Visualization of Scalar Adaptive Mesh Refinement Data
VACET; Weber, Gunther; Weber, Gunther H.; Beckner, Vince E.; Childs, Hank; Ligocki, Terry J.; Miller, Mark C.; Van Straalen, Brian; Bethel, E. Wes
2007-12-06
Adaptive Mesh Refinement (AMR) is a highly effective computation method for simulations that span a large range of spatiotemporal scales, such as astrophysical simulations, which must accommodate ranges from interstellar to sub-planetary. Most mainstream visualization tools still lack support for AMR grids as a first class data type and AMR code teams use custom built applications for AMR visualization. The Department of Energy's (DOE's) Science Discovery through Advanced Computing (SciDAC) Visualization and Analytics Center for Enabling Technologies (VACET) is currently working on extending VisIt, which is an open source visualization tool that accommodates AMR as a first-class data type. These efforts will bridge the gap between general-purpose visualization applications and highly specialized AMR visual analysis applications. Here, we give an overview of the state of the art in AMR scalar data visualization research.
Scalarized photon analysis of spontaneous emission in the uniform magnetic field free-electron laser
NASA Astrophysics Data System (ADS)
Soln, Josip
1990-04-01
The recently developed concept of scalarized photons (formally photons of any polarization) is used to analyze the spontaneous emission in the uniform magnetic field free-electron laser in the microwave spectral region. With the electron beam energy of up to 10 MeV and the uniform magnetic field of up to 4 Tesla, the radiation (occurring with the fundamental and higher harmonic frequencies) can easily cover a 10- to 10,000 GHz spectral region.
Non-uniform FFT for the finite element computation of the micromagnetic scalar potential
NASA Astrophysics Data System (ADS)
Exl, L.; Schrefl, T.
2014-08-01
We present a quasi-linearly scaling, first order polynomial finite element method for the solution of the magnetostatic open boundary problem by splitting the magnetic scalar potential. The potential is determined by solving a Dirichlet problem and evaluation of the single layer potential by a fast approximation technique based on Fourier approximation of the kernel function. The latter approximation leads to a generalization of the well-known convolution theorem used in finite difference methods. We address it by a non-uniform FFT approach. Overall, our method scales O(M+N+Nlog N) for N nodes and M surface triangles. We confirm our approach by several numerical tests.
Electromagnetic and scalar diffraction by a right-angled wedge with a uniform surface impedance
NASA Technical Reports Server (NTRS)
Hwang, Y. M.
1974-01-01
The diffraction of an electromagnetic wave by a perfectly-conducting right-angled wedge with one surface covered by a dielectric slab or absorber is considered. The effect of the coated surface is approximated by a uniform surface impedance. The solution of the normally incident electromagnetic problem is facilitated by introducing two scalar fields which satisfy a mixed boundary condition on one surface of the wedge and a Neumann of Dirichlet boundary condition on the other. A functional transformation is employed to simplify the boundary conditions so that eigenfunction expansions can be obtained for the resulting Green's functions. The eigenfunction expansions are transformed into the integral representations which then are evaluated asymptotically by the modified Pauli-Clemmow method of steepest descent. A far zone approximation is made to obtain the scattered field from which the diffraction coefficient is found for scalar plane, cylindrical or sperical wave incident on the edge. With the introduction of a ray-fixed coordinate system, the dyadic diffraction coefficient for plane or cylindrical EM waves normally indicent on the edge is reduced to the sum of two dyads which can be written alternatively as a 2 X 2 diagonal matrix.
Multistage Computerized Adaptive Testing with Uniform Item Exposure
ERIC Educational Resources Information Center
Edwards, Michael C.; Flora, David B.; Thissen, David
2012-01-01
This article describes a computerized adaptive test (CAT) based on the uniform item exposure multi-form structure (uMFS). The uMFS is a specialization of the multi-form structure (MFS) idea described by Armstrong, Jones, Berliner, and Pashley (1998). In an MFS CAT, the examinee first responds to a small fixed block of items. The items comprising…
Strategy Uniform Crossover Adaptation Evolution in a Minority Game
NASA Astrophysics Data System (ADS)
Yang, Wei-Song; Wang, Bing-Hong; Quan, Hong-Jun; Hu, Chin-Kun
2003-10-01
We propose and study a new adaptation minority game for understanding of the complex dynamical behaviour characterized by agent interactions competing limited resource in many natural and social systems. Intelligent agents may modify a part of strategies held by them periodically, depending on the strategy performances. In the new model, the strategies will be updated according to uniform-crossover variation process inspired by genetic evolution algorithm in biology. The performances of the agents in the new model are calculated for different parameter conditions. It has been found that the new system may evolve via the strategy uniform crossover adaptation mechanism into a frozen equilibrium state in which the performance of the system may reach the best limit, implying the strongest cooperation among agents and the most effective utilization of the social resources.
Performance Characteristics of an Adaptive Mesh RefinementCalculation on Scalar and Vector Platforms
Welcome, Michael; Rendleman, Charles; Oliker, Leonid; Biswas, Rupak
2006-01-31
Adaptive mesh refinement (AMR) is a powerful technique thatreduces the resources necessary to solve otherwise in-tractable problemsin computational science. The AMR strategy solves the problem on arelatively coarse grid, and dynamically refines it in regions requiringhigher resolution. However, AMR codes tend to be far more complicatedthan their uniform grid counterparts due to the software infrastructurenecessary to dynamically manage the hierarchical grid framework. Despitethis complexity, it is generally believed that future multi-scaleapplications will increasingly rely on adaptive methods to study problemsat unprecedented scale and resolution. Recently, a new generation ofparallel-vector architectures have become available that promise toachieve extremely high sustained performance for a wide range ofapplications, and are the foundation of many leadership-class computingsystems worldwide. It is therefore imperative to understand the tradeoffsbetween conventional scalar and parallel-vector platforms for solvingAMR-based calculations. In this paper, we examine the HyperCLaw AMRframework to compare and contrast performance on the Cray X1E, IBM Power3and Power5, and SGI Altix. To the best of our knowledge, this is thefirst work that investigates and characterizes the performance of an AMRcalculation on modern parallel-vector systems.
Turbulence structure and scalar diffusion in uniformly sheared flow distorted by a grid
NASA Astrophysics Data System (ADS)
Tavoularis, Stavros; Nedic, Jovan
2015-11-01
Uniformly sheared flow, generated in a wind-tunnel by a shear generator, was let to develop a self-similar, strongly anisotropic turbulence structure and then it was disturbed by grids having square meshes with spacings larger than, comparable to and smaller than the spacing of the shear generator; a ''fractal'' grid was also used. The multi-scale, non-equilibrium turbulence structure downstream of each grid was documented and differences from the structures of the undisturbed shear flow and grid turbulence were identified. In addition, heat was injected passively from a line source located downstream of the grid and the growth of the heated plume under different conditions was examined. Supported by NSERC.
Adaptive non-uniformity correction method based on temperature for infrared detector array
NASA Astrophysics Data System (ADS)
Zhang, Zhijie; Yue, Song; Hong, Pu; Jia, Guowei; Lei, Bo
2013-09-01
The existence of non-uniformities in the responsitivity of the element array is a severe problem typical to common infrared detector. These non-uniformities result in a "curtain'' like fixed pattern noises (FPN) that appear in the image. Some random noise can be restrained by the method kind of equalization method. But the fixed pattern noise can only be removed by .non uniformity correction method. The produce of non uniformities of detector array is the combined action of infrared detector array, readout circuit, semiconductor device performance, the amplifier circuit and optical system. Conventional linear correction techniques require costly recalibration due to the drift of the detector or changes in temperature. Therefore, an adaptive non-uniformity method is needed to solve this problem. A lot factors including detectors and environment conditions variety are considered to analyze and conduct the cause of detector drift. Several experiments are designed to verify the guess. Based on the experiments, an adaptive non-uniformity correction method is put forward in this paper. The strength of this method lies in its simplicity and low computational complexity. Extensive experimental results demonstrate the disadvantage of traditional non-uniformity correct method is conquered by the proposed scheme.
Algebraic grid adaptation method using non-uniform rational B-spline surface modeling
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, B. K.
1992-01-01
An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.
Image retargeting using non-uniform scaling with adaptive local search window
NASA Astrophysics Data System (ADS)
Wang, Shanshan; Abdel-Dayem, Amr
2011-10-01
This paper presents a new content-aware image-retargeting scheme, based on non-uniform scaling, to adaptively adjust the image's dimensions for various screen sizes. Based on an importance map, the energy contribution for each line in the reduced dimension to the overall energy within the image is computed. Then, the image is adaptively mapped and resampled based on the energy contribution function. Experimental results showed that the performance of the proposed scheme is comparable to seam carving in visual quality. However, it is computationally less expensive.
Lin, Changyu; Zou, Ding; Liu, Tao; Djordjevic, Ivan B
2016-08-01
A mutual information inspired nonbinary coded modulation design with non-uniform shaping is proposed. Instead of traditional power of two signal constellation sizes, we design 5-QAM, 7-QAM and 9-QAM constellations, which can be used in adaptive optical networks. The non-uniform shaping and LDPC code rate are jointly considered in the design, which results in a better performance scheme for the same SNR values. The matched nonbinary (NB) LDPC code is used for this scheme, which further improves the coding gain and the overall performance. We analyze both coding performance and system SNR performance. We show that the proposed NB LDPC-coded 9-QAM has more than 2dB gain in symbol SNR compared to traditional LDPC-coded star-8-QAM. On the other hand, the proposed NB LDPC-coded 5-QAM and 7-QAM have even better performance than LDPC-coded QPSK. PMID:27505775
The algorithm analysis on non-uniformity correction based on LMS adaptive filtering
NASA Astrophysics Data System (ADS)
Zhan, Dongjun; Wang, Qun; Wang, Chensheng; Chen, Huawang
2010-11-01
The traditional least mean square (LMS) algorithm has the performance of good adaptivity to noise, but there are several disadvantages in the traditional LMS algorithm, such as the defect in desired value of pending pixels, undetermined original coefficients, which result in slow convergence speed and long convergence period. Method to solve the desired value of pending pixel has improved based on these problems, also, the correction gain and offset coefficients worked out by the method of two-point temperature non-uniformity correction (NUC) as the original coefficients, which has improved the convergence speed. The simulation with real infrared images has proved that the new LMS algorithm has the advantages of better correction effect. Finally, the algorithm is implemented on the hardware structure of FPGA+DSP.
Adaptive uniform grayscale coded aperture design for high dynamic range compressive spectral imaging
NASA Astrophysics Data System (ADS)
Diaz, Nelson; Rueda, Hoover; Arguello, Henry
2016-05-01
Imaging spectroscopy is an important area with many applications in surveillance, agriculture and medicine. The disadvantage of conventional spectroscopy techniques is that they collect the whole datacube. In contrast, compressive spectral imaging systems capture snapshot compressive projections, which are the input of reconstruction algorithms to yield the underlying datacube. Common compressive spectral imagers use coded apertures to perform the coded projections. The coded apertures are the key elements in these imagers since they define the sensing matrix of the system. The proper design of the coded aperture entries leads to a good quality in the reconstruction. In addition, the compressive measurements are prone to saturation due to the limited dynamic range of the sensor, hence the design of coded apertures must consider saturation. The saturation errors in compressive measurements are unbounded and compressive sensing recovery algorithms only provide solutions for bounded noise or bounded with high probability. In this paper it is proposed the design of uniform adaptive grayscale coded apertures (UAGCA) to improve the dynamic range of the estimated spectral images by reducing the saturation levels. The saturation is attenuated between snapshots using an adaptive filter which updates the entries of the grayscale coded aperture based on the previous snapshots. The coded apertures are optimized in terms of transmittance and number of grayscale levels. The advantage of the proposed method is the efficient use of the dynamic range of the image sensor. Extensive simulations show improvements in the image reconstruction of the proposed method compared with grayscale coded apertures (UGCA) and adaptive block-unblock coded apertures (ABCA) in up to 10 dB.
NASA Astrophysics Data System (ADS)
Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian
2016-05-01
Imaging non-uniformity of infrared focal plane array (IRFPA) behaves as fixed-pattern noise superimposed on the image, which affects the imaging quality of infrared system seriously. In scene-based non-uniformity correction methods, the drawbacks of ghosting artifacts and image blurring affect the sensitivity of the IRFPA imaging system seriously and decrease the image quality visibly. This paper proposes an improved neural network non-uniformity correction method with adaptive learning rate. On the one hand, using guided filter, the proposed algorithm decreases the effect of ghosting artifacts. On the other hand, due to the inappropriate learning rate is the main reason of image blurring, the proposed algorithm utilizes an adaptive learning rate with a temporal domain factor to eliminate the effect of image blurring. In short, the proposed algorithm combines the merits of the guided filter and the adaptive learning rate. Several real and simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. The experiment results indicate that the proposed algorithm can not only reduce the non-uniformity with less ghosting artifacts but also overcome the problems of image blurring in static areas.
NASA Astrophysics Data System (ADS)
Kmiecik, Chris G.
1990-06-01
Two aspects of digital communication were investigated. In the first part, a Fast Fourier Transformation (FFT) based, M-ary frequency shift keying (FSK) receiver in a Rician-fading channel was analyzed to determine the benefits of non-uniform windowing of sampled received data. When a frequency offset occurs, non-uniform windowing provided better FFT magnitude separation. The improved dynamic range was balanced against a loss in detectability due to signal attenuation. With large frequency offset, the improved magnitude separation outweighed the loss in detectability. An analysis was carried out to determine what frequency deviation is necessary for non-uniform windowing to out-perform uniform windowing in a slow Rician-fading channel. Having established typical values of probability of bit errors, the second part of this thesis looked at improving throughput in a digital communications network by applying adaptive automatic repeat request (ARQ) protocols. The results of simulations of adaptive ARQ protocols with variable frame lengths is presented. By varying the frame length, improved throughput performance through all bit error rates was achieved.
The wavelet/scalar quantization compression standard for digital fingerprint images
Bradley, J.N.; Brislawn, C.M.
1994-04-01
A new digital image compression standard has been adopted by the US Federal Bureau of Investigation for use on digitized gray-scale fingerprint images. The algorithm is based on adaptive uniform scalar quantization of a discrete wavelet transform image decomposition and is referred to as the wavelet/scalar quantization standard. The standard produces archival quality images at compression ratios of around 20:1 and will allow the FBI to replace their current database of paper fingerprint cards with digital imagery.
NASA Astrophysics Data System (ADS)
Tendero, Y.; Gilles, J.
2012-06-01
We propose a new way to correct for the non-uniformity (NU) and the noise in uncooled infrared-type images. This method works on static images, needs no registration, no camera motion and no model for the non uniformity. The proposed method uses an hybrid scheme including an automatic locally-adaptive contrast adjustment and a state-of-the-art image denoising method. It permits to correct for a fully non-linear NU and the noise efficiently using only one image. We compared it with total variation on real raw and simulated NU infrared images. The strength of this approach lies in its simplicity, low computational cost. It needs no test-pattern or calibration and produces no "ghost-artefact".
Adaptation of filtered back-projection to compton imaging with non-uniform azimuthal geometry
NASA Astrophysics Data System (ADS)
Lee, Hyounggun; Lee, Taewoong; Lee, Wonho
2016-05-01
For Compton image reconstruction, analytic reconstruction methods such as filtered backprojection have been used for real-time imaging. The conventional filtered back-projection method assumes a uniformly distributed azimuthal response in the detector system. In this study, we applied filtered back-projection to the experimental data from detector systems with limited azimuthal angle coverage ranges and estimated the limitations of the analytic reconstruction methods when applied to these systems. For the system with a uniform azimuthal response, the images reconstructed by using filtered back-projection showed better angular resolutions than the images obtained by using simple back-projection did. However, when filtered back-projection was applied to reconstruct Compton images based on measurements performed by using Compton cameras with limited response geometries, the reconstructed images exhibited artifacts caused by the geometrical limitations. Our proposed method employs the Compton camera's rotation to overcome the angular response limitations; when the rotation method was applied in this study, the artifacts in the reconstructed images caused by angular response limitations were minimized. With this method, filtered back-projection can be applied to reconstruct real-time Compton images even when the radiation measurements are performed by using Compton cameras with non-uniform azimuthal response geometries.
Higher order direct model reference adaptive control with generic uniform ultimate boundedness
NASA Astrophysics Data System (ADS)
Maity, Arnab; Höcht, Leonhard; Holzapfel, Florian
2015-10-01
This paper proposes a new higher order model reference adaptive control (HO-MRAC) approach following direct adaptive control philosophy, which estimates unknown time-varying parameters. This approach leads to a Lyapunov based conventional MRAC update law, augmented by an observer type parameter predictor dynamics. The predictor dynamics are composed of a stable known part, a feedback of the parameter error and unknown higher order parameters, which are updated using a Lyapunov based adaptive design. So, this HO-MRAC can cope with rapidly changing parameters, due to estimation of their time derivatives. Moreover, for stability analysis, a Lyapunov based generic ultimate boundedness theorem is presented, which allows for a computation of separate bounds for each state vector partition. Furthermore, this theorem formulates the explicit specification of transient and ultimate bounds, reaching time on the ultimate bounds and a set of admissible initial conditions. Two challenging illustrative examples demonstrate the effectiveness of the proposed approach.
Do common mechanisms of adaptation mediate color discrimination and appearance? Uniform backgrounds
Hillis, James M.; Brainard, David H.
2007-01-01
Color vision is useful for detecting surface boundaries and identifying objects. Are the signals used to perform these two functions processed by common mechanisms, or has the visual system optimized its processing separately for each task? We measured the effect of mean chromaticity and luminance on color discriminability and on color appearance under well-matched stimulus conditions. In the discrimination experiments, a pedestal spot was presented in one interval and a pedestal + test in a second. Observers indicated which interval contained the test. In the appearance experiments, observers matched the appearance of test spots across a change in background. We analyzed the data using a variant of Fechner's proposal, that the rate of apparent stimulus change is proportional to visual sensitivity. We found that saturating visual response functions together with a model of adaptation that included multiplicative gain control and a subtractive term accounted for data from both tasks. This result suggests that effects of the contexts we studied on color appearance and discriminability are controlled by the same underlying mechanism. PMID:16277280
Do common mechanisms of adaptation mediate color discrimination and appearance? Uniform backgrounds
NASA Astrophysics Data System (ADS)
Hillis, James M.; Brainard, David H.
2005-10-01
Color vision is useful for detecting surface boundaries and identifying objects. Are the signals used to perform these two functions processed by common mechanisms, or has the visual system optimized its processing separately for each task? We measured the effect of mean chromaticity and luminance on color discriminability and on color appearance under well-matched stimulus conditions. In the discrimination experiments, a pedestal spot was presented in one interval and a pedestal + test in a second. Observers indicated which interval contained the test. In the appearance experiments, observers matched the appearance of test spots across a change in background. We analyzed the data using a variant of Fechner's proposal, that the rate of apparent stimulus change is proportional to visual sensitivity. We found that saturating visual response functions together with a model of adaptation that included multiplicative gain control and a subtractive term accounted for data from both tasks. This result suggests that effects of the contexts we studied on color appearance and discriminability are controlled by the same underlying mechanism.
NASA Astrophysics Data System (ADS)
Rodionov, V. N.; Kravtsova, G. A.
2011-11-01
We discuss the equations for the bound one-active electron states based on the analytic solutions of the Schrödinger and Pauli equations for a uniform magnetic field and a single attractive δ( r)-potential. We show that the magnetic field indeed plays a stabilizing role in considered systems in a case of the weak intensity, but the opposite occurs in the case of strong intensity. These properties may be important for real quantum mechanical fermionic systems in two and three dimensions. In addition, we obtained that including the spin in the framework of the nonrelativistic approach allows correctly taking the effect of the magnetic field on the electric current into account.
Judex, Stefan; Boyd, Steve; Qin, Yi-Xian; Turner, Simon; Ye, Kenny; Müller, Ralph; Rubin, Clinton
2003-01-01
Extremely low magnitude mechanical stimuli (<10 microstrain) induced at high frequencies are anabolic to trabecular bone. Here, we used finite element (FE) modeling to investigate the mechanical implications of a one year mechanical intervention. Adult female sheep stood with their hindlimbs either on a vibrating plate (30 Hz, 0.3 g) for 20 min/d, 5 d/wk or on an inactive plate. Microcomputed tomography data of 1 cm bone cubes extracted from the medial femoral condyles were transformed into FE meshes. Simulated compressive loads applied to the trabecular meshes in the three orthogonal directions indicated that the low level mechanical intervention significantly increased the apparent trabecular tissue stiffness of the femoral condyle in the longitudinal (+17%, p<0.02), anterior-posterior (+29%, p<0.01), and medial-lateral (+37%, p<0.01) direction, thus reducing apparent strain magnitudes for a given applied load. For a given apparent input strain (or stress), the resultant stresses and strains within trabeculae were more uniformly distributed in the off-axis loading directions in cubes of mechanically loaded sheep. These data suggest that trabecular bone responds to low level mechanical loads with intricate adaptations beyond a simple reduction in apparent strain magnitude, producing a structure that is stiffer and less prone to fracture for a given load. PMID:12572652
Wavelet/scalar quantization compression standard for fingerprint images
Brislawn, C.M.
1996-06-12
US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class of potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.
A realizable EDQNM model for anisotropic scalars
NASA Astrophysics Data System (ADS)
Collins, Lance; Ulitsky, Mark
1999-11-01
As noted in the previous talk and abstract, the direct application of the edqnm formalism to two scalars with different diffusivities leads to a scalar covariance spectrum that violates the Cauchy-Schwartz inequality. This can be remedied by eliminating the explicit dependence of the eddy damping time scales on the molecular diffusivities, which can be shown to be unphysical at short times. Here we present an extension of this idea to anisotropic scalars. Anisotropy in this case results from uniform mean gradients of the scalar concentration in one direction. The approach we take is similar to the one described in Herr, Wang and Collins (Phys. Fluids 8:1588, 1996), except we substitute the modified eddy damping coefficients derived earlier for the isotropic scalar. The resulting edqnm model yields a realizable covariance spectrum for all times and for all combinations of the scalar diffusivities we considered. Several example calculations will be presented.
Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade
2013-10-15
Accurate relativistic adapted Gaussian basis sets (RAGBSs) for 87 Fr up to 118 Uuo atoms without variational prolapse were developed here with the use of a polynomial version of the Generator Coordinate Dirac-Fock method. Two finite nuclear models have been used, the Gaussian and uniform sphere models. The largest RAGBS error, with respect to numerical Dirac-Fock results, is 15.4 miliHartree for Ununoctium with a basis set size of 33s30p19d14f functions. PMID:23913741
NASA Astrophysics Data System (ADS)
Bargatze, L. F.
2015-12-01
Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted
Acevedo, Amarilis; Krueger, Kristin R.; Navarro, Ellen; Ortiz, Freddy; Manly, Jennifer J.; Padilla-Vélez, Margarita M.; Weintraub, Sandra; López, Oscar L.; Mungas, Dan
2010-01-01
Researchers from Alzheimer’s Disease Centers (ADCs) across the United States with expertise in the assessment of Spanish-speaking elderly collaborated to create the official Spanish version of measures in the Uniform Data Set of the National Institute on Aging Alzheimer’s Disease Center Program. The present article describes this project, whose primary goal was to create Spanish instruments with cultural and linguistic equivalence to the English versions. The resulting Spanish versions make provisions for variations among Spanish-speaking groups in the United States of different nationalities, socio-cultural, linguistic, and educational backgrounds. A consensus-based translation and adaptation approach was used, and guiding principles and specific components of this process are summarized. The Spanish translation and adaptation of the Uniform Data Set measures became available online to ADCs in April 2007. Its creation is important, as the resulting effort provides standardized measures for the collection of cross-sectional and longitudinal data on a large cohort of Spanish-speaking elders across the country and facilitates collaborative research among ADCs. PMID:19474568
NASA Astrophysics Data System (ADS)
Lasukov, V. V.
