Sample records for adaptive system identification

  1. Adaptive modeling, identification, and control of dynamic structural systems. I. Theory

    USGS Publications Warehouse

    Safak, Erdal

    1989-01-01

    A concise review of the theory of adaptive modeling, identification, and control of dynamic structural systems based on discrete-time recordings is presented. Adaptive methods have four major advantages over the classical methods: (1) Removal of the noise from the signal is done over the whole frequency band; (2) time-varying characteristics of systems can be tracked; (3) systems with unknown characteristics can be controlled; and (4) a small segment of the data is needed during the computations. Included in the paper are the discrete-time representation of single-input single-output (SISO) systems, models for SISO systems with noise, the concept of stochastic approximation, recursive prediction error method (RPEM) for system identification, and the adaptive control. Guidelines for model selection and model validation and the computational aspects of the method are also discussed in the paper. The present paper is the first of two companion papers. The theory given in the paper is limited to that which is necessary to follow the examples for applications in structural dynamics presented in the second paper.

  2. Adaptive identification and control of structural dynamics systems using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Montgomery, R. C.; Williams, J. P.

    1985-01-01

    A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.

  3. Performance study of LMS based adaptive algorithms for unknown system identification

    NASA Astrophysics Data System (ADS)

    Javed, Shazia; Ahmad, Noor Atinah

    2014-07-01

    Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.

  4. Performance study of LMS based adaptive algorithms for unknown system identification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javed, Shazia; Ahmad, Noor Atinah

    Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signalmore » is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.« less

  5. An on-line equivalent system identification scheme for adaptive control. Ph.D. Thesis - Stanford Univ.

    NASA Technical Reports Server (NTRS)

    Sliwa, S. M.

    1984-01-01

    A prime obstacle to the widespread use of adaptive control is the degradation of performance and possible instability resulting from the presence of unmodeled dynamics. The approach taken is to explicitly include the unstructured model uncertainty in the output error identification algorithm. The order of the compensator is successively increased by including identified modes. During this model building stage, heuristic rules are used to test for convergence prior to designing compensators. Additionally, the recursive identification algorithm as extended to multi-input, multi-output systems. Enhancements were also made to reduce the computational burden of an algorithm for obtaining minimal state space realizations from the inexact, multivariate transfer functions which result from the identification process. A number of potential adaptive control applications for this approach are illustrated using computer simulations. Results indicated that when speed of adaptation and plant stability are not critical, the proposed schemes converge to enhance system performance.

  6. Adaptive Identification by Systolic Arrays.

    DTIC Science & Technology

    1987-12-01

    BIBLIOGRIAPHY Anton , Howard, Elementary Linear Algebra , John Wiley & Sons, 19S4. Cristi, Roberto, A Parallel Structure Jor Adaptive Pole Placement...10 11. SYSTEM IDENTIFICATION M*YETHODS ....................... 12 A. LINEAR SYSTEM MODELING ......................... 12 B. SOLUTION OF SYSTEMS OF... LINEAR EQUATIONS ......... 13 C. QR DECOMPOSITION ................................ 14 D. RECURSIVE LEAST SQUARES ......................... 16 E. BLOCK

  7. Systems identification and the adaptive management of waterfowl in the United States

    USGS Publications Warehouse

    Williams, B.K.; Nichols, J.D.

    2001-01-01

    Waterfowl management in the United States is one of the more visible conservation success stories in the United States. It is authorized and supported by appropriate legislative authorities, based on large-scale monitoring programs, and widely accepted by the public. The process is one of only a limited number of large-scale examples of effective collaboration between research and management, integrating scientific information with management in a coherent framework for regulatory decision-making. However, harvest management continues to face some serious technical problems, many of which focus on sequential identification of the resource system in a context of optimal decision-making. The objective of this paper is to provide a theoretical foundation of adaptive harvest management, the approach currently in use in the United States for regulatory decision-making. We lay out the legal and institutional framework for adaptive harvest management and provide a formal description of regulatory decision-making in terms of adaptive optimization. We discuss some technical and institutional challenges in applying adaptive harvest management and focus specifically on methods of estimating resource states for linear resource systems.

  8. Lithofacies identification using multiple adaptive resonance theory neural networks and group decision expert system

    USGS Publications Warehouse

    Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.; Rocky, Durrans S.

    2000-01-01

    Lithofacies identification supplies qualitative information about rocks. Lithofacies represent rock textures and are important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identification from core data are costly and different geologists may provide different interpretations. In this paper, we present a low-cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system to consistently and objectively identify lithofacies from well-log data. The input data are altered into different forms representing different perspectives of observation of lithofacies. Each form of input is processed by a different adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one neural network processes the raw continuous data, another processes categorial data, and the third processes fuzzy-set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of firing order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic, and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil field located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-backpropagation neural network, 57.3%. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.

  9. Adaptive Identification and Control of Flow-Induced Cavity Oscillations

    NASA Technical Reports Server (NTRS)

    Kegerise, M. A.; Cattafesta, L. N.; Ha, C.

    2002-01-01

    Progress towards an adaptive self-tuning regulator (STR) for the cavity tone problem is discussed in this paper. Adaptive system identification algorithms were applied to an experimental cavity-flow tested as a prerequisite to control. In addition, a simple digital controller and a piezoelectric bimorph actuator were used to demonstrate multiple tone suppression. The control tests at Mach numbers of 0.275, 0.40, and 0.60 indicated approx. = 7dB tone reductions at multiple frequencies. Several different adaptive system identification algorithms were applied at a single freestream Mach number of 0.275. Adaptive finite-impulse response (FIR) filters of orders up to N = 100 were found to be unsuitable for modeling the cavity flow dynamics. Adaptive infinite-impulse response (IIR) filters of comparable order better captured the system dynamics. Two recursive algorithms, the least-mean square (LMS) and the recursive-least square (RLS), were utilized to update the adaptive filter coefficients. Given the sample-time requirements imposed by the cavity flow dynamics, the computational simplicity of the least mean squares (LMS) algorithm is advantageous for real-time control.

  10. Development of an adaptive failure detection and identification system for detecting aircraft control element failures

    NASA Technical Reports Server (NTRS)

    Bundick, W. Thomas

    1990-01-01

    A methodology for designing a failure detection and identification (FDI) system to detect and isolate control element failures in aircraft control systems is reviewed. An FDI system design for a modified B-737 aircraft resulting from this methodology is also reviewed, and the results of evaluating this system via simulation are presented. The FDI system performed well in a no-turbulence environment, but it experienced an unacceptable number of false alarms in atmospheric turbulence. An adaptive FDI system, which adjusts thresholds and other system parameters based on the estimated turbulence level, was developed and evaluated. The adaptive system performed well over all turbulence levels simulated, reliably detecting all but the smallest magnitude partially-missing-surface failures.

  11. Adaptive/learning control of large space structures - System identification techniques. [for multi-configuration flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Thau, F. E.; Montgomery, R. C.

    1980-01-01

    Techniques developed for the control of aircraft under changing operating conditions are used to develop a learning control system structure for a multi-configuration, flexible space vehicle. A configuration identification subsystem that is to be used with a learning algorithm and a memory and control process subsystem is developed. Adaptive gain adjustments can be achieved by this learning approach without prestoring of large blocks of parameter data and without dither signal inputs which will be suppressed during operations for which they are not compatible. The Space Shuttle Solar Electric Propulsion (SEP) experiment is used as a sample problem for the testing of adaptive/learning control system algorithms.

  12. An Interactive Computer-Aided Instructional Strategy and Assessment Methods for System Identification and Adaptive Control Laboratory

    ERIC Educational Resources Information Center

    Özbek, Necdet Sinan; Eker, Ilyas

    2015-01-01

    This study describes a set of real-time interactive experiments that address system identification and model reference adaptive control (MRAC) techniques. In constructing laboratory experiments that contribute to efficient teaching, experimental design and instructional strategy are crucial, but a process for doing this has yet to be defined. This…

  13. Adaptive control of periodic systems

    NASA Astrophysics Data System (ADS)

    Tian, Zhiling

    2009-12-01

    1990s for all the important problems. These differences are even more amplified in the LTP case; some problems in continuous time cannot even be formulated precisely. This thesis consequently focuses primarily on the adaptive identification and control of discrete-time systems, and derives most of the results that currently exist in the literature for LTI systems. Based on these investigations of discrete-time adaptive systems, attempts are made in the thesis to examine their continuous-time counterparts, and discuss the principal difficulties encountered. The dissertation examines critically the system theoretic properties of LTP systems in Chapter 2, and the mathematical framework provided for their analysis by Floquet theory in Chapter 3. Assuming that adaptive identification and control problems can be formulated precisely, a unified method of developing stable adaptive laws using error models is treated in Chapter 4. Chapter 5 presents a detailed study of the adaptation in SISO discrete-time LTP systems, and represents the core of the thesis. The important problems of identification, stabilization, regulation, and tracking of arbitrary signals are investigated, and practically implementable stable adaptive laws are derived. The dissertation concludes with a discussion of continuous-time adaptive control in Chapter 6 and discrete multivariable systems in Chapter 7. Directions for future research are indicated towards the end of the dissertation.

  14. Parametric recursive system identification and self-adaptive modeling of the human energy metabolism for adaptive control of fat weight.

    PubMed

    Őri, Zsolt P

    2017-05-01

    A mathematical model has been developed to facilitate indirect measurements of difficult to measure variables of the human energy metabolism on a daily basis. The model performs recursive system identification of the parameters of the metabolic model of the human energy metabolism using the law of conservation of energy and principle of indirect calorimetry. Self-adaptive models of the utilized energy intake prediction, macronutrient oxidation rates, and daily body composition changes were created utilizing Kalman filter and the nominal trajectory methods. The accuracy of the models was tested in a simulation study utilizing data from the Minnesota starvation and overfeeding study. With biweekly macronutrient intake measurements, the average prediction error of the utilized carbohydrate intake was -23.2 ± 53.8 kcal/day, fat intake was 11.0 ± 72.3 kcal/day, and protein was 3.7 ± 16.3 kcal/day. The fat and fat-free mass changes were estimated with an error of 0.44 ± 1.16 g/day for fat and -2.6 ± 64.98 g/day for fat-free mass. The daily metabolized macronutrient energy intake and/or daily macronutrient oxidation rate and the daily body composition change from directly measured serial data are optimally predicted with a self-adaptive model with Kalman filter that uses recursive system identification.

  15. Self-Tuning Adaptive-Controller Using Online Frequency Identification

    NASA Technical Reports Server (NTRS)

    Chiang, W. W.; Cannon, R. H., Jr.

    1985-01-01

    A real time adaptive controller was designed and tested successfully on a fourth order laboratory dynamic system which features very low structural damping and a noncolocated actuator sensor pair. The controller, implemented in a digital minicomputer, consists of a state estimator, a set of state feedback gains, and a frequency locked loop (FLL) for real time parameter identification. The FLL can detect the closed loop natural frequency of the system being controlled, calculate the mismatch between a plant parameter and its counterpart in the state estimator, and correct the estimator parameter in real time. The adaptation algorithm can correct the controller error and stabilize the system for more than 50% variation in the plant natural frequency, compared with a 10% stability margin in frequency variation for a fixed gain controller having the same performance at the nominal plant condition. After it has locked to the correct plant frequency, the adaptive controller works as well as the fixed gain controller does when there is no parameter mismatch. The very rapid convergence of this adaptive system is demonstrated experimentally, and can also be proven with simple root locus methods.

  16. Adaptive dynamic programming approach to experience-based systems identification and control.

    PubMed

    Lendaris, George G

    2009-01-01

    Humans have the ability to make use of experience while selecting their control actions for distinct and changing situations, and their process speeds up and have enhanced effectiveness as more experience is gained. In contrast, current technological implementations slow down as more knowledge is stored. A novel way of employing Approximate (or Adaptive) Dynamic Programming (ADP) is described that shifts the underlying Adaptive Critic type of Reinforcement Learning method "up a level", away from designing individual (optimal) controllers to that of developing on-line algorithms that efficiently and effectively select designs from a repository of existing controller solutions (perhaps previously developed via application of ADP methods). The resulting approach is called Higher-Level Learning Algorithm. The approach and its rationale are described and some examples of its application are given. The notions of context and context discernment are important to understanding the human abilities noted above. These are first defined, in a manner appropriate to controls and system-identification, and as a foundation relating to the application arena, a historical view of the various phases during development of the controls field is given, organized by how the notion 'context' was, or was not, involved in each phase.

  17. Adaptive Identification of Fluid-Dynamic Systems

    DTIC Science & Technology

    2001-06-14

    Fig. 1. Unknown System Adaptive Filter Σ _ + Input u Filter Output y Desired Output d Error e Fig. 1. Modeling of a SISO system using...2J E e n =   (12) Here [ ]. E is the expectation operator and ( ) ( ) ( ) e n d n y n= − is the error between the desired system output and...B … input vector ( ) ( ) ( ) ( )[ ], , ,1 1 Tn u n u n u n N= − − +U … output and error ( ) ( ) ( ) ( ) ( ) ( ) ( ) T T y n n n e n d n n n

  18. Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations

    PubMed Central

    Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan

    2017-01-01

    Abstract Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. PMID:28961727

  19. In-Flight System Identification

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1998-01-01

    A method is proposed and studied whereby the system identification cycle consisting of experiment design and data analysis can be repeatedly implemented aboard a test aircraft in real time. This adaptive in-flight system identification scheme has many advantages, including increased flight test efficiency, adaptability to dynamic characteristics that are imperfectly known a priori, in-flight improvement of data quality through iterative input design, and immediate feedback of the quality of flight test results. The technique uses equation error in the frequency domain with a recursive Fourier transform for the real time data analysis, and simple design methods employing square wave input forms to design the test inputs in flight. Simulation examples are used to demonstrate that the technique produces increasingly accurate model parameter estimates resulting from sequentially designed and implemented flight test maneuvers. The method has reasonable computational requirements, and could be implemented aboard an aircraft in real time.

  20. Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations.

    PubMed

    Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan; Marchal, Kathleen

    2017-11-01

    Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Distributed parameter system coupled ARMA expansion identification and adaptive parallel IIR filtering - A unified problem statement. [Auto Regressive Moving-Average

    NASA Technical Reports Server (NTRS)

    Johnson, C. R., Jr.; Balas, M. J.

    1980-01-01

    A novel interconnection of distributed parameter system (DPS) identification and adaptive filtering is presented, which culminates in a common statement of coupled autoregressive, moving-average expansion or parallel infinite impulse response configuration adaptive parameterization. The common restricted complexity filter objectives are seen as similar to the reduced-order requirements of the DPS expansion description. The interconnection presents the possibility of an exchange of problem formulations and solution approaches not yet easily addressed in the common finite dimensional lumped-parameter system context. It is concluded that the shared problems raised are nevertheless many and difficult.

  2. Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control

    NASA Technical Reports Server (NTRS)

    Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan

    2003-01-01

    An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.

  3. Adaptive Modal Identification for Flutter Suppression Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Drew, Michael; Swei, Sean S.

    2016-01-01

    In this paper, we will develop an adaptive modal identification method for identifying the frequencies and damping of a flutter mode based on model-reference adaptive control (MRAC) and least-squares methods. The least-squares parameter estimation will achieve parameter convergence in the presence of persistent excitation whereas the MRAC parameter estimation does not guarantee parameter convergence. Two adaptive flutter suppression control approaches are developed: one based on MRAC and the other based on the least-squares method. The MRAC flutter suppression control is designed as an integral part of the parameter estimation where the feedback signal is used to estimate the modal information. On the other hand, the separation principle of control and estimation is applied to the least-squares method. The least-squares modal identification is used to perform parameter estimation.

  4. Health monitoring system for transmission shafts based on adaptive parameter identification

    NASA Astrophysics Data System (ADS)

    Souflas, I.; Pezouvanis, A.; Ebrahimi, K. M.

    2018-05-01

    A health monitoring system for a transmission shaft is proposed. The solution is based on the real-time identification of the physical characteristics of the transmission shaft i.e. stiffness and damping coefficients, by using a physical oriented model and linear recursive identification. The efficacy of the suggested condition monitoring system is demonstrated on a prototype transient engine testing facility equipped with a transmission shaft capable of varying its physical properties. Simulation studies reveal that coupling shaft faults can be detected and isolated using the proposed condition monitoring system. Besides, the performance of various recursive identification algorithms is addressed. The results of this work recommend that the health status of engine dynamometer shafts can be monitored using a simple lumped-parameter shaft model and a linear recursive identification algorithm which makes the concept practically viable.

  5. An adaptive technique for a redundant-sensor navigation system.

    NASA Technical Reports Server (NTRS)

    Chien, T.-T.

    1972-01-01

    An on-line adaptive technique is developed to provide a self-contained redundant-sensor navigation system with a capability to utilize its full potentiality in reliability and performance. This adaptive system is structured as a multistage stochastic process of detection, identification, and compensation. It is shown that the detection system can be effectively constructed on the basis of a design value, specified by mission requirements, of the unknown parameter in the actual system, and of a degradation mode in the form of a constant bias jump. A suboptimal detection system on the basis of Wald's sequential analysis is developed using the concept of information value and information feedback. The developed system is easily implemented, and demonstrates a performance remarkably close to that of the optimal nonlinear detection system. An invariant transformation is derived to eliminate the effect of nuisance parameters such that the ambiguous identification system can be reduced to a set of disjoint simple hypotheses tests. By application of a technique of decoupled bias estimation in the compensation system the adaptive system can be operated without any complicated reorganization.

  6. Aircraft Abnormal Conditions Detection, Identification, and Evaluation Using Innate and Adaptive Immune Systems Interaction

    NASA Astrophysics Data System (ADS)

    Al Azzawi, Dia

    Abnormal flight conditions play a major role in aircraft accidents frequently causing loss of control. To ensure aircraft operation safety in all situations, intelligent system monitoring and adaptation must rely on accurately detecting the presence of abnormal conditions as soon as they take place, identifying their root cause(s), estimating their nature and severity, and predicting their impact on the flight envelope. Due to the complexity and multidimensionality of the aircraft system under abnormal conditions, these requirements are extremely difficult to satisfy using existing analytical and/or statistical approaches. Moreover, current methodologies have addressed only isolated classes of abnormal conditions and a reduced number of aircraft dynamic parameters within a limited region of the flight envelope. This research effort aims at developing an integrated and comprehensive framework for the aircraft abnormal conditions detection, identification, and evaluation based on the artificial immune systems paradigm, which has the capability to address the complexity and multidimensionality issues related to aircraft systems. Within the proposed framework, a novel algorithm was developed for the abnormal conditions detection problem and extended to the abnormal conditions identification and evaluation. The algorithm and its extensions were inspired from the functionality of the biological dendritic cells (an important part of the innate immune system) and their interaction with the different components of the adaptive immune system. Immunity-based methodologies for re-assessing the flight envelope at post-failure and predicting the impact of the abnormal conditions on the performance and handling qualities are also proposed and investigated in this study. The generality of the approach makes it applicable to any system. Data for artificial immune system development were collected from flight tests of a supersonic research aircraft within a motion-based flight

  7. An adaptive optimal control for smart structures based on the subspace tracking identification technique

    NASA Astrophysics Data System (ADS)

    Ripamonti, Francesco; Resta, Ferruccio; Borroni, Massimo; Cazzulani, Gabriele

    2014-04-01

    A new method for the real-time identification of mechanical system modal parameters is used in order to design different adaptive control logics aiming to reduce the vibrations in a carbon fiber plate smart structure. It is instrumented with three piezoelectric actuators, three accelerometers and three strain gauges. The real-time identification is based on a recursive subspace tracking algorithm whose outputs are elaborated by an ARMA model. A statistical approach is finally applied to choose the modal parameter correct values. These are given in input to model-based control logics such as a gain scheduling and an adaptive LQR control.

  8. Modern control concepts in hydrology. [parameter identification in adaptive stochastic control approach

    NASA Technical Reports Server (NTRS)

    Duong, N.; Winn, C. B.; Johnson, G. R.

    1975-01-01

    Two approaches to an identification problem in hydrology are presented, based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time-invariant or time-dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and confirm the results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.

  9. Integrated multiple-model adaptive fault identification and reconfigurable fault-tolerant control for Lead-Wing close formation systems

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Jiang, Bin; Zhang, Ke

    2018-03-01

    This paper investigates the attitude and position tracking control problem for Lead-Wing close formation systems in the presence of loss of effectiveness and lock-in-place or hardover failure. In close formation flight, Wing unmanned aerial vehicle movements are influenced by vortex effects of the neighbouring Lead unmanned aerial vehicle. This situation allows modelling of aerodynamic coupling vortex-effects and linearisation based on optimal close formation geometry. Linearised Lead-Wing close formation model is transformed into nominal robust H-infinity models with respect to Mach hold, Heading hold, and Altitude hold autopilots; static feedback H-infinity controller is designed to guarantee effective tracking of attitude and position while manoeuvring Lead unmanned aerial vehicle. Based on H-infinity control design, an integrated multiple-model adaptive fault identification and reconfigurable fault-tolerant control scheme is developed to guarantee asymptotic stability of close-loop systems, error signal boundedness, and attitude and position tracking properties. Simulation results for Lead-Wing close formation systems validate the efficiency of the proposed integrated multiple-model adaptive control algorithm.

  10. An adaptive tracking observer for failure-detection systems

    NASA Technical Reports Server (NTRS)

    Sidar, M.

    1982-01-01

    The design problem of adaptive observers applied to linear, constant and variable parameters, multi-input, multi-output systems, is considered. It is shown that, in order to keep the observer's (or Kalman filter) false-alarm rate (FAR) under a certain specified value, it is necessary to have an acceptable proper matching between the observer (or KF) model and the system parameters. An adaptive observer algorithm is introduced in order to maintain desired system-observer model matching, despite initial mismatching and/or system parameter variations. Only a properly designed adaptive observer is able to detect abrupt changes in the system (actuator, sensor failures, etc.) with adequate reliability and FAR. Conditions for convergence for the adaptive process were obtained, leading to a simple adaptive law (algorithm) with the possibility of an a priori choice of fixed adaptive gains. Simulation results show good tracking performance with small observer output errors and accurate and fast parameter identification, in both deterministic and stochastic cases.

  11. An Adaptive Technique for a Redundant-Sensor Navigation System. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chien, T. T.

    1972-01-01

    An on-line adaptive technique is developed to provide a self-contained redundant-sensor navigation system with a capability to utilize its full potentiality in reliability and performance. The gyro navigation system is modeled as a Gauss-Markov process, with degradation modes defined as changes in characteristics specified by parameters associated with the model. The adaptive system is formulated as a multistage stochastic process: (1) a detection system, (2) an identification system and (3) a compensation system. It is shown that the sufficient statistics for the partially observable process in the detection and identification system is the posterior measure of the state of degradation, conditioned on the measurement history.

  12. Model reference adaptive control (MRAC)-based parameter identification applied to surface-mounted permanent magnet synchronous motor

    NASA Astrophysics Data System (ADS)

    Zhong, Chongquan; Lin, Yaoyao

    2017-11-01

    In this work, a model reference adaptive control-based estimated algorithm is proposed for online multi-parameter identification of surface-mounted permanent magnet synchronous machines. By taking the dq-axis equations of a practical motor as the reference model and the dq-axis estimation equations as the adjustable model, a standard model-reference-adaptive-system-based estimator was established. Additionally, the Popov hyperstability principle was used in the design of the adaptive law to guarantee accurate convergence. In order to reduce the oscillation of identification result, this work introduces a first-order low-pass digital filter to improve precision regarding the parameter estimation. The proposed scheme was then applied to an SPM synchronous motor control system without any additional circuits and implemented using a DSP TMS320LF2812. For analysis, the experimental results reveal the effectiveness of the proposed method.

  13. Linear and non-linear systems identification for adaptive control in mechanical applications vibration suppression

    NASA Astrophysics Data System (ADS)

    Cazzulani, Gabriele; Resta, Ferruccio; Ripamonti, Francesco

    2012-04-01

    During the last years, more and more mechanical applications saw the introduction of active control strategies. In particular, the need of improving the performances and/or the system health is very often associated to vibration suppression. This goal can be achieved considering both passive and active solutions. In this sense, many active control strategies have been developed, such as the Independent Modal Space Control (IMSC) or the resonant controllers (PPF, IRC, . . .). In all these cases, in order to tune and optimize the control strategy, the knowledge of the system dynamic behaviour is very important and it can be achieved both considering a numerical model of the system or through an experimental identification process. Anyway, dealing with non-linear or time-varying systems, a tool able to online identify the system parameters becomes a key-point for the control logic synthesis. The aim of the present work is the definition of a real-time technique, based on ARMAX models, that estimates the system parameters starting from the measurements of piezoelectric sensors. These parameters are returned to the control logic, that automatically adapts itself to the system dynamics. The problem is numerically investigated considering a carbon-fiber plate model forced through a piezoelectric patch.

  14. System identification of jet engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, N.

    2000-01-01

    System identification plays an important role in advanced control systems for jet engines, in which controls are performed adaptively using data from the actual engine and the identified engine. An identification technique for jet engine using the Constant Gain Extended Kalman Filter (CGEKF) is described. The filter is constructed for a two-spool turbofan engine. The CGEKF filter developed here can recognize parameter change in engine components and estimate unmeasurable variables over whole flight conditions. These capabilities are useful for an advanced Full Authority Digital Electric Control (FADEC). Effects of measurement noise and bias, effects of operating point and unpredicted performancemore » change are discussed. Some experimental results using the actual engine are shown to evaluate the effectiveness of CGEKF filter.« less

  15. A novel composite adaptive flap controller design by a high-efficient modified differential evolution identification approach.

    PubMed

    Li, Nailu; Mu, Anle; Yang, Xiyun; Magar, Kaman T; Liu, Chao

    2018-05-01

    The optimal tuning of adaptive flap controller can improve adaptive flap control performance on uncertain operating environments, but the optimization process is usually time-consuming and it is difficult to design proper optimal tuning strategy for the flap control system (FCS). To solve this problem, a novel adaptive flap controller is designed based on a high-efficient differential evolution (DE) identification technique and composite adaptive internal model control (CAIMC) strategy. The optimal tuning can be easily obtained by DE identified inverse of the FCS via CAIMC structure. To achieve fast tuning, a high-efficient modified adaptive DE algorithm is proposed with new mutant operator and varying range adaptive mechanism for the FCS identification. A tradeoff between optimized adaptive flap control and low computation cost is successfully achieved by proposed controller. Simulation results show the robustness of proposed method and its superiority to conventional adaptive IMC (AIMC) flap controller and the CAIMC flap controllers using other DE algorithms on various uncertain operating conditions. The high computation efficiency of proposed controller is also verified based on the computation time on those operating cases. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Comparative system identification of flower tracking performance in three hawkmoth species reveals adaptations for dim light vision.

    PubMed

    Stöckl, Anna L; Kihlström, Klara; Chandler, Steven; Sponberg, Simon

    2017-04-05

    Flight control in insects is heavily dependent on vision. Thus, in dim light, the decreased reliability of visual signal detection also prompts consequences for insect flight. We have an emerging understanding of the neural mechanisms that different species employ to adapt the visual system to low light. However, much less explored are comparative analyses of how low light affects the flight behaviour of insect species, and the corresponding links between physiological adaptations and behaviour. We investigated whether the flower tracking behaviour of three hawkmoth species with different diel activity patterns revealed luminance-dependent adaptations, using a system identification approach. We found clear luminance-dependent differences in flower tracking in all three species, which were explained by a simple luminance-dependent delay model, which generalized across species. We discuss physiological and anatomical explanations for the variance in tracking responses, which could not be explained by such simple models. Differences between species could not be explained by the simple delay model. However, in several cases, they could be explained through the addition on a second model parameter, a simple scaling term, that captures the responsiveness of each species to flower movements. Thus, we demonstrate here that much of the variance in the luminance-dependent flower tracking responses of hawkmoths with different diel activity patterns can be captured by simple models of neural processing.This article is part of the themed issue 'Vision in dim light'. © 2017 The Author(s).

  17. Input-output identification of controlled discrete manufacturing systems

    NASA Astrophysics Data System (ADS)

    Estrada-Vargas, Ana Paula; López-Mellado, Ernesto; Lesage, Jean-Jacques

    2014-03-01

    The automated construction of discrete event models from observations of external system's behaviour is addressed. This problem, often referred to as system identification, allows obtaining models of ill-known (or even unknown) systems. In this article, an identification method for discrete event systems (DESs) controlled by a programmable logic controller is presented. The method allows processing a large quantity of observed long sequences of input/output signals generated by the controller and yields an interpreted Petri net model describing the closed-loop behaviour of the automated DESs. The proposed technique allows the identification of actual complex systems because it is sufficiently efficient and well adapted to cope with both the technological characteristics of industrial controllers and data collection requirements. Based on polynomial-time algorithms, the method is implemented as an efficient software tool which constructs and draws the model automatically; an overview of this tool is given through a case study dealing with an automated manufacturing system.

  18. The experimental results of a self tuning adaptive controller using online frequency identification. [for Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    Chiang, W.-W.; Cannon, R. H., Jr.

    1985-01-01

    A fourth-order laboratory dynamic system featuring very low structural damping and a noncolocated actuator-sensor pair has been used to test a novel real-time adaptive controller, implemented in a minicomputer, which consists of a state estimator, a set of state feedback gains, and a frequency-locked loop for real-time parameter identification. The adaptation algorithm employed can correct controller error and stabilize the system for more than 50 percent variation in the plant's natural frequency, compared with a 10 percent stability margin in frequency variation for a fixed gain controller having the same performance as the nominal plant condition. The very rapid convergence achievable by this adaptive system is demonstrated experimentally, and proven with simple, root-locus methods.

  19. An adaptive learning control system for large flexible structures

    NASA Technical Reports Server (NTRS)

    Thau, F. E.

    1985-01-01

    The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.

  20. Finite-time master-slave synchronization and parameter identification for uncertain Lurie systems.

    PubMed

    Wang, Tianbo; Zhao, Shouwei; Zhou, Wuneng; Yu, Weiqin

    2014-07-01

    This paper investigates the finite-time master-slave synchronization and parameter identification problem for uncertain Lurie systems based on the finite-time stability theory and the adaptive control method. The finite-time master-slave synchronization means that the state of a slave system follows with that of a master system in finite time, which is more reasonable than the asymptotical synchronization in applications. The uncertainties include the unknown parameters and noise disturbances. An adaptive controller and update laws which ensures the synchronization and parameter identification to be realized in finite time are constructed. Finally, two numerical examples are given to show the effectiveness of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. The ALICE-HMPID Detector Control System: Its evolution towards an expert and adaptive system

    NASA Astrophysics Data System (ADS)

    De Cataldo, G.; Franco, A.; Pastore, C.; Sgura, I.; Volpe, G.

    2011-05-01

    The High Momentum Particle IDentification (HMPID) detector is a proximity focusing Ring Imaging Cherenkov (RICH) for charged hadron identification. The HMPID is based on liquid C 6F 14 as the radiator medium and on a 10 m 2 CsI coated, pad segmented photocathode of MWPCs for UV Cherenkov photon detection. To ensure full remote control, the HMPID is equipped with a detector control system (DCS) responding to industrial standards for robustness and reliability. It has been implemented using PVSS as Slow Control And Data Acquisition (SCADA) environment, Programmable Logic Controller as control devices and Finite State Machines for modular and automatic command execution. In the perspective of reducing human presence at the experiment site, this paper focuses on DCS evolution towards an expert and adaptive control system, providing, respectively, automatic error recovery and stable detector performance. HAL9000, the first prototype of the HMPID expert system, is then presented. Finally an analysis of the possible application of the adaptive features is provided.

  2. ARMAX-Based Transfer Function Model Identification Using Wide-Area Measurement for Adaptive and Coordinated Damping Control

    DOE PAGES

    Liu, Hesen; Zhu, Lin; Pan, Zhuohong; ...

    2015-09-14

    One of the main drawbacks of the existing oscillation damping controllers that are designed based on offline dynamic models is adaptivity to the power system operating condition. With the increasing availability of wide-area measurements and the rapid development of system identification techniques, it is possible to identify a measurement-based transfer function model online that can be used to tune the oscillation damping controller. Such a model could capture all dominant oscillation modes for adaptive and coordinated oscillation damping control. our paper describes a comprehensive approach to identify a low-order transfer function model of a power system using a multi-input multi-outputmore » (MIMO) autoregressive moving average exogenous (ARMAX) model. This methodology consists of five steps: 1) input selection; 2) output selection; 3) identification trigger; 4) model estimation; and 5) model validation. The proposed method is validated by using ambient data and ring-down data in the 16-machine 68-bus Northeast Power Coordinating Council system. Our results demonstrate that the measurement-based model using MIMO ARMAX can capture all the dominant oscillation modes. Compared with the MIMO subspace state space model, the MIMO ARMAX model has equivalent accuracy but lower order and improved computational efficiency. The proposed model can be applied for adaptive and coordinated oscillation damping control.« less

  3. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  4. A Mixture Rasch Model-Based Computerized Adaptive Test for Latent Class Identification

    ERIC Educational Resources Information Center

    Jiao, Hong; Macready, George; Liu, Junhui; Cho, Youngmi

    2012-01-01

    This study explored a computerized adaptive test delivery algorithm for latent class identification based on the mixture Rasch model. Four item selection methods based on the Kullback-Leibler (KL) information were proposed and compared with the reversed and the adaptive KL information under simulated testing conditions. When item separation was…

  5. On neural networks in identification and control of dynamic systems

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Hyland, David C.

    1993-01-01

    This paper presents a discussion of the applicability of neural networks in the identification and control of dynamic systems. Emphasis is placed on the understanding of how the neural networks handle linear systems and how the new approach is related to conventional system identification and control methods. Extensions of the approach to nonlinear systems are then made. The paper explains the fundamental concepts of neural networks in their simplest terms. Among the topics discussed are feed forward and recurrent networks in relation to the standard state-space and observer models, linear and nonlinear auto-regressive models, linear, predictors, one-step ahead control, and model reference adaptive control for linear and nonlinear systems. Numerical examples are presented to illustrate the application of these important concepts.

  6. Natural frequency identification of smart washer by using adaptive observer

    NASA Astrophysics Data System (ADS)

    Ito, Hitoshi; Okugawa, Masayuki

    2014-04-01

    Bolted joints are used in many machines/structures and some of them have been loosened during long time use, and unluckily these bolt loosening may cause a great accident of machines/structures system. These bolted joint, especially in important places, are main object of maintenance inspection. Maintenance inspection with human- involvement is desired to be improved owing to time-consuming, labor-intensive and high-cost. By remote and full automation monitoring of the bolt loosening, constantly monitoring of bolted joint is achieved. In order to detect loosening of bolted joints without human-involvement, applying a structural health monitoring technique and smart structures/materials concept is the key objective. In this study, a new method of bolt loosening detection by adopting a smart washer has been proposed, and the basic detection principle was discussed with numerical analysis about frequency equation of the system, was confirmed experimentally. The smart washer used in this study is in cantilever type with piezoelectric material, which adds the washer the self-sensing and actuation function. The principle used to detect the loosening of the bolts is a method of a bolt loosening detection noted that the natural frequency of a smart washer system is decreasing by the change of the bolt tightening axial tension. The feature of this proposed method is achieving to identify the natural frequency at current condition on demand by adopting the self-sensing and actuation function and system identification algorithm for varying the natural frequency depending the bolt tightening axial tension. A novel bolt loosening detection method by adopting adaptive observer is proposed in this paper. The numerical simulations are performed to verify the possibility of the adaptive observer-based loosening detection. Improvement of the detection accuracy for a bolt loosening is confirmed by adopting initial parameter and variable adaptive gain by numerical simulation.

  7. Identification of propulsion systems

    NASA Technical Reports Server (NTRS)

    Merrill, Walter; Guo, Ten-Huei; Duyar, Ahmet

    1991-01-01

    This paper presents a tutorial on the use of model identification techniques for the identification of propulsion system models. These models are important for control design, simulation, parameter estimation, and fault detection. Propulsion system identification is defined in the context of the classical description of identification as a four step process that is unique because of special considerations of data and error sources. Propulsion system models are described along with the dependence of system operation on the environment. Propulsion system simulation approaches are discussed as well as approaches to propulsion system identification with examples for both air breathing and rocket systems.

  8. Self-Learning Embedded System for Object Identification in Intelligent Infrastructure Sensors.

    PubMed

    Villaverde, Monica; Perez, David; Moreno, Felix

    2015-11-17

    The emergence of new horizons in the field of travel assistant management leads to the development of cutting-edge systems focused on improving the existing ones. Moreover, new opportunities are being also presented since systems trend to be more reliable and autonomous. In this paper, a self-learning embedded system for object identification based on adaptive-cooperative dynamic approaches is presented for intelligent sensor's infrastructures. The proposed system is able to detect and identify moving objects using a dynamic decision tree. Consequently, it combines machine learning algorithms and cooperative strategies in order to make the system more adaptive to changing environments. Therefore, the proposed system may be very useful for many applications like shadow tolls since several types of vehicles may be distinguished, parking optimization systems, improved traffic conditions systems, etc.

  9. Automated Photoreceptor Cell Identification on Nonconfocal Adaptive Optics Images Using Multiscale Circular Voting.

    PubMed

    Liu, Jianfei; Jung, HaeWon; Dubra, Alfredo; Tam, Johnny

    2017-09-01

    Adaptive optics scanning light ophthalmoscopy (AOSLO) has enabled quantification of the photoreceptor mosaic in the living human eye using metrics such as cell density and average spacing. These rely on the identification of individual cells. Here, we demonstrate a novel approach for computer-aided identification of cone photoreceptors on nonconfocal split detection AOSLO images. Algorithms for identification of cone photoreceptors were developed, based on multiscale circular voting (MSCV) in combination with a priori knowledge that split detection images resemble Nomarski differential interference contrast images, in which dark and bright regions are present on the two sides of each cell. The proposed algorithm locates dark and bright region pairs, iteratively refining the identification across multiple scales. Identification accuracy was assessed in data from 10 subjects by comparing automated identifications with manual labeling, followed by computation of density and spacing metrics for comparison to histology and published data. There was good agreement between manual and automated cone identifications with overall recall, precision, and F1 score of 92.9%, 90.8%, and 91.8%, respectively. On average, computed density and spacing values using automated identification were within 10.7% and 11.2% of the expected histology values across eccentricities ranging from 0.5 to 6.2 mm. There was no statistically significant difference between MSCV-based and histology-based density measurements (P = 0.96, Kolmogorov-Smirnov 2-sample test). MSCV can accurately detect cone photoreceptors on split detection images across a range of eccentricities, enabling quick, objective estimation of photoreceptor mosaic metrics, which will be important for future clinical trials utilizing adaptive optics.

  10. Automated Photoreceptor Cell Identification on Nonconfocal Adaptive Optics Images Using Multiscale Circular Voting

    PubMed Central

    Liu, Jianfei; Jung, HaeWon; Dubra, Alfredo; Tam, Johnny

    2017-01-01

    Purpose Adaptive optics scanning light ophthalmoscopy (AOSLO) has enabled quantification of the photoreceptor mosaic in the living human eye using metrics such as cell density and average spacing. These rely on the identification of individual cells. Here, we demonstrate a novel approach for computer-aided identification of cone photoreceptors on nonconfocal split detection AOSLO images. Methods Algorithms for identification of cone photoreceptors were developed, based on multiscale circular voting (MSCV) in combination with a priori knowledge that split detection images resemble Nomarski differential interference contrast images, in which dark and bright regions are present on the two sides of each cell. The proposed algorithm locates dark and bright region pairs, iteratively refining the identification across multiple scales. Identification accuracy was assessed in data from 10 subjects by comparing automated identifications with manual labeling, followed by computation of density and spacing metrics for comparison to histology and published data. Results There was good agreement between manual and automated cone identifications with overall recall, precision, and F1 score of 92.9%, 90.8%, and 91.8%, respectively. On average, computed density and spacing values using automated identification were within 10.7% and 11.2% of the expected histology values across eccentricities ranging from 0.5 to 6.2 mm. There was no statistically significant difference between MSCV-based and histology-based density measurements (P = 0.96, Kolmogorov-Smirnov 2-sample test). Conclusions MSCV can accurately detect cone photoreceptors on split detection images across a range of eccentricities, enabling quick, objective estimation of photoreceptor mosaic metrics, which will be important for future clinical trials utilizing adaptive optics. PMID:28873173

  11. System Identification of X-33 Neural Network

    NASA Technical Reports Server (NTRS)

    Aggarwal, Shiv

    2003-01-01

    Modern flight control research has improved spacecraft survivability as its goal. To this end we need to have a failure detection system on board. In case the spacecraft is performing imperfectly, reconfiguration of control is needed. For that purpose we need to have parameter identification of spacecraft dynamics. Parameter identification of a system is called system identification. We treat the system as a black box which receives some inputs that lead to some outputs. The question is: what kind of parameters for a particular black box can correlate the observed inputs and outputs? Can these parameters help us to predict the outputs for a new given set of inputs? This is the basic problem of system identification. The X33 was supposed to have the onboard capability of evaluating the current performance and if needed to take the corrective measures to adapt to desired performance. The X33 is comprised of both rocket and aircraft vehicle design characteristics and requires, in general, analytical methods for evaluating its flight performance. Its flight consists of four phases: ascent, transition, entry and TAEM (Terminal Area Energy Management). It spends about 200 seconds in ascent phase, reaching an altitude of about 180,000 feet and a speed of about 10 to 15 Mach. During the transition phase which lasts only about 30 seconds, its altitude may increase to about 190,000 feet but its speed is reduced to about 9 Mach. At the beginning of this phase, the Main Engine is Cut Off (MECO) and the control is reconfigured with the help of aerosurfaces (four elevons, two flaps and two rudders) and reaction control system (RCS). The entry phase brings down the altitude of X33 to about 90,000 feet and its speed to about Mach 3. It spends about 250 seconds in this phase. Main engine is still cut off and the vehicle is controlled by complex maneuvers of aerosurfaces. The last phase TAEM lasts for about 450 seconds and the altitude and speed, both are reduced to zero. The

  12. Orthonormal filters for identification in active control systems

    NASA Astrophysics Data System (ADS)

    Mayer, Dirk

    2015-12-01

    Many active noise and vibration control systems require models of the control paths. When the controlled system changes slightly over time, adaptive digital filters for the identification of the models are useful. This paper aims at the investigation of a special class of adaptive digital filters: orthonormal filter banks possess the robust and simple adaptation of the widely applied finite impulse response (FIR) filters, but at a lower model order, which is important when considering implementation on embedded systems. However, the filter banks require prior knowledge about the resonance frequencies and damping of the structure. This knowledge can be supposed to be of limited precision, since in many practical systems, uncertainties in the structural parameters exist. In this work, a procedure using a number of training systems to find the fixed parameters for the filter banks is applied. The effect of uncertainties in the prior knowledge on the model error is examined both with a basic example and in an experiment. Furthermore, the possibilities to compensate for the imprecise prior knowledge by a higher filter order are investigated. Also comparisons with FIR filters are implemented in order to assess the possible advantages of the orthonormal filter banks. Numerical and experimental investigations show that significantly lower computational effort can be reached by the filter banks under certain conditions.

  13. System Identification for Nonlinear Control Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.; Linse, Dennis J.

    1990-01-01

    An approach to incorporating artificial neural networks in nonlinear, adaptive control systems is described. The controller contains three principal elements: a nonlinear inverse dynamic control law whose coefficients depend on a comprehensive model of the plant, a neural network that models system dynamics, and a state estimator whose outputs drive the control law and train the neural network. Attention is focused on the system identification task, which combines an extended Kalman filter with generalized spline function approximation. Continual learning is possible during normal operation, without taking the system off line for specialized training. Nonlinear inverse dynamic control requires smooth derivatives as well as function estimates, imposing stringent goals on the approximating technique.

  14. An online ID identification system for liquefied-gas cylinder plant

    NASA Astrophysics Data System (ADS)

    He, Jin; Ding, Zhenwen; Han, Lei; Zhang, Hao

    2017-11-01

    An automatic ID identification system for gas cylinders' online production was developed based on the production conditions and requirements of the Technical Committee for Standardization of Gas Cylinders. A cylinder ID image acquisition system was designed to improve the image contrast of ID regions on gas cylinders against the background. Then the ID digits region was located by the CNN template matching algorithm. Following that, an adaptive threshold method based on the analysis of local average grey value and standard deviation was proposed to overcome defects of non-uniform background in the segmentation results. To improve the single digit identification accuracy, two BP neural networks were trained respectively for the identification of all digits and the easily confusable digits. If the single digit was classified as one of confusable digits by the former BP neural network, it was further tested by the later one, and the later result was taken as the final identification result of this single digit. At last, the majority voting was adopted to decide the final identification result for the 6-digit cylinder ID. The developed system was installed on a production line of a liquefied-petroleum-gas cylinder plant and worked in parallel with the existing weighing step on the line. Through the field test, the correct identification rate for single ID digit was 94.73%, and none of the tested 2000 cylinder ID was misclassified through the majority voting.

  15. Adaptation in Living Systems

    NASA Astrophysics Data System (ADS)

    Tu, Yuhai; Rappel, Wouter-Jan

    2018-03-01

    Adaptation refers to the biological phenomenon where living systems change their internal states in response to changes in their environments in order to maintain certain key functions critical for their survival and fitness. Adaptation is one of the most ubiquitous and arguably one of the most fundamental properties of living systems. It occurs throughout all biological scales, from adaptation of populations of species over evolutionary time to adaptation of a single cell to different environmental stresses during its life span. In this article, we review some of the recent progress made in understanding molecular mechanisms of cellular-level adaptation. We take the minimalist (or the physicist) approach and study the simplest systems that exhibit generic adaptive behaviors, namely chemotaxis in bacterium cells (Escherichia coli) and eukaryotic cells (Dictyostelium). We focus on understanding the basic biochemical interaction networks that are responsible for adaptation dynamics. By combining theoretical modeling with quantitative experimentation, we demonstrate universal features in adaptation as well as important differences in different cellular systems. Future work in extending the modeling framework to study adaptation in more complex systems such as sensory neurons is also discussed.

  16. Retrospective Cost Adaptive Control with Concurrent Closed-Loop Identification

    NASA Astrophysics Data System (ADS)

    Sobolic, Frantisek M.

    Retrospective cost adaptive control (RCAC) is a discrete-time direct adaptive control algorithm for stabilization, command following, and disturbance rejection. RCAC is known to work on systems given minimal modeling information which is the leading numerator coefficient and any nonminimum-phase (NMP) zeros of the plant transfer function. This information is normally needed a priori and is key in the development of the filter, also known as the target model, within the retrospective performance variable. A novel approach to alleviate the need for prior modeling of both the leading coefficient of the plant transfer function as well as any NMP zeros is developed. The extension to the RCAC algorithm is the use of concurrent optimization of both the target model and the controller coefficients. Concurrent optimization of the target model and controller coefficients is a quadratic optimization problem in the target model and controller coefficients separately. However, this optimization problem is not convex as a joint function of both variables, and therefore nonconvex optimization methods are needed. Finally, insights within RCAC that include intercalated injection between the controller numerator and the denominator, unveil the workings of RCAC fitting a specific closed-loop transfer function to the target model. We exploit this interpretation by investigating several closed-loop identification architectures in order to extract this information for use in the target model.

  17. Automatic vasculature identification in coronary angiograms by adaptive geometrical tracking.

    PubMed

    Xiao, Ruoxiu; Yang, Jian; Goyal, Mahima; Liu, Yue; Wang, Yongtian

    2013-01-01

    As the uneven distribution of contrast agents and the perspective projection principle of X-ray, the vasculatures in angiographic image are with low contrast and are generally superposed with other organic tissues; therefore, it is very difficult to identify the vasculature and quantitatively estimate the blood flow directly from angiographic images. In this paper, we propose a fully automatic algorithm named adaptive geometrical vessel tracking (AGVT) for coronary artery identification in X-ray angiograms. Initially, the ridge enhancement (RE) image is obtained utilizing multiscale Hessian information. Then, automatic initialization procedures including seed points detection, and initial directions determination are performed on the RE image. The extracted ridge points can be adjusted to the geometrical centerline points adaptively through diameter estimation. Bifurcations are identified by discriminating connecting relationship of the tracked ridge points. Finally, all the tracked centerlines are merged and smoothed by classifying the connecting components on the vascular structures. Synthetic angiographic images and clinical angiograms are used to evaluate the performance of the proposed algorithm. The proposed algorithm is compared with other two vascular tracking techniques in terms of the efficiency and accuracy, which demonstrate successful applications of the proposed segmentation and extraction scheme in vasculature identification.

  18. Adaptive convex combination approach for the identification of improper quaternion processes.

    PubMed

    Ujang, Bukhari Che; Jahanchahi, Cyrus; Took, Clive Cheong; Mandic, Danilo P

    2014-01-01

    Data-adaptive optimal modeling and identification of real-world vector sensor data is provided by combining the fractional tap-length (FT) approach with model order selection in the quaternion domain. To account rigorously for the generality of such processes, both second-order circular (proper) and noncircular (improper), the proposed approach in this paper combines the FT length optimization with both the strictly linear quaternion least mean square (QLMS) and widely linear QLMS (WL-QLMS). A collaborative approach based on QLMS and WL-QLMS is shown to both identify the type of processes (proper or improper) and to track their optimal parameters in real time. Analysis shows that monitoring the evolution of the convex mixing parameter within the collaborative approach allows us to track the improperness in real time. Further insight into the properties of those algorithms is provided by establishing a relationship between the steady-state error and optimal model order. The approach is supported by simulations on model order selection and identification of both strictly linear and widely linear quaternion-valued systems, such as those routinely used in renewable energy (wind) and human-centered computing (biomechanics).

  19. Optimized System Identification

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Longman, Richard W.

    1999-01-01

    In system identification, one usually cares most about finding a model whose outputs are as close as possible to the true system outputs when the same input is applied to both. However, most system identification algorithms do not minimize this output error. Often they minimize model equation error instead, as in typical least-squares fits using a finite-difference model, and it is seen here that this distinction is significant. Here, we develop a set of system identification algorithms that minimize output error for multi-input/multi-output and multi-input/single-output systems. This is done with sequential quadratic programming iterations on the nonlinear least-squares problems, with an eigendecomposition to handle indefinite second partials. This optimization minimizes a nonlinear function of many variables, and hence can converge to local minima. To handle this problem, we start the iterations from the OKID (Observer/Kalman Identification) algorithm result. Not only has OKID proved very effective in practice, it minimizes an output error of an observer which has the property that as the data set gets large, it converges to minimizing the criterion of interest here. Hence, it is a particularly good starting point for the nonlinear iterations here. Examples show that the methods developed here eliminate the bias that is often observed using any system identification methods of either over-estimating or under-estimating the damping of vibration modes in lightly damped structures.

  20. Adaptive infinite impulse response system identification using modified-interior search algorithm with Lèvy flight.

    PubMed

    Kumar, Manjeet; Rawat, Tarun Kumar; Aggarwal, Apoorva

    2017-03-01

    In this paper, a new meta-heuristic optimization technique, called interior search algorithm (ISA) with Lèvy flight is proposed and applied to determine the optimal parameters of an unknown infinite impulse response (IIR) system for the system identification problem. ISA is based on aesthetics, which is commonly used in interior design and decoration processes. In ISA, composition phase and mirror phase are applied for addressing the nonlinear and multimodal system identification problems. System identification using modified-ISA (M-ISA) based method involves faster convergence, single parameter tuning and does not require derivative information because it uses a stochastic random search using the concepts of Lèvy flight. A proper tuning of control parameter has been performed in order to achieve a balance between intensification and diversification phases. In order to evaluate the performance of the proposed method, mean square error (MSE), computation time and percentage improvement are considered as the performance measure. To validate the performance of M-ISA based method, simulations has been carried out for three benchmarked IIR systems using same order and reduced order system. Genetic algorithm (GA), particle swarm optimization (PSO), cat swarm optimization (CSO), cuckoo search algorithm (CSA), differential evolution using wavelet mutation (DEWM), firefly algorithm (FFA), craziness based particle swarm optimization (CRPSO), harmony search (HS) algorithm, opposition based harmony search (OHS) algorithm, hybrid particle swarm optimization-gravitational search algorithm (HPSO-GSA) and ISA are also used to model the same examples and simulation results are compared. Obtained results confirm the efficiency of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Investigation of the Multiple Method Adaptive Control (MMAC) method for flight control systems

    NASA Technical Reports Server (NTRS)

    Athans, M.; Baram, Y.; Castanon, D.; Dunn, K. P.; Green, C. S.; Lee, W. H.; Sandell, N. R., Jr.; Willsky, A. S.

