders, achieve compression by exploiting nonuniformity in the probabilities under which a random variable to be coded takes on its possible values. Practical realizations generally require running adaptive estimates of these probabilities. An analysis of the relationship between estimation quality and the resulting coding efficiency suggests a particular scheme, dubbed scaled-count, for obtaining such estimates. It can optimally balance estimation accuracy against a need for rapid response to changing underlying statistics. When the symbols being coded are from a binary alphabet, simple hardware and software implementations requiring almost no computation are possible. A scaled-count adaptive probability estimator of the type described in this paper is used in the arithmetic coder of the JBIG and JPEG image coding standards. PMID:18289975
Adaptive state estimation for control of flexible structures
NASA Technical Reports Server (NTRS)
Chen, Chung-Wen; Huang, Jen-Kuang
1990-01-01
This paper proposes a new approach of obtaining adaptive state estimation of a system in the presence of unknown system disturbances and measurement noise. In the beginning, a non-optimal Kalman filter with arbitrary initial guess for the process and measurement noises is implemented. At the same time, an adaptive transversal predictor (ATP) based on the recursive least-squares (RLS) algorithm is used to yield optimal one- to p- step-ahead output predictions using the previous input/output data. Referring to these optimal predictions the Kalman filter gain is updated and the performance of the state estimation is thus improved. If forgetting factor is implemented in the recursive least-squares algorithm, this method is also capable of dealing with the situation when the noise statistics are slowly time-varying. This feature makes this new approach especially suitable for the control of flexible structures. A numerical example demonstrates the feasibility of this real time adaptive state estimation method.
NASA Astrophysics Data System (ADS)
Smith-Boughner, Lindsay
Many Earth systems cannot be studied directly. One cannot measure the velocities of convecting fluid in the Earth's core but can measure the magnetic field generated by these motions on the surface. Examining how the magnetic field changes over long periods of time, using power spectral density estimation provides insight into the dynamics driving the system. The changes in the magnetic field can also be used to study Earth properties - variations in magnetic fields outside of Earth like the ring-current induce currents to flow in the Earth, generating magnetic fields. Estimating the transfer function between the external changes and the induced response characterizes the electromagnetic response of the Earth. From this response inferences can be made about the electrical conductivity of the Earth. However, these types of time series, and many others have long breaks in the record with no samples available and limit the analysis. Standard methods require interpolation or section averaging, with associated problems of introducing bias or reducing the frequency resolution. Extending the methods of Fodor and Stark (2000), who adapt a set of orthogonal multi-tapers to compensate for breaks in sampling- an algorithm and software package for applying these techniques is developed. Methods of empirically estimating the average transfer function of a set of tapers and confidence intervals are also tested. These methods are extended for cross-spectral, coherence and transfer function estimation in the presence of noise. With these methods, new analysis of a highly interrupted ocean sediment core from the Oligocene (Hartl et al., 1993) reveals a quasi-periodic signal in the calibrated paleointensity time series at 2.5 cpMy. The power in the magnetic field during this period appears to be dominated by reversal rate processes with less overall power than the early Oligocene. Previous analysis of the early Oligocene by Constable et al. (1998) detected a signal near 8 cp
Stability and error estimation for Component Adaptive Grid methods
NASA Technical Reports Server (NTRS)
Oliger, Joseph; Zhu, Xiaolei
1994-01-01
Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.
Adaptive frequency estimation by MUSIC (Multiple Signal Classification) method
NASA Astrophysics Data System (ADS)
Karhunen, Juha; Nieminen, Esko; Joutsensalo, Jyrki
During the last years, the eigenvector-based method called MUSIC has become very popular in estimating the frequencies of sinusoids in additive white noise. Adaptive realizations of the MUSIC method are studied using simulated data. Several of the adaptive realizations seem to give in practice equally good results as the nonadaptive standard realization. The only exceptions are instantaneous gradient type algorithms that need considerably more samples to achieve a comparable performance. A new method is proposed for constructing initial estimates to the signal subspace. The method improves often dramatically the performance of instantaneous gradient type algorithms. The new signal subspace estimate can also be used to define a frequency estimator directly or to simplify eigenvector computation.
Distributed estimation for adaptive sensor selection in wireless sensor networks
NASA Astrophysics Data System (ADS)
Mahmoud, Magdi S.; Hassan Hamid, Matasm M.
2014-05-01
Wireless sensor networks (WSNs) are usually deployed for monitoring systems with the distributed detection and estimation of sensors. Sensor selection in WSNs is considered for target tracking. A distributed estimation scenario is considered based on the extended information filter. A cost function using the geometrical dilution of precision measure is derived for active sensor selection. A consensus-based estimation method is proposed in this paper for heterogeneous WSNs with two types of sensors. The convergence properties of the proposed estimators are analyzed under time-varying inputs. Accordingly, a new adaptive sensor selection (ASS) algorithm is presented in which the number of active sensors is adaptively determined based on the absolute local innovations vector. Simulation results show that the tracking accuracy of the ASS is comparable to that of the other algorithms.
Biomass estimator for NIR image with a few additional spectral band images taken from light UAS
NASA Astrophysics Data System (ADS)
Pölönen, Ilkka; Salo, Heikki; Saari, Heikki; Kaivosoja, Jere; Pesonen, Liisa; Honkavaara, Eija
2012-05-01
A novel way to produce biomass estimation will offer possibilities for precision farming. Fertilizer prediction maps can be made based on accurate biomass estimation generated by a novel biomass estimator. By using this knowledge, a variable rate amount of fertilizers can be applied during the growing season. The innovation consists of light UAS, a high spatial resolution camera, and VTT's novel spectral camera. A few properly selected spectral wavelengths with NIR images and point clouds extracted by automatic image matching have been used in the estimation. The spectral wavelengths were chosen from green, red, and NIR channels.
On Using Exponential Parameter Estimators with an Adaptive Controller
NASA Technical Reports Server (NTRS)
Patre, Parag; Joshi, Suresh M.
2011-01-01
Typical adaptive controllers are restricted to using a specific update law to generate parameter estimates. This paper investigates the possibility of using any exponential parameter estimator with an adaptive controller such that the system tracks a desired trajectory. The goal is to provide flexibility in choosing any update law suitable for a given application. The development relies on a previously developed concept of controller/update law modularity in the adaptive control literature, and the use of a converse Lyapunov-like theorem. Stability analysis is presented to derive gain conditions under which this is possible, and inferences are made about the tracking error performance. The development is based on a class of Euler-Lagrange systems that are used to model various engineering systems including space robots and manipulators.
Error magnitude estimation in model-reference adaptive systems
NASA Technical Reports Server (NTRS)
Colburn, B. K.; Boland, J. S., III
1975-01-01
A second order approximation is derived from a linearized error characteristic equation for Lyapunov designed model-reference adaptive systems and is used to estimate the maximum error between the model and plant states, and the time to reach this peak following a plant perturbation. The results are applicable in the analysis of plants containing magnitude-dependent nonlinearities.
Estimation of spectral distribution of sky radiance using a commercial digital camera.
Saito, Masanori; Iwabuchi, Hironobu; Murata, Isao
2016-01-10
Methods for estimating spectral distribution of sky radiance from images captured by a digital camera and for accurately estimating spectral responses of the camera are proposed. Spectral distribution of sky radiance is represented as a polynomial of the wavelength, with coefficients obtained from digital RGB counts by linear transformation. The spectral distribution of radiance as measured is consistent with that obtained by spectrometer and radiative transfer simulation for wavelengths of 430-680 nm, with standard deviation below 1%. Preliminary applications suggest this method is useful for detecting clouds and studying the relation between irradiance at the ground and cloud distribution. PMID:26835780
Estimation of Canopy Foliar Biomass with Spectral Reflectance Measurements
Technology Transfer Automated Retrieval System (TEKTRAN)
Canopy foliar biomass, defined as the product of leaf dry matter content and leaf area index, is an important measurement for global biogeochemical cycles. This study explores the potential for retrieving foliar biomass in green canopies using a spectral index, the Normalized Dry Matter Index (NDMI)...
Assessment of spectral indicies for crop residue cover estimation
Technology Transfer Automated Retrieval System (TEKTRAN)
The quantification of surficial crop residue cover is important for assessing agricultural tillage practices, rangeland health, and brush fire hazards. The Cellulose Absorption Index (CAI) and the Shortwave Infrared Normalized Difference Residue Index (SINDRI) are two spectral indices that have show...
Methodologies for Adaptive Flight Envelope Estimation and Protection
NASA Technical Reports Server (NTRS)
Tang, Liang; Roemer, Michael; Ge, Jianhua; Crassidis, Agamemnon; Prasad, J. V. R.; Belcastro, Christine
2009-01-01
This paper reports the latest development of several techniques for adaptive flight envelope estimation and protection system for aircraft under damage upset conditions. Through the integration of advanced fault detection algorithms, real-time system identification of the damage/faulted aircraft and flight envelop estimation, real-time decision support can be executed autonomously for improving damage tolerance and flight recoverability. Particularly, a bank of adaptive nonlinear fault detection and isolation estimators were developed for flight control actuator faults; a real-time system identification method was developed for assessing the dynamics and performance limitation of impaired aircraft; online learning neural networks were used to approximate selected aircraft dynamics which were then inverted to estimate command margins. As off-line training of network weights is not required, the method has the advantage of adapting to varying flight conditions and different vehicle configurations. The key benefit of the envelope estimation and protection system is that it allows the aircraft to fly close to its limit boundary by constantly updating the controller command limits during flight. The developed techniques were demonstrated on NASA s Generic Transport Model (GTM) simulation environments with simulated actuator faults. Simulation results and remarks on future work are presented.
Spectral properties of dark-adapted retinal ganglion cells in the plaice (Pleuronectes platessa, L.)
Hammond, P.
1968-01-01
1. Spectral, spatial and temporal properties of receptive fields of dark-adapted, on—off retinal ganglion cells in the intact eye of the plaice, were analysed by recording from their axon terminals in the superficial layers of the optic tectum with indium micro-electrodes. 2. Two cell-types were identified. The first gave fast-adapting, spectrally opponent on—off responses without centre-surround subdivisions of the receptive field. On and off response-components were mutually antagonistic. The second type gave slow-adapting on—off or off responses for different stimulus positions within the receptive field, with centre-surround or adjacent field configurations. Only on—off centre cells, showing mutual antagonism between field centre and surround, or off centre cells with inhibitory centres, were found. These cells had weak opponent or non-opponent properties. 3. Most cells of each type received inputs both from cones and rods. At stimulus intensities suprathreshold for cones, response-components gave spectral peaks which have been classified into one of four wave-length ranges; blue, 440-460 nm; blue-green, 470-490 nm; green, 510-540 nm; and orange, 560-590 nm. No cells analysed gave sensitivity maxima in the red. At low stimulus intensities all cells with rod input gave a single spectral peak between 510 and 530 nm. ImagesFig. 3Fig. 4Fig. 9 PMID:5649636
Adaptive mesh refinement with spectral accuracy for magnetohydrodynamics in two space dimensions
NASA Astrophysics Data System (ADS)
Rosenberg, D.; Pouquet, A.; Mininni, P. D.
2007-08-01
We examine the effect of accuracy of high-order spectral element methods, with or without adaptive mesh refinement (AMR), in the context of a classical configuration of magnetic reconnection in two space dimensions, the so-called Orszag-Tang (OT) vortex made up of a magnetic X-point centred on a stagnation point of the velocity. A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate this problem. The MHD solver is explicit, and uses the Elsässer formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described elsewhere in the fluid context (Rosenberg et al 2006 J. Comput. Phys. 215 59-80) the code allows both statically refined and dynamically refined grids. Tests of the algorithm using analytic solutions are described, and comparisons of the OT solutions with pseudo-spectral computations are performed. We demonstrate for moderate Reynolds numbers that the algorithms using both static and refined grids reproduce the pseudo-spectral solutions quite well. We show that low-order truncation—even with a comparable number of global degrees of freedom—fails to correctly model some strong (sup-norm) quantities in this problem, even though it satisfies adequately the weak (integrated) balance diagnostics.
NASA Astrophysics Data System (ADS)
Rosenberg, Duane; Fournier, Aimé; Fischer, Paul; Pouquet, Annick
2006-06-01
An object-oriented geophysical and astrophysical spectral-element adaptive refinement (GASpAR) code is introduced. Like most spectral-element codes, GASpAR combines finite-element efficiency with spectral-method accuracy. It is also designed to be flexible enough for a range of geophysics and astrophysics applications where turbulence or other complex multiscale problems arise. The formalism accommodates both conforming and non-conforming elements. Several aspects of this code derive from existing methods, but here are synthesized into a new formulation of dynamic adaptive refinement (DARe) of non-conforming h-type. As a demonstration of the code, several new 2D test cases are introduced that have time-dependent analytic solutions and exhibit localized flow features, including the 2D Burgers equation with straight, curved-radial and oblique-colliding fronts. These are proposed as standard test problems for comparable DARe codes. Quantitative errors are reported for 2D spatial and temporal convergence of DARe.
Estimating Skin Cancer Risk: Evaluating Mobile Computer-Adaptive Testing
Djaja, Ngadiman; Janda, Monika; Olsen, Catherine M; Whiteman, David C
2016-01-01
Background Response burden is a major detriment to questionnaire completion rates. Computer adaptive testing may offer advantages over non-adaptive testing, including reduction of numbers of items required for precise measurement. Objective Our aim was to compare the efficiency of non-adaptive (NAT) and computer adaptive testing (CAT) facilitated by Partial Credit Model (PCM)-derived calibration to estimate skin cancer risk. Methods We used a random sample from a population-based Australian cohort study of skin cancer risk (N=43,794). All 30 items of the skin cancer risk scale were calibrated with the Rasch PCM. A total of 1000 cases generated following a normal distribution (mean [SD] 0 [1]) were simulated using three Rasch models with three fixed-item (dichotomous, rating scale, and partial credit) scenarios, respectively. We calculated the comparative efficiency and precision of CAT and NAT (shortening of questionnaire length and the count difference number ratio less than 5% using independent t tests). Results We found that use of CAT led to smaller person standard error of the estimated measure than NAT, with substantially higher efficiency but no loss of precision, reducing response burden by 48%, 66%, and 66% for dichotomous, Rating Scale Model, and PCM models, respectively. Conclusions CAT-based administrations of the skin cancer risk scale could substantially reduce participant burden without compromising measurement precision. A mobile computer adaptive test was developed to help people efficiently assess their skin cancer risk. PMID:26800642
Precision of maximum likelihood estimation in adaptive designs.
Graf, Alexandra Christine; Gutjahr, Georg; Brannath, Werner
2016-03-15
There has been increasing interest in trials that allow for design adaptations like sample size reassessment or treatment selection at an interim analysis. Ignoring the adaptive and multiplicity issues in such designs leads to an inflation of the type 1 error rate, and treatment effect estimates based on the maximum likelihood principle become biased. Whereas the methodological issues concerning hypothesis testing are well understood, it is not clear how to deal with parameter estimation in designs were adaptation rules are not fixed in advanced so that, in practice, the maximum likelihood estimate (MLE) is used. It is therefore important to understand the behavior of the MLE in such designs. The investigation of Bias and mean squared error (MSE) is complicated by the fact that the adaptation rules need not be fully specified in advance and, hence, are usually unknown. To investigate Bias and MSE under such circumstances, we search for the sample size reassessment and selection rules that lead to the maximum Bias or maximum MSE. Generally, this leads to an overestimation of Bias and MSE, which can be reduced by imposing realistic constraints on the rules like, for example, a maximum sample size. We consider designs that start with k treatment groups and a common control and where selection of a single treatment and control is performed at the interim analysis with the possibility to reassess each of the sample sizes. We consider the case of unlimited sample size reassessments as well as several realistically restricted sample size reassessment rules. PMID:26459506
Estimating meme fitness in adaptive memetic algorithms for combinatorial problems.
Smith, J E
2012-01-01
Among the most promising and active research areas in heuristic optimisation is the field of adaptive memetic algorithms (AMAs). These gain much of their reported robustness by adapting the probability with which each of a set of local improvement operators is applied, according to an estimate of their current value to the search process. This paper addresses the issue of how the current value should be estimated. Assuming the estimate occurs over several applications of a meme, we consider whether the extreme or mean improvements should be used, and whether this aggregation should be global, or local to some part of the solution space. To investigate these issues, we use the well-established COMA framework that coevolves the specification of a population of memes (representing different local search algorithms) alongside a population of candidate solutions to the problem at hand. Two very different memetic algorithms are considered: the first using adaptive operator pursuit to adjust the probabilities of applying a fixed set of memes, and a second which applies genetic operators to dynamically adapt and create memes and their functional definitions. For the latter, especially on combinatorial problems, credit assignment mechanisms based on historical records, or on notions of landscape locality, will have limited application, and it is necessary to estimate the value of a meme via some form of sampling. The results on a set of binary encoded combinatorial problems show that both methods are very effective, and that for some problems it is necessary to use thousands of variables in order to tease apart the differences between different reward schemes. However, for both memetic algorithms, a significant pattern emerges that reward based on mean improvement is better than that based on extreme improvement. This contradicts recent findings from adapting the parameters of operators involved in global evolutionary search. The results also show that local reward schemes
Estimated spectrum adaptive postfilter and the iterative prepost filtering algirighms
NASA Technical Reports Server (NTRS)
Linares, Irving (Inventor)
2004-01-01
The invention presents The Estimated Spectrum Adaptive Postfilter (ESAP) and the Iterative Prepost Filter (IPF) algorithms. These algorithms model a number of image-adaptive post-filtering and pre-post filtering methods. They are designed to minimize Discrete Cosine Transform (DCT) blocking distortion caused when images are highly compressed with the Joint Photographic Expert Group (JPEG) standard. The ESAP and the IPF techniques of the present invention minimize the mean square error (MSE) to improve the objective and subjective quality of low-bit-rate JPEG gray-scale images while simultaneously enhancing perceptual visual quality with respect to baseline JPEG images.
USE OF SPECTRAL ANGLE MAPPER (SAM) AND HYPERSPECTRAL IMAGERY FOR YIELD ESTIMATION
Technology Transfer Automated Retrieval System (TEKTRAN)
Vegetation indices (VIs) derived from remotely sensed imagery are commonly used to estimate crop yields. Spectral angle mapper (SAM) provides an alternative approach to quantifying the spectral differences among all pixels in imagery and therefore has the potential for mapping yield variability. The...
Adaptive whitening of the electromyogram to improve amplitude estimation.
Clancy, E A; Farry, K A
2000-06-01
Previous research showed that whitening the surface electromyogram (EMG) can improve EMG amplitude estimation (where EMG amplitude is defined as the time-varying standard deviation of the EMG). However, conventional whitening via a linear filter seems to fail at low EMG amplitude levels, perhaps due to additive background noise in the measured EMG. This paper describes an adaptive whitening technique that overcomes this problem by cascading a nonadaptive whitening filter, an adaptive Wiener filter, and an adaptive gain correction. These stages can be calibrated from two, five second duration, constant-angle, constant-force contractions, one at a reference level [e.g., 50% maximum voluntary contraction (MVC)] and one at 0% MVC. In experimental studies, subjects used real-time EMG amplitude estimates to track a uniform-density, band-limited random target. With a 0.25-Hz bandwidth target, either adaptive whitening or multiple-channel processing reduced the tracking error roughly half-way to the error achieved using the dynamometer signal as the feedback. At the 1.00-Hz bandwidth, all of the EMG processors had errors equivalent to that of the dynamometer signal, reflecting that errors in this task were dominated by subjects' inability to track targets at this bandwidth. Increases in the additive noise level, smoothing window length, and tracking bandwidth diminish the advantages of whitening. PMID:10833845
Uncertainty quantification of a radionuclide release model using an adaptive spectral technique
Gilli, L.; Hoogwerf, C.; Lathouwers, D.; Kloosterman, J. L.
2013-07-01
In this paper we present the application of a non-intrusive spectral techniques we recently developed for the evaluation of the uncertainties associated with a radionuclide migration problem. Spectral techniques can be used to reconstruct stochastic quantities of interest by means of a Fourier-like expansion. Their application to uncertainty propagation problems can be performed by evaluating a set of realizations which are chosen adaptively, in this work the main details about how this is done are presented. The uncertainty quantification problem we are going to deal with was first solved in a recent work where the authors used a spectral technique based on an intrusive approach. In this paper we are going to reproduce the results of this reference work, compare them and discuss the main numerical aspects. (authors)
Xia, Peng; Shimozato, Yuki; Ito, Yasunori; Tahara, Tatsuki; Kakue, Takashi; Awatsuji, Yasuhiro; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu
2011-12-01
We propose a color digital holography by using spectral estimation technique to improve the color reproduction of objects. In conventional color digital holography, there is insufficient spectral information in holograms, and the color of the reconstructed images depend on only reflectances at three discrete wavelengths used in the recording of holograms. Therefore the color-composite image of the three reconstructed images is not accurate in color reproduction. However, in our proposed method, the spectral estimation technique was applied, which has been reported in multispectral imaging. According to the spectral estimation technique, the continuous spectrum of object can be estimated and the color reproduction is improved. The effectiveness of the proposed method was confirmed by a numerical simulation and an experiment, and, in the results, the average color differences are decreased from 35.81 to 7.88 and from 43.60 to 25.28, respectively. PMID:22193005
ESTIMATION OF RESPONSE-SPECTRAL VALUES AS FUNCTIONS OF MAGNITUDE, DISTANCE, AND SITE CONDITIONS.
Joyner, W.B.; Boore, D.M.
1983-01-01
Horizontal pseudo-velocity response was analyzed for twelve shallow earthquakes in western North America. Estimation of response-spectral values was related to magnitude, distance and site conditions. Errors in the methods are analyzed.