2012-06-01
It is shown that negative Scalars can claim to be the object referred to as black holes, therefore observation of black holes means observation of Scalars. In contrast to blackholes, negative Scalars contain no singularity inside. Negative Scalars can be observed from the effect of generation of ordinary matter by the Lemaître primordial atom.
Generic scalar potentials in geometric scalar gravity
NASA Astrophysics Data System (ADS)
Kan, Nahomi; Shiraishi, Kiyoshi
2016-06-01
We discuss a generic form of the scalar potential appearing in the geometric scalar theory of gravity. We find the conditions on the potential by considering weak and strong gravity. The modified black hole solutions are obtained for generic potentials and the inverse problems on a black hole and on a spherical body (`pseudo-gravastar') are investigated.
NASA Astrophysics Data System (ADS)
Mottola, Emil
2016-03-01
General Relativity receives quantum corrections relevant at macroscopic distance scales and near event horizons. These arise from the conformal scalar degree of freedom in the extended effective field theory (EFT) of gravity generated by the trace anomaly of massless quantum fields in curved space. Linearized around flat space this quantum scalar degree of freedom combines with the conformal part of the metric and predicts the existence of scalar spin-0 ``breather'' propagating gravitational waves in addition to the transverse tensor spin-2 waves of classical General Relativity. Estimates of the expected strength of scalar gravitational radiation from compact astrophysical sources are given.
On the power law of passive scalars in turbulence
NASA Astrophysics Data System (ADS)
Gotoh, Toshiyuki; Watanabe, Takeshi
2015-11-01
It has long been considered that the moments of the scalar increment with separation distance r obey power law with scaling exponents in the inertial convective range and the exponents are insensitive to variation of pumping of scalar fluctuations at large scales, thus the scaling exponents are universal. We examine the scaling behavior of the moments of increments of passive scalars 1 and 2 by using DNS up to the grid points of 40963. They are simultaneously convected by the same isotropic steady turbulence atRλ = 805 , but excited by two different methods. Scalar 1 is excited by the random scalar injection which is isotropic, Gaussian and white in time at law wavenumber band, while Scalar 2 is excited by the uniform mean scalar gradient. It is found that the local scaling exponents of the scalar 1 has a logarithmic correction, meaning that the moments of the scalar 1 do not obey simple power law. On the other hand, the moments of the scalar 2 is found to obey the well developed power law with exponents consistent with those in the literature. Physical reasons for the difference are explored. Grants-in-Aid for Scientific Research 15H02218 and 26420106, NIFS14KNSS050, HPCI project hp150088 and hp140024, JHPCN project jh150012.
Broom, Donald M
2006-01-01
The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and
NASA Astrophysics Data System (ADS)
Blatov, I. A.; Dobrobog, N. V.; Kitaeva, E. V.
2016-07-01
The Galerkin finite element method is applied to nonself-adjoint singularly perturbed boundary value problems on Shishkin meshes. The Galerkin projection method is used to obtain conditionally ɛ-uniform a priori error estimates and to prove the convergence of a sequence of meshes in the case of an unknown boundary layer edge.
Spontaneous Scalarization of Massive Fields
NASA Astrophysics Data System (ADS)
Ramazanoglu, Fethi M.; Pretorius, Frans
2014-03-01
Spontaneous scalarization is a phenomenon in certain scalar-tensor theories where large deviations from general relativity can be observed inside compact stars, while the known observational bounds can also be satisfied far away. This scenario has been investigated for massless scalars and binary neutron stars using numerical relativity, but the parameter space for such theories have been severely restricted by recent observations. Here, we present our results on the spontaneous scalarization of massive scalars. We simulate cases with different equations of state and scalar field parameters, and comment on the detectability of the scalar field effects from the gravitational wave signal.
Liu Yunhu; Shao Jianxin; Wang Xiaogang; Zhang Ziying; Li Demin
2008-02-01
Based on the main assumption that the D{sub sJ}(2860) belongs to the 2{sup 3}P{sub 0} qq multiplet, the masses of the scalar meson nonet are estimated in the framework of the relativistic independent quark model, Regge phenomenology, and meson-meson mixing. We suggest that the a{sub 0}(1005), K{sub 0}*(1062), f{sub 0}(1103), and f{sub 0}(564) constitute the ground scalar meson nonet; it is supposed that these states would likely correspond to the observed states a{sub 0}(980), {kappa}(900), f{sub 0}(980), and f{sub 0}(600)/{sigma}, respectively. Also a{sub 0}(1516), K{sub 0}*(1669), f{sub 0}(1788), and f{sub 0}(1284) constitute the first radial scalar meson nonet, it is supposed that these states would likely correspond to the observed states a{sub 0}(1450), K{sub 0}*(1430), f{sub 0}(1710), and f{sub 0}(1370), respectively. The scalar state f{sub 0}(1500) may be a good candidate for the ground scalar glueball. The agreement between the present findings and those given by other different approaches is satisfactory.
NASA Astrophysics Data System (ADS)
Rejon-Barrera, Fernando; Robbins, Daniel
2016-01-01
We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.
De Leo, S. ); Rotelli, P. )
1992-01-15
We discuss the extension of a version of {ital quaternion} quantum mechanics to field theory and in particular to the simplest example, the free scalar field. A previous difficulty with the conservation of four-momentum for the anomalous'' bosonic particles is resolved.
Bremer, P. -T.
2014-08-26
ADAPT is a topological analysis code that allow to compute local threshold, in particular relevance based thresholds for features defined in scalar fields. The initial target application is vortex detection but the software is more generally applicable to all threshold based feature definitions.
Hyperbolicity of scalar-tensor theories of gravity
Salgado, Marcelo; Martinez del Rio, David; Alcubierre, Miguel; Nunez, Dario
2008-05-15
Two first order strongly hyperbolic formulations of scalar-tensor theories of gravity allowing nonminimal couplings (Jordan frame) are presented along the lines of the 3+1 decomposition of spacetime. One is based on the Bona-Masso formulation, while the other one employs a conformal decomposition similar to that of Baumgarte-Shapiro-Shibata-Nakamura. A modified Bona-Masso slicing condition adapted to the scalar-tensor theory is proposed for the analysis. This study confirms that the scalar-tensor theory has a well-posed Cauchy problem even when formulated in the Jordan frame.
A Lagrangian PDF Model for the Scalar Dissipation in Homogeneous Turbulence
NASA Astrophysics Data System (ADS)
Fox, Rodney O.
1996-11-01
The scalar dissipation is a key quantity in the description of turbulent mixing. The spectral relaxation model (SRM) was developed to account for the effect of the evolution of the scalar spectrum on the mean scalar dissipation < ɛ_φ >, and it successfully predicts the observed (DNS, grid turbulence) dependence on Re, Sc (>= 1), and the initial scalar spectrum without recourse to fitting parameters. In this work, we present a Lagrangian PDF version (LSRM) for the PDF of ɛ_φ conditioned on the turbulent vortex stretching history of Kolmogorov-scale fluid particles. In homogeneous turbulence, the LSRM is coupled to a Lagrangian PDF model for the turbulent dissipation (ɛ) which strongly influences the statistics of ɛ_φ. Closure of scalar molecular dissipation term (< Γ nabla^2 φ | φ, ɛ^*_φ, ɛ^* >) is carried out using the Fokker-Planck model that was developed earlier for the joint scalar, scalar gradient PDF following fluid particles with the identical vortex stretching histories. Model predictions for inert scalar mixing in homogeneous turbulence with and without a uniform mean scalar gradient are compared to DNS data. In particular, the effect of the mean scalar gradient on the correlation between ɛ_φ and ɛ (i.e. local anisotropy) is examined, as well as the effect of the initial scalar spectrum and small-scale random vortex stretching on non-Gaussian behavior of the scalar PDF.
Second-order accurate nonoscillatory schemes for scalar conservation laws
NASA Technical Reports Server (NTRS)
Huynh, Hung T.
1989-01-01
Explicit finite difference schemes for the computation of weak solutions of nonlinear scalar conservation laws is presented and analyzed. These schemes are uniformly second-order accurate and nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time.
NASA Astrophysics Data System (ADS)
Bittencourt, E.; Moschella, U.; Novello, M.; Toniato, J. D.
2016-06-01
We discuss a class of models for gravity based on a scalar field. The models include and generalize the old approach by Nordström which predated and, in some ways, inspired general relativity. The class include also a model that we have recently introduced and discussed in terms of its cosmological aspects (GSG). We present here a complete characterization of the Schwarschild geometry as a vacuum solution of GSG and sketch a discussion of the first post-Newtonian approximation.
Conformal scalar field wormholes
NASA Technical Reports Server (NTRS)
Halliwell, Jonathan J.; Laflamme, Raymond
1989-01-01
The Euclidian Einstein equations with a cosmological constant and a conformally coupled scalar field are solved, taking the metric to be of the Robertson-Walker type. In the case Lambda = 0, solutions are found which represent a wormhole connecting two asymptotically flat Euclidian regions. In the case Lambda greater than 0, the solutions represent tunneling from a small Tolman-like universe to a large Robertson-Walker universe.
Roberts, M.D.
1996-09-01
Static spherically symmetric uncoupled scalar space{endash}times have no event horizon and a divergent Kretschmann singularity at the origin of the coordinates. The singularity is always present so that nonstatic solutions have been sought to see if the singularities can develop from an initially singular free space{endash}time. In flat space{endash}time the Klein{endash}Gordon equation {D`Alembertian}{var_phi}=0 has the nonstatic spherically symmetric solution {var_phi}={sigma}({ital v})/{ital r}, where {sigma}({ital v}) is a once differentiable function of the null coordinate {ital v}. In particular, the function {sigma}({ital v}) can be taken to be initially zero and then grow, thus producing a singularity in the scalar field. A similar situation occurs when the scalar field is coupled to gravity via Einstein{close_quote}s equations; the solution also develops a divergent Kretschmann invariant singularity, but it has no overall energy. To overcome this, Bekenstein{close_quote}s theorems are applied to give two corresponding conformally coupled solutions. One of these has positive ADM mass and has the following properties: (i) it develops a Kretschmann invariant singularity, (ii) it has no event horizon, (iii) it has a well-defined source, (iv) it has well-defined junction condition to Minkowski space{endash}time, and (v) it is asymptotically flat with positive overall energy. This paper presents this solution and several other nonstatic scalar solutions. The properties of these solutions which are studied are limited to the following three: (i) whether the solution can be joined to Minkowski space{endash}time, (ii) whether the solution is asymptotically flat, (iii) and, if so, what the solutions{close_quote} Bondi and ADM masses are. {copyright} {ital 1996 American Institute of Physics.}
NASA Astrophysics Data System (ADS)
Egorov, A. I.; Kashargin, P. E.; Sushkov, Sergey V.
2016-09-01
In 1921 Bach and Weyl derived the method of superposition to construct new axially symmetric vacuum solutions of general relativity. In this paper we extend the Bach–Weyl approach to non-vacuum configurations with massless scalar fields. Considering a phantom scalar field with the negative kinetic energy, we construct a multi-wormhole solution describing an axially symmetric superposition of N wormholes. The solution found is static, everywhere regular and has no event horizons. These features drastically tell the multi-wormhole configuration from other axially symmetric vacuum solutions which inevitably contain gravitationally inert singular structures, such as ‘struts’ and ‘membranes’, that keep the two bodies apart making a stable configuration. However, the multi-wormholes are static without any singular struts. Instead, the stationarity of the multi-wormhole configuration is provided by the phantom scalar field with the negative kinetic energy. Anther unusual property is that the multi-wormhole spacetime has a complicated topological structure. Namely, in the spacetime there exist 2 N asymptotically flat regions connected by throats.
NASA Astrophysics Data System (ADS)
Cheng, Hai-Yang; Chua, Chun-Khiang; Liu, Keh-Fei
2015-11-01
It is commonly believed that the lowest-lying scalar glueball lies somewhere in the isosinglet scalar mesons f0(1370 ) , f0(1500 ) and f0(1710 ) denoted generically by f0. In this work we consider lattice calculations and experimental data to infer the glue and q q ¯ components of f0. These include the calculations of the scalar glueball masses in quenched and unquenched lattice QCD, measurements of the radiative decays J /ψ →γ f0 , the ratio of f0 decays to π π , K K ¯ and η η , the ratio of J /ψ decays to f0(1710 )ω and f0(1710 )ϕ , the f0 contributions to Bs→J /ψ π+π- , and the near mass degeneracy of a0(1450 ) and K0*(1430 ) . All analyses suggest the prominent glueball nature of f0(1710 ) and the flavor octet structure of f0(1500 ).
A kinetic equation with kinetic entropy functions for scalar conservation laws
NASA Technical Reports Server (NTRS)
Perthame, Benoit; Tadmor, Eitan
1990-01-01
A nonlinear kinetic equation is constructed and proved to be well-adapted to describe general multidimensional scalar conservation laws. In particular, it is proved to be well-posed uniformly in epsilon - the microscopic scale. It is also shown that the proposed kinetic equation is equipped with a family of kinetic entropy functions - analogous to Boltzmann's microscopic H-function, such that they recover Krushkov-type entropy inequality on the macroscopic scale. Finally, it is proved by both - BV compactness arguments in the one-dimensional case, that the local density of kinetic particles admits a continuum limit, as it converges strongly with epsilon below 0 to the unique entropy solution of the corresponding conservation law.
Geometric scalar theory of gravity
Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D.; Moschella, U. E-mail: eduhsb@cbpf.br E-mail: egoulart@cbpf.br E-mail: toniato@cbpf.br
2013-06-01
We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor — which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models — does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.
On the distribution of scalar k for elliptic scalar multiplication
NASA Astrophysics Data System (ADS)
Ajeena, Ruma Kareem K.; Kamarulhaili, Hailiza
2015-10-01
In this study, we introduce the probability distribution of the elliptic curve scalar multiplication through finding the probability distribution of the secret key, namely, the scalar k of the scalar multiplication kP of a point P which has a large prime order n lying on elliptic curve group E(Fp) over a finite prime field Fp. To determine this distribution of k, we use the integer sub-decomposition (ISD) approach that inspired from Gallant, Lambert and Vanstone (GLV) idea. In ISD approach, the distribution of the values of scalars k lie outside the range ±√{n } on the interval [1, n - 1]. This distribution determines the successful rate to compute a scalar multiplication kP, on ISD approach, in comparison with the original GLV method. The conception of the ISD approach depends on the sub- decomposition of the scalar k to compute the scalar multiplication kP which uses efficiently computable endomorphisms Ψ1 and Ψ2 of elliptic curve E over Fp. The ISD sub-decomposition can be defined by k P =k11P +k12ψ1(P )+k21P +k22ψ2(P ), with max{ | k11 | ,| k12 | } and max{ | k21 | ,| k22 | } ≤C √{n }, for some explicit constant C > 0. Furthermore, this study compares between the GLV and ISD approaches on the basis of the probability distribution of the scalar k in the interval [1, n - 1], where n is a large prime number.
Spontaneous scalarization with massive fields
NASA Astrophysics Data System (ADS)
Ramazanoǧlu, Fethi M.; Pretorius, Frans
2016-03-01
We study the effect of a mass term in the spontaneous scalarization of neutron stars, for a wide range of scalar field parameters and neutron star equations of state. Even though massless scalars have been the focus of interest in spontaneous scalarization so far, recent observations of binary systems rule out most of their interesting parameter space. We point out that adding a mass term to the scalar field potential is a natural extension to the model that avoids these observational bounds if the Compton wavelength of the scalar is small compared to the binary separation. Our model is formally similar to the asymmetron scenario recently introduced in application to cosmology, though here we are interested in consequences for neutron stars and thus consider a mass term that does not modify the geometry on cosmological scales. We review the allowed values for the mass and scalarization parameters in the theory given current binary system observations and black hole spin measurements. We show that within the allowed ranges, spontaneous scalarization can have nonperturbative, strong effects that may lead to observable signatures in binary neutron star or black hole-neutron star mergers, or even in isolated neutron stars.
Ultrarelativistic boost with scalar field
NASA Astrophysics Data System (ADS)
Svítek, O.; Tahamtan, T.
2016-02-01
We present the ultrarelativistic boost of the general global monopole solution which is parametrized by mass and deficit solid angle. The problem is addressed from two different perspectives. In the first one the primary object for performing the boost is the metric tensor while in the second one the energy momentum tensor is used. Since the solution is sourced by a triplet of scalar fields that effectively vanish in the boosting limit we investigate the behavior of a scalar field in a simpler setup. Namely, we perform the boosting study of the spherically symmetric solution with a free scalar field given by Janis, Newman and Winicour. The scalar field is again vanishing in the limit pointing to a broader pattern of scalar field behaviour during an ultrarelativistic boost in highly symmetric situations.
Electroweak Baryogenesis and Colored Scalars
Cohen, Timothy; Pierce, Aaron; /Michigan U., MCTP
2012-02-15
We consider the 2-loop finite temperature effective potential for a Standard Model-like Higgs boson, allowing Higgs boson couplings to additional scalars. If the scalars transform under color, they contribute 2-loop diagrams to the effective potential that include gluons. These 2-loop effects are perhaps stronger than previously appreciated. For a Higgs boson mass of 115 GeV, they can increase the strength of the phase transition by as much as a factor of 3.5. It is this effect that is responsible for the survival of the tenuous electroweak baryogenesis window of the Minimal Supersymmetric Standard Model. We further illuminate the importance of these 2-loop diagrams by contrasting models with colored scalars to models with singlet scalars. We conclude that baryogenesis favors models with light colored scalars. This motivates searches for pair-produced di-jet resonances or jet(s) + = E{sub T}.
Scalar-tensor theories with an external scalar
NASA Astrophysics Data System (ADS)
Chauvineau, Bertrand; Rodrigues, Davi C.; Fabris, Júlio C.
2016-06-01
Scalar-tensor (ST) gravity is considered in the case where the scalar is an external field. We show that general relativity (GR) and usual ST gravity are particular cases of the external scalar-tensor (EST) gravity. It is shown with a particular cosmological example that it is possible to join a part of a GR solution to a part of a ST one such that the complete solution neither belongs to GR nor to ST, but fully satisfies the EST field equations. We argue that external fields may effectively work as a type of screening mechanism for ST theories.
Huijbregts, Mark A J; Geelen, Loes M J; Hertwich, Edgar G; McKone, Thomas E; van de Meent, Dik
2005-02-01
In life-cycle assessment (LCA) and comparative risk assessment, potential human exposure to toxic pollutants can be expressed as the population intake fraction (iF), which represents the fraction of the quantity emitted that enters the human population. To assess the influence of model differences in the calculation of the population iF ingestion and inhalation iFs of 365 substances emitted to air, freshwater, and soil were calculated with two commonly applied multimedia fate and exposure models, CalTOX and the uniform system for evaluation of substances adapted for life-cycle assessment (USES-LCA). The model comparison showed that differences in the iFs due to model choices were the lowest after emission to air and the highest after emission to soil. Inhalation iFs were more sensitive to model differences compared to ingestion iFs. The choice for a continental seawater compartment, vertical stratification of the soil compartment, rain and no-rain scenarios, and drinking water purification mainly clarify the relevant model differences found in population iFs. Furthermore, pH correction of chemical properties and aerosol-associated deposition on plants appeared to be important for dissociative organics and metals emitted to air, respectively. Finally, it was found that quantitative structure-activity relationship estimates for superhydrophobics may introduce considerable uncertainty in the calculation of population intake fractions. PMID:15720012
Are stealth scalar fields stable?
Faraoni, Valerio; Moreno, Andres F. Zambrano
2010-06-15
Nongravitating (stealth) scalar fields associated with Minkowski space in scalar-tensor gravity are examined. Analytical solutions for both nonminimally coupled scalar field theory and for Brans-Dicke gravity are studied and their stability with respect to tensor perturbations is assessed using a covariant and gauge-invariant formalism developed for alternative gravity. For Brans-Dicke solutions, the stability with respect to homogeneous perturbations is also studied. There are regions of parameter space corresponding to stability and other regions corresponding to instability.
ERIC Educational Resources Information Center
White, Kerry A.
2000-01-01
In 1994, Long Beach (California) Unified School District began requiring uniforms in all elementary and middle schools. Now, half of all urban school systems and many suburban schools have uniform policies. Research on uniforms' effectiveness is mixed. Tightened dress codes may be just as effective and less litigious. (MLH)
ERIC Educational Resources Information Center
Dowling-Sendor, Benjamin
2002-01-01
Reviews a recent decision in "Littlefield" by the 5th Circuit upholding a school uniform policy. Advises board member who wish to adopt a school uniform policy to solicit input from parents and students, research the experiences of other school districts with uniform policies, and articulate the interests they wish to promote through uniform…
ERIC Educational Resources Information Center
Cohn, Carl A.
1996-01-01
Shortly after implementing a mandatory school uniform policy, the Long Beach (California) Public Schools can boast 99% compliance and a substantial reduction in school crime. The uniforms can't be confused with gang colors, save parents money, and help identify outsiders. A sidebar lists ingredients for a mandatory uniform policy. (MLH)
Symmetry inheritance of scalar fields
NASA Astrophysics Data System (ADS)
Smolić, Ivica
2015-07-01
Matter fields do not necessarily have to share the symmetries with the spacetime they live in. When this happens, we speak of the symmetry inheritance of fields. In this paper we classify the obstructions of symmetry inheritance by the scalar fields, both real and complex, and look more closely at the special cases of stationary and axially symmetric spacetimes. Since the symmetry noninheritance is present in the scalar fields of boson stars and may enable the existence of the black hole scalar hair, our results narrow the possible classes of such solutions. Finally, we define and analyse the symmetry noninheritance contributions to the Komar mass and angular momentum of the black hole scalar hair.
Gravitational scalar-tensor theory
NASA Astrophysics Data System (ADS)
Naruko, Atsushi; Yoshida, Daisuke; Mukohyama, Shinji
2016-05-01
We consider a new form of gravity theories in which the action is written in terms of the Ricci scalar and its first and second derivatives. Despite the higher derivative nature of the action, the theory is ghost-free under an appropriate choice of the functional form of the Lagrangian. This model possesses 2 + 2 physical degrees of freedom, namely 2 scalar degrees and 2 tensor degrees. We exhaust all such theories with the Lagrangian of the form f(R,{({{\
Scalar graviton as dark matter
Pirogov, Yu. F.
2015-06-15
The basics of the theory of unimodular bimode gravity built on the principles of unimodular gauge invariance/relativity and general covariance are exposed. Besides the massless tensor graviton of General Relativity, the theory includes an (almost) massless scalar graviton treated as the gravitational dark matter. A spherically symmetric vacuum solution describing the coherent scalar-graviton field for the soft-core dark halos, with the asymptotically flat rotation curves, is demonstrated as an example.
NASA Astrophysics Data System (ADS)
Knudsen, E.; Richardson, E. S.; Doran, E. M.; Pitsch, H.; Chen, J. H.
2012-05-01
Scalar dissipation rates and subfilter scalar variances are important modeling parameters in large eddy simulations (LES) of reacting flows. Currently available models capture the general behavior of these parameters, but these models do not always perform with the degree of accuracy that is needed for predictive LES. Here, two direct numerical simulations (DNS) are used to analyze LES dissipation rate and variance models, and to propose a new model for the dissipation rate that is based on a transport equation. The first DNS that is considered is a non-premixed auto-igniting C2H4 jet flame simulation originally performed by Yoo et al. [Proc. Combust. Inst. 33, 1619-1627 (2011)], 10.1016/j.proci.2010.06.147. A LES of this case is run using algebraic models for the dissipation rate and subfilter variance. It is shown that the algebraic models fail to adequately reproduce the DNS results. This motivates the introduction of a transport equation model for the LES dissipation rate. Closure of the equation is addressed by formulating a new adapted dynamic approach. This approach borrows dynamically computed information from LES quantities that, unlike the dissipation rate, do not reside on the smallest flow length scales. The adapted dynamic approach is analyzed by considering a second DNS of scalar mixing in homogeneous isotropic turbulence. Data from this second DNS are used to confirm that the adapted dynamic approach successfully closes the dissipation rate equation over a wide range of LES filter widths. The first reacting jet case is then returned to and used to test the LES transport equation models. The transport equation model for the dissipation rate is shown to be more accurate than its algebraic counterpoint, and the dissipation rate is eliminated as a source of error in the transported variance model.