    1979-01-01

    The stochastic adaptive control of the NASA F-8C digital-fly-by-wire aircraft using the multiple model adaptive control (MMAC) method is presented. The selection of the performance criteria for the lateral and the longitudinal dynamics, the design of the Kalman filters for different operating conditions, the identification algorithm associated with the MMAC method, the control system design, and simulation results obtained using the real time simulator of the F-8 aircraft at the NASA Langley Research Center are discussed.

  2. A knowledge-based approach to identification and adaptation in dynamical systems control

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Wong, C. M.

    1988-01-01

    Artificial intelligence techniques are applied to the problems of model form and parameter identification of large-scale dynamic systems. The object-oriented knowledge representation is discussed in the context of causal modeling and qualitative reasoning. Structured sets of rules are used for implementing qualitative component simulations, for catching qualitative discrepancies and quantitative bound violations, and for making reconfiguration and control decisions that affect the physical system. These decisions are executed by backward-chaining through a knowledge base of control action tasks. This approach was implemented for two examples: a triple quadrupole mass spectrometer and a two-phase thermal testbed. Results of tests with both of these systems demonstrate that the software replicates some or most of the functionality of a human operator, thereby reducing the need for a human-in-the-loop in the lower levels of control of these complex systems.

  3. System/observer/controller identification toolbox

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Horta, Lucas G.; Phan, Minh

    1992-01-01

    System Identification is the process of constructing a mathematical model from input and output data for a system under testing, and characterizing the system uncertainties and measurement noises. The mathematical model structure can take various forms depending upon the intended use. The SYSTEM/OBSERVER/CONTROLLER IDENTIFICATION TOOLBOX (SOCIT) is a collection of functions, written in MATLAB language and expressed in M-files, that implements a variety of modern system identification techniques. For an open loop system, the central features of the SOCIT are functions for identification of a system model and its corresponding forward and backward observers directly from input and output data. The system and observers are represented by a discrete model. The identified model and observers may be used for controller design of linear systems as well as identification of modal parameters such as dampings, frequencies, and mode shapes. For a closed-loop system, an observer and its corresponding controller gain directly from input and output data.

  4. Wiener-Hammerstein system identification - an evolutionary approach

    NASA Astrophysics Data System (ADS)

    Naitali, Abdessamad; Giri, Fouad

    2016-01-01

    The problem of identifying parametric Wiener-Hammerstein (WH) systems is addressed within the evolutionary optimisation context. Specifically, a hybrid culture identification method is developed that involves model structure adaptation using genetic recombination and model parameter learning using particle swarm optimisation. The method enjoys three interesting features: (1) the risk of premature convergence of model parameter estimates to local optima is significantly reduced, due to the constantly maintained diversity of model candidates; (2) no prior knowledge is needed except for upper bounds on the system structure indices; (3) the method is fully autonomous as no interaction is needed with the user during the optimum search process. The performances of the proposed method will be illustrated and compared to alternative methods using a well-established WH benchmark.

  5. Application of dynamic recurrent neural networks in nonlinear system identification

    NASA Astrophysics Data System (ADS)

    Du, Yun; Wu, Xueli; Sun, Huiqin; Zhang, Suying; Tian, Qiang

    2006-11-01

    An adaptive identification method of simple dynamic recurrent neural network (SRNN) for nonlinear dynamic systems is presented in this paper. This method based on the theory that by using the inner-states feed-back of dynamic network to describe the nonlinear kinetic characteristics of system can reflect the dynamic characteristics more directly, deduces the recursive prediction error (RPE) learning algorithm of SRNN, and improves the algorithm by studying topological structure on recursion layer without the weight values. The simulation results indicate that this kind of neural network can be used in real-time control, due to its less weight values, simpler learning algorithm, higher identification speed, and higher precision of model. It solves the problems of intricate in training algorithm and slow rate in convergence caused by the complicate topological structure in usual dynamic recurrent neural network.

  6. Advanced driver assistance system: Road sign identification using VIAPIX system and a correlation technique

    NASA Astrophysics Data System (ADS)

    Ouerhani, Y.; Alfalou, A.; Desthieux, M.; Brosseau, C.

    2017-02-01

    We present a three-step approach based on the commercial VIAPIX® module for road traffic sign recognition and identification. Firstly, detection in a scene of all objects having characteristics of traffic signs is performed. This is followed by a first-level recognition based on correlation which consists in making a comparison between each detected object with a set of reference images of a database. Finally, a second level of identification allows us to confirm or correct the previous identification. In this study, we perform a correlation-based analysis by combining and adapting the Vander Lugt correlator with the nonlinear joint transformation correlator (JTC). Of particular significance, this approach permits to make a reliable decision on road traffic sign identification. We further discuss a robust scheme allowing us to track a detected road traffic sign in a video sequence for the purpose of increasing the decision performance of our system. This approach can have broad practical applications in the maintenance and rehabilitation of transportation infrastructure, or for drive assistance.

  7. Unbalance vibration suppression for AMBs system using adaptive notch filter

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Liu, Gang; Han, Bangcheng

    2017-09-01

    The unbalance of rotor levitated by active magnetic bearings (AMBs) will cause synchronous vibration which greatly degrade the performance at high speeds in the rotating machinery. To suppress the unbalance vibration without angular velocity information, a novel modified adaptive notch filter (ANF) with phase shift in the AMBs system is presented in this study. Firstly, a 4-degree-of-freedom (DOF) radial unbalanced AMB rotor system is described and analyzed, and the solution of rotor vibration displacement is compared with the experimental data to verify the preciseness of the dynamic model. Then the principle and structure of the proposed notch filter used for the frequency estimation and online identification of synchronous component are presented. As well, the convergence property of the algorithm is investigated. In addition, the stability analysis of the closed-loop AMB system with the proposed ANF is conducted. Simulation and experiments on an AMB driveline system demonstrate the effectiveness and the adaptive characteristics of the proposed ANF on the elimination of synchronous controlled current in a widely operating speed range.

  8. Recent developments in learning control and system identification for robots and structures

    NASA Technical Reports Server (NTRS)

    Phan, M.; Juang, J.-N.; Longman, R. W.

    1990-01-01

    This paper reviews recent results in learning control and learning system identification, with particular emphasis on discrete-time formulation, and their relation to adaptive theory. Related continuous-time results are also discussed. Among the topics presented are proportional, derivative, and integral learning controllers, time-domain formulation of discrete learning algorithms. Newly developed techniques are described including the concept of the repetition domain, and the repetition domain formulation of learning control by linear feedback, model reference learning control, indirect learning control with parameter estimation, as well as related basic concepts, recursive and non-recursive methods for learning identification.

  9. Comparison of a brain-based adaptive system and a manual adaptable system for invoking automation.

    PubMed

    Bailey, Nathan R; Scerbo, Mark W; Freeman, Frederick G; Mikulka, Peter J; Scott, Lorissa A

    2006-01-01

    Two experiments are presented examining adaptive and adaptable methods for invoking automation. Empirical investigations of adaptive automation have focused on methods used to invoke automation or on automation-related performance implications. However, no research has addressed whether performance benefits associated with brain-based systems exceed those in which users have control over task allocations. Participants performed monitoring and resource management tasks as well as a tracking task that shifted between automatic and manual modes. In the first experiment, participants worked with an adaptive system that used their electroencephalographic signals to switch the tracking task between automatic and manual modes. Participants were also divided between high- and low-reliability conditions for the system-monitoring task as well as high- and low-complacency potential. For the second experiment, participants operated an adaptable system that gave them manual control over task allocations. Results indicated increased situation awareness (SA) of gauge instrument settings for individuals high in complacency potential using the adaptive system. In addition, participants who had control over automation performed more poorly on the resource management task and reported higher levels of workload. A comparison between systems also revealed enhanced SA of gauge instrument settings and decreased workload in the adaptive condition. The present results suggest that brain-based adaptive automation systems may enhance perceptual level SA while reducing mental workload relative to systems requiring user-initiated control. Potential applications include automated systems for which operator monitoring performance and high-workload conditions are of concern.

  10. Adaptive vibration control of structures under earthquakes

    NASA Astrophysics Data System (ADS)

    Lew, Jiann-Shiun; Juang, Jer-Nan; Loh, Chin-Hsiung

    2017-04-01

    techniques, for structural vibration suppression under earthquakes. Various control strategies have been developed to protect structures from natural hazards and improve the comfort of occupants in buildings. However, there has been little development of adaptive building control with the integration of real-time system identification and control design. Generalized predictive control, which combines the process of real-time system identification and the process of predictive control design, has received widespread acceptance and has been successfully applied to various test-beds. This paper presents a formulation of the predictive control scheme for adaptive vibration control of structures under earthquakes. Comprehensive simulations are performed to demonstrate and validate the proposed adaptive control technique for earthquake-induced vibration of a building.

  11. Author Identification Systems

    ERIC Educational Resources Information Center

    Wagner, A. Ben

    2009-01-01

    Many efforts are currently underway to disambiguate author names and assign unique identification numbers so that publications by a given scholar can be reliably grouped together. This paper reviews a number of operational and in-development services. Some systems like ResearcherId.Com depend on self-registration and self-identification of a…

  12. Effects of age and cognition on a cross-cultural paediatric adaptation of the Sniffin' Sticks Identification Test.

    PubMed

    Bastos, Laís Orrico Donnabella; Guerreiro, Marilisa Mantovani; Lees, Andrew John; Warner, Thomas T; Silveira-Moriyama, Laura

    2015-01-01

    To study the effects of age and cognition on the performance of children aged 3 to 18 years on a culturally adapted version of the 16 item smell identification test from Sniffin' Sticks (SS16). A series of pilots were conducted on 29 children aged 3 to 18 years old and 23 adults to produce an adapted version of the SS16 suitable for Brazilian children (SS16-Child). A final version was applied to 51 children alongside a picture identification test (PIT-SS16-Child) to access cognitive abilities involved in the smell identification task. In addition 20 adults performed the same tasks as a comparison group. The final adapted SS16-Child was applied to 51 children with a mean age of 9.9 years (range 3-18 years, SD=4.25 years), of which 68.3% were girls. There was an independent effect of age (p<0.05) and PIT-SS16-Child (p<0.001) on the performance on the SS16-Child, and older children reached the ceiling for scoring in the cognitive and olfactory test. Pre-school children had difficulties identifying items of the test. A cross-culturally adapted version of the SS16 can be used to test olfaction in children but interpretation of the results must take age and cognitive abilities into consideration.

  13. Performance assessment of MEMS adaptive optics in tactical airborne systems

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1999-09-01

    Tactical airborne electro-optical systems are severely constrained by weight, volume, power, and cost. Micro- electrical-mechanical adaptive optics provide a solution that addresses the engineering realities without compromising spatial and temporal compensation requirements. Through modeling and analysis, we determined that substantial benefits could be gained for laser designators, ladar, countermeasures, and missile seekers. The developments potential exists for improving seeker imagery resolution 20 percent, extending countermeasures keep-out range by a factor of 5, doubling the range for ladar detection and identification, and compensating for supersonic and hypersonic aircraft boundary layers. Innovative concepts are required for atmospheric pat hand boundary layer compensation. We have developed design that perform these tasks using high speed scene-based wavefront sensing, IR aerosol laser guide stars, and extended-object wavefront beacons. We have developed a number of adaptive optics system configurations that met the spatial resolution requirements and we have determined that sensing and signal processing requirements can be met. With the help of micromachined deformable mirrors and sensor, we will be able to integrate the systems into existing airborne pods and missiles as well as next generation electro-optical systems.

  14. Turbine system and adapter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogberg, Nicholas Alvin; Garcia-Crespo, Andres Jose

    A turbine system and adapter are disclosed. The adapter includes a turbine attachment portion having a first geometry arranged to receive a corresponding geometry of a wheelpost of a turbine rotor, and a bucket attachment portion having a second geometry arranged to receive a corresponding geometry of a root portion of a non-metallic turbine bucket. Another adapter includes a turbine attachment portion arranged to receive a plurality of wheelposts of a turbine rotor, and a bucket attachment portion arranged to receive a plurality of non-metallic turbine buckets having single dovetail configuration root portions. The turbine system includes a turbine rotormore » wheel configured to receive metal buckets, at least one adapter secured to at least one wheelpost on the turbine rotor wheel, and at least one non-metallic bucket secured to the at least one adapter.« less

  15. Design of adaptive control systems by means of self-adjusting transversal filters

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.

    1986-01-01

    The design of closed-loop adaptive control systems based on nonparametric identification was addressed. Implementation is by self-adjusting Least Mean Square (LMS) transversal filters. The design concept is Model Reference Adaptive Control (MRAC). Major issues are to preserve the linearity of the error equations of each LMS filter, and to prevent estimation bias that is due to process or measurement noise, thus providing necessary conditions for the convergence and stability of the control system. The controlled element is assumed to be asymptotically stable and minimum phase. Because of the nonparametric Finite Impulse Response (FIR) estimates provided by the LMS filters, a-priori information on the plant model is needed only in broad terms. Following a survey of control system configurations and filter design considerations, system implementation is shown here in Single Input Single Output (SISO) format which is readily extendable to multivariable forms. In extensive computer simulation studies the controlled element is represented by a second-order system with widely varying damping, natural frequency, and relative degree.

  16. 33 CFR 401.20 - Automatic Identification System.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...' maritime Differential Global Positioning System radiobeacon services; or (7) The use of a temporary unit... Identification System. (a) Each of the following vessels must use an Automatic Identification System (AIS... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Automatic Identification System...

  17. Adaptive identifier for uncertain complex nonlinear systems based on continuous neural networks.

    PubMed

    Alfaro-Ponce, Mariel; Cruz, Amadeo Argüelles; Chairez, Isaac

    2014-03-01

    This paper presents the design of a complex-valued differential neural network identifier for uncertain nonlinear systems defined in the complex domain. This design includes the construction of an adaptive algorithm to adjust the parameters included in the identifier. The algorithm is obtained based on a special class of controlled Lyapunov functions. The quality of the identification process is characterized using the practical stability framework. Indeed, the region where the identification error converges is derived by the same Lyapunov method. This zone is defined by the power of uncertainties and perturbations affecting the complex-valued uncertain dynamics. Moreover, this convergence zone is reduced to its lowest possible value using ideas related to the so-called ellipsoid methodology. Two simple but informative numerical examples are developed to show how the identifier proposed in this paper can be used to approximate uncertain nonlinear systems valued in the complex domain.

  18. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  19. Identification of coal seam strata from geophysical logs of borehole using Adaptive Neuro-Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Yegireddi, Satyanarayana; Uday Bhaskar, G.

    2009-01-01

    Different parameters obtained through well-logging geophysical sensors such as SP, resistivity, gamma-gamma, neutron, natural gamma and acoustic, help in identification of strata and estimation of the physical, electrical and acoustical properties of the subsurface lithology. Strong and conspicuous changes in some of the log parameters associated with any particular stratigraphy formation, are function of its composition, physical properties and help in classification. However some substrata show moderate values in respective log parameters and make difficult to identify or assess the type of strata, if we go by the standard variability ranges of any log parameters and visual inspection. The complexity increases further with more number of sensors involved. An attempt is made to identify the type of stratigraphy from borehole geophysical log data using a combined approach of neural networks and fuzzy logic, known as Adaptive Neuro-Fuzzy Inference System. A model is built based on a few data sets (geophysical logs) of known stratigraphy of in coal areas of Kothagudem, Godavari basin and further the network model is used as test model to infer the lithology of a borehole from their geophysical logs, not used in simulation. The results are very encouraging and the model is able to decipher even thin cola seams and other strata from borehole geophysical logs. The model can be further modified to assess the physical properties of the strata, if the corresponding ground truth is made available for simulation.

  20. Robust uncertainty evaluation for system identification on distributed wireless platforms

    NASA Astrophysics Data System (ADS)

    Crinière, Antoine; Döhler, Michael; Le Cam, Vincent; Mevel, Laurent

    2016-04-01

    Health monitoring of civil structures by system identification procedures from automatic control is now accepted as a valid approach. These methods provide frequencies and modeshapes from the structure over time. For a continuous monitoring the excitation of a structure is usually ambient, thus unknown and assumed to be noise. Hence, all estimates from the vibration measurements are realizations of random variables with inherent uncertainty due to (unknown) process and measurement noise and finite data length. The underlying algorithms are usually running under Matlab under the assumption of large memory pool and considerable computational power. Even under these premises, computational and memory usage are heavy and not realistic for being embedded in on-site sensor platforms such as the PEGASE platform. Moreover, the current push for distributed wireless systems calls for algorithmic adaptation for lowering data exchanges and maximizing local processing. Finally, the recent breakthrough in system identification allows us to process both frequency information and its related uncertainty together from one and only one data sequence, at the expense of computational and memory explosion that require even more careful attention than before. The current approach will focus on presenting a system identification procedure called multi-setup subspace identification that allows to process both frequencies and their related variances from a set of interconnected wireless systems with all computation running locally within the limited memory pool of each system before being merged on a host supervisor. Careful attention will be given to data exchanges and I/O satisfying OGC standards, as well as minimizing memory footprints and maximizing computational efficiency. Those systems are built in a way of autonomous operations on field and could be later included in a wide distributed architecture such as the Cloud2SM project. The usefulness of these strategies is illustrated on

  1. Towards the identification of the loci of adaptive evolution

    PubMed Central

    Pardo-Diaz, Carolina; Salazar, Camilo; Jiggins, Chris D

    2015-01-01

    1. Establishing the genetic and molecular basis underlying adaptive traits is one of the major goals of evolutionary geneticists in order to understand the connection between genotype and phenotype and elucidate the mechanisms of evolutionary change. Despite considerable effort to address this question, there remain relatively few systems in which the genes shaping adaptations have been identified. 2. Here, we review the experimental tools that have been applied to document the molecular basis underlying evolution in several natural systems, in order to highlight their benefits, limitations and suitability. In most cases, a combination of DNA, RNA and functional methodologies with field experiments will be needed to uncover the genes and mechanisms shaping adaptation in nature. PMID:25937885

  2. Modal identification of dynamic mechanical systems

    NASA Astrophysics Data System (ADS)

    Srivastava, R. K.; Kundra, T. K.

    1992-07-01

    This paper reviews modal identification techniques which are now helping designers all over the world to improve the dynamic behavior of vibrating engineering systems. In this context the need to develop more accurate and faster parameter identification is ever increasing. A new dynamic stiffness matrix based identification method which is highly accurate, fast and system-dynamic-modification compatible is presented. The technique is applicable to all those multidegree-of-freedom systems where full receptance matrix can be experimentally measured.

  3. Interior Noise Reduction by Adaptive Feedback Vibration Control

    NASA Technical Reports Server (NTRS)

    Lim, Tae W.

    1998-01-01

    The objective of this project is to investigate the possible use of adaptive digital filtering techniques in simultaneous, multiple-mode identification of the modal parameters of a vibrating structure in real-time. It is intended that the results obtained from this project will be used for state estimation needed in adaptive structural acoustics control. The work done in this project is basically an extension of the work on real-time single mode identification, which was performed successfully using a digital signal processor (DSP) at NASA, Langley. Initially, in this investigation the single mode identification work was duplicated on a different processor, namely the Texas Instruments TMS32OC40 DSP. The system identification results for the single mode case were very good. Then an algorithm for simultaneous two mode identification was developed and tested using analytical simulation. When it successfully performed the expected tasks, it was implemented in real-time on the DSP system to identify the first two modes of vibration of a cantilever aluminum beam. The results of the simultaneous two mode case were good but some problems were identified related to frequency warping and spurious mode identification. The frequency warping problem was found to be due to the bilinear transformation used in the algorithm to convert the system transfer function from the continuous-time domain to the discrete-time domain. An alternative approach was developed to rectify the problem. The spurious mode identification problem was found to be associated with high sampling rates. Noise in the signal is suspected to be the cause of this problem but further investigation will be needed to clarify the cause. For simultaneous identification of more than two modes, it was found that theoretically an adaptive digital filter can be designed to identify the required number of modes, but the algebra became very complex which made it impossible to implement in the DSP system used in this study

  4. Parameter identification for nonlinear aerodynamic systems

    NASA Technical Reports Server (NTRS)

    Pearson, Allan E.

    1991-01-01

    Work continues on frequency analysis for transfer function identification, both with respect to the continued development of the underlying algorithms and in the identification study of two physical systems. Some new results of a theoretical nature were recently obtained that lend further insight into the frequency domain interpretation of the research. Progress in each of those areas is summarized. Although not related to the system identification problem, some new results were obtained on the feedback stabilization of linear time lag systems.

  5. System identification of the Arabidopsis plant circadian system

    NASA Astrophysics Data System (ADS)

    Foo, Mathias; Somers, David E.; Kim, Pan-Jun

    2015-02-01

    The circadian system generates an endogenous oscillatory rhythm that governs the daily activities of organisms in nature. It offers adaptive advantages to organisms through a coordination of their biological functions with the optimal time of day. In this paper, a model of the circadian system in the plant Arabidopsis (species thaliana) is built by using system identification techniques. Prior knowledge about the physical interactions of the genes and the proteins in the plant circadian system is incorporated in the model building exercise. The model is built by using primarily experimentally-verified direct interactions between the genes and the proteins with the available data on mRNA and protein abundances from the circadian system. Our analysis reveals a great performance of the model in predicting the dynamics of the plant circadian system through the effect of diverse internal and external perturbations (gene knockouts and day-length changes). Furthermore, we found that the circadian oscillatory rhythm is robust and does not vary much with the biochemical parameters except those of a light-sensitive protein P and a transcription factor TOC1. In other words, the circadian rhythmic profile is largely a consequence of the network's architecture rather than its particular parameters. Our work suggests that the current experimental knowledge of the gene-to-protein interactions in the plant Arabidopsis, without considering any additional hypothetical interactions, seems to suffice for system-level modeling of the circadian system of this plant and to present an exemplary platform for the control of network dynamics in complex living organisms.

  6. Experimental Simulation of Active Control With On-line System Identification on Sound Transmission Through an Elastic Plate

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An adaptive control algorithm with on-line system identification capability has been developed. One of the great advantages of this scheme is that an additional system identification mechanism such as an additional uncorrelated random signal generator as the source of system identification is not required. A time-varying plate-cavity system is used to demonstrate the control performance of this algorithm. The time-varying system consists of a stainless-steel plate which is bolted down on a rigid cavity opening where the cavity depth was changed with respect to time. For a given externally located harmonic sound excitation, the system identification and the control are simultaneously executed to minimize the transmitted sound in the cavity. The control performance of the algorithm is examined for two cases. First, all the water was drained, the external disturbance frequency is swept with 1 Hz/sec. The result shows an excellent frequency tracking capability with cavity internal sound suppression of 40 dB. For the second case, the water level is initially empty and then raised to 3/20 full in 60 seconds while the external sound excitation is fixed with a frequency. Hence, the cavity resonant frequency decreases and passes the external sound excitation frequency. The algorithm shows 40 dB transmitted noise suppression without compromising the system identification tracking capability.

  7. Evaluation of Automated Yeast Identification System

    NASA Technical Reports Server (NTRS)

    McGinnis, M. R.

    1996-01-01

    One hundred and nine teleomorphic and anamorphic yeast isolates representing approximately 30 taxa were used to evaluate the accuracy of the Biolog yeast identification system. Isolates derived from nomenclatural types, environmental, and clinica isolates of known identity were tested in the Biolog system. Of the isolates tested, 81 were in the Biolog database. The system correctly identified 40, incorrectly identified 29, and was unable to identify 12. Of the 28 isolates not in the database, 18 were given names, whereas 10 were not. The Biolog yeast identification system is inadequate for the identification of yeasts originating from the environment during space program activities.

  8. Decentralized System Identification Using Stochastic Subspace Identification for Wireless Sensor Networks

    PubMed Central

    Cho, Soojin; Park, Jong-Woong; Sim, Sung-Han

    2015-01-01

    Wireless sensor networks (WSNs) facilitate a new paradigm to structural identification and monitoring for civil infrastructure. Conventional structural monitoring systems based on wired sensors and centralized data acquisition systems are costly for installation as well as maintenance. WSNs have emerged as a technology that can overcome such difficulties, making deployment of a dense array of sensors on large civil structures both feasible and economical. However, as opposed to wired sensor networks in which centralized data acquisition and processing is common practice, WSNs require decentralized computing algorithms to reduce data transmission due to the limitation associated with wireless communication. In this paper, the stochastic subspace identification (SSI) technique is selected for system identification, and SSI-based decentralized system identification (SDSI) is proposed to be implemented in a WSN composed of Imote2 wireless sensors that measure acceleration. The SDSI is tightly scheduled in the hierarchical WSN, and its performance is experimentally verified in a laboratory test using a 5-story shear building model. PMID:25856325

  9. Adaptation in CRISPR-Cas Systems.

    PubMed

    Sternberg, Samuel H; Richter, Hagen; Charpentier, Emmanuelle; Qimron, Udi

    2016-03-17

    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins constitute an adaptive immune system in prokaryotes. The system preserves memories of prior infections by integrating short segments of foreign DNA, termed spacers, into the CRISPR array in a process termed adaptation. During the past 3 years, significant progress has been made on the genetic requirements and molecular mechanisms of adaptation. Here we review these recent advances, with a focus on the experimental approaches that have been developed, the insights they generated, and a proposed mechanism for self- versus non-self-discrimination during the process of spacer selection. We further describe the regulation of adaptation and the protein players involved in this fascinating process that allows bacteria and archaea to harbor adaptive immunity. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Model-on-Demand Predictive Control for Nonlinear Hybrid Systems With Application to Adaptive Behavioral Interventions

    PubMed Central

    Nandola, Naresh N.; Rivera, Daniel E.

    2011-01-01

    This paper presents a data-centric modeling and predictive control approach for nonlinear hybrid systems. System identification of hybrid systems represents a challenging problem because model parameters depend on the mode or operating point of the system. The proposed algorithm applies Model-on-Demand (MoD) estimation to generate a local linear approximation of the nonlinear hybrid system at each time step, using a small subset of data selected by an adaptive bandwidth selector. The appeal of the MoD approach lies in the fact that model parameters are estimated based on a current operating point; hence estimation of locations or modes governed by autonomous discrete events is achieved automatically. The local MoD model is then converted into a mixed logical dynamical (MLD) system representation which can be used directly in a model predictive control (MPC) law for hybrid systems using multiple-degree-of-freedom tuning. The effectiveness of the proposed MoD predictive control algorithm for nonlinear hybrid systems is demonstrated on a hypothetical adaptive behavioral intervention problem inspired by Fast Track, a real-life preventive intervention for improving parental function and reducing conduct disorder in at-risk children. Simulation results demonstrate that the proposed algorithm can be useful for adaptive intervention problems exhibiting both nonlinear and hybrid character. PMID:21874087

  11. Complex adaptive systems: concept analysis.

    PubMed

    Holden, Lela M

    2005-12-01

    The aim of this paper is to explicate the concept of complex adaptive systems through an analysis that provides a description, antecedents, consequences, and a model case from the nursing and health care literature. Life is more than atoms and molecules--it is patterns of organization. Complexity science is the latest generation of systems thinking that investigates patterns and has emerged from the exploration of the subatomic world and quantum physics. A key component of complexity science is the concept of complex adaptive systems, and active research is found in many disciplines--from biology to economics to health care. However, the research and literature related to these appealing topics have generated confusion. A thorough explication of complex adaptive systems is needed. A modified application of the methods recommended by Walker and Avant for concept analysis was used. A complex adaptive system is a collection of individual agents with freedom to act in ways that are not always totally predictable and whose actions are interconnected. Examples include a colony of termites, the financial market, and a surgical team. It is often referred to as chaos theory, but the two are not the same. Chaos theory is actually a subset of complexity science. Complexity science offers a powerful new approach--beyond merely looking at clinical processes and the skills of healthcare professionals. The use of complex adaptive systems as a framework is increasing for a wide range of scientific applications, including nursing and healthcare management research. When nursing and other healthcare managers focus on increasing connections, diversity, and interactions they increase information flow and promote creative adaptation referred to as self-organization. Complexity science builds on the rich tradition in nursing that views patients and nursing care from a systems perspective.

  12. Performance Assessment of the CapitalBio Mycobacterium Identification Array System for Identification of Mycobacteria

    PubMed Central

    Liu, Jingbo; Yan, Zihe; Han, Min; Han, Zhijun; Jin, Lingjie; Zhao, Yanlin

    2012-01-01

    The CapitalBio Mycobacterium identification microarray system is a rapid system for the detection of Mycobacterium tuberculosis. The performance of this system was assessed with 24 reference strains, 486 Mycobacterium tuberculosis clinical isolates, and 40 clinical samples and then compared to the “gold standard” of DNA sequencing. The CapitalBio Mycobacterium identification microarray system showed highly concordant identification results of 100% and 98.4% for Mycobacterium tuberculosis complex (MTC) and nontuberculous mycobacteria (NTM), respectively. The sensitivity and specificity of the CapitalBio Mycobacterium identification array for identification of Mycobacterium tuberculosis isolates were 99.6% and 100%, respectively, for direct detection and identification of clinical samples, and the overall sensitivity was 52.5%. It was 100% for sputum, 16.7% for pleural fluid, and 10% for bronchoalveolar lavage fluid, respectively. The total assay was completed in 6 h, including DNA extraction, PCR, and hybridization. The results of this study confirm the utility of this system for the rapid identification of mycobacteria and suggest that the CapitalBio Mycobacterium identification array is a molecular diagnostic technique with high sensitivity and specificity that has the capacity to quickly identify most mycobacteria. PMID:22090408

  13. Adaptation of cardiovascular system stent implants.

    PubMed

    Ostasevicius, Vytautas; Tretsyakou-Savich, Yahor; Venslauskas, Mantas; Bertasiene, Agne; Minchenya, Vladimir; Chernoglaz, Pavel

    2018-06-27

    Time-consuming design and manufacturing processes are a serious disadvantage when adapting human cardiovascular implants as they cause unacceptable delays after the decision to intervene surgically has been made. An ideal cardiovascular implant should have a broad range of characteristics such as strength, viscoelasticity and blood compatibility. The present research proposes the sequence of the geometrical adaptation procedures and presents their results. The adaptation starts from the identification of a person's current health status while performing abdominal aortic aneurysm (AAA) imaging, which is a point of departure for the mathematical model of a cardiovascular implant. The computerized tomography scan shows the patient-specific geometry parameters of AAA and helps to create a model using COMSOL Multiphysics software. The initial parameters for flow simulation are taken from the results of a patient survey. The simulation results allow choosing the available shape of an implant which ensures a non-turbulent flow. These parameters are essential for the design and manufacturing of an implant prototype which should be tested experimentally for the assurance that the mathematical model is adequate to a physical one. The article gives a focused description of competences and means that are necessary to achieve the shortest possible preparation of the adapted cardiovascular implant for the surgery.

  14. Survey of adaptive control using Liapunov design

    NASA Technical Reports Server (NTRS)

    Lindorff, D. P.; Carroll, R. L.

    1972-01-01

    A survey was made of the literature devoted to the synthesis of model-tracking adaptive systems based on application of Liapunov's second method. The basic synthesis procedure is introduced and a critical review of extensions made to the theory since 1966 is made. The extensions relate to design for relative stability, reduction of order techniques, design with disturbance, design with time variable parameters, multivariable systems, identification, and an adaptive observer.

  15. CRISPR-Cas: Adapting to change.

    PubMed

    Jackson, Simon A; McKenzie, Rebecca E; Fagerlund, Robert D; Kieper, Sebastian N; Fineran, Peter C; Brouns, Stan J J

    2017-04-07

    Bacteria and archaea are engaged in a constant arms race to defend against the ever-present threats of viruses and invasion by mobile genetic elements. The most flexible weapons in the prokaryotic defense arsenal are the CRISPR-Cas adaptive immune systems. These systems are capable of selective identification and neutralization of foreign DNA and/or RNA. CRISPR-Cas systems rely on stored genetic memories to facilitate target recognition. Thus, to keep pace with a changing pool of hostile invaders, the CRISPR memory banks must be regularly updated with new information through a process termed CRISPR adaptation. In this Review, we outline the recent advances in our understanding of the molecular mechanisms governing CRISPR adaptation. Specifically, the conserved protein machinery Cas1-Cas2 is the cornerstone of adaptive immunity in a range of diverse CRISPR-Cas systems. Copyright © 2017, American Association for the Advancement of Science.

  16. A control systems engineering approach for adaptive behavioral interventions: illustration with a fibromyalgia intervention.

    PubMed

    Deshpande, Sunil; Rivera, Daniel E; Younger, Jarred W; Nandola, Naresh N

    2014-09-01

    The term adaptive intervention has been used in behavioral medicine to describe operationalized and individually tailored strategies for prevention and treatment of chronic, relapsing disorders. Control systems engineering offers an attractive means for designing and implementing adaptive behavioral interventions that feature intensive measurement and frequent decision-making over time. This is illustrated in this paper for the case of a low-dose naltrexone treatment intervention for fibromyalgia. System identification methods from engineering are used to estimate dynamical models from daily diary reports completed by participants. These dynamical models then form part of a model predictive control algorithm which systematically decides on treatment dosages based on measurements obtained under real-life conditions involving noise, disturbances, and uncertainty. The effectiveness and implications of this approach for behavioral interventions (in general) and pain treatment (in particular) are demonstrated using informative simulations.

  17. NEEDS - Information Adaptive System

    NASA Technical Reports Server (NTRS)

    Kelly, W. L.; Benz, H. F.; Meredith, B. D.

    1980-01-01

    The Information Adaptive System (IAS) is an element of the NASA End-to-End Data System (NEEDS) Phase II and is focused toward onboard image processing. The IAS is a data preprocessing system which is closely coupled to the sensor system. Some of the functions planned for the IAS include sensor response nonuniformity correction, geometric correction, data set selection, data formatting, packetization, and adaptive system control. The inclusion of these sensor data preprocessing functions onboard the spacecraft will significantly improve the extraction of information from the sensor data in a timely and cost effective manner, and provide the opportunity to design sensor systems which can be reconfigured in near real-time for optimum performance. The purpose of this paper is to present the preliminary design of the IAS and the plans for its development.

  18. Stochastic system identification in structural dynamics

    USGS Publications Warehouse

    Safak, Erdal

    1988-01-01

    Recently, new identification methods have been developed by using the concept of optimal-recursive filtering and stochastic approximation. These methods, known as stochastic identification, are based on the statistical properties of the signal and noise, and do not require the assumptions of current methods. The criterion for stochastic system identification is that the difference between the recorded output and the output from the identified system (i.e., the residual of the identification) should be equal to white noise. In this paper, first a brief review of the theory is given. Then, an application of the method is presented by using ambient vibration data from a nine-story building.

  19. Performance characterization of material identification systems

    NASA Astrophysics Data System (ADS)

    Brown, Christopher D.; Green, Robert L.

    2006-10-01

    In recent years a number of analytical devices have been proposed and marketed specifically to enable field-based material identification. Technologies reliant on mass, near- and mid-infrared, and Raman spectroscopies are available today, and other platforms are imminent. These systems tend to perform material recognition based on an on-board library of material signatures. While figures of merit for traditional quantitative analytical sensors are broadly established (e.g., SNR, selectivity, sensitivity, limit of detection/decision), measures of performance for material identification systems have not been systematically discussed. In this paper we present an approach to performance characterization similar in spirit to ROC curves, but including elements of precision-recall curves and specialized for the intended-use of material identification systems. Important experimental considerations are discussed, including study design, sources of bias, uncertainty estimation, and cross-validation and the approach as a whole is illustrated using a commercially available handheld Raman material identification system.

  20. Identification and Evaluation of Medical Translator Mobile Applications Using an Adapted APPLICATIONS Scoring System.

    PubMed

    Khander, Amrin; Farag, Sara; Chen, Katherine T

    2017-12-22

    With an increasing number of patients requiring translator services, many providers are turning to mobile applications (apps) for assistance. However, there have been no published reviews of medical translator apps. To identify and evaluate medical translator mobile apps using an adapted APPLICATIONS scoring system. A list of apps was identified from the Apple iTunes and Google Play stores, using the search term, "medical translator." Apps not found on two different searches, not in an English-based platform, not used for translation, or not functional after purchase, were excluded. The remaining apps were evaluated using an adapted APPLICATIONS scoring system, which included both objective and subjective criteria. App comprehensiveness was a weighted score defined by the number of non-English languages included in each app relative to the proportion of non-English speakers in the United States. The Apple iTunes and Google Play stores. Medical translator apps identified using the search term "medical translator." Main Outcomes and Measures: Compilation of medical translator apps for provider usage. A total of 524 apps were initially found. After applying the exclusion criteria, 20 (8.2%) apps from the Google Play store and 26 (9.2%) apps from the Apple iTunes store remained for evaluation. The highest scoring apps, Canopy Medical Translator, Universal Doctor Speaker, and Vocre Translate, scored 13.5 out of 18.7 possible points. A large proportion of apps initially found did not function as medical translator apps. Using the APPLICATIONS scoring system, we have identified and evaluated medical translator apps for providers who care for non-English speaking patients.

  1. On Complete Control and Synchronization of Zhang Chaotic System with Uncertain Parameters using Adaptive Control Method

    NASA Astrophysics Data System (ADS)

    Tirandaz, Hamed

    2018-03-01

    Chaos control and synchronization of chaotic systems is seemingly a challenging problem and has got a lot of attention in recent years due to its numerous applications in science and industry. This paper concentrates on the control and synchronization problem of the three-dimensional (3D) Zhang chaotic system. At first, an adaptive control law and a parameter estimation law are achieved for controlling the behavior of the Zhang chaotic system. Then, non-identical synchronization of Zhang chaotic system is provided with considering the Lü chaotic system as the follower system. The synchronization problem and parameters identification are achieved by introducing an adaptive control law and a parameters estimation law. Stability analysis of the proposed method is proved by the Lyapanov stability theorem. In addition, the convergence of the estimated parameters to their truly unknown values are evaluated. Finally, some numerical simulations are carried out to illustrate and to validate the effectiveness of the suggested method.

  2. Survey of adaptive control using Liapunov design

    NASA Technical Reports Server (NTRS)

    Lindorff, D. P.; Carroll, R. L.

    1973-01-01

    A survey of the literature in which Liapunov's second method is used in determining the control law is presented, with emphasis placed on the model-tracking adaptive control problem. Forty references are listed. Following a brief tutorial exposition of the adaptive control problem, the techniques for treating reduction of order, disturbance and time-varying parameters, multivariable systems, identification, and adaptive observers are discussed. The method is critically evaluated, particularly with respect to possibilities for application.

  3. Decentralized system identification using stochastic subspace identification on wireless smart sensor networks

    NASA Astrophysics Data System (ADS)

    Sim, Sung-Han; Spencer, Billie F., Jr.; Park, Jongwoong; Jung, Hyungjo

    2012-04-01

    Wireless Smart Sensor Networks (WSSNs) facilitates a new paradigm to structural identification and monitoring for civil infrastructure. Conventional monitoring systems based on wired sensors and centralized data acquisition and processing have been considered to be challenging and costly due to cabling and expensive equipment and maintenance costs. WSSNs have emerged as a technology that can overcome such difficulties, making deployment of a dense array of sensors on large civil structures both feasible and economical. However, as opposed to wired sensor networks in which centralized data acquisition and processing is common practice, WSSNs require decentralized computing algorithms to reduce data transmission due to the limitation associated with wireless communication. Thus, several system identification methods have been implemented to process sensor data and extract essential information, including Natural Excitation Technique with Eigensystem Realization Algorithm, Frequency Domain Decomposition (FDD), and Random Decrement Technique (RDT); however, Stochastic Subspace Identification (SSI) has not been fully utilized in WSSNs, while SSI has the strong potential to enhance the system identification. This study presents a decentralized system identification using SSI in WSSNs. The approach is implemented on MEMSIC's Imote2 sensor platform and experimentally verified using a 5-story shear building model.

  4. Quantitative adaptation analytics for assessing dynamic systems of systems: LDRD Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, John H.; Miner, Nadine E.; Wilson, Michael L.

    2015-01-01

    Our society is increasingly reliant on systems and interoperating collections of systems, known as systems of systems (SoS). These SoS are often subject to changing missions (e.g., nation- building, arms-control treaties), threats (e.g., asymmetric warfare, terrorism), natural environments (e.g., climate, weather, natural disasters) and budgets. How well can SoS adapt to these types of dynamic conditions? This report details the results of a three year Laboratory Directed Research and Development (LDRD) project aimed at developing metrics and methodologies for quantifying the adaptability of systems and SoS. Work products include: derivation of a set of adaptability metrics, a method for combiningmore » the metrics into a system of systems adaptability index (SoSAI) used to compare adaptability of SoS designs, development of a prototype dynamic SoS (proto-dSoS) simulation environment which provides the ability to investigate the validity of the adaptability metric set, and two test cases that evaluate the usefulness of a subset of the adaptability metrics and SoSAI for distinguishing good from poor adaptability in a SoS. Intellectual property results include three patents pending: A Method For Quantifying Relative System Adaptability, Method for Evaluating System Performance, and A Method for Determining Systems Re-Tasking.« less

  5. An overview of recent advances in system identification

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    1994-01-01

    This paper presents an overview of the recent advances in system identification for modal testing and control of large flexible structures. Several techniques are discussed including the Observer/Kalman Filter Identification, the Observer/Controller Identification, and the State-Space System Identification in the Frequency Domain. The System/Observer/Controller Toolbox developed at NASA Langley Research Center is used to show the applications of these techniques to real aerospace structures such as the Hubble spacecraft telescope and the active flexible aircraft wing.

  6. Adaptive management of rangeland systems

    USGS Publications Warehouse

    Allen, Craig R.; Angeler, David G.; Fontaine, Joseph J.; Garmestani, Ahjond S.; Hart, Noelle M.; Pope, Kevin L.; Twidwell, Dirac

    2017-01-01

    Adaptive management is an approach to natural resource management that uses structured learning to reduce uncertainties for the improvement of management over time. The origins of adaptive management are linked to ideas of resilience theory and complex systems. Rangeland management is particularly well suited for the application of adaptive management, having sufficient controllability and reducible uncertainties. Adaptive management applies the tools of structured decision making and requires monitoring, evaluation, and adjustment of management. Adaptive governance, involving sharing of power and knowledge among relevant stakeholders, is often required to address conflict situations. Natural resource laws and regulations can present a barrier to adaptive management when requirements for legal certainty are met with environmental uncertainty. However, adaptive management is possible, as illustrated by two cases presented in this chapter. Despite challenges and limitations, when applied appropriately adaptive management leads to improved management through structured learning, and rangeland management is an area in which adaptive management shows promise and should be further explored.

  7. 30 CFR 75.1715 - Identification check system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system. [Statutory Provisions] Each operator of a coal mine shall establish a check-in and check-out system which will provide positive identification of every person underground, and will provide an... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Identification check system. 75.1715 Section 75...

  8. 30 CFR 75.1715 - Identification check system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... system. [Statutory Provisions] Each operator of a coal mine shall establish a check-in and check-out system which will provide positive identification of every person underground, and will provide an... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Identification check system. 75.1715 Section 75...

  9. 30 CFR 75.1715 - Identification check system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system. [Statutory Provisions] Each operator of a coal mine shall establish a check-in and check-out system which will provide positive identification of every person underground, and will provide an... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Identification check system. 75.1715 Section 75...

  10. 30 CFR 75.1715 - Identification check system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... system. [Statutory Provisions] Each operator of a coal mine shall establish a check-in and check-out system which will provide positive identification of every person underground, and will provide an... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Identification check system. 75.1715 Section 75...

  11. 30 CFR 75.1715 - Identification check system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... system. [Statutory Provisions] Each operator of a coal mine shall establish a check-in and check-out system which will provide positive identification of every person underground, and will provide an... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Identification check system. 75.1715 Section 75...

  12. Agricultural produce grading and sorting system using color CCD and new color identification algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Dongsheng; Zou, Jizuo; Yang, Yunping; Dong, Jianhua; Zhang, Yuanxiang

    1996-10-01

    A high-speed automatic agricultural produce grading and sorting system using color CCD and new color identification algorithm has been developed. In a typical application, the system can sort almonds into tow output grades according to their color. Almonds ar rich in 18 kinds of amino acids and 13 kinds of micro minerals and vitamins and can be made into almond drink. In order to ensure the drink quality, almonds must be sorted carefully before being made into a drink. Using this system, almonds can be sorted into two grades: up to grade and below grade almonds or foreign materials. A color CCD inspects the almonds passing on a conveyor of rotating rollers, a color identification algorithm grades almonds and distinguishes foreign materials from almonds. Employing an elaborately designed mechanism, the below grade almonds and foreign materials can be removed effectively from the raw almonds. This system can be easily adapted for inspecting and sorting other kinds of agricultural produce such as peanuts, beans tomatoes and so on.

  13. Parametric diagnosis of the adaptive gas path in the automatic control system of the aircraft engine

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T. A.

    2017-01-01

    The paper dwells on the adaptive multimode mathematical model of the gas-turbine aircraft engine (GTE) embedded in the automatic control system (ACS). The mathematical model is based on the throttle performances, and is characterized by high accuracy of engine parameters identification in stationary and dynamic modes. The proposed on-board engine model is the state space linearized low-level simulation. The engine health is identified by the influence of the coefficient matrix. The influence coefficient is determined by the GTE high-level mathematical model based on measurements of gas-dynamic parameters. In the automatic control algorithm, the sum of squares of the deviation between the parameters of the mathematical model and real GTE is minimized. The proposed mathematical model is effectively used for gas path defects detecting in on-line GTE health monitoring. The accuracy of the on-board mathematical model embedded in ACS determines the quality of adaptive control and reliability of the engine. To improve the accuracy of identification solutions and sustainability provision, the numerical method of Monte Carlo was used. The parametric diagnostic algorithm based on the LPτ - sequence was developed and tested. Analysis of the results suggests that the application of the developed algorithms allows achieving higher identification accuracy and reliability than similar models used in practice.

  14. Recommendation System for Adaptive Learning.

    PubMed

    Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Ying, Zhiliang

    2018-01-01

    An adaptive learning system aims at providing instruction tailored to the current status of a learner, differing from the traditional classroom experience. The latest advances in technology make adaptive learning possible, which has the potential to provide students with high-quality learning benefit at a low cost. A key component of an adaptive learning system is a recommendation system, which recommends the next material (video lectures, practices, and so on, on different skills) to the learner, based on the psychometric assessment results and possibly other individual characteristics. An important question then follows: How should recommendations be made? To answer this question, a mathematical framework is proposed that characterizes the recommendation process as a Markov decision problem, for which decisions are made based on the current knowledge of the learner and that of the learning materials. In particular, two plain vanilla systems are introduced, for which the optimal recommendation at each stage can be obtained analytically.

  15. Design Specifications for Adaptive Real-Time Systems

    DTIC Science & Technology

    1991-12-01

    TICfl \\ E CT E Design Specifications for JAN’\\ 1992 Adaptive Real - Time Systems fl Randall W. Lichota U, Alice H. Muntz - December 1991 \\ \\\\/ 0 / r...268-2056 Technical Report CMU/SEI-91-TR-20 ESD-91-TR-20 December 1991 Design Specifications for Adaptive Real - Time Systems Randall W. Lichota Hughes...Design Specifications for Adaptive Real - Time Systems Abstract: The design specification method described in this report treats a software

  16. A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems.

    PubMed

    Kazemi, Mahdi; Arefi, Mohammad Mehdi

    2017-03-01

    In this paper, an online identification algorithm is presented for nonlinear systems in the presence of output colored noise. The proposed method is based on extended recursive least squares (ERLS) algorithm, where the identified system is in polynomial Wiener form. To this end, an unknown intermediate signal is estimated by using an inner iterative algorithm. The iterative recursive algorithm adaptively modifies the vector of parameters of the presented Wiener model when the system parameters vary. In addition, to increase the robustness of the proposed method against variations, a robust RLS algorithm is applied to the model. Simulation results are provided to show the effectiveness of the proposed approach. Results confirm that the proposed method has fast convergence rate with robust characteristics, which increases the efficiency of the proposed model and identification approach. For instance, the FIT criterion will be achieved 92% in CSTR process where about 400 data is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. A Cross-Cultural Adaptation of the Sniffin' Sticks Olfactory Identification Test for US children.

    PubMed

    Cavazzana, Annachiara; Wesarg, Christiane; Schriever, Valentin A; Hummel, Thomas; Lundström, Johan N; Parma, Valentina

    2017-02-01

    Disorders associated with smell loss are common in adolescents. However, current odor identification tests focus on children from age 6 and older and no cross-cultural test has to date been validated and fully implemented. Here, we aimed to investigate how 3-to-11-year-old US children performed to an adapted and shortened (11 odors instead of 14) version of a European odor identification test-the Sniffin' Kids (Schriever VA, Mori E, Petters W, Boerner C, Smitka M, Hummel T. 2014. The "Sniffin'Kids" test: a 14-item odor identification test for children. Plos One. 9:e101086.). Results confirmed that cued odor identification performance increases with age and revealed little to no differences between girls and boys. Scores below 3 and below 6 may raise hyposmia concerns in US children aged 3-7 years and 8-10 years, respectively. Even though the completion rate of the task reached the 88%, suggesting that children below age 5 were able to finish the test, their performance was relatively poor. In comparing the overall identification performance of US children with that of German children, for whom the test was specifically developed, significant differences emerged, with higher scores obtained by the German sample. Analysis of errors indicated that a lack of semantic knowledge for the olfactory-presented objects may be at the root of poor identification skills in US children and therefore constitutes a problem in the development of an odor identification test for younger children valid across cultures. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Complex Adaptive Systems: The Theater Air Control System in Desert Storm

    DTIC Science & Technology

    2014-05-22

    insight into leverage points of effective and ineffective adaptation of the TACS. Successful adaptation indicates that increased variety or diversity of...encourages innovation and diversity of ideas. 15. SUBJECT TERMS Theater Air Control System, TACS, Complex Adaptive Systems, Adaptation, Desert Storm...increased variety or diversity of agents and purposeful behaviors are beneficial to overcoming complexity. Leaders play a key role in creating an

  19. System for tamper identification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobbitt, III, John Thomas; Weeks, George E.

    2017-09-05

    A system for tamper identification. A fastener has a tamper identification surface with a unique grain structure that is altered if the fastener is removed or otherwise exposed to sufficient torque. After a period of time such as e.g., shipment and/or storage of the sealed container, a determination of whether tampering has occurred can be undertaken by examining the grain structure to determine if it has changed since the fastener was used to seal the container or secure the device.

  20. Adaptive voting computer system

    NASA Technical Reports Server (NTRS)

    Koczela, L. J.; Wilgus, D. S. (Inventor)

    1974-01-01

    A computer system is reported that uses adaptive voting to tolerate failures and operates in a fail-operational, fail-safe manner. Each of four computers is individually connected to one of four external input/output (I/O) busses which interface with external subsystems. Each computer is connected to receive input data and commands from the other three computers and to furnish output data commands to the other three computers. An adaptive control apparatus including a voter-comparator-switch (VCS) is provided for each computer to receive signals from each of the computers and permits adaptive voting among the computers to permit the fail-operational, fail-safe operation.

  1. Continuous-Time Bilinear System Identification

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2003-01-01

    The objective of this paper is to describe a new method for identification of a continuous-time multi-input and multi-output bilinear system. The approach is to make judicious use of the linear-model properties of the bilinear system when subjected to a constant input. Two steps are required in the identification process. The first step is to use a set of pulse responses resulting from a constant input of one sample period to identify the state matrix, the output matrix, and the direct transmission matrix. The second step is to use another set of pulse responses with the same constant input over multiple sample periods to identify the input matrix and the coefficient matrices associated with the coupling terms between the state and the inputs. Numerical examples are given to illustrate the concept and the computational algorithm for the identification method.

  2. Fault Analysis of Space Station DC Power Systems-Using Neural Network Adaptive Wavelets to Detect Faults

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Wang, Yanchun; Dolce, James L.

    1997-01-01

    This paper describes the application of neural network adaptive wavelets for fault diagnosis of space station power system. The method combines wavelet transform with neural network by incorporating daughter wavelets into weights. Therefore, the wavelet transform and neural network training procedure become one stage, which avoids the complex computation of wavelet parameters and makes the procedure more straightforward. The simulation results show that the proposed method is very efficient for the identification of fault locations.