Structured estimation - Sample size reduction for adaptive pattern classification
NASA Technical Reports Server (NTRS)
Morgera, S.; Cooper, D. B.
1977-01-01
The Gaussian two-category classification problem with known category mean value vectors and identical but unknown category covariance matrices is considered. The weight vector depends on the unknown common covariance matrix, so the procedure is to estimate the covariance matrix in order to obtain an estimate of the optimum weight vector. The measure of performance for the adapted classifier is the output signal-to-interference noise ratio (SIR). A simple approximation for the expected SIR is gained by using the general sample covariance matrix estimator; this performance is both signal and true covariance matrix independent. An approximation is also found for the expected SIR obtained by using a Toeplitz form covariance matrix estimator; this performance is found to be dependent on both the signal and the true covariance matrix.
Wavelet-Based Speech Enhancement Using Time-Adapted Noise Estimation
NASA Astrophysics Data System (ADS)
Lei, Sheau-Fang; Tung, Ying-Kai
Spectral subtraction is commonly used for speech enhancement in a single channel system because of the simplicity of its implementation. However, this algorithm introduces perceptually musical noise while suppressing the background noise. We propose a wavelet-based approach in this paper for suppressing the background noise for speech enhancement in a single channel system. The wavelet packet transform, which emulates the human auditory system, is used to decompose the noisy signal into critical bands. Wavelet thresholding is then temporally adjusted with the noise power by time-adapted noise estimation. The proposed algorithm can efficiently suppress the noise while reducing speech distortion. Experimental results, including several objective measurements, show that the proposed wavelet-based algorithm outperforms spectral subtraction and other wavelet-based denoising approaches for speech enhancement for nonstationary noise environments.
Efficient integration of spectral features for vehicle tracking utilizing an adaptive sensor
NASA Astrophysics Data System (ADS)
Uzkent, Burak; Hoffman, Matthew J.; Vodacek, Anthony
2015-03-01
Object tracking in urban environments is an important and challenging problem that is traditionally tackled using visible and near infrared wavelengths. By inserting extended data such as spectral features of the objects one can improve the reliability of the identification process. However, huge increase in data created by hyperspectral imaging is usually prohibitive. To overcome the complexity problem, we propose a persistent air-to-ground target tracking system inspired by a state-of-the-art, adaptive, multi-modal sensor. The adaptive sensor is capable of providing panchromatic images as well as the spectra of desired pixels. This addresses the data challenge of hyperspectral tracking by only recording spectral data as needed. Spectral likelihoods are integrated into a data association algorithm in a Bayesian fashion to minimize the likelihood of misidentification. A framework for controlling spectral data collection is developed by incorporating motion segmentation information and prior information from a Gaussian Sum filter (GSF) movement predictions from a multi-model forecasting set. An intersection mask of the surveillance area is extracted from OpenStreetMap source and incorporated into the tracking algorithm to perform online refinement of multiple model set. The proposed system is tested using challenging and realistic scenarios generated in an adverse environment.
NASA Technical Reports Server (NTRS)
Linares, Irving; Mersereau, Russell M.; Smith, Mark J. T.
1994-01-01
Two representative sample images of Band 4 of the Landsat Thematic Mapper are compressed with the JPEG algorithm at 8:1, 16:1 and 24:1 Compression Ratios for experimental browsing purposes. We then apply the Optimal PSNR Estimated Spectra Adaptive Postfiltering (ESAP) algorithm to reduce the DCT blocking distortion. ESAP reduces the blocking distortion while preserving most of the image's edge information by adaptively postfiltering the decoded image using the block's spectral information already obtainable from each block's DCT coefficients. The algorithm iteratively applied a one dimensional log-sigmoid weighting function to the separable interpolated local block estimated spectra of the decoded image until it converges to the optimal PSNR with respect to the original using a 2-D steepest ascent search. Convergence is obtained in a few iterations for integer parameters. The optimal logsig parameters are transmitted to the decoder as a negligible byte of overhead data. A unique maxima is guaranteed due to the 2-D asymptotic exponential overshoot shape of the surface generated by the algorithm. ESAP is based on a DFT analysis of the DCT basis functions. It is implemented with pixel-by-pixel spatially adaptive separable FIR postfilters. PSNR objective improvements between 0.4 to 0.8 dB are shown together with their corresponding optimal PSNR adaptive postfiltered images.
Rainfall Estimation over the Nile Basin using Multi-Spectral, Multi- Instrument Satellite Techniques
NASA Astrophysics Data System (ADS)
Habib, E.; Kuligowski, R.; Sazib, N.; Elshamy, M.; Amin, D.; Ahmed, M.
2012-04-01
Management of Egypt's Aswan High Dam is critical not only for flood control on the Nile but also for ensuring adequate water supplies for most of Egypt since rainfall is scarce over the vast majority of its land area. However, reservoir inflow is driven by rainfall over Sudan, Ethiopia, Uganda, and several other countries from which routine rain gauge data are sparse. Satellite- derived estimates of rainfall offer a much more detailed and timely set of data to form a basis for decisions on the operation of the dam. A single-channel infrared (IR) algorithm is currently in operational use at the Egyptian Nile Forecast Center (NFC). In this study, the authors report on the adaptation of a multi-spectral, multi-instrument satellite rainfall estimation algorithm (Self- Calibrating Multivariate Precipitation Retrieval, SCaMPR) for operational application by NFC over the Nile Basin. The algorithm uses a set of rainfall predictors that come from multi-spectral Infrared cloud top observations and self-calibrate them to a set of predictands that come from the more accurate, but less frequent, Microwave (MW) rain rate estimates. For application over the Nile Basin, the SCaMPR algorithm uses multiple satellite IR channels that have become recently available to NFC from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). Microwave rain rates are acquired from multiple sources such as the Special Sensor Microwave/Imager (SSM/I), the Special Sensor Microwave Imager and Sounder (SSMIS), the Advanced Microwave Sounding Unit (AMSU), the Advanced Microwave Scanning Radiometer on EOS (AMSR-E), and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). The algorithm has two main steps: rain/no-rain separation using discriminant analysis, and rain rate estimation using stepwise linear regression. We test two modes of algorithm calibration: real- time calibration with continuous updates of coefficients with newly coming MW rain rates, and calibration using static
Automated endmember determination and adaptive spectral mixture analysis using kernel methods
NASA Astrophysics Data System (ADS)
Rand, Robert S.; Banerjee, Amit; Broadwater, Joshua
2013-09-01
Various phenomena occur in geographic regions that cause pixels of a scene to contain spectrally mixed pixels. The mixtures may be linear or nonlinear. It could simply be that the pixel size of a sensor is too large so many pixels contain patches of different materials within them (linear), or there could be microscopic mixtures and multiple scattering occurring within pixels (non-linear). Often enough, scenes may contain cases of both linear and non-linear mixing on a pixel-by-pixel basis. Furthermore, appropriate endmembers in a scene are not always easy to determine. A reference spectral library of materials may or may not be available, yet, even if a library is available, using it directly for spectral unmixing may not always be fruitful. This study investigates a generalized kernel-based method for spectral unmixing that attempts to determine if each pixel in a scene is linear or non-linear, and adapts to compute a mixture model at each pixel accordingly. The effort also investigates a kernel-based support vector method for determining spectral endmembers in a scene. Two scenes of hyperspectral imagery calibrated to reflectance are used to validate the methods. We test the approaches using a HyMAP scene collected over the Waimanalo Bay region in Oahu, Hawaii, as well as an AVIRIS scene collected over the oil spill region in the Gulf of Mexico during the Deepwater Horizon oil incident.
An Adaptive Motion Estimation Scheme for Video Coding
Gao, Yuan; Jia, Kebin
2014-01-01
The unsymmetrical-cross multihexagon-grid search (UMHexagonS) is one of the best fast Motion Estimation (ME) algorithms in video encoding software. It achieves an excellent coding performance by using hybrid block matching search pattern and multiple initial search point predictors at the cost of the computational complexity of ME increased. Reducing time consuming of ME is one of the key factors to improve video coding efficiency. In this paper, we propose an adaptive motion estimation scheme to further reduce the calculation redundancy of UMHexagonS. Firstly, new motion estimation search patterns have been designed according to the statistical results of motion vector (MV) distribution information. Then, design a MV distribution prediction method, including prediction of the size of MV and the direction of MV. At last, according to the MV distribution prediction results, achieve self-adaptive subregional searching by the new estimation search patterns. Experimental results show that more than 50% of total search points are dramatically reduced compared to the UMHexagonS algorithm in JM 18.4 of H.264/AVC. As a result, the proposed algorithm scheme can save the ME time up to 20.86% while the rate-distortion performance is not compromised. PMID:24672313
Adaptive distributed Kalman filtering with wind estimation for astronomical adaptive optics.
Massioni, Paolo; Gilles, Luc; Ellerbroek, Brent
2015-12-01
In the framework of adaptive optics (AO) for astronomy, it is a common assumption to consider the atmospheric turbulent layers as "frozen flows" sliding according to the wind velocity profile. For this reason, having knowledge of such a velocity profile is beneficial in terms of AO control system performance. In this paper we show that it is possible to exploit the phase estimate from a Kalman filter running on an AO system in order to estimate wind velocity. This allows the update of the Kalman filter itself with such knowledge, making it adaptive. We have implemented such an adaptive controller based on the distributed version of the Kalman filter, for a realistic simulation of a multi-conjugate AO system with laser guide stars on a 30 m telescope. Simulation results show that this approach is effective and promising and the additional computational cost with respect to the distributed filter is negligible. Comparisons with a previously published slope detection and ranging wind profiler are made and the impact of turbulence profile quantization is assessed. One of the main findings of the paper is that all flavors of the adaptive distributed Kalman filter are impacted more significantly by turbulence profile quantization than the static minimum mean square estimator which does not incorporate wind profile information. PMID:26831389
Assessment of Spectral Indices for Crop Residue Cover Estimation
Technology Transfer Automated Retrieval System (TEKTRAN)
Agricultural soils are an important terrestrial carbon (C) stock, accounting for a significant portion of global C estimates. Soil tillage method is important in agricultural C sequestration models. Traditional intensive tillage systems greatly disturb the soil and have been shown to deplete the so...
Spectral Reflectance Estimates of Surface Soil Physical and Chemical Properties
Technology Transfer Automated Retrieval System (TEKTRAN)
Optical diffuse reflectance sensing in visible and near-infrared wavelength ranges is one approach to rapidly quantify soil properties for site-specific management. The objectives of this study were (1) to determine the accuracy of the reflectance approach for estimating physical and chemical proper...
NASA Astrophysics Data System (ADS)
D'Amato, Anthony M.
Input reconstruction is the process of using the output of a system to estimate its input. In some cases, input reconstruction can be accomplished by determining the output of the inverse of a model of the system whose input is the output of the original system. Inversion, however, requires an exact and fully known analytical model, and is limited by instabilities arising from nonminimum-phase zeros. The main contribution of this work is a novel technique for input reconstruction that does not require model inversion. This technique is based on a retrospective cost, which requires a limited number of Markov parameters. Retrospective cost input reconstruction (RCIR) does not require knowledge of nonminimum-phase zero locations or an analytical model of the system. RCIR provides a technique that can be used for model refinement, state estimation, and adaptive control. In the model refinement application, data are used to refine or improve a model of a system. It is assumed that the difference between the model output and the data is due to an unmodeled subsystem whose interconnection with the modeled system is inaccessible, that is, the interconnection signals cannot be measured and thus standard system identification techniques cannot be used. Using input reconstruction, these inaccessible signals can be estimated, and the inaccessible subsystem can be fitted. We demonstrate input reconstruction in a model refinement framework by identifying unknown physics in a space weather model and by estimating an unknown film growth in a lithium ion battery. The same technique can be used to obtain estimates of states that cannot be directly measured. Adaptive control can be formulated as a model-refinement problem, where the unknown subsystem is the idealized controller that minimizes a measured performance variable. Minimal modeling input reconstruction for adaptive control is useful for applications where modeling information may be difficult to obtain. We demonstrate
Adaptive distributed video coding with correlation estimation using expectation propagation
NASA Astrophysics Data System (ADS)
Cui, Lijuan; Wang, Shuang; Jiang, Xiaoqian; Cheng, Samuel
2012-10-01
Distributed video coding (DVC) is rapidly increasing in popularity by the way of shifting the complexity from encoder to decoder, whereas no compression performance degrades, at least in theory. In contrast with conventional video codecs, the inter-frame correlation in DVC is explored at decoder based on the received syndromes of Wyner-Ziv (WZ) frame and side information (SI) frame generated from other frames available only at decoder. However, the ultimate decoding performances of DVC are based on the assumption that the perfect knowledge of correlation statistic between WZ and SI frames should be available at decoder. Therefore, the ability of obtaining a good statistical correlation estimate is becoming increasingly important in practical DVC implementations. Generally, the existing correlation estimation methods in DVC can be classified into two main types: pre-estimation where estimation starts before decoding and on-the-fly (OTF) estimation where estimation can be refined iteratively during decoding. As potential changes between frames might be unpredictable or dynamical, OTF estimation methods usually outperforms pre-estimation techniques with the cost of increased decoding complexity (e.g., sampling methods). In this paper, we propose a low complexity adaptive DVC scheme using expectation propagation (EP), where correlation estimation is performed OTF as it is carried out jointly with decoding of the factor graph-based DVC code. Among different approximate inference methods, EP generally offers better tradeoff between accuracy and complexity. Experimental results show that our proposed scheme outperforms the benchmark state-of-the-art DISCOVER codec and other cases without correlation tracking, and achieves comparable decoding performance but with significantly low complexity comparing with sampling method.
NASA Astrophysics Data System (ADS)
Leihong, Zhang; Dong, Liang; Bei, Li; Yi, Kang; Zilan, Pan; Dawei, Zhang; Xiuhua, Ma
2016-04-01
In order to improve the reconstruction accuracy and reduce the workload, the algorithm of compressive sensing based on the iterative threshold is combined with the method of adaptive selection of the training sample, and a new algorithm of adaptive compressive sensing is put forward. The three kinds of training sample are used to reconstruct the spectral reflectance of the testing sample based on the compressive sensing algorithm and adaptive compressive sensing algorithm, and the color difference and error are compared. The experiment results show that spectral reconstruction precision based on the adaptive compressive sensing algorithm is better than that based on the algorithm of compressive sensing.
Fast and Adaptive Sparse Precision Matrix Estimation in High Dimensions
Liu, Weidong; Luo, Xi
2014-01-01
This paper proposes a new method for estimating sparse precision matrices in the high dimensional setting. It has been popular to study fast computation and adaptive procedures for this problem. We propose a novel approach, called Sparse Column-wise Inverse Operator, to address these two issues. We analyze an adaptive procedure based on cross validation, and establish its convergence rate under the Frobenius norm. The convergence rates under other matrix norms are also established. This method also enjoys the advantage of fast computation for large-scale problems, via a coordinate descent algorithm. Numerical merits are illustrated using both simulated and real datasets. In particular, it performs favorably on an HIV brain tissue dataset and an ADHD resting-state fMRI dataset. PMID:25750463
Spectral responsivity estimation and noise effect analysis for digital imaging systems
NASA Astrophysics Data System (ADS)
Chang, Gao-Wei; Kuo, Hung-Zen; Tu, Chung-Fan
2004-02-01
The determination of spectral responsivities plays a significant role in analyzing and predicting the performance of digital imaging systems for remote sensing. For example, given the spectral response functions, we can readily obtain the colorimetric data from a camera corresponding to the remote illuminated objects. In this paper, we develop a filter-based optical system to estimate these functions. The design objective of this system is to effectively select a limited amount of spectral (or broadband) filters to characterize the spectral features of color imaging processes, which are contaminated with noise, so that the spectral response functions can be estimated with satisfactory accuracy. In our approach, a theoretical study is first presented to pave the way for this work, and then we propose a filter selection method based on the technique of orthogonal-triangular (QR) decomposition with column pivoting, called QRCP method. This method involves QR computations and a column permutation process, which determines a permutation matrix to conduct the subset (or filter) selection. Experimental results reveal that the proposed technique is truly consistent with the theoretical study on filter selections. As expected, the optical system with the filters selected from the QRCP method is much less sensitive to noise than those with other spectral filters from different selections. It turns out that our approach is an effective way to implement the optical system for estimating spectral responsivities of digital imaging systems.
NASA Astrophysics Data System (ADS)
Saghri, John A.
2010-05-01
A computationally efficient adaptive two-stage Karhunen-Loeve transform (KLT) scheme for spectral decorrelation in hyperspectral lossy bandwidth compression is presented. The component decorrelation of the JPEG 2000 (extension 2) is replaced with an adaptive two-stage KLT scheme. The data are partitioned into small subsets. The spectral correlation within each partition is removed via a first-stage KLT. The interpartition spectral correlation is removed using a second-stage KLT applied to the resulting top few sets of equilevel principal component (PC) images. Since only a fraction of each equilevel first-stage PC images are used in the second stage, the KLT transformation matrices will have smaller sizes, leading to further improvement in computational complexity and coding efficiency. The computation of the proposed approach is parametrically quantified. It is shown that reconstructed image quality, as measured via statistical and/or machine-based exploitation measures, is improved by using a smaller partition size in the first-stage KLT. A criterion based on the components of the eigenvectors of the cross-covariance matrix is established to select first-stage PC images, which are used in the second-stage KLT. The proposed scheme also reduces the overhead bits required to transmit the covariance information to the receiver in conjunction with the coding bitstream.
NASA Technical Reports Server (NTRS)
Freedman, Ellis; Ryan, Robert; Pagnutti, Mary; Holekamp, Kara; Gasser, Gerald; Carver, David; Greer, Randy
2007-01-01
Spectral Dark Subtraction (SDS) provides good ground reflectance estimates across a variety of atmospheric conditions with no knowledge of those conditions. The algorithm may be sensitive to errors from stray light, calibration, and excessive haze/water vapor. SDS seems to provide better estimates than traditional algorithms using on-site atmospheric measurements much of the time.
On-line, adaptive state estimator for active noise control
NASA Technical Reports Server (NTRS)
Lim, Tae W.
1994-01-01
Dynamic characteristics of airframe structures are expected to vary as aircraft flight conditions change. Accurate knowledge of the changing dynamic characteristics is crucial to enhancing the performance of the active noise control system using feedback control. This research investigates the development of an adaptive, on-line state estimator using a neural network concept to conduct active noise control. In this research, an algorithm has been developed that can be used to estimate displacement and velocity responses at any locations on the structure from a limited number of acceleration measurements and input force information. The algorithm employs band-pass filters to extract from the measurement signal the frequency contents corresponding to a desired mode. The filtered signal is then used to train a neural network which consists of a linear neuron with three weights. The structure of the neural network is designed as simple as possible to increase the sampling frequency as much as possible. The weights obtained through neural network training are then used to construct the transfer function of a mode in z-domain and to identify modal properties of each mode. By using the identified transfer function and interpolating the mode shape obtained at sensor locations, the displacement and velocity responses are estimated with reasonable accuracy at any locations on the structure. The accuracy of the response estimates depends on the number of modes incorporated in the estimates and the number of sensors employed to conduct mode shape interpolation. Computer simulation demonstrates that the algorithm is capable of adapting to the varying dynamic characteristics of structural properties. Experimental implementation of the algorithm on a DSP (digital signal processing) board for a plate structure is underway. The algorithm is expected to reach the sampling frequency range of about 10 kHz to 20 kHz which needs to be maintained for a typical active noise control
On Spectral Classification and Astrophysical Parameter Estimation for Galactic Surveys
NASA Astrophysics Data System (ADS)
Re Fiorentin, Paola; Bailer-Jones, Coryn A. L.; Beers, Timothy C.; Zwitter, Tomaž
2008-12-01
We present several strategies that are being developed in order to classify and parameterize individual stars observed by Galactic surveys, and illustrate some results obtained from spectra obtained by the RAdial Velocity Experiment (RAVE) and the Sloan Digital Sky Survey (SDSS/SEGUE). We demonstrate the efficiency of our models for discrete source classification and stellar atmospheric parameter estimation (effective temperature, surface gravity, and metallicity), which use supervised machine learning algorithms along with a principal component analysis front-end compression phase that also enables knowledge discovery.
Digital spectral estimation and modeling of Space Shuttle flight data
NASA Technical Reports Server (NTRS)
Spanos, P. D.; Mushung, L. J.; Nelson, D. A. R., Jr.; Hamilton, D. A.
1988-01-01
Application of the digital signal processing technique of autoregressive-moving-average (ARMA) modeling to the estimation of power spectra and shock spectra from Space Shuttle lift-off flight accelerograms is described in this paper. The background for application to ARMA of lift-off accelerograms which are non-stationary in nature is exemplified through a step-by-step discussion of actual numerical results. Included is a discussion of pertinent mathematical background for the ARMA approximations. Potential areas for application of ARMA modeling in payload integration activities are suggested.
NASA Astrophysics Data System (ADS)
Funamizu, Hideki; Tokuno, Yuta; Aizu, Yoshihisa
2016-06-01
We investigate the estimation of spectral transmittance curves in color digital holographic microscopy using speckle illuminations. In color digital holography, it has the disadvantage in that the color-composite image gives poor color information due to the use of lasers with the two or three wavelengths. To overcome this disadvantage, the Wiener estimation method and an averaging process using multiple holograms are applied to color digital holographic microscopy. Estimated spectral transmittance and color-composite images are shown to indicate the usefulness of the proposed method.
[Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].
Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong
2015-11-01
With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level. PMID:26915200
ERIC Educational Resources Information Center
Raiche, Gilles; Blais, Jean-Guy
In a computerized adaptive test (CAT), it would be desirable to obtain an acceptable precision of the proficiency level estimate using an optimal number of items. Decreasing the number of items is accompanied, however, by a certain degree of bias when the true proficiency level differs significantly from the a priori estimate. G. Raiche (2000) has…
Mission-adaptable narrowband tunable imaging spectrometer (MANTIS): tactical spectral sensing
NASA Astrophysics Data System (ADS)
Dirbas, Joseph; Mireles, Tony; Schoonmaker, Jon; Bush, Andy
2004-08-01
A series of low cost, light weight, mission-adaptable multispectral imaging spectrometers have been developed by PAR Government Systems Corporation (PGSC), utilizing mass-produced commercial off-the-shelf (COTS) components. The developed MANTIS sensors have been used to collect continuous multispectral data for mine counter measures (MCM) and intelligence, surveillance, and reconnaissance (ISR) applications aboard low cost manned aircraft platforms. Each MANTIS system images four spectral bands simultaneously. The four user-selectable spectral filters are inserted into an easily accessible filter cartridge supporting pre-flight filter selection. Data acquisition is accomplished by COTS frame grabbers installed in a Pentium based personal computer and all digitized data is written in real-time to a redundant array of independent disks (RAID). PGSC has also developed a graphical user interface providing control, display and recording options. The MANTIS approach and simple design lends itself to low-cost modifications and improvements.
Effect of spectral shape on acoustic fatigue life estimates
NASA Technical Reports Server (NTRS)
Miles, R. N.
1992-01-01
Methods for estimating fatigue life due to random loading are briefly reviewed. These methods include a probabilistic approach in which the expected value of the rate of damage accumulation is computed by integrating over the probability density of damaging events and a method which consists of analyzing the response time history to count damaging events. It is noted that it is necessary to employ a time domain approach to perform Rainflow counting, while simple peak counting may be accomplished using the probabilistic method. Data obtained indicate that Rainflow counting produces significantly different fatigue life predictions than other methods that are commonly used in acoustic fatigue predictions. When low-frequency oscillations are present in a signal along with high-frequency components, peak counting will produce substantially shorter fatigue lives than Rainflow counting. It is concluded that Rainflow counting is capable of providing reliable fatigue life predictions for acoustic fatigue studies.
Intercepted photosynthetically active radiation estimated by spectral reflectance
NASA Technical Reports Server (NTRS)
Hatfield, J. L.; Asrar, G.; Kanemasu, E. T.
1984-01-01
Interception of photosynthetically active radiation (PAR) was evaluated relative to greenness and normalized difference (MSS (7-5)/(7+5) for five planting dates of wheat for 1978-79 and 1979-80 at Phoenix, Arizona. Intercepted PAR was calculated from leaf area index and stage of growth. Linear relatinships were found with greeness and normalized difference with separate relatinships describing growth and senescence of the crop. Normalized difference was significantly better than greenness for all planting dates. For the leaf area growth portion of the season the relation between PAR interception and normalized difference was the same over years and planting dates. For the leaf senescence phase the relationships showed more variability due to the lack of data on light interception in sparse and senescing canopies. Normalized difference could be used to estimate PAR interception throughout a growing season.
Spectral estimates of intercepted solar radiation by corn and soybean canopies
NASA Technical Reports Server (NTRS)
Gallo, K. P.; Brooks, C. C.; Daughtry, C. S. T.; Bauer, M. E.; Vanderbilt, V. C.
1982-01-01
Attention is given to the development of methods for combining spectral and meteorological data in crop yield models which are capable of providing accurate estimates of crop condition and yields throughout the growing season. The present investigation is concerned with initial tests of these concepts using spectral and agronomic data acquired in controlled experiments. The data were acquired at the Purdue University Agronomy Farm, 10 km northwest of West Lafayette, Indiana. Data were obtained throughout several growing seasons for corn and soybeans. Five methods or models for predicting yields were examined. On the basis of the obtained results, it is concluded that estimating intercepted solar radiation using spectral data is a viable approach for merging spectral and meteorological data in crop yield models.
Spectral estimation of made-up skin color under various conditions
NASA Astrophysics Data System (ADS)
Doi, Motonori; Ohtsuki, Rie; Tominaga, Shoji
2006-01-01
A method is proposed for estimating the spectral reflectance of made-up skin color under various conditions including the undesirable colored skin. The color of dark spot is caused by increasing the component of melanin. The reddish skin is caused by the increase of hemoglobin. Our method uses the Kubelka-Munk theory to calculate the surface spectral reflectance human skin. This theory calculates the reflectance and transmittance of the light passing through a turbid medium from the absorption and scattering of the medium. The spectral reflectance of made-up skin is estimated by adjusting parameters of the thickness of the makeup layer. The proposed estimation method is evaluated on an experiment in detail. First, we measure the spectral reflectance of facial skin under the three conditions of normal skin, undesirable skin, and made-up skin. The undesirable skin includes stain, suntan or ruddy skin. The made-up skin means the skin with foundation on the normal skin, the stain, the suntan and the ruddy skin. Second, we estimate the spectral reflectance of made-up skins from the reflectance of bare skins and optical characteristics of foundations. Good coincidence between the estimated reflectance and the direct measurement shows the feasibility of the proposed method.
p-adaption for compressible flow problems using a goal-based error estimator
NASA Astrophysics Data System (ADS)
Ekelschot, Dirk; Moxey, David; Peiro, Joaquim; Sherwin, Spencer
2014-11-01
We present an approach of applying p-adaption to compressible flow problems using a dual-weighted error estimator. This technique has been implemented in the high-order h/p spectral element library Nektar + + . The compressible solver uses a high-order discontinuous Galerkin (DG) discretization. This approach is generally considered to be expensive and that is why the introduced p-adaption technique aims for lowering the computational cost while preserving the high-order accuracy and the exponential convergence properties. The numerical fluxes between the elements are discontinuous which allows one to use a different polynomial order in each element. After identifying and localizing the sources of error, the order of approximation of the solution within the element is improved. The solution to the adjoint equations for the compressible Euler equations is used to weigh the local residual of the primal solution. This provides both the error in the target quantity, which is typically the lift or drag coefficient, and an indication on how sensitive the local solution is to the target quantity. The dual-weighted error within each element serves then as a local refinement indicator that drives the p-adaptive algorithm. The performance of this p-adaptive method is demonstrated using a test case of subsonic flow past a 3D wing geometry.
Extended depth of focus adaptive optics spectral domain optical coherence tomography
Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki
2012-01-01
We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278
NASA Astrophysics Data System (ADS)
Kira, Oz; Linker, Raphael; Gitelson, Anatoly
2015-06-01
Leaf pigment content provides valuable insight into the productivity, physiological and phenological status of vegetation. Measurement of spectral reflectance offers a fast, nondestructive method for pigment estimation. A number of methods were used previously for estimation of leaf pigment content, however, spectral bands employed varied widely among the models and data used. Our objective was to find informative spectral bands in three types of models, vegetation indices (VI), neural network (NN) and partial least squares (PLS) regression, for estimating leaf chlorophyll (Chl) and carotenoids (Car) contents of three unrelated tree species and to assess the accuracy of the models using a minimal number of bands. The bands selected by PLS, NN and VIs were in close agreement and did not depend on the data used. The results of the uninformative variable elimination PLS approach, where the reliability parameter was used as an indicator of the information contained in the spectral bands, confirmed the bands selected by the VIs, NN, and PLS models. All three types of models were able to accurately estimate Chl content with coefficient of variation below 12% for all three species with VI showing the best performance. NN and PLS using reflectance in four spectral bands were able to estimate accurately Car content with coefficient of variation below 14%. The quantitative framework presented here offers a new way of estimating foliar pigment content not requiring model re-parameterization for different species. The approach was tested using the spectral bands of the future Sentinel-2 satellite and the results of these simulations showed that accurate pigment estimation from satellite would be possible.
Spectral Approach to Optimal Estimation of the Global Average Temperature.
NASA Astrophysics Data System (ADS)
Shen, Samuel S. P.; North, Gerald R.; Kim, Kwang-Y.
1994-12-01
Making use of EOF analysis and statistical optimal averaging techniques, the problem of random sampling error in estimating the global average temperature by a network of surface stations has been investigated. The EOF representation makes it unnecessary to use simplified empirical models of the correlation structure of temperature anomalies. If an adjustable weight is assigned to each station according to the criterion of minimum mean-square error, a formula for this error can be derived that consists of a sum of contributions from successive EOF modes. The EOFs were calculated from both observed data and a noise-forced EBM for the problem of one-year and five-year averages. The mean square statistical sampling error depends on the spatial distribution of the stations, length of the averaging interval, and the choice of the weight for each station data stream. Examples used here include four symmetric configurations of 4 × 4, 6 × 4, 9 × 7, and 20 × 10 stations and the Angell-Korshover configuration. Comparisons with the 100-yr U.K. dataset show that correlations for the time series of the global temperature anomaly average between the full dataset and this study's sparse configurations are rather high. For example, the 63-station Angell-Korshover network with uniform weighting explains 92.7% of the total variance, whereas the same network with optimal weighting can lead to 97.8% explained total variance of the U.K. dataset.
Spectral approach to optimal estimation of the global average temperature
Shen, S.S.P.; North, G.R.; Kim, K.Y.
1994-12-01
Making use of EOF analysis and statistical optimal averaging techniques, the problem of random sampling error in estimating the global average temperature by a network of surface stations has been investigated. The EOF representation makes it unnecessary to use simplified empirical models of the correlation structure of temperature anomalies. If an adjustable weight is assigned to each station according to the criterion of minimum mean-square error, a formula for this error can be derived that consists of a sum of contributions from successive EOF modes. The EOFs were calculated from both observed data a noise-forced EBM for the problem of one-year and five-year averages. The mean square statistical sampling error depends on the spatial distribution of the stations, length of the averaging interval, and the choice of the weight for each station data stream. Examples used here include four symmetric configurations of 4 X 4, 5 X 4, 9 X 7, and 20 X 10 stations and the Angell-Korshover configuration. Comparisons with the 100-yr U.K. dataset show that correlations for the time series of the global temperature anomaly average between the full dataset and this study`s sparse configurations are rather high. For example, the 63-station Angell-Korshover network with uniform weighting explains 92.7% of the total variance, whereas the same network with optimal weighting can lead to 97.8% explained total variance of the U.K. dataset. 27 refs., 5 figs., 4 tabs.
NASA Technical Reports Server (NTRS)
Teuber, D. L.
1976-01-01
The Space Telescope is a 2.4 m class aperture optical telescope having near-diffraction-limited performance. It will be placed into earth orbit by 1980 via the Space Shuttle. The problem considered is how to achieve negligible degradation of the astronomy imaging capability (to 0.005 arc second) due to smearing by pointing motions during observations. Initially, pointing instability sources were identified and a linear stability was used to assess the magnitude of elastic body modes and to design control system compensation regions necessary for subsequent adaptive control. A spectral identification technique for this adaptive attitude control and pointing has been investigated that will alleviate requirements for comprehensive dynamic ground testing. Typical all-digital simulation results describing motions of the telescope line of sight are presented.
Preliminary evaluation of spectral, normal and meteorological crop stage estimation approaches
NASA Technical Reports Server (NTRS)
Cate, R. B.; Artley, J. A.; Doraiswamy, P. C.; Hodges, T.; Kinsler, M. C.; Phinney, D. E.; Sestak, M. L. (Principal Investigator)
1980-01-01
Several of the projects in the AgRISTARS program require crop phenology information, including classification, acreage and yield estimation, and detection of episodal events. This study evaluates several crop calendar estimation techniques for their potential use in the program. The techniques, although generic in approach, were developed and tested on spring wheat data collected in 1978. There are three basic approaches to crop stage estimation: historical averages for an area (normal crop calendars), agrometeorological modeling of known crop-weather relationships agrometeorological (agromet) crop calendars, and interpretation of spectral signatures (spectral crop calendars). In all, 10 combinations of planting and biostage estimation models were evaluated. Dates of stage occurrence are estimated with biases between -4 and +4 days while root mean square errors range from 10 to 15 days. Results are inconclusive as to the superiority of any of the models and further evaluation of the models with the 1979 data set is recommended.
Cao, Dingcai; Barrionuevo, Pablo A
2015-03-01
The intrinsic circadian clock requires photoentrainment to synchronize the 24-hour solar day. Therefore, light stimulation is an important component of chronobiological research. Currently, the chronobiological research field overwhelmingly uses photopic illuminance that is based on the luminous efficiency function, V(λ), to quantify light levels. However, recent discovery of intrinsically photosensitive retinal ganglion cells (ipRGCs), which are activated by self-contained melanopsin photopigment and also by inputs from rods and cones, makes light specification using a one-dimensional unit inadequate. Since the current understanding of how different photoreceptor inputs contribute to the circadian system through ipRGCs is limited, it is recommended to specify light in terms of the excitations of five photoreceptors (S-, M-, L-cones, rods and ipRGCs; Lucas et al., 2014). In the current study, we assessed whether the spectral outputs from a commercially available spectral watch (i.e. Actiwatch Spectrum) could be used to estimate photoreceptor excitations. Based on the color sensor spectral sensitivity functions from a previously published work, as well as from our measurements, we computed spectral outputs in the long-wavelength range (R), middle-wavelength range (G), short-wavelength range (B) and broadband range (W) under 52 CIE illuminants (25 daylight illuminants, 27 fluorescent lights). We also computed the photoreceptor excitations for each illuminant using human photoreceptor spectral sensitivity functions. Linear regression analyses indicated that the Actiwatch spectral outputs could predict photoreceptor excitations reliably, under the assumption of linear responses of the Actiwatch color sensors. In addition, R, G, B outputs could classify illuminant types (fluorescent versus daylight illuminants) satisfactorily. However, the assessment of actual Actiwatch recording under several testing light sources showed that the spectral outputs were subject to
Energy Detection Based Estimation of Channel Occupancy Rate with Adaptive Noise Estimation
NASA Astrophysics Data System (ADS)
Lehtomäki, Janne J.; Vuohtoniemi, Risto; Umebayashi, Kenta; Mäkelä, Juha-Pekka
Recently, there has been growing interest in opportunistically utilizing the 2.4GHz ISM-band. Numerous spectrum occupancy measurements covering the ISM-band have been performed to analyze the spectrum usage. However, in these campaigns the verification of the correctness of the obtained occupancy values for the highly dynamic ISM-band has not been presented. In this paper, we propose and verify channel occupancy rate (COR) estimation utilizing energy detection mechanism with a novel adaptive energy detection threshold setting method. The results are compared with the true reference COR values. Several different types of verification measurements showed that our setup can estimate the COR values of 802.11 traffic well, with negligible overestimation. The results from real-time real-life measurements also confirm that the proposed adaptive threshold setting method enables accurate thresholds even in the situations where multiple interferers are present in the received signal.
Jorgensen, B B; Cohen, Y; Des Marais, D J
1987-01-01
We studied adaptation to spectral light distribution in undisturbed benthic communities of cyanobacterial mats growing in hypersaline ponds at Guerrero Negro, Baja California, Mexico. Microscale measurements of oxygen photosynthesis and action spectra were performed with microelectrodes; spectral radiance was measured with fiber-optic microprobes. The spatial resolution of all measurements was 0.1 mm, and the spectral resolution was 10 to 15 nm. Light attenuation spectra showed absorption predominantly by chlorophyll a (Chl a) (430 and 670 nm), phycocyanin (620 nm), and carotenoids (440 to 500 nm). Blue light (450 nm) was attenuated 10-fold more strongly than red light (600 nm). The action spectra of the surface film of diatoms accordingly showed activity over the whole spectrum, with maxima for Chl a and carotenoids. The underlying dense Microcoleus population showed almost exclusively activity dependent upon light harvesting by phycobilins at 550 to 660 nm. Maximum activity was at 580 and 650 nm, indicating absorption by phycoerythrin and phycocyanin as well as by allophycocyanin. Very little Chl a-dependent activity could be detected in the cyanobacterial action spectrum, even with additional 600-nm light to excite photosystem II. The depth distribution of photosynthesis showed detectable activity down to a depth of 0.8 to 2.5 mm, where the downwelling radiant flux at 600 nm was reduced to 0.2 to 0.6% of the surface flux. PMID:11536572
The use of the spectral method within the fast adaptive composite grid method
McKay, S.M.
1994-12-31
The use of efficient algorithms for the solution of partial differential equations has been sought for many years. The fast adaptive composite grid (FAC) method combines an efficient algorithm with high accuracy to obtain low cost solutions to partial differential equations. The FAC method achieves fast solution by combining solutions on different grids with varying discretizations and using multigrid like techniques to find fast solution. Recently, the continuous FAC (CFAC) method has been developed which utilizes an analytic solution within a subdomain to iterate to a solution of the problem. This has been shown to achieve excellent results when the analytic solution can be found. The CFAC method will be extended to allow solvers which construct a function for the solution, e.g., spectral and finite element methods. In this discussion, the spectral methods will be used to provide a fast, accurate solution to the partial differential equation. As spectral methods are more accurate than finite difference methods, the ensuing accuracy from this hybrid method outside of the subdomain will be investigated.
NASA Technical Reports Server (NTRS)
Jorgensen, B. B.; Cohen, Y.; Des Marais, D. J.
1987-01-01
We studied adaptation to spectral light distribution in undisturbed benthic communities of cyanobacterial mats growing in hypersaline ponds at Guerrero Negro, Baja California, Mexico. Microscale measurements of oxygen photosynthesis and action spectra were performed with microelectrodes; spectral radiance was measured with fiber-optic microprobes. The spatial resolution of all measurements was 0.1 mm, and the spectral resolution was 10 to 15 nm. Light attenuation spectra showed absorption predominantly by chlorophyll a (Chl a) (430 and 670 nm), phycocyanin (620 nm), and carotenoids (440 to 500 nm). Blue light (450 nm) was attenuated 10-fold more strongly than red light (600 nm). The action spectra of the surface film of diatoms accordingly showed activity over the whole spectrum, with maxima for Chl a and carotenoids. The underlying dense Microcoleus population showed almost exclusively activity dependent upon light harvesting by phycobilins at 550 to 660 nm. Maximum activity was at 580 and 650 nm, indicating absorption by phycoerythrin and phycocyanin as well as by allophycocyanin. Very little Chl a-dependent activity could be detected in the cyanobacterial action spectrum, even with additional 600-nm light to excite photosystem II. The depth distribution of photosynthesis showed detectable activity down to a depth of 0.8 to 2.5 mm, where the downwelling radiant flux at 600 nm was reduced to 0.2 to 0.6% of the surface flux.
Estimation after subpopulation selection in adaptive seamless trials.
Kimani, Peter K; Todd, Susan; Stallard, Nigel
2015-08-15
During the development of new therapies, it is not uncommon to test whether a new treatment works better than the existing treatment for all patients who suffer from a condition (full population) or for a subset of the full population (subpopulation). One approach that may be used for this objective is to have two separate trials, where in the first trial, data are collected to determine if the new treatment benefits the full population or the subpopulation. The second trial is a confirmatory trial to test the new treatment in the population selected in the first trial. In this paper, we consider the more efficient two-stage adaptive seamless designs (ASDs), where in stage 1, data are collected to select the population to test in stage 2. In stage 2, additional data are collected to perform confirmatory analysis for the selected population. Unlike the approach that uses two separate trials, for ASDs, stage 1 data are also used in the confirmatory analysis. Although ASDs are efficient, using stage 1 data both for selection and confirmatory analysis introduces selection bias and consequently statistical challenges in making inference. We will focus on point estimation for such trials. In this paper, we describe the extent of bias for estimators that ignore multiple hypotheses and selecting the population that is most likely to give positive trial results based on observed stage 1 data. We then derive conditionally unbiased estimators and examine their mean squared errors for different scenarios. PMID:25903293
NASA Astrophysics Data System (ADS)
Somers, B.; Asner, G. P.
2014-09-01
The use of imaging spectroscopy for florisic mapping of forests is complicated by the spectral similarity among co-existing species. Here we evaluated an alternative spectral unmixing strategy combining a time series of EO-1 Hyperion images and an automated feature selection in Multiple Endmember Spectral Mixture Analysis (MESMA). The temporal analysis provided a way to incorporate species phenology while feature selection indicated the best phenological time and best spectral feature set to optimize the separability between tree species. Instead of using the same set of spectral bands throughout the image which is the standard approach in MESMA, our modified Wavelength Adaptive Spectral Mixture Analysis (WASMA) approach allowed the spectral subsets to vary on a per pixel basis. As such we were able to optimize the spectral separability between the tree species present in each pixel. The potential of the new approach for floristic mapping of tree species in Hawaiian rainforests was quantitatively assessed using both simulated and actual hyperspectral image time-series. With a Cohen's Kappa coefficient of 0.65, WASMA provided a more accurate tree species map compared to conventional MESMA (Kappa = 0.54; p-value < 0.05. The flexible or adaptive use of band sets in WASMA provides an interesting avenue to address spectral similarities in complex vegetation canopies.
Power spectral density estimation by spline smoothing in the frequency domain
NASA Technical Reports Server (NTRS)
Defigueiredo, R. J. P.; Thompson, J. R.
1972-01-01
An approach, based on a global averaging procedure, is presented for estimating the power spectrum of a second order stationary zero-mean ergodic stochastic process from a finite length record. This estimate is derived by smoothing, with a cubic smoothing spline, the naive estimate of the spectrum obtained by applying FFT techniques to the raw data. By means of digital computer simulated results, a comparison is made between the features of the present approach and those of more classical techniques of spectral estimation.
Power spectral density estimation by spline smoothing in the frequency domain.
NASA Technical Reports Server (NTRS)
De Figueiredo, R. J. P.; Thompson, J. R.
