Adaptive noise Wiener filter for scanning electron microscope imaging system.
Sim, K S; Teh, V; Nia, M E
2016-01-01
Noise on scanning electron microscope (SEM) images is studied. Gaussian noise is the most common type of noise in SEM image. We developed a new noise reduction filter based on the Wiener filter. We compared the performance of this new filter namely adaptive noise Wiener (ANW) filter, with four common existing filters as well as average filter, median filter, Gaussian smoothing filter and the Wiener filter. Based on the experiments results the proposed new filter has better performance on different noise variance comparing to the other existing noise removal filters in the experiments. PMID:26235517
Robust Wiener filtering for Adaptive Optics
Poyneer, L A
2004-06-17
In many applications of optical systems, the observed field in the pupil plane has a non-uniform phase component. This deviation of the phase of the field from uniform is called a phase aberration. In imaging systems this aberration will degrade the quality of the images. In the case of a large astronomical telescope, random fluctuations in the atmosphere lead to significant distortion. These time-varying distortions can be corrected using an Adaptive Optics (AO) system, which is a real-time control system composed of optical, mechanical and computational parts. Adaptive optics is also applicable to problems in vision science, laser propagation and communication. For a high-level overview, consult this web site. For an in-depth treatment of the astronomical case, consult these books.
Adaptive wiener image restoration kernel
Yuan, Ding
2007-06-05
A method and device for restoration of electro-optical image data using an adaptive Wiener filter begins with constructing imaging system Optical Transfer Function, and the Fourier Transformations of the noise and the image. A spatial representation of the imaged object is restored by spatial convolution of the image using a Wiener restoration kernel.
Adaptive Wiener filter super-resolution of color filter array images.
Karch, Barry K; Hardie, Russell C
2013-08-12
Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method for CFA cameras that is based on the AWF SR algorithm and uses global channel-to-channel statistical models. We apply this new method as a stand-alone algorithm and also as an initialization image for a variational SR algorithm. This paper presents the theoretical development of the color AWF SR approach and applies it in performance comparisons to other SR techniques for both simulated and real data. PMID:23938797
Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin
2015-01-01
Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991
Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin
2015-01-01
Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991
Multiframe adaptive Wiener filter super-resolution with JPEG2000-compressed images
NASA Astrophysics Data System (ADS)
Narayanan, Barath Narayanan; Hardie, Russell C.; Balster, Eric J.
2014-12-01
Historically, Joint Photographic Experts Group 2000 (JPEG2000) image compression and multiframe super-resolution (SR) image processing techniques have evolved separately. In this paper, we propose and compare novel processing architectures for applying multiframe SR with JPEG2000 compression. We propose a modified adaptive Wiener filter (AWF) SR method and study its performance as JPEG2000 is incorporated in different ways. In particular, we perform compression prior to SR and compare this to compression after SR. We also compare both independent-frame compression and difference-frame compression approaches. We find that some of the SR artifacts that result from compression can be reduced by decreasing the assumed global signal-to-noise ratio (SNR) for the AWF SR method. We also propose a novel spatially adaptive SNR estimate for the AWF designed to compensate for the spatially varying compression artifacts in the input frames. The experimental results include the use of simulated imagery for quantitative analysis. We also include real-video results for subjective analysis.
Correia, Carlos M; Teixeira, Joel
2014-12-01
Computationally efficient wave-front reconstruction techniques for astronomical adaptive-optics (AO) systems have seen great development in the past decade. Algorithms developed in the spatial-frequency (Fourier) domain have gathered much attention, especially for high-contrast imaging systems. In this paper we present the Wiener filter (resulting in the maximization of the Strehl ratio) and further develop formulae for the anti-aliasing (AA) Wiener filter that optimally takes into account high-order wave-front terms folded in-band during the sensing (i.e., discrete sampling) process. We employ a continuous spatial-frequency representation for the forward measurement operators and derive the Wiener filter when aliasing is explicitly taken into account. We further investigate and compare to classical estimates using least-squares filters the reconstructed wave-front, measurement noise, and aliasing propagation coefficients as a function of the system order. Regarding high-contrast systems, we provide achievable performance results as a function of an ensemble of forward models for the Shack-Hartmann wave-front sensor (using sparse and nonsparse representations) and compute point-spread-function raw intensities. We find that for a 32×32 single-conjugated AOs system the aliasing propagation coefficient is roughly 60% of the least-squares filters, whereas the noise propagation is around 80%. Contrast improvements of factors of up to 2 are achievable across the field in the H band. For current and next-generation high-contrast imagers, despite better aliasing mitigation, AA Wiener filtering cannot be used as a standalone method and must therefore be used in combination with optical spatial filters deployed before image formation actually takes place. PMID:25606767
A multiresolution approach to image enhancement via histogram shaping and adaptive Wiener filtering
NASA Astrophysics Data System (ADS)
Pace, T.; Manville, D.; Lee, H.; Cloud, G.; Puritz, J.