  3. Methodologies for Adaptive Flight Envelope Estimation and Protection

    NASA Technical Reports Server (NTRS)

    Tang, Liang; Roemer, Michael; Ge, Jianhua; Crassidis, Agamemnon; Prasad, J. V. R.; Belcastro, Christine

    2009-01-01

    This paper reports the latest development of several techniques for adaptive flight envelope estimation and protection system for aircraft under damage upset conditions. Through the integration of advanced fault detection algorithms, real-time system identification of the damage/faulted aircraft and flight envelop estimation, real-time decision support can be executed autonomously for improving damage tolerance and flight recoverability. Particularly, a bank of adaptive nonlinear fault detection and isolation estimators were developed for flight control actuator faults; a real-time system identification method was developed for assessing the dynamics and performance limitation of impaired aircraft; online learning neural networks were used to approximate selected aircraft dynamics which were then inverted to estimate command margins. As off-line training of network weights is not required, the method has the advantage of adapting to varying flight conditions and different vehicle configurations. The key benefit of the envelope estimation and protection system is that it allows the aircraft to fly close to its limit boundary by constantly updating the controller command limits during flight. The developed techniques were demonstrated on NASA s Generic Transport Model (GTM) simulation environments with simulated actuator faults. Simulation results and remarks on future work are presented.

  4. Adaptive identification of vessel's added moments of inertia with program motion

    NASA Astrophysics Data System (ADS)

    Alyshev, A. S.; Melnikov, V. G.

    2018-05-01

    In this paper, we propose a new experimental method for determining the moments of inertia of the ship model. The paper gives a brief review of existing methods, a description of the proposed method and experimental stand, test procedures and calculation formulas and experimental results. The proposed method is based on the energy approach with special program motions. The ship model is fixed in a special rack consisting of a torsion element and a set of additional servo drives with flywheels (reactive wheels), which correct the motion. The servo drives with an adaptive controller provide the symmetry of the motion, which is necessary for the proposed identification procedure. The effectiveness of the proposed approach is confirmed by experimental results.

  5. On Markov parameters in system identification

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Longman, Richard W.

    1991-01-01

    A detailed discussion of Markov parameters in system identification is given. Different forms of input-output representation of linear discrete-time systems are reviewed and discussed. Interpretation of sampled response data as Markov parameters is presented. Relations between the state-space model and particular linear difference models via the Markov parameters are formulated. A generalization of Markov parameters to observer and Kalman filter Markov parameters for system identification is explained. These extended Markov parameters play an important role in providing not only a state-space realization, but also an observer/Kalman filter for the system of interest.

  6. Framework for measuring adaptive knowledge-rich systems performance.

    PubMed

    Bushko, Renata G

    2005-01-01

    The universe is non repeatable in nature--most of events cannot be prestated and do not repeat themselves. The only way to create systems that are truly useful is to make them adaptive (able to reason by analogy and learn) and rich in knowledge (including common sense knowledge). Adaptive and knowledge-rich health management could get us closer to errorless health care where small incremental adjustments happen all the time preventing occurrence of an error. In the era of adaptive systems we need to have a way to evaluate their performance. Are they truly adaptive? How adaptive are they? Are they accurate enough? Are they fast enough? Are they cost effective? This chapter presents general framework for measuring adaptive knowledge-rich systems' performance and includes among others definitions of adaptiveness factor, britt (a unit of brittleness) and uso-quant (unit of usefulness of a piece of knowledge). Measuring adaptive knowledge-rich systems performance is one of the most important research areas that can have a big pay-off in healthcare now and in the future.

  7. An adaptive detector and channel estimator for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Mukai, R.; Arabshahi, P.; Yan, T. Y.

    2001-01-01

    This paper will discuss the design and testing of both the channel parameter identification system, and the adaptive threshold system, and illustrate their advantages and performance under simulated channel degradation conditions.

  8. Boundedness of the solutions for certain classes of fractional differential equations with application to adaptive systems.

    PubMed

    Aguila-Camacho, Norelys; Duarte-Mermoud, Manuel A

    2016-01-01

    This paper presents the analysis of three classes of fractional differential equations appearing in the field of fractional adaptive systems, for the case when the fractional order is in the interval α ∈(0,1] and the Caputo definition for fractional derivatives is used. The boundedness of the solutions is proved for all three cases, and the convergence to zero of the mean value of one of the variables is also proved. Applications of the obtained results to fractional adaptive schemes in the context of identification and control problems are presented at the end of the paper, including numerical simulations which support the analytical results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Operator adaptation to changes in system reliability under adaptable automation.

    PubMed

    Chavaillaz, Alain; Sauer, Juergen

    2017-09-01

    This experiment examined how operators coped with a change in system reliability between training and testing. Forty participants were trained for 3 h on a complex process control simulation modelling six levels of automation (LOA). In training, participants either experienced a high- (100%) or low-reliability system (50%). The impact of training experience on operator behaviour was examined during a 2.5 h testing session, in which participants either experienced a high- (100%) or low-reliability system (60%). The results showed that most operators did not often switch between LOA. Most chose an LOA that relieved them of most tasks but maintained their decision authority. Training experience did not have a strong impact on the outcome measures (e.g. performance, complacency). Low system reliability led to decreased performance and self-confidence. Furthermore, complacency was observed under high system reliability. Overall, the findings suggest benefits of adaptable automation because it accommodates different operator preferences for LOA. Practitioner Summary: The present research shows that operators can adapt to changes in system reliability between training and testing sessions. Furthermore, it provides evidence that each operator has his/her preferred automation level. Since this preference varies strongly between operators, adaptable automation seems to be suitable to accommodate these large differences.

  10. [Health: an adaptive complex system].

    PubMed

    Toro-Palacio, Luis Fernando; Ochoa-Jaramillo, Francisco Luis

    2012-02-01

    This article points out the enormous gap that exists between complex thinking of an intellectual nature currently present in our environment, and complex experimental thinking that has facilitated the scientific and technological advances that have radically changed the world. The article suggests that life, human beings, global society, and all that constitutes health be considered as adaptive complex systems. This idea, in turn, prioritizes the adoption of a different approach that seeks to expand understanding. When this rationale is recognized, the principal characteristics and emerging properties of health as an adaptive complex system are sustained, following a care and services delivery model. Finally, some pertinent questions from this perspective are put forward in terms of research, and a series of appraisals are expressed that will hopefully serve to help us understand all that we have become as individuals and as a species. The article proposes that the delivery of health care services be regarded as an adaptive complex system.

  11. A Comparison of a Brain-Based Adaptive System and a Manual Adaptable System for Invoking Automation

    NASA Technical Reports Server (NTRS)

    Bailey, Nathan R.; Scerbo, Mark W.; Freeman, Frederick G.; Mikulka, Peter J.; Scott, Lorissa A.

    2004-01-01

    Two experiments are presented that examine alternative methods for invoking automation. In each experiment, participants were asked to perform simultaneously a monitoring task and a resource management task as well as a tracking task that changed between automatic and manual modes. The monitoring task required participants to detect failures of an automated system to correct aberrant conditions under either high or low system reliability. Performance on each task was assessed as well as situation awareness and subjective workload. In the first experiment, half of the participants worked with a brain-based system that used their EEG signals to switch the tracking task between automatic and manual modes. The remaining participants were yoked to participants from the adaptive condition and received the same schedule of mode switches, but their EEG had no effect on the automation. Within each group, half of the participants were assigned to either the low or high reliability monitoring task. In addition, within each combination of automation invocation and system reliability, participants were separated into high and low complacency potential groups. The results revealed no significant effects of automation invocation on the performance measures; however, the high complacency individuals demonstrated better situation awareness when working with the adaptive automation system. The second experiment was the same as the first with one important exception. Automation was invoked manually. Thus, half of the participants pressed a button to invoke automation for 10 s. The remaining participants were yoked to participants from the adaptable condition and received the same schedule of mode switches, but they had no control over the automation. The results showed that participants who could invoke automation performed more poorly on the resource management task and reported higher levels of subjective workload. Further, those who invoked automation more frequently performed

  12. An adaptive load-following control system for a space nuclear power system

    NASA Astrophysics Data System (ADS)

    Metzger, John D.; El-Genk, Mohamed S.

    An adaptive load-following control system is proposed for a space nuclear power system. The conceptual design of the SP-100 space nuclear power system proposes operating the nuclear reactor at a base thermal power and accommodating changes in the electrical power demand with a shunt regulator. It is necessary to increase the reactor thermal power if the payload electrical demand exceeds the peak system electrical output for the associated reactor power. When it is necessary to change the nuclear reactor power to meet a change in the power demand, the power ascension or descension must be accomplished in a predetermined manner to avoid thermal stresses in the system and to achieve the desired reactor period. The load-following control system described has the ability to adapt to changes in the system and to changes in the satellite environment. The application is proposed of the model reference adaptive control (MRAC). The adaptive control system has the ability to control the dynamic response of nonlinear systems. Three basic subsets of adaptive control are: (1) gain scheduling, (2) self-tuning regulators, and (3) model reference adaptive control.

  13. Subcritical flutter testing and system identification

    NASA Technical Reports Server (NTRS)

    Houbolt, J. C.

    1974-01-01

    Treatment is given of system response evaluation, especially in application to subcritical flight and wind tunnel flutter testing of aircraft. An evaluation is made of various existing techniques, in conjuction with a companion survey which reports theoretical and analog experiments made to study the identification of system response characteristics. Various input excitations are considered, and new techniques for analyzing response are explored, particularly in reference to the prevalent practical case where unwanted input noise is present, such as caused by gusts or wind tunnel turbulence. Further developments are also made of system parameter identification techniques.

  14. Adaptive Behaviour Assessment System: Indigenous Australian Adaptation Model (ABAS: IAAM)

    ERIC Educational Resources Information Center

    du Plessis, Santie

    2015-01-01

    The study objectives were to develop, trial and evaluate a cross-cultural adaptation of the Adaptive Behavior Assessment System-Second Edition Teacher Form (ABAS-II TF) ages 5-21 for use with Indigenous Australian students ages 5-14. This study introduced a multiphase mixed-method design with semi-structured and informal interviews, school…

  15. Decoupling Identification for Serial Two-Link Two-Inertia System

    NASA Astrophysics Data System (ADS)

    Oaki, Junji; Adachi, Shuichi

    The purpose of our study is to develop a precise model by applying the technique of system identification for the model-based control of a nonlinear robot arm, under taking joint-elasticity into consideration. We previously proposed a systematic identification method, called “decoupling identification,” for a “SCARA-type” planar two-link robot arm with elastic joints caused by the Harmonic-drive® reduction gears. The proposed method serves as an extension of the conventional rigid-joint-model-based identification. The robot arm is treated as a serial two-link two-inertia system with nonlinearity. The decoupling identification method using link-accelerometer signals enables the serial two-link two-inertia system to be divided into two linear one-link two-inertia systems. The MATLAB®'s commands for state-space model estimation are utilized in the proposed method. Physical parameters such as motor inertias, link inertias, joint-friction coefficients, and joint-spring coefficients are estimated through the identified one-link two-inertia systems using a gray-box approach. This paper describes accuracy evaluations using the two-link arm for the decoupling identification method under introducing closed-loop-controlled elements and varying amplitude-setup of identification-input. Experimental results show that the identification method also works with closed-loop-controlled elements. Therefore, the identification method is applicable to a “PUMA-type” vertical robot arm under gravity.

  16. Adaptive System Modeling for Spacecraft Simulation

    NASA Technical Reports Server (NTRS)

    Thomas, Justin

    2011-01-01

    This invention introduces a methodology and associated software tools for automatically learning spacecraft system models without any assumptions regarding system behavior. Data stream mining techniques were used to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). Evaluation on historical ISS telemetry data shows that adaptive system modeling reduces simulation error anywhere from 50 to 90 percent over existing approaches. The purpose of the methodology is to outline how someone can create accurate system models from sensor (telemetry) data. The purpose of the software is to support the methodology. The software provides analysis tools to design the adaptive models. The software also provides the algorithms to initially build system models and continuously update them from the latest streaming sensor data. The main strengths are as follows: Creates accurate spacecraft system models without in-depth system knowledge or any assumptions about system behavior. Automatically updates/calibrates system models using the latest streaming sensor data. Creates device specific models that capture the exact behavior of devices of the same type. Adapts to evolving systems. Can reduce computational complexity (faster simulations).

  17. System Identification of a Vortex Lattice Aerodynamic Model

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Kholodar, Denis; Dowell, Earl H.

    2001-01-01

    The state-space presentation of an aerodynamic vortex model is considered from a classical and system identification perspective. Using an aerodynamic vortex model as a numerical simulator of a wing tunnel experiment, both full state and limited state data or measurements are considered. Two possible approaches for system identification are presented and modal controllability and observability are also considered. The theory then is applied to the system identification of a flow over an aerodynamic delta wing and typical results are presented.

  18. A bimodal biometric identification system

    NASA Astrophysics Data System (ADS)

    Laghari, Mohammad S.; Khuwaja, Gulzar A.

    2013-03-01

    Biometrics consists of methods for uniquely recognizing humans based upon one or more intrinsic physical or behavioral traits. Physicals are related to the shape of the body. Behavioral are related to the behavior of a person. However, biometric authentication systems suffer from imprecision and difficulty in person recognition due to a number of reasons and no single biometrics is expected to effectively satisfy the requirements of all verification and/or identification applications. Bimodal biometric systems are expected to be more reliable due to the presence of two pieces of evidence and also be able to meet the severe performance requirements imposed by various applications. This paper presents a neural network based bimodal biometric identification system by using human face and handwritten signature features.

  19. Adaptive and neuroadaptive control for nonnegative and compartmental dynamical systems

    NASA Astrophysics Data System (ADS)

    Volyanskyy, Kostyantyn Y.

    Neural networks have been extensively used for adaptive system identification as well as adaptive and neuroadaptive control of highly uncertain systems. The goal of adaptive and neuroadaptive control is to achieve system performance without excessive reliance on system models. To improve robustness and the speed of adaptation of adaptive and neuroadaptive controllers several controller architectures have been proposed in the literature. In this dissertation, we develop a new neuroadaptive control architecture for nonlinear uncertain dynamical systems. The proposed framework involves a novel controller architecture with additional terms in the update laws that are constructed using a moving window of the integrated system uncertainty. These terms can be used to identify the ideal system weights of the neural network as well as effectively suppress system uncertainty. Linear and nonlinear parameterizations of the system uncertainty are considered and state and output feedback neuroadaptive controllers are developed. Furthermore, we extend the developed framework to discrete-time dynamical systems. To illustrate the efficacy of the proposed approach we apply our results to an aircraft model with wing rock dynamics, a spacecraft model with unknown moment of inertia, and an unmanned combat aerial vehicle undergoing actuator failures, and compare our results with standard neuroadaptive control methods. Nonnegative systems are essential in capturing the behavior of a wide range of dynamical systems involving dynamic states whose values are nonnegative. A sub-class of nonnegative dynamical systems are compartmental systems. These systems are derived from mass and energy balance considerations and are comprised of homogeneous interconnected microscopic subsystems or compartments which exchange variable quantities of material via intercompartmental flow laws. In this dissertation, we develop direct adaptive and neuroadaptive control framework for stabilization, disturbance

  20. Adaptive protection algorithm and system

    DOEpatents

    Hedrick, Paul [Pittsburgh, PA; Toms, Helen L [Irwin, PA; Miller, Roger M [Mars, PA

    2009-04-28

    An adaptive protection algorithm and system for protecting electrical distribution systems traces the flow of power through a distribution system, assigns a value (or rank) to each circuit breaker in the system and then determines the appropriate trip set points based on the assigned rank.

  1. Adaptive Decision Aiding in Computer-Assisted Instruction: Adaptive Computerized Training System (ACTS).

    ERIC Educational Resources Information Center

    Hopf-Weichel, Rosemarie; And Others

    This report describes results of the first year of a three-year program to develop and evaluate a new Adaptive Computerized Training System (ACTS) for electronics maintenance training. (ACTS incorporates an adaptive computer program that learns the student's diagnostic and decision value structure, compares it to that of an expert, and adapts the…

  2. Multi-level RF identification system

    DOEpatents

    Steele, Kerry D.; Anderson, Gordon A.; Gilbert, Ronald W.

    2004-07-20

    A radio frequency identification system having a radio frequency transceiver for generating a continuous wave RF interrogation signal that impinges upon an RF identification tag. An oscillation circuit in the RF identification tag modulates the interrogation signal with a subcarrier of a predetermined frequency and modulates the frequency-modulated signal back to the transmitting interrogator. The interrogator recovers and analyzes the subcarrier signal and determines its frequency. The interrogator generates an output indicative of the frequency of the subcarrier frequency, thereby identifying the responding RFID tag as one of a "class" of RFID tags configured to respond with a subcarrier signal of a predetermined frequency.

  3. The Limits to Adaptation; A Systems Approach

    EPA Science Inventory

    The Limits to Adaptation: A Systems Approach. The ability to adapt to climate change is delineated by capacity thresholds, after which climate damages begin to overwhelm the adaptation response. Such thresholds depend upon physical properties (natural processes and engineering...

  4. Neural Networks and other Techniques for Fault Identification and Isolation of Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Innocenti, M.; Napolitano, M.

    2003-01-01

    Fault identification, isolation, and accomodation have become critical issues in the overall performance of advanced aircraft systems. Neural Networks have shown to be a very attractive alternative to classic adaptation methods for identification and control of non-linear dynamic systems. The purpose of this paper is to show the improvements in neural network applications achievable through the use of learning algorithms more efficient than the classic Back-Propagation, and through the implementation of the neural schemes in parallel hardware. The results of the analysis of a scheme for Sensor Failure, Detection, Identification and Accommodation (SFDIA) using experimental flight data of a research aircraft model are presented. Conventional approaches to the problem are based on observers and Kalman Filters while more recent methods are based on neural approximators. The work described in this paper is based on the use of neural networks (NNs) as on-line learning non-linear approximators. The performances of two different neural architectures were compared. The first architecture is based on a Multi Layer Perceptron (MLP) NN trained with the Extended Back Propagation algorithm (EBPA). The second architecture is based on a Radial Basis Function (RBF) NN trained with the Extended-MRAN (EMRAN) algorithms. In addition, alternative methods for communications links fault detection and accomodation are presented, relative to multiple unmanned aircraft applications.

  5. Adaptive control system having hedge unit and related apparatus and methods

    NASA Technical Reports Server (NTRS)

    Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)

    2003-01-01

    The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.

  6. Adaptive control in the presence of unmodeled dynamics. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Rohrs, C. E.

    1982-01-01

    Stability and robustness properties of a wide class of adaptive control algorithms in the presence of unmodeled dynamics and output disturbances were investigated. The class of adaptive algorithms considered are those commonly referred to as model reference adaptive control algorithms, self-tuning controllers, and dead beat adaptive controllers, developed for both continuous-time systems and discrete-time systems. A unified analytical approach was developed to examine the class of existing adaptive algorithms. It was discovered that all existing algorithms contain an infinite gain operator in the dynamic system that defines command reference errors and parameter errors; it is argued that such an infinite gain operator appears to be generic to all adaptive algorithms, whether they exhibit explicit or implicit parameter identification. It is concluded that none of the adaptive algorithms considered can be used with confidence in a practical control system design, because instability will set in with a high probability.

  7. Water System Adaptation To Hydrological Changes: Module 12, Models and Tools for Stormwater and Wastewater System Adaptation

    EPA Science Inventory

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  8. Data-Adaptable Modeling and Optimization for Runtime Adaptable Systems

    DTIC Science & Technology

    2016-06-08

    execution scenarios e . Enables model -guided optimization algorithms that outperform state-of-the-art f. Understands the overhead of system...the Data-Adaptable System Model (DASM), that facilitates design by enabling the designer to: 1) specify both an application’s task flow as well as...systems. The MILAN [3] framework specializes in the design, simulation , and synthesis of System On Chip (SoC) applications using model -based techniques

  9. CRISPR adaptive immune systems of Archaea

    PubMed Central

    Vestergaard, Gisle; Garrett, Roger A; Shah, Shiraz A

    2014-01-01

    CRISPR adaptive immune systems were analyzed for all available completed genomes of archaea, which included representatives of each of the main archaeal phyla. Initially, all proteins encoded within, and proximal to, CRISPR-cas loci were clustered and analyzed using a profile–profile approach. Then cas genes were assigned to gene cassettes and to functional modules for adaptation and interference. CRISPR systems were then classified primarily on the basis of their concatenated Cas protein sequences and gene synteny of the interference modules. With few exceptions, they could be assigned to the universal Type I or Type III systems. For Type I, subtypes I-A, I-B, and I-D dominate but the data support the division of subtype I-B into two subtypes, designated I-B and I-G. About 70% of the Type III systems fall into the universal subtypes III-A and III-B but the remainder, some of which are phyla-specific, diverge significantly in Cas protein sequences, and/or gene synteny, and they are classified separately. Furthermore, a few CRISPR systems that could not be assigned to Type I or Type III are categorized as variant systems. Criteria are presented for assigning newly sequenced archaeal CRISPR systems to the different subtypes. Several accessory proteins were identified that show a specific gene linkage, especially to Type III interference modules, and these may be cofunctional with the CRISPR systems. Evidence is presented for extensive exchange having occurred between adaptation and interference modules of different archaeal CRISPR systems, indicating the wide compatibility of the functionally diverse interference complexes with the relatively conserved adaptation modules. PMID:24531374

  10. Evaluation of the utility of a glycemic pattern identification system.

    PubMed

    Otto, Erik A; Tannan, Vinay

    2014-07-01

    With the increasing prevalence of systems allowing automated, real-time transmission of blood glucose data there is a need for pattern recognition techniques that can inform of deleterious patterns in glycemic control when people test. We evaluated the utility of pattern identification with a novel pattern identification system named Vigilant™ and compared it to standard pattern identification methods in diabetes. To characterize the importance of an identified pattern we evaluated the relative risk of future hypoglycemic and hyperglycemic events in diurnal periods following identification of a pattern in a data set of 536 patients with diabetes. We evaluated events 2 days, 7 days, 30 days, and 61-90 days from pattern identification, across diabetes types and cohorts of glycemic control, and also compared the system to 6 pattern identification methods consisting of deleterious event counts and percentages over 5-, 14-, and 30-day windows. Episodes of hypoglycemia, hyperglycemia, severe hypoglycemia, and severe hyperglycemia were 120%, 46%, 123%, and 76% more likely after pattern identification, respectively, compared to periods when no pattern was identified. The system was also significantly more predictive of deleterious events than other pattern identification methods evaluated, and was persistently predictive up to 3 months after pattern identification. The system identified patterns that are significantly predictive of deleterious glycemic events, and more so relative to many pattern identification methods used in diabetes management today. Further study will inform how improved pattern identification can lead to improved glycemic control. © 2014 Diabetes Technology Society.

  11. Managing Schools as Complex Adaptive Systems: A Strategic Perspective

    ERIC Educational Resources Information Center

    Fidan, Tuncer; Balci, Ali

    2017-01-01

    This conceptual study examines the analogies between schools and complex adaptive systems and identifies strategies used to manage schools as complex adaptive systems. Complex adaptive systems approach, introduced by the complexity theory, requires school administrators to develop new skills and strategies to realize their agendas in an…

  12. Adaptive Learning Resources Sequencing in Educational Hypermedia Systems

    ERIC Educational Resources Information Center

    Karampiperis, Pythagoras; Sampson, Demetrios

    2005-01-01

    Adaptive learning resources selection and sequencing is recognized as among the most interesting research questions in adaptive educational hypermedia systems (AEHS). In order to adaptively select and sequence learning resources in AEHS, the definition of adaptation rules contained in the Adaptation Model, is required. Although, some efforts have…

  13. Systems and Methods for Derivative-Free Adaptive Control

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J. (Inventor); Yucelen, Tansel (Inventor); Kim, Kilsoo (Inventor)

    2015-01-01

    An adaptive control system is disclosed. The control system can control uncertain dynamic systems. The control system can employ one or more derivative-free adaptive control architectures. The control system can further employ one or more derivative-free weight update laws. The derivative-free weight update laws can comprise a time-varying estimate of an ideal vector of weights. The control system of the present invention can therefore quickly stabilize systems that undergo sudden changes in dynamics, caused by, for example, sudden changes in weight. Embodiments of the present invention can also provide a less complex control system than existing adaptive control systems. The control system can control aircraft and other dynamic systems, such as, for example, those with non-minimum phase dynamics.

  14. System identification and sensorimotor determinants of flight maneuvers in an insect

    NASA Astrophysics Data System (ADS)

    Sponberg, Simon; Hall, Robert; Roth, Eatai

    Locomotor maneuvers are inherently closed-loop processes. They are generally characterized by the integration of multiple sensory inputs and adaptation or learning over time. To probe sensorimotor processing we take a system identification approach treating the underlying physiological systems as dynamic processes and altering the feedback topology in experiment and analysis. As a model system, we use agile hawk moths (Manduca sexta), which feed from real and robotic flowers while hovering in mid air. Moths rely on vision and mechanosensation to track floral targets and can do so at exceptionally low luminance levels despite hovering being a mechanically unstable behavior that requires neural feedback to stabilize. By altering the sensory environment and placing mechanical and visual signals in conflict we show a surprisingly simple linear summation of visual and mechanosensation produces a generative prediction of behavior to novel stimuli. Tracking performance is also limited more by the mechanics of flight than the magnitude of the sensory cue. A feedback systems approach to locomotor control results in new insights into how behavior emerges from the interaction of nonlinear physiological systems.

  15. The Computerized Adaptive Testing System Development Project.

    ERIC Educational Resources Information Center

    McBride, James R.; Sympson, J. B.

    The Computerized Adaptive Testing (CAT) project is a joint Armed Services coordinated effort to develop and evaluate a system for automated, adaptive administration of the Armed Services Vocational Aptitude Battery (ASVAB). The CAT is a system for administering personnel tests that differs from conventional test administration in two major…

  16. Water System Adaptation To Hydrological Changes: Module 7, Adaptation Principles and Considerations

    EPA Science Inventory

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  17. Evaluation of the maximum-likelihood adaptive neural system (MLANS) applications to noncooperative IFF

    NASA Astrophysics Data System (ADS)

    Chernick, Julian A.; Perlovsky, Leonid I.; Tye, David M.

    1994-06-01

    This paper describes applications of maximum likelihood adaptive neural system (MLANS) to the characterization of clutter in IR images and to the identification of targets. The characterization of image clutter is needed to improve target detection and to enhance the ability to compare performance of different algorithms using diverse imagery data. Enhanced unambiguous IFF is important for fratricide reduction while automatic cueing and targeting is becoming an ever increasing part of operations. We utilized MLANS which is a parametric neural network that combines optimal statistical techniques with a model-based approach. This paper shows that MLANS outperforms classical classifiers, the quadratic classifier and the nearest neighbor classifier, because on the one hand it is not limited to the usual Gaussian distribution assumption and can adapt in real time to the image clutter distribution; on the other hand MLANS learns from fewer samples and is more robust than the nearest neighbor classifiers. Future research will address uncooperative IFF using fused IR and MMW data.

  18. Control, Filtering and Prediction for Phased Arrays in Directed Energy Systems

    DTIC Science & Technology

    2016-04-30

    adaptive optics. 15. SUBJECT TERMS control, filtering, prediction, system identification, adaptive optics, laser beam pointing, target tracking, phase... laser beam control; furthermore, wavefront sensors are plagued by the difficulty of maintaining the required alignment and focusing in dynamic mission...developed new methods for filtering, prediction and system identification in adaptive optics for high energy laser systems including phased arrays. The

  19. Inherent robustness of discrete-time adaptive control systems

    NASA Technical Reports Server (NTRS)

    Ma, C. C. H.

    1986-01-01

    Global stability robustness with respect to unmodeled dynamics, arbitrary bounded internal noise, as well as external disturbance is shown to exist for a class of discrete-time adaptive control systems when the regressor vectors of these systems are persistently exciting. Although fast adaptation is definitely undesirable, so far as attaining the greatest amount of global stability robustness is concerned, slow adaptation is shown to be not necessarily beneficial. The entire analysis in this paper holds for systems with slowly varying return difference matrices; the plants in these systems need not be slowly varying.

  20. Application of identification techniques to remote manipulator system flight data

    NASA Technical Reports Server (NTRS)

    Shepard, G. D.; Lepanto, J. A.; Metzinger, R. W.; Fogel, E.

    1983-01-01

    This paper addresses the application of identification techniques to flight data from the Space Shuttle Remote Manipulator System (RMS). A description of the remote manipulator, including structural and control system characteristics, sensors, and actuators is given. A brief overview of system identification procedures is presented, and the practical aspects of implementing system identification algorithms are discussed. In particular, the problems posed by desampling rate, numerical error, and system nonlinearities are considered. Simulation predictions of damping, frequency, and system order are compared with values identified from flight data to support an evaluation of RMS structural and control system models. Finally, conclusions are drawn regarding the application of identification techniques to flight data obtained from a flexible space structure.

  1. Anti-collision radio-frequency identification system using passive SAW tags

    NASA Astrophysics Data System (ADS)

    Sorokin, A. V.; Shepeta, A. P.

    2017-06-01

    Modern multi sensor systems should have high operating speed and resistance to climate impacts. Radiofrequency systems use passive SAW tags for identification items and vehicles. These tags find application in industry, traffic remote control systems, and railway remote traffic control systems for identification and speed measuring. However, collision of the passive SAW RFID tags hinders development passive RFID SAW technology in Industry. The collision problem for passive SAW tags leads for incorrect identification and encoding each tag. In our researching, we suggest approach for identification of several passive SAW tags in collision case.

  2. Adaptive synchronization and anticipatory dynamical systems.

    PubMed

    Yang, Ying-Jen; Chen, Chun-Chung; Lai, Pik-Yin; Chan, C K

    2015-09-01

    Many biological systems can sense periodical variations in a stimulus input and produce well-timed, anticipatory responses after the input is removed. Such systems show memory effects for retaining timing information in the stimulus and cannot be understood from traditional synchronization consideration of passive oscillatory systems. To understand this anticipatory phenomena, we consider oscillators built from excitable systems with the addition of an adaptive dynamics. With such systems, well-timed post-stimulus responses similar to those from experiments can be obtained. Furthermore, a well-known model of working memory is shown to possess similar anticipatory dynamics when the adaptive mechanism is identified with synaptic facilitation. The last finding suggests that this type of oscillator can be common in neuronal systems with plasticity.

  3. Adaptive synchronization and anticipatory dynamical systems

    NASA Astrophysics Data System (ADS)

    Yang, Ying-Jen; Chen, Chun-Chung; Lai, Pik-Yin; Chan, C. K.

    2015-09-01

    Many biological systems can sense periodical variations in a stimulus input and produce well-timed, anticipatory responses after the input is removed. Such systems show memory effects for retaining timing information in the stimulus and cannot be understood from traditional synchronization consideration of passive oscillatory systems. To understand this anticipatory phenomena, we consider oscillators built from excitable systems with the addition of an adaptive dynamics. With such systems, well-timed post-stimulus responses similar to those from experiments can be obtained. Furthermore, a well-known model of working memory is shown to possess similar anticipatory dynamics when the adaptive mechanism is identified with synaptic facilitation. The last finding suggests that this type of oscillator can be common in neuronal systems with plasticity.

  4. Managing adaptively for multifunctionality in agricultural systems.

    PubMed

    Hodbod, Jennifer; Barreteau, Olivier; Allen, Craig; Magda, Danièle

    2016-12-01

    The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn't reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to increase

  5. Managing adaptively for multifunctionality in agricultural systems

    USGS Publications Warehouse

    Hodbod, Jennifer; Barreteau, Olivier; Allen, Craig R.; Magda, Danièle

    2016-01-01

    The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn’t reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to

  6. Is Integration Always most Adaptive? The Role of Cultural Identity in Academic Achievement and in Psychological Adaptation of Immigrant Students in Germany.

    PubMed

    Schotte, Kristin; Stanat, Petra; Edele, Aileen

    2018-01-01

    Immigrant adaptation research views identification with the mainstream context as particularly beneficial for sociocultural adaptation, including academic achievement, and identification with the ethnic context as particularly beneficial for psychological adaptation. A strong identification with both contexts is considered most beneficial for both outcomes (integration hypothesis). However, it is unclear whether the integration hypothesis applies in assimilative contexts, across different outcomes, and across different immigrant groups. This study investigates the association of cultural identity with several indicators of academic achievement and psychological adaptation in immigrant adolescents (N = 3894, 51% female, M age = 16.24, SD age  = 0.71) in Germany. Analyses support the integration hypothesis for aspects of psychological adaptation but not for academic achievement. Moreover, for some outcomes, findings vary across immigrant groups from Turkey (n = 809), the former Soviet Union (n = 712), and heterogeneous other countries (n = 2373). The results indicate that the adaptive potential of identity integration is limited in assimilative contexts, such as Germany, and that it may vary across different outcomes and groups. As each identification is positively associated with at least one outcome, however, both identification dimensions seem to be important for the adaptation of immigrant adolescents.

  7. Substructure System Identification for Finite Element Model Updating

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.; Blades, Eric L.

    1997-01-01

    This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.

  8. Visual Cues for an Adaptive Expert System.

    ERIC Educational Resources Information Center

    Miller, Helen B.

    NCR (National Cash Register) Corporation is pursuing opportunities to make their point of sale (POS) terminals easy to use and easy to learn. To approach the goal of making the technology invisible to the user, NCR has developed an adaptive expert prototype system for a department store POS operation. The structure for the adaptive system, the…

  9. Fractional System Identification: An Approach Using Continuous Order-Distributions

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Lorenzo, Carl F.

    1999-01-01

    This paper discusses the identification of fractional- and integer-order systems using the concept of continuous order-distribution. Based on the ability to define systems using continuous order-distributions, it is shown that frequency domain system identification can be performed using least squares techniques after discretizing the order-distribution.

  10. Utilizing feedback in adaptive SAR ATR systems

    NASA Astrophysics Data System (ADS)

    Horsfield, Owen; Blacknell, David

    2009-05-01

    Existing SAR ATR systems are usually trained off-line with samples of target imagery or CAD models, prior to conducting a mission. If the training data is not representative of mission conditions, then poor performance may result. In addition, it is difficult to acquire suitable training data for the many target types of interest. The Adaptive SAR ATR Problem Set (AdaptSAPS) program provides a MATLAB framework and image database for developing systems that adapt to mission conditions, meaning less reliance on accurate training data. A key function of an adaptive system is the ability to utilise truth feedback to improve performance, and it is this feature which AdaptSAPS is intended to exploit. This paper presents a new method for SAR ATR that does not use training data, based on supervised learning. This is achieved by using feature-based classification, and several new shadow features have been developed for this purpose. These features allow discrimination of vehicles from clutter, and classification of vehicles into two classes: targets, comprising military combat types, and non-targets, comprising bulldozers and trucks. The performance of the system is assessed using three baseline missions provided with AdaptSAPS, as well as three additional missions. All performance metrics indicate a distinct learning trend over the course of a mission, with most third and fourth quartile performance levels exceeding 85% correct classification. It has been demonstrated that these performance levels can be maintained even when truth feedback rates are reduced by up to 55% over the course of a mission.

  11. Spatiotemporal topology and temporal sequence identification with an adaptive time-delay neural network

    NASA Astrophysics Data System (ADS)

    Lin, Daw-Tung; Ligomenides, Panos A.; Dayhoff, Judith E.

    1993-08-01

    Inspired from the time delays that occur in neurobiological signal transmission, we describe an adaptive time delay neural network (ATNN) which is a powerful dynamic learning technique for spatiotemporal pattern transformation and temporal sequence identification. The dynamic properties of this network are formulated through the adaptation of time-delays and synapse weights, which are adjusted on-line based on gradient descent rules according to the evolution of observed inputs and outputs. We have applied the ATNN to examples that possess spatiotemporal complexity, with temporal sequences that are completed by the network. The ATNN is able to be applied to pattern completion. Simulation results show that the ATNN learns the topology of a circular and figure eight trajectories within 500 on-line training iterations, and reproduces the trajectory dynamically with very high accuracy. The ATNN was also trained to model the Fourier series expansion of the sum of different odd harmonics. The resulting network provides more flexibility and efficiency than the TDNN and allows the network to seek optimal values for time-delays as well as optimal synapse weights.

  12. Adaptive P300 based control system

    PubMed Central

    Jin, Jing; Allison, Brendan Z.; Sellers, Eric W.; Brunner, Clemens; Horki, Petar; Wang, Xingyu; Neuper, Christa

    2015-01-01

    An adaptive P300 brain-computer interface (BCI) using a 12 × 7 matrix explored new paradigms to improve bit rate and accuracy. During online use, the system adaptively selects the number of flashes to average. Five different flash patterns were tested. The 19-flash paradigm represents the typical row/column presentation (i.e., 12 columns and 7 rows). The 9- and 14-flash A & B paradigms present all items of the 12 × 7 matrix three times using either nine or 14 flashes (instead of 19), decreasing the amount of time to present stimuli. Compared to 9-flash A, 9-flash B decreased the likelihood that neighboring items would flash when the target was not flashing, thereby reducing interference from items adjacent to targets. 14-flash A also reduced adjacent item interference and 14-flash B additionally eliminated successive (double) flashes of the same item. Results showed that accuracy and bit rate of the adaptive system were higher than the non-adaptive system. In addition, 9- and 14-flash B produced significantly higher performance than their respective A conditions. The results also show the trend that the 14-flash B paradigm was better than the 19-flash pattern for naïve users. PMID:21474877

  13. Adaptive Control for Microgravity Vibration Isolation System

    NASA Technical Reports Server (NTRS)

    Yang, Bong-Jun; Calise, Anthony J.; Craig, James I.; Whorton, Mark S.

    2005-01-01

    Most active vibration isolation systems that try to a provide quiescent acceleration environment for space science experiments have utilized linear design methods. In this paper, we address adaptive control augmentation of an existing classical controller that employs a high-gain acceleration feedback together with a low-gain position feedback to center the isolated platform. The control design feature includes parametric and dynamic uncertainties because the hardware of the isolation system is built as a payload-level isolator, and the acceleration Sensor exhibits a significant bias. A neural network is incorporated to adaptively compensate for the system uncertainties, and a high-pass filter is introduced to mitigate the effect of the measurement bias. Simulations show that the adaptive control improves the performance of the existing acceleration controller and keep the level of the isolated platform deviation to that of the existing control system.

  14. Predictable and Adaptable Complex Real-Time Systems

    DTIC Science & Technology

    1993-09-30

    Predictable and Adaptable Complex Real - Time Systems Grant or Contract Number: N00014-92-J-1048 Reporting Period: 1 Oct 91 - 30 Sep 93 1... Real - Time Systems Grant or Contract Number: N00014-92-J-1048 Reporting Period: 1 Oct 91 - 30 Sep 93 2. Summary of Technical Progress Our...cs.umass.edu Grant or Contract Title: Predictable and Adaptable Complex Real - Time Systems Grant or Contract Number: N00014-92-J-1048 Reporting Period: 1 Oct 91

  15. Final Report - Regulatory Considerations for Adaptive Systems

    NASA Technical Reports Server (NTRS)

    Wilkinson, Chris; Lynch, Jonathan; Bharadwaj, Raj

    2013-01-01

    This report documents the findings of a preliminary research study into new approaches to the software design assurance of adaptive systems. We suggest a methodology to overcome the software validation and verification difficulties posed by the underlying assumption of non-adaptive software in the requirementsbased- testing verification methods in RTCA/DO-178B and C. An analysis of the relevant RTCA/DO-178B and C objectives is presented showing the reasons for the difficulties that arise in showing satisfaction of the objectives and suggested additional means by which they could be satisfied. We suggest that the software design assurance problem for adaptive systems is principally one of developing correct and complete high level requirements and system level constraints that define the necessary system functional and safety properties to assure the safe use of adaptive systems. We show how analytical techniques such as model based design, mathematical modeling and formal or formal-like methods can be used to both validate the high level functional and safety requirements, establish necessary constraints and provide the verification evidence for the satisfaction of requirements and constraints that supplements conventional testing. Finally the report identifies the follow-on research topics needed to implement this methodology.

  16. Certification Considerations for Adaptive Systems

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Siddhartha; Cofer, Darren; Musliner, David J.; Mueller, Joseph; Engstrom, Eric

    2015-01-01

    Advanced capabilities planned for the next generation of aircraft, including those that will operate within the Next Generation Air Transportation System (NextGen), will necessarily include complex new algorithms and non-traditional software elements. These aircraft will likely incorporate adaptive control algorithms that will provide enhanced safety, autonomy, and robustness during adverse conditions. Unmanned aircraft will operate alongside manned aircraft in the National Airspace (NAS), with intelligent software performing the high-level decision-making functions normally performed by human pilots. Even human-piloted aircraft will necessarily include more autonomy. However, there are serious barriers to the deployment of new capabilities, especially for those based upon software including adaptive control (AC) and artificial intelligence (AI) algorithms. Current civil aviation certification processes are based on the idea that the correct behavior of a system must be completely specified and verified prior to operation. This report by Rockwell Collins and SIFT documents our comprehensive study of the state of the art in intelligent and adaptive algorithms for the civil aviation domain, categorizing the approaches used and identifying gaps and challenges associated with certification of each approach.

  17. Adaptive fuzzy system for 3-D vision

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda

    1993-01-01

    An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.

  18. Evolution of complex adaptations in molecular systems

    PubMed Central

    Pál, Csaba; Papp, Balázs

    2017-01-01

    A central challenge in evolutionary biology concerns the mechanisms by which complex adaptations arise. Such adaptations depend on the fixation of multiple, highly specific mutations, where intermediate stages of evolution seemingly provide little or no benefit. It is generally assumed that the establishment of complex adaptations is very slow in nature, as evolution of such traits demands special population genetic or environmental circumstances. However, blueprints of complex adaptations in molecular systems are pervasive, indicating that they can readily evolve. We discuss the prospects and limitations of non-adaptive scenarios, which assume multiple neutral or deleterious steps in the evolution of complex adaptations. Next, we examine how complex adaptations can evolve by natural selection in changing environment. Finally, we argue that molecular ’springboards’, such as phenotypic heterogeneity and promiscuous interactions facilitate this process by providing access to new adaptive paths. PMID:28782044

  19. System Identification Methods for Aircraft Flight Control Development and Validation

    DOT National Transportation Integrated Search

    1995-10-01

    System-identification methods compose a mathematical model, or series of models, : from measurements of inputs and outputs of dynamic systems. This paper : discusses the use of frequency-domain system-identification methods for the : development and ...

  20. Adaptive pseudolinear compensators of dynamic characteristics of automatic control systems

    NASA Astrophysics Data System (ADS)

    Skorospeshkin, M. V.; Sukhodoev, M. S.; Timoshenko, E. A.; Lenskiy, F. V.

    2016-04-01

    Adaptive pseudolinear gain and phase compensators of dynamic characteristics of automatic control systems are suggested. The automatic control system performance with adaptive compensators has been explored. The efficiency of pseudolinear adaptive compensators in the automatic control systems with time-varying parameters has been demonstrated.

  1. Rotorcraft System Identification (L’Identification des Systemes de Voilures ;Tournantes)

    DTIC Science & Technology

    1991-09-01

    Icgroupe detraivail No.18 sur t~idenrifleariisndes systtmes tie vcilures trturnatnt~s. a proe~dde lapplicatioindte toure la gamme tic mdtboties...AD-A244 250 -liii ii _,AGARD-AR-280 , AGAL?1Mw ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT ag 7 RUE ANCELLE 92200 NEUILLY SUR SEINE FRANCE...DEVELOPMENT 7 RUE ANCELLE 92200 NEUILLY SUR SEINE FRANCE AGARD ADVISORY REPORT 280 Rotorcraft System Identification (L’ldcntification des Syst~mes de Voidures

  2. 49 CFR 1544.231 - Airport-approved and exclusive area personnel identification systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... carry out a personnel identification system for identification media that are airport-approved, or identification media that are issued for use in an exclusive area. The system must include the following: (1) Personnel identification media that— (i) Convey a full face image, full name, employer, and identification...

  3. System IDentification Programs for AirCraft (SIDPAC)

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2002-01-01

    A collection of computer programs for aircraft system identification is described and demonstrated. The programs, collectively called System IDentification Programs for AirCraft, or SIDPAC, were developed in MATLAB as m-file functions. SIDPAC has been used successfully at NASA Langley Research Center with data from many different flight test programs and wind tunnel experiments. SIDPAC includes routines for experiment design, data conditioning, data compatibility analysis, model structure determination, equation-error and output-error parameter estimation in both the time and frequency domains, real-time and recursive parameter estimation, low order equivalent system identification, estimated parameter error calculation, linear and nonlinear simulation, plotting, and 3-D visualization. An overview of SIDPAC capabilities is provided, along with a demonstration of the use of SIDPAC with real flight test data from the NASA Glenn Twin Otter aircraft. The SIDPAC software is available without charge to U.S. citizens by request to the author, contingent on the requestor completing a NASA software usage agreement.

  4. Attitude determination and calibration using a recursive maximum likelihood-based adaptive Kalman filter

    NASA Technical Reports Server (NTRS)

    Kelly, D. A.; Fermelia, A.; Lee, G. K. F.

    1990-01-01

    An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.

  5. Testing the adaptive value of circadian systems.

    PubMed

    Johnson, Carl Hirschie

    2005-01-01

    Circadian clocks are thought to enhance reproductive fitness. However, most of the evidence that supports the adaptiveness of clocks is not rigorous and falls into the category of "adaptive storytelling." Approaches that an evolutionary biologist would consider appropriate to address this issue are described along with an analysis of the evidence-past and present-that has been evoked to demonstrate the adaptive value of circadian systems.

  6. Performance of an optical identification and interrogation system

    NASA Astrophysics Data System (ADS)

    Venugopalan, A.; Ghosh, A. K.; Verma, P.; Cheng, S.

    2008-04-01

    A free space optics based identification and interrogation system has been designed. The applications of the proposed system lie primarily in areas which require a secure means of mutual identification and information exchange between optical readers and tags. Conventional RFIDs raise issues regarding security threats, electromagnetic interference and health safety. The security of RF-ID chips is low due to the wide spatial spread of radio waves. Malicious nodes can read data being transmitted on the network, if they are in the receiving range. The proposed system provides an alternative which utilizes the narrow paraxial beams of lasers and an RSA-based authentication scheme. These provide enhanced security to communication between a tag and the base station or reader. The optical reader can also perform remote identification and the tag can be read from a far off distance, given line of sight. The free space optical identification and interrogation system can be used for inventory management, security systems at airports, port security, communication with high security systems, etc. to name a few. The proposed system was implemented with low-cost, off-the-shelf components and its performance in terms of throughput and bit error rate has been measured and analyzed. The range of operation with a bit-error-rate lower than 10-9 was measured to be about 4.5 m. The security of the system is based on the strengths of the RSA encryption scheme implemented using more than 1024 bits.

  7. System identification and model reduction using modulating function techniques

    NASA Technical Reports Server (NTRS)

    Shen, Yan

    1993-01-01

    Weighted least squares (WLS) and adaptive weighted least squares (AWLS) algorithms are initiated for continuous-time system identification using Fourier type modulating function techniques. Two stochastic signal models are examined using the mean square properties of the stochastic calculus: an equation error signal model with white noise residuals, and a more realistic white measurement noise signal model. The covariance matrices in each model are shown to be banded and sparse, and a joint likelihood cost function is developed which links the real and imaginary parts of the modulated quantities. The superior performance of above algorithms is demonstrated by comparing them with the LS/MFT and popular predicting error method (PEM) through 200 Monte Carlo simulations. A model reduction problem is formulated with the AWLS/MFT algorithm, and comparisons are made via six examples with a variety of model reduction techniques, including the well-known balanced realization method. Here the AWLS/MFT algorithm manifests higher accuracy in almost all cases, and exhibits its unique flexibility and versatility. Armed with this model reduction, the AWLS/MFT algorithm is extended into MIMO transfer function system identification problems. The impact due to the discrepancy in bandwidths and gains among subsystem is explored through five examples. Finally, as a comprehensive application, the stability derivatives of the longitudinal and lateral dynamics of an F-18 aircraft are identified using physical flight data provided by NASA. A pole-constrained SIMO and MIMO AWLS/MFT algorithm is devised and analyzed. Monte Carlo simulations illustrate its high-noise rejecting properties. Utilizing the flight data, comparisons among different MFT algorithms are tabulated and the AWLS is found to be strongly favored in almost all facets.

  8. Nonlinear system identification technique validation

    NASA Astrophysics Data System (ADS)

    Rudko, M.; Bussgang, J. J.

    1982-01-01

    This final technical report describes the results obtained by SIGNATRON, Inc. of Lexington MA on Air Force Contract F30602-80-C-0104 for Rome Air Development Center. The objective of this effort is to develop a technique for identifying system response of nonlinear circuits by measurements of output response to known inputs. The report describes results of a study into the system identification technique based on the pencil-of-function method previously explored by Jain (1974) and Ewen (1979). The procedure identified roles of the linear response and is intended as a first step in nonlinear response and is intended as a first step in nonlinear circuit identification. There are serious implementation problems associated with the original approach such as loss of accuracy due to repeated integrations, lack of good measures of accuracy and computational iteration to identify the number of poles.

  9. Chronic infection and the origin of adaptive immune system.

    PubMed

    Usharauli, David

    2010-08-01

    It has been speculated that the rise of the adaptive immune system in jawed vertebrates some 400 million years ago gave them a superior protection to detect and defend against pathogens that became more elusive and/or virulent to the host that had only innate immune system. First, this line of thought implies that adaptive immune system was a new, more sophisticated layer of host defense that operated independently of the innate immune system. Second, the natural consequence of this scenario would be that pathogens would have exercised so strong an evolutionary pressure that eventually no host could have afforded not to have an adaptive immune system. Neither of these arguments is supported by the facts. First, new experimental evidence has firmly established that operation of adaptive immune system is critically dependent on the ability of the innate immune system to detect invader-pathogens and second, the absolute majority of animal kingdom survives just fine with only an innate immune system. Thus, these data raise the dilemma: If innate immune system was sufficient to detect and protect against pathogens, why then did adaptive immune system develop in the first place? In contrast to the innate immune system, the adaptive immune system has one important advantage, precision. By precision I mean the ability of the defense system to detect and remove the target, for example, infected cells, without causing unwanted bystander damage of surrounding tissue. While the target precision per se is not important for short-term immune response, it becomes a critical factor when the immune response is long-lasting, as during chronic infection. In this paper I would like to propose new, "toxic index" hypothesis where I argue that the need to reduce the collateral damage to the tissue during chronic infection(s) was the evolutionary pressure that led to the development of the adaptive immune system. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Modeling and parameter identification of impulse response matrix of mechanical systems

    NASA Astrophysics Data System (ADS)

    Bordatchev, Evgueni V.

    1998-12-01

    A method for studying the problem of modeling, identification and analysis of mechanical system dynamic characteristic in view of the impulse response matrix for the purpose of adaptive control is developed here. Two types of the impulse response matrices are considered: (i) on displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement and (ii) on acceleration, which also describes the space-coupled relationship between the vectors of the force and measured acceleration. The idea of identification consists of: (a) the practical obtaining of the impulse response matrix on acceleration by 'impact-response' technique; (b) the modeling and parameter estimation of the each impulse response function on acceleration through the fundamental representation of the impulse response function on displacement as a sum of the damped sine curves applying linear and non-linear least square methods; (c) simulating the impulse provides the additional possibility to calculate masses, damper and spring constants. The damped natural frequencies are used as a priori information and are found through the standard FFT analysis. The problem of double numerical integration is avoided by taking two derivations of the fundamental dynamic model of a mechanical system as linear combination of the mass-damper-spring subsystems. The identified impulse response matrix on displacement represents the dynamic properties of the mechanical system. From the engineering point of view, this matrix can be also understood as a 'dynamic passport' of the mechanical system and can be used for dynamic certification and analysis of the dynamic quality. In addition, the suggested approach mathematically reproduces amplitude-frequency response matrix in a low-frequency band and on zero frequency. This allows the possibility of determining the matrix of the

  11. Changing Paradigms: From Schooling to Schools as Adaptive Recommendation Systems

    ERIC Educational Resources Information Center

    Petersen, Anne Kristine; Christiansen, Rene B.; Gynther, Karsten

    2017-01-01

    The paper explores a shift in education from educational systems requiring student adaptation to educational recommendation systems adapting to students' individual needs. The paper discusses the concept of adaptation as addressed in educational research and draws on the system theory of Heinz von Foerster to shed light on how the educational…

  12. Water System Adaptation To Hydrological Changes: Module 14, Life Cycle Analysis (LCA) and Prioritization Tools in Water System Adaptation

    EPA Science Inventory

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  13. Modeling of Biometric Identification System Using the Colored Petri Nets

    NASA Astrophysics Data System (ADS)

    Petrosyan, G. R.; Ter-Vardanyan, L. A.; Gaboutchian, A. V.