Color Sextet Scalars in Early LHC Experiments
Berger, Edmond L.; Cao Qinghong; Chen, Chuan-Ren; Shaughnessy, Gabe; Zhang Hao
2010-10-29
We explore the potential for discovery of an exotic color sextet scalar in same-sign top quark pair production in early running at the LHC. We present the first phenomenological analysis at colliders of color sextet scalars with full top quark spin correlations included. We demonstrate that one can measure the scalar mass, the top quark polarization, and confirm the scalar resonance with 1 fb{sup -1} of integrated luminosity. The top quark polarization can distinguish gauge triplet and singlet scalars.
Uniform Media Effects and Uniform Audience Responses.
ERIC Educational Resources Information Center
Perry, David K.
The idea that mass communication effects may decrease diversity among people or societies exposed to it arises constantly. However, discussions of mass media effects do not highlight differences between mass communications that "affect" people uniformly and messages that members of audiences "respond to" in similar ways. A number of modern…
The emergence of scalar meanings
Etxeberria, Urtzi; Irurtzun, Aritz
2015-01-01
This paper analyzes the emergence of scalar additive meanings. We show that in Basque the same particle ere can obtain both the “simple additive” reading (akin to English too) and the “scalar additive” reading (akin to English even) but we argue that we do not have to distinguish two types of ere. We provide evidence, by means of a production and a perception experiment, that the reading is disambiguated by means of prosody (the placement of nuclear stress), which is a correlate of focus. We argue that the scalarity effect is generated by the combination of two presuppositions (a focus-induced one and a lexical one) and the assertion of the sentence. PMID:25745405
Scalar transport by planktonic swarms
NASA Astrophysics Data System (ADS)
Martinez-Ortiz, Monica; Dabiri, John O.
2012-11-01
Nutrient and energy transport in the ocean is primarily governed by the action of physical phenomena. In previous studies it has been suggested that aquatic fauna may significantly contribute to this process through the action of the induced drift mechanism. In this investigation, the role of planktonic swarms as ecosystem engineers is assessed through the analysis of scalar transport within a stratified water column. The vertical migration of Artemia salina is controlled via luminescent signals on the top and bottom of the column. The scalar transport of fluorescent dye is visualized and quantified through planar laser induced fluorescence (PLIF). Preliminary results show that the vertical movement of these organisms enhances scalar transport relative to control cases in which only buoyancy forces and diffusion are present. Funded by the BSF program (2011553).
School Uniforms. Research Brief
ERIC Educational Resources Information Center
Walker, Karen
2007-01-01
Does clothing make the person or does the person make the clothing? How does what attire a student wears to school affect their academic achievement? In 1996, President Clinton cited examples of school violence and discipline issues that might have been avoided had the students been wearing uniforms ("School uniforms: Prevention or suppression?").…
ERIC Educational Resources Information Center
Department of Justice, Washington, DC.
In response to growing levels of violence in American schools, many communities are deciding to adopt school-uniform policies as part of an overall program to improve school safety and discipline. This document provides the following guidelines for parents, teachers, and school leaders who may consider adopting a school-uniform policy: (1) Get…
Uniform magnesium oxide adsorbents
NASA Technical Reports Server (NTRS)
Dash, J. G.; Ecke, R.; Stoltenberg, J.; Vilches, O. E.; Whittemore, O. J., Jr.
1978-01-01
Kr adsorption on MgO is used to characterize the surface uniformity of MgO smoke and thermally decomposed Mg(OH)2. It is found that initially heterogeneous samples develop progressively sharper stepwise isotherms with increasingly-high-temperature heat treatment, apparently due to the removal of imperfections and high-energy facets, leaving surfaces of highly uniform (100) planes.
ERIC Educational Resources Information Center
Lumsden, Linda; Miller, Gabriel
2002-01-01
Students do not always make choices that adults agree with in their choice of school dress. Dress-code issues are explored in this Research Roundup, and guidance is offered to principals seeking to maintain a positive school climate. In "Do School Uniforms Fit?" Kerry White discusses arguments for and against school uniforms and summarizes the…
Optimizing elliptic curve scalar multiplication for small scalars
NASA Astrophysics Data System (ADS)
Giorgi, Pascal; Imbert, Laurent; Izard, Thomas
2009-08-01
On an elliptic curve, the multiplication of a point P by a scalar k is defined by a series of operations over the field of definition of the curve E, usually a finite field Fq. The computational cost of [k]P = P + P + ...+ P (k times) is therefore expressed as the number of field operations (additions, multiplications, inversions). Scalar multiplication is usually computed using variants of the binary algorithm (double-and-add, NAF, wNAF, etc). If s is a small integer, optimized formula for [s]P can be used within a s-ary algorithm or with double-base methods with bases 2 and s. Optimized formulas exists for very small scalars (s <= 5). However, the exponential growth of the number of field operations makes it a very difficult task when s > 5. We present a generic method to automate transformations of formulas for elliptic curves over prime fields in various systems of coordinates. Our method uses a directed acyclic graph structure to find possible common subexpressions appearing in the formula and several arithmetic transformations. It produces efficient formulas to compute [s]P for a large set of small scalars s. In particular, we present a faster formula for [5]P in Jacobian coordinates. Moreover, our program can produce code for various mathematical software (Magma) and libraries (PACE).
Turbulent mixing of a passive scalar in grid turbulence
NASA Astrophysics Data System (ADS)
Ito, Y.; Watanabe, T.; Nagata, K.; Sakai, Y.
2016-07-01
Fractal grids have attracted attention as a new-type of turbulence-generating grid due to their unique characteristics. Recent studies have revealed that such uniqueness appears in the near field of regular grid-generated turbulence. Scalar transport in those flows is also of great interest as it is not yet fully understood. In this study, we investigate the scalar mixing in the near field of regular grid-generated turbulence with various grid configurations. Experiments have been carried out in liquid mixing layers with a Reynolds number of 5000 based on the mesh size of the grid and uniform velocity. Simultaneous measurements of two-component velocities and concentration have been performed by particle image velocimetry and a planar laser-induced fluorescence technique, respectively. The results show that the scaling law using the wake-interaction length scale is applicable for the turbulence intensity in the grid turbulence with different mesh sizes and the same thickness of the grid bar. The turbulence intensity increases as the thickness of the grid bar increases; thus, consequently increasing the scalar diffusion. The streamwise development of the scalar mixing layer thickness collapses onto a single curve by normalization based on the thickness of the grid bar.
Scalar fields and particle accelerators
NASA Astrophysics Data System (ADS)
Sultana, Joseph; Bose, Benjamin
2015-06-01
The phenomenon discovered in 2009 by Bañados, Silk and West where particle collisions can achieve arbitrary high center-of-mass (c.m.) energies close to the event horizon of an extreme Kerr black hole, has generated a lot of interest. Although rotation seemed to be an essential requirement, it was later shown that arbitrary high energies can also be achieved for collisions between radially moving particles near the horizon of the electrically charged extreme Reissner-Nordström black hole. Recently Patil and Joshi claimed that instead of spinning up the black hole one can also crank up the c.m. energy of particle collisions by "charging up" a static black hole with a massless scalar field. In this regard they showed that infinite energies can be attained in the vicinity of the naked singularity of the Janis-Newman-Wincour (JNW) spacetime, which contains a massless scalar field that also becomes infinite at the position of the curvature singularity. In this study we show that Patil and Joshi's claim does not apply for other static black hole systems endowed with a massless scalar field. In particular we consider the well-known Bekenstein black hole and the recently discovered Martínez-Troncoso-Zanelli black hole, and show that the expression of the c.m. energy for particle collisions near the event horizons of these black holes is no different than the corresponding case with vanishing scalar field represented by the Schwarzschild solution. Moreover by studying the motion of scalar test charges that interact with the background scalar field in these black hole spacetimes we show that the resulting c.m. energies are even smaller than in the case of free particles. This shows that the infinite energies obtained by Patil and Joshi may not be due to the fact that the black hole contains a massless scalar field, but may be instead related to the geometry of the naked singularity in the JNW spacetime. An analogous case of infinite c.m. energy in the vicinity of a naked
Scalar limitations of diffractive optical elements
NASA Technical Reports Server (NTRS)
Johnson, Eric G.; Hochmuth, Diane; Moharam, M. G.; Pommet, Drew
1993-01-01
In this paper, scalar limitations of diffractive optic components are investigated using coupled wave analyses. Results are presented for linear phase gratings and fanout devices. In addition, a parametric curve is given which correlates feature size with scalar performance.
NASA Astrophysics Data System (ADS)
Cheng, Wai Chi; Porté-Agel, Fernando
2015-04-01
Accurate prediction of atmospheric boundary layer (ABL) flow and its interaction with urban surfaces is critical for understanding the transport of momentum and scalars within and above cities. This, in turn, is essential for predicting the local climate and pollutant dispersion patterns in urban areas. Large-eddy simulation (LES) explicitly resolves the large-scale turbulent eddy motions and, therefore, can potentially provide improved understanding and prediction of flows and scalar transport inside and above urban canopies. In this study, LES is used to simulate the dispersion of passive scalar over idealized urban surfaces represented by uniform arrays of cubes. A modulated gradient subgird-scale (SGS) model is used to parametrize the SGS fluxes of momentum and scalar, and an immersed boundary method is used to model the presence of cubes. A similar LES framework for flow was validated in our previous studies in simulations of turbulent boundary-layer flow past a 2D block and a uniform array of cubes. Here, the LES framework is further validated with wind tunnel experimental data of passive scalar dispersion within and above a staggered array of cubes with a localized scalar source at ground level. Good agreement between the simulation results and experimental data are found in the vertical and horizontal profiles of scalar concentration in different streamwise locations. After the validation, the LES framework is used to simulate the scalar transport at rural-to-urban flow transition region and the results obtained are presented.
Bianchi I in scalar and scalar-tensor cosmologies
NASA Astrophysics Data System (ADS)
Belinchón, José
2012-08-01
We study how the constants G and Λ may vary in different theoretical models (general relativity (GR) with a perfect fluid, scalar cosmological models (SM) ("quintessence") with and without interacting scalar and matter fields and three scalar-tensor theories (STT) with a dynamical Λ) in order to explain some observational results. We apply the program outlined in section II to study the Bianchi I models, under the self-similarity hypothesis. We put special emphasis on calculating exact power-law solutions which allow us to compare the different models. In all the studied cases we conclude that the solutions are isotropic and noninflationary. We also arrive at the conclusion that in the GR model with time-varying constants, Λ vanishes while G is constant. In the SM all the solutions are massless i.e. the potential vanishes and all the interacting models are inconsistent from the thermodynamical point of view. The solutions obtained in the STT collapse to the perfect fluid one obtained in the GR model where G is a true constant and Λ vanishes as in the GR and SM frameworks.
The influence of coherent structures on the turbulent dispersion of a passive scalar plume
NASA Astrophysics Data System (ADS)
Vanderwel, Christina; Tavoularis, Stavros
2014-11-01
We investigated the influence of coherent structures on the dispersion of a passive scalar by studying instantaneous measurements of a plume of dye released in uniformly sheared flow generated in a water tunnel. Measurements were performed using simultaneous stereo particle image velocimetry and planar laser-induced fluorescence to obtain instantaneous concentration and velocity maps in cross-sections normal to the flow direction. Coherent vortices were observed to effectuate scalar transport by inducing motions which displaced dyed fluid. Dye was observed to preferentially congregate within vortex cores and far away from vortices, whereas regions adjacent to vortices were less likely to contain dye. A conditional eddy analysis demonstrated that counter-rotating vortex pairs associated with hairpin vortices were responsible for both large Reynolds stress events and large scalar flux events. This observation was supported by the fact that the Reynolds stress was found to be correlated with the scalar flux. Supported by NSERC.
Scattering and bound states of spinless particles in a mixed vector-scalar smooth step potential
Garcia, M.G.; Castro, A.S. de
2009-11-15
Scattering and bound states for a spinless particle in the background of a kink-like smooth step potential, added with a scalar uniform background, are considered with a general mixing of vector and scalar Lorentz structures. The problem is mapped into the Schroedinger-like equation with an effective Rosen-Morse potential. It is shown that the scalar uniform background present subtle and trick effects for the scattering states and reveals itself a high-handed element for formation of bound states. In that process, it is shown that the problem of solving a differential equation for the eigenenergies is transmuted into the simpler and more efficient problem of solving an irrational algebraic equation.
Power and Nonpower Laws of Passive Scalar Moments Convected by Isotropic Turbulence
NASA Astrophysics Data System (ADS)
Gotoh, Toshiyuki; Watanabe, Takeshi
2015-09-01
The scaling behavior of the moments of two passive scalars that are excited by two different methods and simultaneously convected by the same isotropic steady turbulence at Rλ=805 and Sc=0.72 is studied by using direct numerical simulation with N =40963 grid points. The passive scalar θ is excited by a random source that is Gaussian and white in time, and the passive scalar q is excited by the mean uniform scalar gradient. In the inertial convective range, the n th-order moments of the scalar increment δ θ (r ) do not obey a simple power law, but have the local scaling exponents ξnθ+βnlog (r /r*) with βn>0 . In contrast, the local scaling exponents of q have well-developed plateaus and saturate with increasing order. The power law of passive scalar moments is not trivial. The universality of passive scalars is found not in the moments, but in the normalized moments.
Power and nonpower laws of passive scalar moments convected by isotropic turbulence.
Gotoh, Toshiyuki; Watanabe, Takeshi
2015-09-11
The scaling behavior of the moments of two passive scalars that are excited by two different methods and simultaneously convected by the same isotropic steady turbulence at R_{λ}=805 and Sc=0.72 is studied by using direct numerical simulation with N=4096^{3} grid points. The passive scalar θ is excited by a random source that is Gaussian and white in time, and the passive scalar q is excited by the mean uniform scalar gradient. In the inertial convective range, the nth-order moments of the scalar increment δθ(r) do not obey a simple power law, but have the local scaling exponents ξ_{n}^{θ}+β_{n}log(r/r_{*}) with β_{n}>0. In contrast, the local scaling exponents of q have well-developed plateaus and saturate with increasing order. The power law of passive scalar moments is not trivial. The universality of passive scalars is found not in the moments, but in the normalized moments. PMID:26406833
NASA Astrophysics Data System (ADS)
Gotoh, Toshiyuki
2012-11-01
Spectrum of passive scalar variance at very high Schmidt number up to 1000 in isotropic steady turbulence has been studied by using very high resolution DNS. Gaussian random force and scalar source which are isotropic and white in time are applied at low wavenumber band. Since the Schmidt number is very large, the system was integrated for 72 large eddy turn over time for the system to forgot the initial state. It is found that the scalar spectrum attains the asymptotic k-1 spectrum in the viscous-convective range and the constant CB is found to be 5.7 which is larger than 4.9 obtained by DNS under the uniform mean scalar gradient. Reasons for the difference are inferred as the Reynolds number effect, anisotropy, difference in the scalar injection, duration of time average, and the universality of the constant is discussed. The constant CB is also compared with the prediction by the Lagrangian statistical theory for the passive scalar. The scalar spectrum in the far diffusive range is found to be exponential, which is consistent with the Kraichnan's spectrum. However, the Kraichnan spectrum was derived under the assumption that the velocity field is white in time, therefore theoretical explanation of the agreement needs to be explored. Grant-in-Aid for Scientific Research No. 21360082, Ministry of Education, Culture, Sports, Science and Technology of Japan.
ACTIVE TURBULENCE AND SCALAR TRANSPORT NEAR THE FOREST-ATMOSPHERE INTERFACE
Turbulent velocity, temperature, water vapor concentration, and other scalars were measured at the canopy-atmosphere interface of a 13–14-m-tall uniform pine forest and a 33-m-tall nonuniform hardwood forest. These measurements were used to investigate whether the mixing la...
Constrained inflaton due to a complex scalar
NASA Astrophysics Data System (ADS)
Budhi, Romy H. S.; Kashiwase, Shoichi; Suematsu, Daijiro
2015-09-01
We reexamine inflation due to a constrained inflaton in the model of a complex scalar. Inflaton evolves along a spiral-like valley of special scalar potential in the scalar field space just like single field inflation. Sub-Planckian inflaton can induce sufficient e-foldings because of a long slow-roll path. In a special limit, the scalar spectral index and the tensor-to-scalar ratio has equivalent expressions to the inflation with monomial potential varphin. The favorable values for them could be obtained by varying parameters in the potential. This model could be embedded in a certain radiative neutrino mass model
Constrained inflaton due to a complex scalar
Budhi, Romy H. S.; Kashiwase, Shoichi; Suematsu, Daijiro
2015-09-14
We reexamine inflation due to a constrained inflaton in the model of a complex scalar. Inflaton evolves along a spiral-like valley of special scalar potential in the scalar field space just like single field inflation. Sub-Planckian inflaton can induce sufficient e-foldings because of a long slow-roll path. In a special limit, the scalar spectral index and the tensor-to-scalar ratio has equivalent expressions to the inflation with monomial potential φ{sup n}. The favorable values for them could be obtained by varying parameters in the potential. This model could be embedded in a certain radiative neutrino mass model.
Variations on Slavnov's scalar product
NASA Astrophysics Data System (ADS)
Foda, O.; Wheeler, M.
2012-10-01
We consider the rational six-vertex model on an L× L lattice with domain wall boundary conditions and restrict N parallel-line rapidities, N ≤ L/2, to satisfy length- L XXX spin-1/2 chain Bethe equations. We show that the partition function is an ( L - 2 N )- parameter extension of Slavnov's scalar product of a Bethe eigenstate and a generic state, with N magnons each, on a length- L XXX spin-1/2 chain. Decoupling the extra parameters, we obtain a third determinant expression for the scalar product, where the first is due to Slavnov [1], and the second is due to Kostov and Matsuo [2]. We show that the new determinant is Casoratian, and consequently that tree-level {N}=4 SYM structure constants that are known to be determinants, remain determinants at 1-loop level.
Scalar top study: Detector optimization
Milstene, C.; Sopczak, A.; /Lancaster U.
2006-09-01
A vertex detector concept of the Linear Collider Flavor Identification (LCFI) collaboration, which studies pixel detectors for heavy quark flavor identification, has been implemented in simulations for c-quark tagging in scalar top studies. The production and decay of scalar top quarks (stops) is particularly interesting for the development of the vertex detector as only two c-quarks and missing energy (from undetected neutralinos) are produced for light stops. Previous studies investigated the vertex detector design in scenarios with large mass differences between stop and neutralino, corresponding to large visible energy in the detector. In this study we investigate the tagging performance dependence on the vertex detector design in a scenario with small visible energy for the International Linear Collider (ILC).
NASA Astrophysics Data System (ADS)
Pennington, M. R.
1989-04-01
The search for I=0 0++ mesons is described. We highlight the crucial role played by the states in the 1 GeV region. An analysis program that with unimpeachable data would produce definitive results on these is outlined and shown with present data to provide prima facie evidence for dynamics beyond that of the quark model. We briefly speculate on the current status of the lowest mass scalar mesons and discuss how experiment can resolve the unanswered issues.
Radially uniform electron source
NASA Technical Reports Server (NTRS)
Mccomas, D.; Bame, S. J.
1982-01-01
A thermionic electron source capable of producing uniform count rates in a number of channel electron multipliers simultaneously was required for conditioning multipliers for an extended space mission. It was found that a straight tungsten filament in the center of a cylindrically symmetric geometry surrounded by an array of multipliers emits a radially asymmetric distribution of electrons that changes with time. A source was developed which successfully produces a time-independent radially uniform distribution of electrons by moving the filament out of the direct line of sight and replacing it with a centrally located electron 'cloud.'
NASA Technical Reports Server (NTRS)
Balcom, John L.
1994-01-01
The purpose and scope of this final report is to provide information on the Custom Uniform Source System (CSTM-USS-4000). The report includes documentation and summaries of the results for the work performed under the contract. The Annex contain laboratory test findings, photographs, and drawings of the sphere system.
Uniform random number generators
NASA Technical Reports Server (NTRS)
Farr, W. R.
1971-01-01
Methods are presented for the generation of random numbers with uniform and normal distributions. Subprogram listings of Fortran generators for the Univac 1108, SDS 930, and CDC 3200 digital computers are also included. The generators are of the mixed multiplicative type, and the mathematical method employed is that of Marsaglia and Bray.
Uniform Federal Accessibility Standards.
ERIC Educational Resources Information Center
Department of Housing and Urban Development, Washington, DC.
The document presents uniform standards for facility accessibility by physically handicapped persons for Federal and federally funded facilities. The standards are to be applied during the design, construction, and alteration of buildings and facilities to the extent required by the Architectural Barriers Act of 1968, as amended. Technical…
Entropic quantization of scalar fields
Ipek, Selman; Caticha, Ariel
2015-01-13
Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation.
Entropic quantization of scalar fields
NASA Astrophysics Data System (ADS)
Ipek, Selman; Caticha, Ariel
2015-01-01
Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation.
Slowly rotating neutron stars in scalar-tensor theories with a massive scalar field
NASA Astrophysics Data System (ADS)
Yazadjiev, Stoytcho S.; Doneva, Daniela D.; Popchev, Dimitar
2016-04-01
In the scalar-tensor theories with a massive scalar field, the coupling constants, and the coupling functions in general, which are observationally allowed, can differ significantly from those in the massless case. This fact naturally implies that the scalar-tensor neutron stars with a massive scalar field can have rather different structure and properties in comparison with their counterparts in the massless case and in general relativity. In the present paper, we study slowly rotating neutron stars in scalar-tensor theories with a massive gravitational scalar. Two examples of scalar-tensor theories are examined—the first example is the massive Brans-Dicke theory and the second one is a massive scalar-tensor theory indistinguishable from general relativity in the weak-field limit. In the latter case, we study the effect of the scalar field mass on the spontaneous scalarization of neutron stars. Our numerical results show that the inclusion of a mass term for the scalar field indeed changes the picture drastically compared to the massless case. It turns out that mass, radius, and moment of inertia for neutron stars in massive scalar-tensor theories can differ drastically from the pure general relativistic solutions if sufficiently large masses of the scalar field are considered.
Schwarzschild Black Holes can Wear Scalar Wigs
NASA Astrophysics Data System (ADS)
Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier
2012-08-01
We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.
Visualization of scalar topology for structural enhancement
Bajaj, C.L.; Pascucci, V.; Schikore, D.R.
1998-09-22
Scalar fields arise in every scientific application. Existing scalar visualization techniques require that the user infer the global scalar structure from what is frequently an insufficient display of information. We present a visualization technique which numerically detects the structure at all scales, removing from the user the responsibility of extracting information implicit in the data, and presenting the structure explicitly for analysis. We further demonstrate how scalar topology detection proves useful for correct visualization and image processing applications such as image co-registration, isocontouring, and mesh compression.
Schwarzschild black holes can wear scalar wigs.
Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier
2012-08-24
We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations. PMID:23002734
Scalar scattering via conformal higher spin exchange
NASA Astrophysics Data System (ADS)
Joung, Euihun; Nakach, Simon; Tseytlin, Arkady A.
2016-02-01
Theories containing infinite number of higher spin fields require a particular definition of summation over spins consistent with their underlying symmetries. We consider a model of massless scalars interacting (via bilinear conserved currents) with conformal higher spin fields in flat space. We compute the tree-level four-scalar scattering amplitude using a natural prescription for summation over an infinite set of conformal higher spin exchanges and find that it vanishes. Independently, we show that the vanishing of the scalar scattering amplitude is, in fact, implied by the global conformal higher spin symmetry of this model. We also discuss one-loop corrections to the four-scalar scattering amplitude.