2008-04-01
It is critical in military applications to be able to extract features in imagery that may be of interest to the viewer at any time of the day or night. Infrared (IR) imagery is ideally suited for producing these types of images. However, even under the best of circumstances, the traditional approach of applying a global automatic gain control (AGC) to the digital image may not provide the user with local area details that may be of interest. Processing the imagery locally can enhance additional features and characteristics in the image which provide the viewer with an improved understanding of the scene being observed. This paper describes a multi-resolution pyramid approach for decomposing an image, enhancing its contrast by remapping the histograms to desired pdfs, filtering them and recombining them to create an output image with much more visible detail than the input image. The technique improves the local area image contrast in light and dark areas providing the warfighter with significantly improved situational awareness.
Wiener filter estimation of transfer functions.
Kessel, Robert
2004-01-01
The use of a Wiener filter estimate for the linear transfer function can significantly improve the description of behavioral dynamics. This report presents a two-pass, Monte-Carlo-based algorithm that is well suited to repeated-trials local average measurements. The Wiener filter transfer functions strongly suppress noise artifacts as well as allow reliable transfer function determination under a much wider class of reinforcement schedules. Implications of expanding the possible form of experimental design are considered along with improvements in the fidelity of resulting predictions. PMID:15357511
Two-dimensional filtering of SPECT images using the Metz and Wiener filters
King, M.A.; Schwinger, R.B.; Doherty, P.W.; Penney, B.C.
1984-11-01
Two-dimensional filtering, both before and after reconstruction, has been applied to the processing of single photon emission computerized tomographic (SPECT) images. The filters investigated were the count-dependent Metz filter and Wiener filter, both of which automatically adapt to the image being processed. Using a SPECT phantom, with images reconstructed with these filters rather than the ramp, the authors observed a statistically signficant increase in the image contrast for solid Plexiglas spheres, and significant decrease in the percent fractional standard deviation of counts in a region of uniform activity. The adaptability of these filters is demonstrated by a comparison of SPECT acquisition of the phantom at two different count levels. An example of the application to clinical studies is presented. Two-dimensional digital image restoration with these techniques can produce a significant increase in SPECT image quality, with a small cost in processing time when these techniques are implemented on an array processor.
Two-dimensional filtering of SPECT images using the Metz and Wiener filters
King, M.A.; Schwinger, R.B.; Penney, B.C.; Doherty, P.W.
1984-01-01
Presently, single photon emission computed tomographic (SPECT) images are usually reconstructed by arbitrarily selecting a one-dimensional ''window'' function for use in reconstruction. A better method would be to automatically choose among a family of two-dimensional image restoration filters in such a way as to produce ''optimum'' image quality. Two-dimensional image processing techniques offer the advantages of a larger statistical sampling of the data for better noise reduction, and two-dimensional image deconvolution to correct for blurring during acquisition. An investigation of two such ''optimal'' digital image restoration techniques (the count-dependent Metz filter and the Wiener filter) was made. They were applied both as two-dimensional ''window'' functions for preprocessing SPECT images, and for filtering reconstructed images. Their performance was compared by measuring image contrast and per cent fractional standard deviation (% FSD) in multiple-acquisitions of the Jaszczak SPECT phantom at two different count levels. A statistically significant increase in image contrast and decrease in % FSD was observed with these techniques when compared to the results of reconstruction with a ramp filter. The adaptability of the techniques was manifested in a lesser % reduction in % FSD at the high count level coupled with a greater enhancement in image contrast. Using an array processor, processing time was 0.2 sec per image for the Metz filter and 3 sec for the Wiener filter. It is concluded that two-dimensional digital image restoration with these techniques can produce a significant increase in SPECT image quality.