    2015-05-01

    In this paper we present a model of biometric identification system transformed into Petri Nets. Petri Nets, as a graphical and mathematical tool, provide a uniform environment for modelling, formal analysis, and design of discrete event systems. The main objective of this paper is to introduce the fundamental concepts of Petri Nets to the researchers and practitioners, both from identification systems, who are involved in the work in the areas of modelling and analysis of biometric identification types of systems, as well as those who may potentially be involved in these areas. In addition, the paper introduces high-level Petri Nets, as Colored Petri Nets (CPN). In this paper the model of Colored Petri Net describes the identification process much simpler.

  14. Automated Microbiological Detection/Identification System

    PubMed Central

    Aldridge, C.; Jones, P. W.; Gibson, S.; Lanham, J.; Meyer, M.; Vannest, R.; Charles, R.

    1977-01-01

    An automated, computerized system, the AutoMicrobic System, has been developed for the detection, enumeration, and identification of bacteria and yeasts in clinical specimens. The biological basis for the system resides in lyophilized, highly selective and specific media enclosed in wells of a disposable plastic cuvette; introduction of a suitable specimen rehydrates and inoculates the media in the wells. An automated optical system monitors, and the computer interprets, changes in the media, with enumeration and identification results automatically obtained in 13 h. Sixteen different selective media were developed and tested with a variety of seeded (simulated) and clinical specimens. The AutoMicrobic System has been extensively tested with urine specimens, using a urine test kit (Identi-Pak) that contains selective media for Escherichia coli, Proteus species, Pseudomonas aeruginosa, Klebsiella-Enterobacter species, Serratia species, Citrobacter freundii, group D enterococci, Staphylococcus aureus, and yeasts (Candida species and Torulopsis glabrata). The system has been tested with 3,370 seeded urine specimens and 1,486 clinical urines. Agreement with simultaneous conventional (manual) cultures, at levels of 70,000 colony-forming units per ml (or more), was 92% or better for seeded specimens; clinical specimens yielded results of 93% or better for all organisms except P. aeruginosa, where agreement was 86%. System expansion in progress includes antibiotic susceptibility testing and compatibility with most types of clinical specimens. Images PMID:334798

  15. Identification de lois constitutives et de lois de frottement adaptées aux grandes vitesses de sollicitation

    NASA Astrophysics Data System (ADS)

    Dalverny, O.; Capéraa, S.; Pantalé, O.; Sattouf, C.

    2002-12-01

    Cet article présente une méthodologie d'identification de lois constitutives et de lois de contact adaptées aux matériaux métalliques sous chargement dynamique à grande vitesse de déformation. Les essais sont effectués à partir de montages expérimentaux adaptés à un lanceur à gaz permettant d'obtenir une vitesse de projectile de l'ordre de 350m/s pour une masse totale de 30gr. Le premier essai consiste en un impact de Taylor correspondant à un chargement mécanique de type compression. Le second essai de type “extrusion conique" permet la détermination des lois de frottement à grande vitesse. La procédure générale d'identification des lois de comportement à partir d'essais dynamiques se fait au moyen d'une analyse post-mortem des échantillons et de la corrélation entre ces résultats expérimentaux et un modèle numérique des essais. Pour les deux cas précédemment cités, nous présentons la configuration optimale d'essai ainsi que les résultats obtenus à partir d'un algorithme d'optimisation de type Levenberg-Marquard.

  16. A visual surveillance system for person re-identification

    NASA Astrophysics Data System (ADS)

    El-Alfy, Hazem; Muramatsu, Daigo; Teranishi, Yuuichi; Nishinaga, Nozomu; Makihara, Yasushi; Yagi, Yasushi

    2017-03-01

    We attempt the problem of autonomous surveillance for person re-identification. This is an active research area, where most recent work focuses on the open challenges of re-identification, independently of prerequisites of detection and tracking. In this paper, we are interested in designing a complete surveillance system, joining all the pieces of the puzzle together. We start by collecting our own dataset from multiple cameras. Then, we automate the process of detection and tracking of human subjects in the scenes, followed by performing the re-identification task. We evaluate the recognition performance of our system, report its strengths, discuss open challenges and suggest ways to address them.

  17. System Identification for the Clipper Liberty C96 Wind Turbine

    NASA Astrophysics Data System (ADS)

    Showers, Daniel

    System identification techniques are powerful tools that help improve modeling capabilities of real world dynamic systems. These techniques are well established and have been successfully used on countless systems in many areas. However, wind turbines provide a unique challenge for system identification because of the difficulty in measuring its primary input: wind. This thesis first motivates the problem by demonstrating the challenges with wind turbine system identification using both simulations and real data. It then suggests techniques toward successfully identifying a dynamic wind turbine model including the notion of an effective wind speed and how it might be measured. Various levels of simulation complexity are explored for insights into calculating an effective wind speed. In addition, measurements taken from the University of Minnesota's Clipper Liberty C96 research wind turbine are used for a preliminary investigation into the effective wind speed calculation and system identification of a real world wind turbine.

  18. Application of Complex Adaptive Systems in Portfolio Management

    ERIC Educational Resources Information Center

    Su, Zheyuan

    2017-01-01

    Simulation-based methods are becoming a promising research tool in financial markets. A general Complex Adaptive System can be tailored to different application scenarios. Based on the current research, we built two models that would benefit portfolio management by utilizing Complex Adaptive Systems (CAS) in Agent-based Modeling (ABM) approach.…

  19. System identification methods for aircraft flight control development and validation

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1995-01-01

    System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.

  20. Real-time tracking control of electro-hydraulic force servo systems using offline feedback control and adaptive control.

    PubMed

    Shen, Gang; Zhu, Zhencai; Zhao, Jinsong; Zhu, Weidong; Tang, Yu; Li, Xiang

    2017-03-01

    This paper focuses on an application of an electro-hydraulic force tracking controller combined with an offline designed feedback controller (ODFC) and an online adaptive compensator in order to improve force tracking performance of an electro-hydraulic force servo system (EHFS). A proportional-integral controller has been employed and a parameter-based force closed-loop transfer function of the EHFS is identified by a continuous system identification algorithm. By taking the identified system model as a nominal plant model, an H ∞ offline design method is employed to establish an optimized feedback controller with consideration of the performance, control efforts, and robustness of the EHFS. In order to overcome the disadvantage of the offline designed controller and cope with the varying dynamics of the EHFS, an online adaptive compensator with a normalized least-mean-square algorithm is cascaded to the force closed-loop system of the EHFS compensated by the ODFC. Some comparative experiments are carried out on a real-time EHFS using an xPC rapid prototype technology, and the proposed controller yields a better force tracking performance improvement. Copyright © 2016. Published by Elsevier Ltd.

  1. A reduced adaptive observer for multivariable systems. [using reduced dynamic ordering

    NASA Technical Reports Server (NTRS)

    Carroll, R. L.; Lindorff, D. P.

    1973-01-01

    An adaptive observer for multivariable systems is presented for which the dynamic order of the observer is reduced, subject to mild restrictions. The observer structure depends directly upon the multivariable structure of the system rather than a transformation to a single-output system. The number of adaptive gains is at most the sum of the order of the system and the number of input parameters being adapted. Moreover, for the relatively frequent specific cases for which the number of required adaptive gains is less than the sum of system order and input parameters, the number of these gains is easily determined by inspection of the system structure. This adaptive observer possesses all the properties ascribed to the single-input single-output adpative observer. Like the other adaptive observers some restriction is required of the allowable system command input to guarantee convergence of the adaptive algorithm, but the restriction is more lenient than that required by the full-order multivariable observer. This reduced observer is not restricted to cycle systems.

  2. Evaluation of the Microbial Identification System for identification of clinically isolated yeasts.

    PubMed Central

    Crist, A E; Johnson, L M; Burke, P J

    1996-01-01

    The Microbial Identification System (MIS; Microbial ID, Inc., Newark, Del.) was evaluated for the identification of 550 clinically isolated yeasts. The organisms evaluated were fresh clinical isolates identified by methods routinely used in our laboratory (API 20C and conventional methods) and included Candida albicans (n = 294), C. glabrata (n = 145), C. tropicalis (n = 58), C. parapsilosis (n = 33), and other yeasts (n = 20). In preparation for fatty acid analysis, yeasts were inoculated onto Sabouraud dextrose agar and incubated at 28 degrees C for 24 h. Yeasts were harvested, saponified, derivatized, and extracted, and fatty acid analysis was performed according to the manufacturer's instructions. Fatty acid profiles were analyzed, and computer identifications were made with the Yeast Clinical Library (database version 3.8). Of the 550 isolates tested, 374 (68.0%) were correctly identified to the species level, with 87 (15.8%) being incorrectly identified and 89 (16.2%) giving no identification. Repeat testing of isolates giving no identification resulted in an additional 18 isolates being correctly identified. This gave the MIS an overall identification rate of 71.3%. The most frequently misidentified yeast was C. glabrata, which was identified as Saccharomyces cerevisiae 32.4% of the time. On the basis of these results, the MIS, with its current database, does not appear suitable for the routine identification of clinically important yeasts. PMID:8880489

  3. Verification and Validation Challenges for Adaptive Flight Control of Complex Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2018-01-01

    Autonomy of aerospace systems requires the ability for flight control systems to be able to adapt to complex uncertain dynamic environment. In spite of the five decades of research in adaptive control, the fact still remains that currently no adaptive control system has ever been deployed on any safety-critical or human-rated production systems such as passenger transport aircraft. The problem lies in the difficulty with the certification of adaptive control systems since existing certification methods cannot readily be used for nonlinear adaptive control systems. Research to address the notion of metrics for adaptive control began to appear in the recent years. These metrics, if accepted, could pave a path towards certification that would potentially lead to the adoption of adaptive control as a future control technology for safety-critical and human-rated production systems. Development of certifiable adaptive control systems represents a major challenge to overcome. Adaptive control systems with learning algorithms will never become part of the future unless it can be proven that they are highly safe and reliable. Rigorous methods for adaptive control software verification and validation must therefore be developed to ensure that adaptive control system software failures will not occur, to verify that the adaptive control system functions as required, to eliminate unintended functionality, and to demonstrate that certification requirements imposed by regulatory bodies such as the Federal Aviation Administration (FAA) can be satisfied. This presentation will discuss some of the technical issues with adaptive flight control and related V&V challenges.

  4. Adaptive Systems in Education: A Review and Conceptual Unification

    ERIC Educational Resources Information Center

    Wilson, Chunyu; Scott, Bernard

    2017-01-01

    Purpose: The purpose of this paper is to review the use of adaptive systems in education. It is intended to be a useful introduction for the non-specialist reader. Design/methodology/approach: A distinction is made between intelligent tutoring systems (ITSs) and adaptive hypermedia systems (AHSs). The two kinds of system are defined, compared and…

  5. Optimal Control Modification Adaptive Law for Time-Scale Separated Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2010-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.

  6. Adaptive mechanism-based congestion control for networked systems

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Zhang, Yun; Chen, C. L. Philip

    2013-03-01

    In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.

  7. Adaptive, full-spectrum solar energy system

    DOEpatents

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  8. Adaptive Hypermedia Educational System Based on XML Technologies.

    ERIC Educational Resources Information Center

    Baek, Yeongtae; Wang, Changjong; Lee, Sehoon

    This paper proposes an adaptive hypermedia educational system using XML technologies, such as XML, XSL, XSLT, and XLink. Adaptive systems are capable of altering the presentation of the content of the hypermedia on the basis of a dynamic understanding of the individual user. The user profile can be collected in a user model, while the knowledge…

  9. Nonlinear System Identification for Aeroelastic Systems with Application to Experimental Data

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2008-01-01

    Representation and identification of a nonlinear aeroelastic pitch-plunge system as a model of the Nonlinear AutoRegressive, Moving Average eXogenous (NARMAX) class is considered. A nonlinear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (1) the outputs of the NARMAX model closely match those generated using continuous-time methods, and (2) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.

  10. Modeling, system identification, and control of ASTREX

    NASA Technical Reports Server (NTRS)

    Abhyankar, Nandu S.; Ramakrishnan, J.; Byun, K. W.; Das, A.; Cossey, Derek F.; Berg, J.

    1993-01-01

    The modeling, system identification and controller design aspects of the ASTREX precision space structure are presented in this work. Modeling of ASTREX is performed using NASTRAN, TREETOPS and I-DEAS. The models generated range from simple linear time-invariant models to nonlinear models used for large angle simulations. Identification in both the time and frequency domains are presented. The experimental set up and the results from the identification experiments are included. Finally, controller design for ASTREX is presented. Simulation results using this optimal controller demonstrate the controller performance. Finally the future directions and plans for the facility are addressed.

  11. Adaptive CT scanning system

    DOEpatents

    Sampayan, Stephen E.

    2016-11-22

    Apparatus, systems, and methods that provide an X-ray interrogation system having a plurality of stationary X-ray point sources arranged to substantially encircle an area or space to be interrogated. A plurality of stationary detectors are arranged to substantially encircle the area or space to be interrogated, A controller is adapted to control the stationary X-ray point sources to emit X-rays one at a time, and to control the stationary detectors to detect the X-rays emitted by the stationary X-ray point sources.

  12. On-Orbit System Identification

    NASA Technical Reports Server (NTRS)

    Mettler, E.; Milman, M. H.; Bayard, D.; Eldred, D. B.

    1987-01-01

    Information derived from accelerometer readings benefits important engineering and control functions. Report discusses methodology for detection, identification, and analysis of motions within space station. Techniques of vibration and rotation analyses, control theory, statistics, filter theory, and transform methods integrated to form system for generating models and model parameters that characterize total motion of complicated space station, with respect to both control-induced and random mechanical disturbances.

  13. Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system.

    PubMed

    Song, H; Fraanje, R; Schitter, G; Kroese, H; Vdovin, G; Verhaegen, M

    2010-11-08

    In many scientific and medical applications, such as laser systems and microscopes, wavefront-sensor-less (WFSless) adaptive optics (AO) systems are used to improve the laser beam quality or the image resolution by correcting the wavefront aberration in the optical path. The lack of direct wavefront measurement in WFSless AO systems imposes a challenge to achieve efficient aberration correction. This paper presents an aberration correction approach for WFSlss AO systems based on the model of the WFSless AO system and a small number of intensity measurements, where the model is identified from the input-output data of the WFSless AO system by black-box identification. This approach is validated in an experimental setup with 20 static aberrations having Kolmogorov spatial distributions. By correcting N=9 Zernike modes (N is the number of aberration modes), an intensity improvement from 49% of the maximum value to 89% has been achieved in average based on N+5=14 intensity measurements. With the worst initial intensity, an improvement from 17% of the maximum value to 86% has been achieved based on N+4=13 intensity measurements.

  14. Parameter identification for nonlinear aerodynamic systems

    NASA Technical Reports Server (NTRS)

    Pearson, Allan E.

    1990-01-01

    Parameter identification for nonlinear aerodynamic systems is examined. It is presumed that the underlying model can be arranged into an input/output (I/O) differential operator equation of a generic form. The algorithm estimation is especially efficient since the equation error can be integrated exactly given any I/O pair to obtain an algebraic function of the parameters. The algorithm for parameter identification was extended to the order determination problem for linear differential system. The degeneracy in a least squares estimate caused by feedback was addressed. A method of frequency analysis for determining the transfer function G(j omega) from transient I/O data was formulated using complex valued Fourier based modulating functions in contrast with the trigonometric modulating functions for the parameter estimation problem. A simulation result of applying the algorithm is given under noise-free conditions for a system with a low pass transfer function.

  15. Adaptable System for Vehicle Health and Usage Monitoring

    NASA Technical Reports Server (NTRS)

    Woodart, Stanley E.; Woodman, Keith L.; Coffey, Neil C.; Taylor, Bryant D.

    2005-01-01

    Aircraft and other vehicles are often kept in service beyond their original design lives. As they age, they become susceptible to system malfunctions and fatigue. Unlike future aircraft that will include health-monitoring capabilities as integral parts in their designs, older aircraft have not been so equipped. The Adaptable Vehicle Health and Usage Monitoring System is designed to be retrofitted into a preexisting fleet of military and commercial aircraft, ships, or ground vehicles to provide them with state-of-the-art health- and usage-monitoring capabilities. The monitoring system is self-contained, and the integration of it into existing systems entails limited intrusion. In essence, it has bolt-on/ bolt-off simplicity that makes it easy to install on any preexisting vehicle or structure. Because the system is completely independent of the vehicle, it can be certified for airworthiness as an independent system. The purpose served by the health-monitoring system is to reduce vehicle operating costs and to increase safety and reliability. The monitoring system is a means to identify damage to, or deterioration of, vehicle subsystems, before such damage or deterioration becomes costly and/or disastrous. Frequent monitoring of a vehicle enables identification of the embryonic stages of damage or deterioration. The knowledge thus gained can be used to correct anomalies while they are still somewhat minor. Maintenance can be performed as needed, instead of having the need for maintenance identified during cyclic inspections that take vehicles off duty even when there are no maintenance problems. Measurements and analyses acquired by the health-monitoring system also can be used to analyze mishaps. Overall, vehicles can be made more reliable and kept on duty for longer times. Figure 1 schematically depicts the system as applied to a fleet of n vehicles. The system has three operational levels. All communication between system components is by use of wireless

  16. Parameter Estimation for a Hybrid Adaptive Flight Controller

    NASA Technical Reports Server (NTRS)

    Campbell, Stefan F.; Nguyen, Nhan T.; Kaneshige, John; Krishnakumar, Kalmanje

    2009-01-01

    This paper expands on the hybrid control architecture developed at the NASA Ames Research Center by addressing issues related to indirect adaptation using the recursive least squares (RLS) algorithm. Specifically, the hybrid control architecture is an adaptive flight controller that features both direct and indirect adaptation techniques. This paper will focus almost exclusively on the modifications necessary to achieve quality indirect adaptive control. Additionally this paper will present results that, using a full non -linear aircraft model, demonstrate the effectiveness of the hybrid control architecture given drastic changes in an aircraft s dynamics. Throughout the development of this topic, a thorough discussion of the RLS algorithm as a system identification technique will be provided along with results from seven well-known modifications to the popular RLS algorithm.

  17. An Analysis of Minimum System Requirements to Support Computerized Adaptive Testing.

    DTIC Science & Technology

    1986-09-01

    adaptive test ( CAT ); adaptive test ing A;4SRAC:’ (Continue on reverie of necessary and ident4f by block number) % This pape-r discusses the minimum system...requirements needed to develop a computerized adaptive test ( CAT ). It lists some of the benefits of adaptive testing, establishes a set of...discusses the minimum system requirements needed to develop a computerized adaptive test ( CAT ). It lists some of the benefits of adaptive testing

  18. Adaptive structures for precision controlled large space systems

    NASA Technical Reports Server (NTRS)

    Garba, John A.; Wada, Ben K.; Fanson, James L.

    1991-01-01

    The stringent accuracy and ground test validation requirements of some of the future space missions will require new approaches in structural design. Adaptive structures, structural systems that can vary their geometric congiguration as well as their physical properties, are primary candidates for meeting the functional requirements for such missions. Research performed in the development of such adaptive structural systems is described.

  19. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    NASA Astrophysics Data System (ADS)

    Williams, Rube B.

    2004-02-01

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  20. Adapting ISA system warnings to enhance user acceptance.

    PubMed

    Jiménez, Felipe; Liang, Yingzhen; Aparicio, Francisco

    2012-09-01

    Inappropriate speed is a major cause of traffic accidents. Different measures have been considered to control traffic speed, and intelligent speed adaptation (ISA) systems are one of the alternatives. These systems know the speed limits and try to improve compliance with them. This paper deals with an informative ISA system that provides the driver with an advance warning before reaching a road section with singular characteristics that require a lower safe speed than the current speed. In spite of the extensive tests performed using ISA systems, few works show how warnings can be adapted to the driver. This paper describes a method to adapt warning parameters (safe speed on curves, zone of influence of a singular stretch, deceleration process and reaction time) to normal driving behavior. The method is based on a set of tests with and without the ISA system. This adjustment, as well as the analysis of driver acceptance before and after the adaptation and changes in driver behavior (changes in speed and path) resulting from the tested ISA regarding a driver's normal driving style, is shown in this paper. The main conclusion is that acceptance by drivers increased significantly after redefining the warning parameters, but the effect of speed homogenization was not reduced. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Optimizing Input/Output Using Adaptive File System Policies

    NASA Technical Reports Server (NTRS)

    Madhyastha, Tara M.; Elford, Christopher L.; Reed, Daniel A.

    1996-01-01

    Parallel input/output characterization studies and experiments with flexible resource management algorithms indicate that adaptivity is crucial to file system performance. In this paper we propose an automatic technique for selecting and refining file system policies based on application access patterns and execution environment. An automatic classification framework allows the file system to select appropriate caching and pre-fetching policies, while performance sensors provide feedback used to tune policy parameters for specific system environments. To illustrate the potential performance improvements possible using adaptive file system policies, we present results from experiments involving classification-based and performance-based steering.

  2. Intelligent dental identification system (IDIS) in forensic medicine.

    PubMed

    Chomdej, T; Pankaow, W; Choychumroon, S

    2006-04-20

    This study reports the design and development of the intelligent dental identification system (IDIS), including its efficiency and reliability. Five hundred patients were randomly selected from the Dental Department at Police General Hospital in Thailand to create a population of 3000 known subjects. From the original 500 patients, 100 were randomly selected to create a sample of 1000 unidentifiable subjects (400 subjects with completeness and possible alterations of dental information corresponding to natural occurrences and general dental treatments after the last clinical examination, such as missing teeth, dental caries, dental restorations, and dental prosthetics, 100 subjects with completeness and no alteration of dental information, 500 subjects with incompleteness and no alteration of dental information). Attempts were made to identify the unknown subjects utilizing IDIS. The use of IDIS advanced method resulted in consistent outstanding identification in the range of 82.61-100% with minimal error 0-1.19%. The results of this study indicate that IDIS can be used to support dental identification. It supports not only all types of dentitions: primary, mixed, and permanent but also for incomplete and altered dental information. IDIS is particularly useful in providing the huge quantity and redundancy of related documentation associated with forensic odontology. As a computerized system, IDIS can reduce the time required for identification and store dental digital images with many processing features. Furthermore, IDIS establishes enhancements of documental dental record with odontogram and identification codes, electrical dental record with dental database system, and identification methods and algorithms. IDIS was conceptualized based on the guidelines and standards of the American Board of Forensic Odontology (ABFO) and International Criminal Police Organization (INTERPOL).

  3. Architecture for Adaptive Intelligent Systems

    NASA Technical Reports Server (NTRS)

    Hayes-Roth, Barbara

    1993-01-01

    We identify a class of niches to be occupied by 'adaptive intelligent systems (AISs)'. In contrast with niches occupied by typical AI agents, AIS niches present situations that vary dynamically along several key dimensions: different combinations of required tasks, different configurations of available resources, contextual conditions ranging from benign to stressful, and different performance criteria. We present a small class hierarchy of AIS niches that exhibit these dimensions of variability and describe a particular AIS niche, ICU (intensive care unit) patient monitoring, which we use for illustration throughout the paper. We have designed and implemented an agent architecture that supports all of different kinds of adaptation by exploiting a single underlying theoretical concept: An agent dynamically constructs explicit control plans to guide its choices among situation-triggered behaviors. We illustrate the architecture and its support for adaptation with examples from Guardian, an experimental agent for ICU monitoring.

  4. Limitations of the Current Microbial Identification System for Identification of Clinical Yeast Isolates

    PubMed Central

    Kellogg, James A.; Bankert, David A.; Chaturvedi, Vishnu

    1998-01-01

    The ability of the rapid, computerized Microbial Identification System (MIS; Microbial ID, Inc.) to identify a variety of clinical isolates of yeast species was compared to the abilities of a combination of tests including the Yeast Biochemical Card (bioMerieux Vitek), determination of microscopic morphology on cornmeal agar with Tween 80, and when necessary, conventional biochemical tests and/or the API 20C Aux system (bioMerieux Vitek) to identify the same yeast isolates. The MIS chromatographically analyzes cellular fatty acids and compares the results with the fatty acid profiles in its database. Yeast isolates were subcultured onto Sabouraud dextrose agar and were incubated at 28°C for 24 h. The resulting colonies were saponified, methylated, extracted, and chromatographically analyzed (by version 3.8 of the MIS YSTCLN database) according to the manufacturer’s instructions. Of 477 isolates of 23 species tested, 448 (94%) were given species names by the MIS and 29 (6%) were unidentified (specified as “no match” by the MIS). Of the 448 isolates given names by the MIS, only 335 (75%) of the identifications were correct to the species level. While the MIS correctly identified only 102 (82%) of 124 isolates of Candida glabrata, the predictive value of an MIS identification of unknown isolates as C. glabrata was 100% (102 of 102) because no isolates of other species were misidentified as C. glabrata. In contrast, while the MIS correctly identified 100% (15 of 15) of the isolates of Saccharomyces cerevisiae, the predictive value of an MIS identification of unknown isolates as S. cerevisiae was only 47% (15 of 32), because 17 isolates of C. glabrata were misidentified as S. cerevisiae. The low predictive values for accuracy associated with MIS identifications for most of the remaining yeast species indicate that the procedure and/or database for the system need to be improved. PMID:9574676

  5. Adaptive control of nonlinear system using online error minimum neural networks.

    PubMed

    Jia, Chao; Li, Xiaoli; Wang, Kang; Ding, Dawei

    2016-11-01

    In this paper, a new learning algorithm named OEM-ELM (Online Error Minimized-ELM) is proposed based on ELM (Extreme Learning Machine) neural network algorithm and the spreading of its main structure. The core idea of this OEM-ELM algorithm is: online learning, evaluation of network performance, and increasing of the number of hidden nodes. It combines the advantages of OS-ELM and EM-ELM, which can improve the capability of identification and avoid the redundancy of networks. The adaptive control based on the proposed algorithm OEM-ELM is set up which has stronger adaptive capability to the change of environment. The adaptive control of chemical process Continuous Stirred Tank Reactor (CSTR) is also given for application. The simulation results show that the proposed algorithm with respect to the traditional ELM algorithm can avoid network redundancy and improve the control performance greatly. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.

    PubMed

    Zhang, Yanjun; Tao, Gang; Chen, Mou

    2016-09-01

    This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.

  7. Adaptive functional systems: learning with chaos.

    PubMed

    Komarov, M A; Osipov, G V; Burtsev, M S

    2010-12-01

    We propose a new model of adaptive behavior that combines a winnerless competition principle and chaos to learn new functional systems. The model consists of a complex network of nonlinear dynamical elements producing sequences of goal-directed actions. Each element describes dynamics and activity of the functional system which is supposed to be a distributed set of interacting physiological elements such as nerve or muscle that cooperates to obtain certain goal at the level of the whole organism. During "normal" behavior, the dynamics of the system follows heteroclinic channels, but in the novel situation chaotic search is activated and a new channel leading to the target state is gradually created simulating the process of learning. The model was tested in single and multigoal environments and had demonstrated a good potential for generation of new adaptations. © 2010 American Institute of Physics.

  8. Stable adaptive PI control for permanent magnet synchronous motor drive based on improved JITL technique.

    PubMed

    Zheng, Shiqi; Tang, Xiaoqi; Song, Bao; Lu, Shaowu; Ye, Bosheng

    2013-07-01

    In this paper, a stable adaptive PI control strategy based on the improved just-in-time learning (IJITL) technique is proposed for permanent magnet synchronous motor (PMSM) drive. Firstly, the traditional JITL technique is improved. The new IJITL technique has less computational burden and is more suitable for online identification of the PMSM drive system which is highly real-time compared to traditional JITL. In this way, the PMSM drive system is identified by IJITL technique, which provides information to an adaptive PI controller. Secondly, the adaptive PI controller is designed in discrete time domain which is composed of a PI controller and a supervisory controller. The PI controller is capable of automatically online tuning the control gains based on the gradient descent method and the supervisory controller is developed to eliminate the effect of the approximation error introduced by the PI controller upon the system stability in the Lyapunov sense. Finally, experimental results on the PMSM drive system show accurate identification and favorable tracking performance. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Robust adaptive controller design for a class of uncertain nonlinear systems using online T-S fuzzy-neural modeling approach.

    PubMed

    Chien, Yi-Hsing; Wang, Wei-Yen; Leu, Yih-Guang; Lee, Tsu-Tian

    2011-04-01

    This paper proposes a novel method of online modeling and control via the Takagi-Sugeno (T-S) fuzzy-neural model for a class of uncertain nonlinear systems with some kinds of outputs. Although studies about adaptive T-S fuzzy-neural controllers have been made on some nonaffine nonlinear systems, little is known about the more complicated uncertain nonlinear systems. Because the nonlinear functions of the systems are uncertain, traditional T-S fuzzy control methods can model and control them only with great difficulty, if at all. Instead of modeling these uncertain functions directly, we propose that a T-S fuzzy-neural model approximates a so-called virtual linearized system (VLS) of the system, which includes modeling errors and external disturbances. We also propose an online identification algorithm for the VLS and put significant emphasis on robust tracking controller design using an adaptive scheme for the uncertain systems. Moreover, the stability of the closed-loop systems is proven by using strictly positive real Lyapunov theory. The proposed overall scheme guarantees that the outputs of the closed-loop systems asymptotically track the desired output trajectories. To illustrate the effectiveness and applicability of the proposed method, simulation results are given in this paper.

  10. Methods and application of system identification in shock and vibration.

    NASA Technical Reports Server (NTRS)

    Collins, J. D.; Young, J. P.; Kiefling, L.

    1972-01-01

    A logical picture is presented of current useful system identification techniques in the shock and vibration field. A technology tree diagram is developed for the purpose of organizing and categorizing the widely varying approaches according to the fundamental nature of each. Specific examples of accomplished activity for each identification category are noted and discussed. To provide greater insight into the most current trends in the system identification field, a somewhat detailed description is presented of the essential features of a recently developed technique that is based on making the maximum use of all statistically known information about a system.

  11. Development of fault tolerant adaptive control laws for aerospace systems

    NASA Astrophysics Data System (ADS)

    Perez Rocha, Andres E.

    The main topic of this dissertation is the design, development and implementation of intelligent adaptive control techniques designed to maintain healthy performance of aerospace systems subjected to malfunctions, external parameter changes and/or unmodeled dynamics. The dissertation is focused on the development of novel adaptive control configurations that rely on non-linear functions that appear in the immune system of living organisms as main source of adaptation. One of the main goals of this dissertation is to demonstrate that these novel adaptive control architectures are able to improve overall performance and protect the system while reducing control effort and maintaining adequate operation outside bounds of nominal design. This research effort explores several phases, ranging from theoretical stability analysis, simulation and hardware implementation on different types of aerospace systems including spacecraft, aircraft and quadrotor vehicles. The results presented in this dissertation are focused on two main adaptivity approaches, the first one is intended for aerospace systems that do not attain large angles and use exact feedback linearization of Euler angle kinematics. A proof of stability is presented by means of the circle Criterion and Lyapunov's direct method. The second approach is intended for aerospace systems that can attain large attitude angles (e.g. space systems in gravity-less environments), the adaptation is incorporated on a baseline architecture that uses partial feedback linearization of quaternions kinematics. In this case, the closed loop stability was analyzed using Lyapunov's direct method and Barbalat's Lemma. It is expected that some results presented in this dissertation can contribute towards the validation and certification of direct adaptive controllers.

  12. Emergent "Quantum" Theory in Complex Adaptive Systems.

    PubMed

    Minic, Djordje; Pajevic, Sinisa

    2016-04-30

    Motivated by the question of stability, in this letter we argue that an effective quantum-like theory can emerge in complex adaptive systems. In the concrete example of stochastic Lotka-Volterra dynamics, the relevant effective "Planck constant" associated with such emergent "quantum" theory has the dimensions of the square of the unit of time. Such an emergent quantum-like theory has inherently non-classical stability as well as coherent properties that are not, in principle, endangered by thermal fluctuations and therefore might be of crucial importance in complex adaptive systems.

  13. Making adaptable systems work for mission operations: A case study

    NASA Technical Reports Server (NTRS)

    Holder, Barbara E.; Levesque, Michael E.

    1993-01-01

    The Advanced Multimission Operations System (AMMOS) at NASA's Jet Propulsion Laboratory is based on a highly adaptable multimission ground data system (MGDS) for mission operations. The goal for MGDS is to support current flight project science and engineering personnel and to meet the demands of future missions while reducing associated operations and software development costs. MGDS has become a powerful and flexible mission operations system by using a network of heterogeneous workstations, emerging open system standards, and selecting an adaptable tools-based architecture. Challenges in developing adaptable systems for mission operations and the benefits of this approach are described.

  14. Dynamic Stiffness Transfer Function of an Electromechanical Actuator Using System Identification

    NASA Astrophysics Data System (ADS)

    Kim, Sang Hwa; Tahk, Min-Jea

    2018-04-01

    In the aeroelastic analysis of flight vehicles with electromechanical actuators (EMAs), an accurate prediction of flutter requires dynamic stiffness characteristics of the EMA. The dynamic stiffness transfer function of the EMA with brushless direct current (BLDC) motor can be obtained by conducting complicated mathematical calculations of control algorithms and mechanical/electrical nonlinearities using linearization techniques. Thus, system identification approaches using experimental data, as an alternative, have considerable advantages. However, the test setup for system identification is expensive and complex, and experimental procedures for data collection are time-consuming tasks. To obtain the dynamic stiffness transfer function, this paper proposes a linear system identification method that uses information obtained from a reliable dynamic stiffness model with a control algorithm and nonlinearities. The results of this study show that the system identification procedure is compact, and the transfer function is able to describe the dynamic stiffness characteristics of the EMA. In addition, to verify the validity of the system identification method, the simulation results of the dynamic stiffness transfer function and the dynamic stiffness model were compared with the experimental data for various external loads.

  15. A Novel Approach for Adaptive Signal Processing

    NASA Technical Reports Server (NTRS)

    Chen, Ya-Chin; Juang, Jer-Nan

    1998-01-01

    Adaptive linear predictors have been used extensively in practice in a wide variety of forms. In the main, their theoretical development is based upon the assumption of stationarity of the signals involved, particularly with respect to the second order statistics. On this basis, the well-known normal equations can be formulated. If high- order statistical stationarity is assumed, then the equivalent normal equations involve high-order signal moments. In either case, the cross moments (second or higher) are needed. This renders the adaptive prediction procedure non-blind. A novel procedure for blind adaptive prediction has been proposed and considerable implementation has been made in our contributions in the past year. The approach is based upon a suitable interpretation of blind equalization methods that satisfy the constant modulus property and offers significant deviations from the standard prediction methods. These blind adaptive algorithms are derived by formulating Lagrange equivalents from mechanisms of constrained optimization. In this report, other new update algorithms are derived from the fundamental concepts of advanced system identification to carry out the proposed blind adaptive prediction. The results of the work can be extended to a number of control-related problems, such as disturbance identification. The basic principles are outlined in this report and differences from other existing methods are discussed. The applications implemented are speech processing, such as coding and synthesis. Simulations are included to verify the novel modelling method.

  16. System Identification of Mistuned Bladed Disks from Traveling Wave Response Measurements

    NASA Technical Reports Server (NTRS)

    Feiner, D. M.; Griffin, J. H.; Jones, K. W.; Kenyon, J. A.; Mehmed, O.; Kurkov, A. P.

    2003-01-01

    A new approach to modal analysis is presented. By applying this technique to bladed disk system identification methods, one can determine the mistuning in a rotor based on its response to a traveling wave excitation. This allows system identification to be performed under rotating conditions, and thus expands the applicability of existing mistuning identification techniques from integrally bladed rotors to conventional bladed disks.

  17. Development of adaptive control applied to chaotic systems

    NASA Astrophysics Data System (ADS)

    Rhode, Martin Andreas

    1997-12-01

    Continuous-time derivative control and adaptive map-based recursive feedback control techniques are used to control chaos in a variety of systems and in situations that are of practical interest. The theoretical part of the research includes the review of fundamental concept of control theory in the context of its applications to deterministic chaotic systems, the development of a new adaptive algorithm to identify the linear system properties necessary for control, and the extension of the recursive proportional feedback control technique, RPF, to high dimensional systems. Chaos control was applied to models of a thermal pulsed combustor, electro-chemical dissolution and the hyperchaotic Rossler system. Important implications for combustion engineering were suggested by successful control of the model of the thermal pulsed combustor. The system was automatically tracked while maintaining control into regions of parameter and state space where no stable attractors exist. In a simulation of the electrochemical dissolution system, application of derivative control to stabilize a steady state, and adaptive RPF to stabilize a period one orbit, was demonstrated. The high dimensional adaptive control algorithm was applied in a simulation using the Rossler hyperchaotic system, where a period-two orbit with two unstable directions was stabilized and tracked over a wide range of a system parameter. In the experimental part, the electrochemical system was studied in parameter space, by scanning the applied potential and the frequency of the rotating copper disk. The automated control algorithm is demonstrated to be effective when applied to stabilize a period-one orbit in the experiment. We show the necessity of small random perturbations applied to the system in order to both learn the dynamics and control the system at the same time. The simultaneous learning and control capability is shown to be an important part of the active feedback control.

  18. Conceptural Study of Gyroscopic Damping Systems for Structural Indentification

    NASA Astrophysics Data System (ADS)

    Furuya, H.; Senba, A.

    2002-01-01

    System identification of the adaptive gyroscopic damper system (AGDS) is treated in this paper. The adaptive gyroscopic damper system was proposed as the extension of the conventional gyroscopic damper under the concept of intelligent adaptive structure systems [1]. The conventional gyroscopic damper has passive characteristics similar to a tuned mass damper (TMD). Because the conventional gyroscopic damper has one natural frequency, several applications to the ground structures have been studied to suppress the fundamental vibration mode (e.g. [2]). On the other hand, as the AGDS has a property of adjusting the natural frequency of the gimbal to that of the structural system by controlling the moment of inertia around its gimbal axis, the performance for suppressing the vibration of one-DOF system was improved. In addition, by extending this property, suppression of multiple modes vibration by quasi-static control for the AGDS was demonstrated [3]. To realize the high performance for suppressing the structural vibration, the identification of characteristics of the structural system with AGDS is significant, because the adaptability of the AGDS to the natural frequency of the system reflects to the performance. By using a capability of AGDS as changing its moment of inertia around its gimbals axis by controlling appendage mass, the system identification is also possible. A sensitivity analysis for the change of the response amplitude and the natural frequency with modal parameters is applied to the method. The errors included in the identification results of modal parameters for cantilevered beam model is examined. The numerical demonstrations were performed to investigate the identification errors of system parameters by the response amplitude and the natural frequency with modal parameters, respectively. The results show that the technique used in the study can identify the structural system and the identification errors occur for near the natural frequency of

  19. Promoting evaluation capacity building in a complex adaptive system.

    PubMed

    Lawrenz, Frances; Kollmann, Elizabeth Kunz; King, Jean A; Bequette, Marjorie; Pattison, Scott; Nelson, Amy Grack; Cohn, Sarah; Cardiel, Christopher L B; Iacovelli, Stephanie; Eliou, Gayra Ostgaard; Goss, Juli; Causey, Lauren; Sinkey, Anne; Beyer, Marta; Francisco, Melanie

    2018-04-10

    This study provides results from an NSF funded, four year, case study about evaluation capacity building in a complex adaptive system, the Nanoscale Informal Science Education Network (NISE Net). The results of the Complex Adaptive Systems as a Model for Network Evaluations (CASNET) project indicate that complex adaptive system concepts help to explain evaluation capacity building in a network. The NISE Network was found to be a complex learning system that was supportive of evaluation capacity building through feedback loops that provided for information sharing and interaction. Participants in the system had different levels of and sources of evaluation knowledge. To be successful at building capacity, the system needed to have a balance between both centralized and decentralized control, coherence, redundancy, and diversity. Embeddedness of individuals within the system also provided support and moved the capacity of the system forward. Finally, success depended on attention being paid to the control of resources. Implications of these findings are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Numerical studies of identification in nonlinear distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Lo, C. K.; Reich, Simeon; Rosen, I. G.

    1989-01-01

    An abstract approximation framework and convergence theory for the identification of first and second order nonlinear distributed parameter systems developed previously by the authors and reported on in detail elsewhere are summarized and discussed. The theory is based upon results for systems whose dynamics can be described by monotone operators in Hilbert space and an abstract approximation theorem for the resulting nonlinear evolution system. The application of the theory together with numerical evidence demonstrating the feasibility of the general approach are discussed in the context of the identification of a first order quasi-linear parabolic model for one dimensional heat conduction/mass transport and the identification of a nonlinear dissipation mechanism (i.e., damping) in a second order one dimensional wave equation. Computational and implementational considerations, in particular, with regard to supercomputing, are addressed.

  1. Towards Self-adaptation for Dependable Service-Oriented Systems

    NASA Astrophysics Data System (ADS)

    Cardellini, Valeria; Casalicchio, Emiliano; Grassi, Vincenzo; Lo Presti, Francesco; Mirandola, Raffaela

    Increasingly complex information systems operating in dynamic environments ask for management policies able to deal intelligently and autonomously with problems and tasks. An attempt to deal with these aspects can be found in the Service-Oriented Architecture (SOA) paradigm that foresees the creation of business applications from independently developed services, where services and applications build up complex dependencies. Therefore the dependability of SOA systems strongly depends on their ability to self-manage and adapt themselves to cope with changes in the operating conditions and to meet the required dependability with a minimum of resources. In this paper we propose a model-based approach to the realization of self-adaptable SOA systems, aimed at the fulfillment of dependability requirements. Specifically, we provide a methodology driving the system adaptation and we discuss the architectural issues related to its implementation. To bring this approach to fruition, we developed a prototype tool and we show the results that can be achieved with a simple example.

  2. Adaptive control of artificial pancreas systems - a review.

    PubMed

    Turksoy, Kamuran; Cinar, Ali

    2014-01-01

    Artificial pancreas (AP) systems offer an important improvement in regulating blood glucose concentration for patients with type 1 diabetes, compared to current approaches. AP consists of sensors, control algorithms and an insulin pump. Different AP control algorithms such as proportional-integral-derivative, model-predictive control, adaptive control, and fuzzy logic control have been investigated in simulation and clinical studies in the past three decades. The variability over time and complexity of the dynamics of blood glucose concentration, unsteady disturbances such as meals, time-varying delays on measurements and insulin infusion, and noisy data from sensors create a challenging system to AP. Adaptive control is a powerful control technique that can deal with such challenges. In this paper, a review of adaptive control techniques for blood glucose regulation with an AP system is presented. The investigations and advances in technology produced impressive results, but there is still a need for a reliable AP system that is both commercially viable and appealing to patients with type 1 diabetes.

  3. Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.

    PubMed

    Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar

    2006-04-01

    This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control

  4. QPSO-Based Adaptive DNA Computing Algorithm

    PubMed Central

    Karakose, Mehmet; Cigdem, Ugur

    2013-01-01

    DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm. PMID:23935409

  5. A hybrid system identification methodology for wireless structural health monitoring systems based on dynamic substructuring

    NASA Astrophysics Data System (ADS)

    Dragos, Kosmas; Smarsly, Kay

    2016-04-01

    System identification has been employed in numerous structural health monitoring (SHM) applications. Traditional system identification methods usually rely on centralized processing of structural response data to extract information on structural parameters. However, in wireless SHM systems the centralized processing of structural response data introduces a significant communication bottleneck. Exploiting the merits of decentralization and on-board processing power of wireless SHM systems, many system identification methods have been successfully implemented in wireless sensor networks. While several system identification approaches for wireless SHM systems have been proposed, little attention has been paid to obtaining information on the physical parameters (e.g. stiffness, damping) of the monitored structure. This paper presents a hybrid system identification methodology suitable for wireless sensor networks based on the principles of component mode synthesis (dynamic substructuring). A numerical model of the monitored structure is embedded into the wireless sensor nodes in a distributed manner, i.e. the entire model is segmented into sub-models, each embedded into one sensor node corresponding to the substructure the sensor node is assigned to. The parameters of each sub-model are estimated by extracting local mode shapes and by applying the equations of the Craig-Bampton method on dynamic substructuring. The proposed methodology is validated in a laboratory test conducted on a four-story frame structure to demonstrate the ability of the methodology to yield accurate estimates of stiffness parameters. Finally, the test results are discussed and an outlook on future research directions is provided.

  6. Minimalist identification system based on venous map for security applications

    NASA Astrophysics Data System (ADS)

    Jacinto G., Edwar; Martínez S., Fredy; Martínez S., Fernando

    2015-07-01

    This paper proposes a technique and an algorithm used to build a device for people identification through the processing of a low resolution camera image. The infrared channel is the only information needed, sensing the blood reaction with the proper wave length, and getting a preliminary snapshot of the vascular map of the back side of the hand. The software uses this information to extract the characteristics of the user in a limited area (region of interest, ROI), unique for each user, which applicable to biometric access control devices. This kind of recognition prototypes functions are expensive, but in this case (minimalist design), the biometric equipment only used a low cost camera and the matrix of IR emitters adaptation to construct an economic and versatile prototype, without neglecting the high level of effectiveness that characterizes this kind of identification method.

  7. An Approach to V&V of Embedded Adaptive Systems

    NASA Technical Reports Server (NTRS)

    Liu, Yan; Yerramalla, Sampath; Fuller, Edgar; Cukic, Bojan; Gururajan, Srikaruth

    2004-01-01

    Rigorous Verification and Validation (V&V) techniques are essential for high assurance systems. Lately, the performance of some of these systems is enhanced by embedded adaptive components in order to cope with environmental changes. Although the ability of adapting is appealing, it actually poses a problem in terms of V&V. Since uncertainties induced by environmental changes have a significant impact on system behavior, the applicability of conventional V&V techniques is limited. In safety-critical applications such as flight control system, the mechanisms of change must be observed, diagnosed, accommodated and well understood prior to deployment. In this paper, we propose a non-conventional V&V approach suitable for online adaptive systems. We apply our approach to an intelligent flight control system that employs a particular type of Neural Networks (NN) as the adaptive learning paradigm. Presented methodology consists of a novelty detection technique and online stability monitoring tools. The novelty detection technique is based on Support Vector Data Description that detects novel (abnormal) data patterns. The Online Stability Monitoring tools based on Lyapunov's Stability Theory detect unstable learning behavior in neural networks. Cases studies based on a high fidelity simulator of NASA's Intelligent Flight Control System demonstrate a successful application of the presented V&V methodology. ,

  8. Research in digital adaptive flight controllers

    NASA Technical Reports Server (NTRS)

    Kaufman, H.

    1976-01-01

    A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Both explicit controllers which directly utilize parameter identification and implicit controllers which do not require identification were considered. Extensive analytical and simulation efforts resulted in the recommendation of two explicit digital adaptive flight controllers. Interface weighted least squares estimation procedures with control logic were developed using either optimal regulator theory or with control logic based upon single stage performance indices.

  9. Non-Linear System Identification for Aeroelastic Systems with Application to Experimental Data

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2008-01-01

    Representation and identification of a non-linear aeroelastic pitch-plunge system as a model of the NARMAX class is considered. A non-linear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (i) the outputs of the NARMAX model match closely those generated using continuous-time methods and (ii) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.

  10. Real-time control system for adaptive resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flath, L; An, J; Brase, J

    2000-07-24

    Sustained operation of high average power solid-state lasers currently requires an adaptive resonator to produce the optimal beam quality. We describe the architecture of a real-time adaptive control system for correcting intra-cavity aberrations in a heat capacity laser. Image data collected from a wavefront sensor are processed and used to control phase with a high-spatial-resolution deformable mirror. Our controller takes advantage of recent developments in low-cost, high-performance processor technology. A desktop-based computational engine and object-oriented software architecture replaces the high-cost rack-mount embedded computers of previous systems.

  11. Concept Based Approach for Adaptive Personalized Course Learning System

    ERIC Educational Resources Information Center

    Salahli, Mehmet Ali; Özdemir, Muzaffer; Yasar, Cumali

    2013-01-01

    One of the most important factors for improving the personalization aspects of learning systems is to enable adaptive properties to them. The aim of the adaptive personalized learning system is to offer the most appropriate learning path and learning materials to learners by taking into account their profiles. In this paper, a new approach to…

  12. On advanced configuration enhance adaptive system optimization

    NASA Astrophysics Data System (ADS)

    Liu, Hua; Ding, Quanxin; Wang, Helong; Guo, Chunjie; Chen, Hongliang; Zhou, Liwei

    2017-10-01

    For aim to find an effective method to structure to enhance these adaptive system with some complex function and look forward to establish an universally applicable solution in prototype and optimization. As the most attractive component in adaptive system, wave front corrector is constrained by some conventional technique and components, such as polarization dependence and narrow working waveband. Advanced configuration based on a polarized beam split can optimized energy splitting method used to overcome these problems effective. With the global algorithm, the bandwidth has been amplified by more than five times as compared with that of traditional ones. Simulation results show that the system can meet the application requirements in MTF and other related criteria. Compared with the conventional design, the system has reduced in volume and weight significantly. Therefore, the determining factors are the prototype selection and the system configuration, Results show their effectiveness.

  13. Response to ``Comment on `Adaptive Q-S (lag, anticipated, and complete) time-varying synchronization and parameters identification of uncertain delayed neural networks''' [Chaos 17, 038101 (2007)

    NASA Astrophysics Data System (ADS)

    Yu, Wenwu; Cao, Jinde

    2007-09-01

    Parameter identification of dynamical systems from time series has received increasing interest due to its wide applications in secure communication, pattern recognition, neural networks, and so on. Given the driving system, parameters can be estimated from the time series by using an adaptive control algorithm. Recently, it has been reported that for some stable systems, in which parameters are difficult to be identified [Li et al., Phys Lett. A 333, 269-270 (2004); Remark 5 in Yu and Cao, Physica A 375, 467-482 (2007); and Li et al., Chaos 17, 038101 (2007)], and in this paper, a brief discussion about whether parameters can be identified from time series is investigated. From some detailed analyses, the problem of why parameters of stable systems can be hardly estimated is discussed. Some interesting examples are drawn to verify the proposed analysis.

  14. A Model for an Adaptive e-Learning Hypermedia System

    ERIC Educational Resources Information Center

    Mahnane, Lamia; Tayeb, Laskri Mohamed; Trigano, Philippe

    2013-01-01

    Recent years have shown increasing awareness for the importance of adaptivity in e-learning. Since the learning style of each learner is different. Adaptive e-learning hypermedia system (AEHS) must fit different learner's needs. A number of AEHS have been developed to support learning styles as a source for adaptation. However, these systems…

  15. MAC, A System for Automatically IPR Identification, Collection and Distribution

    NASA Astrophysics Data System (ADS)

    Serrão, Carlos

    Controlling Intellectual Property Rights (IPR) in the Digital World is a very hard challenge. The facility to create multiple bit-by-bit identical copies from original IPR works creates the opportunities for digital piracy. One of the most affected industries by this fact is the Music Industry. The Music Industry has supported huge losses during the last few years due to this fact. Moreover, this fact is also affecting the way that music rights collecting and distributing societies are operating to assure a correct music IPR identification, collection and distribution. In this article a system for automating this IPR identification, collection and distribution is presented and described. This system makes usage of advanced automatic audio identification system based on audio fingerprinting technology. This paper will present the details of the system and present a use-case scenario where this system is being used.

  16. L(sub 1) Adaptive Flight Control System: Flight Evaluation and Technology Transition

    NASA Technical Reports Server (NTRS)

    Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Isaac; Gregory, Irene M.; Cao, Chengyu

    2010-01-01

    Certification of adaptive control technologies for both manned and unmanned aircraft represent a major challenge for current Verification and Validation techniques. A (missing) key step towards flight certification of adaptive flight control systems is the definition and development of analysis tools and methods to support Verification and Validation for nonlinear systems, similar to the procedures currently used for linear systems. In this paper, we describe and demonstrate the advantages of L(sub l) adaptive control architectures for closing some of the gaps in certification of adaptive flight control systems, which may facilitate the transition of adaptive control into military and commercial aerospace applications. As illustrative examples, we present the results of a piloted simulation evaluation on the NASA AirSTAR flight test vehicle, and results of an extensive flight test program conducted by the Naval Postgraduate School to demonstrate the advantages of L(sub l) adaptive control as a verifiable robust adaptive flight control system.