1972-01-01
An approach, based on a global averaging procedure, is presented for estimating the power spectrum of a second order stationary zero-mean ergodic stochastic process from a finite length record. This estimate is derived by smoothing, with a cubic smoothing spline, the naive estimate of the spectrum obtained by applying Fast Fourier Transform techniques to the raw data. By means of digital computer simulated results, a comparison is made between the features of the present approach and those of more classical techniques of spectral estimation.-
Spectral estimation of gapped data and SAR imaging with angular diversity
NASA Astrophysics Data System (ADS)
Larsson, Erik G.; Li, Jian; Stoica, Peter; Liu, Guoqing; Williams, Robert L.
2001-08-01
The Amplitude and Phase EStimation (APES) approach to amplitude spectrum estimation has been receiving considerably attention recently. We develop an extension of APES for the spectral estimation of gapped (incomplete) data and apply it to synthetic aperture radar (SAR) imaging with angular diversity. It has recently been shown that APES minimizes a certain least-squares criterion with respect to the estimate of the spectrum. Our new algorithm is called gapped-data APES and is based on minimizing this criterion with respect to the missing data as well. Numerical results are presented to demonstrate the effectiveness of the proposed algorithm and its applicability to SAR imaging with angular diversity.
Snowpack Estimates Improve Water Resources Climate-Change Adaptation Strategies
NASA Astrophysics Data System (ADS)
Lestak, L.; Molotch, N. P.; Guan, B.; Granger, S. L.; Nemeth, S.; Rizzardo, D.; Gehrke, F.; Franz, K. J.; Karsten, L. R.; Margulis, S. A.; Case, K.; Anderson, M.; Painter, T. H.; Dozier, J.
2010-12-01
Observed climate trends over the past 50 years indicate a reduction in snowpack water storage across the Western U.S. As the primary water source for the region, the loss in snowpack water storage presents significant challenges for managing water deliveries to meet agricultural, municipal, and hydropower demands. Improved snowpack information via remote sensing shows promise for improving seasonal water supply forecasts and for informing decadal scale infrastructure planning. An ongoing project in the California Sierra Nevada and examples from the Rocky Mountains indicate the tractability of estimating snowpack water storage on daily time steps using a distributed snowpack reconstruction model. Fractional snow covered area (FSCA) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data were used with modeled snowmelt from the snowpack model to estimate snow water equivalent (SWE) in the Sierra Nevada (64,515 km2). Spatially distributed daily SWE estimates were calculated for 10 years, 2000-2009, with detailed analysis for two anamolous years, 2006, a wet year and 2009, an over-forecasted year. Sierra-wide mean SWE was 0.8 cm for 01 April 2006 versus 0.4 cm for 01 April 2009, comparing favorably with known outflow. Modeled SWE was compared to in-situ (observed) SWE for 01 April 2006 for the Feather (northern Sierra, lower-elevation) and Merced (central Sierra, higher-elevation) basins, with mean modeled SWE 80% of observed SWE. Integration of spatial SWE estimates into forecasting operations will allow for better visualization and analysis of high-altitude late-season snow missed by in-situ snow sensors and inter-annual anomalies associated with extreme precipitation events/atmospheric rivers. Collaborations with state and local entities establish protocols on how to meet current and future information needs and improve climate-change adaptation strategies.
Daniell method for power spectral density estimation in atomic force microscopy.
Labuda, Aleksander
2016-03-01
An alternative method for power spectral density (PSD) estimation--the Daniell method--is revisited and compared to the most prevalent method used in the field of atomic force microscopy for quantifying cantilever thermal motion--the Bartlett method. Both methods are shown to underestimate the Q factor of a simple harmonic oscillator (SHO) by a predictable, and therefore correctable, amount in the absence of spurious deterministic noise sources. However, the Bartlett method is much more prone to spectral leakage which can obscure the thermal spectrum in the presence of deterministic noise. By the significant reduction in spectral leakage, the Daniell method leads to a more accurate representation of the true PSD and enables clear identification and rejection of deterministic noise peaks. This benefit is especially valuable for the development of automated PSD fitting algorithms for robust and accurate estimation of SHO parameters from a thermal spectrum. PMID:27036781
A two dimensional power spectral estimate for some nonstationary processes. M.S. Thesis
NASA Technical Reports Server (NTRS)
Smith, Gregory L.
1989-01-01
A two dimensional estimate for the power spectral density of a nonstationary process is being developed. The estimate will be applied to helicopter noise data which is clearly nonstationary. The acoustic pressure from the isolated main rotor and isolated tail rotor is known to be periodically correlated (PC) and the combined noise from the main and tail rotors is assumed to be correlation autoregressive (CAR). The results of this nonstationary analysis will be compared with the current method of assuming that the data is stationary and analyzing it as such. Another method of analysis is to introduce a random phase shift into the data as shown by Papoulis to produce a time history which can then be accurately modeled as stationary. This method will also be investigated for the helicopter data. A method used to determine the period of a PC process when the period is not know is discussed. The period of a PC process must be known in order to produce an accurate spectral representation for the process. The spectral estimate is developed. The bias and variability of the estimate are also discussed. Finally, the current method for analyzing nonstationary data is compared to that of using a two dimensional spectral representation. In addition, the method of phase shifting the data is examined.
Adaptive Error Estimation in Linearized Ocean General Circulation Models
NASA Technical Reports Server (NTRS)
Chechelnitsky, Michael Y.
1999-01-01
Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large
Trapeau, Régis; Aubrais, Valérie; Schönwiesner, Marc
2016-08-01
The adult human auditory system can adapt to changes in spectral cues for sound localization. This plasticity was demonstrated by changing the shape of the pinna with earmolds. Previous results indicate that participants regain localization accuracy after several weeks of adaptation and that the adapted state is retained for at least one week without earmolds. No aftereffect was observed after mold removal, but any aftereffect may be too short to be observed when responses are averaged over many trials. This work investigated the lack of aftereffect by analyzing single-trial responses and modifying visual, auditory, and tactile information during the localization task. Results showed that participants localized accurately immediately after mold removal, even at the first stimulus presentation. Knowledge of the stimulus spectrum, tactile information about the absence of the earmolds, and visual feedback were not necessary to localize accurately after adaptation. Part of the adaptation persisted for one month without molds. The results are consistent with the hypothesis of a many-to-one mapping of the spectral cues, in which several spectral profiles are simultaneously associated with one sound location. Additionally, participants with acoustically more informative spectral cues localized sounds more accurately, and larger acoustical disturbances by the molds reduced adaptation success. PMID:27586720
Spectral Estimation Model Construction of Heavy Metals in Mining Reclamation Areas
Dong, Jihong; Dai, Wenting; Xu, Jiren; Li, Songnian
2016-01-01
The study reported here examined, as the research subject, surface soils in the Liuxin mining area of Xuzhou, and explored the heavy metal content and spectral data by establishing quantitative models with Multivariable Linear Regression (MLR), Generalized Regression Neural Network (GRNN) and Sequential Minimal Optimization for Support Vector Machine (SMO-SVM) methods. The study results are as follows: (1) the estimations of the spectral inversion models established based on MLR, GRNN and SMO-SVM are satisfactory, and the MLR model provides the worst estimation, with R2 of more than 0.46. This result suggests that the stress sensitive bands of heavy metal pollution contain enough effective spectral information; (2) the GRNN model can simulate the data from small samples more effectively than the MLR model, and the R2 between the contents of the five heavy metals estimated by the GRNN model and the measured values are approximately 0.7; (3) the stability and accuracy of the spectral estimation using the SMO-SVM model are obviously better than that of the GRNN and MLR models. Among all five types of heavy metals, the estimation for cadmium (Cd) is the best when using the SMO-SVM model, and its R2 value reaches 0.8628; (4) using the optimal model to invert the Cd content in wheat that are planted on mine reclamation soil, the R2 and RMSE between the measured and the estimated values are 0.6683 and 0.0489, respectively. This result suggests that the method using the SMO-SVM model to estimate the contents of heavy metals in wheat samples is feasible. PMID:27367708
Spectral Estimation Model Construction of Heavy Metals in Mining Reclamation Areas.
Dong, Jihong; Dai, Wenting; Xu, Jiren; Li, Songnian
2016-01-01
The study reported here examined, as the research subject, surface soils in the Liuxin mining area of Xuzhou, and explored the heavy metal content and spectral data by establishing quantitative models with Multivariable Linear Regression (MLR), Generalized Regression Neural Network (GRNN) and Sequential Minimal Optimization for Support Vector Machine (SMO-SVM) methods. The study results are as follows: (1) the estimations of the spectral inversion models established based on MLR, GRNN and SMO-SVM are satisfactory, and the MLR model provides the worst estimation, with R² of more than 0.46. This result suggests that the stress sensitive bands of heavy metal pollution contain enough effective spectral information; (2) the GRNN model can simulate the data from small samples more effectively than the MLR model, and the R² between the contents of the five heavy metals estimated by the GRNN model and the measured values are approximately 0.7; (3) the stability and accuracy of the spectral estimation using the SMO-SVM model are obviously better than that of the GRNN and MLR models. Among all five types of heavy metals, the estimation for cadmium (Cd) is the best when using the SMO-SVM model, and its R² value reaches 0.8628; (4) using the optimal model to invert the Cd content in wheat that are planted on mine reclamation soil, the R² and RMSE between the measured and the estimated values are 0.6683 and 0.0489, respectively. This result suggests that the method using the SMO-SVM model to estimate the contents of heavy metals in wheat samples is feasible. PMID:27367708
An Overdetermined System for Improved Autocorrelation Based Spectral Moment Estimator Performance
NASA Technical Reports Server (NTRS)
Keel, Byron M.
1996-01-01
Autocorrelation based spectral moment estimators are typically derived using the Fourier transform relationship between the power spectrum and the autocorrelation function along with using either an assumed form of the autocorrelation function, e.g., Gaussian, or a generic complex form and applying properties of the characteristic function. Passarelli has used a series expansion of the general complex autocorrelation function and has expressed the coefficients in terms of central moments of the power spectrum. A truncation of this series will produce a closed system of equations which can be solved for the central moments of interest. The autocorrelation function at various lags is estimated from samples of the random process under observation. These estimates themselves are random variables and exhibit a bias and variance that is a function of the number of samples used in the estimates and the operational signal-to-noise ratio. This contributes to a degradation in performance of the moment estimators. This dissertation investigates the use autocorrelation function estimates at higher order lags to reduce the bias and standard deviation in spectral moment estimates. In particular, Passarelli's series expansion is cast in terms of an overdetermined system to form a framework under which the application of additional autocorrelation function estimates at higher order lags can be defined and assessed. The solution of the overdetermined system is the least squares solution. Furthermore, an overdetermined system can be solved for any moment or moments of interest and is not tied to a particular form of the power spectrum or corresponding autocorrelation function. As an application of this approach, autocorrelation based variance estimators are defined by a truncation of Passarelli's series expansion and applied to simulated Doppler weather radar returns which are characterized by a Gaussian shaped power spectrum. The performance of the variance estimators determined
NASA Astrophysics Data System (ADS)
Li, Zuchuan; Li, Lin; Song, Kaishan; Cassar, Nicolas
2013-03-01
Through its influence on the structure of pelagic ecosystems, phytoplankton size distribution (pico-, nano-, and micro-plankton) is believed to play a key role in "the biological pump." In this paper, an algorithm is proposed to estimate phytoplankton size fractions (PSF) for micro-, nano-, and pico-plankton (fm, fn, and fp, respectively) from the spectral features of remote-sensing data. From remote-sensing reflectance spectrum (Rrs(λ)), the algorithm constructs four types of spectral features: a normalized Rrs(λ), band ratios, continuum-removed spectra, and spectral curvatures. Using support vector machine recursive feature elimination, the algorithm ranks the constructed spectral features and Rrs(λ) according to their sensitivities to PSF which is then regressed against the sensitive spectral features through support vector regression. The algorithm is validated with (1) simulated Rrs(λ) and PSF, and (2) Rrs(λ) obtained by Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and PSF determined from High-Performance Liquid Chromatography (HPLC) pigments. The validation results show the overall effectiveness of the algorithm in estimating PSF, with R2 of (1) 0.938 (fm) for the simulated SeaWiFS data set; and (2) 0.617 (fm), 0.475 (fn), and 0.587 (fp) for the SeaWiFS satellite data set. The validation results also indicate that continuum-removed spectra and spectral curvatures are the dominant spectral features sensitive to PSF with their wavelengths mainly centered on the pigment-absorption domain. Global spatial distributions of fm, fn, and fp were mapped with monthly SeaWiFS images. Overall, their biogeographical distributions are consistent with our current understanding that pico-plankton account for a large proportion of total phytoplankton biomass in oligotrophic regions, nano-plankton in transitional areas, and micro-plankton in high-productivity regions.
Vencels, Juris; Delzanno, Gian Luca; Johnson, Alec; Peng, Ivy Bo; Laure, Erwin; Markidis, Stefano
2015-06-01
A spectral method for kinetic plasma simulations based on the expansion of the velocity distribution function in a variable number of Hermite polynomials is presented. The method is based on a set of non-linear equations that is solved to determine the coefficients of the Hermite expansion satisfying the Vlasov and Poisson equations. In this paper, we first show that this technique combines the fluid and kinetic approaches into one framework. Second, we present an adaptive strategy to increase and decrease the number of Hermite functions dynamically during the simulation. The technique is applied to the Landau damping and two-stream instabilitymore » test problems. Performance results show 21% and 47% saving of total simulation time in the Landau and two-stream instability test cases, respectively.« less
Piazza, C; Cantiani, C; Tacchino, G; Molteni, M; Reni, G; Bianchi, A M
2014-01-01
The ability to process rapidly-occurring auditory stimuli plays an important role in the mechanisms of language acquisition. For this reason, the research community has begun to investigate infant auditory processing, particularly using the Event Related Potentials (ERP) technique. In this paper we approach this issue by means of time domain and time-frequency domain analysis. For the latter, we propose the use of Adaptive Autoregressive (AAR) identification with spectral power decomposition. Results show EEG delta-theta oscillation enhancement related to the processing of acoustic frequency and duration changes, suggesting that, as expected, power modulation encodes rapid auditory processing (RAP) in infants and that the time-frequency analysis method proposed is able to identify this modulation. PMID:25571014
Vencels, Juris; Delzanno, Gian Luca; Johnson, Alec; Peng, Ivy Bo; Laure, Erwin; Markidis, Stefano
2015-06-01
A spectral method for kinetic plasma simulations based on the expansion of the velocity distribution function in a variable number of Hermite polynomials is presented. The method is based on a set of non-linear equations that is solved to determine the coefficients of the Hermite expansion satisfying the Vlasov and Poisson equations. In this paper, we first show that this technique combines the fluid and kinetic approaches into one framework. Second, we present an adaptive strategy to increase and decrease the number of Hermite functions dynamically during the simulation. The technique is applied to the Landau damping and two-stream instability test problems. Performance results show 21% and 47% saving of total simulation time in the Landau and two-stream instability test cases, respectively.
Performance bounds on micro-Doppler estimation and adaptive waveform design using OFDM signals
NASA Astrophysics Data System (ADS)
Sen, Satyabrata; Barhen, Jacob; Glover, Charles W.
2014-05-01
We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute the Craḿer-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.
Performance Bounds on Micro-Doppler Estimation and Adaptive Waveform Design Using OFDM Signals
Sen, Satyabrata; Barhen, Jacob; Glover, Charles Wayne
2014-01-01
We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute the Cram er-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.
NASA Technical Reports Server (NTRS)
Howell, Leonard W.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The maximum likelihood procedure is developed for estimating the three spectral parameters of an assumed broken power law energy spectrum from simulated detector responses and their statistical properties investigated. The estimation procedure is then generalized for application to real cosmic-ray data. To illustrate the procedure and its utility, analytical methods were developed in conjunction with a Monte Carlo simulation to explore the combination of the expected cosmic-ray environment with a generic space-based detector and its planned life cycle, allowing us to explore various detector features and their subsequent influence on estimating the spectral parameters. This study permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.
On-line estimation of myoelectric signal spectral parameters and nonstationarities detection.
D'Alessio, T; Knaflitz, M; Balestra, G; Paggi, S
1993-09-01
In this communication, we present a method for detecting nonstationarities of random time series with an approximately Gaussian distribution of amplitudes. This method is suitable for real time implementation. Here we report some results obtained by applying them to a time series of spectral parameters of surface myoelectric signals, collected during voluntary isometric contractions of human muscles. Moreover, we describe the computerized system that we used to implement our detector of nonstationarity. This system is based on the TMS 320C25 DSP chip and realizes on-line estimation and display of spectral parameters, as well as detection of their nonstationarities, featuring a sampling frequency up to 20 k samples/s. A friendly user interface, fully menu driven, allows the user to select different options during the system's operation by means of hot keys. The accuracy of the system was tested by comparing its estimates with those of an off-line system, previously characterized, which we took as a reference. The estimates of spectral parameters obtained by means of the two systems were always consistent. The on-line stationarity detector was able to recognize rates of variation of the spectral parameters as small as 1%/s during contractions lasting 10-15 s. This sensitivity makes it suitable for clinical application. The set of results herein presented has been selected to highlight the main characteristics of the system. PMID:8288289
NASA Astrophysics Data System (ADS)
Michaelsen, Kelly E.; Krishnaswamy, Venkataramanan; Pogue, Brian W.; Poplack, Steven P.; Paulsen, Keith D.
2013-03-01
X-ray image pixel intensity and optical scattering are compared for 11 normal subjects to assess the feasibility of using X-ray imaging as a surrogate for optical scattering in NIR spectral tomography. Digital breast tomosynthesis exams, as well as twenty single point reflectance measurements of optical breast scattering are compared for a wide variety of breast sizes and densities to determine if scattering can be accurately predicted based on x-ray attenuation. If implemented, x-ray based scattering estimation will decrease exam time and cost as well as simplify the design of a newly developed integrated near infrared spectral tomography and digital breast tomosynthesis imaging system.
NASA Astrophysics Data System (ADS)
Shafian, S.; Maas, S. J.; Rajan, N.
2014-12-01
Water resources and agricultural applications require knowledge of crop water use (CWU) over a range of spatial and temporal scales. Due to the spatial density of meteorological stations, the resolution of CWU estimates based on these data is fairly coarse and not particularly suitable or reliable for water resources planning, irrigation scheduling and decision making. Various methods have been developed for quantifying CWU of agricultural crops. In this study, an improved version of the spectral crop coefficient which includes the effects of stomatal closure is applied. Raw digital count (DC) data in the red, near-infrared, and thermal infrared (TIR) spectral bands of Landsat-7 and Landsat-8 imaging sensors are used to construct the TIR-ground cover (GC) pixel data distribution and estimate the effects of stomatal closure. CWU is then estimated by combining results of the spectral crop coefficient approach and the stomatal closer effect. To test this approach, evapotranspiration was measured in 5 agricultural fields in the semi-arid Texas High Plains during the 2013 and 2014 growing seasons and compared to corresponding estimated values of CWU determined using this approach. The results showed that the estimated CWU from this approach was strongly correlated (R2 = 0.79) with observed evapotranspiration. In addition, the results showed that considering the stomatal closer effect in the proposed approach can improve the accuracy of the spectral crop coefficient method. These results suggest that the proposed approach is suitable for operational estimation of evapotranspiration and irrigation scheduling where irrigation is used to replace the daily CWU of a crop.
Liu, Cheng; Zhang, Jun; Chen, Shouyuan; Golovin, Gregory; Banerjee, Sudeep; Zhao, Baozhen; Powers, Nathan; Ghebregziabher, Isaac; Umstadter, Donald
2014-01-01
Fourier-transform-limited light pulses were obtained at the laser-plasma interaction point of a 100-TW peak-power laser in vacuum. The spectral-phase distortion induced by the dispersion mismatching between the stretcher, compressor, and dispersive materials was fully compensated for by means of an adaptive closed-loop. The coherent temporal contrast on the sub-picosecond time scale was two orders of magnitude higher than that without adaptive control. This novel phase control capability enabled the experimental study of the dependence of laser wakefield acceleration on the spectral phase of intense laser light. PMID:24365827
NASA Astrophysics Data System (ADS)
Chassaing, J.-C.; Lucor, D.; Trégon, J.
2012-01-01
An adaptive stochastic spectral projection method is deployed for the uncertainty quantification in limit-cycle oscillations of an elastically mounted two-dimensional lifting surface in a supersonic flow field. Variabilities in the structural parameters are propagated in the aeroelastic system which accounts for nonlinear restoring force and moment by means of hardening cubic springs. The physical nonlinearities promote sharp and sudden flutter onset for small change of the reduced velocity. In a stochastic context, this behavior translates to steep solution gradients developing in the parametric space. A remedy is to expand the stochastic response of the airfoil on a piecewise generalized polynomial chaos basis. Accurate approximation andaffordable computational costs are obtained using sensitivity-based adaptivity for various types of supersonic stochastic responses depending on the selected values of the Mach number on the bifurcation map. Sensitivity analysis via Sobol' indices shows how the probability density function of the peak pitch amplitude responds to combined uncertainties: e.g. the elastic axis location, torsional stiffness and flap angle. We believe that this work demonstrates the capability and flexibility of the approach for more reliable predictions of realistic aeroelastic systems subject to a moderate number of uncertainties.