Improved Prediction of Momentum and Scalar Fluxes Using MODIS Imagery
NASA Technical Reports Server (NTRS)
Crago, Richard D.; Jasinski, Michael F.
2003-01-01
There are remote sensing and science objectives. The remote sensing objectives are: To develop and test a theoretical method for estimating local momentum aerodynamic roughness length, z(sub 0m), using satellite multispectral imagery. To adapt the method to the MODIS imagery. To develop a high-resolution (approx. 1km) gridded dataset of local momentum roughness for the continental United States and southern Canada, using MODIS imagery and other MODIS derived products. The science objective is: To determine the sensitivity of improved satellite-derived (MODIS-) estimates of surface roughness on the momentum and scalar fluxes, within the context of 3-D atmospheric modeling.
Chaos synchronization and parameter estimation from a scalar output signal.
Chen, Maoyin; Kurths, Jürgen
2007-08-01
We propose an observer-based approach for chaos synchronization and parameter estimation from a scalar output signal. To begin with, we use geometric control to transform the master system into a standard form with zero dynamics. Then we construct a slaver to synchronize with the master using a combination of slide mode control and linear feedback control. Within a finite time, partial synchronization is realized, which further results in complete synchronization as time tends to infinity. Even if there exists model uncertainty in the slaver, we can also estimate the unknown model parameter by a simple adaptive rule. PMID:17930180
Gravitational radiation from compact binaries in scalar-tensor gravity
NASA Astrophysics Data System (ADS)
Lang, R. N.
2015-05-01
General relativity (GR) has been extensively tested in the solar system and in binary pulsars, but never in the strong-field, dynamical regime. Soon, gravitational-wave (GW) detectors like Advanced LIGO and eLISA will be able to probe this regime by measuring GWs from inspiraling and merging compact binaries. One particularly interesting alternative to GR is scalar-tensor gravity. We present progress in the calculation of second post-Newtonian (2PN) gravitational waveforms for inspiraling compact binaries in a general class of scalar- tensor theories. The waveforms are constructed using a standard GR method known as “direct integration of the relaxed Einstein equations,” appropriately adapted to the scalar-tensor case. We find that differences from general relativity can be characterized by a reasonably small number of parameters. Among the differences are new hereditary terms which depend on the past history of the source. In one special case, binary black hole systems, we find that the waveform is indistinguishable from that of general relativity. In another, mixed black hole- neutron star systems, all differences from GR can be characterized by only a single parameter.
Gravitational radiation from compact binaries in scalar-tensor gravity
NASA Astrophysics Data System (ADS)
Lang, Ryan
2014-03-01
General relativity (GR) has been extensively tested in the solar system and in binary pulsars, but never in the strong-field, dynamical regime. Soon, gravitational-wave (GW) detectors like Advanced LIGO will be able to probe this regime by measuring GWs from inspiraling and merging compact binaries. One particularly interesting alternative to GR is scalar-tensor gravity. We present the calculation of second post-Newtonian (2PN) gravitational waveforms for inspiraling compact binaries in a general class of scalar-tensor theories. The waveforms are constructed using a standard GR method known as ``Direct Integration of the Relaxed Einstein equations,'' appropriately adapted to the scalar-tensor case. We find that differences from general relativity can be characterized by a reasonably small number of parameters. Among the differences are new hereditary terms which depend on the past history of the source. In one special case, mixed black hole-neutron star systems, all differences from GR can be characterized by only a single parameter. In another, binary black hole systems, we find that the waveform is indistinguishable from that of general relativity.
Scalar Potential Model of light
NASA Astrophysics Data System (ADS)
Hodge, John
2008-04-01
Some observations of light are inconsistent with a wave--like model. Other observations of light are inconsistent with a particle--like model. A model of light is proposed wherein Newton's and Democritus's speculations are combined with the cosmological scalar potential model (SPM). The SPM was tested by confrontation with observations of galaxy HI rotation curves (RCs), asymmetric RCs, redshift, discrete redshift, galaxy central mass, and central velocity dispersion; and with observations of the Pioneer Anomaly. The resulting model of light will be tested by numerical simulation of a photon behaving in a wave-like manner such as diffusion, interference, reflection, spectrography, and the Afshar experiment. Although the SPM light model requires more work, early results are beginning to emerge that suggest possible tests because a few predictions are inconsistent with both the current particle and wave models of light and that suggest a re-interpretation of the equations of quantum mechanics.
Psycholinguistic and Neurolinguistic Investigations of Scalar Implicature
ERIC Educational Resources Information Center
Politzer-Ahles, Stephen
2013-01-01
The present study examines the representation and composition of meaning in scalar implicatures. Scalar implicature is the phenomenon whereby the use of a less informative term (e.g., "some") is inferred to mean the negation of a more informative term (e.g., to mean "not all"). The experiments reported here investigate how the…
A note on perfect scalar fields
NASA Astrophysics Data System (ADS)
Unnikrishnan, Sanil; Sriramkumar, L.
2010-05-01
We derive a condition on the Lagrangian density describing a generic, single, noncanonical scalar field, by demanding that the intrinsic, nonadiabatic pressure perturbation associated with the scalar field vanishes identically. Based on the analogy with perfect fluids, we refer to such fields as perfect scalar fields. It is common knowledge that models that depend only on the kinetic energy of the scalar field (often referred to as pure kinetic models) possess no nonadiabatic pressure perturbation. While we are able to construct models that seemingly depend on the scalar field and also do not contain any nonadiabatic pressure perturbation, we find that all such models that we construct allow a redefinition of the field under which they reduce to pure kinetic models. We show that, if a perfect scalar field drives inflation, then, in such situations, the first slow roll parameter will always be a monotonically decreasing function of time. We point out that this behavior implies that these scalar fields cannot lead to features in the inflationary, scalar perturbation spectrum.
Scalar Quantum Electrodynamics: Perturbation Theory and Beyond
Bashir, A.; Gutierrez-Guerrero, L. X.; Concha-Sanchez, Y.
2006-09-25
In this article, we calculate scalar propagator in arbitrary dimensions and gauge and the three-point scalar-photon vertex in arbitrary dimensions and Feynman gauge, both at the one loop level. We also discuss constraints on their non perturbative structure imposed by requirements of gauge invariance and perturbation theory.
Cross Sections From Scalar Field Theory
NASA Technical Reports Server (NTRS)
Norbury, John W.; Dick, Frank; Norman, Ryan B.; Nasto, Rachel
2008-01-01
A one pion exchange scalar model is used to calculate differential and total cross sections for pion production through nucleon- nucleon collisions. The collisions involve intermediate delta particle production and decay to nucleons and a pion. The model provides the basic theoretical framework for scalar field theory and can be applied to particle production processes where the effects of spin can be neglected.
A note on perfect scalar fields
Unnikrishnan, Sanil; Sriramkumar, L.
2010-05-15
We derive a condition on the Lagrangian density describing a generic, single, noncanonical scalar field, by demanding that the intrinsic, nonadiabatic pressure perturbation associated with the scalar field vanishes identically. Based on the analogy with perfect fluids, we refer to such fields as perfect scalar fields. It is common knowledge that models that depend only on the kinetic energy of the scalar field (often referred to as pure kinetic models) possess no nonadiabatic pressure perturbation. While we are able to construct models that seemingly depend on the scalar field and also do not contain any nonadiabatic pressure perturbation, we find that all such models that we construct allow a redefinition of the field under which they reduce to pure kinetic models. We show that, if a perfect scalar field drives inflation, then, in such situations, the first slow roll parameter will always be a monotonically decreasing function of time. We point out that this behavior implies that these scalar fields cannot lead to features in the inflationary, scalar perturbation spectrum.
NASA Technical Reports Server (NTRS)
1987-01-01
This handbook is a guide for the use of all personnel engaged in handling NASA files. It is issued in accordance with the regulations of the National Archives and Records Administration, in the Code of Federal Regulations Title 36, Part 1224, Files Management; and the Federal Information Resources Management Regulation, Subpart 201-45.108, Files Management. It is intended to provide a standardized classification and filing scheme to achieve maximum uniformity and ease in maintaining and using agency records. It is a framework for consistent organization of information in an arrangement that will be useful to current and future researchers. The NASA Uniform Files Index coding structure is composed of the subject classification table used for NASA management directives and the subject groups in the NASA scientific and technical information system. It is designed to correlate files throughout NASA and it is anticipated that it may be useful with automated filing systems. It is expected that in the conversion of current files to this arrangement it will be necessary to add tertiary subjects and make further subdivisions under the existing categories. Established primary and secondary subject categories may not be changed arbitrarily. Proposals for additional subject categories of NASA-wide applicability, and suggestions for improvement in this handbook, should be addressed to the Records Program Manager at the pertinent installation who will forward it to the NASA Records Management Office, Code NTR, for approval. This handbook is issued in loose-leaf form and will be revised by page changes.
Failure of Anisotropic Unstructured Mesh Adaption Based on Multidimensional Residual Minimization
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
2003-01-01
An automated anisotropic unstructured mesh adaptation strategy is proposed, implemented, and assessed for the discretization of viscous flows. The adaption criteria is based upon the minimization of the residual fluctuations of a multidimensional upwind viscous flow solver. For scalar advection, this adaption strategy has been shown to use fewer grid points than gradient based adaption, naturally aligning mesh edges with discontinuities and characteristic lines. The adaption utilizes a compact stencil and is local in scope, with four fundamental operations: point insertion, point deletion, edge swapping, and nodal displacement. Evaluation of the solution-adaptive strategy is performed for a two-dimensional blunt body laminar wind tunnel case at Mach 10. The results demonstrate that the strategy suffers from a lack of robustness, particularly with regard to alignment of the bow shock in the vicinity of the stagnation streamline. In general, constraining the adaption to such a degree as to maintain robustness results in negligible improvement to the solution. Because the present method fails to consistently or significantly improve the flow solution, it is rejected in favor of simple uniform mesh refinement.
Uniform quantized electron gas.
Høye, Johan S; Lomba, Enrique
2016-10-19
In this work we study the correlation energy of the quantized electron gas of uniform density at temperature T = 0. To do so we utilize methods from classical statistical mechanics. The basis for this is the Feynman path integral for the partition function of quantized systems. With this representation the quantum mechanical problem can be interpreted as, and is equivalent to, a classical polymer problem in four dimensions where the fourth dimension is imaginary time. Thus methods, results, and properties obtained in the statistical mechanics of classical fluids can be utilized. From this viewpoint we recover the well known RPA (random phase approximation). Then to improve it we modify the RPA by requiring the corresponding correlation function to be such that electrons with equal spins can not be on the same position. Numerical evaluations are compared with well known results of a standard parameterization of Monte Carlo correlation energies. PMID:27546166
Should School Nurses Wear Uniforms?
ERIC Educational Resources Information Center
Journal of School Health, 2001
2001-01-01
This 1958 paper questions whether school nurses should wear uniforms (specifically, white uniforms). It concludes that white uniforms are often associated with the treatment of ill people, and since many people have a fear reaction to them, they are not necessary and are even undesirable. Since school nurses are school staff members, they should…
Refining inflation using non-canonical scalars
Unnikrishnan, Sanil; Sahni, Varun; Toporensky, Aleksey E-mail: varun@iucaa.ernet.in
2012-08-01
This paper revisits the Inflationary scenario within the framework of scalar field models possessing a non-canonical kinetic term. We obtain closed form solutions for all essential quantities associated with chaotic inflation including slow roll parameters, scalar and tensor power spectra, spectral indices, the tensor-to-scalar ratio, etc. We also examine the Hamilton-Jacobi equation and demonstrate the existence of an inflationary attractor. Our results highlight the fact that non-canonical scalars can significantly improve the viability of inflationary models. They accomplish this by decreasing the tensor-to-scalar ratio while simultaneously increasing the value of the scalar spectral index, thereby redeeming models which are incompatible with the cosmic microwave background (CMB) in their canonical version. For instance, the non-canonical version of the chaotic inflationary potential, V(φ) ∼ λφ{sup 4}, is found to agree with observations for values of λ as large as unity! The exponential potential can also provide a reasonable fit to CMB observations. A central result of this paper is that steep potentials (such as V∝φ{sup −n}) usually associated with dark energy, can drive inflation in the non-canonical setting. Interestingly, non-canonical scalars violate the consistency relation r = −8n{sub T}, which emerges as a smoking gun test for this class of models.
Static scalar field solutions in symmetric gravity
NASA Astrophysics Data System (ADS)
Hossenfelder, S.
2016-09-01
We study an extension of general relativity with a second metric and an exchange symmetry between the two metrics. Such an extension might help to address some of the outstanding problems with general relativity, for example the smallness of the cosmological constant. We here derive a family of exact solutions for this theory. In this two-parameter family of solutions the gravitational field is sourced by a time-independent massless scalar field. We find that the only limit in which the scalar field entirely vanishes is flat space. The regular Schwarzschild-solution is left with a scalar field hidden in the second metric’s sector.
Deffayet, C.; Deser, S.; Esposito-Farese, G.
2009-09-15
We extend to curved backgrounds all flat-space scalar field models that obey purely second-order equations, while maintaining their second-order dependence on both field and metric. This extension simultaneously restores to second order the, originally higher derivative, stress tensors as well. The process is transparent and uniform for all dimensions.
Bifurcation of tracked scalar waves
Glimm, J.; Grove, J.; Lindquist, B.; McBryan, O.A.; Tryggvason, G.
1986-05-01
The dynamic evolution of tracked waves by a front-tracking algorithm may lead on either numerical or physical grounds to intersections of the waves. The correct resolution of these intersections is described locally by the solution of Riemann problems and requires a bifurcation of the topology defined by the tracked waves. An algorithm is described which is appropriate for the resolution of scalar tracked waves, such as material discontinuities, contact dicontinuities in gas dynamics, or constituent concetration waves including oil-water banks in oil reservoirs Even here the algorithm is not fully general, and the resolution of the intersections of an arbitrary set of curves in the plane for the above range of physical problems remains unsolved. However with the assumption that the set of intersections to be resolved is a small perturbation (resulting for example from a small time step in an evolution) of a valid, non-intersecting front, the algorithm seems to be general. In any case examples will be presented that show that complicated interfaces can be generated automatically from simple ones through successive bifurcations. 15 refs., 9 figs.
Searching for the Scalar Glueball
Ochs, Wolfgang
2008-08-31
Existence of gluonic resonances is among the early expectations of QCD. Today, QCD calculations predict the lightest glueball to be a scalar state with mass within a range of about 900-1700 MeV but there is no consensus about its experimental evidence. In a re-analysis of the phase shifts for {pi}{pi} scattering up to 1800 MeV where such states should show up we find the broad resonance f{sub 0}(600)/{sigma} contributing to the full mass range and the narrow f{sub 0}(980) and f{sub 0}(1500) but no evidence for f{sub 0}(1370). Phenomenological arguments for the broad state to be a glueball are recalled. It is argued that the large radiative width of f{sub 0}(600)/{sigma} reported recently is not in contradiction to this hypothesis but is mainly due to {pi}{pi}-rescattering. The small 'direct' radiative component is consistent with QCD sum rule predictions for the light glueball.
Identification of a scalar glueball.
Albaladejo, M; Oller, J A
2008-12-19
We perform a coupled channel study of the meson-meson S waves with isospin (I) 0 and 1/2 up to 2 GeV. A new approach is derived that allows one to include the many channels pipi, KK[over ], etaeta, sigmasigma, etaeta; eta; eta; , rhorho, omegaomega, omegavarphi, varphivarphi, a(1)pi, and pipi with still few free parameters. It follows that coupled channel dynamics is strong and cannot be neglected in order to study resonance properties in the region 1.4-1.6 GeV. All the resonances with masses below 2 GeV and I=0 and 1/2 are generated. We identify the f(0)(1710) and an important contribution to the f (0)(1500) as an unmixed glueball. This is based on an accurate agreement of our results with predictions of lattice QCD and the chiral suppression of the coupling of a scalar glueball to q[over ]q. Another pole, mainly corresponding to the f_{0}(1370), is a pure octet state. PMID:19113698
On a Scalar Theory of Gravitation
NASA Astrophysics Data System (ADS)
Arminjon, Mayeul
2002-12-01
Our motivation was to extend the Lorentz-Poincaré ether theory so that it could describe gravitation. The latter theory consists in assuming that Maxwell's equations are valid in some fundamental inertial frame or "ether," and that each material object that moves through the ether undergoes a Lorentz contraction. This is physically equivalent to Einstein's special relativity (SR), 1 but it differs from standard SR at the meta-physical (interpretation) level. 1 The construction of the scalar theory is based on a tentative concept of physical vacuum as a space-filling perfect fluid, or "micro-ether." This concept leads to a definite set of equations: it is this set that should be assessed from the predictions it leads to, and from the comparison of these predictions with experimental data. According to that concept, material particles would be organized flows in that fluid, such as vortices, thus each particle would occupy some bounded domain in the fluid. The gravitational force is interpreted as resulting from the forces exerted on any such "particle" (domain), due to the spatial variation of the fluid pressure over macroscopic distances. This leads to define a gravity acceleration vector as follows: 2 g = - {grad pe }/{ρ e }, (1) where pe and ρe = ρe(pe) are the macroscopic fields of pressure and density in the imagined fluid (micro-ether). Note that this equation implies that pe and ρe decrease towards the gravitational attraction. The preferred reference frame of the theory is that one which is obtained by averaging the velocity field of the micro-ether over a very large scale. An equation for the scalar gravitational field pe (or equivalently the field ρe) follows from the requirement that Newtonian gravity should be recovered if the micro-ether were an incompressible fluid, and from the analysis of acoustic-like oscillations of the field pe. 2 However, in this ether theory, an "absolute" version of Einstein's equivalence principle occurs naturally. 3 It
Turbulent transport with intermittency: Expectation of a scalar concentration
NASA Astrophysics Data System (ADS)
Rast, Mark Peter; Pinton, Jean-François; Mininni, Pablo D.
2016-04-01
Scalar transport by turbulent flows is best described in terms of Lagrangian parcel motions. Here we measure the Eulerian distance travel along Lagrangian trajectories in a simple point vortex flow to determine the probabilistic impulse response function for scalar transport in the absence of molecular diffusion. As expected, the mean squared Eulerian displacement scales ballistically at very short times and diffusively for very long times, with the displacement distribution at any given time approximating that of a random walk. However, significant deviations in the displacement distributions from Rayleigh are found. The probability of long distance transport is reduced over inertial range time scales due to spatial and temporal intermittency. This can be modeled as a series of trapping events with durations uniformly distributed below the Eulerian integral time scale. The probability of long distance transport is, on the other hand, enhanced beyond that of the random walk for both times shorter than the Lagrangian integral time and times longer than the Eulerian integral time. The very short-time enhancement reflects the underlying Lagrangian velocity distribution, while that at very long times results from the spatial and temporal variation of the flow at the largest scales. The probabilistic impulse response function, and with it the expectation value of the scalar concentration at any point in space and time, can be modeled using only the evolution of the lowest spatial wave number modes (the mean and the lowest harmonic) and an eddy based constrained random walk that captures the essential velocity phase relations associated with advection by vortex motions. Preliminary examination of Lagrangian tracers in three-dimensional homogeneous isotropic turbulence suggests that transport in that setting can be similarly modeled.
Einstein-Podolsky-Rosen correlations between two uniformly accelerated oscillators
Massar, Serge; Spindel, Philippe
2006-10-15
We consider the quantum correlations, i.e. the entanglement, between two systems uniformly accelerated with identical acceleration a in opposite Rindler quadrants which have reached thermal equilibrium with the Unruh heat bath. To this end we study an exactly soluble model consisting of two oscillators coupled to a massless scalar field in 1+1 dimensions. We find that for some values of the parameters the oscillators get entangled shortly after the moment of closest approach. Because of boost invariance there are an infinite set of pairs of positions where the oscillators are entangled. The maximal entanglement between the oscillators is found to be approximately 1.4 entanglement bits.
Time-place learning in the cichlid angelfish, Pterophyllum scalare.
Gómez-Laplaza, Luis M; Morgan, Elfed
2005-09-30
The ability of the cichlid angelfish, Pterophyllum scalare, to associate time and place to locate food, provided twice a day in two different places, was tested. Food was delivered daily in one corner of the tank in the morning and in the diagonally opposite corner in the afternoon, for a 3-week period, and the distribution of the fish in the tank was noted prior to and during feeding time. The results indicate that, in a fairly uniform environment and in the absence of external time cues, angelfish can discriminate and associate time and place to obtain a food reward. It is suggested that they do so by means of an endogenous timing mechanism. PMID:16129239
Intermediate inflation driven by DBI scalar field
NASA Astrophysics Data System (ADS)
Nazavari, N.; Mohammadi, A.; Ossoulian, Z.; Saaidi, Kh.
2016-06-01
Picking out a DBI scalar field as inflation, the slow-rolling inflationary scenario is studied by attributing an exponential time function to scale factor, known as intermediate inflation. The perturbation parameters of the model are estimated numerically for two different cases, and the final result is compared with Planck data. The diagram of tensor-to-scalar ratio r versus scalar spectra index ns is illustrated, and it is found that they are within an acceptable range as suggested by Planck. In addition, the acquired values for amplitude of scalar perturbation reveal the ability of the model to depict a good picture of the Universe in one of its earliest stages. As a further argument, the non-Gaussianity is investigated, displaying that the model prediction stands in a 68% C.L. regime according to the latest Planck data.
Subfemtotesla scalar atomic magnetometry using multipass cells.
Sheng, D; Li, S; Dural, N; Romalis, M V
2013-04-19
Scalar atomic magnetometers have many attractive features but their sensitivity has been relatively poor. We describe a Rb scalar gradiometer using two multipass optical cells. We use a pump-probe measurement scheme to suppress spin-exchange relaxation and two probe pulses to find the spin precession zero crossing times with a resolution of 1 psec. We realize a magnetic field sensitivity of 0.54 fT/Hz(1/2), which improves by an order of magnitude the best scalar magnetometer sensitivity and exceeds, for example, the quantum limit set by the spin-exchange collisions for a scalar magnetometer with the same measurement volume operating in a continuous regime. PMID:23679590
Scalar explanation of diphoton excess at LHC
NASA Astrophysics Data System (ADS)
Han, Huayong; Wang, Shaoming; Zheng, Sibo
2016-06-01
Inspired by the diphoton signal excess observed in the latest data of 13 TeV LHC, we consider either a 750 GeV real scalar or pseudo-scalar responsible for this anomaly. We propose a concrete vector-like quark model, in which the vector-like fermion pairs directly couple to this scalar via Yukawa interaction. For this setting the scalar is mainly produced via gluon fusion, then decays at the one-loop level to SM diboson channels gg , γγ , ZZ , WW. We show that for the vector-like fermion pairs with exotic electric charges, such model can account for the diphoton excess and is consistent with the data of 8 TeV LHC simultaneously in the context of perturbative analysis.
Subfemtotesla Scalar Atomic Magnetometry Using Multipass Cells
NASA Astrophysics Data System (ADS)
Sheng, D.; Li, S.; Dural, N.; Romalis, M. V.
2013-04-01
Scalar atomic magnetometers have many attractive features but their sensitivity has been relatively poor. We describe a Rb scalar gradiometer using two multipass optical cells. We use a pump-probe measurement scheme to suppress spin-exchange relaxation and two probe pulses to find the spin precession zero crossing times with a resolution of 1 psec. We realize a magnetic field sensitivity of 0.54fT/Hz1/2, which improves by an order of magnitude the best scalar magnetometer sensitivity and exceeds, for example, the quantum limit set by the spin-exchange collisions for a scalar magnetometer with the same measurement volume operating in a continuous regime.