  17. Cloud-based adaptive exon prediction for DNA analysis

    PubMed Central

    Putluri, Srinivasareddy; Fathima, Shaik Yasmeen

    2018-01-01

    Cloud computing offers significant research and economic benefits to healthcare organisations. Cloud services provide a safe place for storing and managing large amounts of such sensitive data. Under conventional flow of gene information, gene sequence laboratories send out raw and inferred information via Internet to several sequence libraries. DNA sequencing storage costs will be minimised by use of cloud service. In this study, the authors put forward a novel genomic informatics system using Amazon Cloud Services, where genomic sequence information is stored and accessed for processing. True identification of exon regions in a DNA sequence is a key task in bioinformatics, which helps in disease identification and design drugs. Three base periodicity property of exons forms the basis of all exon identification techniques. Adaptive signal processing techniques found to be promising in comparison with several other methods. Several adaptive exon predictors (AEPs) are developed using variable normalised least mean square and its maximum normalised variants to reduce computational complexity. Finally, performance evaluation of various AEPs is done based on measures such as sensitivity, specificity and precision using various standard genomic datasets taken from National Center for Biotechnology Information genomic sequence database. PMID:29515813

  18. Cloud-based adaptive exon prediction for DNA analysis.

    PubMed

    Putluri, Srinivasareddy; Zia Ur Rahman, Md; Fathima, Shaik Yasmeen

    2018-02-01

    Cloud computing offers significant research and economic benefits to healthcare organisations. Cloud services provide a safe place for storing and managing large amounts of such sensitive data. Under conventional flow of gene information, gene sequence laboratories send out raw and inferred information via Internet to several sequence libraries. DNA sequencing storage costs will be minimised by use of cloud service. In this study, the authors put forward a novel genomic informatics system using Amazon Cloud Services, where genomic sequence information is stored and accessed for processing. True identification of exon regions in a DNA sequence is a key task in bioinformatics, which helps in disease identification and design drugs. Three base periodicity property of exons forms the basis of all exon identification techniques. Adaptive signal processing techniques found to be promising in comparison with several other methods. Several adaptive exon predictors (AEPs) are developed using variable normalised least mean square and its maximum normalised variants to reduce computational complexity. Finally, performance evaluation of various AEPs is done based on measures such as sensitivity, specificity and precision using various standard genomic datasets taken from National Center for Biotechnology Information genomic sequence database.

  19. Closing the Certification Gaps in Adaptive Flight Control Software

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.

    2008-01-01

    Over the last five decades, extensive research has been performed to design and develop adaptive control systems for aerospace systems and other applications where the capability to change controller behavior at different operating conditions is highly desirable. Although adaptive flight control has been partially implemented through the use of gain-scheduled control, truly adaptive control systems using learning algorithms and on-line system identification methods have not seen commercial deployment. The reason is that the certification process for adaptive flight control software for use in national air space has not yet been decided. The purpose of this paper is to examine the gaps between the state-of-the-art methodologies used to certify conventional (i.e., non-adaptive) flight control system software and what will likely to be needed to satisfy FAA airworthiness requirements. These gaps include the lack of a certification plan or process guide, the need to develop verification and validation tools and methodologies to analyze adaptive controller stability and convergence, as well as the development of metrics to evaluate adaptive controller performance at off-nominal flight conditions. This paper presents the major certification gap areas, a description of the current state of the verification methodologies, and what further research efforts will likely be needed to close the gaps remaining in current certification practices. It is envisioned that closing the gap will require certain advances in simulation methods, comprehensive methods to determine learning algorithm stability and convergence rates, the development of performance metrics for adaptive controllers, the application of formal software assurance methods, the application of on-line software monitoring tools for adaptive controller health assessment, and the development of a certification case for adaptive system safety of flight.

  20. Improving substructure identification accuracy of shear structures using virtual control system

    NASA Astrophysics Data System (ADS)

    Zhang, Dongyu; Yang, Yang; Wang, Tingqiang; Li, Hui

    2018-02-01

    Substructure identification is a powerful tool to identify the parameters of a complex structure. Previously, the authors developed an inductive substructure identification method for shear structures. The identification error analysis showed that the identification accuracy of this method is significantly influenced by the magnitudes of two key structural responses near a certain frequency; if these responses are unfavorable, the method cannot provide accurate estimation results. In this paper, a novel method is proposed to improve the substructure identification accuracy by introducing a virtual control system (VCS) into the structure. A virtual control system is a self-balanced system, which consists of some control devices and a set of self-balanced forces. The self-balanced forces counterbalance the forces that the control devices apply on the structure. The control devices are combined with the structure to form a controlled structure used to replace the original structure in the substructure identification; and the self-balance forces are treated as known external excitations to the controlled structure. By optimally tuning the VCS’s parameters, the dynamic characteristics of the controlled structure can be changed such that the original structural responses become more favorable for the substructure identification and, thus, the identification accuracy is improved. A numerical example of 6-story shear structure is utilized to verify the effectiveness of the VCS based controlled substructure identification method. Finally, shake table tests are conducted on a 3-story structural model to verify the efficacy of the VCS to enhance the identification accuracy of the structural parameters.

  1. System identification and the modeling of sailing yachts

    NASA Astrophysics Data System (ADS)

    Legursky, Katrina

    yaw. Existing aerodynamic models for sailing yachts are unsuitable for control system design as they do not include a physical description of the sails' dynamic effect on the system. A new aerodynamic model is developed and validated using the full-scale sailing data which includes sail deflection as a control input to the system. The Maximum Likelihood Estimation (MLE) algorithm is used with non-linear simulation data to successfully estimate a set of hydrodynamic derivatives for a sailing yacht. It is shown that all sailing yacht models will contain a second order mode (referred to herein as Mode 1A.S or 4B.S) which is dependent upon trimmed roll angle. For the test yacht it is concluded that for this mode when the trimmed roll angle is, roll rate and roll angle are the dominant motion variables, and for surge velocity and yaw rate dominate. This second order mode is dynamically stable for . It transitions from stability in the higher values of to instability in the region defined by. These conclusions align with other work which has also found roll angle to be a driving factor in the dynamic behavior of a tall-ship (Johnson, Miles, Lasher, & Womack, 2009). It is also shown that all linear models also contain a first order mode, (referred to herein as Mode 3A.F or 1B.F), which lies very close to the origin of the complex plane indicating a long time constant. Measured models have indicated this mode can be stable or unstable. The eigenvector analysis reveals that the mode is stable if the surge contribution is < 40% and the sway contribution is > 20%. The small set of maneuvers necessary for model identification, quick OSLS estimation method, and detailed modal analysis of estimated models outlined in this work are immediately applicable to existing autonomous mono-hull sailing yachts, and could readily be adapted for use with other wind-powered vessel configurations such as wing-sails, catamarans, and tri-marans. (Abstract shortened by UMI.)

  2. Research of Uncertainty Reasoning in Pineapple Disease Identification System

    NASA Astrophysics Data System (ADS)

    Liu, Liqun; Fan, Haifeng

    In order to deal with the uncertainty of evidences mostly existing in pineapple disease identification system, a reasoning model based on evidence credibility factor was established. The uncertainty reasoning method is discussed,including: uncertain representation of knowledge, uncertain representation of rules, uncertain representation of multi-evidences and update of reasoning rules. The reasoning can fully reflect the uncertainty in disease identification and reduce the influence of subjective factors on the accuracy of the system.

  3. A case for Sandia investment in complex adaptive systems science and technology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colbaugh, Richard; Tsao, Jeffrey Yeenien; Johnson, Curtis Martin

    2012-05-01

    This white paper makes a case for Sandia National Laboratories investments in complex adaptive systems science and technology (S&T) -- investments that could enable higher-value-added and more-robustly-engineered solutions to challenges of importance to Sandia's national security mission and to the nation. Complex adaptive systems are ubiquitous in Sandia's national security mission areas. We often ignore the adaptive complexity of these systems by narrowing our 'aperture of concern' to systems or subsystems with a limited range of function exposed to a limited range of environments over limited periods of time. But by widening our aperture of concern we could increase ourmore » impact considerably. To do so, the science and technology of complex adaptive systems must mature considerably. Despite an explosion of interest outside of Sandia, however, that science and technology is still in its youth. What has been missing is contact with real (rather than model) systems and real domain-area detail. With its center-of-gravity as an engineering laboratory, Sandia's has made considerable progress applying existing science and technology to real complex adaptive systems. It has focused much less, however, on advancing the science and technology itself. But its close contact with real systems and real domain-area detail represents a powerful strength with which to help complex adaptive systems science and technology mature. Sandia is thus both a prime beneficiary of, as well as potentially a prime contributor to, complex adaptive systems science and technology. Building a productive program in complex adaptive systems science and technology at Sandia will not be trivial, but a credible path can be envisioned: in the short run, continue to apply existing science and technology to real domain-area complex adaptive systems; in the medium run, jump-start the creation of new science and technology capability through Sandia's Laboratory Directed Research and Development

  4. Development of Adaptive Kanji Learning System for Mobile Phone

    ERIC Educational Resources Information Center

    Li, Mengmeng; Ogata, Hiroaki; Hou, Bin; Hashimoto, Satoshi; Liu, Yuqin; Uosaki, Noriko; Yano, Yoneo

    2010-01-01

    This paper describes an adaptive learning system based on mobile phone email to support the study of Japanese Kanji. In this study, the main emphasis is on using the adaptive learning to resolve one common problem of the mobile-based email or SMS language learning systems. To achieve this goal, the authors main efforts focus on three aspects:…

  5. System identification using Nuclear Norm & Tabu Search optimization

    NASA Astrophysics Data System (ADS)

    Ahmed, Asif A.; Schoen, Marco P.; Bosworth, Ken W.

    2018-01-01

    In recent years, subspace System Identification (SI) algorithms have seen increased research, stemming from advanced minimization methods being applied to the Nuclear Norm (NN) approach in system identification. These minimization algorithms are based on hard computing methodologies. To the authors’ knowledge, as of now, there has been no work reported that utilizes soft computing algorithms to address the minimization problem within the nuclear norm SI framework. A linear, time-invariant, discrete time system is used in this work as the basic model for characterizing a dynamical system to be identified. The main objective is to extract a mathematical model from collected experimental input-output data. Hankel matrices are constructed from experimental data, and the extended observability matrix is employed to define an estimated output of the system. This estimated output and the actual - measured - output are utilized to construct a minimization problem. An embedded rank measure assures minimum state realization outcomes. Current NN-SI algorithms employ hard computing algorithms for minimization. In this work, we propose a simple Tabu Search (TS) algorithm for minimization. TS algorithm based SI is compared with the iterative Alternating Direction Method of Multipliers (ADMM) line search optimization based NN-SI. For comparison, several different benchmark system identification problems are solved by both approaches. Results show improved performance of the proposed SI-TS algorithm compared to the NN-SI ADMM algorithm.

  6. What is adapted in face adaptation? The neural representations of expression in the human visual system.

    PubMed

    Fox, Christopher J; Barton, Jason J S

    2007-01-05

    The neural representation of facial expression within the human visual system is not well defined. Using an adaptation paradigm, we examined aftereffects on expression perception produced by various stimuli. Adapting to a face, which was used to create morphs between two expressions, substantially biased expression perception within the morphed faces away from the adapting expression. This adaptation was not based on low-level image properties, as a different image of the same person displaying that expression produced equally robust aftereffects. Smaller but significant aftereffects were generated by images of different individuals, irrespective of gender. Non-face visual, auditory, or verbal representations of emotion did not generate significant aftereffects. These results suggest that adaptation affects at least two neural representations of expression: one specific to the individual (not the image), and one that represents expression across different facial identities. The identity-independent aftereffect suggests the existence of a 'visual semantic' for facial expression in the human visual system.

  7. Adaptive Control for Uncertain Nonlinear Multi-Input Multi-Output Systems

    NASA Technical Reports Server (NTRS)

    Cao, Chengyu (Inventor); Hovakimyan, Naira (Inventor); Xargay, Enric (Inventor)

    2014-01-01

    Systems and methods of adaptive control for uncertain nonlinear multi-input multi-output systems in the presence of significant unmatched uncertainty with assured performance are provided. The need for gain-scheduling is eliminated through the use of bandwidth-limited (low-pass) filtering in the control channel, which appropriately attenuates the high frequencies typically appearing in fast adaptation situations and preserves the robustness margins in the presence of fast adaptation.

  8. Multilevel adaptive control of nonlinear interconnected systems.

    PubMed

    Motallebzadeh, Farzaneh; Ozgoli, Sadjaad; Momeni, Hamid Reza

    2015-01-01

    This paper presents an adaptive backstepping-based multilevel approach for the first time to control nonlinear interconnected systems with unknown parameters. The system consists of a nonlinear controller at the first level to neutralize the interaction terms, and some adaptive controllers at the second level, in which the gains are optimally tuned using genetic algorithm. The presented scheme can be used in systems with strong couplings where completely ignoring the interactions leads to problems in performance or stability. In order to test the suitability of the method, two case studies are provided: the uncertain double and triple coupled inverted pendulums connected by springs with unknown parameters. The simulation results show that the method is capable of controlling the system effectively, in both regulation and tracking tasks. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Lessons from Jurassic Park: patients as complex adaptive systems.

    PubMed

    Katerndahl, David A

    2009-08-01

    With realization that non-linearity is generally the rule rather than the exception in nature, viewing patients and families as complex adaptive systems may lead to a better understanding of health and illness. Doctors who successfully practise the 'art' of medicine may recognize non-linear principles at work without having the jargon needed to label them. Complex adaptive systems are systems composed of multiple components that display complexity and adaptation to input. These systems consist of self-organized components, which display complex dynamics, ranging from simple periodicity to chaotic and random patterns showing trends over time. Understanding the non-linear dynamics of phenomena both internal and external to our patients can (1) improve our definition of 'health'; (2) improve our understanding of patients, disease and the systems in which they converge; (3) be applied to future monitoring systems; and (4) be used to possibly engineer change. Such a non-linear view of the world is quite congruent with the generalist perspective.

  10. Fast calibration of high-order adaptive optics systems.

    PubMed

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wavefront sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star.

  11. Cross-cultural adaptation, reliability, and validation of the Korean version of the identification functional ankle instability (IdFAI).

    PubMed

    Ko, Jupil; Rosen, Adam B; Brown, Cathleen N

    2017-09-12

    To cross-culturally adapt the Identification Functional Ankle Instability for use with Korean-speaking participants. The English version of the IdFAI was cross-culturally adapted into Korean based on the guidelines. The psychometric properties in the Korean version of the IdFAI were measured for test-retest reliability, internal consistency, criterion-related validity, discriminative validity, and measurement error 181 native Korean-speakers. Intra-class correlation coefficients (ICC 2,1 ) between the English and Korean versions of the IdFAI for test-retest reliability was 0.98 (standard error of measurement = 1.41). The Cronbach's alpha coefficient was 0.89 for the Korean versions of IdFAI. The Korean versions of the IdFAI had a strong correlation with the SF-36 (r s  = -0.69, p < .001) and the Korean version of the Cumberland Ankle Instability Tool (r s  = -0.65, p < .001). The cutoff score of >10 was the optimal cutoff score to distinguish between the group memberships. The minimally detectable change of the Korean versions of the IdFAI score was 3.91. The Korean versions of the IdFAI have shown to be an excellent, reliable, and valid instrument. The Korean versions of the IdFAI can be utilized to assess the presence of Chronic Ankle Instability by researchers and clinicians working among Korean-speaking populations. Implications for rehabilitation The high recurrence rate of sprains may result into Chronic Ankle Instability (CAI). The Identification of Functional Ankle Instability Tool (IdFAI) has been validated and recommended to identify patients with Chronic Ankle Instability (CAI). The Korean version of the Identification of Functional Ankle Instability Tool (IdFAI) may be also recommend to researchers and clinicians for assessing the presence of Chronic Ankle Instability (CAI) in Korean-speaking population.

  12. Holographic Adaptive Laser Optics System

    NASA Astrophysics Data System (ADS)

    Andersen, G.; Ghebremichael, F.

    2011-09-01

    We have created a new adaptive optics system using a holographic modal wavefront sensing method with the autonomous (computer-free) closed-loop control of a MEMS deformable mirror (DM). A multiplexed hologram is recorded using the maximum and minimum actuator positions on the deformable mirror as the “modes”. On reconstruction, an input beam is diffracted into pairs of focal spots and the ratio of the intensities of certain pairs determines the absolute wavefront phase at a particular actuator location. The wavefront measurement is made using fast, sensitive silicon photomultiplier arrays with the parallel outputs directly controlling individual actuators in the MEMS DM. In this talk, we will present the results from an all-optical, ultra-compact system that runs in closed-loop without the need for a computer. The speed is limited only by the response time of any given DM actuator and not the number of actuators. In our case, our 32-actuator prototype device already operates at 10 kHz and our next generation system is being designed for > 100 kHz. As a modal system, it is largely insensitive to scintillation and obscuration and is thus ideal for extreme adaptive optics applications. We will present information on how HALOS can be used for image correction and beam propagation as well as several other novel applications.

  13. Immunity-based detection, identification, and evaluation of aircraft sub-system failures

    NASA Astrophysics Data System (ADS)

    Moncayo, Hever Y.

    This thesis describes the design, development, and flight-simulation testing of an integrated Artificial Immune System (AIS) for detection, identification, and evaluation of a wide variety of sensor, actuator, propulsion, and structural failures/damages including the prediction of the achievable states and other limitations on performance and handling qualities. The AIS scheme achieves high detection rate and low number of false alarms for all the failure categories considered. Data collected using a motion-based flight simulator are used to define the self for an extended sub-region of the flight envelope. The NASA IFCS F-15 research aircraft model is used and represents a supersonic fighter which include model following adaptive control laws based on non-linear dynamic inversion and artificial neural network augmentation. The flight simulation tests are designed to analyze and demonstrate the performance of the immunity-based aircraft failure detection, identification and evaluation (FDIE) scheme. A general robustness analysis is also presented by determining the achievable limits for a desired performance in the presence of atmospheric perturbations. For the purpose of this work, the integrated AIS scheme is implemented based on three main components. The first component performs the detection when one of the considered failures is present in the system. The second component consists in the identification of the failure category and the classification according to the failed element. During the third phase a general evaluation of the failure is performed with the estimation of the magnitude/severity of the failure and the prediction of its effect on reducing the flight envelope of the aircraft system. Solutions and alternatives to specific design issues of the AIS scheme, such as data clustering and empty space optimization, data fusion and duplication removal, definition of features, dimensionality reduction, and selection of cluster/detector shape are also

  14. Adaptive Dialogue Systems for Assistive Living Environments

    ERIC Educational Resources Information Center

    Papangelis, Alexandros

    2013-01-01

    Adaptive Dialogue Systems (ADS) are intelligent systems, able to interact with users via multiple modalities, such as speech, gestures, facial expressions and others. Such systems are able to make conversation with their users, usually on a specific, narrow topic. Assistive Living Environments are environments where the users are by definition not…

  15. Small scale adaptive optics experiment systems engineering

    NASA Technical Reports Server (NTRS)

    Boykin, William H.

    1993-01-01

    Assessment of the current technology relating to the laser power beaming system which in full scale is called the Beam Transmission Optical System (BTOS). Evaluation of system integration efforts are being conducted by the various government agencies and industry. Concepts are being developed for prototypes of adaptive optics for a BTOS.

  16. Implementation of an Adaptive Learning System Using a Bayesian Network

    ERIC Educational Resources Information Center

    Yasuda, Keiji; Kawashima, Hiroyuki; Hata, Yoko; Kimura, Hiroaki

    2015-01-01

    An adaptive learning system is proposed that incorporates a Bayesian network to efficiently gauge learners' understanding at the course-unit level. Also, learners receive content that is adapted to their measured level of understanding. The system works on an iPad via the Edmodo platform. A field experiment using the system in an elementary school…

  17. Computational system identification of continuous-time nonlinear systems using approximate Bayesian computation

    NASA Astrophysics Data System (ADS)

    Krishnanathan, Kirubhakaran; Anderson, Sean R.; Billings, Stephen A.; Kadirkamanathan, Visakan

    2016-11-01

    In this paper, we derive a system identification framework for continuous-time nonlinear systems, for the first time using a simulation-focused computational Bayesian approach. Simulation approaches to nonlinear system identification have been shown to outperform regression methods under certain conditions, such as non-persistently exciting inputs and fast-sampling. We use the approximate Bayesian computation (ABC) algorithm to perform simulation-based inference of model parameters. The framework has the following main advantages: (1) parameter distributions are intrinsically generated, giving the user a clear description of uncertainty, (2) the simulation approach avoids the difficult problem of estimating signal derivatives as is common with other continuous-time methods, and (3) as noted above, the simulation approach improves identification under conditions of non-persistently exciting inputs and fast-sampling. Term selection is performed by judging parameter significance using parameter distributions that are intrinsically generated as part of the ABC procedure. The results from a numerical example demonstrate that the method performs well in noisy scenarios, especially in comparison to competing techniques that rely on signal derivative estimation.

  18. Adaptive filtering in biological signal processing.

    PubMed

    Iyer, V K; Ploysongsang, Y; Ramamoorthy, P A

    1990-01-01

    The high dependence of conventional optimal filtering methods on the a priori knowledge of the signal and noise statistics render them ineffective in dealing with signals whose statistics cannot be predetermined accurately. Adaptive filtering methods offer a better alternative, since the a priori knowledge of statistics is less critical, real time processing is possible, and the computations are less expensive for this approach. Adaptive filtering methods compute the filter coefficients "on-line", converging to the optimal values in the least-mean square (LMS) error sense. Adaptive filtering is therefore apt for dealing with the "unknown" statistics situation and has been applied extensively in areas like communication, speech, radar, sonar, seismology, and biological signal processing and analysis for channel equalization, interference and echo canceling, line enhancement, signal detection, system identification, spectral analysis, beamforming, modeling, control, etc. In this review article adaptive filtering in the context of biological signals is reviewed. An intuitive approach to the underlying theory of adaptive filters and its applicability are presented. Applications of the principles in biological signal processing are discussed in a manner that brings out the key ideas involved. Current and potential future directions in adaptive biological signal processing are also discussed.

  19. Evaluation of the Biolog automated microbial identification system

    NASA Technical Reports Server (NTRS)

    Klingler, J. M.; Stowe, R. P.; Obenhuber, D. C.; Groves, T. O.; Mishra, S. K.; Pierson, D. L.

    1992-01-01

    Biolog's identification system was used to identify 39 American Type Culture Collection reference taxa and 45 gram-negative isolates from water samples. Of the reference strains, 98% were identified to genus level and 76% to species level within 4 to 24 h. Identification of some authentic strains of Enterobacter, Klebsiella, and Serratia was unreliable. A total of 93% of the water isolates were identified.

  20. An adaptive brain actuated system for augmenting rehabilitation

    PubMed Central

    Roset, Scott A.; Gant, Katie; Prasad, Abhishek; Sanchez, Justin C.

    2014-01-01

    For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation and to alleviate motor impairments. In this paper, an adaptive brain-computer interface system intended for application to control a functional electrical stimulation (FES) device is developed as an experimental test bed for augmenting rehabilitation with a brain-computer interface. The system's performance is improved throughout rehabilitation by passive user feedback and reinforcement learning. By continuously adapting to the user's brain activity, similar adaptive systems could be used to support clinical brain-computer interface neurorehabilitation over multiple days. PMID:25565945

  1. Convergence of fractional adaptive systems using gradient approach.

    PubMed

    Gallegos, Javier A; Duarte-Mermoud, Manuel A

    2017-07-01

    Conditions for boundedness and convergence of the output error and the parameter error for various Caputo's fractional order adaptive schemes based on the steepest descent method are derived in this paper. To this aim, the concept of sufficiently exciting signals is introduced, characterized and related to the concept of persistently exciting signals used in the integer order case. An application is designed in adaptive indirect control of integer order systems using fractional equations to adjust parameters. This application is illustrated for a pole placement adaptive problem. Advantages of using fractional adjustment in control adaptive schemes are experimentally obtained. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Adaptive control applied to Space Station attitude control system

    NASA Technical Reports Server (NTRS)

    Lam, Quang M.; Chipman, Richard; Hu, Tsay-Hsin G.; Holmes, Eric B.; Sunkel, John

    1992-01-01

    This paper presents an adaptive control approach to enhance the performance of current attitude control system used by the Space Station Freedom. The proposed control law was developed based on the direct adaptive control or model reference adaptive control scheme. Performance comparisons, subject to inertia variation, of the adaptive controller and the fixed-gain linear quadratic regulator currently implemented for the Space Station are conducted. Both the fixed-gain and the adaptive gain controllers are able to maintain the Station stability for inertia variations of up to 35 percent. However, when a 50 percent inertia variation is applied to the Station, only the adaptive controller is able to maintain the Station attitude.

  3. A neural network for the identification of measured helicopter noise

    NASA Technical Reports Server (NTRS)

    Cabell, R. H.; Fuller, C. R.; O'Brien, W. F.

    1991-01-01

    The results of a preliminary study of the components of a novel acoustic helicopter identification system are described. The identification system uses the relationship between the amplitudes of the first eight harmonics in the main rotor noise spectrum to distinguish between helicopter types. Two classification algorithms are tested; a statistically optimal Bayes classifier, and a neural network adaptive classifier. The performance of these classifiers is tested using measured noise of three helicopters. The statistical classifier can correctly identify the helicopter an average of 67 percent of the time, while the neural network is correct an average of 65 percent of the time. These results indicate the need for additional study of the envelope of harmonic amplitudes as a component of a helicopter identification system. Issues concerning the implementation of the neural network classifier, such as training time and structure of the network, are discussed.

  4. 47 CFR 80.231 - Technical Requirements for Class B Automatic Identification System (AIS) equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Identification System (AIS) equipment. 80.231 Section 80.231 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... § 80.231 Technical Requirements for Class B Automatic Identification System (AIS) equipment. (a) Class B Automatic Identification System (AIS) equipment must meet the technical requirements of IEC 62287...

  5. 47 CFR 80.231 - Technical Requirements for Class B Automatic Identification System (AIS) equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Identification System (AIS) equipment. 80.231 Section 80.231 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... § 80.231 Technical Requirements for Class B Automatic Identification System (AIS) equipment. (a) Class B Automatic Identification System (AIS) equipment must meet the technical requirements of IEC 62287...

  6. 47 CFR 80.231 - Technical Requirements for Class B Automatic Identification System (AIS) equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Identification System (AIS) equipment. 80.231 Section 80.231 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... § 80.231 Technical Requirements for Class B Automatic Identification System (AIS) equipment. (a) Class B Automatic Identification System (AIS) equipment must meet the technical requirements of IEC 62287...

  7. Complex adaptive systems: A new approach for understanding health practices.

    PubMed

    Gomersall, Tim

    2018-06-22

    This article explores the potential of complex adaptive systems theory to inform behaviour change research. A complex adaptive system describes a collection of heterogeneous agents interacting within a particular context, adapting to each other's actions. In practical terms, this implies that behaviour change is 1) socially and culturally situated; 2) highly sensitive to small baseline differences in individuals, groups, and intervention components; and 3) determined by multiple components interacting "chaotically". Two approaches to studying complex adaptive systems are briefly reviewed. Agent-based modelling is a computer simulation technique that allows researchers to investigate "what if" questions in a virtual environment. Applied qualitative research techniques, on the other hand, offer a way to examine what happens when an intervention is pursued in real-time, and to identify the sorts of rules and assumptions governing social action. Although these represent very different approaches to complexity, there may be scope for mixing these methods - for example, by grounding models in insights derived from qualitative fieldwork. Finally, I will argue that the concept of complex adaptive systems offers one opportunity to gain a deepened understanding of health-related practices, and to examine the social psychological processes that produce health-promoting or damaging actions.

  8. Intellectual system of identification of Arabic graphics

    NASA Astrophysics Data System (ADS)

    Abdoullayeva, Gulchin G.; Aliyev, Telman A.; Gurbanova, Nazakat G.

    2001-08-01

    The studies made by using the domain of graphic images allowed creating facilities of the artificial intelligence for letters, letter combinations etc. for various graphics and prints. The work proposes a system of recognition and identification of symbols of the Arabic graphics, which has its own specificity as compared to Latin and Cyrillic ones. The starting stage of the recognition and the identification is coding with further entry of information into a computer. Here the problem of entry is one of the essentials. For entry of a large volume of information in the unit of time a scanner is usually employed. Along with the scanner the authors suggest their elaboration of technical facilities for effective input and coding of the information. For refinement of symbols not identified from the scanner mostly for a small bulk of information the developed coding devices are used directly in the process of writing. The functional design of the software is elaborated on the basis of the heuristic model of the creative activity of a researcher and experts in the description and estimation of states of the weakly formalizable systems on the strength of the methods of identification and of selection of geometric features.

  9. An overview of the essential differences and similarities of system identification techniques

    NASA Technical Reports Server (NTRS)

    Mehra, Raman K.

    1991-01-01

    Information is given in the form of outlines, graphs, tables and charts. Topics include system identification, Bayesian statistical decision theory, Maximum Likelihood Estimation, identification methods, structural mode identification using a stochastic realization algorithm, and identification results regarding membrane simulations and X-29 flutter flight test data.

  10. Global adaptive control for uncertain nonaffine nonlinear hysteretic systems.

    PubMed

    Liu, Yong-Hua; Huang, Liangpei; Xiao, Dongming; Guo, Yong

    2015-09-01

    In this paper, the global output tracking is investigated for a class of uncertain nonlinear hysteretic systems with nonaffine structures. By combining the solution properties of the hysteresis model with the novel backstepping approach, a robust adaptive control algorithm is developed without constructing a hysteresis inverse. The proposed control scheme is further modified to tackle the bounded disturbances by adaptively estimating their bounds. It is rigorously proven that the designed adaptive controllers can guarantee global stability of the closed-loop system. Two numerical examples are provided to show the effectiveness of the proposed control schemes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Binocular Multispectral Adaptive Imaging System (BMAIS)

    DTIC Science & Technology

    2010-07-26

    system for pilots that adaptively integrates shortwave infrared (SWIR), visible, near ‐IR (NIR), off‐head thermal, and computer symbology/imagery into...respective areas. BMAIS is a binocular helmet mounted imaging system that features dual shortwave infrared (SWIR) cameras, embedded image processors and...algorithms and fusion of other sensor sites such as forward looking infrared (FLIR) and other aircraft subsystems. BMAIS is attached to the helmet

  12. Adaptable Miniature Initiation System Technology (AMIST)

    DTIC Science & Technology

    2006-09-01

    exploding foil initiator ( EFI ) to detonate an insensitive secondary explosive. The in-line (no moving parts) nature of EFIs increases their...reliability over out-of-line initiation systems. Likewise, EFI fire points increase the safety factor for two main reasons: (1) firing an EFI requires a very...AFRL-MN-EG-TP-2006-7410 ADAPTABLE MINIATURE INITIATION SYSTEM TECHNOLOGY (AMIST) Kenneth Bradley Chris Martin Ed Wild Air

  13. Management Strategies for Complex Adaptive Systems: Sensemaking, Learning, and Improvisation

    ERIC Educational Resources Information Center

    McDaniel, Reuben R., Jr.

    2007-01-01

    Misspecification of the nature of organizations may be a major reason for difficulty in achieving performance improvement. Organizations are often viewed as machine-like, but complexity science suggests that organizations should be viewed as complex adaptive systems. I identify the characteristics of complex adaptive systems and give examples of…

  14. Emergent “Quantum” Theory in Complex Adaptive Systems

    PubMed Central

    Minic, Djordje; Pajevic, Sinisa

    2017-01-01

    Motivated by the question of stability, in this letter we argue that an effective quantum-like theory can emerge in complex adaptive systems. In the concrete example of stochastic Lotka-Volterra dynamics, the relevant effective “Planck constant” associated with such emergent “quantum” theory has the dimensions of the square of the unit of time. Such an emergent quantum-like theory has inherently non-classical stability as well as coherent properties that are not, in principle, endangered by thermal fluctuations and therefore might be of crucial importance in complex adaptive systems. PMID:28890591

  15. Systems and Methods for Parameter Dependent Riccati Equation Approaches to Adaptive Control

    NASA Technical Reports Server (NTRS)

    Kim, Kilsoo (Inventor); Yucelen, Tansel (Inventor); Calise, Anthony J. (Inventor)

    2015-01-01

    Systems and methods for adaptive control are disclosed. The systems and methods can control uncertain dynamic systems. The control system can comprise a controller that employs a parameter dependent Riccati equation. The controller can produce a response that causes the state of the system to remain bounded. The control system can control both minimum phase and non-minimum phase systems. The control system can augment an existing, non-adaptive control design without modifying the gains employed in that design. The control system can also avoid the use of high gains in both the observer design and the adaptive control law.

  16. System Identification for Integrated Aircraft Development and Flight Testing (l’Identification des systemes pour le developpement integre des aeronefs et les essais en vol)

    DTIC Science & Technology

    1999-03-01

    aerodynamics to affect load motions. The effects include a load trail angle in proportion to the drag specific force, and modification of the load pendulum...equations algorithm for flight data filtering architeture . and data consistency checking; and SCIDNT 8, an output architecture. error identification...accelerations at the seven sensor locations, identified system is proportional to the number When system identification is performed, as of flexible modes

  17. Linear system identification via backward-time observer models

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh Q.

    1992-01-01

    Presented here is an algorithm to compute the Markov parameters of a backward-time observer for a backward-time model from experimental input and output data. The backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) for the backward-time system identification. The identified backward-time system Markov parameters are used in the Eigensystem Realization Algorithm to identify a backward-time state-space model, which can be easily converted to the usual forward-time representation. If one reverses time in the model to be identified, what were damped true system modes become modes with negative damping, growing as the reversed time increases. On the other hand, the noise modes in the identification still maintain the property that they are stable. The shift from positive damping to negative damping of the true system modes allows one to distinguish these modes from noise modes. Experimental results are given to illustrate when and to what extent this concept works.

  18. An adaptive control system for a shell-and-tube heat exchanger

    NASA Astrophysics Data System (ADS)

    Skorospeshkin, M. V.; Sukhodoev, M. S.; Skorospeshkin, V. N.; Rymashevskiy, P. O.

    2017-01-01

    This article suggests an adaptive control system for a hydrocarbon perspiration temperature control. This control system consists of a PI-controller and a pseudolinear compensating device that modifies control system dynamic properties. As a result, the behaviour research of the developed temperature control system has been undertaken. This article shows high effectiveness of the represented adaptive control system during changing control object parameters.

  19. Adaptive Neural Tracking Control for Switched High-Order Stochastic Nonlinear Systems.

    PubMed

    Zhao, Xudong; Wang, Xinyong; Zong, Guangdeng; Zheng, Xiaolong

    2017-10-01

    This paper deals with adaptive neural tracking control design for a class of switched high-order stochastic nonlinear systems with unknown uncertainties and arbitrary deterministic switching. The considered issues are: 1) completely unknown uncertainties; 2) stochastic disturbances; and 3) high-order nonstrict-feedback system structure. The considered mathematical models can represent many practical systems in the actual engineering. By adopting the approximation ability of neural networks, common stochastic Lyapunov function method together with adding an improved power integrator technique, an adaptive state feedback controller with multiple adaptive laws is systematically designed for the systems. Subsequently, a controller with only two adaptive laws is proposed to solve the problem of over parameterization. Under the designed controllers, all the signals in the closed-loop system are bounded-input bounded-output stable in probability, and the system output can almost surely track the target trajectory within a specified bounded error. Finally, simulation results are presented to show the effectiveness of the proposed approaches.

  20. Adaptive management of social-ecological systems: the path forward

    USGS Publications Warehouse

    Allen, Craig R.

    2015-01-01

    Adaptive management remains at the forefront of environmental management nearly 40 years after its original conception, largely because we have yet to develop other methodologies that offer the same promise. Despite the criticisms of adaptive management and the numerous failed attempts to implement it, adaptive management has yet to be replaced with a better alternative. The concept persists because it is simple, allows action despite uncertainty, and fosters learning. Moving forward, adaptive management of social-ecological systems provides policymakers, managers and scientists a powerful tool for managing for resilience in the face of uncertainty.

  1. Robust adaptive uniform exact tracking control for uncertain Euler-Lagrange system

    NASA Astrophysics Data System (ADS)

    Yang, Yana; Hua, Changchun; Li, Junpeng; Guan, Xinping

    2017-12-01

    This paper offers a solution to the robust adaptive uniform exact tracking control for uncertain nonlinear Euler-Lagrange (EL) system. An adaptive finite-time tracking control algorithm is designed by proposing a novel nonsingular integral terminal sliding-mode surface. Moreover, a new adaptive parameter tuning law is also developed by making good use of the system tracking errors and the adaptive parameter estimation errors. Thus, both the trajectory tracking and the parameter estimation can be achieved in a guaranteed time adjusted arbitrarily based on practical demands, simultaneously. Additionally, the control result for the EL system proposed in this paper can be extended to high-order nonlinear systems easily. Finally, a test-bed 2-DOF robot arm is set-up to demonstrate the performance of the new control algorithm.

  2. Identification of Learning Styles Online by Observing Learners Browsing Behaviour through a Neural Network

    ERIC Educational Resources Information Center

    Lo, Jia-Jiunn; Shu, Pai-Chuan

    2005-01-01

    Identification of individual learning style is important when developing adaptive educational hypermedia systems. Current systems ask learners to complete questionnaires to identify their learning styles, which might not be appropriate in some contexts. The goal of this research is to identify the learner's learning style by simply observing…

  3. More pain, more gain: Blocking the opioid system boosts adaptive cognitive control.

    PubMed

    van Steenbergen, Henk; Weissman, Daniel H; Stein, Dan J; Malcolm-Smith, Susan; van Honk, Jack

    2017-06-01

    The ability to adaptively increase cognitive control in response to cognitive challenges is crucial for goal-directed behavior. Recent findings suggest that aversive arousal triggers adaptive increases of control, but the neurochemical mechanisms underlying these effects remain unclear. Given the known contributions of the opioid system to hedonic states, we investigated whether blocking this system increases adaptive control modulations. To do so, we conducted a double-blind, placebo-controlled psychopharmacological study (n=52 females) involving a Stroop-like task. Specifically, we assessed the effect of naltrexone, an opioid blocker most selective to the mu-opioid system, on two measures of adaptive control that are thought to depend differentially on aversive arousal: post-error slowing and conflict adaptation. Consistent with our hypothesis, relative to placebo, naltrexone increased post-error slowing without influencing conflict adaptation. This finding not only supports the view that aversive arousal triggers adaptive control but also reveals a novel role for the opioid system in modulating such effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Human adaptive immune system Rag2-/-gamma(c)-/- mice.

    PubMed

    Chicha, Laurie; Tussiwand, Roxane; Traggiai, Elisabetta; Mazzucchelli, Luca; Bronz, Lucio; Piffaretti, Jean-Claude; Lanzavecchia, Antonio; Manz, Markus G

    2005-06-01

    Although many biologic principles are conserved in mice and humans, species-specific differences exist, for example, in susceptibility and response to pathogens, that often do not allow direct implementation of findings in experimental mice to humans. Research in humans, however, for ethical and practical reasons, is largely restricted to in vitro assays that lack components and the complexity of a living organism. To nevertheless study the human hematopoietic and immune system in vivo, xenotransplantation assays have been developed that substitute human components to small animals. Here, we summarize our recent findings that transplantation of human cord blood CD34(+) cells to newborn Rag2(-/-)gamma(c)(-/-) mice leads to de novo development of major functional components of the human adaptive immune system. These human adaptive immune system Rag2(-/-)gamma(c)(-/-) (huAIS-RG) mice can now be used as a technically straightforward preclinical model to evaluate in vivo human adaptive immune system development as well as immune responses, for example, to vaccines or live infectious pathogens.

  5. Systems integration of innate and adaptive immunity.

    PubMed

    Zak, Daniel E; Aderem, Alan

    2015-09-29

    The pathogens causing AIDS, malaria, and tuberculosis have proven too complex to be overcome by classical approaches to vaccination. The complexities of human immunology and pathogen-induced modulation of the immune system mandate new approaches to vaccine discovery and design. A new field, systems vaccinology, weds holistic analysis of innate and adaptive immunity within a quantitative framework to enable rational design of new vaccines that elicit tailored protective immune responses. A key step in the approach is to discover relationships between the earliest innate inflammatory responses to vaccination and the subsequent vaccine-induced adaptive immune responses and efficacy. Analysis of these responses in clinical studies is complicated by the inaccessibility of relevant tissue compartments (such as the lymph node), necessitating reliance upon peripheral blood responses as surrogates. Blood transcriptomes, although indirect to vaccine mechanisms, have proven very informative in systems vaccinology studies. The approach is most powerful when innate and adaptive immune responses are integrated with vaccine efficacy, which is possible for malaria with the advent of a robust human challenge model. This is more difficult for AIDS and tuberculosis, given that human challenge models are lacking and efficacy observed in clinical trials has been low or highly variable. This challenge can be met by appropriate clinical trial design for partially efficacious vaccines and by analysis of natural infection cohorts. Ultimately, systems vaccinology is an iterative approach in which mechanistic hypotheses-derived from analysis of clinical studies-are evaluated in model systems, and then used to guide the development of new vaccine strategies. In this review, we will illustrate the above facets of the systems vaccinology approach with case studies. Copyright © 2015. Published by Elsevier Ltd.

  6. Computerized Adaptive Testing System Design: Preliminary Design Considerations.

    ERIC Educational Resources Information Center

    Croll, Paul R.

    A functional design model for a computerized adaptive testing (CAT) system was developed and presented through a series of hierarchy plus input-process-output (HIPO) diagrams. System functions were translated into system structure: specifically, into 34 software components. Implementation of the design in a physical system was addressed through…

  7. Substantiation of Structure of Adaptive Control Systems for Motor Units

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, S. I.

    2018-05-01

    The article describes the development of new electronic control systems, in particular motor units, for small-sized agricultural equipment. Based on the analysis of traffic control systems, the main course of development of the conceptual designs of motor units has been defined. The systems aimed to control the course motion of the motor unit in automatic mode using the adaptive systems have been developed. The article presents structural models of the conceptual motor units based on electrically controlled systems by the operation of drive motors and adaptive systems that make the motor units completely automated.

  8. Structural Aspects of System Identification

    NASA Technical Reports Server (NTRS)

    Glover, Keith

    1973-01-01

    The problem of identifying linear dynamical systems is studied by considering structural and deterministic properties of linear systems that have an impact on stochastic identification algorithms. In particular considered is parametrization of linear systems so that there is a unique solution and all systems in appropriate class can be represented. It is assumed that a parametrization of system matrices has been established from a priori knowledge of the system, and the question is considered of when the unknown parameters of this system can be identified from input/output observations. It is assumed that the transfer function can be asymptotically identified, and the conditions are derived for the local, global and partial identifiability of the parametrization. Then it is shown that, with the right formulation, identifiability in the presence of feedback can be treated in the same way. Similarly the identifiability of parametrizations of systems driven by unobserved white noise is considered using the results from the theory of spectral factorization.

  9. On the identification of continuous vibrating systems modelled by hyperbolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Udwadia, F. E.; Garba, J. A.

    1983-01-01

    This paper deals with the identification of spatially varying parameters in systems of finite spatial extent which can be described by second order hyperbolic differential equations. Two questions have been addressed. The first deals with 'partial identification' and inquires into the possibility of retrieving all the eigenvalues of the system from response data obtained at one location x-asterisk epsilon (0, 1). The second deals with the identification of the distributed coefficients rho(x), a(x) and b(x). Sufficient conditions for unique identification of all the eigenvalues of the system are obtained, and conditions under which the coefficients can be uniquely identified using suitable response data obtained at one point in the spatial domain are determined. Application of the results and their usefulness is demonstrated in the identification of the properties of tall building structural systems subjected to dynamic load environments.

  10. Complex adaptive systems and their relevance for nursing: An evolutionary concept analysis.

    PubMed

    Notarnicola, Ippolito; Petrucci, Cristina; De Jesus Barbosa, Maria Rosimar; Giorgi, Fabio; Stievano, Alessandro; Rocco, Gennaro; Lancia, Loreto

    2017-06-01

    This study aimed to analyse the concept of "complex adaptive systems." The construct is still nebulous in the literature, and a further explanation of the idea is needed to have a shared knowledge of it. A concept analysis was conducted utilizing Rodgers evolutionary method. The inclusive years of bibliographic search started from 2005 to 2015. The search was conducted at PubMed©, CINAHL© (EBSCO host©), Scopus©, Web of Science©, and Academic Search Premier©. Retrieved papers were critically analysed to explore the attributes, antecedents, and consequences of the concept. Moreover, surrogates, related terms, and a pattern recognition scheme were identified. The concept analysis showed that complex systems are adaptive and have the ability to process information. They can adapt to the environment and consequently evolve. Nursing is a complex adaptive system, and the nursing profession in practice exhibits complex adaptive system characteristics. Complexity science through complex adaptive systems provides new ways of seeing and understanding the mechanisms that underpin the nursing profession. © 2017 John Wiley & Sons Australia, Ltd.

  11. Identification of Load Categories in Rotor System Based on Vibration Analysis

    PubMed Central

    Yang, Zhaojian

    2017-01-01

    Rotating machinery is often subjected to variable loads during operation. Thus, monitoring and identifying different load types is important. Here, five typical load types have been qualitatively studied for a rotor system. A novel load category identification method for rotor system based on vibration signals is proposed. This method is a combination of ensemble empirical mode decomposition (EEMD), energy feature extraction, and back propagation (BP) neural network. A dedicated load identification test bench for rotor system was developed. According to loads characteristics and test conditions, an experimental plan was formulated, and loading tests for five loads were conducted. Corresponding vibration signals of the rotor system were collected for each load condition via eddy current displacement sensor. Signals were reconstructed using EEMD, and then features were extracted followed by energy calculations. Finally, characteristics were input to the BP neural network, to identify different load types. Comparison and analysis of identifying data and test data revealed a general identification rate of 94.54%, achieving high identification accuracy and good robustness. This shows that the proposed method is feasible. Due to reliable and experimentally validated theoretical results, this method can be applied to load identification and fault diagnosis for rotor equipment used in engineering applications. PMID:28726754

  12. Comparison of Five System Identification Algorithms for Rotorcraft Higher Harmonic Control

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.

    1998-01-01

    This report presents an analysis and performance comparison of five system identification algorithms. The methods are presented in the context of identifying a frequency-domain transfer matrix for the higher harmonic control (HHC) of helicopter vibration. The five system identification algorithms include three previously proposed methods: (1) the weighted-least- squares-error approach (in moving-block format), (2) the Kalman filter method, and (3) the least-mean-squares (LMS) filter method. In addition there are two new ones: (4) a generalized Kalman filter method and (5) a generalized LMS filter method. The generalized Kalman filter method and the generalized LMS filter method were derived as extensions of the classic methods to permit identification by using more than one measurement per identification cycle. Simulation results are presented for conditions ranging from the ideal case of a stationary transfer matrix and no measurement noise to the more complex cases involving both measurement noise and transfer-matrix variation. Both open-loop identification and closed- loop identification were simulated. Closed-loop mode identification was more challenging than open-loop identification because of the decreasing signal-to-noise ratio as the vibration became reduced. The closed-loop simulation considered both local-model identification, with measured vibration feedback and global-model identification with feedback of the identified uncontrolled vibration. The algorithms were evaluated in terms of their accuracy, stability, convergence properties, computation speeds, and relative ease of implementation.

  13. Adaptive Optical System for Retina Imaging Approaches Clinic Applications

    NASA Astrophysics Data System (ADS)

    Ling, N.; Zhang, Y.; Rao, X.; Wang, C.; Hu, Y.; Jiang, W.; Jiang, C.

    We presented "A small adaptive optical system on table for human retinal imaging" at the 3rd Workshop on Adaptive Optics for Industry and Medicine. In this system, a 19 element small deformable mirror was used as wavefront correction element. High resolution images of photo receptors and capillaries of human retina were obtained. In recent two years, at the base of this system a new adaptive optical system for human retina imaging has been developed. The wavefront correction element is a newly developed 37 element deformable mirror. Some modifications have been adopted for easy operation. Experiments for different imaging wavelengths and axial positions were conducted. Mosaic pictures of photoreceptors and capillaries were obtained. 100 normal and abnormal eyes of different ages have been inspected.The first report in the world concerning the most detailed capillary distribution images cover ±3° by ± 3° field around the fovea has been demonstrated. Some preliminary very early diagnosis experiment has been tried in laboratory. This system is being planned to move to the hospital for clinic experiments.

  14. The stochastic control of the F-8C aircraft using the Multiple Model Adaptive Control (MMAC) method

    NASA Technical Reports Server (NTRS)

    Athans, M.; Dunn, K. P.; Greene, E. S.; Lee, W. H.; Sandel, N. R., Jr.

    1975-01-01

    The purpose of this paper is to summarize results obtained for the adaptive control of the F-8C aircraft using the so-called Multiple Model Adaptive Control method. The discussion includes the selection of the performance criteria for both the lateral and the longitudinal dynamics, the design of the Kalman filters for different flight conditions, the 'identification' aspects of the design using hypothesis testing ideas, and the performance of the closed loop adaptive system.

  15. PERSO: Towards an Adaptive e-Learning System

    ERIC Educational Resources Information Center

    Chorfi, Henda; Jemni, Mohamed

    2004-01-01

    In today's information technology society, members are increasingly required to be up to date on new technologies, particularly for computers, regardless of their background social situation. In this context, our aim is to design and develop an adaptive hypermedia e-learning system, called PERSO (PERSOnalizing e-learning system), where learners…

  16. Adaptive receiver structures for asynchronous CDMA systems

    NASA Astrophysics Data System (ADS)

    Rapajic, Predrag B.; Vucetic, Branka S.

    1994-05-01

    Adaptive linear and decision feedback receiver structures for coherent demodulation in asynchronous code division multiple access (CDMA) systems are considered. It is assumed that the adaptive receiver has no knowledge of the signature waveforms and timing of other users. The receiver is trained by a known training sequence prior to data transmission and continuously adjusted by an adaptive algorithm during data transmission. The proposed linear receiver is as simple as a standard single-user detector receiver consisting of a matched filter with constant coefficients, but achieves essential advantages with respect to timing recovery, multiple access interference elimination, near/far effect, narrowband and frequency-selective fading interference suppression, and user privacy. An adaptive centralized decision feedback receiver has the same advantages of the linear receiver but, in addition, achieves a further improvement in multiple access interference cancellation at the expense of higher complexity. The proposed receiver structures are tested by simulation over a channel with multipath propagation, multiple access interference, narrowband interference, and additive white Gaussian noise.

  17. Music Identification System Using MPEG-7 Audio Signature Descriptors

    PubMed Central

    You, Shingchern D.; Chen, Wei-Hwa; Chen, Woei-Kae

    2013-01-01

    This paper describes a multiresolution system based on MPEG-7 audio signature descriptors for music identification. Such an identification system may be used to detect illegally copied music circulated over the Internet. In the proposed system, low-resolution descriptors are used to search likely candidates, and then full-resolution descriptors are used to identify the unknown (query) audio. With this arrangement, the proposed system achieves both high speed and high accuracy. To deal with the problem that a piece of query audio may not be inside the system's database, we suggest two different methods to find the decision threshold. Simulation results show that the proposed method II can achieve an accuracy of 99.4% for query inputs both inside and outside the database. Overall, it is highly possible to use the proposed system for copyright control. PMID:23533359

  18. Variation in Microbial Identification System Accuracy for Yeast Identification Depending on Commercial Source of Sabouraud Dextrose Agar

    PubMed Central

    Kellogg, James A.; Bankert, David A.; Chaturvedi, Vishnu

    1999-01-01

    The accuracy of the Microbial Identification System (MIS; MIDI, Inc.) for identification of yeasts to the species level was compared by using 438 isolates grown on prepoured BBL Sabouraud dextrose agar (SDA) and prepoured Remel SDA. Correct identification was observed for 326 (74%) of the yeasts cultured on BBL SDA versus only 214 (49%) of yeasts grown on Remel SDA (P < 0.001). The commercial source of the SDA used in the MIS procedure significantly influences the system’s accuracy. PMID:10325387

  19. A Framework for People Re-Identification in Multi-Camera Surveillance Systems

    ERIC Educational Resources Information Center

    Ammar, Sirine; Zaghden, Nizar; Neji, Mahmoud

    2017-01-01

    People re-identification has been a very active research topic recently in computer vision. It is an important application in surveillance system with disjoint cameras. This paper is focused on the implementation of a human re-identification system. First the face of detected people is divided into three parts and some soft-biometric traits are…

  20. Adaptive optics system application for solar telescope

    NASA Astrophysics Data System (ADS)

    Lukin, V. P.; Grigor'ev, V. M.; Antoshkin, L. V.; Botugina, N. N.; Emaleev, O. N.; Konyaev, P. A.; Kovadlo, P. G.; Krivolutskiy, N. P.; Lavrionova, L. N.; Skomorovski, V. I.