Fabre, Sophie; Briottet, Xavier; Lesaignoux, Audrey
2015-01-01
analyse the sensitivity of these methods to the sensor spectral resolution and the water vapour content knowledge. The spectral signatures of the database are then used to simulate the signal at the top of atmosphere with a radiative transfer model and to compute the integrated incident signal representing the spectral radiance measurements of the HYMAP airborne hyperspectral instrument. The sensor radiances are then corrected from the atmosphere by an atmospheric compensation tool to retrieve the surface reflectances. The SMC estimation methods are then applied on the retrieve spectral reflectances. The adaptation of the spectral index wavelengths to the HyMap sensor spectral bands and the application of the convex envelope and ISER models to boarder spectral bands lead to an error on the SMC estimation. The best performance is then obtained with the ISER model (RMSE of 2.9% and R2 of 0.96) while the four other methods lead to quite similar RMSE (from 6.4% to 7.8%) and R2 (between 0.79 and 0.83) values. In the atmosphere compensation processing, an error on the water vapour content is introduced. The most robust methods to water vapour content variations are WISOIL, NINSON, NINSOL and ISER model. The convex envelope model and NSMI index require an accurate estimation of the water vapour content in the atmosphere. PMID:25648710
Daniell method for power spectral density estimation in atomic force microscopy
NASA Astrophysics Data System (ADS)
Labuda, Aleksander
2016-03-01
An alternative method for power spectral density (PSD) estimation—the Daniell method—is revisited and compared to the most prevalent method used in the field of atomic force microscopy for quantifying cantilever thermal motion—the Bartlett method. Both methods are shown to underestimate the Q factor of a simple harmonic oscillator (SHO) by a predictable, and therefore correctable, amount in the absence of spurious deterministic noise sources. However, the Bartlett method is much more prone to spectral leakage which can obscure the thermal spectrum in the presence of deterministic noise. By the significant reduction in spectral leakage, the Daniell method leads to a more accurate representation of the true PSD and enables clear identification and rejection of deterministic noise peaks. This benefit is especially valuable for the development of automated PSD fitting algorithms for robust and accurate estimation of SHO parameters from a thermal spectrum.
NASA Astrophysics Data System (ADS)
Warren, Russell E.; Vanderbeek, Richard G.
2004-08-01
Detection and estimation of materials in the atmosphere by lidar has heretofore required that the spectral dependence of the relevant cross section coefficients -- backscatter in the case of aerosols and absorptivity for vapors -- be known in advance. While this typically is a reasonable assumption in the case of vapor, the aerosol backscatter coefficients are complicated functions of particle size, shape, and refractive index, and are therefore usually not well characterized a priori. Using incorrect parameters will give biased concentration estimates and impair discrimination ability. This paper describes an approach for estimating both the spectral dependence of the aerosol backscatter and relative concentration range-dependence of a set of materials using multi-wavelength lidar. The approach is based on state-space filtering that applies a Kalman filter in range for concentration, and updates the backscatter spectral estimates through a sequential least-squares algorithm at each time step. The method is illustrated on aerosol-release data of the bio-simulant ovalbumin collected by ECBC during field tests in 2002, as well as synthetic data sets.
Estimation of cosmological parameters using adaptive importance sampling
Wraith, Darren; Kilbinger, Martin; Benabed, Karim; Prunet, Simon; Cappe, Olivier; Fort, Gersende; Cardoso, Jean-Francois; Robert, Christian P.
2009-07-15
We present a Bayesian sampling algorithm called adaptive importance sampling or population Monte Carlo (PMC), whose computational workload is easily parallelizable and thus has the potential to considerably reduce the wall-clock time required for sampling, along with providing other benefits. To assess the performance of the approach for cosmological problems, we use simulated and actual data consisting of CMB anisotropies, supernovae of type Ia, and weak cosmological lensing, and provide a comparison of results to those obtained using state-of-the-art Markov chain Monte Carlo (MCMC). For both types of data sets, we find comparable parameter estimates for PMC and MCMC, with the advantage of a significantly lower wall-clock time for PMC. In the case of WMAP5 data, for example, the wall-clock time scale reduces from days for MCMC to hours using PMC on a cluster of processors. Other benefits of the PMC approach, along with potential difficulties in using the approach, are analyzed and discussed.
Adaptive neuro-fuzzy estimation of optimal lens system parameters
NASA Astrophysics Data System (ADS)
Petković, Dalibor; Pavlović, Nenad T.; Shamshirband, Shahaboddin; Mat Kiah, Miss Laiha; Badrul Anuar, Nor; Idna Idris, Mohd Yamani
2014-04-01
Due to the popularization of digital technology, the demand for high-quality digital products has become critical. The quantitative assessment of image quality is an important consideration in any type of imaging system. Therefore, developing a design that combines the requirements of good image quality is desirable. Lens system design represents a crucial factor for good image quality. Optimization procedure is the main part of the lens system design methodology. Lens system optimization is a complex non-linear optimization task, often with intricate physical constraints, for which there is no analytical solutions. Therefore lens system design provides ideal problems for intelligent optimization algorithms. There are many tools which can be used to measure optical performance. One very useful tool is the spot diagram. The spot diagram gives an indication of the image of a point object. In this paper, one optimization criterion for lens system, the spot size radius, is considered. This paper presents new lens optimization methods based on adaptive neuro-fuzzy inference strategy (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated.
NASA Technical Reports Server (NTRS)
Garber, Donald P.
1993-01-01
A probability density function for the variability of ensemble averaged spectral estimates from helicopter acoustic signals in Gaussian background noise was evaluated. Numerical methods for calculating the density function and for determining confidence limits were explored. Density functions were predicted for both synthesized and experimental data and compared with observed spectral estimate variability.
[The Study of the Spectral Model for Estimating Pigment Contents of Tobacco Leaves in Field].
Ren, Xiao; Lao, Cai-lian; Xu, Zhao-li; Jin, Yan; Guo, Yan; Li, Jun-hui; Yang, Yu-hong
2015-06-01
Fast and non-destructive measurements of tobacco leaf pigment contents by spectroscopy in situ in the field has great significance in production guidance for nutrient diagnosis and growth monitoring of tobacco in vegetative growth stage, and it is also very important for the quality evaluation of tobacco leaves in mature stage. The purpose of this study is to estimate the chlorophyll and carotenoid contents of tobacco leaves using tobacco leaf spectrum collected in the field. Reflectance spectrum of tobacco leaves in vegetative growth stage and mature stage were collected in situ in the field and the pigment contents of tobacco leaf samples were measured in this study, taking the tobacco leaf samples collected in each and both stages as modeling sets respectively, and using the methods of support vector machine (SVM) and spectral indice to establish the pigment content estimation models, and then compare the prediction performance of the models built by different methods. The study results indicated that the difference of estimation performance by each stage or mixed stages is not significant. For chlorophyll content, SVM and spectral indice modeling methods can both have a well estimation performance, while for carotenoid content, SVM modeling method has a better estimation performance than spectral indice. The coefficient of determination and the root mean square error of SVM model for estimating tobacco leaf chlorophyll content by each stage were 0.867 6 and 0.014 7, while the coefficient of determination and the root mean square error of SVM model for estimating tobacco leaf chlorophyll content by mixed stages were 0.898 6 and 0.012 3; The coefficient of determination and the root mean square error for estimating tobacco leaf carotenoid content by each stage were 0.861 4 and 0.002 5, while the coefficient of determination and the root mean square error of SVM model for estimating tobacco leaf carotenoid content by mixed stages were 0.839 9 and 0.002 5. The
Performance Evaluation of the Spectral Centroid Downshift Method for Attenuation Estimation
Samimi, Kayvan; Varghese, Tomy
2015-01-01
Estimation of frequency-dependent ultrasonic attenuation is an important aspect of tissue characterization. Along with other acoustic parameters studied in quantitative ultrasound, the attenuation coefficient can be used to differentiate normal and pathological tissue. The spectral centroid downshift (CDS) method is one the most common frequency-domain approaches applied to this problem. In this study, a statistical analysis of this method’s performance was carried out based on a parametric model of the signal power spectrum in the presence of electronic noise. The parametric model used for the power spectrum of received RF data assumes a Gaussian spectral profile for the transmit pulse, and incorporates effects of attenuation, windowing, and electronic noise. Spectral moments were calculated and used to estimate second-order centroid statistics. A theoretical expression for the variance of a maximum likelihood estimator of attenuation coefficient was derived in terms of the centroid statistics and other model parameters, such as transmit pulse center frequency and bandwidth, RF data window length, SNR, and number of regression points. Theoretically predicted estimation variances were compared with experimentally estimated variances on RF data sets from both computer-simulated and physical tissue-mimicking phantoms. Scan parameter ranges for this study were electronic SNR from 10 to 70 dB, transmit pulse standard deviation from 0.5 to 4.1 MHz, transmit pulse center frequency from 2 to 8 MHz, and data window length from 3 to 17 mm. Acceptable agreement was observed between theoretical predictions and experimentally estimated values with differences smaller than 0.05 dB/cm/MHz across the parameter ranges investigated. This model helps predict the best attenuation estimation variance achievable with the CDS method, in terms of said scan parameters. PMID:25965681
[A spectral unmixing method of estimating main minerals abundance of lunar soils].
Yan, Bo-Kun; Li, Jian-Zhong; Gan, Fu-Ping; Yang, Su-Ming; Wang, Run-Sheng
2012-12-01
Estimating minerals abundance from reflectance spectra is one of the fundamental goals of remote sensing lunar exploration, and the main difficulties are the complicated mixing law of minerals spectrum and spectral features being sensitive to several kinds of factors such as topography, particle size and roughness etc. A method based on spectral unmixing was put forward and tested in the present paper. Before spectra are unmixed the spectral continuum is removed for clarifying and strengthening spectral features. The absorption features and reflectance features (the upward curving parts of spectra between absorption features) are integrated for unmixing to improve the unmixing performance. The Hapke model was used to correct unmixing error due to nonlinear mixing of minerals spectra. Forty three mixed spectra of olivine, clinopyroxene, hypersthene and plagioclase were used to validate the above method. The four minerals abundance was estimated under the conditions of being unaware of endmember spectra used to mix, granularity and chemical composition of minerals. Residual error, abundance error and correlation coefficient between retrieved and true abundance were 5.0 Vol%, 14.4 Vol% and 0.92 respectively. The method and result of this paper could be referred in the lunar minerals mapping of imaging spectrometer data such as M3. PMID:23427563
Software algorithm and hardware design for real-time implementation of new spectral estimator
2014-01-01
Background Real-time spectral analyzers can be difficult to implement for PC computer-based systems because of the potential for high computational cost, and algorithm complexity. In this work a new spectral estimator (NSE) is developed for real-time analysis, and compared with the discrete Fourier transform (DFT). Method Clinical data in the form of 216 fractionated atrial electrogram sequences were used as inputs. The sample rate for acquisition was 977 Hz, or approximately 1 millisecond between digital samples. Real-time NSE power spectra were generated for 16,384 consecutive data points. The same data sequences were used for spectral calculation using a radix-2 implementation of the DFT. The NSE algorithm was also developed for implementation as a real-time spectral analyzer electronic circuit board. Results The average interval for a single real-time spectral calculation in software was 3.29 μs for NSE versus 504.5 μs for DFT. Thus for real-time spectral analysis, the NSE algorithm is approximately 150× faster than the DFT. Over a 1 millisecond sampling period, the NSE algorithm had the capability to spectrally analyze a maximum of 303 data channels, while the DFT algorithm could only analyze a single channel. Moreover, for the 8 second sequences, the NSE spectral resolution in the 3-12 Hz range was 0.037 Hz while the DFT spectral resolution was only 0.122 Hz. The NSE was also found to be implementable as a standalone spectral analyzer board using approximately 26 integrated circuits at a cost of approximately $500. The software files used for analysis are included as a supplement, please see the Additional files 1 and 2. Conclusions The NSE real-time algorithm has low computational cost and complexity, and is implementable in both software and hardware for 1 millisecond updates of multichannel spectra. The algorithm may be helpful to guide radiofrequency catheter ablation in real time. PMID:24886214
NASA Astrophysics Data System (ADS)
Osman, Abdalla; Nourledin, Aboelamgd; El-Sheimy, Naser; Theriault, Jim; Campbell, Scott
2009-06-01
The problem of target detection and tracking in the ocean environment has attracted considerable attention due to its importance in military and civilian applications. Sonobuoys are one of the capable passive sonar systems used in underwater target detection. Target detection and bearing estimation are mainly obtained through spectral analysis of received signals. The frequency resolution introduced by current techniques is limited which affects the accuracy of target detection and bearing estimation at a relatively low signal-to-noise ratio (SNR). This research investigates the development of a bearing estimation method using fast orthogonal search (FOS) for enhanced spectral estimation. FOS is employed in this research in order to improve both target detection and bearing estimation in the case of low SNR inputs. The proposed methods were tested using simulated data developed for two different scenarios under different underwater environmental conditions. The results show that the proposed method is capable of enhancing the accuracy for target detection as well as bearing estimation especially in cases of a very low SNR.
A spectral-spatial-dynamic hierarchical Bayesian (SSD-HB) model for estimating soybean yield
NASA Astrophysics Data System (ADS)
Kazama, Yoriko; Kujirai, Toshihiro
2014-10-01
A method called a "spectral-spatial-dynamic hierarchical-Bayesian (SSD-HB) model," which can deal with many parameters (such as spectral and weather information all together) by reducing the occurrence of multicollinearity, is proposed. Experiments conducted on soybean yields in Brazil fields with a RapidEye satellite image indicate that the proposed SSD-HB model can predict soybean yield with a higher degree of accuracy than other estimation methods commonly used in remote-sensing applications. In the case of the SSD-HB model, the mean absolute error between estimated yield of the target area and actual yield is 0.28 t/ha, compared to 0.34 t/ha when conventional PLS regression was applied, showing the potential effectiveness of the proposed model.
NASA Astrophysics Data System (ADS)
Rao, Roshan
2016-04-01
Aerosol radiative forcing estimates with high certainty are required in climate change studies. The approach in estimating the aerosol radiative forcing by using the chemical composition of aerosols is not effective as the chemical composition data with radiative properties are not widely available. We look into the approach where ground based spectral radiation flux measurement is made and along with an Radtiative transfer (RT) model, radiative forcing is estimated. Measurements of spectral flux were made using an ASD spectroradiometer with 350 - 1050 nm wavelength range and a 3nm resolution during around 54 clear-sky days during which AOD range was around 0.01 to 0.7. Simultaneous measurements of black carbon were also made using Aethalometer (Magee Scientific) which ranged from around 1.5 ug/m3 to 8 ug/m3. The primary study involved in understanding the sensitivity of spectral flux due to change in individual aerosol species (Optical properties of Aerosols and Clouds (OPAC) classified aerosol species) using the SBDART RT model. This made us clearly distinguish the influence of different aerosol species on the spectral flux. Following this, a new technique has been introduced to estimate an optically equivalent mixture of aerosol species for the given location. The new method involves matching different combinations of aerosol species in OPAC model and RT model as long as the combination which gives the minimum root mean squared deviation from measured spectral flux is obtained. Using the optically equivalent aerosol mixture and RT model, aerosol radiative forcing is estimated. Also an alternate method to estimate the spectral SSA is discussed. Here, the RT model, the observed spectral flux and spectral AOD is used. Spectral AOD is input to RT model and SSA is varied till the minimum root mean squared difference between observed and simulated spectral flux from RT model is obtained. The methods discussed are limited to clear sky scenes and its accuracy to derive
Spectral estimation of received phase in the presence of amplitude scintillation
NASA Technical Reports Server (NTRS)
Vilnrotter, V. A.; Brown, D. H.; Hurd, W. J.
1988-01-01
A technique is demonstrated for obtaining the spectral parameters of the received carrier phase in the presence of carrier amplitude scintillation, by means of a digital phased locked loop. Since the random amplitude fluctuations generate time-varying loop characteristics, straightforward processing of the phase detector output does not provide accurate results. The method developed here performs a time-varying inverse filtering operation on the corrupted observables, thus recovering the original phase process and enabling accurate estimation of its underlying parameters.
Li, Ying; Wang, Hong; Li, Xiao Bing
2015-01-01
Vegetation is an important part of ecosystem and estimation of fractional vegetation cover is of significant meaning to monitoring of vegetation growth in a certain region. With Landsat TM images and HJ-1B images as data source, an improved selective endmember linear spectral mixture model (SELSMM) was put forward in this research to estimate the fractional vegetation cover in Huangfuchuan watershed in China. We compared the result with the vegetation coverage estimated with linear spectral mixture model (LSMM) and conducted accuracy test on the two results with field survey data to study the effectiveness of different models in estimation of vegetation coverage. Results indicated that: (1) the RMSE of the estimation result of SELSMM based on TM images is the lowest, which is 0.044. The RMSEs of the estimation results of LSMM based on TM images, SELSMM based on HJ-1B images and LSMM based on HJ-1B images are respectively 0.052, 0.077 and 0.082, which are all higher than that of SELSMM based on TM images; (2) the R2 of SELSMM based on TM images, LSMM based on TM images, SELSMM based on HJ-1B images and LSMM based on HJ-1B images are respectively 0.668, 0.531, 0.342 and 0.336. Among these models, SELSMM based on TM images has the highest estimation accuracy and also the highest correlation with measured vegetation coverage. Of the two methods tested, SELSMM is superior to LSMM in estimation of vegetation coverage and it is also better at unmixing mixed pixels of TM images than pixels of HJ-1B images. So, the SELSMM based on TM images is comparatively accurate and reliable in the research of regional fractional vegetation cover estimation. PMID:25905772
Proper orthogonal decomposition-based spectral higher-order stochastic estimation
NASA Astrophysics Data System (ADS)
Baars, Woutijn J.; Tinney, Charles E.
2014-05-01
A unique routine, capable of identifying both linear and higher-order coherence in multiple-input/output systems, is presented. The technique combines two well-established methods: Proper Orthogonal Decomposition (POD) and Higher-Order Spectra Analysis. The latter of these is based on known methods for characterizing nonlinear systems by way of Volterra series. In that, both linear and higher-order kernels are formed to quantify the spectral (nonlinear) transfer of energy between the system's input and output. This reduces essentially to spectral Linear Stochastic Estimation when only first-order terms are considered, and is therefore presented in the context of stochastic estimation as spectral Higher-Order Stochastic Estimation (HOSE). The trade-off to seeking higher-order transfer kernels is that the increased complexity restricts the analysis to single-input/output systems. Low-dimensional (POD-based) analysis techniques are inserted to alleviate this void as POD coefficients represent the dynamics of the spatial structures (modes) of a multi-degree-of-freedom system. The mathematical framework behind this POD-based HOSE method is first described. The method is then tested in the context of jet aeroacoustics by modeling acoustically efficient large-scale instabilities as combinations of wave packets. The growth, saturation, and decay of these spatially convecting wave packets are shown to couple both linearly and nonlinearly in the near-field to produce waveforms that propagate acoustically to the far-field for different frequency combinations.
Proper orthogonal decomposition-based spectral higher-order stochastic estimation
Baars, Woutijn J.; Tinney, Charles E.
2014-05-15
A unique routine, capable of identifying both linear and higher-order coherence in multiple-input/output systems, is presented. The technique combines two well-established methods: Proper Orthogonal Decomposition (POD) and Higher-Order Spectra Analysis. The latter of these is based on known methods for characterizing nonlinear systems by way of Volterra series. In that, both linear and higher-order kernels are formed to quantify the spectral (nonlinear) transfer of energy between the system's input and output. This reduces essentially to spectral Linear Stochastic Estimation when only first-order terms are considered, and is therefore presented in the context of stochastic estimation as spectral Higher-Order Stochastic Estimation (HOSE). The trade-off to seeking higher-order transfer kernels is that the increased complexity restricts the analysis to single-input/output systems. Low-dimensional (POD-based) analysis techniques are inserted to alleviate this void as POD coefficients represent the dynamics of the spatial structures (modes) of a multi-degree-of-freedom system. The mathematical framework behind this POD-based HOSE method is first described. The method is then tested in the context of jet aeroacoustics by modeling acoustically efficient large-scale instabilities as combinations of wave packets. The growth, saturation, and decay of these spatially convecting wave packets are shown to couple both linearly and nonlinearly in the near-field to produce waveforms that propagate acoustically to the far-field for different frequency combinations.
NASA Astrophysics Data System (ADS)
Liu, Xinyu; Chen, Si; Luo, Yuemei; Bo, En; Wang, Nanshuo; Yu, Xiaojun; Liu, Linbo
2016-02-01
The evaluation of the endothelium coverage on the vessel wall is most wanted by cardiologists. Arterial endothelial cells play a crucial role in keeping low-density lipoprotein and leukocytes from entering into the intima. The damage of endothelial cells is considered as the first step of atherosclerosis development and the presence of endothelial cells is an indicator of arterial healing after stent implantation. Intravascular OCT (IVOCT) is the highest-resolution coronary imaging modality, but it is still limited by an axial resolution of 10-15 µm. This limitation in axial resolution hinders our ability to visualize cellular level details associated with coronary atherosclerosis. Spectral estimation optical coherence tomography (SE-OCT) uses modern spectral estimation techniques and may help reveal the microstructures underlying the resolution limit. In this presentation, we conduct an ex vivo study using SE-OCT to image the endothelium cells on the fresh swine aorta. We find that in OCT images with an axial resolution of 10 µm, we may gain the visibility of individual endothelium cells by applying the autoregressive spectral estimation techniques to enhance the axial resolution. We believe the SE-OCT can provide a potential to evaluate the coverage of endothelium cells using current IVOCT with a 10-µm axial resolution.