Inflation in anisotropic scalar-tensor theories
NASA Technical Reports Server (NTRS)
Pimentel, Luis O.; Stein-Schabes, Jaime
1988-01-01
The existence of an inflationary phase in anisotropic Scalar-Tensor Theories is investigated by means of a conformal transformation that allows us to rewrite these theories as gravity minimally coupled to a scalar field with a nontrivial potential. The explicit form of the potential is then used and the No Hair Theorem concludes that there is an inflationary phase in all open or flat anisotropic spacetimes in these theories. Several examples are constructed where the effect becomes manifest.
UNIFORMLY MOST POWERFUL BAYESIAN TESTS
Johnson, Valen E.
2014-01-01
Uniformly most powerful tests are statistical hypothesis tests that provide the greatest power against a fixed null hypothesis among all tests of a given size. In this article, the notion of uniformly most powerful tests is extended to the Bayesian setting by defining uniformly most powerful Bayesian tests to be tests that maximize the probability that the Bayes factor, in favor of the alternative hypothesis, exceeds a specified threshold. Like their classical counterpart, uniformly most powerful Bayesian tests are most easily defined in one-parameter exponential family models, although extensions outside of this class are possible. The connection between uniformly most powerful tests and uniformly most powerful Bayesian tests can be used to provide an approximate calibration between p-values and Bayes factors. Finally, issues regarding the strong dependence of resulting Bayes factors and p-values on sample size are discussed. PMID:24659829
Uniformly sparse neural networks
NASA Astrophysics Data System (ADS)
Haghighi, Siamack
1992-07-01
Application of neural networks to problems with a large number of sensory inputs is severely limited when the processing elements (PEs) need to be fully connected. This paper presents a new network model in which a trade off between the number of connections to a node and the number of processing layers can be made. This trade off is an important issue in the VLSI implementation of neural networks. The performance and capability of a hierarchical pyramidal network architecture of limited fan-in PE layers is analyzed. Analysis of this architecture requires the development of a new learning rule, since each PE has access to limited information about the entire network input. A spatially local unsupervised training rule is developed in which each PE optimizes the fraction of its output variance contributed by input correlations, resulting in PEs behaving as adaptive local correlation detectors. It is also shown that the output of a PE optimally represents the mutual information among the inputs to that PE. Applications of the developed model in image compression and motion detection are presented.
School Uniforms: Esprit de Corps.
ERIC Educational Resources Information Center
Ryan, Rosemary P.; Ryan, Thomas E.
1998-01-01
The benefits of school uniforms far outweigh their short-term costs. School uniforms not only keep students safe, but they increase their self-esteem, promote a more positive attitude toward school, lead to improved student behavior, and help blur social-class distinctions. Students are allowed to wear their own political or religious messages,…
Uniform Continuity on Unbounded Intervals
ERIC Educational Resources Information Center
Pouso, Rodrigo Lopez
2008-01-01
We present a teaching approach to uniform continuity on unbounded intervals which, hopefully, may help to meet the following pedagogical objectives: (i) To provide students with efficient and simple criteria to decide whether a continuous function is also uniformly continuous; and (ii) To provide students with skill to recognize graphically…
Llinares, Claudio; Mota, David F
2013-04-19
Several extensions of general relativity and high energy physics include scalar fields as extra degrees of freedom. In the search for predictions in the nonlinear regime of cosmological evolution, the community makes use of numerical simulations in which the quasistatic limit is assumed when solving the equation of motion of the scalar field. In this Letter, we propose a method to solve the full equations of motion for scalar degrees of freedom coupled to matter. We run cosmological simulations which track the full time and space evolution of the scalar field, and find striking differences with respect to the commonly used quasistatic approximation. This novel procedure reveals new physical properties of the scalar field and uncovers concealed astrophysical phenomena which were hidden in the old approach. PMID:23679591
Inflation as AN Attractor in Scalar Cosmology
NASA Astrophysics Data System (ADS)
Kim, Hyeong-Chan
2013-06-01
We study an inflation mechanism based on attractor properties in cosmological evolutions of a spatially flat Friedmann-Robertson-Walker spacetime based on the Einstein-scalar field theory. We find a new way to get the Hamilton-Jacobi equation solving the field equations. The equation relates a solution "generating function" with the scalar potential. We analyze its stability and find a later time attractor which describes a Universe approaching to an eternal-de Sitter inflation driven by the potential energy, V0>0. The attractor exists when the potential is regular and does not have a linear and quadratic terms of the field. When the potential has a mass term, the attractor exists if the scalar field is in a symmetric phase and is weakly coupled, λ<9V0/16. We also find that the attractor property is intact under small modifications of the potential. If the scalar field has a positive mass-squared or is strongly coupled, there exists a quasi-attractor. However, the quasi-attractor property disappears if the potential is modified. On the whole, the appearance of the eternal inflation is not rare in scalar cosmology in the presence of an attractor.
Scalar transport in plane mixing layers
NASA Astrophysics Data System (ADS)
Vanormelingen, J.; Van den Bulck, E.
This paper describes the application of the Eulerian, single-point, single-time joint-scalar probability density function (PDF) equation for predicting the scalar transport in mixing layer with a high-speed and a low-speed stream. A finite-volume procedure is applied to obtain the velocity field with the k-ɛ closure being used to describe turbulent transport. The scalar field is represented through the modelled evolution equation for the scalar PDF and is solved using a Monte Carlo simulation. The PDF equation employs gradient transport modelling to represent the turbulent diffusion, and the molecular mixing term is modelled by the LMSE closure. There is no source term for chemical reaction as only an inert mixing layer is considered here. The experimental shear layer data published by Batt is used to validate the computational results despite the fact that comparisons between experiments and computational results are difficult because of the high sensitivity of the shear layer to initial conditions and free stream turbulence phenomena. However, the bimodal shape of the RMS scalar fluctuation as was measured by Batt can be reproduced with this model, whereas standard gradient diffusion calculations do not predict the dip in this profile. In this work for the first time an explanation is given for this phenomenon and the importance of a micromixing model is stressed. Also it is shown that the prediction of the PDF shape by the LMSE model is very satisfactory.
Can dark matter be a scalar field?
NASA Astrophysics Data System (ADS)
Jesus, J. F.; Pereira, S. H.; Malatrasi, J. L. G.; Andrade-Oliveira, F.
2016-08-01
In this paper we study a real scalar field as a possible candidate to explain the dark matter in the universe. In the context of a free scalar field with quadratic potential, we have used Union 2.1 SN Ia observational data jointly with a Planck prior over the dark matter density parameter to set a lower limit on the dark matter mass as m>=0.12H0‑1 eV (c=hbar=1). For the recent value of the Hubble constant indicated by the Hubble Space Telescope, namely H0=73±1.8 km s‑1Mpc‑1, this leads to m>=1.56×10‑33 eV at 99.7% c.l. Such value is much smaller than m~ 10‑22 eV previously estimated for some models. Nevertheless, it is still in agreement with them once we have not found evidences for a upper limit on the scalar field dark matter mass from SN Ia analysis. In practice, it confirms free real scalar field as a viable candidate for dark matter in agreement with previous studies in the context of density perturbations, which include scalar field self interaction.
Exploring scalar field dynamics with Gaussian processes
Nair, Remya; Jhingan, Sanjay; Jain, Deepak E-mail: sanjay.jhingan@gmail.com
2014-01-01
The origin of the accelerated expansion of the Universe remains an unsolved mystery in Cosmology. In this work we consider a spatially flat Friedmann-Robertson-Walker (FRW) Universe with non-relativistic matter and a single scalar field contributing to the energy density of the Universe. Properties of this scalar field, like potential, kinetic energy, equation of state etc. are reconstructed from Supernovae and BAO data using Gaussian processes. We also reconstruct energy conditions and kinematic variables of expansion, such as the jerk and the slow roll parameter. We find that the reconstructed scalar field variables and the kinematic quantities are consistent with a flat ΛCDM Universe. Further, we find that the null energy condition is satisfied for the redshift range of the Supernovae data considered in the paper, but the strong energy condition is violated.
Extended scalar-tensor theories of gravity
NASA Astrophysics Data System (ADS)
Crisostomi, Marco; Koyama, Kazuya; Tasinato, Gianmassimo
2016-04-01
We study new consistent scalar-tensor theories of gravity recently introduced by Langlois and Noui with potentially interesting cosmological applications. We derive the conditions for the existence of a primary constraint that prevents the propagation of an additional dangerous mode associated with higher order equations of motion. We then classify the most general, consistent scalar-tensor theories that are at most quadratic in the second derivatives of the scalar field. In addition, we investigate the possible connection between these theories and (beyond) Horndeski through conformal and disformal transformations. Finally, we point out that these theories can be associated with new operators in the effective field theory of dark energy, which might open up new possibilities to test dark energy models in future surveys.
Recent progress on light scalar mesons
Peláez, J. R.
2014-07-23
This is a brief account of the recent developments on the determination of the mass and widths of the much debated scalar mesons, paying particular attention to the causes of major revision of the σ or f{sub 0}(500) meson in the last edition of the Review of Particle Physics, which has finally acknowledged that the situation concerning the mass and width of this controversial state has been settled, although this was already well-known to scalar meson practitioners for about a decade. I will briefly comment on the dispersive approach, followed by several groups, which seems to have been the most decisive in support of the existence and precise determinations of scalar meson properties.
The Neural Computation of Scalar Implicature
Hartshorne, Joshua K.; Snedeker, Jesse; Azar, Stephanie Yen-Mun Liem; Kim, Albert E.
2014-01-01
Language comprehension involves not only constructing the literal meaning of a sentence but also going beyond the literal meaning to infer what was meant but not said. One widely-studied test case is scalar implicature: The inference that, e.g., Sally ate some of the cookies implies she did not eat all of them. Research is mixed on whether this is due to a rote, grammaticalized procedure or instead a complex, contextualized inference. We find that in sentences like If Sally ate some of the cookies, then the rest are on the counter, that the rest triggers a late, sustained positivity relative to Sally ate some of the cookies, and the rest are on the counter. This is consistent with behavioral results and linguistic theory suggesting that the former sentence does not trigger a scalar implicature. This motivates a view on which scalar implicature is contextualized but dependent on grammatical structure. PMID:25914890
Logical optimization for database uniformization
NASA Technical Reports Server (NTRS)
Grant, J.
1984-01-01
Data base uniformization refers to the building of a common user interface facility to support uniform access to any or all of a collection of distributed heterogeneous data bases. Such a system should enable a user, situated anywhere along a set of distributed data bases, to access all of the information in the data bases without having to learn the various data manipulation languages. Furthermore, such a system should leave intact the component data bases, and in particular, their already existing software. A survey of various aspects of the data bases uniformization problem and a proposed solution are presented.
Uniform acceleration in general relativity
NASA Astrophysics Data System (ADS)
Friedman, Yaakov; Scarr, Tzvi
2015-10-01
We extend de la Fuente and Romero's (Gen Relativ Gravit 47:33, 2015) defining equation for uniform acceleration in a general curved spacetime from linear acceleration to the full Lorentz covariant uniform acceleration. In a flat spacetime background, we have explicit solutions. We use generalized Fermi-Walker transport to parallel transport the Frenet basis along the trajectory. In flat spacetime, we obtain velocity and acceleration transformations from a uniformly accelerated system to an inertial system. We obtain the time dilation between accelerated clocks. We apply our acceleration transformations to the motion of a charged particle in a constant electromagnetic field and recover the Lorentz-Abraham-Dirac equation.
On causality in polymer scalar field theory
NASA Astrophysics Data System (ADS)
García-Chung, Angel A.; Morales-Técotl, Hugo A.
2011-10-01
The properties of spacetime corresponding to a proposed quantum gravity theory might modify the high energy behavior of quantum fields. Motivated by loop quantum gravity, recently, Hossain et al [1] have considered a polymer field algebra that replaces the standard canonical one in order to calculate the propagator of a real scalar field in flat spacetime. This propagator features Lorentz violations. Motivated by the relation between Lorentz invariance and causality in standard Quantum Field Theory, in this work we investigate the causality behavior of the polymer scalar field.
Scalar operators in solid-state NMR
Sun, Boqin
1991-11-01
Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR concerning the reconstruction of various scalar operators motion in solid C{sub 60} is analyzed.
Halos of unified dark matter scalar field
Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino E-mail: nicola.bartolo@pd.infn.it
2008-05-15
We investigate the static and spherically symmetric solutions of Einstein's equations for a scalar field with a non-canonical kinetic term, assumed to provide both the dark matter and dark energy components of the Universe. In particular, we give a prescription to obtain solutions (dark halos) whose rotation curve v{sub c}(r) is in good agreement with observational data. We show that there exist suitable scalar field Lagrangians that allow us to describe the cosmological background evolution and the static solutions with a single dark fluid.
A Search for Scalar Chameleons with ADMX
Rybka, G.; Hotz, M.; Rosenberg, L.J.; Asztalos, S.J.; Carosi, G.; Hagmann, C.; Kinion, D.; van Bibber, K.; Hoskins, J.; Martin, C.; Sikivie, P.; Tanner, D.B.; Bradley, R.; Clarke, J.
2010-04-26
Scalar fields with a"chameleon" property, in which the effective particle mass is a function of its local environment, are common to many theories beyond the standard model and could be responsible for dark energy. If these fields couple weakly to the photon, they could be detectable through the afterglow effect of photon-chameleon-photon transitions. The ADMX experiment was used in the first chameleon search with a microwave cavity to set a new limit on scalar chameleon-photon coupling beta_gamma excluding values between 2x109 and 5x1014 for effective chameleon masses between 1.9510 and 1:9525 micro eV.
Astrophysical constraints on scalar field models
Bertolami, O.; Paramos, J.
2005-01-15
We use stellar structure dynamics arguments to extract bounds on the relevant parameters of two scalar field models: the putative scalar field mediator of a fifth force with a Yukawa potential and the new variable mass particle models. We also analyze the impact of a constant solar inbound acceleration, such as the one reported by the Pioneer anomaly, on stellar astrophysics. We consider the polytropic gas model to estimate the effect of these models on the hydrostatic equilibrium equation and fundamental quantities such as the central temperature. The current bound on the solar luminosity is used to constrain the relevant parameters of each model.
Initial scalar magnetic anomaly map from Magsat
NASA Technical Reports Server (NTRS)
Langel, R. A.; Phillips, J. D.; Horner, R. J.
1982-01-01
Magsat data acquired during the November 1979-June 1980 mission was used to derive a scalar magnetic anomaly map covering +50 to -50 deg geographic latitude, and the separation of anomaly fields from core and external fields was accomplished by techniques developed for POGO satellite data. Except in the Atlantic and Pacific at latitudes south of -15 deg, comparison of the Magsat map with its POGO data-derived counterpart shows basic anomaly patterns to be reproducible, and higher resolution due to Magsat's lower measurement altitude. Color-coded scalar anomaly maps are presented for both satellites.
Scalar discrete nonlinear multipoint boundary value problems
NASA Astrophysics Data System (ADS)
Rodriguez, Jesus; Taylor, Padraic
2007-06-01
In this paper we provide sufficient conditions for the existence of solutions to scalar discrete nonlinear multipoint boundary value problems. By allowing more general boundary conditions and by imposing less restrictions on the nonlinearities, we obtain results that extend previous work in the area of discrete boundary value problems [Debra L. Etheridge, Jesus Rodriguez, Periodic solutions of nonlinear discrete-time systems, Appl. Anal. 62 (1996) 119-137; Debra L. Etheridge, Jesus Rodriguez, Scalar discrete nonlinear two-point boundary value problems, J. Difference Equ. Appl. 4 (1998) 127-144].
The scalar glueball mass in Regge phenomenology
Burakovsky, L.
1998-12-01
The author shows that linear Regge trajectories for mesons and glueballs, and the cubic mass spectrum associated with them, determine a relation between the masses of the {rho} meson and the scalar glueball, M(0{sup ++}) = 3/{radical}2 M({rho}), which implies M(0{sup ++}) = 1620 {+-} 10 MeV. He also discusses a relation between the masses of the scalar and tensor glueballs, M(2{sup ++}) = {radical}2 M(0{sup ++}), which implies M(2{sup ++}) = 2290 {+-} 15 MeV.
Scalar-Pseudoscalar scattering and pseudoscalar resonances
Albaladejo, M.; Oller, J. A.; Roca, L.
2011-05-23
The interactions between the f{sub 0}(980) and a{sub 0}(980) scalar resonances and the lightest pseudoscalar mesons are studied. We first obtain the interacting kernels, without including any ad hoc free parameter, because the lightest scalar resonances are dynamically generated. These kernels are unitarized, giving the final amplitudes, which generate pseudoscalar resonances, associated with the K(1460), {pi}(1300), {pi}(1800), {eta}(1475) and X(1835). We also consider the exotic channels with I = 3/2 and I{sup G} = 1{sup +} quantum numbers. The former could be also resonant in agreement with a previous prediction.
Nonlinear perturbations of cosmological scalar fields with non-standard kinetic terms
NASA Astrophysics Data System (ADS)
Renaux-Petel, Sébastien; Tasinato, Gianmassimo
2009-01-01
We adopt a covariant formalism to derive exact evolution equations for nonlinear perturbations, in a universe dominated by two scalar fields. These scalar fields are characterized by non-canonical kinetic terms and an arbitrary field space metric, a situation typically encountered in inflationary models inspired by string theory. We decompose the nonlinear scalar perturbations into adiabatic and entropy modes, generalizing the definition adopted in the linear theory, and we derive the corresponding exact evolution equations. We also obtain a nonlinear generalization of the curvature perturbation on uniform density hypersurfaces, showing that on large scales it is sourced only by the nonlinear version of the entropy perturbation. We then expand these equations to second order in the perturbations, using a coordinate based formalism. Our results are relatively compact and elegant and enable one to identify the new effects coming from the non-canonical structure of the scalar fields Lagrangian. We also explain how to analyze, in our formalism, the interesting scenario of multi-field Dirac-Born-Infeld inflation.
An improved mixing model providing joint statistics of scalar and scalar dissipation
Meyer, Daniel W.; Jenny, Patrick
2008-11-15
For the calculation of nonpremixed turbulent flames with thin reaction zones the joint probability density function (PDF) of the mixture fraction and its dissipation rate plays an important role. The corresponding PDF transport equation involves a mixing model for the closure of the molecular mixing term. Here, the parameterized scalar profile (PSP) mixing model is extended to provide the required joint statistics. Model predictions are validated using direct numerical simulation (DNS) data of a passive scalar mixing in a statistically homogeneous turbulent flow. Comparisons between the DNS and the model predictions are provided, which involve different initial scalar-field lengthscales. (author)
Armenta Salas, Michelle; Helms Tillery, Stephen I.
2016-01-01
The neural mechanisms that take place during learning and adaptation can be directly probed with brain-machine interfaces (BMIs). We developed a BMI controlled paradigm that enabled us to enforce learning by introducing perturbations which changed the relationship between neural activity and the BMI's output. We introduced a uniform perturbation to the system, through a visuomotor rotation (VMR), and a non-uniform perturbation, through a decorrelation task. The controller in the VMR was essentially unchanged, but produced an output rotated at 30° from the neurally specified output. The controller in the decorrelation trials decoupled the activity of neurons that were highly correlated in the BMI task by selectively forcing the preferred directions of these cell pairs to be orthogonal. We report that movement errors were larger in the decorrelation task, and subjects needed more trials to restore performance back to baseline. During learning, we measured decreasing trends in preferred direction changes and cross-correlation coefficients regardless of task type. Conversely, final adaptations in neural tunings were dependent on the type controller used (VMR or decorrelation). These results hint to the similar process the neural population might engage while adapting to new tasks, and how, through a global process, the neural system can arrive to individual solutions. PMID:27601981
Armenta Salas, Michelle; Helms Tillery, Stephen I
2016-01-01
The neural mechanisms that take place during learning and adaptation can be directly probed with brain-machine interfaces (BMIs). We developed a BMI controlled paradigm that enabled us to enforce learning by introducing perturbations which changed the relationship between neural activity and the BMI's output. We introduced a uniform perturbation to the system, through a visuomotor rotation (VMR), and a non-uniform perturbation, through a decorrelation task. The controller in the VMR was essentially unchanged, but produced an output rotated at 30° from the neurally specified output. The controller in the decorrelation trials decoupled the activity of neurons that were highly correlated in the BMI task by selectively forcing the preferred directions of these cell pairs to be orthogonal. We report that movement errors were larger in the decorrelation task, and subjects needed more trials to restore performance back to baseline. During learning, we measured decreasing trends in preferred direction changes and cross-correlation coefficients regardless of task type. Conversely, final adaptations in neural tunings were dependent on the type controller used (VMR or decorrelation). These results hint to the similar process the neural population might engage while adapting to new tasks, and how, through a global process, the neural system can arrive to individual solutions. PMID:27601981
Minkowski, Peter; Ochs, Wolfgang
2006-02-11
We summarize some persistent problems in scalar spectroscopy and discuss what could be learned here from charmless B-decays. Recent experimental results are discussed in comparison with theoretical expectations: a simple model based on penguin dominance leads to various symmetry relations in good agreement with recent data; a factorisation approach yields absolute predictions of rates.
Scalar field radiation from dilatonic black holes
NASA Astrophysics Data System (ADS)
Gohar, H.; Saifullah, K.
2012-12-01
We study radiation of scalar particles from charged dilaton black holes. The Hamilton-Jacobi method has been used to work out the tunneling probability of outgoing particles from the event horizon of dilaton black holes. For this purpose we use WKB approximation to solve the charged Klein-Gordon equation. The procedure gives Hawking temperature for these black holes as well.
Kerr black holes with scalar hair.
Herdeiro, Carlos A R; Radu, Eugen
2014-06-01
We present a family of solutions of Einstein's gravity minimally coupled to a complex, massive scalar field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M, J) values. A single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as J/M^{2}>1, a quadrupole moment larger than J^{2}/M, and a larger orbital angular velocity at the innermost stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (and other) models with more general self-interactions. PMID:24949750
Dissipation element analysis of turbulent scalar fields
NASA Astrophysics Data System (ADS)
Wang, Lipo; Peters, Norbert
2008-12-01
Dissipation element analysis is a new approach for studying turbulent scalar fields. Gradient trajectories starting from each material point in a scalar field \\phi'(\\vec{x},t) in ascending directions will inevitably reach a maximal and a minimal point. The ensemble of material points sharing the same pair ending points is named a dissipation element. Dissipation elements can be parameterized by the length scale l and the scalar difference Δphi ', which are defined as the straight line connecting the two extremal points and the scalar difference at these points, respectively. The decomposition of a turbulent field into dissipation elements is space-filling. This allows us to reconstruct certain statistical quantities of fine scale turbulence which cannot be obtained otherwise. The marginal probability density function (PDF) of the length scale distribution based on a Poisson random cutting-reconnection process shows satisfactory agreement with the direct numerical simulation (DNS) results. In order to obtain the further information that is needed for the modeling of scalar mixing in turbulence, such as the marginal PDF of the length of elements and all conditional moments as well as their scaling exponents, there is a need to model the joint PDF of l and Δphi ' as well. A compensation-defect model is put forward in this work to show the dependence of Δphi ' on l. The agreement between the model prediction and DNS results is satisfactory, which may provide another explanation of the Kolmogorov scaling and help to improve turbulent mixing models. Furthermore, intermittency and cliff structure can also be related to and explained from the joint PDF.
Brane solutions sourced by a scalar with vanishing potential and classification of scalar branes
NASA Astrophysics Data System (ADS)
Cadoni, Mariano; Franzin, Edgardo; Serra, Matteo
2016-01-01
We derive exact brane solutions of minimally coupled Einstein-Maxwell-scalar gravity in d + 2 dimensions with a vanishing scalar potential and we show that these solutions are conformal to the Lifshitz spacetime whose dual QFT is characterized by hyperscaling violation. These solutions, together with the AdS brane and the domain wall sourced by an exponential potential, give the complete list of scalar branes sourced by a generic potential having simple (scale-covariant) scaling symmetries not involving Galilean boosts. This allows us to give a classification of both simple and interpolating brane solution of minimally coupled Einstein-Maxwell-scalar gravity having no Schrödinger isometries, which may be very useful for holographic applications.