    2008-07-01

    The possibility of applying adaptive correction to ground-based solar astronomy is considered. Several experimental systems for image stabilization are described along with the results of their tests. Using our work along several years and world experience in solar adaptive optics (AO) we are assuming to obtain first light to the end of 2008 for the first Russian low order ANGARA solar AO system on the Big Solar Vacuum Telescope (BSVT) with 37 subapertures Shack-Hartmann wavefront sensor based of our modified correlation tracker algorithm, DALSTAR video camera, 37 elements deformable bimorph mirror, home made fast tip-tip mirror with separate correlation tracker. Too strong daytime turbulence is on the BSVT site and we are planning to obtain a partial correction for part of Sun surface image.

  1. Adaptive management

    USGS Publications Warehouse

    Allen, Craig R.; Garmestani, Ahjond S.

    2015-01-01

    Adaptive management is an approach to natural resource management that emphasizes learning through management where knowledge is incomplete, and when, despite inherent uncertainty, managers and policymakers must act. Unlike a traditional trial and error approach, adaptive management has explicit structure, including a careful elucidation of goals, identification of alternative management objectives and hypotheses of causation, and procedures for the collection of data followed by evaluation and reiteration. The process is iterative, and serves to reduce uncertainty, build knowledge and improve management over time in a goal-oriented and structured process.

  2. A biometric identification system based on eigenpalm and eigenfinger features.

    PubMed

    Ribaric, Slobodan; Fratric, Ivan

    2005-11-01

    This paper presents a multimodal biometric identification system based on the features of the human hand. We describe a new biometric approach to personal identification using eigenfinger and eigenpalm features, with fusion applied at the matching-score level. The identification process can be divided into the following phases: capturing the image; preprocessing; extracting and normalizing the palm and strip-like finger subimages; extracting the eigenpalm and eigenfinger features based on the K-L transform; matching and fusion; and, finally, a decision based on the (k, l)-NN classifier and thresholding. The system was tested on a database of 237 people (1,820 hand images). The experimental results showed the effectiveness of the system in terms of the recognition rate (100 percent), the equal error rate (EER = 0.58 percent), and the total error rate (TER = 0.72 percent).

  3. System Identification and POD Method Applied to Unsteady Aerodynamics

    NASA Technical Reports Server (NTRS)

    Tang, Deman; Kholodar, Denis; Juang, Jer-Nan; Dowell, Earl H.

    2001-01-01

    The representation of unsteady aerodynamic flow fields in terms of global aerodynamic modes has proven to be a useful method for reducing the size of the aerodynamic model over those representations that use local variables at discrete grid points in the flow field. Eigenmodes and Proper Orthogonal Decomposition (POD) modes have been used for this purpose with good effect. This suggests that system identification models may also be used to represent the aerodynamic flow field. Implicit in the use of a systems identification technique is the notion that a relative small state space model can be useful in describing a dynamical system. The POD model is first used to show that indeed a reduced order model can be obtained from a much larger numerical aerodynamical model (the vortex lattice method is used for illustrative purposes) and the results from the POD and the system identification methods are then compared. For the example considered, the two methods are shown to give comparable results in terms of accuracy and reduced model size. The advantages and limitations of each approach are briefly discussed. Both appear promising and complementary in their characteristics.

  4. Modeling Power Systems as Complex Adaptive Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, David P.; Malard, Joel M.; Posse, Christian

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We reviewmore » and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.« less

  5. An experimental study of nonlinear dynamic system identification

    NASA Technical Reports Server (NTRS)

    Stry, Greselda I.; Mook, D. Joseph

    1990-01-01

    A technique for robust identification of nonlinear dynamic systems is developed and illustrated using both simulations and analog experiments. The technique is based on the Minimum Model Error optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature of the current work is the ability to identify nonlinear dynamic systems without prior assumptions regarding the form of the nonlinearities, in constrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.

  6. Evolving Systems and Adaptive Key Component Control

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.

    2009-01-01

    We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.

  7. Adaptive Modeling of the International Space Station Electrical Power System

    NASA Technical Reports Server (NTRS)

    Thomas, Justin Ray

    2007-01-01

    Software simulations provide NASA engineers the ability to experiment with spacecraft systems in a computer-imitated environment. Engineers currently develop software models that encapsulate spacecraft system behavior. These models can be inaccurate due to invalid assumptions, erroneous operation, or system evolution. Increasing accuracy requires manual calibration and domain-specific knowledge. This thesis presents a method for automatically learning system models without any assumptions regarding system behavior. Data stream mining techniques are applied to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). We also explore a knowledge fusion approach that uses traditional engineered EPS models to supplement the learned models. We observed that these engineered EPS models provide useful background knowledge to reduce predictive error spikes when confronted with making predictions in situations that are quite different from the training scenarios used when learning the model. Evaluations using ISS sensor data and existing EPS models demonstrate the success of the adaptive approach. Our experimental results show that adaptive modeling provides reductions in model error anywhere from 80% to 96% over these existing models. Final discussions include impending use of adaptive modeling technology for ISS mission operations and the need for adaptive modeling in future NASA lunar and Martian exploration.

  8. Optimal Control Modification for Robust Adaptation of Singularly Perturbed Systems with Slow Actuators

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham; Stepanyan, Vahram; Boskovic, Jovan

    2009-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. The model matching conditions in the transformed time coordinate results in increase in the feedback gain and modification of the adaptive law.

  9. Teacher Report versus Adaptive Behavior Scale in Assessment of Mental Retardation.

    ERIC Educational Resources Information Center

    Al-Ansari, Ahmed

    1993-01-01

    This study assessed the degree of agreement between teacher report and an adapted Adaptive Behavior Scale in the identification of mental retardation and associated learning difficulties in 257 young Bahraini school children. Findings indicated that the instrument is sensitive in identification of children with mental retardation and exhibits high…

  10. Advancements in robust algorithm formulation for speaker identification of whispered speech

    NASA Astrophysics Data System (ADS)

    Fan, Xing

    Whispered speech is an alternative speech production mode from neutral speech, which is used by talkers intentionally in natural conversational scenarios to protect privacy and to avoid certain content from being overheard/made public. Due to the profound differences between whispered and neutral speech in production mechanism and the absence of whispered adaptation data, the performance of speaker identification systems trained with neutral speech degrades significantly. This dissertation therefore focuses on developing a robust closed-set speaker recognition system for whispered speech by using no or limited whispered adaptation data from non-target speakers. This dissertation proposes the concept of "High''/"Low'' performance whispered data for the purpose of speaker identification. A variety of acoustic properties are identified that contribute to the quality of whispered data. An acoustic analysis is also conducted to compare the phoneme/speaker dependency of the differences between whispered and neutral data in the feature domain. The observations from those acoustic analysis are new in this area and also serve as a guidance for developing robust speaker identification systems for whispered speech. This dissertation further proposes two systems for speaker identification of whispered speech. One system focuses on front-end processing. A two-dimensional feature space is proposed to search for "Low''-quality performance based whispered utterances and separate feature mapping functions are applied to vowels and consonants respectively in order to retain the speaker's information shared between whispered and neutral speech. The other system focuses on speech-mode-independent model training. The proposed method generates pseudo whispered features from neutral features by using the statistical information contained in a whispered Universal Background model (UBM) trained from extra collected whispered data from non-target speakers. Four modeling methods are proposed

  11. Nanosatellite Launch Adapter System (NLAS)

    NASA Technical Reports Server (NTRS)

    Chartres, James; Cappuccio, Gelsomina

    2015-01-01

    The Nanosatellite Launch Adapter System (NLAS) was developed to increase access to space while simplifying the integration process of miniature satellites, called nanosats or CubeSats, onto launch vehicles. A standard CubeSat measures about 10 cm square, and is referred to as a 1-unit (1U) CubeSat. A single NLAS provides the capability to deploy 24U of CubeSats. The system is designed to accommodate satellites measuring 1U, 1.5U, 2U, 3U and 6U sizes for deployment into orbit. The NLAS may be configured for use on different launch vehicles. The system also enables flight demonstrations of new technologies in the space environment.

  12. Cavity parameters identification for TESLA control system development

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Pozniak, Krysztof T.; Romaniuk, Ryszard S.; Simrock, Stefan

    2005-08-01

    Aim of the control system development for TESLA cavity is a more efficient stabilization of the pulsed, accelerating EM field inside resonator. Cavity parameters identification is an essential task for the comprehensive control algorithm. TESLA cavity simulator has been successfully implemented using high-speed FPGA technology. Electromechanical model of the cavity resonator includes Lorentz force detuning and beam loading. The parameters identification is based on the electrical model of the cavity. The model is represented by state space equation for envelope of the cavity voltage driven by current generator and beam loading. For a given model structure, the over-determined matrix equation is created covering long enough measurement range with the solution according to the least-squares method. A low-degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification was implemented in the Matlab system with different modes of operation. Some experimental results were presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation.

  13. Adaptive model reduction for continuous systems via recursive rational interpolation

    NASA Technical Reports Server (NTRS)

    Lilly, John H.

    1994-01-01

    A method for adaptive identification of reduced-order models for continuous stable SISO and MIMO plants is presented. The method recursively finds a model whose transfer function (matrix) matches that of the plant on a set of frequencies chosen by the designer. The algorithm utilizes the Moving Discrete Fourier Transform (MDFT) to continuously monitor the frequency-domain profile of the system input and output signals. The MDFT is an efficient method of monitoring discrete points in the frequency domain of an evolving function of time. The model parameters are estimated from MDFT data using standard recursive parameter estimation techniques. The algorithm has been shown in simulations to be quite robust to additive noise in the inputs and outputs. A significant advantage of the method is that it enables a type of on-line model validation. This is accomplished by simultaneously identifying a number of models and comparing each with the plant in the frequency domain. Simulations of the method applied to an 8th-order SISO plant and a 10-state 2-input 2-output plant are presented. An example of on-line model validation applied to the SISO plant is also presented.

  14. An adaptive optics system for solid-state laser systems used in inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmon, J.T.; Bliss, E.S.; Byrd, J.L.

    1995-09-17

    Using adaptive optics the authors have obtained nearly diffraction-limited 5 kJ, 3 nsec output pulses at 1.053 {micro}m from the Beamlet demonstration system for the National Ignition Facility (NIF). The peak Strehl ratio was improved from 0.009 to 0.50, as estimated from measured wavefront errors. They have also measured the relaxation of the thermally induced aberrations in the main beam line over a period of 4.5 hours. Peak-to-valley aberrations range from 6.8 waves at 1.053 {micro}m within 30 minutes after a full system shot to 3.9 waves after 4.5 hours. The adaptive optics system must have enough range to correctmore » accumulated thermal aberrations from several shots in addition to the immediate shot-induced error. Accumulated wavefront errors in the beam line will affect both the design of the adaptive optics system for NIF and the performance of that system.« less

  15. SDR implementation of the receiver of adaptive communication system

    NASA Astrophysics Data System (ADS)

    Skarzynski, Jacek; Darmetko, Marcin; Kozlowski, Sebastian; Kurek, Krzysztof

    2016-04-01

    The paper presents software implementation of a receiver forming a part of an adaptive communication system. The system is intended for communication with a satellite placed in a low Earth orbit (LEO). The ability of adaptation is believed to increase the total amount of data transmitted from the satellite to the ground station. Depending on the signal-to-noise ratio (SNR) of the received signal, adaptive transmission is realized using different transmission modes, i.e., different modulation schemes (BPSK, QPSK, 8-PSK, and 16-APSK) and different convolutional code rates (1/2, 2/3, 3/4, 5/6, and 7/8). The receiver consists of a software-defined radio (SDR) module (National Instruments USRP-2920) and a multithread reception software running on Windows operating system. In order to increase the speed of signal processing, the software takes advantage of single instruction multiple data instructions supported by x86 processor architecture.

  16. Adaptive integral robust control and application to electromechanical servo systems.

    PubMed

    Deng, Wenxiang; Yao, Jianyong

    2017-03-01

    This paper proposes a continuous adaptive integral robust control with robust integral of the sign of the error (RISE) feedback for a class of uncertain nonlinear systems, in which the RISE feedback gain is adapted online to ensure the robustness against disturbances without the prior bound knowledge of the additive disturbances. In addition, an adaptive compensation integrated with the proposed adaptive RISE feedback term is also constructed to further reduce design conservatism when the system also exists parametric uncertainties. Lyapunov analysis reveals the proposed controllers could guarantee the tracking errors are asymptotically converging to zero with continuous control efforts. To illustrate the high performance nature of the developed controllers, numerical simulations are provided. At the end, an application case of an actual electromechanical servo system driven by motor is also studied, with some specific design consideration, and comparative experimental results are obtained to verify the effectiveness of the proposed controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Evaluation Framework Based on Fuzzy Measured Method in Adaptive Learning Systems

    ERIC Educational Resources Information Center

    Ounaies, Houda Zouari; Jamoussi, Yassine; Ben Ghezala, Henda Hajjami

    2008-01-01

    Currently, e-learning systems are mainly web-based applications and tackle a wide range of users all over the world. Fitting learners' needs is considered as a key issue to guaranty the success of these systems. Many researches work on providing adaptive systems. Nevertheless, evaluation of the adaptivity is still in an exploratory phase.…

  18. Digital adaptive optics line-scanning confocal imaging system.

    PubMed

    Liu, Changgeng; Kim, Myung K

    2015-01-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.

  19. Adaptive simplification of complex multiscale systems.

    PubMed

    Chiavazzo, Eliodoro; Karlin, Ilya

    2011-03-01

    A fully adaptive methodology is developed for reducing the complexity of large dissipative systems. This represents a significant step toward extracting essential physical knowledge from complex systems, by addressing the challenging problem of a minimal number of variables needed to exactly capture the system dynamics. Accurate reduced description is achieved, by construction of a hierarchy of slow invariant manifolds, with an embarrassingly simple implementation in any dimension. The method is validated with the autoignition of the hydrogen-air mixture where a reduction to a cascade of slow invariant manifolds is observed.

  20. Adaptive control with an expert system based supervisory level. Thesis

    NASA Technical Reports Server (NTRS)

    Sullivan, Gerald A.

    1991-01-01

    Adaptive control is presently one of the methods available which may be used to control plants with poorly modelled dynamics or time varying dynamics. Although many variations of adaptive controllers exist, a common characteristic of all adaptive control schemes, is that input/output measurements from the plant are used to adjust a control law in an on-line fashion. Ideally the adjustment mechanism of the adaptive controller is able to learn enough about the dynamics of the plant from input/output measurements to effectively control the plant. In practice, problems such as measurement noise, controller saturation, and incorrect model order, to name a few, may prevent proper adjustment of the controller and poor performance or instability result. In this work we set out to avoid the inadequacies of procedurally implemented safety nets, by introducing a two level control scheme in which an expert system based 'supervisor' at the upper level provides all the safety net functions for an adaptive controller at the lower level. The expert system is based on a shell called IPEX, (Interactive Process EXpert), that we developed specifically for the diagnosis and treatment of dynamic systems. Some of the more important functions that the IPEX system provides are: (1) temporal reasoning; (2) planning of diagnostic activities; and (3) interactive diagnosis. Also, because knowledge and control logic are separate, the incorporation of new diagnostic and treatment knowledge is relatively simple. We note that the flexibility available in the system to express diagnostic and treatment knowledge, allows much greater functionality than could ever be reasonably expected from procedural implementations of safety nets. The remainder of this chapter is divided into three sections. In section 1.1 we give a detailed review of the literature in the area of supervisory systems for adaptive controllers. In particular, we describe the evolution of safety nets from simple ad hoc techniques, up

  1. Tip-tilt disturbance model identification based on non-linear least squares fitting for Linear Quadratic Gaussian control

    NASA Astrophysics Data System (ADS)

    Yang, Kangjian; Yang, Ping; Wang, Shuai; Dong, Lizhi; Xu, Bing

    2018-05-01

    We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This identification method based on Levenberg-Marquardt method conducts with a little prior information and no auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay mode by simulation.

  2. Optical/digital identification/verification system based on digital watermarking technology

    NASA Astrophysics Data System (ADS)

    Herrigel, Alexander; Voloshynovskiy, Sviatoslav V.; Hrytskiv, Zenon D.

    2000-06-01

    This paper presents a new approach for the secure integrity verification of driver licenses, passports or other analogue identification documents. The system embeds (detects) the reference number of the identification document with the DCT watermark technology in (from) the owner photo of the identification document holder. During verification the reference number is extracted and compared with the reference number printed in the identification document. The approach combines optical and digital image processing techniques. The detection system must be able to scan an analogue driver license or passport, convert the image of this document into a digital representation and then apply the watermark verification algorithm to check the payload of the embedded watermark. If the payload of the watermark is identical with the printed visual reference number of the issuer, the verification was successful and the passport or driver license has not been modified. This approach constitutes a new class of application for the watermark technology, which was originally targeted for the copyright protection of digital multimedia data. The presented approach substantially increases the security of the analogue identification documents applied in many European countries.

  3. Homeostatic Regulation of Memory Systems and Adaptive Decisions

    PubMed Central

    Mizumori, Sheri JY; Jo, Yong Sang

    2013-01-01

    While it is clear that many brain areas process mnemonic information, understanding how their interactions result in continuously adaptive behaviors has been a challenge. A homeostatic-regulated prediction model of memory is presented that considers the existence of a single memory system that is based on a multilevel coordinated and integrated network (from cells to neural systems) that determines the extent to which events and outcomes occur as predicted. The “multiple memory systems of the brain” have in common output that signals errors in the prediction of events and/or their outcomes, although these signals differ in terms of what the error signal represents (e.g., hippocampus: context prediction errors vs. midbrain/striatum: reward prediction errors). The prefrontal cortex likely plays a pivotal role in the coordination of prediction analysis within and across prediction brain areas. By virtue of its widespread control and influence, and intrinsic working memory mechanisms. Thus, the prefrontal cortex supports the flexible processing needed to generate adaptive behaviors and predict future outcomes. It is proposed that prefrontal cortex continually and automatically produces adaptive responses according to homeostatic regulatory principles: prefrontal cortex may serve as a controller that is intrinsically driven to maintain in prediction areas an experience-dependent firing rate set point that ensures adaptive temporally and spatially resolved neural responses to future prediction errors. This same drive by prefrontal cortex may also restore set point firing rates after deviations (i.e. prediction errors) are detected. In this way, prefrontal cortex contributes to reducing uncertainty in prediction systems. An emergent outcome of this homeostatic view may be the flexible and adaptive control that prefrontal cortex is known to implement (i.e. working memory) in the most challenging of situations. Compromise to any of the prediction circuits should result

  4. Homeostatic regulation of memory systems and adaptive decisions.

    PubMed

    Mizumori, Sheri J Y; Jo, Yong Sang

    2013-11-01

    While it is clear that many brain areas process mnemonic information, understanding how their interactions result in continuously adaptive behaviors has been a challenge. A homeostatic-regulated prediction model of memory is presented that considers the existence of a single memory system that is based on a multilevel coordinated and integrated network (from cells to neural systems) that determines the extent to which events and outcomes occur as predicted. The "multiple memory systems of the brain" have in common output that signals errors in the prediction of events and/or their outcomes, although these signals differ in terms of what the error signal represents (e.g., hippocampus: context prediction errors vs. midbrain/striatum: reward prediction errors). The prefrontal cortex likely plays a pivotal role in the coordination of prediction analysis within and across prediction brain areas. By virtue of its widespread control and influence, and intrinsic working memory mechanisms. Thus, the prefrontal cortex supports the flexible processing needed to generate adaptive behaviors and predict future outcomes. It is proposed that prefrontal cortex continually and automatically produces adaptive responses according to homeostatic regulatory principles: prefrontal cortex may serve as a controller that is intrinsically driven to maintain in prediction areas an experience-dependent firing rate set point that ensures adaptive temporally and spatially resolved neural responses to future prediction errors. This same drive by prefrontal cortex may also restore set point firing rates after deviations (i.e. prediction errors) are detected. In this way, prefrontal cortex contributes to reducing uncertainty in prediction systems. An emergent outcome of this homeostatic view may be the flexible and adaptive control that prefrontal cortex is known to implement (i.e. working memory) in the most challenging of situations. Compromise to any of the prediction circuits should result in

  5. White blood cells identification system based on convolutional deep neural learning networks.

    PubMed

    Shahin, A I; Guo, Yanhui; Amin, K M; Sharawi, Amr A

    2017-11-16

    White blood cells (WBCs) differential counting yields valued information about human health and disease. The current developed automated cell morphology equipments perform differential count which is based on blood smear image analysis. Previous identification systems for WBCs consist of successive dependent stages; pre-processing, segmentation, feature extraction, feature selection, and classification. There is a real need to employ deep learning methodologies so that the performance of previous WBCs identification systems can be increased. Classifying small limited datasets through deep learning systems is a major challenge and should be investigated. In this paper, we propose a novel identification system for WBCs based on deep convolutional neural networks. Two methodologies based on transfer learning are followed: transfer learning based on deep activation features and fine-tuning of existed deep networks. Deep acrivation featues are extracted from several pre-trained networks and employed in a traditional identification system. Moreover, a novel end-to-end convolutional deep architecture called "WBCsNet" is proposed and built from scratch. Finally, a limited balanced WBCs dataset classification is performed through the WBCsNet as a pre-trained network. During our experiments, three different public WBCs datasets (2551 images) have been used which contain 5 healthy WBCs types. The overall system accuracy achieved by the proposed WBCsNet is (96.1%) which is more than different transfer learning approaches or even the previous traditional identification system. We also present features visualization for the WBCsNet activation which reflects higher response than the pre-trained activated one. a novel WBCs identification system based on deep learning theory is proposed and a high performance WBCsNet can be employed as a pre-trained network. Copyright © 2017. Published by Elsevier B.V.

  6. Modelling of Biometric Identification System with Given Parameters Using Colored Petri Nets

    NASA Astrophysics Data System (ADS)

    Petrosyan, G.; Ter-Vardanyan, L.; Gaboutchian, A.

    2017-05-01

    Biometric identification systems use given parameters and function on the basis of Colored Petri Nets as a modelling language developed for systems in which communication, synchronization and distributed resources play an important role. Colored Petri Nets combine the strengths of Classical Petri Nets with the power of a high-level programming language. Coloured Petri Nets have both, formal intuitive and graphical presentations. Graphical CPN model consists of a set of interacting modules which include a network of places, transitions and arcs. Mathematical representation has a well-defined syntax and semantics, as well as defines system behavioural properties. One of the best known features used in biometric is the human finger print pattern. During the last decade other human features have become of interest, such as iris-based or face recognition. The objective of this paper is to introduce the fundamental concepts of Petri Nets in relation to tooth shape analysis. Biometric identification systems functioning has two phases: data enrollment phase and identification phase. During the data enrollment phase images of teeth are added to database. This record contains enrollment data as a noisy version of the biometrical data corresponding to the individual. During the identification phase an unknown individual is observed again and is compared to the enrollment data in the database and then system estimates the individual. The purpose of modeling biometric identification system by means of Petri Nets is to reveal the following aspects of the functioning model: the efficiency of the model, behavior of the model, mistakes and accidents in the model, feasibility of the model simplification or substitution of its separate components for more effective components without interfering system functioning. The results of biometric identification system modeling and evaluating are presented and discussed.

  7. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1999-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1". The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have successfully used adaptive optics on a 4-m class telescope to obtain 0.1" resolution images of solar system objects in the far red and near infrared (0.7-2.5 microns), aE wavelengths which best discl"lmlnate their spectral signatures. Our efforts have been put into areas of research for which high angular resolution is essential.

  8. Organization of an optimal adaptive immune system

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra; Mayer, Andreas; Balasubramanian, Vijay; Mora, Thierry

    The repertoire of lymphocyte receptors in the adaptive immune system protects organisms from a diverse set of pathogens. A well-adapted repertoire should be tuned to the pathogenic environment to reduce the cost of infections. I will discuss a general framework for predicting the optimal repertoire that minimizes the cost of infections contracted from a given distribution of pathogens. The theory predicts that the immune system will have more receptors for rare antigens than expected from the frequency of encounters and individuals exposed to the same infections will have sparse repertoires that are largely different, but nevertheless exploit cross-reactivity to provide the same coverage of antigens. I will show that the optimal repertoires can be reached by dynamics that describes the competitive binding of antigens by receptors, and selective amplification of stimulated receptors.

  9. Generating Shifting Workloads to Benchmark Adaptability in Relational Database Systems

    NASA Astrophysics Data System (ADS)

    Rabl, Tilmann; Lang, Andreas; Hackl, Thomas; Sick, Bernhard; Kosch, Harald

    A large body of research concerns the adaptability of database systems. Many commercial systems already contain autonomic processes that adapt configurations as well as data structures and data organization. Yet there is virtually no possibility for a just measurement of the quality of such optimizations. While standard benchmarks have been developed that simulate real-world database applications very precisely, none of them considers variations in workloads produced by human factors. Today’s benchmarks test the performance of database systems by measuring peak performance on homogeneous request streams. Nevertheless, in systems with user interaction access patterns are constantly shifting. We present a benchmark that simulates a web information system with interaction of large user groups. It is based on the analysis of a real online eLearning management system with 15,000 users. The benchmark considers the temporal dependency of user interaction. Main focus is to measure the adaptability of a database management system according to shifting workloads. We will give details on our design approach that uses sophisticated pattern analysis and data mining techniques.

  10. Dynamic neural networks based on-line identification and control of high performance motor drives

    NASA Technical Reports Server (NTRS)

    Rubaai, Ahmed; Kotaru, Raj

    1995-01-01

    In the automated and high-tech industries of the future, there wil be a need for high performance motor drives both in the low-power range and in the high-power range. To meet very straight demands of tracking and regulation in the two quadrants of operation, advanced control technologies are of a considerable interest and need to be developed. In response a dynamics learning control architecture is developed with simultaneous on-line identification and control. the feature of the proposed approach, to efficiently combine the dual task of system identification (learning) and adaptive control of nonlinear motor drives into a single operation is presented. This approach, therefore, not only adapts to uncertainties of the dynamic parameters of the motor drives but also learns about their inherent nonlinearities. In fact, most of the neural networks based adaptive control approaches in use have an identification phase entirely separate from the control phase. Because these approaches separate the identification and control modes, it is not possible to cope with dynamic changes in a controlled process. Extensive simulation studies have been conducted and good performance was observed. The robustness characteristics of neuro-controllers to perform efficiently in a noisy environment is also demonstrated. With this initial success, the principal investigator believes that the proposed approach with the suggested neural structure can be used successfully for the control of high performance motor drives. Two identification and control topologies based on the model reference adaptive control technique are used in this present analysis. No prior knowledge of load dynamics is assumed in either topology while the second topology also assumes no knowledge of the motor parameters.

  11. 33 CFR 164.43 - Automatic Identification System Shipborne Equipment-Prince William Sound.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Automatic Identification System Shipborne Equipment-Prince William Sound. 164.43 Section 164.43 Navigation and Navigable Waters COAST GUARD... Automatic Identification System Shipborne Equipment—Prince William Sound. (a) Until December 31, 2004, each...

  12. 33 CFR 164.43 - Automatic Identification System Shipborne Equipment-Prince William Sound.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Automatic Identification System Shipborne Equipment-Prince William Sound. 164.43 Section 164.43 Navigation and Navigable Waters COAST GUARD... Automatic Identification System Shipborne Equipment—Prince William Sound. (a) Until December 31, 2004, each...

  13. 33 CFR 164.43 - Automatic Identification System Shipborne Equipment-Prince William Sound.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Automatic Identification System Shipborne Equipment-Prince William Sound. 164.43 Section 164.43 Navigation and Navigable Waters COAST GUARD... Automatic Identification System Shipborne Equipment—Prince William Sound. (a) Until December 31, 2004, each...

  14. Adaptable Transponder for Multiple Telemetry Systems

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III (Inventor); Varnavas, Kosta A. (Inventor)

    2014-01-01

    The present invention is a stackable telemetry circuit board for use in telemetry systems for satellites and other purposes. The present invention incorporates previously-qualified interchangeable circuit boards, or "decks," that perform functions such as power, signal receiving and transmission, and processing. Each deck is adapted to serve a range of telemetry applications. This provides flexibility in the construction of the stackable telemetry circuit board and significantly reduces the cost and time necessary to develop a telemetry system.

  15. [Measures to prevent patient identification errors in blood collection/physiological function testing utilizing a laboratory information system].

    PubMed

    Shimazu, Chisato; Hoshino, Satoshi; Furukawa, Taiji

    2013-08-01

    We constructed an integrated personal identification workflow chart using both bar code reading and an all in-one laboratory information system. The information system not only handles test data but also the information needed for patient guidance in the laboratory department. The reception terminals at the entrance, displays for patient guidance and patient identification tools at blood-sampling booths are all controlled by the information system. The number of patient identification errors was greatly reduced by the system. However, identification errors have not been abolished in the ultrasound department. After re-evaluation of the patient identification process in this department, we recognized that the major reason for the errors came from excessive identification workflow. Ordinarily, an ultrasound test requires patient identification 3 times, because 3 different systems are required during the entire test process, i.e. ultrasound modality system, laboratory information system and a system for producing reports. We are trying to connect the 3 different systems to develop a one-time identification workflow, but it is not a simple task and has not been completed yet. Utilization of the laboratory information system is effective, but is not yet perfect for patient identification. The most fundamental procedure for patient identification is to ask a person's name even today. Everyday checks in the ordinary workflow and everyone's participation in safety-management activity are important for the prevention of patient identification errors.

  16. Search-based model identification of smart-structure damage

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Macalou, A.

    1991-01-01

    This paper describes the use of a combined model and parameter identification approach, based on modal analysis and artificial intelligence (AI) techniques, for identifying damage or flaws in a rotating truss structure incorporating embedded piezoceramic sensors. This smart structure example is representative of a class of structures commonly found in aerospace systems and next generation space structures. Artificial intelligence techniques of classification, heuristic search, and an object-oriented knowledge base are used in an AI-based model identification approach. A finite model space is classified into a search tree, over which a variant of best-first search is used to identify the model whose stored response most closely matches that of the input. Newly-encountered models can be incorporated into the model space. This adaptativeness demonstrates the potential for learning control. Following this output-error model identification, numerical parameter identification is used to further refine the identified model. Given the rotating truss example in this paper, noisy data corresponding to various damage configurations are input to both this approach and a conventional parameter identification method. The combination of the AI-based model identification with parameter identification is shown to lead to smaller parameter corrections than required by the use of parameter identification alone.

  17. 77 FR 40735 - Unique Device Identification System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... Identification System AGENCY: Food and Drug Administration, HHS. ACTION: Proposed rule. SUMMARY: The Food and... Regulatory Action This rule is intended to substantially reduce existing obstacles to the adequate... appropriate, better-focused, corrective action. The rule will also require dates on medical device labels to...

  18. A program for identification of linear systems

    NASA Technical Reports Server (NTRS)

    Buell, J.; Kalaba, R.; Ruspini, E.; Yakush, A.

    1971-01-01

    A program has been written for the identification of parameters in certain linear systems. These systems appear in biomedical problems, particularly in compartmental models of pharmacokinetics. The method presented here assumes that some of the state variables are regularly modified by jump conditions. This simulates administration of drugs following some prescribed drug regime. Parameters are identified by a least-square fit of the linear differential system to a set of experimental observations. The method is especially suited when the interval of observation of the system is very long.

  19. Parameters Identification for Motorcycle Simulator's Platform Characterization

    NASA Astrophysics Data System (ADS)

    Nehaoua, L.; Arioui, H.

    2008-06-01

    This paper presents the dynamics modeling and parameters identification of a motorcycle simulator's platform. This model begins with some suppositions which consider that the leg dynamics can be neglected with respect to the mobile platform one. The objectif is to synthesis a simplified control scheme, adapted to driving simulation application, minimising dealys and without loss of tracking performance. Electronic system of platform actuation is described. It's based on a CAN BUS communication which offers a large transmission robustness and error handling. Despite some disadvanteges, we adapted a control solution which overcome these inconvenients and preserve the quality of tracking trajectory. A bref description of the simulator's platform is given and results are shown and justified according to our specifications.

  20. Use of the BioMerieux ID 32C yeast identification system for identification of aerobic actinomycetes of medical importance.

    PubMed Central

    Muir, D B; Pritchard, R C

    1997-01-01

    The BioMerieux ID 32C Yeast Identification System was examined to determine its usefulness as a rapid method for the identification of medically important aerobic actinomycetes. More than 290 strains were tested by this method and the results were compared to those obtained by conventional methods. It was found that aerobic actinomycetes could be differentiated to species level in 7 days by the ID 32C system. PMID:9399526

  1. Developing Adaptive Systems at Early Stages of Children's Foreign Language Development

    ERIC Educational Resources Information Center

    Espada, Ana Belen Cumbreno; Garcia, Mercedes Rico; Fuentes, Alejandro Curado; Gomez, Eva Ma Dominguez

    2006-01-01

    This paper describes the integration of hypermedia adaptive systems for foreign language learners at an early age. Our research project is concerned with exploring the relationship between language learning and information technology according to six different phases: a preliminary study of the plausible adaptive system; the development of lessons…

  2. Integrated System Design: Promoting the Capacity of Sociotechnical Systems for Adaptation through Extensions of Cognitive Work Analysis

    PubMed Central

    Naikar, Neelam; Elix, Ben

    2016-01-01

    This paper proposes an approach for integrated system design, which has the intent of facilitating high levels of effectiveness in sociotechnical systems by promoting their capacity for adaptation. Building on earlier ideas and empirical observations, this approach recognizes that to create adaptive systems it is necessary to integrate the design of all of the system elements, including the interfaces, teams, training, and automation, such that workers are supported in adapting their behavior as well as their structure, or organization, in a coherent manner. Current approaches for work analysis and design are limited in regard to this fundamental objective, especially in cases when workers are confronted with unforeseen events. A suitable starting point is offered by cognitive work analysis (CWA), but while this framework can support actors in adapting their behavior, it does not necessarily accommodate adaptations in their structure. Moreover, associated design approaches generally focus on individual system elements, and those that consider multiple elements appear limited in their ability to facilitate integration, especially in the manner intended here. The proposed approach puts forward the set of possibilities for work organization in a system as the central mechanism for binding the design of its various elements, so that actors can adapt their structure as well as their behavior—in a unified fashion—to handle both familiar and novel conditions. Accordingly, this paper demonstrates how the set of possibilities for work organization in a system may be demarcated independently of the situation, through extensions of CWA, and how it may be utilized in design. This lynchpin, conceptualized in the form of a diagram of work organization possibilities (WOP), is important for preserving a system's inherent capacity for adaptation. Future research should focus on validating these concepts and establishing the feasibility of implementing them in industrial

  3. Integrated System Design: Promoting the Capacity of Sociotechnical Systems for Adaptation through Extensions of Cognitive Work Analysis.

    PubMed

    Naikar, Neelam; Elix, Ben

    2016-01-01

    This paper proposes an approach for integrated system design, which has the intent of facilitating high levels of effectiveness in sociotechnical systems by promoting their capacity for adaptation. Building on earlier ideas and empirical observations, this approach recognizes that to create adaptive systems it is necessary to integrate the design of all of the system elements, including the interfaces, teams, training, and automation, such that workers are supported in adapting their behavior as well as their structure, or organization, in a coherent manner. Current approaches for work analysis and design are limited in regard to this fundamental objective, especially in cases when workers are confronted with unforeseen events. A suitable starting point is offered by cognitive work analysis (CWA), but while this framework can support actors in adapting their behavior, it does not necessarily accommodate adaptations in their structure. Moreover, associated design approaches generally focus on individual system elements, and those that consider multiple elements appear limited in their ability to facilitate integration, especially in the manner intended here. The proposed approach puts forward the set of possibilities for work organization in a system as the central mechanism for binding the design of its various elements, so that actors can adapt their structure as well as their behavior-in a unified fashion-to handle both familiar and novel conditions. Accordingly, this paper demonstrates how the set of possibilities for work organization in a system may be demarcated independently of the situation, through extensions of CWA, and how it may be utilized in design. This lynchpin, conceptualized in the form of a diagram of work organization possibilities (WOP), is important for preserving a system's inherent capacity for adaptation. Future research should focus on validating these concepts and establishing the feasibility of implementing them in industrial contexts.

  4. REVIEW: Internal models in sensorimotor integration: perspectives from adaptive control theory

    NASA Astrophysics Data System (ADS)

    Tin, Chung; Poon, Chi-Sang

    2005-09-01

    Internal models and adaptive controls are empirical and mathematical paradigms that have evolved separately to describe learning control processes in brain systems and engineering systems, respectively. This paper presents a comprehensive appraisal of the correlation between these paradigms with a view to forging a unified theoretical framework that may benefit both disciplines. It is suggested that the classic equilibrium-point theory of impedance control of arm movement is analogous to continuous gain-scheduling or high-gain adaptive control within or across movement trials, respectively, and that the recently proposed inverse internal model is akin to adaptive sliding control originally for robotic manipulator applications. Modular internal models' architecture for multiple motor tasks is a form of multi-model adaptive control. Stochastic methods, such as generalized predictive control, reinforcement learning, Bayesian learning and Hebbian feedback covariance learning, are reviewed and their possible relevance to motor control is discussed. Possible applicability of a Luenberger observer and an extended Kalman filter to state estimation problems—such as sensorimotor prediction or the resolution of vestibular sensory ambiguity—is also discussed. The important role played by vestibular system identification in postural control suggests an indirect adaptive control scheme whereby system states or parameters are explicitly estimated prior to the implementation of control. This interdisciplinary framework should facilitate the experimental elucidation of the mechanisms of internal models in sensorimotor systems and the reverse engineering of such neural mechanisms into novel brain-inspired adaptive control paradigms in future.

  5. Study of application of adaptive systems to the exploration of the solar system. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The field of artificial intelligence to identify practical applications to unmanned spacecraft used to explore the solar system in the decade of the 80s is examined. If an unmanned spacecraft can be made to adjust or adapt to the environment, to make decisions about what it measures and how it uses and reports the data, it can become a much more powerful tool for the science community in unlocking the secrets of the solar system. Within this definition of an adaptive spacecraft or system, there is a broad range of variability. In terms of sophistication, an adaptive system can be extremely simple or as complex as a chess-playing machine that learns from its mistakes.

  6. A network identity authentication system based on Fingerprint identification technology

    NASA Astrophysics Data System (ADS)

    Xia, Hong-Bin; Xu, Wen-Bo; Liu, Yuan

    2005-10-01

    Fingerprint verification is one of the most reliable personal identification methods. However, most of the automatic fingerprint identification system (AFIS) is not run via Internet/Intranet environment to meet today's increasing Electric commerce requirements. This paper describes the design and implementation of the archetype system of identity authentication based on fingerprint biometrics technology, and the system can run via Internet environment. And in our system the COM and ASP technology are used to integrate Fingerprint technology with Web database technology, The Fingerprint image preprocessing algorithms are programmed into COM, which deployed on the internet information server. The system's design and structure are proposed, and the key points are discussed. The prototype system of identity authentication based on Fingerprint have been successfully tested and evaluated on our university's distant education applications in an internet environment.

  7. Adaptive Management of Computing and Network Resources for Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Pfarr, Barbara; Welch, Lonnie R.; Detter, Ryan; Tjaden, Brett; Huh, Eui-Nam; Szczur, Martha R. (Technical Monitor)

    2000-01-01

    It is likely that NASA's future spacecraft systems will consist of distributed processes which will handle dynamically varying workloads in response to perceived scientific events, the spacecraft environment, spacecraft anomalies and user commands. Since all situations and possible uses of sensors cannot be anticipated during pre-deployment phases, an approach for dynamically adapting the allocation of distributed computational and communication resources is needed. To address this, we are evolving the DeSiDeRaTa adaptive resource management approach to enable reconfigurable ground and space information systems. The DeSiDeRaTa approach embodies a set of middleware mechanisms for adapting resource allocations, and a framework for reasoning about the real-time performance of distributed application systems. The framework and middleware will be extended to accommodate (1) the dynamic aspects of intra-constellation network topologies, and (2) the complete real-time path from the instrument to the user. We are developing a ground-based testbed that will enable NASA to perform early evaluation of adaptive resource management techniques without the expense of first deploying them in space. The benefits of the proposed effort are numerous, including the ability to use sensors in new ways not anticipated at design time; the production of information technology that ties the sensor web together; the accommodation of greater numbers of missions with fewer resources; and the opportunity to leverage the DeSiDeRaTa project's expertise, infrastructure and models for adaptive resource management for distributed real-time systems.

  8. Systematic, Multimethod Assessment of Adaptations Across Four Diverse Health Systems Interventions.

    PubMed

    Rabin, Borsika A; McCreight, Marina; Battaglia, Catherine; Ayele, Roman; Burke, Robert E; Hess, Paul L; Frank, Joseph W; Glasgow, Russell E

    2018-01-01

    Many health outcomes and implementation science studies have demonstrated the importance of tailoring evidence-based care interventions to local context to improve fit. By adapting to local culture, history, resources, characteristics, and priorities, interventions are more likely to lead to improved outcomes. However, it is unclear how best to adapt evidence-based programs and promising innovations. There are few guides or examples of how to best categorize or assess health-care adaptations, and even fewer that are brief and practical for use by non-researchers. This study describes the importance and potential of assessing adaptations before, during, and after the implementation of health systems interventions. We present a promising multilevel and multimethod approach developed and being applied across four different health systems interventions. Finally, we discuss implications and opportunities for future research. The four case studies are diverse in the conditions addressed, interventions, and implementation strategies. They include two nurse coordinator-based transition of care interventions, a data and training-driven multimodal pain management project, and a cardiovascular patient-reported outcomes project, all of which are using audit and feedback. We used the same modified adaptation framework to document changes made to the interventions and implementation strategies. To create the modified framework, we started with the adaptation and modification model developed by Stirman and colleagues and expanded it by adding concepts from the RE-AIM framework. Our assessments address the intuitive domains of Who, How, When, What, and Why to classify and organize adaptations. For each case study, we discuss how the modified framework was operationalized, the multiple methods used to collect data, results to date and approaches utilized for data analysis. These methods include a real-time tracking system and structured interviews at key times during the

  9. Observer-Based Adaptive Fault-Tolerant Tracking Control of Nonlinear Nonstrict-Feedback Systems.

    PubMed

    Wu, Chengwei; Liu, Jianxing; Xiong, Yongyang; Wu, Ligang

    2017-06-28

    This paper studies an output-based adaptive fault-tolerant control problem for nonlinear systems with nonstrict-feedback form. Neural networks are utilized to identify the unknown nonlinear characteristics in the system. An observer and a general fault model are constructed to estimate the unavailable states and describe the fault, respectively. Adaptive parameters are constructed to overcome the difficulties in the design process for nonstrict-feedback systems. Meanwhile, dynamic surface control technique is introduced to avoid the problem of ''explosion of complexity''. Furthermore, based on adaptive backstepping control method, an output-based adaptive neural tracking control strategy is developed for the considered system against actuator fault, which can ensure that all the signals in the resulting closed-loop system are bounded, and the system output signal can be regulated to follow the response of the given reference signal with a small error. Finally, the simulation results are provided to validate the effectiveness of the control strategy proposed in this paper.

  10. A sequential adaptation technique and its application to the Mark 12 IFF system

    NASA Astrophysics Data System (ADS)

    Bailey, John S.; Mallett, John D.; Sheppard, Duane J.; Warner, F. Neal; Adams, Robert

    1986-07-01

    Sequential adaptation uses only two sets of receivers, correlators, and A/D converters which are time multiplexed to effect spatial adaptation in a system with (N) adaptive degrees of freedom. This technique can substantially reduce the hardware cost over what is realizable in a parallel architecture. A three channel L-band version of the sequential adapter was built and tested for use with the MARK XII IFF (identify friend or foe) system. In this system the sequentially determined adaptive weights were obtained digitally but implemented at RF. As a result, many of the post RF hardware induced sources of error that normally limit cancellation, such as receiver mismatch, are removed by the feedback property. The result is a system that can yield high levels of cancellation and be readily retrofitted to currently fielded equipment.

  11. An Adaptive Scaffolding E-Learning System for Middle School Students' Physics Learning

    ERIC Educational Resources Information Center

    Chen, Ching-Huei

    2014-01-01

    This study presents a framework that utilizes cognitive and motivational aspects of learning to design an adaptive scaffolding e-learning system. It addresses scaffolding processes and conditions for designing adaptive scaffolds. The features and effectiveness of this adaptive scaffolding e-learning system are discussed and evaluated. An…

  12. Optical security system for the protection of personal identification information.

    PubMed

    Doh, Yang-Hoi; Yoon, Jong-Soo; Choi, Kyung-Hyun; Alam, Mohammad S

    2005-02-10

    A new optical security system for the protection of personal identification information is proposed. First, authentication of the encrypted personal information is carried out by primary recognition of a personal identification number (PIN) with the proposed multiplexed minimum average correlation energy phase-encrypted (MMACE_p) filter. The MMACE_p filter, synthesized with phase-encrypted training images, can increase the discrimination capability and prevent the leak of personal identification information. After the PIN is recognized, speedy authentication of personal information can be achieved through one-to-one optical correlation by means of the optical wavelet filter. The possibility of information counterfeiting can be significantly decreased with the double-identification process. Simulation results demonstrate the effectiveness of the proposed technique.

  13. Adaptive capacity indicators to assess sustainability of urban water systems - Current application.

    PubMed

    Spiller, Marc

    2016-11-01

    Sustainability is commonly assessed along environmental, societal, economic and technological dimensions. A crucial aspect of sustainability is that inter-generational equality must be ensured. This requires that sustainability is attained in the here and now as well as into the future. Therefore, what is perceived as 'sustainable' changes as a function of societal opinion and technological and scientific progress. A concept that describes the ability of systems to change is adaptive capacity. Literature suggests that the ability of systems to adapt is an integral part of sustainable development. This paper demonstrates that indicators measuring adaptive capacity are underrepresented in current urban water sustainability studies. Furthermore, it is discussed under which sustainability dimensions adaptive capacity indicators are lacking and why. Of the >90 indicators analysed, only nine are adaptive capacity indicators, of which six are socio-cultural, two technological, one economical and none environmental. This infrequent use of adaptive capacity indicators in sustainability assessments led to the conclusion that the challenge of dynamic and uncertain urban water systems is, with the exception of the socio-cultural dimension, not yet sufficiently reflected in the application of urban water sustainability indicators. This raises concerns about the progress towards urban water systems that can transform as a response variation and change. Therefore, research should focus on developing methods and indicators that can define, evaluate and quantify adaptive capacity under the economic, environmental and technical dimension of sustainability. Furthermore, it should be evaluated whether sustainability frameworks that focus on the control processes of urban water systems are more suitable for measuring adaptive capacity, than the assessments along environmental, economic, socio-cultural and technological dimensions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Near-Field Chipless Radio-Frequency Identification (RFID) Sensing and Identification System with Switching Reading.

    PubMed

    Paredes, Ferran; Herrojo, Cristian; Mata-Contreras, Javier; Moras, Miquel; Núñez, Alba; Ramon, Eloi; Martín, Ferran

    2018-04-09

    A chipless radio-frequency identification (chipless-RFID) and sensing system, where tags are read by proximity (near-field) through a switch, is presented. The tags consist of a set of identical resonant elements (split-ring resonators or SRRs), printed or etched at predefined and equidistant positions, forming a linear chain, each SRR providing a bit of information. The logic state ('1' or '0') associated with each resonator depends on whether it is present or not in the predefined position. The reader is an array of power splitters used to feed a set of SRR-loaded transmission lines (in equal number to the number of resonant elements, or bits, of the tag). The feeding (interrogation) signal is a harmonic (single-tone) signal tuned to a frequency in the vicinity of the fundamental resonance of the SRRs. The set of SRR-loaded lines must be designed so that the corresponding SRRs are in perfect alignment with the SRRs of the tag, provided the tag is positioned on top of the reader. Thus, in a reading operation, as long as the tag is very close to the reader, the SRRs of the tag modify (decrease) the transmission coefficient of the corresponding reader line (through electromagnetic coupling between both SRRs), and the amplitude of the output signal is severely reduced. Therefore, the identification (ID) code of the tag is contained in the amplitudes of the output signals of the SRR-loaded lines, which can be inferred sequentially by means of a switching system. Unlike previous chipless-RFID systems based on near-field and sequential bit reading, the tags in the proposed system can be merely positioned on top of the reader, conveniently aligned, without the need to mechanically place them across the reader. Since tag reading is only possible if the tag is very close to the reader, this system can be also used as a proximity sensor with applications such as target identification. The proposed chipless-RFID and sensing approach is validated by reading a designed 4-bit

  15. Near-Field Chipless Radio-Frequency Identification (RFID) Sensing and Identification System with Switching Reading

    PubMed Central

    Mata-Contreras, Javier; Moras, Miquel; Ramon, Eloi; Martín, Ferran

    2018-01-01

    A chipless radio-frequency identification (chipless-RFID) and sensing system, where tags are read by proximity (near-field) through a switch, is presented. The tags consist of a set of identical resonant elements (split-ring resonators or SRRs), printed or etched at predefined and equidistant positions, forming a linear chain, each SRR providing a bit of information. The logic state (‘1’ or ‘0’) associated with each resonator depends on whether it is present or not in the predefined position. The reader is an array of power splitters used to feed a set of SRR-loaded transmission lines (in equal number to the number of resonant elements, or bits, of the tag). The feeding (interrogation) signal is a harmonic (single-tone) signal tuned to a frequency in the vicinity of the fundamental resonance of the SRRs. The set of SRR-loaded lines must be designed so that the corresponding SRRs are in perfect alignment with the SRRs of the tag, provided the tag is positioned on top of the reader. Thus, in a reading operation, as long as the tag is very close to the reader, the SRRs of the tag modify (decrease) the transmission coefficient of the corresponding reader line (through electromagnetic coupling between both SRRs), and the amplitude of the output signal is severely reduced. Therefore, the identification (ID) code of the tag is contained in the amplitudes of the output signals of the SRR-loaded lines, which can be inferred sequentially by means of a switching system. Unlike previous chipless-RFID systems based on near-field and sequential bit reading, the tags in the proposed system can be merely positioned on top of the reader, conveniently aligned, without the need to mechanically place them across the reader. Since tag reading is only possible if the tag is very close to the reader, this system can be also used as a proximity sensor with applications such as target identification. The proposed chipless-RFID and sensing approach is validated by reading a designed

  16. Performance benefits of adaptive, multimicrophone, interference-canceling systems in everyday environments

    NASA Astrophysics Data System (ADS)

    Desloge, Joseph G.; Zimmer, Martin J.; Zurek, Patrick M.

    2004-05-01

    Adaptive multimicrophone systems are currently used for a variety of noise-cancellation applications (such as hearing aids) to preserve signals arriving from a particular (target) direction while canceling other (jammer) signals in the environment. Although the performance of these systems is known to degrade with increasing reverberation, there are few measurements of adaptive performance in everyday reverberant environments. In this study, adaptive performance was compared to that of a simple, nonadaptive cardioid microphone to determine a measure of adaptive benefit. Both systems used recordings (at an Fs of 22050 Hz) from the same two omnidirectional microphones, which were separated by 1 cm. Four classes of environment were considered: outdoors, household, parking garage, and public establishment. Sources were either environmental noises (e.g., household appliances, restaurant noise) or a controlled noise source. In all situations, no target was present (i.e., all signals were jammers) to obtain maximal jammer cancellation. Adaptive processing was based upon the Griffiths-Jim generalized sidelobe canceller using filter lengths up to 400 points. Average intelligibility-weighted adaptive benefit levels at a source distance of 1 m were, at most, 1.5 dB for public establishments, 2 dB for household rooms and the parking garage, and 3 dB outdoors. [Work supported by NIOSH.

  17. Adaptable state based control system

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert D. (Inventor); Dvorak, Daniel L. (Inventor); Gostelow, Kim P. (Inventor); Starbird, Thomas W. (Inventor); Gat, Erann (Inventor); Chien, Steve Ankuo (Inventor); Keller, Robert M. (Inventor)

    2004-01-01

    An autonomous controller, comprised of a state knowledge manager, a control executor, hardware proxies and a statistical estimator collaborates with a goal elaborator, with which it shares common models of the behavior of the system and the controller. The elaborator uses the common models to generate from temporally indeterminate sets of goals, executable goals to be executed by the controller. The controller may be updated to operate in a different system or environment than that for which it was originally designed by the replacement of shared statistical models and by the instantiation of a new set of state variable objects derived from a state variable class. The adaptation of the controller does not require substantial modification of the goal elaborator for its application to the new system or environment.