Li, Zenghui; Xu, Bin; Yang, Jian; Song, Jianshe
2015-01-01
This paper focuses on suppressing spectral overlap for sub-band spectral estimation, with which we can greatly decrease the computational complexity of existing spectral estimation algorithms, such as nonlinear least squares spectral analysis and non-quadratic regularized sparse representation. Firstly, our study shows that the nominal ability of the high-order analysis filter to suppress spectral overlap is greatly weakened when filtering a finite-length sequence, because many meaningless zeros are used as samples in convolution operations. Next, an extrapolation-based filtering strategy is proposed to produce a series of estimates as the substitutions of the zeros and to recover the suppression ability. Meanwhile, a steady-state Kalman predictor is applied to perform a linearly-optimal extrapolation. Finally, several typical methods for spectral analysis are applied to demonstrate the effectiveness of the proposed strategy. PMID:25609038
Li, Zenghui; Xu, Bin; Yang, Jian; Song, Jianshe
2015-01-01
This paper focuses on suppressing spectral overlap for sub-band spectral estimation, with which we can greatly decrease the computational complexity of existing spectral estimation algorithms, such as nonlinear least squares spectral analysis and non-quadratic regularized sparse representation. Firstly, our study shows that the nominal ability of the high-order analysis filter to suppress spectral overlap is greatly weakened when filtering a finite-length sequence, because many meaningless zeros are used as samples in convolution operations. Next, an extrapolation-based filtering strategy is proposed to produce a series of estimates as the substitutions of the zeros and to recover the suppression ability. Meanwhile, a steady-state Kalman predictor is applied to perform a linearly-optimal extrapolation. Finally, several typical methods for spectral analysis are applied to demonstrate the effectiveness of the proposed strategy. PMID:25609038
Spectral estimation from laser scanner data for accurate color rendering of objects
NASA Astrophysics Data System (ADS)
Baribeau, Rejean
2002-06-01
Estimation methods are studied for the recovery of the spectral reflectance across the visible range from the sensing at just three discrete laser wavelengths. Methods based on principal component analysis and on spline interpolation are judged based on the CIE94 color differences for some reference data sets. These include the Macbeth color checker, the OSA-UCS color charts, some artist pigments, and a collection of miscellaneous surface colors. The optimal three sampling wavelengths are also investigated. It is found that color can be estimated with average accuracy ΔE94 = 2.3 when optimal wavelengths 455 nm, 540 n, and 610 nm are used.
The use of spectral data in wheat yield estimation - An assessment of techniques explored in LACIE
NASA Technical Reports Server (NTRS)
Stuff, R. G.; Barnett, T. L.
1979-01-01
The object of the paper is to assess the results of the Large Area Crop Inventory Experiment (LACIE) and closely related research on yield estimation techniques based on remote sensing variables. The exploratory research conducted during LACIE substantiated the hypothesis of yield related information contained in Landsat multispectral scanner data and indicated some of its empirical characteristics. It is noted that leaf area and possibly other foliage features can be derived from spectral data for yield estimation through agrometeorological models and that multiple vegetative and grain related features may be discernable by Landsat derived wheat spectra at different points in the crop development.
NASA Technical Reports Server (NTRS)
Vukovich, Fred M.; Toll, David L.; Kennard, Ruth L.
1989-01-01
Surface biophysical estimates were derived from analysis of NOAA Advanced Very High Spectral Resolution (AVHRR) spectral data of the Senegalese area of west Africa. The parameters derived were of solar albedo, spectral visible and near-infrared band reflectance, spectral vegetative index, and ground temperature. Wet and dry linked AVHRR scenes from 1981 through 1985 in Senegal were analyzed for a semi-wet southerly site near Tambacounda and a predominantly dry northerly site near Podor. Related problems were studied to convert satellite derived radiance to biophysical estimates of the land surface. Problems studied were associated with sensor miscalibration, atmospheric and aerosol spatial variability, surface anisotropy of reflected radiation, narrow satellite band reflectance to broad solar band conversion, and ground emissivity correction. The middle-infrared reflectance was approximated with a visible AVHRR reflectance for improving solar albedo estimates. In addition, the spectral composition of solar irradiance (direct and diffuse radiation) between major spectral regions (i.e., ultraviolet, visible, near-infrared, and middle-infrared) was found to be insensitive to changes in the clear sky atmospheric optical depth in the narrow band to solar band conversion procedure. Solar albedo derived estimates for both sites were not found to change markedly with significant antecedent precipitation events or correspondingly from increases in green leaf vegetation density. The bright soil/substrate contributed to a high albedo for the dry related scenes, whereas the high internal leaf reflectance in green vegetation canopies in the near-infrared contributed to high solar albedo for the wet related scenes. The relationship between solar albedo and ground temperature was poor, indicating the solar albedo has little control of the ground temperature. The normalized difference vegetation index (NDVI) and the derived visible reflectance were more sensitive to antecedent
[Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].
Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han
2014-11-01
Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring. PMID:25752061
White dwarf mass estimation with a new comprehensive X-ray spectral model of intermediate polars
NASA Astrophysics Data System (ADS)
Hayashi, Takayuki; Ishida, Manabu
A white dwarf (WD) mass is important astrophysical quantity because the WD explodes as a type Ia supernova when its mass reaches the Chandrasekhar mass limit of 1.4 solar mass. Many WD masses in intermediate polars (IPs) were measured with their X-ray spectra emitted from plasma flows channeled by strong magnetic fields of the WDs. For the WD mass estimation, multi-temperature X-ray spectral models have been used which made by summing up X-ray spectra emitted from the top to the bottom of the plasma flow. However, in previous studies, distributions of physical quantities such as temperature and density etc., which are base of the X-ray spectral model, were calculated with assumptions of accretion rate per unit area (call "specific accretion rate") a = 1 g cm(-2) s(-1) and cylindrical geometry for the plasma flows. In fact, a part of the WD masses estimated with the X-ray spectral model is not consistent with that dynamically measured. Therefore, we calculated the physical quantity distributions with the dipolar geometry and the wide range of the specific accretion rate a = 0.0001 - 100 g cm(-2) s(-1) . The calculations showed that the geometrical difference changes the physical quantity distributions and the lower specific accretion rate leads softer X-ray spectrum under a critical specific accretion rate. These results clearly indicate that the previous assumptions are not good approximation for low accretion IPs. We made a new spectral model of the plasma flow with our physical quantity distributions and applied that to Suzaku observations of high and low accretion rate IPs V1223 Sagittarii and EX Hydrae. As a results, our WD masses are almost consistent with the those dynamically measured. We will present the summary of our theoretical calculation and X-ray spectral model, and application to the {¥it Suzaku} observations.
NASA Astrophysics Data System (ADS)
Behrangi, Ali
In respond to the community demands, combining microwave (MW) and infrared (IR) estimates of precipitation has been an active area of research since past two decades. The anticipated launching of NASA's Global Precipitation Measurement (GPM) mission and the increasing number of spectral bands in recently launched geostationary platforms will provide greater opportunities for investigating new approaches to combine multi-source information towards improved global high resolution precipitation retrievals. After years of the communities' efforts the limitations of the existing techniques are: (1) Drawbacks of IR-only techniques to capture warm rainfall and screen out no-rain thin cirrus clouds; (2) Grid-box- only dependency of many algorithms with not much effort to capture the cloud textures whether in local or cloud patch scale; (3) Assumption of indirect relationship between rain rate and cloud-top temperature that force high intensity precipitation to any cold cloud; (4) Neglecting the dynamics and evolution of cloud in time; (5) Inconsistent combination of MW and IR-based precipitation estimations due to the combination strategies and as a result of above described shortcomings. This PhD dissertation attempts to improve the combination of data from Geostationary Earth Orbit (GEO) and Low-Earth Orbit (LEO) satellites in manners that will allow consistent high resolution integration of the more accurate precipitation estimates, directly observed through LEO's PMW sensors, into the short-term cloud evolution process, which can be inferred from GEO images. A set of novel approaches are introduced to cope with the listed limitations and is consist of the following four consecutive components: (1) starting with the GEO part and by using an artificial-neural network based method it is demonstrated that inclusion of multi-spectral data can ameliorate existing problems associated with IR-only precipitating retrievals; (2) through development of Precipitation Estimation
Seevers, P.M.; Sadowski, F.C.; Lauer, D.T.
1990-01-01
Retrospective satellite image data were evaluated for their ability to demonstrate the influence of center-pivot irrigation development in western Nebraska on spectral change and climate-related factors for the region. Periodic images of an albedo index and a normalized difference vegetation index (NDVI) were generated from calibrated Landsat multispectral scanner (MSS) data and used to monitor spectral changes associated with irrigation development from 1972 through 1986. The albedo index was not useful for monitoring irrigation development. For the NDVI, it was found that proportions of counties in irrigated agriculture, as discriminated by a threshold, were more highly correlated with reported ground estimates of irrigated agriculture than were county mean greenness values. A similar result was achieved when using coarse resolution Advanced Very High Resolution Radiometer (AVHRR) image data for estimating irrigated agriculture. The NDVI images were used to evaluate a procedure for making areal estimates of actual evapotranspiration (ET) volumes. Estimates of ET volumes for test counties, using reported ground acreages and corresponding standard crop coefficients, were correlated with the estimates of ET volume using crop coefficients scaled to NDVI values and pixel counts of crop areas. These county estimates were made under the assumption that soil water availability was unlimited. For nonirrigated vegetation, this may result in over-estimation of ET volumes. Ground information regarding crop types and acreages are required to derive the NDVI scaling factor. Potential ET, estimated with the Jensen-Haise model, is common to both methods. These results, achieved with both MSS and AVHRR data, show promise for providing climatologically important land surface information for regional and global climate models. ?? 1990 Kluwer Academic Publishers.
NASA Astrophysics Data System (ADS)
Liu, Xinyu; Yu, Xiaojun; Wang, Nanshuo; Bo, En; Luo, Yuemei; Chen, Si; Cui, Dongyao; Liu, Linbo
2016-03-01
The sample depth reflectivity profile of Fourier domain optical coherence tomography (FD-OCT) is estimated from the inverse Fourier transform of the spectral interference signals (interferograms). As a result, the axial resolution is fundamentally limited by the coherence length of the light source. We demonstrate an axial resolution improvement method by using the autoregressive spectral estimation technique to instead of the inverse Fourier transform to analyze the spectral interferograms, which is named as spectral estimation OCT (SE-OCT). SE-OCT improves the axial resolution by a factor of up to 4.7 compared with the corresponding FD-OCT. Furthermore, SE-OCT provides a complete sidelobe suppression in the point-spread function. Using phantoms such as an air wedge and micro particles, we prove the ability of resolution improvement. To test SE-OCT for real biological tissue, we image the rat cornea and demonstrate that SE-OCT enables clear identification of corneal endothelium anatomical details ex vivo. We also find that the performance of SE-OCT is depended on SNR of the feature object. To evaluate the potential usage and define the application scope of SE-OCT, we further investigate the property of SNR dependence and the artifacts that may be caused. We find SE-OCT may be uniquely suited for viewing high SNR layer structures, such as the epithelium and endothelium in cornea, retina and aorta. Given that SE-OCT can be implemented in the FD-OCT devices easily, the new capabilities provided by SE-OCT are likely to offer immediate improvements to the diagnosis and management of diseases based on OCT imaging.
Adaptive phase estimation and its application in EEG analysis of word processing.
Schack, B; Rappelsberger, P; Weiss, S; Möller, E
1999-10-30
Oscillations are a general phenomenon of neuronal activity during information processing. Mostly, widespread networks are involved in brain functioning. In order to investigate network activity coherence analysis turned out to be a useful tool for examining the functional relationship between different cortical areas. This parameter allows the investigation of synchronisation phenomena with regard to defined frequencies or frequency bands. Coherence and cross phase are closely connected spectral parameters. Coherence may be understood as a measure of phase stability. Whereas coherence describes the amount of information transfer, the corresponding phase, from which time delays can be computed, hints at the direction of information transfer. Mental processes can be very brief and coupling between different areas may be highly dynamic. For this reason a two-dimensional approach of adaptive filtering was developed to estimate coherence and phase continuously in time. Statistical and dynamic properties of instantaneous phase are discussed. In order to demonstrate the value of this method for studying higher cognitive processes the method was applied to EEG recorded during word processing. During visual presentation of abstract nouns an information transfer from visual areas to frontal association areas in the Alpha1 frequency band could be verified within the first 400 ms. The Alpha1 band predominately seems to reflect sensory processing and attentional processes. In addition to conventional coherence analyses during word processing phase estimations may yield valuable new insights into the physiological mechanisms during word processing. PMID:10598864
Moisture estimation in power transformer oil using acoustic signals and spectral kurtosis
NASA Astrophysics Data System (ADS)
Leite, Valéria C. M. N.; Veloso, Giscard F. C.; Borges da Silva, Luiz Eduardo; Lambert-Torres, Germano; Borges da Silva, Jonas G.; Onofre Pereira Pinto, João
2016-03-01
The aim of this paper is to present a new technique for estimating the contamination by moisture in power transformer insulating oil based on the spectral kurtosis analysis of the acoustic signals of partial discharges (PDs). Basically, in this approach, the spectral kurtosis of the PD acoustic signal is calculated and the correlation between its maximum value and the moisture percentage is explored to find a function that calculates the moisture percentage. The function can be easily implemented in DSP, FPGA, or any other type of embedded system for online moisture monitoring. To evaluate the proposed approach, an experiment is assembled with a piezoelectric sensor attached to a tank, which is filled with insulating oil samples contaminated by different levels of moisture. A device generating electrical discharges is submerged into the oil to simulate the occurrence of PDs. Detected acoustic signals are processed using fast kurtogram algorithm to extract spectral kurtosis values. The obtained data are used to find the fitting function that relates the water contamination to the maximum value of the spectral kurtosis. Experimental results show that the proposed method is suitable for online monitoring system of power transformers.
NASA Astrophysics Data System (ADS)
Jina, A.; Hsiang, S. M.; Kopp, R. E., III; Rasmussen, D.; Rising, J.
2014-12-01
The American Climate Prospectus (ACP), the technical analysis underlying the Risky Business project, quantitatively assessed the climate risks posed to the United States' economy in a number of economic sectors [1]. The main analysis presents projections of climate impacts with an assumption of "no adaptation". Yet, historically, when the climate imposed an economic cost upon society, adaptive responses were taken to minimise these costs. These adaptive behaviours, both autonomous and planned, can be expected to occur as climate impacts increase in the future. To understand the extent to which adaptation might decrease some of the worst impacts of climate change, we empirically estimate adaptive responses. We do this in three sectors considered in the analysis - crop yield, crime, and mortality - and estimate adaptive capacity in two steps. First, looking at changes in climate impacts through time, we identify a historical rate of adaptation. Second, spatial differences in climate impacts are then used to stratify regions into more adapted or less adapted based on climate averages. As these averages change across counties in the US, we allow each to become more adapted at the rate identified in step one. We are then able to estimate the residual damages, assuming that only the historical adaptive behaviours have taken place (fig 1). Importantly, we are unable to estimate any costs associated with these adaptations, nor are we able to estimate more novel (for example, new technological discoveries) or more disruptive (for example, migration) adaptive behaviours. However, an important insight is that historical adaptive behaviours may not be capable of reducing the worst impacts of climate change. The persistence of impacts in even the most exposed areas indicates that there are non-trivial costs associated with adaptation that will need to be met from other sources or through novel behavioural changes. References: [1] T. Houser et al. (2014), American Climate
Modeling Speed-Accuracy Tradeoff in Adaptive System for Practicing Estimation
ERIC Educational Resources Information Center
Nižnan, Juraj
2015-01-01
Estimation is useful in situations where an exact answer is not as important as a quick answer that is good enough. A web-based adaptive system for practicing estimates is currently being developed. We propose a simple model for estimating student's latent skill of estimation. This model combines a continuous measure of correctness and response…
Eldred, Michael Scott; Subia, Samuel Ramirez; Neckels, David; Hopkins, Matthew Morgan; Notz, Patrick K.; Adams, Brian M.; Carnes, Brian; Wittwer, Jonathan W.; Bichon, Barron J.; Copps, Kevin D.
2006-10-01
This report documents the results for an FY06 ASC Algorithms Level 2 milestone combining error estimation and adaptivity, uncertainty quantification, and probabilistic design capabilities applied to the analysis and design of bistable MEMS. Through the use of error estimation and adaptive mesh refinement, solution verification can be performed in an automated and parameter-adaptive manner. The resulting uncertainty analysis and probabilistic design studies are shown to be more accurate, efficient, reliable, and convenient.
Rha, Jungtae; Dubis, Adam M.; Wagner-Schuman, Melissa; Tait, Diane M.; Godara, Pooja; Schroeder, Brett; Stepien, Kimberly
2012-01-01
Recent years have seen the emergence of advances in imaging technology that enable in vivo evaluation of the living retina. Two of the more promising techniques, spectral domain optical coherence tomography (SD-OCT) and adaptive optics (AO) fundus imaging provide complementary views of the retinal tissue. SD-OCT devices have high axial resolution, allowing assessment of retinal lamination, while the high lateral resolution of AO allows visualization of individual cells. The potential exists to use one modality to interpret results from the other. As a proof of concept, we examined the retina of a 32 year-old male, previously diagnosed with a red-green color vision defect. Previous AO imaging revealed numerous gaps throughout his cone mosaic, indicating that the structure of a subset of cones had been compromised. Whether the affected cells had completely degenerated or were simply morphologically deviant was not clear. Here an AO fundus camera was used to re-examine the retina (~6 years after initial exam) and SD-OCT to examine retinal lamination. The static nature of the cone mosaic disruption combined with the normal lamination on SD-OCT suggests that the affected cones are likely still present. PMID:20238030
NASA Technical Reports Server (NTRS)
Kim, Moon S.; Daughtry, C. S. T.; Chappelle, E. W.; Mcmurtrey, J. E.; Walthall, C. L.
1994-01-01
Most remote sensing estimations of vegetation variables such as Leaf Area Index (LAI), Absorbed Photosynthetically Active Radiation (APAR), and phytomass are made using broad band sensors with a bandwidth of approximately 100 nm. However, high resolution spectrometers are available and have not been fully exploited for the purpose of improving estimates of vegetation variables. A study directed to investigate the use of high spectral resolution spectroscopy for remote sensing estimates of APAR in vegetation canopies in the presence of nonphotosynthetic background materials such as soil and leaf litter is presented. A high spectral resolution method defined as the Chlorophyll Absorption Ratio Index (CARI) was developed for minimizing the effects of nonphotosynthetic materials in the remote estimates of APAR. CARI utilizes three bands at 550, 670, and 700 nm with bandwidth of 10 nm. Simulated canopy reflectance of a range of LAI were generated with the SAIL model using measurements of 42 different soil types as canopy background. CARI obtained from the simulated canopy reflectance was compared with the broad band vegetation indices (Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Simple Ratio (SR)). CARI reduced the effect of nonphotosynthetic background materials in the assessment of vegetation canopy APAR more effectively than broad band vegetation indices.
Practical energy response estimation of photon counting detectors for spectral X-ray imaging
NASA Astrophysics Data System (ADS)
Kang, Dong-Goo; Lee, Jongha; Sung, Younghun; Lee, SeongDeok
2010-04-01
Spectral X-ray imaging is a promising technique to drastically improve the diagnostic quality of radiography and computed tomography (CT), since it enables material decomposition and/or identification based on the energy dependency of material-specific X-ray attenuation. Unlike the charge-integration based X-ray detectors, photon counting X-ray detectors (PCXDs) can discriminate the energies of incident X-ray photons and thereby multi-energy images can be obtained in single exposure. However, the measured data are not accurate since the spectra of incident X-rays are distorted according to the energy response function (ERF) of a PCXD. Thus ERF should be properly estimated in advance for accurate spectral imaging. This paper presents a simple method for ERF estimation based on a polychromatic X-ray source that is widely used for medical imaging. The method consists of three steps: source spectra measurement, detector spectra reconstruction, and ERF inverse estimation. Real spectra of an X-ray tube are first measured at all kVs by using an X-ray spectrometer. The corresponding detector spectra are obtained by threshold scans. The ERF is then estimated by solving the inverse problem. Simulations are conducted to demonstrate the concept of the proposed method.
NASA Technical Reports Server (NTRS)
Howell, L. W.
2001-01-01
A simple power law model consisting of a single spectral index (alpha-1) is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at knee energy (E(sub k)) to a steeper spectral index alpha-2 > alpha-1 above E(sub k). The maximum likelihood procedure is developed for estimating these three spectral parameters of the broken power law energy spectrum from simulated detector responses. These estimates and their surrounding statistical uncertainty are being used to derive the requirements in energy resolution, calorimeter size, and energy response of a proposed sampling calorimeter for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). This study thereby permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.
NASA Astrophysics Data System (ADS)
Antunes, Jose; Borsoi, Laurent; Delaune, Xavier; Piteau, Philippe
2016-02-01
In this paper, we propose analytical and numerical straightforward approximate methods to estimate the unknown terms of incomplete spectral or correlation matrices, when the cross-spectra or cross-correlations available from multiple measurements do not cover all pairs of transducer locations. The proposed techniques may be applied whenever the available data includes the auto-spectra at all measurement locations, as well as selected cross-spectra which implicates all measurement locations. The suggested methods can also be used for checking the consistency between the spectral or correlation functions pertaining to measurement matrices, in cases of suspicious data. After presenting the proposed spectral estimation formulations, we discuss their merits and limitations. Then we illustrate their use on a realistic simulation of a multi-supported tube subjected to turbulence excitation from cross-flow. Finally, we show the effectiveness of the proposed techniques by extracting the modal responses of the simulated flow-excited tube, using the SOBI (Second Order Blind Identification) method, from an incomplete response matrix 1
NASA Technical Reports Server (NTRS)
Howell, L. W.; Rose, M. Franklin (Technical Monitor)
2000-01-01
A simple power law model consisting of a single spectral index alpha (sub 1), is believed to be an adequate description of the galactic cosmic ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at knee energy E(sub k) to a steeper spectral index alpha(sub 2) greater than alpha(sub 1) above E(sub k). The maximum likelihood procedure is developed for estimating these three spectral parameters of the broken power law energy spectrum from simulated detector responses. These estimates and their surrounding statistical uncertainty are being used to derive the requirements in energy resolution, calorimeter size, and energy response of a proposed sampling calorimeter for the Advanced Cosmic ray Composition Experiment for the Space Station (ACCESS). This study thereby permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.