NASA Astrophysics Data System (ADS)
Yeung, P. K.; Sreenivasan, K. R.
2014-01-01
In a recent direct numerical simulation (DNS) study [P. K. Yeung and K. R. Sreenivasan, "Spectrum of passive scalars of high molecular diffusivity in turbulent mixing," J. Fluid Mech. 716, R14 (2013)] with Schmidt number as low as 1/2048, we verified the essential physical content of the theory of Batchelor, Howells, and Townsend ["Small-scale variation of convected quantities like temperature in turbulent fluid. 2. The case of large conductivity," J. Fluid Mech. 5, 134 (1959)] for turbulent passive scalar fields with very strong diffusivity, decaying in the absence of any production mechanism. In particular, we confirmed the existence of the -17/3 power of the scalar spectral density in the so-called inertial-diffusive range. In the present paper, we consider the DNS of the same problem, but in the presence of a uniform mean gradient, which leads to the production of scalar fluctuations at (primarily) the large scales. For the parameters of the simulations, the presence of the mean gradient alters the physics of mixing fundamentally at low Peclet numbers. While the spectrum still follows a -17/3 power law in the inertial-diffusive range, the pre-factor is non-universal and depends on the magnitude of the mean scalar gradient. Spectral transfer is greatly reduced in comparison with those for moderately and weakly diffusive scalars, leading to several distinctive features such as the absence of dissipative anomaly and a new balance of terms in the spectral transfer equation for the scalar variance, differing from the case of zero gradient. We use the DNS results to present an alternative explanation for the observed scaling behavior, and discuss a few spectral characteristics in detail.
Image coding with uniform and piecewise-uniform vector quantizers.
Jeong, D G; Gibson, J D
1995-01-01
New lattice vector quantizer design procedures for nonuniform sources that yield excellent performance while retaining the structure required for fast quantization are described. Analytical methods for truncating and scaling lattices to be used in vector quantization are given, and an analytical technique for piecewise-linear multidimensional companding is presented. The uniform and piecewise-uniform lattice vector quantizers are then used to quantize the discrete cosine transform coefficients of images, and their objective and subjective performance and complexity are contrasted with other lattice vector quantizers and with LBG training-mode designs. PMID:18289966
Philip, Bobby; Chartier, Dr Timothy
2012-01-01
methods based on Local Sensitivity Analysis (LSA). The method can be used in the context of geometric and algebraic multigrid methods for constructing smoothers, and in the context of Krylov methods for constructing block preconditioners. It is suitable for both constant and variable coecient problems. Furthermore, the method can be applied to systems arising from both scalar and coupled system partial differential equations (PDEs), as well as linear systems that do not arise from PDEs. The simplicity of the method will allow it to be easily incorporated into existing multigrid and Krylov solvers while providing a powerful tool for adaptively constructing methods tuned to a problem.
Propagation characteristics of a non-uniformly Hermite-Gaussian correlated beam
NASA Astrophysics Data System (ADS)
Song, Zhenzhen; Liu, Zhengjun; Zhou, Keya; Sun, Qiongge; Liu, Shutian
2016-01-01
We introduce a new kind of partially coherent beam, non-uniformly Hermite-Gaussian correlated beam, by employing a non-uniformly Hermite function to modulate the spectral degree of coherence. The evolution of such scalar beam on propagation in free space and turbulent atmosphere are investigated. It is demonstrated that the spectral intensity distributions exhibit extraordinary propagation characteristics, such as self-focusing and laterally shifted intensity maxima. The position of the maximum intensity and the intensity profile can be controlled by the order of the Hermite function. The results can be useful in free-space optical communications and beam shaping.
Spontaneous excitation of a uniformly accelerated atom in the cosmic string spacetime
NASA Astrophysics Data System (ADS)
Zhou, Wenting; Yu, Hongwei
2016-04-01
We study, in the cosmic string spacetime, the average rate of change of energy for an atom coupled to massless scalar fields and uniformly accelerated in a direction parallel to the string in vacuum. We find that both the noninertial motion and the nontrivial global spacetime topology affect the atomic transition rates, so an accelerated atom (an Unruh detector) does feel the string contrary to claims in the literature. We demonstrate that the equivalence between the effect of uniform acceleration and that of thermal radiation on the transition rates of the atom, which is valid in the Minkowski spacetime, holds only on the string.
Transport Of Passive Scalars In A Turbulent Channel Flow
NASA Technical Reports Server (NTRS)
Kim, John; Moin, Parviz
1990-01-01
Computer simulation of transport of passive scalars in turbulent channel flow described in report. Shows flow structures and statistical properties. As used here, "passive scalars" means scalar quantities like fluctuations in temperature or concentrations of contaminants that do not disturb flow appreciably. Examples include transport of heat in heat exchangers, gas turbines, and nuclear reactors and dispersal of pollution in atmosphere.
Designing divertor targets for uniform power load
NASA Astrophysics Data System (ADS)
Dekeyser, W.; Reiter, D.; Baelmans, M.
2015-08-01
Divertor design for next step fusion reactors heavily relies on 2D edge plasma modeling with codes as e.g. B2-EIRENE. While these codes are typically used in a design-by-analysis approach, in previous work we have shown that divertor design can alternatively be posed as a mathematical optimization problem, and solved very efficiently using adjoint methods adapted from computational aerodynamics. This approach has been applied successfully to divertor target shape design for more uniform power load. In this paper, the concept is further extended to include all contributions to the target power load, with particular focus on radiation. In a simplified test problem, we show the potential benefits of fully including the radiation load in the design cycle as compared to only assessing this load in a post-processing step.
A new approach to the treatment of uniform electric fields
NASA Astrophysics Data System (ADS)
D'Agosta, Roberto
2005-03-01
It has been known for a long time that the treatment of an external uniform electric field in a periodic system presents conceptual and practical difficulties. At the heart of these difficulties lies the fact that, when a uniform electric field is present, the ground state does not exist: thus one is faced with the dilemma of either breaking the periodicity by a scalar potential or making the problem time-dependent by a vector potential. Within the context of density functional theory this seems to imply that the conventional description of many-body effects in terms of the time-dependent density should be abandoned in favor of a description in terms of the current density.^1 However, we will show that it is possible to describe the uniform electric field without leaving the framework of ordinary time-dependent DFT, by passing to a non-inertial reference frame. By leaving the distances invariant, this transformation preserves the periodicity of the lattice, and at the same time the appearance of an ``inertial force" compensates for the vector potential. Thus, we end up with a system subjected to a periodic time-dependent external potential -- a perfectly legitimate candidate for the application of TDDFT.1. N.T. Maitra, I. Souza, and K. Burke, Phys. Rev. B. 68, 045019, (2003).
NASA Astrophysics Data System (ADS)
Mendes, Raissa F. P.; Ortiz, Néstor
2016-06-01
Scalar-tensor theories of gravity are extensions of general relativity (GR) including an extra, nonminimally coupled scalar degree of freedom. A wide class of these theories, albeit indistinguishable from GR in the weak field regime, predicts a radically different phenomenology for neutron stars, due to a nonperturbative, strong-field effect referred to as spontaneous scalarization. This effect is known to occur in theories where the effective linear coupling β0 between the scalar and matter fields is sufficiently negative, i.e. β0≲-4.35 , and has been strongly constrained by pulsar timing observations. In the test-field approximation, spontaneous scalarization manifests itself as a tachyonic-like instability. Recently, it was argued that, in theories where β0>0 , a similar instability would be triggered by sufficiently compact neutron stars obeying realistic equations of state. In this work we investigate the end state of this instability for some representative coupling functions with β0>0 . This is done both through an energy balance analysis of the existing equilibrium configurations, and by numerically determining the nonlinear Cauchy development of unstable initial data. We find that, contrary to the β0<0 case, the final state of the instability is highly sensitive to the details of the coupling function, varying from gravitational collapse to spontaneous scalarization. In particular, we show, for the first time, that spontaneous scalarization can happen in theories with β0>0 , which could give rise to novel astrophysical tests of the theory of gravity.
Stellar oscillations in scalar-tensor theory of gravity
Sotani, Hajime; Kokkotas, Kostas D.
2005-06-15
We derive the perturbation equations for relativistic stars in scalar-tensor theories of gravity and study the corresponding oscillation spectrum. We show that the frequency of the emitted gravitational waves is shifted proportionally to the scalar field strength. Scalar waves which might be produced from such oscillations can be a unique probe for the theory, but their detectability is questionable if the radiated energy is small. However, we show that there is no need for a direct observation of scalar waves: The shift in the gravitational wave spectrum could unambiguously signal the presence of a scalar field.
Creation of the universe with a stealth scalar field
NASA Astrophysics Data System (ADS)
Maeda, Hideki; Maeda, Kei-ichi
2012-12-01
The stealth scalar field is a nontrivial configuration without any backreaction to geometry, which is characteristic for nonminimally coupled scalar fields. Studying the creation probability of the de Sitter universe with a stealth scalar field by Hartle and Hawking’s semiclassical method, we show that the effect of the stealth field can be significant. For the class of scalar fields we consider, creation with a stealth field is possible for a discrete value of the coupling constant, and its creation probability is always less than that with a trivial scalar field. However, those creation rates can be almost the same depending on the parameters of the theory.
Scalar field cosmologies with inverted potentials
NASA Astrophysics Data System (ADS)
Boisseau, B.; Giacomini, H.; Polarski, D.
2015-10-01
Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Big Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF.
Scalar waves in a wormhole geometry
Kar, S.; Sahdev, D. ); Bhawal, B. )
1994-01-15
The reflection and transmission of massless scalar waves in the curved background geometry of a typical Lorentzian wormhole (in 2+1 and 3+1 dimensions) are discussed. Using the exact solutions which involve modified Mathieu (in 2+1 dimensions) and radial oblate spheroidal (in 3+1 dimensions) functions, explicit analytic expressions are obtained for the reflection and transmission coefficients at specific values of the quantity [omega][ital b][sub 0] ([omega] being the energy of the scalar wave and [ital b][sub 0] the throat radius of the wormhole). It is found that both near-perfect reflection as well as transmission are possible for specific choices of certain parameters.
Continuity of scalar fields with logarithmic correlations
NASA Astrophysics Data System (ADS)
Rajeev, S. G.; Ranken, Evan
2015-08-01
We apply select ideas from the modern theory of stochastic processes in order to study the continuity/roughness of scalar quantum fields. A scalar field with logarithmic correlations (such as a massless field in 1 +1 spacetime dimensions) has the mildest of singularities, making it a logical starting point. Instead of the usual inner product of the field with a smooth function, we introduce a moving average on an interval which allows us to obtain explicit results and has a simple physical interpretation. Using the mathematical work of Dudley, we prove that the averaged random process is in fact continuous, and give a precise modulus of continuity bounding the short-distance variation.
Compton scattering vertex for massive scalar QED
Bashir, A.; Concha-Sanchez, Y.; Delbourgo, R.; Tejeda-Yeomans, M. E.
2009-08-15
We investigate the Compton scattering vertex of charged scalars and photons in scalar quantum electrodynamics (SQED). We carry out its nonperturbative construction consistent with Ward-Fradkin-Green-Takahashi identity which relates 3-point vertices to the 4-point ones. There is an undetermined part which is transverse to one or both the external photons, and needs to be evaluated through perturbation theory. We present in detail how the transverse part at the 1-loop order can be evaluated for completely general kinematics of momenta involved in covariant gauges and dimensions. This involves the calculation of genuine 4-point functions with three massive propagators, the most nontrivial integrals reported in this paper. We also discuss possible applications of our results.
Swarm's Absolute Scalar Magnetometer metrological performances
NASA Astrophysics Data System (ADS)
Leger, J.; Fratter, I.; Bertrand, F.; Jager, T.; Morales, S.
2012-12-01
The Absolute Scalar Magnetometer (ASM) has been developed for the ESA Earth Observation Swarm mission, planned for launch in November 2012. As its Overhauser magnetometers forerunners flown on Oersted and Champ satellites, it will deliver high resolution scalar measurements for the in-flight calibration of the Vector Field Magnetometer manufactured by the Danish Technical University. Latest results of the ground tests carried out to fully characterize all parameters that may affect its accuracy, both at instrument and satellite level, will be presented. In addition to its baseline function, the ASM can be operated either at a much higher sampling rate (burst mode at 250 Hz) or in a dual mode where it also delivers vector field measurements as a by-product. The calibration procedure and the relevant vector performances will be discussed.
Scalar entrainment in the mixing layer
NASA Technical Reports Server (NTRS)
Sandham, N. D.; Mungal, M. G.; Broadwell, J. E.; Reynolds, W. C.
1988-01-01
New definitions of entrainment and mixing based on the passive scalar field in the plane mixing layer are proposed. The definitions distinguish clearly between three fluid states: (1) unmixed fluid, (2) fluid engulfed in the mixing layer, trapped between two scalar contours, and (3) mixed fluid. The difference betwen (2) and (3) is the amount of fluid which has been engulfed during the pairing process, but has not yet mixed. Trends are identified from direct numerical simulations and extensions to high Reynolds number mixing layers are made in terms of the Broadwell-Breidenthal mixing model. In the limit of high Peclet number (Pe = ReSc) it is speculated that engulfed fluid rises in steps associated with pairings, introducing unmixed fluid into the large scale structures, where it is eventually mixed at the Kolmogorov scale. From this viewpoint, pairing is a prerequisite for mixing in the turbulent plane mixing layer.
Anisotropic inflation from charged scalar fields
Emami, Razieh; Firouzjahi, Hassan; Movahed, S.M. Sadegh; Zarei, Moslem E-mail: firouz@ipm.ir E-mail: m.zarei@cc.iut.ac.ir
2011-02-01
We consider models of inflation with U(1) gauge fields and charged scalar fields including symmetry breaking potential, chaotic inflation and hybrid inflation. We show that there exist attractor solutions where the anisotropies produced during inflation becomes comparable to the slow-roll parameters. In the models where the inflaton field is a charged scalar field the gauge field becomes highly oscillatory at the end of inflation ending inflation quickly. Furthermore, in charged hybrid inflation the onset of waterfall phase transition at the end of inflation is affected significantly by the evolution of the background gauge field. Rapid oscillations of the gauge field and its coupling to inflaton can have interesting effects on preheating and non-Gaussianities.
Antimatter signals of singlet scalar dark matter
Goudelis, A.; Mambrini, Y.; Yaguna, C. E-mail: yann.mambrini@th.u-psud.fr
2009-12-01
We consider the singlet scalar model of dark matter and study the expected antiproton and positron signals from dark matter annihilations. The regions of the viable parameter space of the model that are excluded by present data are determined, as well as those regions that will be probed by the forthcoming experiment AMS-02. In all cases, different propagation models are investigated, and the possible enhancement due to dark matter substructures is analyzed. We find that the antiproton signal is more easily detectable than the positron one over the whole parameter space. For a typical propagation model and without any boost factor, AMS-02 will be able to probe –via antiprotons– the singlet model of dark matter up to masses of 600 GeV. Antiprotons constitute, therefore, a promising signal to constraint or detect the singlet scalar model.
School Uniforms: Guidelines for Principals.
ERIC Educational Resources Information Center
Essex, Nathan L.
2001-01-01
Principals desiring to develop a school-uniform policy should involve parents, teachers, community leaders, and student representatives; beware restrictions on religious and political expression; provide flexibility and assistance for low-income families; implement a pilot program; align the policy with school-safety issues; and consider legal…
Uniform Peanut Performance Tests 2012
Technology Transfer Automated Retrieval System (TEKTRAN)
The Uniform Peanut Performance Tests (UPPT) were established in 1973 through an informal arrangement among cooperating scientists involving seven major peanut-producing states. In 1995, plant material transfer agreements were also accepted among all cooperators in the UPPT. The year 2012 completed...
Optimized Direct-Drive Uniformity
NASA Astrophysics Data System (ADS)
Marshall, F. J.; McKenty, P. W.; Kessler, T. J.; Forties, R.; Kelly, J. A.; Waxer, L. J.
2002-11-01
The means of optimizing direct-drive illumination uniformity in laser fusion implosions will be discussed. To provide the most-uniform drive, the target must be illuminated by smooth single beams, symmetrically placed on target, with the optimum beam shape. On the 60-beam OMEGA laser system these near-optimum, direct-drive illumination conditions have been achieved by smoothing each beam with 1-THz smoothing by spectral dispersion (SSD), which incorporates distributed phase plates (DPP's) and polarization smoothing (PS), and by the modified soccer-ball orientation of the beams. The current beam smoothing provides for unprecedented levels of direct-drive uniformity, approaching σ_rms ˜ 2% up to ℓ = 200 after ˜300 ps. The sensitivity of the illumination to beam shape has been studied, and a new set of DPP's have been designed and are being built to further optimize the uniformity on OMEGA. Also, the sensitivity of the drive to beam balance, beam pointing, and target positioning has been studied both by calculation and by performing target implosions allowing quantitative limits to be placed on all contributors. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.
Uniform peanut performance test 2013
Technology Transfer Automated Retrieval System (TEKTRAN)
The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, 2 controls and 13 entries were evaluated at 9 locations....
Uniform Peanut Performance Tests 2011
Technology Transfer Automated Retrieval System (TEKTRAN)
The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, there were 2 controls, 3 Florida lines, 3 Georgia lines,...
Uniform peanut performance test 2015
Technology Transfer Automated Retrieval System (TEKTRAN)
The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, 2 controls and 13 entries were evaluated at 9 locations....
Uniform Peanut Performance Tests 2009
Technology Transfer Automated Retrieval System (TEKTRAN)
The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, there were 2 controls, 3 Florida lines, 6 Georgia lines,...
Uniform Peanut Performance Tests 2007
Technology Transfer Automated Retrieval System (TEKTRAN)
The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, there were 2 controls, 3 Florida lines, 7 Georgia lines,...
Uniform Peanut Performance Tests 2010
Technology Transfer Automated Retrieval System (TEKTRAN)
The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, there were 2 controls, 3 Florida lines, 4 Georgia lines,...
Uniform Peanut Performance Tests 2008
Technology Transfer Automated Retrieval System (TEKTRAN)
The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, there were 2 controls, 3 Florida lines, 6 Georgia lines,...
Noncommutative scalar fields from symplectic deformation
Daoud, M.; Hamama, A.
2008-02-15
This paper is concerned with the quantum theory of noncommutative scalar fields in two dimensional space-time. It is shown that the noncommutativity originates from the the deformation of symplectic structures. The quantization is performed and the modes expansions of the fields, in the presence of an electromagnetic background, are derived. The Hamiltonian of the theory is given and the degeneracies lifting, induced by the deformation, is also discussed.
Scalar waves in the Witten bubble spacetime
Bhawal, B. Raman Research Institute, Bangalore ); Vishveshwara, C.V. )
1990-09-15
Massless scalar waves in the Witten bubble spacetime are studied. The timelike and angular parts of the separated Klein-Gordon equation are written in terms of hyperbolic harmonics characterized by the generalized frequency {omega}. The radial equation is cast into the Schroedinger form. The above mathematical formulation is applied to study the scattering problem, the bound states, and the corresponding stability criteria. The results confirm the concept of a bubble wall as a perfectly reflecting expanding sphere.
Robinson-Trautman solution with scalar hair
NASA Astrophysics Data System (ADS)
Tahamtan, T.; Svítek, O.
2015-05-01
The explicit Robinson-Trautman solution with a minimally coupled free scalar field is derived and analyzed. It is shown that this solution contains curvature singularity, which is initially naked but later enveloped by the horizon. We use the quasilocal horizon definition and prove its existence in later retarded times using sub- and supersolution method combined with growth estimates. We show that the solution is generally of algebraic type II but reduces to type D in spherical symmetry.
Gravitational collapse of a scalar field
Maithreyan, T.
1985-01-01
A self-similar collapse of massless scalar waves is considered, and the Einstein field equations in classical general relativity are solved to obtain the metric for the collapse. These scalar waves satisfy the massless wave equation and the energy momentum tensor associated with them is derived from their Lagrangian density. The collapse begins at t = 0 before which spacetime is flat, empty spacetime described by the Minkowski metric. Self similarity assumes that a homothetic Killing vector exists for the collapse, which satisfies the corresponding homothetic Killing equation. The solution obtained contains a constant c/sup 2/ whose value determines the nature of the collapse and the kind of singularity formed by the collapsing scalar waves. The three different cases are outlined and the corresponding Penrose diagrams are given. The apparent horizons, defined by Hawking as the limit of the trapped surfaces surrounding the singularity, are calculated for each case. A quantum correction is given for the above classical picture using the method developed originally by Hawking, to study particle creation by a black hole.
FESDIF -- Finite Element Scalar Diffraction theory code
Kraus, H.G.
1992-09-01
This document describes the theory and use of a powerful scalar diffraction theory based computer code for calculation of intensity fields due to diffraction of optical waves by two-dimensional planar apertures and lenses. This code is called FESDIF (Finite Element Scalar Diffraction). It is based upon both Fraunhofer and Kirchhoff scalar diffraction theories. Simplified routines for circular apertures are included. However, the real power of the code comes from its basis in finite element methods. These methods allow the diffracting aperture to be virtually any geometric shape, including the various secondary aperture obstructions present in telescope systems. Aperture functions, with virtually any phase and amplitude variations, are allowed in the aperture openings. Step change aperture functions are accommodated. The incident waves are considered to be monochromatic. Plane waves, spherical waves, or Gaussian laser beams may be incident upon the apertures. Both area and line integral transformations were developed for the finite element based diffraction transformations. There is some loss of aperture function generality in the line integral transformations which are typically many times more computationally efficient than the area integral transformations when applicable to a particular problem.
Scalar-vector quantization of medical images.
Mohsenian, N; Shahri, H; Nasrabadi, N M
1996-01-01
A new coding scheme based on the scalar-vector quantizer (SVQ) is developed for compression of medical images. The SVQ is a fixed rate encoder and its rate-distortion performance is close to that of optimal entropy-constrained scalar quantizers (ECSQs) for memoryless sources. The use of a fixed-rate quantizer is expected to eliminate some of the complexity of using variable-length scalar quantizers. When transmission of images over noisy channels is considered, our coding scheme does not suffer from error propagation that is typical of coding schemes using variable-length codes. For a set of magnetic resonance (MR) images, coding results obtained from SVQ and ECSQ at low bit rates are indistinguishable. Furthermore, our encoded images are perceptually indistinguishable from the original when displayed on a monitor. This makes our SVQ-based coder an attractive compression scheme for picture archiving and communication systems (PACS). PACS are currently under study for use in an all-digital radiology environment in hospitals, where reliable transmission, storage, and high fidelity reconstruction of images are desired. PMID:18285124
Age Crises, Scalar Fields, and the Apocalypse
NASA Astrophysics Data System (ADS)
Jackson, J. C.
Recent observations suggest that Hubble's constant is large, to the extent that the oldest stars appear to have ages which are greater than the Hubble time, and that the Hubble expansion is slowing down, so that according to conventional cosmology the age of the Universe is less than the Hubble time. The concepts of weak and strong age crises (respectively t0<1/H0 but longer than the age inferred from some lower limit on q0, and t0>1/H0 and q0>0) are introduced. These observations are reconciled in models which are dynamically dominated by a homogeneous scalar field, corresponding to an ultra-light boson whose Compton wavelength is of the same order as the Hubble radius. Two such models are considered, an open one with vacuum energy comprising a conventional cosmological term and a scalar field component, and a flat one with a scalar component only, aimed respectively at weak and strong age crises. Both models suggest that anti-gravity plays a significant role in the evolution of the Universe.