  18. An adaptive robust controller for time delay maglev transportation systems

    NASA Astrophysics Data System (ADS)

    Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza

    2012-12-01

    For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.

  19. A dual-modal retinal imaging system with adaptive optics.

    PubMed

    Meadway, Alexander; Girkin, Christopher A; Zhang, Yuhua

    2013-12-02

    An adaptive optics scanning laser ophthalmoscope (AO-SLO) is adapted to provide optical coherence tomography (OCT) imaging. The AO-SLO function is unchanged. The system uses the same light source, scanning optics, and adaptive optics in both imaging modes. The result is a dual-modal system that can acquire retinal images in both en face and cross-section planes at the single cell level. A new spectral shaping method is developed to reduce the large sidelobes in the coherence profile of the OCT imaging when a non-ideal source is used with a minimal introduction of noise. The technique uses a combination of two existing digital techniques. The thickness and position of the traditionally named inner segment/outer segment junction are measured from individual photoreceptors. In-vivo images of healthy and diseased human retinas are demonstrated.

  20. Comparison of System Identification Techniques for the Hydraulic Manipulator Test Bed (HMTB)

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1996-01-01

    In this thesis linear, dynamic, multivariable state-space models for three joints of the ground-based Hydraulic Manipulator Test Bed (HMTB) are identified. HMTB, housed at the NASA Langley Research Center, is a ground-based version of the Dexterous Orbital Servicing System (DOSS), a representative space station manipulator. The dynamic models of the HMTB manipulator will first be estimated by applying nonparametric identification methods to determine each joint's response characteristics using various input excitations. These excitations include sum of sinusoids, pseudorandom binary sequences (PRBS), bipolar ramping pulses, and chirp input signals. Next, two different parametric system identification techniques will be applied to identify the best dynamical description of the joints. The manipulator is localized about a representative space station orbital replacement unit (ORU) task allowing the use of linear system identification methods. Comparisons, observations, and results of both parametric system identification techniques are discussed. The thesis concludes by proposing a model reference control system to aid in astronaut ground tests. This approach would allow the identified models to mimic on-orbit dynamic characteristics of the actual flight manipulator thus providing astronauts with realistic on-orbit responses to perform space station tasks in a ground-based environment.

  1. Comparison of traditional gas chromatography (GC), headspace GC, and the microbial identification library GC system for the identification of Clostridium difficile.

    PubMed Central

    Cundy, K V; Willard, K E; Valeri, L J; Shanholtzer, C J; Singh, J; Peterson, L R

    1991-01-01

    Three gas chromatography (GC) methods were compared for the identification of 52 clinical Clostridium difficile isolates, as well as 17 non-C. difficile Clostridium isolates. Headspace GC and Microbial Identification System (MIS) GC, an automated system which utilizes a software library developed at the Virginia Polytechnic Institute to identify organisms based on the fatty acids extracted from the bacterial cell wall, were compared against the reference method of traditional GC. Headspace GC and MIS were of approximately equivalent accuracy in identifying the 52 C. difficile isolates (52 of 52 versus 51 of 52, respectively). However, 7 of 52 organisms required repeated sample preparation before an identification was achieved by the MIS method. Both systems effectively differentiated C. difficile from non-C. difficile clostridia, although the MIS method correctly identified only 9 of 17. We conclude that the headspace GC system is an accurate method of C. difficile identification, which requires only one-fifth of the sample preparation time of MIS GC and one-half of the sample preparation time of traditional GC. PMID:2007632

  2. Comparing Different Fault Identification Algorithms in Distributed Power System

    NASA Astrophysics Data System (ADS)

    Alkaabi, Salim

    A power system is a huge complex system that delivers the electrical power from the generation units to the consumers. As the demand for electrical power increases, distributed power generation was introduced to the power system. Faults may occur in the power system at any time in different locations. These faults cause a huge damage to the system as they might lead to full failure of the power system. Using distributed generation in the power system made it even harder to identify the location of the faults in the system. The main objective of this work is to test the different fault location identification algorithms while tested on a power system with the different amount of power injected using distributed generators. As faults may lead the system to full failure, this is an important area for research. In this thesis different fault location identification algorithms have been tested and compared while the different amount of power is injected from distributed generators. The algorithms were tested on IEEE 34 node test feeder using MATLAB and the results were compared to find when these algorithms might fail and the reliability of these methods.

  3. Microbial identification system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Brown, Harlan D.; Scarlett, Janie B.; Skweres, Joyce A.; Fortune, Russell L.; Staples, John L.; Pierson, Duane L.

    1989-01-01

    The Environmental Health System (EHS) and Health Maintenance Facility (HMF) on Space Station Freedom will require a comprehensive microbiology capability. This requirement entails the development of an automated system to perform microbial identifications on isolates from a variety of environmental and clinical sources and, when required, to perform antimicrobial sensitivity testing. The unit currently undergoing development and testing is the Automated Microbiology System II (AMS II) built by Vitek Systems, Inc. The AMS II has successfully completed 12 months of laboratory testing and evaluation for compatibility with microgravity operation. The AMS II is a promising technology for use on Space Station Freedom.

  4. A grass molecular identification system for forensic botany: a critical evaluation of the strengths and limitations.

    PubMed

    Ward, Jodie; Gilmore, Simon R; Robertson, James; Peakall, Rod

    2009-11-01

    Plant material is frequently encountered in criminal investigations but often overlooked as potential evidence. We designed a DNA-based molecular identification system for 100 Australian grasses that consisted of a series of polymerase chain reaction assays that enabled the progressive identification of grasses to different taxonomic levels. The identification system was based on DNA sequence variation at four chloroplast and two mitochondrial loci. Seventeen informative indels and 68 single-nucleotide polymorphisms were utilized as molecular markers for subfamily to species-level identification. To identify an unknown sample to subfamily level required a minimum of four markers or nine markers for species identification. The accuracy of the system was confirmed by blind tests. We have demonstrated "proof of concept" of a molecular identification system for trace botanical samples. Our evaluation suggests that the adoption of a system that combines this approach with DNA sequencing could assist the morphological identification of grasses found as forensic evidence.

  5. Failure detection and identification for a reconfigurable flight control system

    NASA Technical Reports Server (NTRS)

    Dallery, Francois

    1987-01-01

    Failure detection and identification logic for a fault-tolerant longitudinal control system were investigated. Aircraft dynamics were based upon the cruise condition for a hypothetical transonic business jet transport configuration. The fault-tolerant control system consists of conventional control and estimation plus a new outer loop containing failure detection, identification, and reconfiguration (FDIR) logic. It is assumed that the additional logic has access to all measurements, as well as to the outputs of the control and estimation logic. The pilot may also command the FDIR logic to perform special tests.

  6. Cost-constrained optimal sampling for system identification in pharmacokinetics applications with population priors and nuisance parameters.

    PubMed

    Sorzano, Carlos Oscars S; Pérez-De-La-Cruz Moreno, Maria Angeles; Burguet-Castell, Jordi; Montejo, Consuelo; Ros, Antonio Aguilar

    2015-06-01

    Pharmacokinetics (PK) applications can be seen as a special case of nonlinear, causal systems with memory. There are cases in which prior knowledge exists about the distribution of the system parameters in a population. However, for a specific patient in a clinical setting, we need to determine her system parameters so that the therapy can be personalized. This system identification is performed many times by measuring drug concentrations in plasma. The objective of this work is to provide an irregular sampling strategy that minimizes the uncertainty about the system parameters with a fixed amount of samples (cost constrained). We use Monte Carlo simulations to estimate the average Fisher's information matrix associated to the PK problem, and then estimate the sampling points that minimize the maximum uncertainty associated to system parameters (a minimax criterion). The minimization is performed employing a genetic algorithm. We show that such a sampling scheme can be designed in a way that is adapted to a particular patient and that it can accommodate any dosing regimen as well as it allows flexible therapeutic strategies. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Control of adaptive immunity by the innate immune system.

    PubMed

    Iwasaki, Akiko; Medzhitov, Ruslan

    2015-04-01

    Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.

  8. Adaptable radiation monitoring system and method

    DOEpatents

    Archer, Daniel E [Livermore, CA; Beauchamp, Brock R [San Ramon, CA; Mauger, G Joseph [Livermore, CA; Nelson, Karl E [Livermore, CA; Mercer, Michael B [Manteca, CA; Pletcher, David C [Sacramento, CA; Riot, Vincent J [Berkeley, CA; Schek, James L [Tracy, CA; Knapp, David A [Livermore, CA

    2006-06-20

    A portable radioactive-material detection system capable of detecting radioactive sources moving at high speeds. The system has at least one radiation detector capable of detecting gamma-radiation and coupled to an MCA capable of collecting spectral data in very small time bins of less than about 150 msec. A computer processor is connected to the MCA for determining from the spectral data if a triggering event has occurred. Spectral data is stored on a data storage device, and a power source supplies power to the detection system. Various configurations of the detection system may be adaptably arranged for various radiation detection scenarios. In a preferred embodiment, the computer processor operates as a server which receives spectral data from other networked detection systems, and communicates the collected data to a central data reporting system.

  9. [Caffeine and adaptive changes in the circulatory system during pregnancy].

    PubMed

    Cendrowska-Pinkosz, Monika; Dworzański, Wojciech; Krauze, Magdalena; Burdan, Franciszek

    2017-01-23

    Adaptive physiological changes that occur in pregnant women can fluctuate with the intake of substances with proven, adverse biological effect on the body. Due to the fact that caffeine is one of the most chronically used xenobiotics, the impact of consuming caffeine on adaptive processes in the circulatory system of a pregnant women required a research. Many researchers emphasise its negative effect on the circulatory system of the mother and her offspring. However, in spite of years of observation, there is no clear answer to what extent dose or in what period of time the caffeine modulates the adaptive processes during pregnancy. Because of the potential risk the supply of caffeine during pregnancy should be subjected to considerable restrictions.

  10. Performance evaluation of three automated identification systems in detecting carbapenem-resistant Enterobacteriaceae.

    PubMed

    He, Qingwen; Chen, Weiyuan; Huang, Liya; Lin, Qili; Zhang, Jingling; Liu, Rui; Li, Bin

    2016-06-21

    Carbapenem-resistant Enterobacteriaceae (CRE) is prevalent around the world. Rapid and accurate detection of CRE is urgently needed to provide effective treatment. Automated identification systems have been widely used in clinical microbiology laboratories for rapid and high-efficient identification of pathogenic bacteria. However, critical evaluation and comparison are needed to determine the specificity and accuracy of different systems. The aim of this study was to evaluate the performance of three commonly used automated identification systems on the detection of CRE. A total of 81 non-repetitive clinical CRE isolates were collected from August 2011 to August 2012 in a Chinese university hospital, and all the isolates were confirmed to be resistant to carbapenems by the agar dilution method. The potential presence of carbapenemase genotypes of the 81 isolates was detected by PCR and sequencing. Using 81 clinical CRE isolates, we evaluated and compared the performance of three automated identification systems, MicroScan WalkAway 96 Plus, Phoenix 100, and Vitek 2 Compact, which are commonly used in China. To identify CRE, the comparator methodology was agar dilution method, while the PCR and sequencing was the comparator one to identify CPE. PCR and sequencing analysis showed that 48 of the 81 CRE isolates carried carbapenemase genes, including 23 (28.4 %) IMP-4, 14 (17.3 %) IMP-8, 5 (6.2 %) NDM-1, and 8 (9.9 %) KPC-2. Notably, one Klebsiella pneumoniae isolate produced both IMP-4 and NDM-1. One Klebsiella oxytoca isolate produced both KPC-2 and IMP-8. Of the 81 clinical CRE isolates, 56 (69.1 %), 33 (40.7 %) and 77 (95.1 %) were identified as CRE by MicroScan WalkAway 96 Plus, Phoenix 100, and Vitek 2 Compact, respectively. The sensitivities/specificities of MicroScan WalkAway, Phoenix 100 and Vitek 2 were 93.8/42.4 %, 54.2/66.7 %, and 75.0/36.4 %, respectively. The MicroScan WalkAway and Viteck2 systems are more reliable in clinical identification of

  11. Identification of a novel cell culture adaptation site on the capsid of foot-and-mouth disease virus

    PubMed Central

    Chamberlain, Kyle; Fowler, Veronica L.; Barnett, Paul V.; Gold, Sarah; Wadsworth, Jemma; Knowles, Nick J.

    2015-01-01

    Vaccination remains the most effective tool for control of foot-and-mouth disease both in endemic countries and as an emergency preparedness for new outbreaks. Foot-and-mouth disease vaccines are chemically inactivated virus preparations and the production of new vaccines is critically dependent upon cell culture adaptation of field viruses, which can prove problematic. A major driver of cell culture adaptation is receptor availability. Field isolates of foot-and-mouth disease virus (FMDV) use RGD-dependent integrins as receptors, whereas cell culture adaptation often selects for variants with altered receptor preferences. Previously, two independent sites on the capsid have been identified where mutations are associated with improved cell culture growth. One is a shallow depression formed by the three major structural proteins (VP1–VP3) where mutations create a heparan sulphate (HS)-binding site (the canonical HS-binding site). The other involves residues of VP1 and is located at the fivefold symmetry axis. For some viruses, changes at this site result in HS binding; for others, the receptors are unknown. Here, we report the identification of a novel site on VP2 where mutations resulted in an expanded cell tropism of a vaccine variant of A/IRN/87 (called A − ). Furthermore, we show that introducing the same mutations into a different type A field virus (A/TUR/2/2006) resulted in the same expanded cell culture tropism as the A/IRN/87 A −  vaccine variant. These observations add to the evidence for multiple cell attachment mechanisms for FMDV and may be useful for vaccine manufacture when cell culture adaptation proves difficult. PMID:26296881

  12. Identification of a novel cell culture adaptation site on the capsid of foot-and-mouth disease virus.

    PubMed

    Chamberlain, Kyle; Fowler, Veronica L; Barnett, Paul V; Gold, Sarah; Wadsworth, Jemma; Knowles, Nick J; Jackson, Terry

    2015-09-01

    Vaccination remains the most effective tool for control of foot-and-mouth disease both in endemic countries and as an emergency preparedness for new outbreaks. Foot-and-mouth disease vaccines are chemically inactivated virus preparations and the production of new vaccines is critically dependent upon cell culture adaptation of field viruses, which can prove problematic. A major driver of cell culture adaptation is receptor availability. Field isolates of foot-and-mouth disease virus (FMDV) use RGD-dependent integrins as receptors, whereas cell culture adaptation often selects for variants with altered receptor preferences. Previously, two independent sites on the capsid have been identified where mutations are associated with improved cell culture growth. One is a shallow depression formed by the three major structural proteins (VP1-VP3) where mutations create a heparan sulphate (HS)-binding site (the canonical HS-binding site). The other involves residues of VP1 and is located at the fivefold symmetry axis. For some viruses, changes at this site result in HS binding; for others, the receptors are unknown. Here, we report the identification of a novel site on VP2 where mutations resulted in an expanded cell tropism of a vaccine variant of A/IRN/87 (called A - ). Furthermore, we show that introducing the same mutations into a different type A field virus (A/TUR/2/2006) resulted in the same expanded cell culture tropism as the A/IRN/87 A -  vaccine variant. These observations add to the evidence for multiple cell attachment mechanisms for FMDV and may be useful for vaccine manufacture when cell culture adaptation proves difficult.

  13. Dual adaptive control: Design principles and applications

    NASA Technical Reports Server (NTRS)

    Mookerjee, Purusottam

    1988-01-01

    The design of an actively adaptive dual controller based on an approximation of the stochastic dynamic programming equation for a multi-step horizon is presented. A dual controller that can enhance identification of the system while controlling it at the same time is derived for multi-dimensional problems. This dual controller uses sensitivity functions of the expected future cost with respect to the parameter uncertainties. A passively adaptive cautious controller and the actively adaptive dual controller are examined. In many instances, the cautious controller is seen to turn off while the latter avoids the turn-off of the control and the slow convergence of the parameter estimates, characteristic of the cautious controller. The algorithms have been applied to a multi-variable static model which represents a simplified linear version of the relationship between the vibration output and the higher harmonic control input for a helicopter. Monte Carlo comparisons based on parametric and nonparametric statistical analysis indicate the superiority of the dual controller over the baseline controller.

  14. Guiding climate change adaptation within vulnerable natural resource management systems.

    PubMed

    Bardsley, Douglas K; Sweeney, Susan M

    2010-05-01

    Climate change has the potential to compromise the sustainability of natural resources in Mediterranean climatic systems, such that short-term reactive responses will increasingly be insufficient to ensure effective management. There is a simultaneous need for both the clear articulation of the vulnerabilities of specific management systems to climate risk, and the development of appropriate short- and long-term strategic planning responses that anticipate environmental change or allow for sustainable adaptive management in response to trends in resource condition. Governments are developing climate change adaptation policy frameworks, but without the recognition of the importance of responding strategically, regional stakeholders will struggle to manage future climate risk. In a partnership between the South Australian Government, the Adelaide and Mt Lofty Ranges Natural Resource Management Board and the regional community, a range of available research approaches to support regional climate change adaptation decision-making, were applied and critically examined, including: scenario modelling; applied and participatory Geographical Information Systems modelling; environmental risk analysis; and participatory action learning. As managers apply ideas for adaptation within their own biophysical and socio-cultural contexts, there would be both successes and failures, but a learning orientation to societal change will enable improvements over time. A base-line target for regional responses to climate change is the ownership of the issue by stakeholders, which leads to an acceptance that effective actions to adapt are now both possible and vitally important. Beyond such baseline knowledge, the research suggests that there is a range of tools from the social and physical sciences available to guide adaptation decision-making.

  15. Guiding Climate Change Adaptation Within Vulnerable Natural Resource Management Systems

    NASA Astrophysics Data System (ADS)

    Bardsley, Douglas K.; Sweeney, Susan M.

    2010-05-01

    Climate change has the potential to compromise the sustainability of natural resources in Mediterranean climatic systems, such that short-term reactive responses will increasingly be insufficient to ensure effective management. There is a simultaneous need for both the clear articulation of the vulnerabilities of specific management systems to climate risk, and the development of appropriate short- and long-term strategic planning responses that anticipate environmental change or allow for sustainable adaptive management in response to trends in resource condition. Governments are developing climate change adaptation policy frameworks, but without the recognition of the importance of responding strategically, regional stakeholders will struggle to manage future climate risk. In a partnership between the South Australian Government, the Adelaide and Mt Lofty Ranges Natural Resource Management Board and the regional community, a range of available research approaches to support regional climate change adaptation decision-making, were applied and critically examined, including: scenario modelling; applied and participatory Geographical Information Systems modelling; environmental risk analysis; and participatory action learning. As managers apply ideas for adaptation within their own biophysical and socio-cultural contexts, there would be both successes and failures, but a learning orientation to societal change will enable improvements over time. A base-line target for regional responses to climate change is the ownership of the issue by stakeholders, which leads to an acceptance that effective actions to adapt are now both possible and vitally important. Beyond such baseline knowledge, the research suggests that there is a range of tools from the social and physical sciences available to guide adaptation decision-making.

  16. Adaptive-passive vibration control systems for industrial applications

    NASA Astrophysics Data System (ADS)

    Mayer, D.; Pfeiffer, T.; Vrbata, J.; Melz, T.

    2015-04-01

    Tuned vibration absorbers have become common for passive vibration reduction in many industrial applications. Lightly damped absorbers (also called neutralizers) can be used to suppress narrowband disturbances by tuning them to the excitation frequency. If the resonance is adapted in-operation, the performance of those devices can be significantly enhanced, or inertial mass can be decreased. However, the integration of actuators, sensors and control electronics into the system raises new design challenges. In this work, the development of adaptive-passive systems for vibration reduction at an industrial scale is presented. As an example, vibration reduction of a ship engine was studied in a full scale test. Simulations were used to study the feasibility and evaluate the system concept at an early stage. Several ways to adjust the resonance of the neutralizer were evaluated, including piezoelectric actuation and common mechatronic drives. Prototypes were implemented and tested. Since vibration absorbers suffer from high dynamic loads, reliability tests were used to assess the long-term behavior under operational conditions and to improve the components. It was proved that the adaptive systems are capable to withstand the mechanical loads in an industrial application. Also a control strategy had to be implemented in order to track the excitation frequency. The most mature concepts were integrated into the full scale test. An imbalance exciter was used to simulate the engine vibrations at a realistic level experimentally. The neutralizers were tested at varying excitation frequencies to evaluate the tracking capabilities of the control system. It was proved that a significant vibration reduction is possible.

  17. An adaptive semantic based mediation system for data interoperability among Health Information Systems.

    PubMed

    Khan, Wajahat Ali; Khattak, Asad Masood; Hussain, Maqbool; Amin, Muhammad Bilal; Afzal, Muhammad; Nugent, Christopher; Lee, Sungyoung

    2014-08-01

    Heterogeneity in the management of the complex medical data, obstructs the attainment of data level interoperability among Health Information Systems (HIS). This diversity is dependent on the compliance of HISs with different healthcare standards. Its solution demands a mediation system for the accurate interpretation of data in different heterogeneous formats for achieving data interoperability. We propose an adaptive AdapteR Interoperability ENgine mediation system called ARIEN, that arbitrates between HISs compliant to different healthcare standards for accurate and seamless information exchange to achieve data interoperability. ARIEN stores the semantic mapping information between different standards in the Mediation Bridge Ontology (MBO) using ontology matching techniques. These mappings are provided by our System for Parallel Heterogeneity (SPHeRe) matching system and Personalized-Detailed Clinical Model (P-DCM) approach to guarantee accuracy of mappings. The realization of the effectiveness of the mappings stored in the MBO is evaluation of the accuracy in transformation process among different standard formats. We evaluated our proposed system with the transformation process of medical records between Clinical Document Architecture (CDA) and Virtual Medical Record (vMR) standards. The transformation process achieved over 90 % of accuracy level in conversion process between CDA and vMR standards using pattern oriented approach from the MBO. The proposed mediation system improves the overall communication process between HISs. It provides an accurate and seamless medical information exchange to ensure data interoperability and timely healthcare services to patients.

  18. Flight test planning and parameter extraction for rotorcraft system identification

    NASA Technical Reports Server (NTRS)

    Wang, J. C.; Demiroz, M. Y.; Talbot, P. D.

    1986-01-01

    The present study is concerned with the mathematical modelling of aircraft dynamics on the basis of an investigation conducted with the aid of the Rotor System Research Aircraft (RSRA). The particular characteristics of RSRA make it possible to investigate aircraft properties which cannot be readily studied elsewhere, for example in the wind tunnel. The considered experiment had mainly the objective to develop an improved understanding of the physics of rotor flapping dynamics and rotor loads in maneuvers. The employed approach is based on a utilization of parameter identification methodology (PID) with application to helicopters. A better understanding of the contribution of the main rotor to the overall aircraft forces and moments is also to be obtained. Attention is given to the mathematical model of a rotorcraft system, an integrated identification method, flight data processing, and the identification of RSRA mathematical models.

  19. An adaptive deep learning approach for PPG-based identification.

    PubMed

    Jindal, V; Birjandtalab, J; Pouyan, M Baran; Nourani, M

    2016-08-01

    Wearable biosensors have become increasingly popular in healthcare due to their capabilities for low cost and long term biosignal monitoring. This paper presents a novel two-stage technique to offer biometric identification using these biosensors through Deep Belief Networks and Restricted Boltzman Machines. Our identification approach improves robustness in current monitoring procedures within clinical, e-health and fitness environments using Photoplethysmography (PPG) signals through deep learning classification models. The approach is tested on TROIKA dataset using 10-fold cross validation and achieved an accuracy of 96.1%.

  20. Adaptive cyber-attack modeling system

    NASA Astrophysics Data System (ADS)

    Gonsalves, Paul G.; Dougherty, Edward T.

    2006-05-01

    The pervasiveness of software and networked information systems is evident across a broad spectrum of business and government sectors. Such reliance provides an ample opportunity not only for the nefarious exploits of lone wolf computer hackers, but for more systematic software attacks from organized entities. Much effort and focus has been placed on preventing and ameliorating network and OS attacks, a concomitant emphasis is required to address protection of mission critical software. Typical software protection technique and methodology evaluation and verification and validation (V&V) involves the use of a team of subject matter experts (SMEs) to mimic potential attackers or hackers. This manpower intensive, time-consuming, and potentially cost-prohibitive approach is not amenable to performing the necessary multiple non-subjective analyses required to support quantifying software protection levels. To facilitate the evaluation and V&V of software protection solutions, we have designed and developed a prototype adaptive cyber attack modeling system. Our approach integrates an off-line mechanism for rapid construction of Bayesian belief network (BN) attack models with an on-line model instantiation, adaptation and knowledge acquisition scheme. Off-line model construction is supported via a knowledge elicitation approach for identifying key domain requirements and a process for translating these requirements into a library of BN-based cyber-attack models. On-line attack modeling and knowledge acquisition is supported via BN evidence propagation and model parameter learning.

  1. Engaging stakeholders for adaptive management using structured decision analysis

    USGS Publications Warehouse

    Irwin, Elise R.; Kathryn, D.; Kennedy, Mickett

    2009-01-01

    Adaptive management is different from other types of management in that it includes all stakeholders (versus only policy makers) in the process, uses resource optimization techniques to evaluate competing objectives, and recognizes and attempts to reduce uncertainty inherent in natural resource systems. Management actions are negotiated by stakeholders, monitored results are compared to predictions of how the system should respond, and management strategies are adjusted in a “monitor-compare-adjust” iterative routine. Many adaptive management projects fail because of the lack of stakeholder identification, engagement, and continued involvement. Primary reasons for this vary but are usually related to either stakeholders not having ownership (or representation) in decision processes or disenfranchisement of stakeholders after adaptive management begins. We present an example in which stakeholders participated fully in adaptive management of a southeastern regulated river. Structured decision analysis was used to define management objectives and stakeholder values and to determine initial flow prescriptions. The process was transparent, and the visual nature of the modeling software allowed stakeholders to see how their interests and values were represented in the decision process. The development of a stakeholder governance structure and communication mechanism has been critical to the success of the project.

  2. Method study on fuzzy-PID adaptive control of electric-hydraulic hitch system

    NASA Astrophysics Data System (ADS)

    Li, Mingsheng; Wang, Liubu; Liu, Jian; Ye, Jin

    2017-03-01

    In this paper, fuzzy-PID adaptive control method is applied to the control of tractor electric-hydraulic hitch system. According to the characteristics of the system, a fuzzy-PID adaptive controller is designed and the electric-hydraulic hitch system model is established. Traction control and position control performance simulation are carried out with the common PID control method. A field test rig was set up to test the electric-hydraulic hitch system. The test results showed that, after the fuzzy-PID adaptive control is adopted, when the tillage depth steps from 0.1m to 0.3m, the system transition process time is 4s, without overshoot, and when the tractive force steps from 3000N to 7000N, the system transition process time is 5s, the system overshoot is 25%.

  3. High resolution crop growth simulation for identification of potential adaptation strategies under climate change

    NASA Astrophysics Data System (ADS)

    Kim, K. S.; Yoo, B. H.

    2016-12-01

    Impact assessment of climate change on crop production would facilitate planning of adaptation strategies. Because socio-environmental conditions would differ by local areas, it would be advantageous to assess potential adaptation measures at a specific area. The objectives of this study was to develop a crop growth simulation system at a very high spatial resolution, e.g., 30 m, and to assess different adaptation options including shift of planting date and use of different cultivars. The Decision Support System for Agrotechnology Transfer (DSSAT) model was used to predict yields of soybean and maize in Korea. Gridded data for climate and soil were used to prepare input data for the DSSAT model. Weather input data were prepared at the resolution of 30 m using bilinear interpolation from gridded climate scenario data. Those climate data were obtained from Korean Meteorology Administration. Spatial resolution of temperature and precipitation was 1 km whereas that of solar radiation was 12.5 km. Soil series data at the 30 m resolution were obtained from the soil database operated by Rural Development Administration, Korea. The SOL file, which is a soil input file for the DSSAT model was prepared using physical and chemical properties of a given soil series, which were available from the soil database. Crop yields were predicted by potential adaptation options based on planting date and cultivar. For example, 10 planting dates and three cultivars were used to identify ideal management options for climate change adaptation. In prediction of maize yield, combination of 20 planting dates and two cultivars was used as management options. Predicted crop yields differed by site even within a relatively small region. For example, the maximum of average yields for 2001-2010 seasons differed by sites In a county of which areas is 520 km2 (Fig. 1). There was also spatial variation in the ideal management option in the region (Fig. 2). These results suggested that local

  4. Variable Neural Adaptive Robust Control: A Switched System Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.

    2015-05-01

    Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewisemore » quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.« less

  5. Learning-Based Adaptive Optimal Tracking Control of Strict-Feedback Nonlinear Systems.

    PubMed

    Gao, Weinan; Jiang, Zhong-Ping; Weinan Gao; Zhong-Ping Jiang; Gao, Weinan; Jiang, Zhong-Ping

    2018-06-01

    This paper proposes a novel data-driven control approach to address the problem of adaptive optimal tracking for a class of nonlinear systems taking the strict-feedback form. Adaptive dynamic programming (ADP) and nonlinear output regulation theories are integrated for the first time to compute an adaptive near-optimal tracker without any a priori knowledge of the system dynamics. Fundamentally different from adaptive optimal stabilization problems, the solution to a Hamilton-Jacobi-Bellman (HJB) equation, not necessarily a positive definite function, cannot be approximated through the existing iterative methods. This paper proposes a novel policy iteration technique for solving positive semidefinite HJB equations with rigorous convergence analysis. A two-phase data-driven learning method is developed and implemented online by ADP. The efficacy of the proposed adaptive optimal tracking control methodology is demonstrated via a Van der Pol oscillator with time-varying exogenous signals.

  6. ER fluid applications to vibration control devices and an adaptive neural-net controller

    NASA Astrophysics Data System (ADS)

    Morishita, Shin; Ura, Tamaki

    1993-07-01

    Four applications of electrorheological (ER) fluid to vibration control actuators and an adaptive neural-net control system suitable for the controller of ER actuators are described: a shock absorber system for automobiles, a squeeze film damper bearing for rotational machines, a dynamic damper for multidegree-of-freedom structures, and a vibration isolator. An adaptive neural-net control system composed of a forward model network for structural identification and a controller network is introduced for the control system of these ER actuators. As an example study of intelligent vibration control systems, an experiment was performed in which the ER dynamic damper was attached to a beam structure and controlled by the present neural-net controller so that the vibration in several modes of the beam was reduced with a single dynamic damper.

  7. Emergence, institutionalization and renewal: Rhythms of adaptive governance in complex social-ecological systems.

    PubMed

    Chaffin, Brian C; Gunderson, Lance H

    2016-01-01

    Adaptive governance provides the capacity for environmental managers and decision makers to confront variable degrees of uncertainty inherent to complex social-ecological systems. Current theoretical conceptualizations of adaptive governance represent a series of structures and processes best suited for either adapting or transforming existing environmental governance regimes towards forms flexible enough to confront rapid ecological change. As the number of empirical examples of adaptive governance described in the literature grows, the conceptual basis of adaptive governance remains largely under theorized. We argue that reconnecting adaptive governance with foundational concepts of ecological resilience-specifically Panarchy and the adaptive cycle of complex systems-highlights the importance of episodic disturbances and cross-scale interactions in triggering reorganizations in governance. By envisioning the processes of adaptive governance through the lens of Panarchy, scholars and practitioners alike will be better able to identify the emergence of adaptive governance, as well as take advantage of opportunities to institutionalize this type of governance in pursuit of sustainability outcomes. The synergistic analysis of adaptive governance and Panarchy can provide critical insight for analyzing the role of social dynamics during oscillating periods of stability and instability in social-ecological systems. A deeper understanding of the potential for cross-scale interactions to shape adaptive governance regimes may be useful as society faces the challenge of mitigating the impacts of global environmental change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Analysis of the 3’ untranslated regions of α-tubulin and S-crystallin mRNA and the identification of CPEB in dark- and light-adapted octopus retinas

    PubMed Central

    Kelly, Shannan; Yamamoto, Hideki

    2008-01-01

    Purpose We previously reported the differential expression and translation of mRNA and protein in dark- and light-adapted octopus retinas, which may result from cytoplasmic polyadenylation element (CPE)–dependent mRNA masking and unmasking. Here we investigate the presence of CPEs in α-tubulin and S-crystallin mRNA and report the identification of cytoplasmic polyadenylation element binding protein (CPEB) in light- and dark-adapted octopus retinas. Methods 3’-RACE and sequencing were used to isolate and analyze the 3’-UTRs of α-tubulin and S-crystallin mRNA. Total retinal protein isolated from light- and dark-adapted octopus retinas was subjected to western blot analysis followed by CPEB antibody detection, PEP-171 inhibition of CPEB, and dephosphorylation of CPEB. Results The following CPE-like sequence was detected in the 3’-UTR of isolated long S-crystallin mRNA variants: UUUAACA. No CPE or CPE-like sequences were detected in the 3’-UTRs of α-tubulin mRNA or of the short S-crystallin mRNA variants. Western blot analysis detected CPEB as two putative bands migrating between 60-80 kDa, while a third band migrated below 30 kDa in dark- and light-adapted retinas. Conclusions The detection of CPEB and the identification of the putative CPE-like sequences in the S-crystallin 3’-UTR suggest that CPEB may be involved in the activation of masked S-crystallin mRNA, but not in the regulation of α-tubulin mRNA, resulting in increased S-crystallin protein synthesis in dark-adapted octopus retinas. PMID:18682811

  9. Risk-Return Relationship in a Complex Adaptive System

    PubMed Central

    Song, Kunyu; An, Kenan; Yang, Guang; Huang, Jiping

    2012-01-01

    For survival and development, autonomous agents in complex adaptive systems involving the human society must compete against or collaborate with others for sharing limited resources or wealth, by using different methods. One method is to invest, in order to obtain payoffs with risk. It is a common belief that investments with a positive risk-return relationship (namely, high risk high return and vice versa) are dominant over those with a negative risk-return relationship (i.e., high risk low return and vice versa) in the human society; the belief has a notable impact on daily investing activities of investors. Here we investigate the risk-return relationship in a model complex adaptive system, in order to study the effect of both market efficiency and closeness that exist in the human society and play an important role in helping to establish traditional finance/economics theories. We conduct a series of computer-aided human experiments, and also perform agent-based simulations and theoretical analysis to confirm the experimental observations and reveal the underlying mechanism. We report that investments with a negative risk-return relationship have dominance over those with a positive risk-return relationship instead in such a complex adaptive systems. We formulate the dynamical process for the system's evolution, which helps to discover the different role of identical and heterogeneous preferences. This work might be valuable not only to complexity science, but also to finance and economics, to management and social science, and to physics. PMID:22479416

  10. Risk-return relationship in a complex adaptive system.

    PubMed

    Song, Kunyu; An, Kenan; Yang, Guang; Huang, Jiping

    2012-01-01

    For survival and development, autonomous agents in complex adaptive systems involving the human society must compete against or collaborate with others for sharing limited resources or wealth, by using different methods. One method is to invest, in order to obtain payoffs with risk. It is a common belief that investments with a positive risk-return relationship (namely, high risk high return and vice versa) are dominant over those with a negative risk-return relationship (i.e., high risk low return and vice versa) in the human society; the belief has a notable impact on daily investing activities of investors. Here we investigate the risk-return relationship in a model complex adaptive system, in order to study the effect of both market efficiency and closeness that exist in the human society and play an important role in helping to establish traditional finance/economics theories. We conduct a series of computer-aided human experiments, and also perform agent-based simulations and theoretical analysis to confirm the experimental observations and reveal the underlying mechanism. We report that investments with a negative risk-return relationship have dominance over those with a positive risk-return relationship instead in such a complex adaptive systems. We formulate the dynamical process for the system's evolution, which helps to discover the different role of identical and heterogeneous preferences. This work might be valuable not only to complexity science, but also to finance and economics, to management and social science, and to physics.

  11. Portable Brain-Computer Interface for the Intensive Care Unit Patient Communication Using Subject-Dependent SSVEP Identification.

    PubMed

    Dehzangi, Omid; Farooq, Muhamed

    2018-01-01

    A major predicament for Intensive Care Unit (ICU) patients is inconsistent and ineffective communication means. Patients rated most communication sessions as difficult and unsuccessful. This, in turn, can cause distress, unrecognized pain, anxiety, and fear. As such, we designed a portable BCI system for ICU communications (BCI4ICU) optimized to operate effectively in an ICU environment. The system utilizes a wearable EEG cap coupled with an Android app designed on a mobile device that serves as visual stimuli and data processing module. Furthermore, to overcome the challenges that BCI systems face today in real-world scenarios, we propose a novel subject-specific Gaussian Mixture Model- (GMM-) based training and adaptation algorithm. First, we incorporate subject-specific information in the training phase of the SSVEP identification model using GMM-based training and adaptation. We evaluate subject-specific models against other subjects. Subsequently, from the GMM discriminative scores, we generate the transformed vectors, which are passed to our predictive model. Finally, the adapted mixture mean scores of the subject-specific GMMs are utilized to generate the high-dimensional supervectors. Our experimental results demonstrate that the proposed system achieved 98.7% average identification accuracy, which is promising in order to provide effective and consistent communication for patients in the intensive care.

  12. System identification for modeling for control of flexible structures

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Milman, Mark

    1986-01-01

    The major components of a design and operational flight strategy for flexible structure control systems are presented. In this strategy an initial distributed parameter control design is developed and implemented from available ground test data and on-orbit identification using sophisticated modeling and synthesis techniques. The reliability of this high performance controller is directly linked to the accuracy of the parameters on which the design is based. Because uncertainties inevitably grow without system monitoring, maintaining the control system requires an active on-line system identification function to supply parameter updates and covariance information. Control laws can then be modified to improve performance when the error envelopes are decreased. In terms of system safety and stability the covariance information is of equal importance as the parameter values themselves. If the on-line system ID function detects an increase in parameter error covariances, then corresponding adjustments must be made in the control laws to increase robustness. If the error covariances exceed some threshold, an autonomous calibration sequence could be initiated to restore the error enveloped to an acceptable level.

  13. Initial results from the Lick Observatory Laser Guide Star Adaptive Optics System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S.S.; An, J.; Avicola, K.

    1995-11-08

    A prototype adaptive optics system has been installed and tested on the 3 m Shane telescope at Lick Observatory. The adaptive optics system performance, using bright natural guide stars, is consistent with expectations based on theory. A sodium-layer laser guide star system has also been installed and tested on the Shane telescope. Operating at 15 W, the laser system produces a 9th magnitude guide star with seeing-limited size at 589 nm. Using the laser guide star, the adaptive optics system has reduced the wavefront phase variance on scales above 50 cm by a factor of 4. These results represent themore » first continuous wavefront phase correction using a sodium-layer laser guide star. Assuming tip-tilt is removed using a natural guide star, the measured control loop performance should produce images with a Strehl ratio of 0.4 at 2.2 {mu}m in 1 arc second seeing. Additional calibration procedures must be implemented in order to achieve these results with the prototype Lick adaptive optics system.« less

  14. Neural network L1 adaptive control of MIMO systems with nonlinear uncertainty.

    PubMed

    Zhen, Hong-tao; Qi, Xiao-hui; Li, Jie; Tian, Qing-min

    2014-01-01

    An indirect adaptive controller is developed for a class of multiple-input multiple-output (MIMO) nonlinear systems with unknown uncertainties. This control system is comprised of an L 1 adaptive controller and an auxiliary neural network (NN) compensation controller. The L 1 adaptive controller has guaranteed transient response in addition to stable tracking. In this architecture, a low-pass filter is adopted to guarantee fast adaptive rate without generating high-frequency oscillations in control signals. The auxiliary compensation controller is designed to approximate the unknown nonlinear functions by MIMO RBF neural networks to suppress the influence of uncertainties. NN weights are tuned on-line with no prior training and the project operator ensures the weights bounded. The global stability of the closed-system is derived based on the Lyapunov function. Numerical simulations of an MIMO system coupled with nonlinear uncertainties are used to illustrate the practical potential of our theoretical results.

  15. RASCAL: A Rudimentary Adaptive System for Computer-Aided Learning.

    ERIC Educational Resources Information Center

    Stewart, John Christopher

    Both the background of computer-assisted instruction (CAI) systems in general and the requirements of a computer-aided learning system which would be a reasonable assistant to a teacher are discussed. RASCAL (Rudimentary Adaptive System for Computer-Aided Learning) is a first attempt at defining a CAI system which would individualize the learning…

  16. Adaptive lesion formation using dual mode ultrasound array system

    NASA Astrophysics Data System (ADS)

    Liu, Dalong; Casper, Andrew; Haritonova, Alyona; Ebbini, Emad S.

    2017-03-01

    We present the results from an ultrasound-guided focused ultrasound platform designed to perform real-time monitoring and control of lesion formation. Real-time signal processing of echogenicity changes during lesion formation allows for identification of signature events indicative of tissue damage. The detection of these events triggers the cessation or the reduction of the exposure (intensity and/or time) to prevent overexposure. A dual mode ultrasound array (DMUA) is used for forming single- and multiple-focus patterns in a variety of tissues. The DMUA approach allows for inherent registration between the therapeutic and imaging coordinate systems providing instantaneous, spatially-accurate feedback on lesion formation dynamics. The beamformed RF data has been shown to have high sensitivity and specificity to tissue changes during lesion formation, including in vivo. In particular, the beamformed echo data from the DMUA is very sensitive to cavitation activity in response to HIFU in a variety of modes, e.g. boiling cavitation. This form of feedback is characterized by sudden increase in echogenicity that could occur within milliseconds of the application of HIFU (see http://youtu.be/No2wh-ceTLs for an example). The real-time beamforming and signal processing allowing the adaptive control of lesion formation is enabled by a high performance GPU platform (response time within 10 msec). We present results from a series of experiments in bovine cardiac tissue demonstrating the robustness and increased speed of volumetric lesion formation for a range of clinically-relevant exposures. Gross histology demonstrate clearly that adaptive lesion formation results in tissue damage consistent with the size of the focal spot and the raster scan in 3 dimensions. In contrast, uncontrolled volumetric lesions exhibit significant pre-focal buildup due to excessive exposure from multiple full-exposure HIFU shots. Stopping or reducing the HIFU exposure upon the detection of such an

  17. Modelling and Closed-Loop System Identification of a Quadrotor-Based Aerial Manipulator

    NASA Astrophysics Data System (ADS)

    Dube, Chioniso; Pedro, Jimoh O.

    2018-05-01

    This paper presents the modelling and system identification of a quadrotor-based aerial manipulator. The aerial manipulator model is first derived analytically using the Newton-Euler formulation for the quadrotor and Recursive Newton-Euler formulation for the manipulator. The aerial manipulator is then simulated with the quadrotor under Proportional Derivative (PD) control, with the manipulator in motion. The simulation data is then used for system identification of the aerial manipulator. Auto Regressive with eXogenous inputs (ARX) models are obtained from the system identification for linear accelerations \\ddot{X} and \\ddot{Y} and yaw angular acceleration \\ddot{\\psi }. For linear acceleration \\ddot{Z}, and pitch and roll angular accelerations \\ddot{θ } and \\ddot{φ }, Auto Regressive Moving Average with eXogenous inputs (ARMAX) models are identified.

  18. Evolution of complement as an effector system in innate and adaptive immunity.

    PubMed

    Sunyer, J Oriol; Boshra, Hani; Lorenzo, Gema; Parra, David; Freedman, Bruce; Bosch, Nina

    2003-01-01

    For a long time, the complement system in mammals has been regarded as a biological system that plays an essential role in innate immunity. More recently, it has been recognized that the complement system contributes heavily to the generation and development of an acquired immune response. In fact, this ancient mechanism of defense has evolved from a primitive mechanism of innate immune recognition in invertebrate species to that of an effector system that bridges the innate with the adaptive immune response in vertebrate species. When and how did complement evolve into a shared effector system between innate and adaptive immunity? To answer this question, our group is interested in understanding the role of complement in innate and adaptive immune responses in an evolutionary relevant species: the teleost fish. The attractiveness of this species as an animal model is based on two important facts. First, teleost fish are one of the oldest animal species to have developed an adaptive immune response. Second, the complement system of teleost fish offers a unique feature, which is the structural and functional diversity of its main effector protein, C3, the third component of the complement system.

  19. A Gender Identification System for Customers in a Shop Using Infrared Area Scanners

    NASA Astrophysics Data System (ADS)

    Tajima, Takuya; Kimura, Haruhiko; Abe, Takehiko; Abe, Koji; Nakamoto, Yoshinori

    Information about customers in shops plays an important role in marketing analysis. Currently, in convenience stores and supermarkets, the identification of customer's gender is examined by clerks. On the other hand, gender identification systems using camera images are investigated. However, these systems have a problem of invading human privacies in identifying attributes of customers. The proposed system identifies gender by using infrared area scanners and Bayesian network. In the proposed system, since infrared area scanners do not take customers' images directly, invasion of privacies are not occurred. The proposed method uses three parameters of height, walking speed and pace for humans. In general, it is shown that these parameters have factors of sexual distinction in humans, and Bayesian network is designed with these three parameters. The proposed method resolves the existent problems of restricting the locations where the systems are set and invading human privacies. Experimental results using data obtained from 450 people show that the identification rate for the proposed method was 91.3% on the average of both of male and female identifications.

  20. Adaptive Wavelet Coding Applied in a Wireless Control System.

    PubMed

    Gama, Felipe O S; Silveira, Luiz F Q; Salazar, Andrés O

    2017-12-13

    Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER) versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.

  1. The Impact of Early Design Phase Risk Identification Biases on Space System Project Performance

    NASA Technical Reports Server (NTRS)

    Reeves, John D., Jr.; Eveleigh, Tim; Holzer, Thomas; Sarkani, Shahryar

    2012-01-01

    Risk identification during the early design phases of complex systems is commonly implemented but often fails to result in the identification of events and circumstances that truly challenge project performance. Inefficiencies in cost and schedule estimation are usually held accountable for cost and schedule overruns, but the true root cause is often the realization of programmatic risks. A deeper understanding of frequent risk identification trends and biases pervasive during space system design and development is needed, for it would lead to improved execution of existing identification processes and methods.

  2. Water System Adaptation to Hydrological Changes: Module 10, Basic Principles of Incorporating Adaptation Science into Hydrologic Planning and Design

    EPA Science Inventory

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  3. Active Hearing Mechanisms Inspire Adaptive Amplification in an Acoustic Sensor System.

    PubMed

    Guerreiro, Jose; Reid, Andrew; Jackson, Joseph C; Windmill, James F C

    2018-06-01

    Over many millions of years of evolution, nature has developed some of the most adaptable sensors and sensory systems possible, capable of sensing, conditioning and processing signals in a very power- and size-effective manner. By looking into biological sensors and systems as a source of inspiration, this paper presents the study of a bioinspired concept of signal processing at the sensor level. By exploiting a feedback control mechanism between a front-end acoustic receiver and back-end neuronal based computation, a nonlinear amplification with hysteretic behavior is created. Moreover, the transient response of the front-end acoustic receiver can also be controlled and enhanced. A theoretical model is proposed and the concept is prototyped experimentally through an embedded system setup that can provide dynamic adaptations of a sensory system comprising a MEMS microphone placed in a closed-loop feedback system. It faithfully mimics the mosquito's active hearing response as a function of the input sound intensity. This is an adaptive acoustic sensor system concept that can be exploited by sensor and system designers within acoustics and ultrasonic engineering fields.

  4. [A study of culture-based easy identification system for Malassezia].

    PubMed

    Kaneko, Takamasa

    2011-01-01

    Most species of this genus are lipid-dependent yeasts, which colonize the seborrheic part of the skin, and they have been reported to be associated with pityriasis versicolor, Malassezia folliculitis, seborrheic dermatitis, and atopic dermatitis. Malassezia have been re-classified into 7 species based on molecular biological analysis of nuclear ribosomal DNA/RNA and new Malassezia species were reported. As members of the genus Malassezia share similar morphological and biochemical characteristics, it was thought to be difficult to differentiate between them based on phenotypic features. While molecular biological techniques are the most reliable methods for identification of Malassezia, they are not available in most clinical laboratories. We studied ( i ) development of an efficient isolation media and culture based easy identification system, ( ii ) the incidence of atypical biochemical features in Malassezia species and propose a culture-based easy identification system for clinically important Malassezia species, M. globosa, M. restricta, and M. furfur.

  5. Backstepping Design of Adaptive Neural Fault-Tolerant Control for MIMO Nonlinear Systems.

    PubMed

    Gao, Hui; Song, Yongduan; Wen, Changyun

    In this paper, an adaptive controller is developed for a class of multi-input and multioutput nonlinear systems with neural networks (NNs) used as a modeling tool. It is shown that all the signals in the closed-loop system with the proposed adaptive neural controller are globally uniformly bounded for any external input in . In our control design, the upper bound of the NN modeling error and the gains of external disturbance are characterized by unknown upper bounds, which is more rational to establish the stability in the adaptive NN control. Filter-based modification terms are used in the update laws of unknown parameters to improve the transient performance. Finally, fault-tolerant control is developed to accommodate actuator failure. An illustrative example applying the adaptive controller to control a rigid robot arm shows the validation of the proposed controller.In this paper, an adaptive controller is developed for a class of multi-input and multioutput nonlinear systems with neural networks (NNs) used as a modeling tool. It is shown that all the signals in the closed-loop system with the proposed adaptive neural controller are globally uniformly bounded for any external input in . In our control design, the upper bound of the NN modeling error and the gains of external disturbance are characterized by unknown upper bounds, which is more rational to establish the stability in the adaptive NN control. Filter-based modification terms are used in the update laws of unknown parameters to improve the transient performance. Finally, fault-tolerant control is developed to accommodate actuator failure. An illustrative example applying the adaptive controller to control a rigid robot arm shows the validation of the proposed controller.

  6. Identification of Staphylococcus and Micrococcus species with the STAPHYtest system.

    PubMed

    Sedlácek, I; Kocur, M

    1991-01-01

    A collection of 216 well-characterized strains of Staphylococcus, Micrococcus and Stomatococcus was examined by a commercially available STAPHYtest system (Lachema, Brno, Czechoslovakia). The results of STAPHYtest agreed with those of conventional tests. The STAPHYtest permitted a clear-cut separation of Staphylococcus from Micrococcus and Stomatococcus strains and correctly identified 104 of 145 (72%) Staphylococcus strains after 24 h of incubation. However, it allowed the identification only of 19 of 29 validly published Staphylococcus species. The STAPHYtest proved to be a simple and rapid system for the separation of staphylococci from micrococci and for the identification of most frequent clinically significant staphylococci.

  7. ISAARE: Information System for Adaptive, Assistive, and Recreational Equipment: Volume I: Existence; Volume II, Communication; Volume V, Adaptation.

    ERIC Educational Resources Information Center

    Melichar, Joseph F.

    Described as part of the Information System for Adaptive, Assistive and Recreational Equipment are equipment items for physically handicapped pupils in the functional areas of existence, equipment and adaptation. Reviewed in the existence section are such items as assistive food containers and container stabilizers, feeder accessories, bowel and…

  8. Optical Automatic Car Identification (OACI) : Volume 1. Advanced System Specification.

    DOT National Transportation Integrated Search

    1978-12-01

    A performance specification is provided in this report for an Optical Automatic Car Identification (OACI) scanner system which features 6% improved readability over existing industry scanner systems. It also includes the analysis and rationale which ...

  9. BoB, a best-of-breed automated text de-identification system for VHA clinical documents.

    PubMed

    Ferrández, Oscar; South, Brett R; Shen, Shuying; Friedlin, F Jeffrey; Samore, Matthew H; Meystre, Stéphane M

    2013-01-01

    De-identification allows faster and more collaborative clinical research while protecting patient confidentiality. Clinical narrative de-identification is a tedious process that can be alleviated by automated natural language processing methods. The goal of this research is the development of an automated text de-identification system for Veterans Health Administration (VHA) clinical documents. We devised a novel stepwise hybrid approach designed to improve the current strategies used for text de-identification. The proposed system is based on a previous study on the best de-identification methods for VHA documents. This best-of-breed automated clinical text de-identification system (aka BoB) tackles the problem as two separate tasks: (1) maximize patient confidentiality by redacting as much protected health information (PHI) as possible; and (2) leave de-identified documents in a usable state preserving as much clinical information as possible. We evaluated BoB with a manually annotated corpus of a variety of VHA clinical notes, as well as with the 2006 i2b2 de-identification challenge corpus. We present evaluations at the instance- and token-level, with detailed results for BoB's main components. Moreover, an existing text de-identification system was also included in our evaluation. BoB's design efficiently takes advantage of the methods implemented in its pipeline, resulting in high sensitivity values (especially for sensitive PHI categories) and a limited number of false positives. Our system successfully addressed VHA clinical document de-identification, and its hybrid stepwise design demonstrates robustness and efficiency, prioritizing patient confidentiality while leaving most clinical information intact.