Heasler, Patrick; Posse, Christian; Hylden, Jeff; Anderson, Kevin
2007-01-01
This paper presents a nonlinear Bayesian regression algorithm for detecting and estimating gas plume content from hyper-spectral data. Remote sensing data, by its very nature, is collected under less controlled conditions than laboratory data. As a result, the physics-based model that is used to describe the relationship between the observed remote-sensing spectra, and the terrestrial (or atmospheric) parameters that are estimated is typically littered with many unknown “nuisance” parameters. Bayesian methods are well-suited for this context as they automatically incorporate the uncertainties associated with all nuisance parameters into the error estimates of the parameters of interest. The nonlinear Bayesian regression methodology is illustrated on simulated data from a three-layer model for longwave infrared (LWIR) measurements from a passive instrument. The generated LWIR scenes contain plumes of varying intensities, and this allows estimation uncertainty and probability of detection to be quantified. The results show that this approach should permit more accurate estimation as well as a more reasonable description of estimate uncertainty. Specifically, the methodology produces a standard error that is more realistic than that produced by matched filter estimation.
Rainfall Estimation over the Nile Basin using an Adapted Version of the SCaMPR Algorithm
NASA Astrophysics Data System (ADS)
Habib, E. H.; Kuligowski, R. J.; Elshamy, M. E.; Ali, M. A.; Haile, A.; Amin, D.; Eldin, A.
2011-12-01
Management of Egypt's Aswan High Dam is critical not only for flood control on the Nile but also for ensuring adequate water supplies for most of Egypt since rainfall is scarce over the vast majority of its land area. However, reservoir inflow is driven by rainfall over Sudan, Ethiopia, Uganda, and several other countries from which routine rain gauge data are sparse. Satellite-derived estimates of rainfall offer a much more detailed and timely set of data to form a basis for decisions on the operation of the dam. A single-channel infrared algorithm is currently in operational use at the Egyptian Nile Forecast Center (NFC). This study reports on the adaptation of a multi-spectral, multi-instrument satellite rainfall estimation algorithm (Self-Calibrating Multivariate Precipitation Retrieval, SCaMPR) for operational application over the Nile Basin. The algorithm uses a set of rainfall predictors from multi-spectral Infrared cloud top observations and self-calibrates them to a set of predictands from Microwave (MW) rain rate estimates. For application over the Nile Basin, the SCaMPR algorithm uses multiple satellite IR channels recently available to NFC from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). Microwave rain rates are acquired from multiple sources such as SSM/I, SSMIS, AMSU, AMSR-E, and TMI. The algorithm has two main steps: rain/no-rain separation using discriminant analysis, and rain rate estimation using stepwise linear regression. We test two modes of algorithm calibration: real-time calibration with continuous updates of coefficients with newly coming MW rain rates, and calibration using static coefficients that are derived from IR-MW data from past observations. We also compare the SCaMPR algorithm to other global-scale satellite rainfall algorithms (e.g., 'Tropical Rainfall Measuring Mission (TRMM) and other sources' (TRMM-3B42) product, and the National Oceanographic and Atmospheric Administration Climate Prediction Center (NOAA
NASA Technical Reports Server (NTRS)
Hardisky, M.; Klemas, V.
1984-01-01
Spectral radiance data were collected from the ground and from a low altitude aircraft in an attempt to gain some insight into the potential utility of actual Thematic Mapper data for biomass estimation in wetland plant communities. No attempt was made to distinguish individual plant species within brackish marsh plant associations. Rather, it was decided to lump plant species with similar canopy morphologies and then estimate from spectral radiance data the biomass of the group. The rationale for such an approach is that plants with a similar morphology will produce a similar reflecting or absorping surface (i.e., canopy) for incoming electromagnetic radiation. Variations in observed reflectance from different plant communities with a similar canopy morphology are more likely to be a result of biomass differences than a result of differences in canopy architecture. If the hypothesis that plants with a similar morphology exhibit similar reflectance characteristics is true, then biomass can be estimated based on a model for the dominant plant morphology within a plant association and the need for species discrimination has effectively been eliminated.
Heasler, Patrick G.; Posse, Christian; Hylden, Jeff L.; Anderson, Kevin K.
2007-06-13
This paper presents a nonlinear Bayesian regression algorithm for the purpose of detecting and estimating gas plume content from hyper-spectral data. Remote sensing data, by its very nature, is collected under less controlled conditions than laboratory data. As a result, the physics-based model that is used to describe the relationship between the observed remotesensing spectra, and the terrestrial (or atmospheric) parameters that we desire to estimate, is typically littered with many unknown "nuisance" parameters (parameters that we are not interested in estimating, but also appear in the model). Bayesian methods are well-suited for this context as they automatically incorporate the uncertainties associated with all nuisance parameters into the error estimates of the parameters of interest. The nonlinear Bayesian regression methodology is illustrated on realistic simulated data from a three-layer model for longwave infrared (LWIR) measurements from a passive instrument. This shows that this approach should permit more accurate estimation as well as a more reasonable description of estimate uncertainty.
Adaptive estimation of hand movement trajectory in an EEG based brain-computer interface system
NASA Astrophysics Data System (ADS)
Robinson, Neethu; Guan, Cuntai; Vinod, A. P.
2015-12-01
Objective. The various parameters that define a hand movement such as its trajectory, speed, etc, are encoded in distinct brain activities. Decoding this information from neurophysiological recordings is a less explored area of brain-computer interface (BCI) research. Applying non-invasive recordings such as electroencephalography (EEG) for decoding makes the problem more challenging, as the encoding is assumed to be deep within the brain and not easily accessible by scalp recordings. Approach. EEG based BCI systems can be developed to identify the neural features underlying movement parameters that can be further utilized to provide a detailed and well defined control command set to a BCI output device. A real-time continuous control is better suited for practical BCI systems, and can be achieved by continuous adaptive reconstruction of movement trajectory than discrete brain activity classifications. In this work, we adaptively reconstruct/estimate the parameters of two-dimensional hand movement trajectory, namely movement speed and position, from multi-channel EEG recordings. The data for analysis is collected by performing an experiment that involved center-out right-hand movement tasks in four different directions at two different speeds in random order. We estimate movement trajectory using a Kalman filter that models the relation between brain activity and recorded parameters based on a set of defined predictors. We propose a method to define these predictor variables that includes spatial, spectral and temporally localized neural information and to select optimally informative variables. Main results. The proposed method yielded correlation of (0.60 ± 0.07) between recorded and estimated data. Further, incorporating the proposed predictor subset selection, the correlation achieved is (0.57 ± 0.07, p {\\lt }0.004) with significant gain in stability of the system, as well as dramatic reduction in number of predictors (76%) for the savings of computational
Remote estimation of phytoplankton size fractions using the spectral shape of light absorption.
Wang, Shengqiang; Ishizaka, Joji; Hirawake, Toru; Watanabe, Yuji; Zhu, Yuanli; Hayashi, Masataka; Yoo, Sinjae
2015-04-20
Phytoplankton size structure plays an important role in ocean biogeochemical processes. The light absorption spectra of phytoplankton provide a great potential for retrieving phytoplankton size structure because of the strong dependence on the packaging effect caused by phytoplankton cell size and on different pigment compositions related to phytoplankton taxonomy. In this study, we investigated the variability in light absorption spectra of phytoplankton in relation to the size structure. Based on this, a new approach was proposed for estimating phytoplankton size fractions. Our approach use the spectral shape of the normalized phytoplankton absorption coefficient (a(ph)(λ)) through principal component analysis (PCA). Values of a(ph)(λ) were normalized to remove biomass effects, and PCA was conducted to separate the spectral variance of normalized a(ph)(λ) into uncorrelated principal components (PCs). Spectral variations captured by the first four PC modes were used to build relationships with phytoplankton size fractions. The results showed that PCA had powerful ability to capture spectral variations in normalized a(ph)(λ), which were significantly related to phytoplankton size fractions. For both hyperspectral a(ph)(λ) and multiband a(ph)(λ), our approach is applicable. We evaluated our approach using wide in situ data collected from coastal waters and the global ocean, and the results demonstrated a good and robust performance in estimating phytoplankton size fractions in various regions. The model performance was further evaluated by a(ph)(λ) derived from in situ remote sensing reflectance (R(rs)(λ)) with a quasi-analytical algorithm. Using R(rs)(λ) only at six bands, accurate estimations of phytoplankton size fractions were obtained, with R(2) values of 0.85, 0.61, and 0.76, and root mean-square errors of 0.130, 0.126, and 0.112 for micro-, nano-, and picophytoplankton, respectively. Our approach provides practical basis for remote estimation of
An initial model for estimating soybean development stages from spectral data
NASA Technical Reports Server (NTRS)
Henderson, K. E.; Badhwar, G. D.
1982-01-01
A model, utilizing a direct relationship between remotely sensed spectral data and soybean development stage, has been proposed. The model is based upon transforming the spectral data in Landsat bands to greenness values over time and relating the area of this curve to soybean development stage. Soybean development stages were estimated from data acquired in 1978 from research plots at the Purdue University Agronomy Farm as well as Landsat data acquired over sample areas of the U.S. Corn Belt in 1978 and 1979. Analysis of spectral data from research plots revealed that the model works well with reasonable variation in planting date, row spacing, and soil background. The R-squared of calculated U.S. observed development stage exceeded 0.91 for all treatment variables. Using Landsat data the calculated U.S. observed development stage gave an R-squared of 0.89 in 1978 and 0.87 in 1979. No difference in the models performance could be detected between early and late planted fields, small and large fields, or high and low yielding fields.
Ebel, J.E.; Wald, D.J.
2003-01-01
We describe a new probabilistic method that uses observations of modified Mercalli intensity (MMI) from past earthquakes to make quantitative estimates of ground shaking parameters (i.e., peak ground acceleration, peak ground velocity, 5% damped spectral acceleration values, etc.). The method uses a Bayesian approach to make quantitative estimates of the probabilities of different levels of ground motions from intensity data given an earthquake of known location and magnitude. The method utilizes probability distributions from an intensity/ground motion data set along with a ground motion attenuation relation to estimate the ground motion from intensity. The ground motions with the highest probabilities are the ones most likely experienced at the site of the MMI observation. We test the method using MMI/ground motion data from California and published ground motion attenuation relations to estimate the ground motions for several earthquakes: 1999 Hector Mine, California (M7.1); 1988 Saguenay, Quebec (M5.9); and 1982 Gaza, New Hampshire (M4.4). In an example where the method is applied to a historic earthquake, we estimate that the peak ground accelerations associated with the 1727 (M???5.2) earthquake at Newbury, Massachusetts, ranged from 0.23 g at Newbury to 0.06 g at Boston.
NASA Astrophysics Data System (ADS)
Edwards, Matthew C.; Meyer, Renate; Christensen, Nelson
2015-09-01
The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a blocked Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with nonstationary data by breaking longer data streams into smaller and locally stationary components.
A frequency-domain estimator for use in adaptive control systems
NASA Technical Reports Server (NTRS)
Lamaire, Richard O.; Valavani, Lena; Athans, Michael; Stein, Gunter
1991-01-01
This paper presents a frequency-domain estimator that can identify both a parametrized nominal model of a plant as well as a frequency-domain bounding function on the modeling error associated with this nominal model. This estimator, which we call a robust estimator, can be used in conjunction with a robust control-law redesign algorithm to form a robust adaptive controller.
A frequency-domain estimator for use in adaptive control systems
NASA Technical Reports Server (NTRS)
Lamaire, Richard O.; Valavani, Lena; Athans, Michael; Stein, Gunter
1987-01-01
The paper presents a frequency-domain estimator which can identify both a nominal model of a plant as well as a frequency-domain bounding function on the modeling error associated with this nominal model. This estimator, which is called a robust estimator, can be used in conjunction with a robust control-law redesign algorithm to form a robust adaptive controller.
Tropospheric Response to Estimated Spectrally Discriminated Solar Forcing Over the Past 500 Years
NASA Technical Reports Server (NTRS)
Rind, David; Hansen, James E. (Technical Monitor)
2000-01-01
The GISS Global Climate Middle Atmosphere Model (GCMAM) is used to investigate the effect of estimated solar irradiance changes on climate for the past 500 years. This model is employed to allow the impact of UV variations on the stratosphere to affect the troposphere via wave-mean flow interactions. Multiple experiments are done with only a total solar irradiance change (peaking at 0.2 percent from the Maunder Minimum to today); with estimated spectrally-varying irradiance changes (i.e., peak changes of 0.7 percent in the UV, 0.2 percent in the visible and near IR; and 0.07 percent in the IR greater than 1 micron); and the spectrally-varying changes in conjunction with model calculated ozone responses in the stratosphere. Results of the varying temperature patterns and radiation response will be discussed. Of interest is whether the different methods of forcing the solar-induced climate change produce different spatial surface temperature signatures, particularly ones that can be differentiated from greenhouse gas warming. In preliminary tests, spectrally-varying solar forcing with induced ozone changes for solar maximum minus solar minimum conditions results in a temperature signal that is primarily at high latitudes.The high latitude response arises due to solar/ozone-induced alterations in the stratospheric wind field that affect planetary wave propagation from the troposphere, and alter tropospheric advection patterns. In contrast, forcing by total solar irradiance changes produces significant response at low and subtropical latitudes as well, driven by water vapor and cloud feedbacks to the radiative perturbation.
NASA Technical Reports Server (NTRS)
Reginato, R. J.; Vedder, J. F.; Idso, S. B.; Jackson, R. D.; Blanchard, M. B.; Goettelman, R.
1977-01-01
For several days in March of 1975, reflected solar radiation measurements were obtained from smooth and rough surfaces of wet, drying, and continually dry Avondale loam at Phoenix, Arizona, with pyranometers located 50 cm above the ground surface and a multispectral scanner flown at a 300-m height. The simple summation of the different band radiances measured by the multispectral scanner proved equally as good as the pyranometer data for estimating surface soil water content if the multispectral scanner data were standardized with respect to the intensity of incoming solar radiation or the reflected radiance from a reference surface, such as the continually dry soil. Without this means of standardization, multispectral scanner data are most useful in a spectral band ratioing context. Our results indicated that, for the bands used, no significant information on soil water content could be obtained by band ratioing. Thus the variability in soil water content should insignificantly affect soil-type discrimination based on identification of type-specific spectral signatures. Therefore remote sensing, conducted in the 0.4- to 1.0-micron wavelength region of the solar spectrum, would seem to be much More suited to identifying crop and soil types than to estimating of soil water content.
NASA Technical Reports Server (NTRS)
Howell, Leonard W.
2002-01-01
The method of Maximum Likelihood (ML) is used to estimate the spectral parameters of an assumed broken power law energy spectrum from simulated detector responses. This methodology, which requires the complete specificity of all cosmic-ray detector design parameters, is shown to provide approximately unbiased, minimum variance, and normally distributed spectra information for events detected by an instrument having a wide range of commonly used detector response functions. The ML procedure, coupled with the simulated performance of a proposed space-based detector and its planned life cycle, has proved to be of significant value in the design phase of a new science instrument. The procedure helped make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope. This ML methodology is then generalized to estimate broken power law spectral parameters from real cosmic-ray data sets.
Geostatistical estimation of signal-to-noise ratios for spectral vegetation indices
NASA Astrophysics Data System (ADS)
Ji, Lei; Zhang, Li; Rover, Jennifer; Wylie, Bruce K.; Chen, Xuexia
2014-10-01
In the past 40 years, many spectral vegetation indices have been developed to quantify vegetation biophysical parameters. An ideal vegetation index should contain the maximum level of signal related to specific biophysical characteristics and the minimum level of noise such as background soil influences and atmospheric effects. However, accurate quantification of signal and noise in a vegetation index remains a challenge, because it requires a large number of field measurements or laboratory experiments. In this study, we applied a geostatistical method to estimate signal-to-noise ratio (S/N) for spectral vegetation indices. Based on the sample semivariogram of vegetation index images, we used the standardized noise to quantify the noise component of vegetation indices. In a case study in the grasslands and shrublands of the western United States, we demonstrated the geostatistical method for evaluating S/N for a series of soil-adjusted vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The soil-adjusted vegetation indices were found to have higher S/N values than the traditional normalized difference vegetation index (NDVI) and simple ratio (SR) in the sparsely vegetated areas. This study shows that the proposed geostatistical analysis can constitute an efficient technique for estimating signal and noise components in vegetation indices.
Geostatistical estimation of signal-to-noise ratios for spectral vegetation indices
Ji, Lei; Zhang, Li; Rover, Jennifer R.; Wylie, Bruce K.; Chen, Xuexia
2014-01-01
In the past 40 years, many spectral vegetation indices have been developed to quantify vegetation biophysical parameters. An ideal vegetation index should contain the maximum level of signal related to specific biophysical characteristics and the minimum level of noise such as background soil influences and atmospheric effects. However, accurate quantification of signal and noise in a vegetation index remains a challenge, because it requires a large number of field measurements or laboratory experiments. In this study, we applied a geostatistical method to estimate signal-to-noise ratio (S/N) for spectral vegetation indices. Based on the sample semivariogram of vegetation index images, we used the standardized noise to quantify the noise component of vegetation indices. In a case study in the grasslands and shrublands of the western United States, we demonstrated the geostatistical method for evaluating S/N for a series of soil-adjusted vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The soil-adjusted vegetation indices were found to have higher S/N values than the traditional normalized difference vegetation index (NDVI) and simple ratio (SR) in the sparsely vegetated areas. This study shows that the proposed geostatistical analysis can constitute an efficient technique for estimating signal and noise components in vegetation indices.
An Adaptive Displacement Estimation Algorithm for Improved Reconstruction of Thermal Strain
Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M.; Tillman, Bryan; Leers, Steven A.; Kim, Kang
2014-01-01
Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas’ estimator and time-shift estimators like normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas’ estimator is limited by phase-wrapping and NXcorr performs poorly when the signal-to-noise ratio (SNR) is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas’ estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex-vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas’ estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas’ estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI using Field II showed that the adaptive displacement estimator was less biased than either Loupas’ estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7–350% and the spatial accuracy by 1.2–23.0% (p < 0.001). An ex-vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and results in improved strain reconstruction. PMID:25585398
Estimating workload using EEG spectral power and ERPs in the n-back task
NASA Astrophysics Data System (ADS)
Brouwer, Anne-Marie; Hogervorst, Maarten A.; van Erp, Jan B. F.; Heffelaar, Tobias; Zimmerman, Patrick H.; Oostenveld, Robert
2012-08-01
Previous studies indicate that both electroencephalogram (EEG) spectral power (in particular the alpha and theta band) and event-related potentials (ERPs) (in particular the P300) can be used as a measure of mental work or memory load. We compare their ability to estimate workload level in a well-controlled task. In addition, we combine both types of measures in a single classification model to examine whether this results in higher classification accuracy than either one alone. Participants watched a sequence of visually presented letters and indicated whether or not the current letter was the same as the one (n instances) before. Workload was varied by varying n. We developed different classification models using ERP features, frequency power features or a combination (fusion). Training and testing of the models simulated an online workload estimation situation. All our ERP, power and fusion models provide classification accuracies between 80% and 90% when distinguishing between the highest and the lowest workload condition after 2 min. For 32 out of 35 participants, classification was significantly higher than chance level after 2.5 s (or one letter) as estimated by the fusion model. Differences between the models are rather small, though the fusion model performs better than the other models when only short data segments are available for estimating workload.
Two-Microphone Noise Reduction Using Spatial Information-Based Spectral Amplitude Estimation
NASA Astrophysics Data System (ADS)
Li, Kai; Guo, Yanmeng; Fu, Qiang; Li, Junfeng; Yan, Yonghong
Traditional two-microphone noise reduction algorithms to deal with highly nonstationary directional noises generally use the direction of arrival or phase difference information. The performance of these algorithms deteriorate when diffuse noises coexist with nonstationary directional noises in realistic adverse environments. In this paper, we present a two-channel noise reduction algorithm using a spatial information-based speech estimator and a spatial-information-controlled soft-decision noise estimator to improve the noise reduction performance in realistic non-stationary noisy environments. A target presence probability estimator based on Bayes rules using both phase difference and magnitude squared coherence is proposed for soft-decision of noise estimation, so that they can share complementary advantages when both directional noises and diffuse noises are present. Performances of the proposed two-microphone noise reduction algorithm are evaluated by noise reduction, log-spectral distance (LSD) and word recognition rate (WRR) of a distant-talking ASR system in a real room's noisy environment. Experimental results show that the proposed algorithm achieves better noises suppression without further distorting the desired signal components over the comparative dual-channel noise reduction algorithms.
Model reference adaptive control, estimation and identification using only input and output signals
NASA Technical Reports Server (NTRS)
Carroll, R. L.; Monopoli, R. V.
1975-01-01
Significant recent advances in the application of stability theory to the adaptive control and identification of systems, and adaptive state estimation, are considered. Emphasis is on those methods which utilize only input and output measurements of the system, and do not require derivatives of the output signal.
[Research on Oil Sands Spectral Characteristics and Oil Content by Remote Sensing Estimation].