Scalar meson spectroscopy with lattice staggered fermions
Bernard, Claude; DeTar, Carleton; Fu Ziwen; Prelovsek, Sasa
2007-11-01
With sufficiently light up and down quarks the isovector (a{sub 0}) and isosinglet (f{sub 0}) scalar meson propagators are dominated at large distance by two-meson states. In the staggered-fermion formulation of lattice quantum chromodynamics, taste-symmetry breaking causes a proliferation of two-meson states that further complicates the analysis of these channels. Many of them are unphysical artifacts of the lattice approximation. They are expected to disappear in the continuum limit. The staggered-fermion fourth-root procedure has its purported counterpart in rooted staggered chiral perturbation theory (rS{chi}PT). Fortunately, the rooted theory provides a strict framework that permits the analysis of scalar meson correlators in terms of only a small number of low-energy couplings. Thus the analysis of the point-to-point scalar meson correlators in this context gives a useful consistency check of the fourth-root procedure and its proposed chiral realization. Through numerical simulation we have measured correlators for both the a{sub 0} and f{sub 0} channels in the 'Asqtad' improved staggered-fermion formulation in a lattice ensemble with lattice spacing a=0.12 fm. We analyze those correlators in the context of rS{chi}PT and obtain values of the low-energy chiral couplings that are reasonably consistent with previous determinations.
Hohenberg-Kohn theorems in electrostatic and uniform magnetostatic fields
Pan, Xiao-Yin; Sahni, Viraht
2015-11-07
The Hohenberg-Kohn (HK) theorems of bijectivity between the external scalar potential and the gauge invariant nondegenerate ground state density, and the consequent Euler variational principle for the density, are proved for arbitrary electrostatic field and the constraint of fixed electron number. The HK theorems are generalized for spinless electrons to the added presence of an external uniform magnetostatic field by introducing the new constraint of fixed canonical orbital angular momentum. Thereby, a bijective relationship between the external scalar and vector potentials, and the gauge invariant nondegenerate ground state density and physical current density, is proved. A corresponding Euler variational principle in terms of these densities is also developed. These theorems are further generalized to electrons with spin by imposing the added constraint of fixed canonical orbital and spin angular momenta. The proofs differ from the original HK proof and explicitly account for the many-to-one relationship between the potentials and the nondegenerate ground state wave function. A Percus-Levy-Lieb constrained-search proof expanding the domain of validity to N-representable functions, and to degenerate states, again for fixed electron number and angular momentum, is also provided.
Total Variation Diminishing (TVD) schemes of uniform accuracy
NASA Technical Reports Server (NTRS)
Hartwich, PETER-M.; Hsu, Chung-Hao; Liu, C. H.
1988-01-01
Explicit second-order accurate finite-difference schemes for the approximation of hyperbolic conservation laws are presented. These schemes are nonlinear even for the constant coefficient case. They are based on first-order upwind schemes. Their accuracy is enhanced by locally replacing the first-order one-sided differences with either second-order one-sided differences or central differences or a blend thereof. The appropriate local difference stencils are selected such that they give TVD schemes of uniform second-order accuracy in the scalar, or linear systems, case. Like conventional TVD schemes, the new schemes avoid a Gibbs phenomenon at discontinuities of the solution, but they do not switch back to first-order accuracy, in the sense of truncation error, at extrema of the solution. The performance of the new schemes is demonstrated in several numerical tests.
Searches for scalar top and scalar bottom quarks at LEP2
NASA Astrophysics Data System (ADS)
ALEPH Collaboration; Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Bazarko, A. O.; Becker, U.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rizzo, G.; Rolandi, L.; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J. C.; Machefert, F.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Huehn, T.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Thomson, F.; Turnbull, R. M.; Buchmüller, O.; Dhamotharan, S.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Morawitz, P.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Spagnolo, P.; Stacey, A. M.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Carr, J.; Coyle, P.; Diaconu, C.; Ealet, A.; Fouchez, D.; Konstantinidis, N.; Leroy, O.; Motsch, F.; Payre, P.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Schune, M.-H.; Serin, L.; Simion, S.; Tournefier, E.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Ciulli, V.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Steinberger, J.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Fabbro, B.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Cowan, G.; Foss, J.; Grupen, C.; Lutters, G.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A., III; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zobernig, G.
1997-11-01
Searches for scalar top and bottom quarks have been performed with data collected by the ALEPH detector at LEP. The data sample consists of 21.7 pb-1 taken at sqrt(s) = 161, 170, and 172 GeV and 5.7 pb-1 taken at sqrt(s) = 130 and 136 GeV. No evidence for scalar top quarks or scalar bottom quarks was found in the channels t~-->cχ, t~-->blν~, and b~-->bχ. For the channel t~-->cχ a limit of 67 GeV/c2has been set on the scalar top quark mass, independent of the mixing angle between the supersymmetric partners of the left and right-handed states of the top quark. This limit assumes a mass difference between the t~ and the χ of at least 10 GeV/c2. For the channel t~-->blν~ the mixing-angle independent scalar top limit is 70 GeV/c2, assuming a mass difference between the t~ and the ν~ of at least 10 GeV/c2. For the channel b~-->bχ, a limit of 73 GeV/c2has been set on the mass of the supersymmetric partner of the left-handed state of the bottom quark. This limit is valid if the mass difference between the b~ and the χ is at least 10 GeV/c2.
Spectral viscosity approximations to multidimensional scalar conservation laws
Chen, Gui-Qiang ); Du, Qiang ); Tadmor, E. )
1993-10-01
The authors study the spectral viscosity (SV) method in the context of multidimensional scalar conservation laws with periodic boundary conditions. They show that the spectral viscosity, which is sufficiently small to retain the formal spectral accuracy of the underlying Fourier approximation, is large enough to enforce the correct amount of entropy dissipation (which is otherwise missing in the standard Fourier method). Moreover, they prove that because of the presence of the spectral viscosity, the truncation error in this case becomes spectrally small, independent of whether the underlying solution is smooth or not. Consequently, the SV approximation remains uniformly bounded and converges to a measure-valued solution satisfying the entropy condition, that is, the unique entropy solution. They also show that the SV solution has a bounded total variation, provided that the total variation of the initial data is bounded, thus confirming its strong convergence to the entropy solution. They obtain an L[sup 1] convergence rate of the usual optimal order one-half. 22 refs.
Adaptive Force Control in Compliant Motion
NASA Technical Reports Server (NTRS)
Seraji, H.
1994-01-01
This paper addresses the problem of controlling a manipulator in compliant motion while in contact with an environment having an unknown stiffness. Two classes of solutions are discussed: adaptive admittance control and adaptive compliance control. In both admittance and compliance control schemes, compensator adaptation is used to ensure a stable and uniform system performance.
(An)Isotropic models in scalar and scalar-tensor cosmologies
NASA Astrophysics Data System (ADS)
Belinchón, José Antonio
2012-04-01
We study how the constants G and Λ may vary in different theoretical models (general relativity with a perfect fluid, scalar cosmological models ("quintessence") with and without interacting scalar and matter fields and a scalar-tensor model with a dynamical Λ) in order to explain some observational results. We apply the program outlined in section II to study three different geometries which generalize the FRW ones, which are Bianchi V, VII0 and IX, under the self-similarity hypothesis. We put special emphasis on calculating exact power-law solutions which allow us to compare the different models. In all the studied cases we arrive at the conclusion that the solutions are isotropic and noninflationary while the cosmological constant behaves as a positive decreasing time function (in agreement with the current observations) and the gravitational constant behaves as a growing time function.
Method for uniformly bending conduits
Dekanich, S.J.
1984-04-27
The present invention is directed to a method for bending metal tubing through various radii while maintaining uniform cross section of the tubing. The present invention is practical by filling the tubing to a sufficient level with water, freezing the water to ice and bending the ice-filled tubing in a cooled die to the desired radius. The use of the ice as a filler material provides uniform cross-sectional bends of the tubing and upon removal of the ice provides an uncontaminated interior of the tubing which will enable it to be used in its intended application without encountering residual contaminants in the tubing due to the presence of the filler material.
Reactor for making uniform capsules
NASA Technical Reports Server (NTRS)
Wang, Taylor G. (Inventor); Anikumar, Amrutur V. (Inventor); Lacik, Igor (Inventor)
1999-01-01
The present invention provides a novel reactor for making capsules with uniform membrane. The reactor includes a source for providing a continuous flow of a first liquid through the reactor; a source for delivering a steady stream of drops of a second liquid to the entrance of the reactor; a main tube portion having at least one loop, and an exit opening, where the exit opening is at a height substantially equal to the entrance. In addition, a method for using the novel reactor is provided. This method involves providing a continuous stream of a first liquid; introducing uniformly-sized drops of the second liquid into the stream of the first liquid; allowing the drops to react in the stream for a pre-determined period of time; and collecting the capsules.
Small Arms: Treated Uniforms for Personal Protection
Technology Transfer Automated Retrieval System (TEKTRAN)
Permethrin-treatment of field-worn U.S. Military uniforms has been standard practice since 1991. The uniform fabric composition has changed significantly from 100% cotton to 50:50 nylon:cotton Battle Dress Uniforms (BDUs), to 50:50 nylon:cotton Army Combat Uniforms (ACUs) with wrinkle-free finish, a...
Uniform batch processing using microwaves
NASA Technical Reports Server (NTRS)
Barmatz, Martin B. (Inventor); Jackson, Henry W. (Inventor)
2000-01-01
A microwave oven and microwave heating method generates microwaves within a cavity in a predetermined mode such that there is a known region of uniform microwave field. Samples placed in the region will then be heated in a relatively identical manner. Where perturbations induced by the samples are significant, samples are arranged in a symmetrical distribution so that the cumulative perturbation at each sample location is the same.
Blue, C.A.; Sikka, V.K.; Chun, Jung-Hoon; Ando, T.
1997-04-01
The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets that can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.
Boundedness of Massless Scalar Waves on Reissner-Nordström Interior Backgrounds
NASA Astrophysics Data System (ADS)
Franzen, Anne T.
2016-04-01
We consider solutions of the scalar wave equation {Box_gφ=0}, without symmetry, on fixed subextremal Reissner-Nordström backgrounds {({M}, g)} with nonvanishing charge. Previously, it has been shown that for ϕ arising from sufficiently regular data on a two ended Cauchy hypersurface, the solution and its derivatives decay suitably fast on the event horizon {{H}^+}. Using this, we show here that ϕ is in fact uniformly bounded, {|φ| ≤ C}, in the black hole interior up to and including the bifurcate Cauchy horizon {{C}{H}^+}, to which ϕ in fact extends continuously. The proof depends on novel weighted energy estimates in the black hole interior which, in combination with commutation by angular momentum operators and application of Sobolev embedding, yield uniform pointwise estimates. In a forthcoming companion paper we will extend the result to subextremal Kerr backgrounds with nonvanishing rotation.
On the prior dependence of constraints on the tensor-to-scalar ratio
Cortês, Marina; Liddle, Andrew R.; Parkinson, David E-mail: a.liddle@sussex.ac.uk
2011-09-01
We investigate the prior dependence of constraints on cosmic tensor perturbations. Commonly imposed is the strong prior of the single-field inflationary consistency equation, relating the tensor spectral index n{sub T} to the tensor-to-scalar ratio r. Dropping it leads to significantly different constraints on n{sub T}, with both positive and negative values allowed with comparable likelihood, and substantially increases the upper limit on r on scales k = 0.01 Mpc{sup -1} to 0.05 Mpc{sup -1}, by a factor of ten or more. Even if the consistency equation is adopted, a uniform prior on r on one scale does not correspond to a uniform one on another; constraints therefore depend on the pivot scale chosen. We assess the size of this effect and determine the optimal scale for constraining the tensor amplitude, both with and without the consistency relation.
NASA Astrophysics Data System (ADS)
Kakita, Veera Mohana Rao; Kupče, Eriks; Bharatam, Jagadeesh
2015-02-01
Unambiguous measurement of homonuclear scalar couplings (J) in multi-spin scalar network systems is not straightforward. Further, the direct measurement of J-couplings is obscured in solid-state samples due to the dipolar and chemical shift anisotropy (CSA)-dominated line broadening, even under the magic angle spinning (MAS). We present a new multiple frequency selective spin-echo method based on Hadamard matrix encoding, for simultaneous measurement of multiple homonuclear scalar couplings (J) in the solid-state. In contrast to the Hadamard encoded selective excitation schemes known for the solution-state, herein the selectivity is achieved during refocusing period. The Hadamard encoded refocusing scheme concurrently allows to create the spin-spin commutation property between number of spin-pairs of choice in uniformly labelled molecules, which, therefore avoids (1) the repetition of the double selective refocusing experiments for each spin-pair and (2) the synthesis of expensive selective labelled molecules. The experimental scheme is exemplified for determining 1JCC and 3JCC values in 13C6L-Histidine.HCl molecule, which are found to be in excellent agreement with those measured in conventional double frequency selective refocusing mode as well as in the solution-state. This method can be simply extended to 2D/3D pulse schemes and be applied to small bio-molecular solids.
Kakita, Veera Mohana Rao; Kupče, Eriks; Bharatam, Jagadeesh
2015-02-01
Unambiguous measurement of homonuclear scalar couplings (J) in multi-spin scalar network systems is not straightforward. Further, the direct measurement of J-couplings is obscured in solid-state samples due to the dipolar and chemical shift anisotropy (CSA)-dominated line broadening, even under the magic angle spinning (MAS). We present a new multiple frequency selective spin-echo method based on Hadamard matrix encoding, for simultaneous measurement of multiple homonuclear scalar couplings (J) in the solid-state. In contrast to the Hadamard encoded selective excitation schemes known for the solution-state, herein the selectivity is achieved during refocusing period. The Hadamard encoded refocusing scheme concurrently allows to create the spin-spin commutation property between number of spin-pairs of choice in uniformly labelled molecules, which, therefore avoids (1) the repetition of the double selective refocusing experiments for each spin-pair and (2) the synthesis of expensive selective labelled molecules. The experimental scheme is exemplified for determining (1)JCC and (3)JCC values in (13)C6l-Histidine.HCl molecule, which are found to be in excellent agreement with those measured in conventional double frequency selective refocusing mode as well as in the solution-state. This method can be simply extended to 2D/3D pulse schemes and be applied to small bio-molecular solids. PMID:25554944
Supernova remnant evolution in uniform and non-uniform media
NASA Astrophysics Data System (ADS)
Ferreira, S. E. S.; de Jager, O. C.
2008-01-01
Aims:In this work numerical simulations showing the time evolution of supernova remnants (SNRs) in uniform and non-uniform interstellar medium (ISM) are presented. Methods: We use a hydrodynamic model including a kinematic calculation of the interstellar magnetic field. Important parameters influencing SNR evolution include the ejecta mass and energy of the remnant, as well as the ISM density and adiabatic index. Results: By varying these parameters we constructed an analytical expression giving the return time of the SNR reverse shock to the origin, in terms of these parameters. We also found that the reverse shock spends half of its time moving outward and the other half returning to the origin. Also computed is SNR evolution in non-uniform media where the blast wave moves from one medium into either a less or more dense medium. As the SNR moves into a medium of higher density a reflection wave is created at the interface between the two media which is driven back toward the center. This drives mass via a nonspherical flow away from the discontinuity. As this wave moves inward it also drags some of the ISM field lines (if the field is parallel with the interface) with it and heats the inside of the SNR resulting in larger temperatures in this region. When a SNR explodes in a medium with a high density and the blast wave propagates into a medium with a lower density, a cavity is being blown away changing the geometry of the high density region. Also, once the forward shock moves into the medium of less density a second reverse shock will start to evolve in this region.
Astrophysical effects of scalar dark matter miniclusters
NASA Astrophysics Data System (ADS)
Zurek, Kathryn M.; Hogan, Craig J.; Quinn, Thomas R.
2007-02-01
We model the formation, evolution and astrophysical effects of dark compact Scalar Miniclusters (“ScaMs”). These objects arise when a scalar field, with an axion-like or Higgs-like potential, undergoes a second-order phase transition below the QCD scale. Such a scalar field may couple too weakly to the standard model to be detectable directly through particle interactions, but may still be detectable by gravitational effects, such as lensing and baryon accretion by large, gravitationally bound miniclusters. The masses of these objects are shown to be constrained by the Lyα power spectrum to be less than ˜104M⊙, but they may be as light as classical axion miniclusters, of the order of 10-12M⊙. We simulate the formation and nonlinear gravitational collapse of these objects around matter-radiation equality using an N-body code, estimate their gravitational lensing properties, and assess the feasibility of studying them using current and future lensing experiments. Future MACHO-type variability surveys of many background sources can reveal either high-amplification, strong-lensing events, or measure density profiles directly via weak-lensing variability, depending on ScaM parameters and survey depth. However, ScaMs, due to their low internal densities, are unlikely to be responsible for apparent MACHO events already detected in the Galactic halo. As a result, in the entire window between 10-7M⊙ and 102M⊙ covered by the galactic scale lensing experiments, ScaMs may in fact compose all the dark matter. A simple estimate is made of parameters that would give rise to early structure formation; in principle, early stellar collapse could be triggered by ScaMs as early as recombination, and significantly affect cosmic reionization.
Scalar wave diffraction from a circular aperture
Cerjan, C.
1995-01-25
The scalar wave theory is used to evaluate the expected diffraction patterns from a circular aperture. The standard far-field Kirchhoff approximation is compared to the exact result expressed in terms of oblate spheroidal harmonics. Deviations from an expanding spherical wave are calculated for circular aperture radius and the incident beam wavelength using suggested values for a recently proposed point diffractin interferometer. The Kirchhoff approximation is increasingly reliable in the far-field limit as the aperture radius is increased, although significant errors in amplitude and phase persist.
Scalar-field theory of dark matter
NASA Astrophysics Data System (ADS)
Huang, Kerson; Xiong, Chi; Zhao, Xiaofei
2014-05-01
We develop a theory of dark matter based on a previously proposed picture, in which a complex vacuum scalar field makes the universe a superfluid, with the energy density of the superfluid giving rise to dark energy, and variations from vacuum density giving rise to dark matter. We formulate a nonlinear Klein-Gordon equation to describe the superfluid, treating galaxies as external sources. We study the response of the superfluid to the galaxies, in particular, the emergence of the dark-matter galactic halo, contortions during galaxy collisions and the creation of vortices due to galactic rotation.
Casimir effect for massive scalar field
NASA Astrophysics Data System (ADS)
Mobassem, S.
2014-10-01
The energy-momentum tensor is used to introduce the Casimir force of the massive scalar field acting on a nonpenetrating surface. This expression can be used to evaluate the vacuum force by employing the appropriate field operators. To simplify our formalism, we also relate the vacuum force expression to the imaginary part of the Green function via the fluctuation-dissipation theorem and Kubo's formula. This allows one to evaluate the vacuum force without resorting to the process of field quantization. These two approaches are used to calculate the attractive force between two nonpenetrating plates. Special attention is paid to the generalization of the formalism to D+1 spacetime dimensions.
Scalar mesons and polarizability of the nucleon
Schumacher, Martin
2008-08-31
It is shown that the scalar mesons {sigma}, f{sub 0}(980) and a{sub 0}(980) as t-channel exchanges quantitatively solve the problem of diamagnetism and give an explanation of the large missing part of the electric polarizability {alpha} showing up when only the pion cloud is taken into account. The electric polarizability of the proton {alpha}{sub p} confirms a two-photon width of the {sigma} meson of {gamma}{sub {sigma}}{sub {gamma}}{sub {gamma}} = (2.58{+-}0.26) keV.
Global integrability of cosmological scalar fields
NASA Astrophysics Data System (ADS)
Maciejewski, Andrzej J.; Przybylska, Maria; Stachowiak, Tomasz; Szydłowski, Marek
2008-11-01
We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with the chaos present in such cosmological models, and the issues of the integrability restricted to the real domain.
Induced gravity I: real scalar field
NASA Astrophysics Data System (ADS)
Einhorn, Martin B.; Jones, D. R. Timothy
2016-01-01
We show that classically scale invariant gravity coupled to a single scalar field can undergo dimensional transmutation and generate an effective Einstein-Hilbert action for gravity, coupled to a massive dilaton. The same theory has an ultraviolet fixed point for coupling constant ratios such that all couplings are asymptotically free. However the catchment basin of this fixed point does not include regions of coupling constant parameter space compatible with locally stable dimensional transmutation. In a companion paper, we will explore whether this more desirable outcome does obtain in more complicated theories with non-Abelian gauge interactions.
Scalar Potential Model of photon diffraction
NASA Astrophysics Data System (ADS)
Hodge, John
2011-04-01
Some observations of light are inconsistent with a wave-like model. Other observations of light are inconsistent with a traditional particle-like model. A single model of light has remained a mystery. Newton's speculations, Democritus's speculations, the Bohm interpretation, and the fractal philosophy are combined with the cosmological Scalar Potential Model (SPM). The resulting model of photon structure and dynamics is tested by a toy computer experiment. The simulations included light from a distance and Young's experiment. The patterns on the screens showed diffraction wave patterns fit by the Fresnel equation. The model is consistent with the Afshar experiment and with the concepts of Bohmian mechanics.
Scalar field collapse with negative cosmological constant
NASA Astrophysics Data System (ADS)
Baier, R.; Nishimura, H.; Stricker, S. A.
2015-07-01
The formation of black holes or naked singularities is studied in a model in which a homogeneous time-dependent scalar field with an exponential potential couples to four-dimensional gravity with negative cosmological constant. An analytic solution is derived and its consequences are discussed. The model depends only on one free parameter, which determines the equation of state and decides the fate of the spacetime. Without fine tuning the value of this parameter the collapse ends in a generic formation of a black hole or a naked singularity. The latter case violates the cosmic censorship conjecture.
Modeling dynamical scalarization with a resummed post-Newtonian expansion
NASA Astrophysics Data System (ADS)
Sennett, Noah; Buonanno, Alessandra
2016-06-01
Despite stringent constraints set by astrophysical observations, there remain viable scalar-tensor theories that could be distinguished from general relativity with gravitational-wave detectors. A promising signal predicted in these alternative theories is dynamical scalarization, which can dramatically affect the evolution of neutron-star binaries near merger. Motivated by the successful treatment of spontaneous scalarization, we develop a formalism that partially resums the post-Newtonian expansion to capture dynamical scalarization in a mathematically consistent manner. We calculate the post-Newtonian order corrections to the equations of motion and scalar mass of a binary system. Through comparison with quasiequilibrium configuration calculations, we verify that this new approximation scheme can accurately predict the onset and magnitude of dynamical scalarization.
Study of Several Potentials as Scalar Field Dark Matter Candidates
Matos, Tonatiuh; Vazquez-Gonzalez, Alberto; Magan a, Juan
2008-12-04
In this work we study several scalar field potentials as a plausible candidate to be the dark matter in the universe. The main idea is the following; if the scalar field is an ultralight boson particle, it condensates like a Bose-Einstein system at very early times and forms the basic structure of the Universe. Real scalar fields collapse in equilibrium configurations which oscillate in space-time (oscillatons). The cosmological behavior of the field equations are solved using the dynamical system formalism. We use the current cosmological parameters as constraints for the free parameters of the scalar field potentials. We are able to reproduce very well the cosmological predictions of the standard {lambda}CDM model with some scalar field potentials. Therefore, scalar field dark matter seems to be a good alternative to be the nature of the dark matter of the universe.
Analytical solution for scalar transport in open channel flow: Slow-decaying transient effect
NASA Astrophysics Data System (ADS)
Wu, Zi; Chen, G. Q.
2014-11-01
It is well known that the extensively applied Taylor dispersion model only predicts the longitudinally distributed mean concentration. While at the same time, applications as the risk assessment for toxic pollutant transport in environmental fluid flows require detailed information on the cross-sectional concentration distribution. As shown by some recent progress (Wu, Z., Chen, G.Q., 2014, J. Fluid Mech., 740, 196-213.), the deviation of transverse concentration from the mean can be remarkable for a very long time, which is termed as the slow-decaying transient effect. Thus it is important to examine the process of concentration evolution for scalar transport in laminar open channel flow. In this paper, the idealized case of a uniform and instantaneous scalar release across the channel is analytically explored by a two-scale perturbation analysis. The validity of the Taylor dispersion model for the mean concentration is discussed by the obtained analytical solution. For the first time, the two-dimensional concentration distribution for the open channel flow is explored analytically. Corresponding time scales for the concentration evolution are determined, indicating that the process for the vertical concentration difference to diminish will be much slower than that for the mean concentration to become Gaussian. Dominated by the so-called slow-decaying transient effect, the uniform vertical distribution needs to be modified to predict the vertical concentration distribution correctly.