  10. Extensible Adaptive System for STEM Learning

    DTIC Science & Technology

    2013-07-16

    Copyright 2013 Raytheon BBN Technologies Corp. All Rights Reserved ONR STEM Grand Challenge Extensible Adaptive System for STEM Learning ...Contract # N00014-12-C-0535 Raytheon BBN Technologies Corp. (BBN) Reference # 14217 In partial fulfillment of contract deliverable item # A001...Quarterly Progress Report #2 April 7, 2013 –July 6, 2013 Submitted July 16, 2013 BBN Technical POC: John Makhoul Raytheon BBN Technologies

  11. Analysis of energy dispersive x-ray diffraction profiles for material identification, imaging and system control

    NASA Astrophysics Data System (ADS)

    Cook, Emily Jane

    2008-12-01

    This thesis presents the analysis of low angle X-ray scatter measurements taken with an energy dispersive system for substance identification, imaging and system control. Diffraction measurements were made on illicit drugs, which have pseudo- crystalline structures and thus produce diffraction patterns comprising a se ries of sharp peaks. Though the diffraction profiles of each drug are visually characteristic, automated detection systems require a substance identification algorithm, and multivariate analysis was selected as suitable. The software was trained with measured diffraction data from 60 samples covering 7 illicit drugs and 5 common cutting agents, collected with a range of statistical qual ities and used to predict the content of 7 unknown samples. In all cases the constituents were identified correctly and the contents predicted to within 15%. Soft tissues exhibit broad peaks in their diffraction patterns. Diffraction data were collected from formalin fixed breast tissue samples and used to gen erate images. Maximum contrast between healthy and suspicious regions was achieved using momentum transfer windows 1.04-1.10 and 1.84-1.90 nm_1. The resulting images had an average contrast of 24.6% and 38.9% compared to the corresponding transmission X-ray images (18.3%). The data was used to simulate the feedback for an adaptive imaging system and the ratio of the aforementioned momentum transfer regions found to be an excellent pa rameter. Investigation into the effects of formalin fixation on human breast tissue and animal tissue equivalents indicated that fixation in standard 10% buffered formalin does not alter the diffraction profiles of tissue in the mo mentum transfer regions examined, though 100% unbuffered formalin affects the profile of porcine muscle tissue (a substitute for glandular and tumourous tissue), though fat is unaffected.

  12. Mathematical correlation of modal-parameter-identification methods via system-realization theory

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    1987-01-01

    A unified approach is introduced using system-realization theory to derive and correlate modal-parameter-identification methods for flexible structures. Several different time-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal-parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research toward the unification of the many possible approaches for modal-parameter identification.

  13. A Conceptual Framework for Planning Systemic Human Adaptation to Global Warming.

    PubMed

    Tait, Peter W; Hanna, Elizabeth G

    2015-08-31

    Human activity is having multiple, inter-related effects on ecosystems. Greenhouse gas emissions persisting along current trajectories threaten to significantly alter human society. At 0.85 °C of anthropogenic warming, deleterious human impacts are acutely evident. Additional warming of 0.5 °C-1.0 °C from already emitted CO₂ will further intensify extreme heat and damaging storm events. Failing to sufficiently address this trend will have a heavy human toll directly and indirectly on health. Along with mitigation efforts, societal adaptation to a warmer world is imperative. Adaptation efforts need to be significantly upscaled to prepare society to lessen the public health effects of rising temperatures. Modifying societal behaviour is inherently complex and presents a major policy challenge. We propose a social systems framework for conceptualizing adaptation that maps out three domains within the adaptation policy landscape: acclimatisation, behavioural adaptation and technological adaptation, which operate at societal and personal levels. We propose that overlaying this framework on a systems approach to societal change planning methods will enhance governments' capacity and efficacy in strategic planning for adaptation. This conceptual framework provides a policy oriented planning assessment tool that will help planners match interventions to the behaviours being targeted for change. We provide illustrative examples to demonstrate the framework's application as a planning tool.

  14. Fuzzy Adaptive Decentralized Optimal Control for Strict Feedback Nonlinear Large-Scale Systems.

    PubMed

    Sun, Kangkang; Sui, Shuai; Tong, Shaocheng

    2018-04-01

    This paper considers the optimal decentralized fuzzy adaptive control design problem for a class of interconnected large-scale nonlinear systems in strict feedback form and with unknown nonlinear functions. The fuzzy logic systems are introduced to learn the unknown dynamics and cost functions, respectively, and a state estimator is developed. By applying the state estimator and the backstepping recursive design algorithm, a decentralized feedforward controller is established. By using the backstepping decentralized feedforward control scheme, the considered interconnected large-scale nonlinear system in strict feedback form is changed into an equivalent affine large-scale nonlinear system. Subsequently, an optimal decentralized fuzzy adaptive control scheme is constructed. The whole optimal decentralized fuzzy adaptive controller is composed of a decentralized feedforward control and an optimal decentralized control. It is proved that the developed optimal decentralized controller can ensure that all the variables of the control system are uniformly ultimately bounded, and the cost functions are the smallest. Two simulation examples are provided to illustrate the validity of the developed optimal decentralized fuzzy adaptive control scheme.

  15. Tidal analysis and Arrival Process Mining Using Automatic Identification System (AIS) Data

    DTIC Science & Technology

    2017-01-01

    files, organized by location. The data were processed using the Python programming language (van Rossum and Drake 2001), the Pandas data analysis...ER D C/ CH L TR -1 7- 2 Coastal Inlets Research Program Tidal Analysis and Arrival Process Mining Using Automatic Identification System...17-2 January 2017 Tidal Analysis and Arrival Process Mining Using Automatic Identification System (AIS) Data Brandan M. Scully Coastal and

  16. An Intelligent Tutoring System for Antibody Identification

    PubMed Central

    Smith, Philip J.; Miller, Thomas E.; Fraser, Jane M.

    1990-01-01

    Empirical studies of medical technology students indicate that there is considerable need for additional skill development in performing tasks such as antibody identification. While this need is currently met by on-the-job training after employment, computer-based tutoring systems offer an alternative or supplemental problem-based learning environment that could be more cost effective. We have developed a prototype for such a tutoring system as part of a project to develop educational tools for the field of transfusion medicine. This system provides a microworld in which students can explore and solve cases, receiving assistance and tutoring from the computer as needed.

  17. Vehicle dynamic prediction systems with on-line identification of vehicle parameters and road conditions.

    PubMed

    Hsu, Ling-Yuan; Chen, Tsung-Lin

    2012-11-13

    This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event.

  18. Vehicle Dynamic Prediction Systems with On-Line Identification of Vehicle Parameters and Road Conditions

    PubMed Central

    Hsu, Ling-Yuan; Chen, Tsung-Lin

    2012-01-01

    This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event. PMID:23202231

  19. Methodology to explore interactions between the water system and society in order to identify adaptation strategies

    NASA Astrophysics Data System (ADS)

    Offermans, A. G. E.; Haasnoot, M.

    2009-04-01

    Development of sustainable water management strategies involves analysing current and future vulnerability, identification of adaptation possibilities, effect analysis and evaluation of the strategies under different possible futures. Recent studies on water management often followed the pressure-effect chain and compared the state of social, economic and ecological functions of the water systems in one or two future situations with the current situation. The future is, however, more complex and dynamic. Water management faces major challenges to cope with future uncertainties in both the water system as well as the social system. Uncertainties in our water system relate to (changes in) drivers and pressures and their effects on the state, like the effects of climate change on discharges. Uncertainties in the social world relate to changing of perceptions, objectives and demands concerning water (management), which are often related with the aforementioned changes in the physical environment. The methodology presented here comprises the 'Perspectives method', derived from the Cultural Theory, a method on analyzing and classifying social response to social and natural states and pressures. The method will be used for scenario analysis and to identify social responses including changes in perspectives and management strategies. The scenarios and responses will be integrated within a rapid assessment tool. The purpose of the tool is to provide users with insight about the interaction of the social and physical system and to identify robust water management strategies by analysing the effectiveness under different possible futures on the physical, social and socio-economic system. This method allows for a mutual interaction between the physical and social system. We will present the theoretical background of the perspectives method as well as a historical overview of perspective changes in the Dutch Meuse area to show how social and physical systems interrelate. We

  20. Selecting, adapting, and sustaining programs in health care systems

    PubMed Central

    Zullig, Leah L; Bosworth, Hayden B

    2015-01-01

    Practitioners and researchers often design behavioral programs that are effective for a specific population or problem. Despite their success in a controlled setting, relatively few programs are scaled up and implemented in health care systems. Planning for scale-up is a critical, yet often overlooked, element in the process of program design. Equally as important is understanding how to select a program that has already been developed, and adapt and implement the program to meet specific organizational goals. This adaptation and implementation requires attention to organizational goals, available resources, and program cost. We assert that translational behavioral medicine necessitates expanding successful programs beyond a stand-alone research study. This paper describes key factors to consider when selecting, adapting, and sustaining programs for scale-up in large health care systems and applies the Knowledge to Action (KTA) Framework to a case study, illustrating knowledge creation and an action cycle of implementation and evaluation activities. PMID:25931825

  1. Reliability-Productivity Curve, a Tool for Adaptation Measures Identification

    NASA Astrophysics Data System (ADS)

    Chávez-Jiménez, A.; Granados, A.; Garrote, L. M.

    2015-12-01

    Due to climate change effects, water scarcity problems would intensify in several regions. These problems are going to impact negatively in the water low-priority demands, since these will be reduced in favor of those with high-priority. An example would be the reduction of agriculture water resources in favor of the urban ones. Then, it is important the evaluation of adaptation measures for a better water resources management. An important tool to face this challenge is the economic valuation of the water demands' impact within a water resources system. In agriculture this valuation is usually performed through the water productivity evaluation. The water productivity evaluation requires detailed information regarding the different crops like the applied technology, the agricultural supplies management, the water availability, etc. This is a restriction for an evaluation at basin scale due to the difficulty of gathers this level of detailed information. Besides, only the water availability is taken into account, but not the period when the water is distributed (i.e. water resources reliability). Water resources reliability is one of the most important variables in water resources management. This research proposes a methodology to determine the agriculture water productivity, using as variables the crops information, the crops price, the water resources availability, and the water resources reliability, at a basin scale. This methodology would allow identifying general water resources adaptation measures, providing the basis for further detailed studies in critical regions.

  2. Intelligent control of non-linear dynamical system based on the adaptive neurocontroller

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Kobezhicov, V.

    2015-10-01

    This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.

  3. Effectiveness of Adaptive Assessment versus Learner Control in a Multimedia Learning System

    ERIC Educational Resources Information Center

    Chen, Ching-Huei; Chang, Shu-Wei

    2015-01-01

    The purpose of this study was to explore the effectiveness of adaptive assessment versus learner control in a multimedia learning system designed to help secondary students learn science. Unlike other systems, this paper presents a workflow of adaptive assessment following instructional materials that better align with learners' cognitive…

  4. Survey on the use of smart and adaptive engineering systems in medicine.

    PubMed

    Abbod, M F; Linkens, D A; Mahfouf, M; Dounias, G

    2002-11-01

    In this paper, the current published knowledge about smart and adaptive engineering systems in medicine is reviewed. The achievements of frontier research in this particular field within medical engineering are described. A multi-disciplinary approach to the applications of adaptive systems is observed from the literature surveyed. The three modalities of diagnosis, imaging and therapy are considered to be an appropriate classification method for the analysis of smart systems being applied to specified medical sub-disciplines. It is expected that future research in biomedicine should identify subject areas where more advanced intelligent systems could be applied than is currently evident. The literature provides evidence of hybridisation of different types of adaptive and smart systems with applications in different areas of medical specifications. Copyright 2002 Elsevier Science B.V.

  5. Understanding health system reform - a complex adaptive systems perspective.

    PubMed

    Sturmberg, Joachim P; O'Halloran, Di M; Martin, Carmel M

    2012-02-01

    Everyone wants a sustainable well-functioning health system. However, this notion has different meaning to policy makers and funders compared to clinicians and patients. The former perceive public policy and economic constraints, the latter clinical or patient-centred strategies as the means to achieving a desired outcome. Theoretical development and critical analysis of a complex health system model. We introduce the concept of the health care vortex as a metaphor by which to understand the complex adaptive nature of health systems, and the degree to which their behaviour is predetermined by their 'shared values' or attractors. We contrast the likely functions and outcomes of a health system with a people-centred attractor and one with a financial attractor. This analysis suggests a shift in the system's attractor is fundamental to progress health reform thinking. © 2012 Blackwell Publishing Ltd.

  6. Observer-Based Adaptive Neural Network Control for Nonlinear Systems in Nonstrict-Feedback Form.

    PubMed

    Chen, Bing; Zhang, Huaguang; Lin, Chong

    2016-01-01

    This paper focuses on the problem of adaptive neural network (NN) control for a class of nonlinear nonstrict-feedback systems via output feedback. A novel adaptive NN backstepping output-feedback control approach is first proposed for nonlinear nonstrict-feedback systems. The monotonicity of system bounding functions and the structure character of radial basis function (RBF) NNs are used to overcome the difficulties that arise from nonstrict-feedback structure. A state observer is constructed to estimate the immeasurable state variables. By combining adaptive backstepping technique with approximation capability of radial basis function NNs, an output-feedback adaptive NN controller is designed through backstepping approach. It is shown that the proposed controller guarantees semiglobal boundedness of all the signals in the closed-loop systems. Two examples are used to illustrate the effectiveness of the proposed approach.

  7. An approximation theory for the identification of nonlinear distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1988-01-01

    An abstract approximation framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of finite dimensional approximating identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato approximation result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed.

  8. Electronic p-Chip-Based System for Identification of Glass Slides and Tissue Cassettes in Histopathology Laboratories.

    PubMed

    Mandecki, Wlodek; Qian, Jay; Gedzberg, Katie; Gruda, Maryanne; Rodriguez, Efrain Frank; Nesbitt, Leslie; Riben, Michael

    2018-01-01

    The tagging system is based on a small, electronic, wireless, laser-light-activated microtransponder named "p-Chip." The p-Chip is a silicon integrated circuit, the size of which is 600 μm × 600 μm × 100 μm. Each p-Chip contains a unique identification code stored within its electronic memory that can be retrieved with a custom reader. These features allow the p-Chip to be used as an unobtrusive and scarcely noticeable ID tag on glass slides and tissue cassettes. The system is comprised of p-Chip-tagged sample carriers, a dedicated benchtop p-Chip ID reader that can accommodate both objects, and an additional reader (the Wand), with an adapter for reading IDs of glass slides stored vertically in drawers. On slides, p-Chips are attached with adhesive to the center of the short edge, and on cassettes - embedded directly into the plastic. ID readout is performed by bringing the reader to the proximity of the chip. Standard histopathology laboratory protocols were used for testing. Very good ID reading efficiency was observed for both glass slides and cassettes. When processed slides are stored in vertical filing drawers, p-Chips remain readable without the need to remove them from the storage location, thereby improving the speed of searches in collections. On the cassettes, the ID continues to be readable through a thin layer of paraffin. Both slides and tissue cassettes can be read with the same reader, reducing the need for redundant equipment. The p-Chip is stable to all chemical challenges commonly used in the histopathology laboratory, tolerates temperature extremes, and remains durable in long-term storage. The technology is compatible with laboratory information management systems software systems. The p-Chip system is very well suited for identification of glass slides and cassettes in the histopathology laboratory.

  9. Asymptotic inference in system identification for the atom maser.

    PubMed

    Catana, Catalin; van Horssen, Merlijn; Guta, Madalin

    2012-11-28

    System identification is closely related to control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However, for quantum dynamical systems such as quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input that may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators, and the connection to large deviations is briefly discussed.

  10. DNA barcode-based molecular identification system for fish species.

    PubMed

    Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won

    2010-12-01

    In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp .

  11. The beauty of simple adaptive control and new developments in nonlinear systems stability analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkana, Itzhak, E-mail: ibarkana@gmail.com

    Although various adaptive control techniques have been around for a long time and in spite of successful proofs of stability and even successful demonstrations of performance, the eventual use of adaptive control methodologies in practical real world systems has met a rather strong resistance from practitioners and has remained limited. Apparently, it is difficult to guarantee or even understand the conditions that can guarantee stable operations of adaptive control systems under realistic operational environments. Besides, it is difficult to measure the robustness of adaptive control system stability and allow it to be compared with the common and widely used measuremore » of phase margin and gain margin that is utilized by present, mainly LTI, controllers. Furthermore, customary stability analysis methods seem to imply that the mere stability of adaptive systems may be adversely affected by any tiny deviation from the pretty idealistic and assumably required stability conditions. This paper first revisits the fundamental qualities of customary direct adaptive control methodologies, in particular the classical Model Reference Adaptive Control, and shows that some of their basic drawbacks have been addressed and eliminated within the so-called Simple Adaptive Control methodology. Moreover, recent developments in the stability analysis methods of nonlinear systems show that prior conditions that were customarily assumed to be needed for stability are only apparent and can be eliminated. As a result, sufficient conditions that guarantee stability are clearly stated and lead to similarly clear proofs of stability. As many real-world applications show, once robust stability of the adaptive systems can be guaranteed, the added value of using Add-On Adaptive Control along with classical Control design techniques is pushing the desired performance beyond any previous limits.« less

  12. Reduction in specimen labeling errors after implementation of a positive patient identification system in phlebotomy.

    PubMed

    Morrison, Aileen P; Tanasijevic, Milenko J; Goonan, Ellen M; Lobo, Margaret M; Bates, Michael M; Lipsitz, Stuart R; Bates, David W; Melanson, Stacy E F

    2010-06-01

    Ensuring accurate patient identification is central to preventing medical errors, but it can be challenging. We implemented a bar code-based positive patient identification system for use in inpatient phlebotomy. A before-after design was used to evaluate the impact of the identification system on the frequency of mislabeled and unlabeled samples reported in our laboratory. Labeling errors fell from 5.45 in 10,000 before implementation to 3.2 in 10,000 afterward (P = .0013). An estimated 108 mislabeling events were prevented by the identification system in 1 year. Furthermore, a workflow step requiring manual preprinting of labels, which was accompanied by potential labeling errors in about one quarter of blood "draws," was removed as a result of the new system. After implementation, a higher percentage of patients reported having their wristband checked before phlebotomy. Bar code technology significantly reduced the rate of specimen identification errors.

  13. Mathematical correlation of modal parameter identification methods via system realization theory

    NASA Technical Reports Server (NTRS)

    Juang, J. N.

    1986-01-01

    A unified approach is introduced using system realization theory to derive and correlate modal parameter identification methods for flexible structures. Several different time-domain and frequency-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research towards the unification of the many possible approaches for modal parameter identification.

  14. Water System Adaptation to Hydrological Changes: Module 1, Introduction to Water System Adaptation

    EPA Science Inventory

    Contemporary water management requires resilience, the ability to meet ever increasing water needs, and capacity to adapt to abrupt or transient changes in water quality and availability. For this purpose, effective adaptation to extreme hydrological events (e.g. intense storms, ...

  15. Texture-adaptive hyperspectral video acquisition system with a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Fang, Xiaojing; Feng, Jiao; Wang, Yongjin

    2014-10-01

    We present a new hybrid camera system based on spatial light modulator (SLM) to capture texture-adaptive high-resolution hyperspectral video. The hybrid camera system records a hyperspectral video with low spatial resolution using a gray camera and a high-spatial resolution video using a RGB camera. The hyperspectral video is subsampled by the SLM. The subsampled points can be adaptively selected according to the texture characteristic of the scene by combining with digital imaging analysis and computational processing. In this paper, we propose an adaptive sampling method utilizing texture segmentation and wavelet transform (WT). We also demonstrate the effectiveness of the sampled pattern on the SLM with the proposed method.

  16. Identification of dynamic systems, theory and formulation

    NASA Technical Reports Server (NTRS)

    Maine, R. E.; Iliff, K. W.

    1985-01-01

    The problem of estimating parameters of dynamic systems is addressed in order to present the theoretical basis of system identification and parameter estimation in a manner that is complete and rigorous, yet understandable with minimal prerequisites. Maximum likelihood and related estimators are highlighted. The approach used requires familiarity with calculus, linear algebra, and probability, but does not require knowledge of stochastic processes or functional analysis. The treatment emphasizes unification of the various areas in estimation in dynamic systems is treated as a direct outgrowth of the static system theory. Topics covered include basic concepts and definitions; numerical optimization methods; probability; statistical estimators; estimation in static systems; stochastic processes; state estimation in dynamic systems; output error, filter error, and equation error methods of parameter estimation in dynamic systems, and the accuracy of the estimates.

  17. Creating adaptive web recommendation system based on user behavior

    NASA Astrophysics Data System (ADS)

    Walek, Bogdan

    2018-01-01

    The paper proposes adaptive web recommendation system based on user behavior. The proposed system uses expert system to evaluating and recommending suitable items of content. Relevant items are subsequently evaluated and filtered based on history of visited items and user´s preferred categories of items. Main parts of the proposed system are presented and described. The proposed recommendation system is verified on specific example.

  18. HIDEC F-15 adaptive engine control system flight test results

    NASA Technical Reports Server (NTRS)

    Smolka, James W.

    1987-01-01

    NASA-Ames' Highly Integrated Digital Electronic Control (HIDEC) flight test program aims to develop fully integrated airframe, propulsion, and flight control systems. The HIDEC F-15 adaptive engine control system flight test program has demonstrated that significant performance improvements are obtainable through the retention of stall-free engine operation throughout the aircraft flight and maneuver envelopes. The greatest thrust increase was projected for the medium-to-high altitude flight regime at subsonic speed which is of such importance to air combat. Adaptive engine control systems such as the HIDEC F-15's can be used to upgrade the performance of existing aircraft without resort to expensive reengining programs.

  19. Two models for identification and predicting behaviour of an induction motor system

    NASA Astrophysics Data System (ADS)

    Kuo, Chien-Hsun

    2018-01-01

    System identification or modelling is the process of building mathematical models of dynamical systems based on the available input and output data from the systems. This paper introduces system identification by using ARX (Auto Regressive with eXogeneous input) and ARMAX (Auto Regressive Moving Average with eXogeneous input) models. Through the identified system model, the predicted output could be compared with the measured one to help prevent the motor faults from developing into a catastrophic machine failure and avoid unnecessary costs and delays caused by the need to carry out unscheduled repairs. The induction motor system is illustrated as an example. Numerical and experimental results are shown for the identified induction motor system.

  20. [Role of thyroid system in adaptation to cold].

    PubMed

    Maslov, L N; Vychuzhanova, E A; Gorbunov, A S; Tsybul'nikov, S Iu; Khaliulin, I G; Chauski, E

    2014-06-01

    Adaptation to cold promotes an increase in blood T3 and T4 levels in men and animals. The long-term cold exposure can induce a decrease in concentration of serum total and free T3 in human due to an enhancement of this hormone clearance. Endogenous catecholamines during adaptation to cold raise iodothyronine deiodinase D2 activity in brown fat due to α1-adrenergic receptor stimulation. Triiodothyronine is an inductor of iodothyronine deiodinase expression in brown fat, liver and kidney. Iodothyronine deiodinase D2 plays an important role in adaptation of organism to cold contributing to the high adrenergic reactivity of brown fat. At adaptation to cold T3 interacts with T3Rβ, it is formed T3Rβ-RXR complex, which binds to DNA with following transcription of UCP-1 and UCP-3 genes and UCP-1 and UCP-3 protein synthesis and uncoupling oxidative phosphorylation and an increase in heat production, where T3Rβ is T3-receptor-β, RXR is retinoid X-receptor, UCP is uncoupling protein. Triiodothyronine contributes to normal response to adrenergic agents of brown fat due to T3Rα activation. Sympatho-adrenomedullary and thyroid systems act as synergists in adaptation to cold.

  1. Adaptive optimal input design and parametric estimation of nonlinear dynamical systems: application to neuronal modeling.

    PubMed

    Madi, Mahmoud K; Karameh, Fadi N

    2018-05-11

    Many physical models of biological processes including neural systems are characterized by parametric nonlinear dynamical relations between driving inputs, internal states, and measured outputs of the process. Fitting such models using experimental data (data assimilation) is a challenging task since the physical process often operates in a noisy, possibly non-stationary environment; moreover, conducting multiple experiments under controlled and repeatable conditions can be impractical, time consuming or costly. The accuracy of model identification, therefore, is dictated principally by the quality and dynamic richness of collected data over single or few experimental sessions. Accordingly, it is highly desirable to design efficient experiments that, by exciting the physical process with smart inputs, yields fast convergence and increased accuracy of the model. We herein introduce an adaptive framework in which optimal input design is integrated with Square root Cubature Kalman Filters (OID-SCKF) to develop an online estimation procedure that first, converges significantly quicker, thereby permitting model fitting over shorter time windows, and second, enhances model accuracy when only few process outputs are accessible. The methodology is demonstrated on common nonlinear models and on a four-area neural mass model with noisy and limited measurements. Estimation quality (speed and accuracy) is benchmarked against high-performance SCKF-based methods that commonly employ dynamically rich informed inputs for accurate model identification. For all the tested models, simulated single-trial and ensemble averages showed that OID-SCKF exhibited (i) faster convergence of parameter estimates and (ii) lower dependence on inter-trial noise variability with gains up to around 1000 msec in speed and 81% increase in variability for the neural mass models. In terms of accuracy, OID-SCKF estimation was superior, and exhibited considerably less variability across experiments, in

  2. State of the art in adaptive control of robotic systems

    NASA Technical Reports Server (NTRS)

    Tosunoglu, Sabri; Tesar, Delbert

    1988-01-01

    An up-to-date assessment of adaptive control technology as applied to robotics is presented. Although the field is relatively new and does not yet represent a mature discipline, considerable attention for the design of sophisticated robot controllers has occured. In this presentation, adaptive control methods are divided into model reference adaptive systems and self-tuning regulators, with further definition of various approaches given in each class. The similarity and distinct features of the designed controllers are delineated and tabulated to enhance comparative review.

  3. Model Identification and Control System Design for the Lambda Unmanned Research Vehicle

    DTIC Science & Technology

    1991-09-01

    AD-A241 859 D T IC_ _ _ _ _ __ OCT 21921MODEL IDENTIFICATION AND CONTROL SYSTEM DESIGN FOR THE LAMBDA UNMANNED RESEARCH VEHICLE: THESIS Gerald A...23 191K MODEL IDENTIFICATION AND CONTROL SYSTEM DESIGN FOR THE LAMBDA UNMANNED RESEARCH VEHICLE THESIS Gerald A. Swift, First Lieutenant, USAF AFIT...UNMANNED RESEARCH VEHICLE THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University in Partial

  4. A Methodological Study of Family Cohesion and Adaptability.

    ERIC Educational Resources Information Center

    Russell, Candyce S.

    1980-01-01

    Assessed the validity of four separate instruments: SIMFAM; an adaptation of the Bowerman and Bahr Identification Scale; the Moos Family Environment Scale; and the Kvebaek Family Sculpture Test. Data support the Family Sculpture Test as a useful tool for measuring family cohesion but not adaptability. (Author)

  5. Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.

  6. 47 CFR 80.275 - Technical Requirements for Class A Automatic Identification System (AIS) equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Compulsory Ships § 80.275 Technical Requirements for Class A Automatic Identification System (AIS) equipment. (a) Prior to submitting a certification application for a Class A AIS device, the following... Identification System (AIS) equipment. 80.275 Section 80.275 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...

  7. 47 CFR 80.275 - Technical Requirements for Class A Automatic Identification System (AIS) equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Compulsory Ships § 80.275 Technical Requirements for Class A Automatic Identification System (AIS) equipment. (a) Prior to submitting a certification application for a Class A AIS device, the following... Identification System (AIS) equipment. 80.275 Section 80.275 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...

  8. 47 CFR 80.275 - Technical Requirements for Class A Automatic Identification System (AIS) equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Compulsory Ships § 80.275 Technical Requirements for Class A Automatic Identification System (AIS) equipment. (a) Prior to submitting a certification application for a Class A AIS device, the following... Identification System (AIS) equipment. 80.275 Section 80.275 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...

  9. 47 CFR 80.275 - Technical Requirements for Class A Automatic Identification System (AIS) equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Compulsory Ships § 80.275 Technical Requirements for Class A Automatic Identification System (AIS) equipment. (a) Prior to submitting a certification application for a Class A AIS device, the following... Identification System (AIS) equipment. 80.275 Section 80.275 Telecommunication FEDERAL COMMUNICATIONS COMMISSION...

  10. HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems.

    PubMed

    Kim, J; Kasabov, N

    1999-11-01

    This paper proposes an adaptive neuro-fuzzy system, HyFIS (Hybrid neural Fuzzy Inference System), for building and optimising fuzzy models. The proposed model introduces the learning power of neural networks to fuzzy logic systems and provides linguistic meaning to the connectionist architectures. Heuristic fuzzy logic rules and input-output fuzzy membership functions can be optimally tuned from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data; and rule tuning phase using error backpropagation learning scheme for a neural fuzzy system. To illustrate the performance and applicability of the proposed neuro-fuzzy hybrid model, extensive simulation studies of nonlinear complex dynamic systems are carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction and control of nonlinear dynamical systems. Two benchmark case studies are used to demonstrate that the proposed HyFIS system is a superior neuro-fuzzy modelling technique.

  11. Computerized Adaptive Testing System Design: Preliminary Design Considerations.

    DTIC Science & Technology

    1982-07-01

    the administrative or operational requirements of CAT and presented - # k*----.,ku nh-n.-utu (IPOI efi~g.2me (PMU tQ7q. vim NPRDC TR 82-52 July 1982...design model for a computerized adaptive testing ( CAT ) system was developed and presented through a series of hierarchy plus input-process-output (HIPO...physical system was addressed through brief discussions of hardware, software, interfaces, and personnel requirements. Further steps in CAT system

  12. Adaptive feedback synchronization of a unified chaotic system

    NASA Astrophysics Data System (ADS)

    Lu, Junan; Wu, Xiaoqun; Han, Xiuping; Lü, Jinhu

    2004-08-01

    This Letter further improves and extends the work of Wang et al. [Phys. Lett. A 312 (2003) 34]. In detailed, the linear feedback synchronization and adaptive feedback synchronization with only one controller for a unified chaotic system are discussed here. It is noticed that this unified system contains the noted Lorenz and Chen systems. Two chaotic synchronization theorems are attained. Also, numerical simulations are given to show the effectiveness of these methods.

  13. Self-Adaptive System based on Field Programmable Gate Array for Extreme Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Keymeulen, Didier; Zebulum, Ricardo; Rajeshuni, Ramesham; Stoica, Adrian; Katkoori, Srinivas; Graves, Sharon; Novak, Frank; Antill, Charles

    2006-01-01

    In this work, we report the implementation of a self-adaptive system using a field programmable gate array (FPGA) and data converters. The self-adaptive system can autonomously recover the lost functionality of a reconfigurable analog array (RAA) integrated circuit (IC) [3]. Both the RAA IC and the self-adaptive system are operating in extreme temperatures (from 120 C down to -180 C). The RAA IC consists of reconfigurable analog blocks interconnected by several switches and programmable by bias voltages. It implements filters/amplifiers with bandwidth up to 20 MHz. The self-adaptive system controls the RAA IC and is realized on Commercial-Off-The-Shelf (COTS) parts. It implements a basic compensation algorithm that corrects a RAA IC in less than a few milliseconds. Experimental results for the cold temperature environment (down to -180 C) demonstrate the feasibility of this approach.

  14. Adaptive Neural Control of Uncertain MIMO Nonlinear Systems With State and Input Constraints.

    PubMed

    Chen, Ziting; Li, Zhijun; Chen, C L Philip

    2017-06-01

    An adaptive neural control strategy for multiple input multiple output nonlinear systems with various constraints is presented in this paper. To deal with the nonsymmetric input nonlinearity and the constrained states, the proposed adaptive neural control is combined with the backstepping method, radial basis function neural network, barrier Lyapunov function (BLF), and disturbance observer. By ensuring the boundedness of the BLF of the closed-loop system, it is demonstrated that the output tracking is achieved with all states remaining in the constraint sets and the general assumption on nonsingularity of unknown control coefficient matrices has been eliminated. The constructed adaptive neural control has been rigorously proved that it can guarantee the semiglobally uniformly ultimate boundedness of all signals in the closed-loop system. Finally, the simulation studies on a 2-DOF robotic manipulator system indicate that the designed adaptive control is effective.

  15. A Conceptual Framework for Planning Systemic Human Adaptation to Global Warming

    PubMed Central

    Tait, Peter W.; Hanna, Elizabeth G.

    2015-01-01

    Human activity is having multiple, inter-related effects on ecosystems. Greenhouse gas emissions persisting along current trajectories threaten to significantly alter human society. At 0.85 °C of anthropogenic warming, deleterious human impacts are acutely evident. Additional warming of 0.5 °C–1.0 °C from already emitted CO2 will further intensify extreme heat and damaging storm events. Failing to sufficiently address this trend will have a heavy human toll directly and indirectly on health. Along with mitigation efforts, societal adaptation to a warmer world is imperative. Adaptation efforts need to be significantly upscaled to prepare society to lessen the public health effects of rising temperatures. Modifying societal behaviour is inherently complex and presents a major policy challenge. We propose a social systems framework for conceptualizing adaptation that maps out three domains within the adaptation policy landscape: acclimatisation, behavioural adaptation and technological adaptation, which operate at societal and personal levels. We propose that overlaying this framework on a systems approach to societal change planning methods will enhance governments’ capacity and efficacy in strategic planning for adaptation. This conceptual framework provides a policy oriented planning assessment tool that will help planners match interventions to the behaviours being targeted for change. We provide illustrative examples to demonstrate the framework’s application as a planning tool. PMID:26334285

  16. Bootstrapping a de-identification system for narrative patient records: cost-performance tradeoffs.

    PubMed

    Hanauer, David; Aberdeen, John; Bayer, Samuel; Wellner, Benjamin; Clark, Cheryl; Zheng, Kai; Hirschman, Lynette

    2013-09-01

    We describe an experiment to build a de-identification system for clinical records using the open source MITRE Identification Scrubber Toolkit (MIST). We quantify the human annotation effort needed to produce a system that de-identifies at high accuracy. Using two types of clinical records (history and physical notes, and social work notes), we iteratively built statistical de-identification models by annotating 10 notes, training a model, applying the model to another 10 notes, correcting the model's output, and training from the resulting larger set of annotated notes. This was repeated for 20 rounds of 10 notes each, and then an additional 6 rounds of 20 notes each, and a final round of 40 notes. At each stage, we measured precision, recall, and F-score, and compared these to the amount of annotation time needed to complete the round. After the initial 10-note round (33min of annotation time) we achieved an F-score of 0.89. After just over 8h of annotation time (round 21) we achieved an F-score of 0.95. Number of annotation actions needed, as well as time needed, decreased in later rounds as model performance improved. Accuracy on history and physical notes exceeded that of social work notes, suggesting that the wider variety and contexts for protected health information (PHI) in social work notes is more difficult to model. It is possible, with modest effort, to build a functioning de-identification system de novo using the MIST framework. The resulting system achieved performance comparable to other high-performing de-identification systems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Identification of open quantum systems from observable time traces

    DOE PAGES

    Zhang, Jun; Sarovar, Mohan

    2015-05-27

    Estimating the parameters that dictate the dynamics of a quantum system is an important task for quantum information processing and quantum metrology, as well as fundamental physics. In our paper we develop a method for parameter estimation for Markovian open quantum systems using a temporal record of measurements on the system. Furthermore, the method is based on system realization theory and is a generalization of our previous work on identification of Hamiltonian parameters.

  18. Social networks as embedded complex adaptive systems.

    PubMed

    Benham-Hutchins, Marge; Clancy, Thomas R

    2010-09-01

    As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 15th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, the authors discuss healthcare social networks as a hierarchy of embedded complex adaptive systems. The authors further examine the use of social network analysis tools as a means to understand complex communication patterns and reduce medical errors.

  19. Frequency response function-based explicit framework for dynamic identification in human-structure systems

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Živanović, Stana

    2018-05-01

    The aim of this paper is to propose a novel theoretical framework for dynamic identification in a structure occupied by a single human. The framework enables the prediction of the dynamics of the human-structure system from the known properties of the individual system components, the identification of human body dynamics from the known dynamics of the empty structure and the human-structure system and the identification of the properties of the structure from the known dynamics of the human and the human-structure system. The novelty of the proposed framework is the provision of closed-form solutions in terms of frequency response functions obtained by curve fitting measured data. The advantages of the framework over existing methods are that there is neither need for nonlinear optimisation nor need for spatial/modal models of the empty structure and the human-structure system. In addition, the second-order perturbation method is employed to quantify the effect of uncertainties in human body dynamics on the dynamic identification of the empty structure and the human-structure system. The explicit formulation makes the method computationally efficient and straightforward to use. A series of numerical examples and experiments are provided to illustrate the working of the method.

  20. Early Identification System: Year Two. Research Report 80-15.

    ERIC Educational Resources Information Center

    Stennett, R. G.; Earl, L. M.

    During the academic year 1978-79, school teams implemented a newly developed early identification system in all kindergarten and grade one classes in London, Ontario schools. After analysis and revision of the system, the internal consistency and concurrent validity of the process and a test of its short-term predictive validity were investigated.…

  1. Identification of soybean genotypes adaptive to tropical area and suitable for industry

    NASA Astrophysics Data System (ADS)

    Adie, M. M.; Krisnawati, A.

    2018-01-01

    Soybeans in Indonesia are mostly used for raw material of tempeh industry. This study aims to identify 150 soybean genotypes for their suitability for raw materials of tempeh and adaptability to be developed in tropical area of Indonesia. The research material consisted of 150 soybean genotypes. The field research was conducted in Malang from February to May 2016, using a randomized block design with two replicates. The identification of 150 soybean genotypes showed 30.67% of super early maturity (<75 days), 50% of early maturity (76 - 79 days), and 19.33% were medium maturity (80 - 90 days). In the group of super early maturity, 11 genotypes were yielded between 3.01 - 3.69 t/ha and the 100 seed weight ranged from 15.27 - 20.18 g. In the early maturity group, there were 23 genotypes with seed yields between 3.01 - 3.66 t/ha, and the 100 seed weight ranged from 13.90 - 20.23 g. In Indonesia, tempeh industry requires soybeans with large seed size. In this research, G511H/Anj//Anj////Anjs-8-5 was suitable to be developed in Indonesia’s tropical climate and also preferred by industry for tempeh raw material due to its high yield, super early days to maturity, and large seed size.

  2. Conceptual design for a user-friendly adaptive optics system at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissinger, H.D.; Olivier, S.; Max, C.

    1996-03-08

    In this paper, we present a conceptual design for a general-purpose adaptive optics system, usable with all Cassegrain facility instruments on the 3 meter Shane telescope at the University of California`s Lick Observatory located on Mt. Hamilton near San Jose, California. The overall design goal for this system is to take the sodium-layer laser guide star adaptive optics technology out of the demonstration stage and to build a user-friendly astronomical tool. The emphasis will be on ease of calibration, improved stability and operational simplicity in order to allow the system to be run routinely by observatory staff. A prototype adaptivemore » optics system and a 20 watt sodium-layer laser guide star system have already been built at Lawrence Livermore National Laboratory for use at Lick Observatory. The design presented in this paper is for a next- generation adaptive optics system that extends the capabilities of the prototype system into the visible with more degrees of freedom. When coupled with a laser guide star system that is upgraded to a power matching the new adaptive optics system, the combined system will produce diffraction-limited images for near-IR cameras. Atmospheric correction at wavelengths of 0.6-1 mm will significantly increase the throughput of the most heavily used facility instrument at Lick, the Kast Spectrograph, and will allow it to operate with smaller slit widths and deeper limiting magnitudes. 8 refs., 2 figs.« less

  3. Continuous-time system identification of a smoking cessation intervention

    NASA Astrophysics Data System (ADS)

    Timms, Kevin P.; Rivera, Daniel E.; Collins, Linda M.; Piper, Megan E.

    2014-07-01

    Cigarette smoking is a major global public health issue and the leading cause of preventable death in the United States. Toward a goal of designing better smoking cessation treatments, system identification techniques are applied to intervention data to describe smoking cessation as a process of behaviour change. System identification problems that draw from two modelling paradigms in quantitative psychology (statistical mediation and self-regulation) are considered, consisting of a series of continuous-time estimation problems. A continuous-time dynamic modelling approach is employed to describe the response of craving and smoking rates during a quit attempt, as captured in data from a smoking cessation clinical trial. The use of continuous-time models provide benefits of parsimony, ease of interpretation, and the opportunity to work with uneven or missing data.

  4. James Clerk Maxwell, a precursor of system identification and control science

    NASA Astrophysics Data System (ADS)

    Bittanti, Sergio

    2015-12-01

    One hundred and fifty years ago James Clerk Maxwell published his celebrated paper 'Dynamical theory of electromagnetic field', where the interaction between electricity and magnetism eventually found an explanation. However, Maxwell was also a precursor of model identification and control ideas. Indeed, with the paper 'On Governors' of 1869, he introduced the concept of feedback control system; and moreover, with his essay on Saturn's rings of 1856 he set the basic principle of system identification. This paper is a tutorial exposition having the aim to enlighten these latter aspects of Maxwell's work.

  5. MIMO system identification using frequency response data

    NASA Technical Reports Server (NTRS)

    Medina, Enrique A.; Irwin, R. D.; Mitchell, Jerrel R.; Bukley, Angelia P.

    1992-01-01

    A solution to the problem of obtaining a multi-input, multi-output statespace model of a system from its individual input/output frequency responses is presented. The Residue Identification Algorithm (RID) identifies the system poles from a transfer function model of the determinant of the frequency response data matrix. Next, the residue matrices of the modes are computed guaranteeing that each input/output frequency response is fitted in the least squares sense. Finally, a realization of the system is computed. Results of the application of RID to experimental frequency responses of a large space structure ground test facility are presented and compared to those obtained via the Eigensystem Realization Algorithm.

  6. 49 CFR 1544.231 - Airport-approved and exclusive area personnel identification systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Airport-approved and exclusive area personnel... AIRCRAFT OPERATOR SECURITY: AIR CARRIERS AND COMMERCIAL OPERATORS Operations § 1544.231 Airport-approved... carry out a personnel identification system for identification media that are airport-approved, or...

  7. 49 CFR 1544.231 - Airport-approved and exclusive area personnel identification systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Airport-approved and exclusive area personnel... AIRCRAFT OPERATOR SECURITY: AIR CARRIERS AND COMMERCIAL OPERATORS Operations § 1544.231 Airport-approved... carry out a personnel identification system for identification media that are airport-approved, or...

  8. 49 CFR 1544.231 - Airport-approved and exclusive area personnel identification systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Airport-approved and exclusive area personnel... AIRCRAFT OPERATOR SECURITY: AIR CARRIERS AND COMMERCIAL OPERATORS Operations § 1544.231 Airport-approved... carry out a personnel identification system for identification media that are airport-approved, or...

  9. Multichannel-Hadamard calibration of high-order adaptive optics systems.

    PubMed

    Guo, Youming; Rao, Changhui; Bao, Hua; Zhang, Ang; Zhang, Xuejun; Wei, Kai

    2014-06-02

    we present a novel technique of calibrating the interaction matrix for high-order adaptive optics systems, called the multichannel-Hadamard method. In this method, the deformable mirror actuators are firstly divided into a series of channels according to their coupling relationship, and then the voltage-oriented Hadamard method is applied to these channels. Taking the 595-element adaptive optics system as an example, the procedure is described in detail. The optimal channel dividing is discussed and tested by numerical simulation. The proposed method is also compared with the voltage-oriented Hadamard only method and the multichannel only method by experiments. Results show that the multichannel-Hadamard method can produce significant improvement on interaction matrix measurement.

  10. Occupational risk identification using hand-held or laptop computers.

    PubMed

    Naumanen, Paula; Savolainen, Heikki; Liesivuori, Jyrki

    2008-01-01

    This paper describes the Work Environment Profile (WEP) program and its use in risk identification by computer. It is installed into a hand-held computer or a laptop to be used in risk identification during work site visits. A 5-category system is used to describe the identified risks in 7 groups, i.e., accidents, biological and physical hazards, ergonomic and psychosocial load, chemicals, and information technology hazards. Each group contains several qualifying factors. These 5 categories are colour-coded at this stage to aid with visualization. Risk identification produces visual summary images the interpretation of which is facilitated by colours. The WEP program is a tool for risk assessment which is easy to learn and to use both by experts and nonprofessionals. It is especially well adapted to be used both in small and in larger enterprises. Considerable time is saved as no paper notes are needed.

  11. Adaptive precompensators for flexible-link manipulator control

    NASA Technical Reports Server (NTRS)

    Tzes, Anthony P.; Yurkovich, Stephen

    1989-01-01

    The application of input precompensators to flexible manipulators is considered. Frequency domain compensators color the input around the flexible mode locations, resulting in a bandstop or notch filter in cascade with the system. Time domain compensators apply a sequence of impulses at prespecified times related to the modal frequencies. The resulting control corresponds to a feedforward term that convolves in real-time the desired reference input with a sequence of impulses and produces a vibration-free output. An adaptive precompensator can be implemented by combining a frequency domain identification scheme which is used to estimate online the modal frequencies and subsequently update the bandstop interval or the spacing between the impulses. The combined adaptive input preshaping scheme provides the most rapid slew that results in a vibration-free output. Experimental results are presented to verify the results.

  12. A Model of Internal Communication in Adaptive Communication Systems.

    ERIC Educational Resources Information Center

    Williams, M. Lee

    A study identified and categorized different types of internal communication systems and developed an applied model of internal communication in adaptive organizational systems. Twenty-one large organizations were selected for their varied missions and diverse approaches to managing internal communication. Individual face-to-face or telephone…

  13. Simulated lumped-parameter system reduced-order adaptive control studies

    NASA Technical Reports Server (NTRS)

    Johnson, C. R., Jr.; Lawrence, D. A.; Taylor, T.; Malakooti, M. V.

    1981-01-01

    Two methods of interpreting the misbehavior of reduced order adaptive controllers are discussed. The first method is based on system input-output description and the second is based on state variable description. The implementation of the single input, single output, autoregressive, moving average system is considered.

  14. Road map to adaptive optimal control. [jet engine control

    NASA Technical Reports Server (NTRS)

    Boyer, R.

    1980-01-01

    A building block control structure leading toward adaptive, optimal control for jet engines is developed. This approach simplifies the addition of new features and allows for easier checkout of the control by providing a baseline system for comparison. Also, it is possible to eliminate certain features that do not have payoff by being selective in the addition of new building blocks to be added to the baseline system. The minimum risk approach specifically addresses the need for active identification of the plant to be controlled in real time and real time optimization of the control for the identified plant.

  15. Predicting Adaptive Behavior in the Environment from Central Nervous System Dynamics

    PubMed Central

    Proekt, Alex; Wong, Jane; Zhurov, Yuriy; Kozlova, Nataliya; Weiss, Klaudiusz R.; Brezina, Vladimir

    2008-01-01

    To generate adaptive behavior, the nervous system is coupled to the environment. The coupling constrains the dynamical properties that the nervous system and the environment must have relative to each other if adaptive behavior is to be produced. In previous computational studies, such constraints have been used to evolve controllers or artificial agents to perform a behavioral task in a given environment. Often, however, we already know the controller, the real nervous system, and its dynamics. Here we propose that the constraints can also be used to solve the inverse problem—to predict from the dynamics of the nervous system the environment to which they are adapted, and so reconstruct the production of the adaptive behavior by the entire coupled system. We illustrate how this can be done in the feeding system of the sea slug Aplysia. At the core of this system is a central pattern generator (CPG) that, with dynamics on both fast and slow time scales, integrates incoming sensory stimuli to produce ingestive and egestive motor programs. We run models embodying these CPG dynamics—in effect, autonomous Aplysia agents—in various feeding environments and analyze the performance of the entire system in a realistic feeding task. We find that the dynamics of the system are tuned for optimal performance in a narrow range of environments that correspond well to those that Aplysia encounter in the wild. In these environments, the slow CPG dynamics implement efficient ingestion of edible seaweed strips with minimal sensory information about them. The fast dynamics then implement a switch to a different behavioral mode in which the system ignores the sensory information completely and follows an internal “goal,” emergent from the dynamics, to egest again a strip that proves to be inedible. Key predictions of this reconstruction are confirmed in real feeding animals. PMID:18989362

  16. Adaptive infrared-reflecting systems inspired by cephalopods

    NASA Astrophysics Data System (ADS)

    Xu, Chengyi; Stiubianu, George T.; Gorodetsky, Alon A.

    2018-03-01

    Materials and systems that statically reflect radiation in the infrared region of the electromagnetic spectrum underpin the performance of many entrenched technologies, including building insulation, energy-conserving windows, spacecraft components, electronics shielding, container packaging, protective clothing, and camouflage platforms. The development of their adaptive variants, in which the infrared-reflecting properties dynamically change in response to external stimuli, has emerged as an important unmet scientific challenge. By drawing inspiration from cephalopod skin, we developed adaptive infrared-reflecting platforms that feature a simple actuation mechanism, low working temperature, tunable spectral range, weak angular dependence, fast response, stability to repeated cycling, amenability to patterning and multiplexing, autonomous operation, robust mechanical properties, and straightforward manufacturability. Our findings may open opportunities for infrared camouflage and other technologies that regulate infrared radiation.

  17. Development as adaptation: a paradigm for gravitational and space biology

    NASA Technical Reports Server (NTRS)

    Alberts, Jeffrey R.; Ronca, April E.

    2005-01-01

    Adaptation is a central precept of biology; it provides a framework for identifying functional significance. We equate mammalian development with adaptation, by viewing the developmental sequence as a series of adaptations to a stereotyped sequence of habitats. In this way development is adaptation. The Norway rat is used as a mammalian model, and the sequence of habitats that is used to define its adaptive-developmental sequence is (a) the uterus, (b) the mother's body, (c) the huddle, and (d) the coterie of pups as they gain independence. Then, within this framework and in relation to each of the habitats, we consider problems of organismal responses to altered gravitational forces (micro-g to hyper-g), especially those encountered during space flight and centrifugation. This approach enables a clearer identification of simple "effects" and active "responses" with respect to gravity. It focuses our attention on functional systems and brings to the fore the manner in which experience shapes somatic adaptation. We argue that this basic developmental approach is not only central to basic issues in gravitational biology, but that it provides a natural tool for understanding the underlying processes that are vital to astronaut health and well-being during long duration flights that will involve adaptation to space flight conditions and eventual re-adaptation to Earth's gravity.

  18. DKIST Adaptive Optics System: Simulation Results

    NASA Astrophysics Data System (ADS)

    Marino, Jose; Schmidt, Dirk

    2016-05-01

    The 4 m class Daniel K. Inouye Solar Telescope (DKIST), currently under construction, will be equipped with an ultra high order solar adaptive optics (AO) system. The requirements and capabilities of such a solar AO system are beyond those of any other solar AO system currently in operation. We must rely on solar AO simulations to estimate and quantify its performance.We present performance estimation results of the DKIST AO system obtained with a new solar AO simulation tool. This simulation tool is a flexible and fast end-to-end solar AO simulator which produces accurate solar AO simulations while taking advantage of current multi-core computer technology. It relies on full imaging simulations of the extended field Shack-Hartmann wavefront sensor (WFS), which directly includes important secondary effects such as field dependent distortions and varying contrast of the WFS sub-aperture images.

  19. 33 CFR 164.46 - Automatic Identification System (AIS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (AIS). 164.46 Section 164.46 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Identification System (AIS). (a) The following vessels must have a properly installed, operational, type approved AIS as of the date specified: (1) Self-propelled vessels of 65 feet or more in length, other than...

  20. 33 CFR 164.46 - Automatic Identification System (AIS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (AIS). 164.46 Section 164.46 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Identification System (AIS). (a) The following vessels must have a properly installed, operational, type approved AIS as of the date specified: (1) Self-propelled vessels of 65 feet or more in length, other than...