You, Jin-feng; Xing, Li-xin; Pan, Jun; Shan, Xuan-long; Liang, Li-heng; Fan, Rui-xue
2015-04-01
Visible and near infrared spectroscopy is a proven technology to be widely used in identification and exploration of hydrocarbon energy sources with high spectral resolution for detail diagnostic absorption characteristics of hydrocarbon groups. The most prominent regions for hydrocarbon absorption bands are 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm by the reflectance of oil sands samples. These spectral ranges are dominated by various C-H overlapping overtones and combination bands. Meanwhile, there is relatively weak even or no absorption characteristics in the region from 1,700 to 1,730 nm in the spectra of oil sands samples with low bitumen content. With the increase in oil content, in the spectral range of 1,700-1,730 nm the obvious hydrocarbon absorption begins to appear. The bitumen content is the critical parameter for oil sands reserves estimation. The absorption depth was used to depict the response intensity of the absorption bands controlled by first-order overtones and combinations of the various C-H stretching and bending fundamentals. According to the Pearson and partial correlation relationships of oil content and absorption depth dominated by hydrocarbon groups in 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm wavelength range, the scheme of association mode was established between the intensity of spectral response and bitumen content, and then unary linear regression(ULR) and partial least squares regression (PLSR) methods were employed to model the equation between absorption depth attributed to various C-H bond and bitumen content. There were two calibration equations in which ULR method was employed to model the relationship between absorption depth near 2,350 nm region and bitumen content and PLSR method was developed to model the relationship between absorption depth of 1,758, 2,310, 2,350 nm regions and oil content. It turned out that the calibration models had good predictive ability and high robustness and they could provide the scientific
Estimation of glottal source features from the spectral envelope of the acoustic speech signal
NASA Astrophysics Data System (ADS)
Torres, Juan Felix
Speech communication encompasses diverse types of information, including phonetics, affective state, voice quality, and speaker identity. From a speech production standpoint, the acoustic speech signal can be mainly divided into glottal source and vocal tract components, which play distinct roles in rendering the various types of information it contains. Most deployed speech analysis systems, however, do not explicitly represent these two components as distinct entities, as their joint estimation from the acoustic speech signal becomes an ill-defined blind deconvolution problem. Nevertheless, because of the desire to understand glottal behavior and how it relates to perceived voice quality, there has been continued interest in explicitly estimating the glottal component of the speech signal. To this end, several inverse filtering (IF) algorithms have been proposed, but they are unreliable in practice because of the blind formulation of the separation problem. In an effort to develop a method that can bypass the challenging IF process, this thesis proposes a new glottal source information extraction method that relies on supervised machine learning to transform smoothed spectral representations of speech, which are already used in some of the most widely deployed and successful speech analysis applications, into a set of glottal source features. A transformation method based on Gaussian mixture regression (GMR) is presented and compared to current IF methods in terms of feature similarity, reliability, and speaker discrimination capability on a large speech corpus, and potential representations of the spectral envelope of speech are investigated for their ability represent glottal source variation in a predictable manner. The proposed system was found to produce glottal source features that reasonably matched their IF counterparts in many cases, while being less susceptible to spurious errors. The development of the proposed method entailed a study into the aspects
Magnitude Estimation with Noisy Integrators Linked by an Adaptive Reference
Thurley, Kay
2016-01-01
Judgments of physical stimuli show characteristic biases; relatively small stimuli are overestimated whereas relatively large stimuli are underestimated (regression effect). Such biases likely result from a strategy that seeks to minimize errors given noisy estimates about stimuli that itself are drawn from a distribution, i.e., the statistics of the environment. While being conceptually well described, it is unclear how such a strategy could be implemented neurally. The present paper aims toward answering this question. A theoretical approach is introduced that describes magnitude estimation as two successive stages of noisy (neural) integration. Both stages are linked by a reference memory that is updated with every new stimulus. The model reproduces the behavioral characteristics of magnitude estimation and makes several experimentally testable predictions. Moreover, the model identifies the regression effect as a means of minimizing estimation errors and explains how this optimality strategy depends on the subject's discrimination abilities and on the stimulus statistics. The latter influence predicts another property of magnitude estimation, the so-called range effect. Beyond being successful in describing decision-making, the present work suggests that noisy integration may also be important in processing magnitudes. PMID:26909028
Magnitude Estimation with Noisy Integrators Linked by an Adaptive Reference.
Thurley, Kay
2016-01-01
Judgments of physical stimuli show characteristic biases; relatively small stimuli are overestimated whereas relatively large stimuli are underestimated (regression effect). Such biases likely result from a strategy that seeks to minimize errors given noisy estimates about stimuli that itself are drawn from a distribution, i.e., the statistics of the environment. While being conceptually well described, it is unclear how such a strategy could be implemented neurally. The present paper aims toward answering this question. A theoretical approach is introduced that describes magnitude estimation as two successive stages of noisy (neural) integration. Both stages are linked by a reference memory that is updated with every new stimulus. The model reproduces the behavioral characteristics of magnitude estimation and makes several experimentally testable predictions. Moreover, the model identifies the regression effect as a means of minimizing estimation errors and explains how this optimality strategy depends on the subject's discrimination abilities and on the stimulus statistics. The latter influence predicts another property of magnitude estimation, the so-called range effect. Beyond being successful in describing decision-making, the present work suggests that noisy integration may also be important in processing magnitudes. PMID:26909028
Dungan, Sarah Z; Kosyakov, Alexander; Chang, Belinda S W
2016-02-01
Cetaceans have undergone a remarkable evolutionary transition that was accompanied by many sensory adaptations, including modification of the visual system for underwater environments. Recent sequencing of cetacean genomes has made it possible to begin exploring the molecular basis of these adaptations. In this study we use in vitro expression methods to experimentally characterize the first step of the visual transduction cascade, the light activation of rhodopsin, for the killer whale. To investigate the spectral effects of amino acid substitutions thought to correspond with absorbance shifts relative to terrestrial mammals, we used the orca gene as a background for the first site-directed mutagenesis experiments in a cetacean rhodopsin. The S292A mutation had the largest effect, and was responsible for the majority of the spectral difference between killer whale and bovine (terrestrial) rhodopsin. Using codon-based likelihood models, we also found significant evidence for positive selection in cetacean rhodopsin sequences, including on spectral tuning sites we experimentally mutated. We then investigated patterns of ecological divergence that may be correlated with rhodopsin functional variation by using a series of clade models that partitioned the data set according to phylogeny, habitat, and foraging depth zone. Only the model partitioning according to depth was significant. This suggests that foraging dives might be a selective regime influencing cetacean rhodopsin divergence, and our experimental results indicate that spectral tuning may be playing an adaptive role in this process. Our study demonstrates that combining computational and experimental methods is crucial for gaining insight into the selection pressures underlying molecular evolution. PMID:26486871
NASA Astrophysics Data System (ADS)
Shi, C.; Wang, L.
2015-12-01
Spectral unmixing is the process of decomposing the measured spectrum of a mixed pixel into a set of pure spectral signatures called endmembers and their corresponding abundances indicating the fractional area coverage of each endmember present in the pixel. A substantial number of spectral unmixing studies rely on a spectral mixture model which assumes that spectral mixing only occurs within the extent of a pixel. However, due to adjacency effect, the spectral measurement of the pixel may be contaminated by spatial interactions from materials that are present in its spatial neighborhood. In this paper, a linear spatial spectral mixture model is developed to improve the accuracy of the estimated abundance of invasive saltcedar along the Forgotten River reach of the Rio Grande. A spatial weights matrix which specifies for each pixel the locations and the weights of its neighborhood set is used to summarize the spatial relationships among pixels in the Landsat data. A spatial lag operator, defined as a weighted average of the values at neighboring locations, is adopted as an expression of spectral contribution from nearby pixels and added to the classic linear mixture model. The fractional abundances are iteratively estimated using the alternating direction method of multipliers (ADMM) algorithm. With the incorporation of adjacency effect, RMSEs of the fractional cover of ground classes were reduced. The derived sub-pixel abundances of saltcedar are beneficial for ecological management.
Estimation of the spectral parameter kappa in the region of the Gulf of California, Mexico
NASA Astrophysics Data System (ADS)
Castro, Raúl R.; Ávila-Barrientos, Lenin
2015-10-01
We analyzed records from the Broadband Seismological Network of the Gulf of California (RESBAN) and from stations of the NARS-Baja array, operated by CICESE, Ensenada, Baja California, Mexico, to make estimates of the spectral decay parameter kappa ( κ). This attenuation parameter is important for evaluating the seismic risk and hazard of this region. Thirteen shallow earthquakes with focal depths less than 20 km and magnitudes between 5.1 and 6.6 were selected to calculate κ and the near-site attenuation κ 0. We used three different approaches to estimate κ 0: (a) with individual measurements of κ from vector modulus of three-component spectral amplitudes at different epicentral distances and extrapolating to zero distance to estimate κ 0, (b) with individual measurements using vertical component spectra, and (c) measuring from the high-frequency part of the site transfer function determined calculating the horizontal-to-vertical spectral ratio (HVSR) method. For most stations, the three methods give similar results. At short distances (50-60 km), κ takes values close to 0.04 s at NE76, the station located in the middle of the array. κ increases with distance taking an average value of up to 0.18 s for distances close to 500 km. κ 0 at most sites is close to 0.03 s, except for GUYB (Guaymas) that has a κ 0 = 0.05 s and NE83 (Navolato) with κ 0 = 0.065 s, both stations located in the continent, on the eastern side of the gulf, where the soils are less consolidated. Finally, we analyze if κ 0 correlates with magnitude and back azimuth, and we found that for most stations, κ 0 does not correlate with either one. However, station TOPB, located on basalt, shows a moderate correlation with magnitude, with κ 0 increasing with increasing M W in a short back-azimuth range. We also found that for station NE74, located on soft soil, κ 0 correlates with back azimuth, having lower values for azimuths near 120°.
An hp-adaptivity and error estimation for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Bey, Kim S.
1995-01-01
This paper presents an hp-adaptive discontinuous Galerkin method for linear hyperbolic conservation laws. A priori and a posteriori error estimates are derived in mesh-dependent norms which reflect the dependence of the approximate solution on the element size (h) and the degree (p) of the local polynomial approximation. The a posteriori error estimate, based on the element residual method, provides bounds on the actual global error in the approximate solution. The adaptive strategy is designed to deliver an approximate solution with the specified level of error in three steps. The a posteriori estimate is used to assess the accuracy of a given approximate solution and the a priori estimate is used to predict the mesh refinements and polynomial enrichment needed to deliver the desired solution. Numerical examples demonstrate the reliability of the a posteriori error estimates and the effectiveness of the hp-adaptive strategy.
Guo, Qing; Sun, Ping; Yin, Jing-Min; Yu, Tian; Jiang, Dan
2016-05-01
Some unknown parameter estimation of electro-hydraulic system (EHS) should be considered in hydraulic controller design due to many parameter uncertainties in practice. In this study, a parametric adaptive backstepping control method is proposed to improve the dynamic behavior of EHS under parametric uncertainties and unknown disturbance (i.e., hydraulic parameters and external load). The unknown parameters of EHS model are estimated by the parametric adaptive estimation law. Then the recursive backstepping controller is designed by Lyapunov technique to realize the displacement control of EHS. To avoid explosion of virtual control in traditional backstepping, a decayed memory filter is presented to re-estimate the virtual control and the dynamic external load. The effectiveness of the proposed controller has been demonstrated by comparison with the controller without adaptive and filter estimation. The comparative experimental results in critical working conditions indicate the proposed approach can achieve better dynamic performance on the motion control of Two-DOF robotic arm. PMID:26920086
Taylor, Brian A; Hwang, Ken-Pin; Hazle, John D; Stafford, R Jason
2009-03-01
The authors investigated the performance of the iterative Steiglitz-McBride (SM) algorithm on an autoregressive moving average (ARMA) model of signals from a fast, sparsely sampled, multiecho, chemical shift imaging (CSI) acquisition using simulation, phantom, ex vivo, and in vivo experiments with a focus on its potential usage in magnetic resonance (MR)-guided interventions. The ARMA signal model facilitated a rapid calculation of the chemical shift, apparent spin-spin relaxation time (T2*), and complex amplitudes of a multipeak system from a limited number of echoes (< or equal 16). Numerical simulations of one- and two-peak systems were used to assess the accuracy and uncertainty in the calculated spectral parameters as a function of acquisition and tissue parameters. The measured uncertainties from simulation were compared to the theoretical Cramer-Rao lower bound (CRLB) for the acquisition. Measurements made in phantoms were used to validate the T2* estimates and to validate uncertainty estimates made from the CRLB. We demonstrated application to real-time MR-guided interventions ex vivo by using the technique to monitor a percutaneous ethanol injection into a bovine liver and in vivo to monitor a laser-induced thermal therapy treatment in a canine brain. Simulation results showed that the chemical shift and amplitude uncertainties reached their respective CRLB at a signal-to-noise ratio (SNR) > or =5 for echo train lengths (ETLs) > or =4 using a fixed echo spacing of 3.3 ms. T2* estimates from the signal model possessed higher uncertainties but reached the CRLB at larger SNRs and/or ETLs. Highly accurate estimates for the chemical shift (<0.01 ppm) and amplitude (<1.0%) were obtained with > or =4 echoes and for T2*(<1.0%) with > or =7 echoes. We conclude that, over a reasonable range of SNR, the SM algorithm is a robust estimator of spectral parameters from fast CSI acquisitions that acquire < or =16 echoes for one- and two-peak systems. Preliminary ex vivo
Taylor, Brian A.; Hwang, Ken-Pin; Hazle, John D.; Stafford, R. Jason
2009-01-01
The authors investigated the performance of the iterative Steiglitz–McBride (SM) algorithm on an autoregressive moving average (ARMA) model of signals from a fast, sparsely sampled, multiecho, chemical shift imaging (CSI) acquisition using simulation, phantom, ex vivo, and in vivo experiments with a focus on its potential usage in magnetic resonance (MR)-guided interventions. The ARMA signal model facilitated a rapid calculation of the chemical shift, apparent spin-spin relaxation time (T2*), and complex amplitudes of a multipeak system from a limited number of echoes (≤16). Numerical simulations of one- and two-peak systems were used to assess the accuracy and uncertainty in the calculated spectral parameters as a function of acquisition and tissue parameters. The measured uncertainties from simulation were compared to the theoretical Cramer–Rao lower bound (CRLB) for the acquisition. Measurements made in phantoms were used to validate the T2* estimates and to validate uncertainty estimates made from the CRLB. We demonstrated application to real-time MR-guided interventions ex vivo by using the technique to monitor a percutaneous ethanol injection into a bovine liver and in vivo to monitor a laser-induced thermal therapy treatment in a canine brain. Simulation results showed that the chemical shift and amplitude uncertainties reached their respective CRLB at a signal-to-noise ratio (SNR)≥5 for echo train lengths (ETLs)≥4 using a fixed echo spacing of 3.3 ms. T2* estimates from the signal model possessed higher uncertainties but reached the CRLB at larger SNRs and∕or ETLs. Highly accurate estimates for the chemical shift (<0.01 ppm) and amplitude (<1.0%) were obtained with ≥4 echoes and for T2* (<1.0%) with ≥7 echoes. We conclude that, over a reasonable range of SNR, the SM algorithm is a robust estimator of spectral parameters from fast CSI acquisitions that acquire ≤16 echoes for one- and two-peak systems. Preliminary ex vivo and in vivo
A Recommended Procedure for Estimating the Cosmic Ray Spectral Parameter of a Simple Power Law
NASA Technical Reports Server (NTRS)
Howell, Leonard W.; Rose, M. Franklin (Technical Monitor)
2000-01-01
A simple power law model consisting of a single spectral index a(f(sub i)) is believed to be an adequate description of the galactic cosmic ray (GQ proton flux at energies below 1013 eV. Two procedures for estimating a(f(sub i)), referred as (1) the method of moments, and (2) maximum likelihood, are developed and their statistical performance compared. I concluded that the maximum likelihood procedure attains the most desirable statistical properties and is hence the recommended statistic estimation procedure for estimating a1. The maximum likelihood procedure is then generalized for application to a set of real cosmic ray data and thereby makes this approach applicable to existing cosmic ray data sets. Several other important results, such as the relationship between collecting power and detector energy resolution, as well as inclusion of a non-Gaussian detector response function, are presented. These results have many practical benefits in the design phase of a cosmic ray detector because they permit instrument developers to make important trade studies in design parameters as a function of one of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose practical limits to the design envelope.
NASA Astrophysics Data System (ADS)
Cui, Qian; Shi, Jiancheng; Xu, Yuanliu
2011-12-01
Water is the basic needs for human society, and the determining factor of stability of ecosystem as well. There are lots of lakes on Tibet Plateau, which will lead to flood and mudslide when the water expands sharply. At present, water area is extracted from TM or SPOT data for their high spatial resolution; however, their temporal resolution is insufficient. MODIS data have high temporal resolution and broad coverage. So it is valuable resource for detecting the change of water area. Because of its low spatial resolution, mixed-pixels are common. In this paper, four spectral libraries are built using MOD09A1 product, based on that, water body is extracted in sub-pixels utilizing Multiple Endmembers Spectral Mixture Analysis (MESMA) using MODIS daily reflectance data MOD09GA. The unmixed result is comparing with contemporaneous TM data and it is proved that this method has high accuracy.
Adaptive noise estimation and suppression for improving microseismic event detection
NASA Astrophysics Data System (ADS)
Mousavi, S. Mostafa; Langston, Charles A.
2016-09-01
Microseismic data recorded by surface arrays are often strongly contaminated by unwanted noise. This background noise makes the detection of small magnitude events difficult. A noise level estimation and noise reduction algorithm is presented for microseismic data analysis based upon minimally controlled recursive averaging and neighborhood shrinkage estimators. The method might not be compared with more sophisticated and computationally expensive denoising algorithm in terms of preserving detailed features of seismic signal. However, it is fast and data-driven and can be applied in real-time processing of continuous data for event detection purposes. Results from application of this algorithm to synthetic and real seismic data show that it holds a great promise for improving microseismic event detection.
On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2011-01-01
This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.
Super-resolution spectral estimation in short-time non-contact vital sign measurement
NASA Astrophysics Data System (ADS)
Sun, Li; Li, Yusheng; Hong, Hong; Xi, Feng; Cai, Weidong; Zhu, Xiaohua
2015-04-01
Non-contact techniques for measuring vital signs attract great interest due to the benefits shown in medical monitoring, military application, etc. However, the presence of respiration harmonics caused by nonlinear phase modulation will result in performance degradation. Suffering from smearing and leakage problems, conventional discrete Fourier transform (DFT) based methods cannot distinguish the heartbeat component from closely located respiration harmonics in frequency domain, especially in short-time processing. In this paper, the theory of sparse reconstruction is merged with an extended harmonic model of vital signals, aiming at achieving a super-resolution spectral estimation of vital signals by additionally exploiting the inherent sparse prior information. Both simulated and experimental results show that the proposed algorithm has superior performance to DFT-based methods and the recently applied multiple signal classification algorithm, and the required processing window length has been shortened to 5.12 s.
Super-resolution spectral estimation in short-time non-contact vital sign measurement.
Sun, Li; Li, Yusheng; Hong, Hong; Xi, Feng; Cai, Weidong; Zhu, Xiaohua
2015-04-01
Non-contact techniques for measuring vital signs attract great interest due to the benefits shown in medical monitoring, military application, etc. However, the presence of respiration harmonics caused by nonlinear phase modulation will result in performance degradation. Suffering from smearing and leakage problems, conventional discrete Fourier transform (DFT) based methods cannot distinguish the heartbeat component from closely located respiration harmonics in frequency domain, especially in short-time processing. In this paper, the theory of sparse reconstruction is merged with an extended harmonic model of vital signals, aiming at achieving a super-resolution spectral estimation of vital signals by additionally exploiting the inherent sparse prior information. Both simulated and experimental results show that the proposed algorithm has superior performance to DFT-based methods and the recently applied multiple signal classification algorithm, and the required processing window length has been shortened to 5.12 s. PMID:25933881
A robust approach to estimate stellar angular diameters from photometry and spectral type
NASA Astrophysics Data System (ADS)
Chelli, A.; Bourges, L.; Duvert, G.; Lafrasse, S.; Mella, G.; Le Bouquin, J.-B.; Chesneau, O.
2014-07-01
Observing reference stars with a known diameter is almost the only possibility to calibrate optical interferometry observations. The JMMC Calibrator Workgroup develops methods to ascertain the angular diameter of stars since 2000 and provides this expertise in the SearchCal software and associated databases. We provide on a regularly basis the JSDC, a catalogue of such stars, and an open access to our server that dynamically finds calibrators near science objects by querying CDS hosted catalogs. Here we propose a novel approach in the estimation of angular stellar diameters based on observational quantities only. It bypasses the knowledge of the visual extinction and intrinsic colors, thanks to the use of absorption free pseudo-colors (AFC) and the spectral type number on the x-axis. This new methodology allows to compute the angular diameter of 443 703 stars with a relative precision of about 1%. This calibrator set will become after filtering the next JSDC release.
Spectral parameter estimation of CAT radar echoes in the presence of fading clutter
NASA Technical Reports Server (NTRS)
Sato, T.; Woodman, R. F.
1980-01-01
The analysis technique and a part of the results obtained from CAT radar echoes from higher troposphere and lower stratosphere are presented. First, the effect of processing distortion caused by the periodogram method using FFT algorithm on the slowly fading ground clutter echo is discussed. It is shown that an extremely narrow clutter spectrum can spill over the entire frequency range if the data are truncated at a tie sorter than their correlation time affecting largely the estimation of the CAT spectrum contribution, especially when the latter is a few tens of dB weaker than the former. A nonlinear least squares fitting procedure is used to parameterize the observed power spectrum in terms of CAT echo power, Doppler shift, spectral width, and the parameters which specify the shape of the clutter component.