Constructing scalar-photon three point vertex in massless quenched scalar QED
NASA Astrophysics Data System (ADS)
Fernández-Rangel, L. Albino; Bashir, Adnan; Gutiérrez-Guerrero, L. X.; Concha-Sánchez, Y.
2016-03-01
Nonperturbative studies of Schwinger-Dyson equations require their infinite, coupled tower to be truncated in order to reduce them to a practically solvable set. In this connection, a physically acceptable Ansatz for the three point vertex is the most favorite choice. Scalar quantum electrodynamics (sQED) provides a simple and neat platform to address this problem. The most general form of the three point scalar-photon vertex can be expressed in terms of only two independent form factors, a longitudinal and a transverse one. Ball and Chiu have demonstrated that the longitudinal vertex is fixed by requiring the Ward-Fradkin-Green-Takahashi identity while the transverse vertex remains undetermined. In massless quenched sQED, we construct the transverse part of the nonperturbative scalar-photon vertex. This construction (i) ensures multiplicative renormalizability of the scalar propagator in keeping with the Landau-Khalatnikov-Fradkin transformations, (ii) has the same transformation properties as the bare vertex under charge conjugation, parity and time reversal, (iii) has no kinematic singularities and (iv) reproduces the one-loop asymptotic result in the weak coupling regime of the theory.
Quantum tunneling from scalar fields in rotating black strings
NASA Astrophysics Data System (ADS)
Gohar, H.; Saifullah, K.
2013-08-01
Using the Hamilton-Jacobi method of quantum tunneling and complex path integration, we study Hawking radiation of scalar particles from rotating black strings. We discuss tunneling of both charged and uncharged scalar particles from the event horizons. For this purpose, we use the Klein-Gordon equation and find the tunneling probability of outgoing scalar particles. The procedure gives Hawking temperature for rotating charged black strings as well.
Black holes with surrounding matter in scalar-tensor theories.
Cardoso, Vitor; Carucci, Isabella P; Pani, Paolo; Sotiriou, Thomas P
2013-09-13
We uncover two mechanisms that can render Kerr black holes unstable in scalar-tensor gravity, both associated with the presence of matter in the vicinity of the black hole and the fact that this introduces an effective mass for the scalar. Our results highlight the importance of understanding the structure of spacetime in realistic, astrophysical black holes in scalar-tensor theories. PMID:24074068
Massive basketball diagram for a thermal scalar field theory
NASA Astrophysics Data System (ADS)
Andersen, Jens O.; Braaten, Eric; Strickland, Michael
2000-08-01
The ``basketball diagram'' is a three-loop vacuum diagram for a scalar field theory that cannot be expressed in terms of one-loop diagrams. We calculate this diagram for a massive scalar field at nonzero temperature, reducing it to expressions involving three-dimensional integrals that can be easily evaluated numerically. We use this result to calculate the free energy for a massive scalar field with a φ4 interaction to three-loop order.
B meson decays into charmless pseudoscalar scalar mesons
Delepine, D.; Lucio M, J. L.; Ramirez, Carlos A.; Mendoza S, J. A.
2007-06-19
The nonleptonic weak decays of meson B into a scalar and pseudoscalar meson are studied. The scalar mesons under consideration are {sigma} (or f0(600)), f0(980), a0(980) and K{sub 0}{sup *}(1430). We calculate the Branching ratios in the Naive Factorization approximation. Scalars are assumed to be qq-bar bounded sates, but an estimation can be obtained in the case they are four bounded states.
Scalar dissipation rate statistics in turbulent swirling jets
NASA Astrophysics Data System (ADS)
Stetsyuk, V.; Soulopoulos, N.; Hardalupas, Y.; Taylor, A. M. K. P.
2016-07-01
The scalar dissipation rate statistics were measured in an isothermal flow formed by discharging a central jet in an annular stream of swirling air flow. This is a typical geometry used in swirl-stabilised burners, where the central jet is the fuel. The flow Reynolds number was 29 000, based on the area-averaged velocity of 8.46 m/s at the exit and the diameter of 50.8 mm. The scalar dissipation rate and its statistics were computed from two-dimensional imaging of the mixture fraction fields obtained with planar laser induced fluorescence of acetone. Three swirl numbers, S, of 0.3, 0.58, and 1.07 of the annular swirling stream were considered. The influence of the swirl number on scalar mixing, unconditional, and conditional scalar dissipation rate statistics were quantified. A procedure, based on a Wiener filter approach, was used to de-noise the raw mixture fraction images. The filtering errors on the scalar dissipation rate measurements were up to 15%, depending on downstream positions from the burner exit. The maximum of instantaneous scalar dissipation rate was found to be up to 35 s-1, while the mean dissipation rate was 10 times smaller. The probability density functions of the logarithm of the scalar dissipation rate fluctuations were found to be slightly negatively skewed at low swirl numbers and almost symmetrical when the swirl number increased. The assumption of statistical independence between the scalar and its dissipation rate was valid for higher swirl numbers at locations with low scalar fluctuations and less valid for low swirl numbers. The deviations from the assumption of statistical independence were quantified. The conditional mean of the scalar dissipation rate, the standard deviation of the scalar dissipation rate fluctuations, the weighted probability of occurrence of the mean conditional scalar dissipation rate, and the conditional probability are reported.
Christiansen Revisited: Rethinking Quantification of Uniformity in Rainfall Simulator Studies
NASA Astrophysics Data System (ADS)
Green, Daniel; Pattison, Ian
2016-04-01
Rainfall simulators, whether based within a laboratory or field setting are used extensively within a number of fields of research, including plot-scale runoff, infiltration and erosion studies, irrigation and crop management and scaled investigations into urban flooding. Rainfall simulators offer a number of benefits, including the ability to create regulated and repeatable rainfall characteristics (e.g. intensity, duration, drop size distribution and kinetic energy) without relying on unpredictable natural precipitation regimes. Ensuring and quantifying spatially uniform simulated rainfall across the entirety of the plot area is of particular importance to researchers undertaking rainfall simulation. As a result, numerous studies have focused on the quantification and improvement of uniformity values. Several statistical methods for the assessment of rainfall simulator uniformity have been developed. However, the Christiansen Uniformity Coefficient (CUC) suggested by Christiansen (1942) is most frequently used. Despite this, there is no set methodology and researchers can adapt or alter factors such as the quantity, as well as the spacing, distance and location of the measuring beakers used to derive CUC values. Because CUC values are highly sensitive to the resolution of the data, i.e. the number of observations taken, many densely distributed measuring containers subjected to the same experimental conditions may generate a significantly lower CUC value than fewer, more sparsely distributed measuring containers. Thus, the simulated rainfall under a higher resolution sampling method could appear less uniform than when using a coarser resolution sampling method, despite being derived from the same initial rainfall conditions. Expressing entire plot uniformity as a single, simplified percentage value disregards valuable qualitative information about plot uniformity, such as the small-scale spatial distribution of rainfall over the plot surface and whether these
Scalar self-interactions loosen constraints from fifth force searches
Gubser, Steven S.; Khoury, Justin
2004-11-15
The mass of a scalar field mediating a fifth force is tightly constrained by experiments. We show, however, that adding a quartic self-interaction for such a scalar makes most tests much less constraining: the nonlinear equation of motion masks the coupling of the scalar to matter through the chameleon mechanism. We discuss consequences for fifth force experiments. In particular, we find that, with quartic coupling of order unity, a gravitational strength interaction with matter is allowed by current constraints. We show that our chameleon scalar field results in experimental signatures that could be detected through modest improvements of current laboratory set-ups.
Inert scalar doublet asymmetry as origin of dark matter
NASA Astrophysics Data System (ADS)
Dhen, Mikaël; Hambye, Thomas
2015-10-01
In the inert scalar doublet framework, we analyze what would be the effect of a B -L asymmetry that could have been produced at high temperature in the thermal bath of the Universe. We show that unless the "λ5" scalar interaction is tiny, this asymmetry is automatically reprocessed in part into an inert scalar asymmetry that could be at the origin of dark matter today. Along this scenario, the inert mass scale lies in the few-TeV range, and direct detection constraints require that the inert scalar particles decay into a lighter dark matter particle which, as the inert doublet, is odd under a Z2 symmetry.
Charged scalar perturbations around a regular magnetic black hole
NASA Astrophysics Data System (ADS)
Huang, Yang; Liu, Dao-Jun
2016-05-01
We study charged scalar perturbations in the background of a regular magnetic black hole. In this case, the charged scalar perturbation does not result in superradiance. By using a careful time-domain analysis, we show that the charge of the scalar field can change the real part of the quasinormal frequency, but has little impact on the imaginary part of the quasinormal frequency and the behavior of the late-time tail. Therefore, the regular magnetic black hole may be stable under the perturbations of a charged scalar field at the linear level.
Inflationary solutions in the nonminimally coupled scalar field theory
NASA Astrophysics Data System (ADS)
Koh, Seoktae; Kim, Sang Pyo; Song, Doo Jong
2005-08-01
We study analytically and numerically the inflationary solutions for various type scalar potentials in the nonminimally coupled scalar field theory. The Hamilton-Jacobi equation is used to deal with nonlinear evolutions of inhomogeneous spacetimes and the long-wavelength approximation is employed to find the homogeneous solutions during an inflation period. The constraints that lead to a sufficient number of e-folds, a necessary condition for inflation, are found for the nonminimal coupling constant and initial conditions of the scalar field for inflation potentials. In particular, we numerically find an inflationary solution in the new inflation model of a nonminimal scalar field.
Stability of gravitating charged-scalar solitons in a cavity
NASA Astrophysics Data System (ADS)
Ponglertsakul, Supakchai; Dolan, Sam R.; Winstanley, Elizabeth
2016-07-01
We present new regular solutions of Einstein-charged-scalar-field theory in a cavity. The system is enclosed inside a reflecting mirrorlike boundary, on which the scalar field vanishes. The mirror is placed at the zero of the scalar field closest to the origin, and inside this boundary our solutions are regular. We study the stability of these solitons under linear, spherically symmetric perturbations of the metric, scalar and electromagnetic fields. If the radius of the mirror is sufficiently large, we present numerical evidence for the stability of the solitons. For small mirror radius, some of the solitons are unstable. We discuss the physical interpretation of this instability.
Black hole hair in generalized scalar-tensor gravity.
Sotiriou, Thomas P; Zhou, Shuang-Yong
2014-06-27
The most general action for a scalar field coupled to gravity that leads to second-order field equations for both the metric and the scalar--Horndeski's theory--is considered, with the extra assumption that the scalar satisfies shift symmetry. We show that in such theories, the scalar field is forced to have a nontrivial configuration in black hole spacetimes, unless one carefully tunes away a linear coupling with the Gauss-Bonnet invariant. Hence, black holes for generic theories in this class will have hair. This contradicts a recent no-hair theorem which seems to have overlooked the presence of this coupling. PMID:25014801
Duality linking standard and tachyon scalar field cosmologies
Avelino, P. P.; Bazeia, D.; Losano, L.; Oliveira, J. C. R. E.; Pavan, A. B.
2010-09-15
In this work we investigate the duality linking standard and tachyon scalar field homogeneous and isotropic cosmologies in N+1 dimensions. We determine the transformation between standard and tachyon scalar fields and between their associated potentials, corresponding to the same background evolution. We show that, in general, the duality is broken at a perturbative level, when deviations from a homogeneous and isotropic background are taken into account. However, we find that for slow-rolling fields the duality is still preserved at a linear level. We illustrate our results with specific examples of cosmological relevance, where the correspondence between scalar and tachyon scalar field models can be calculated explicitly.
Searching for Chameleon-Like Scalar Fields
NASA Astrophysics Data System (ADS)
Levshakov, S. A.; Molaro, P.; Kozlov, M. G.; Lapinov, A. V.; Henkel, Ch.; Reimersi, D.; Sakai, T.; Agafonova, I. I.
Using the 32-m Medicina, 45-m Nobeyama, and 100-m Effelsberg telescopes we found a statistically significant velocity offset ΔV ≈ 27 ± 3 m s - 1 (1σ) between the inversion transition in NH3(1,1) and low-J rotational transitions in N2H + (1-0) and HC3N(2-1) arising in cold and dense molecular cores in the Milky Way. Systematic shifts of the line centers caused by turbulent motions and velocity gradients, possible non-thermal hyperfine structure populations, pressure and optical depth effects are shown to be lower than or about 1 m s - 1 and thus can be neglected in the total error budget. The reproducibility of ΔV at the same facility (Effelsberg telescope) on a year-to-year basis is found to be very good. Since the frequencies of the inversion and rotational transitions have different sensitivities to variations in μ ≡ m e / m p, the revealed non-zero ΔV may imply that μ changes when measured at high (terrestrial) and low (interstellar) matter densities as predicted by chameleon-like scalar field models - candidates to the dark energy carrier. Thus we are testing whether scalar field models have chameleon-type interactions with ordinary matter. The measured velocity offset corresponds to the ratio Δμ / μ ≡ (μspace - μlab) / μlab of (26 ± 3) ×10 - 9 (1σ).
Scalar field theory on noncommutative Snyder spacetime
Battisti, Marco Valerio; Meljanac, Stjepan
2010-07-15
We construct a scalar field theory on the Snyder noncommutative space-time. The symmetry underlying the Snyder geometry is deformed at the co-algebraic level only, while its Poincare algebra is undeformed. The Lorentz sector is undeformed at both the algebraic and co-algebraic level, but the coproduct for momenta (defining the star product) is non-coassociative. The Snyder-deformed Poincare group is described by a non-coassociative Hopf algebra. The definition of the interacting theory in terms of a nonassociative star product is thus questionable. We avoid the nonassociativity by the use of a space-time picture based on the concept of the realization of a noncommutative geometry. The two main results we obtain are (i) the generic (namely, for any realization) construction of the co-algebraic sector underlying the Snyder geometry and (ii) the definition of a nonambiguous self-interacting scalar field theory on this space-time. The first-order correction terms of the corresponding Lagrangian are explicitly computed. The possibility to derive Noether charges for the Snyder space-time is also discussed.
Emergence of Lorentzian signature and scalar gravity
Girelli, F.; Liberati, S.; Sindoni, L.
2009-02-15
In recent years, a growing momentum has been gained by the emergent gravity framework. Within the latter, the very concepts of geometry and gravitational interaction are not seen as elementary aspects of nature but rather as collective phenomena associated to the dynamics of more fundamental objects. In this paper we want to further explore this possibility by proposing a model of emergent Lorentzian signature and scalar gravity. Assuming that the dynamics of the fundamental objects can give rise in first place to a Riemannian manifold and a set of scalar fields we show how time (in the sense of hyperbolic equations) can emerge as a property of perturbations dynamics around some specific class of solutions of the field equations. Moreover, we show that these perturbations can give rise to a spin-0 gravity via a suitable redefinition of the fields that identifies the relevant degrees of freedom. In particular, we find that our model gives rise to Nordstroem gravity. Since this theory is invariant under general coordinate transformations, this also shows how diffeomorphism invariance (albeit of a weaker form than the one of general relativity) can emerge from much simpler systems.
Modelling Scalar Skewness in Cloudy Boundary Layers
NASA Astrophysics Data System (ADS)
Mironov, Dmitrii; Machulskaya, Ekaterina; Naumann, Ann Kristin; Seifert, Axel; Mellado, Juan Pedro
2015-04-01
Following the pioneering work of Sommeria and Deardorff (1977), statistical cloud schemes are widely used in numerical weather prediction (NWP) and climate models to parameterize the effect of shallow clouds on turbulent mixing and radiation fluxes. Statistical cloud schemes compute the cloud fraction, the amount of cloud condensate and the effect clouds on the buoyancy flux in a given atmospheric-model grid box. This is done with due regard for the sub-grid scale (SGS) fluctuations of temperature and humidity (and possibly the vertical velocity), thus providing an important coupling between cloudiness and the SGS mixing processes. The shape of the PDF of fluctuating fields is assumed, whereas the PDF moments should be provided to the cloud scheme as an input. For non-precipitation clouds, the mixing schemes are usually formulated in terms of quasi-conservative variable, e.g. the liquid (total) water potential temperature and the total water specific humidity. Then, the cloud schemes are conveniently cast in terms of the linearized saturation deficit, referred to as the "s" variable (Mellor 1977), that accounts for the combined effect of the two scalars. If a simple two-parameter single-Gaussian PDF is used, the only "turbulence" parameter to be provided to the cloud scheme is the variance of s. The single-Gaussian PDF ignores the skewed nature of SGS motions and fails to describe many important regimes, e.g. shallow cumuli. A number of more flexible skewed PDFs have been proposed to date. A three-parameter PDF, based on a double-Gaussian distribution and diagnostic relations between some PDF parameters derived from LES and observational data (Naumann et al. 2013), appears to be a good compromise between physical realism and computational economy. A crucial point is that the cloud schemes using non-Gaussian PDFs require the scalar skewness as an input. Using rather mild non-restrictive assumptions, we develop a transport equation for the s-variable triple
General Relativity, Scalar Fields and Cosmic Strings.
NASA Astrophysics Data System (ADS)
Burd, Adrian Benedict
1987-09-01
Available from UMI in association with The British Library. This thesis is divided into three, essentially self-contained, parts. In the first part we examine the structure of classical three-dimensional space-times. Here, we review and extend what is known about the gravitational theories in these models. We investigate the non-existence of a Newtonian limit to the relativistic theories showing that in the presence of certain matter terms, Newtonian gravity can be obtained as a suitable weak-field limit. We present a number of new, exact static and non-static solutions to the equations of three-dimensional general relativity with scalar field and perfect fluid sources. We comment on the relationship between the stiff perfect fluid and the scalar field. Motivated by the Kaluza-Klein procedure of dimensional reduction we find some exact scalar field solutions which have analogues in four-dimensions. We also present classification schemes based on the group of motions of homogeneous space-times and on the Cotton -York tensor. The description of the general cosmological solution in the vicinity of the singularity is given in terms of the number of arbitrary spatial functions independently specified on a space-like hypersurface. We also study a series approximation to the space-time in the vicinity of the cosmological singularity. Some conjectures are made concerning the space-time singularities. We present two exact cosmological solutions containing self-interacting scalar fields. The models exhibit an inflationary behaviour. We also present an anisotropic cosmological model. The second part of the thesis contains a study of certain cosmological models which have self-interacting scalar fields obeying an exponential potential. We use the techniques of phase portrait analysis to study the N-dimensional cosmological models as well as certain anisotropic models. The latter involves the analysis of a three-dimensional system of equations and we review the relevant theory
The Shadow Uniform Resource Locator
DiCarlo, Joseph V.; Pastor, Xavier; Markovitz, Barry P.
2000-01-01
Citation of scientific materials published on the Internet is often cumbersome because of unwieldy uniform resource locators (URLs). The authors describe a format for URLs that simplifies citation of scholarly materials. Its use depends on a simple HTML device, the “refresh page.” Uniform citation would follow this format: [Author I. Title of article. http://domain/year/month-day(e#).html ]. The HTML code for such a page is: . The code instructs the browser to suppress the content of the refresh page and bring up the title page of the cited article instead. Citations would be succinct and predictable. An electronic journal would not need to alter its existing file hierarchy but would need to establish a distinct domain name and maintain a file of refresh pages. Utilization of the “shadow” URL would bring us one step closer to truly universal resource locators. PMID:10730598
Willow: a uniform search interface.
Ketchell, D S; Freedman, M M; Jordan, W E; Lightfoot, E M; Heyano, S; Libbey, P A
1996-01-01
The objective of the Willow Project is to develop a uniform search interface that allows a diverse community of users to retrieve information from heterogeneous network-based information resources. Willow separates the user interface from the database management or information retrieval system. It provides a graphic user interface to a variety of information resources residing on diverse hosts, and using different search engines and idiomatic query languages through networked-based client-server and Transmission Control Protocol/Internet Protocol (TCP/IP) protocols. It is based on a "database driver'' model, which allows new database hosts to be added without altering Willow itself. Willow employs a multimedia extension mechanism to launch external viewers to handle data in almost any form. Drivers are currently available for a local BRS/SEARCH system and the Z39.50 protocol. Students, faculty, clinicians, and researchers at the University of Washington are currently offered 30 local and remote databases via Willow. They conduct more than 250,000 sessions a month in libraries, medical centers and clinics, laboratories, and offices, and from home. The Massachusetts Institute of Technology is implementing Willow as its uniform search interface to Z39.50 hosts. PMID:8750388
Producing Uniform Lesion Pattern in HIFU Ablation
NASA Astrophysics Data System (ADS)
Zhou, Yufeng; Kargl, Steven G.; Hwang, Joo Ha
2009-04-01
High intensity focused ultrasound (HIFU) is emerging as a modality for treatment of solid tumors. The temperature at the focus can reach over 65° C denaturing cellular proteins resulting in coagulative necrosis. Typically, HIFU parameters are the same for each treated spot in most HIFU control systems. Because of thermal diffusion from nearby spots, the size of lesions will gradually become larger as the HIFU therapy progresses, which may cause insufficient treatment of initial spots, and over-treatment of later ones. It is found that the produced lesion pattern also depends on the scanning pathway. From the viewpoint of the physician creating uniform lesions and minimizing energy exposure are preferred in tumor ablation. An algorithm has been developed to adaptively determine the treatment parameters for every spot in a theoretical model in order to maintain similar lesion size throughout the HIFU therapy. In addition, the exposure energy needed using the traditional raster scanning is compared with those of two other scanning pathways, spiral scanning from the center to the outside and from the outside to the center. The theoretical prediction and proposed algorithm were further evaluated using transparent gel phantoms as a target. Digital images of the lesions were obtained, quantified, and then compared with each other. Altogether, dynamically changing treatment parameters can improve the efficacy and safety of HIFU ablation.
Uniformly dense polymeric foam body
Whinnery, Jr., Leroy
2003-07-15
A method for providing a uniformly dense polymer foam body having a density between about 0.013 g/cm.sup.3 to about 0.5 g/cm.sup.3 is disclosed. The method utilizes a thermally expandable polymer microsphere material wherein some of the microspheres are unexpanded and some are only partially expanded. It is shown that by mixing the two types of materials in appropriate ratios to achieve the desired bulk final density, filling a mold with this mixture so as to displace all or essentially all of the internal volume of the mold, heating the mold for a predetermined interval at a temperature above about 130.degree. C., and then cooling the mold to a temperature below 80.degree. C. the molded part achieves a bulk density which varies by less then about .+-.6% everywhere throughout the part volume.
Architecture Adaptive Computing Environment
NASA Technical Reports Server (NTRS)
Dorband, John E.
2006-01-01
Architecture Adaptive Computing Environment (aCe) is a software system that includes a language, compiler, and run-time library for parallel computing. aCe was developed to enable programmers to write programs, more easily than was previously possible, for a variety of parallel computing architectures. Heretofore, it has been perceived to be difficult to write parallel programs for parallel computers and more difficult to port the programs to different parallel computing architectures. In contrast, aCe is supportable on all high-performance computing architectures. Currently, it is supported on LINUX clusters. aCe uses parallel programming constructs that facilitate writing of parallel programs. Such constructs were used in single-instruction/multiple-data (SIMD) programming languages of the 1980s, including Parallel Pascal, Parallel Forth, C*, *LISP, and MasPar MPL. In aCe, these constructs are extended and implemented for both SIMD and multiple- instruction/multiple-data (MIMD) architectures. Two new constructs incorporated in aCe are those of (1) scalar and virtual variables and (2) pre-computed paths. The scalar-and-virtual-variables construct increases flexibility in optimizing memory utilization in various architectures. The pre-computed-paths construct enables the compiler to pre-compute part of a communication operation once, rather than computing it every time the communication operation is performed.