Image watermarking extraction using Fourier domain Wiener filter
NASA Astrophysics Data System (ADS)
Birch, Philip; Pavlidis, Marios; Panwar, Ankit; Nnamadim, Ozoemena; Kypraios, Ioannis; Mitra, Bhargav; Young, Rupert; Chatwin, Chris
2008-03-01
Digital watermarking is a vital process for protecting the copyright of images. This paper presents a method of embedding a private robust watermark into a digital image. The full complex form the Wiener filter is used to extract the signal from the watermarked image. This is shown to outperform the more conventional approximate notation. The results are shown to be extremely noise insensitive.
Wavelet-domain TI Wiener-like filtering for complex MR data denoising.
Hu, Kai; Cheng, Qiaocui; Gao, Xieping
2016-10-01
Magnetic resonance (MR) images are affected by random noises, which degrade many image processing and analysis tasks. It has been shown that the noise in magnitude MR images follows a Rician distribution. Unlike additive Gaussian noise, the noise is signal-dependent, and consequently difficult to reduce, especially in low signal-to-noise ratio (SNR) images. Wirestam et al. in [20] proposed a Wiener-like filtering technique in wavelet-domain to reduce noise before construction of the magnitude MR image. Based on Wirestam's study, we propose a wavelet-domain translation-invariant (TI) Wiener-like filtering algorithm for noise reduction in complex MR data. The proposed denoising algorithm shows the following improvements compared with Wirestam's method: (1) we introduce TI property into the Wiener-like filtering in wavelet-domain to suppress artifacts caused by translations of the signal; (2) we integrate one Stein's Unbiased Risk Estimator (SURE) thresholding with two Wiener-like filters to make the hard-thresholding scale adaptive; and (3) the first Wiener-like filtering is used to filter the original noisy image in which the noise obeys Gaussian distribution and it provides more reasonable results. The proposed algorithm is applied to denoise the real and imaginary parts of complex MR images. To evaluate our proposed algorithm, we conduct extensive denoising experiments using T1-weighted simulated MR images, diffusion-weighted (DW) phantom and in vivo data. We compare our algorithm with other popular denoising methods. The results demonstrate that our algorithm outperforms others in term of both efficiency and robustness. PMID:27238055
Optimal color image restoration: Wiener filter and quaternion Fourier transform
NASA Astrophysics Data System (ADS)
Grigoryan, Artyom M.; Agaian, Sos S.
2015-03-01
In this paper, we consider the model of quaternion signal degradation when the signal is convoluted and an additive noise is added. The classical model of such a model leads to the solution of the optimal Wiener filter, where the optimality with respect to the mean square error. The characteristic of this filter can be found in the frequency domain by using the Fourier transform. For quaternion signals, the inverse problem is complicated by the fact that the quaternion arithmetic is not commutative. The quaternion Fourier transform does not map the convolution to the operation of multiplication. In this paper, we analyze the linear model of the signal and image degradation with an additive independent noise and the optimal filtration of the signal and images in the frequency domain and in the quaternion space.
Adaptive control of Hammerstein-Wiener nonlinear systems
NASA Astrophysics Data System (ADS)
Zhang, Bi; Hong, Hyokchan; Mao, Zhizhong
2016-07-01
The Hammerstein-Wiener model is a block-oriented model, having a linear dynamic block sandwiched by two static nonlinear blocks. This note develops an adaptive controller for a special form of Hammerstein-Wiener nonlinear systems which are parameterized by the key-term separation principle. The adaptive control law and recursive parameter estimation are updated by the use of internal variable estimations. By modeling the errors due to the estimation of internal variables, we establish convergence and stability properties. Theoretical results show that parameter estimation convergence and closed-loop system stability can be guaranteed under sufficient condition. From a qualitative analysis of the sufficient condition, we introduce an adaptive weighted factor to improve the performance of the adaptive controller. Numerical examples are given to confirm the results in this paper.
Hyperspectral data compression using a Wiener filter predictor
NASA Astrophysics Data System (ADS)
Villeneuve, Pierre V.; Beaven, Scott G.; Stocker, Alan D.
2013-09-01
The application of compression to hyperspectral image data is a significant technical challenge. A primary bottleneck in disseminating data products to the tactical user community is the limited communication bandwidth between the airborne sensor and the ground station receiver. This report summarizes the newly-developed "Z-Chrome" algorithm for lossless compression of hyperspectral image data. A Wiener filter prediction framework is used as a basis for modeling new image bands from already-encoded bands. The resulting residual errors are then compressed using available state-of-the-art lossless image compression functions. Compression performance is demonstrated using a large number of test data collected over a wide variety of scene content from six different airborne and spaceborne sensors .
Modified patch-based locally optimal Wiener method for interferometric SAR phase filtering
NASA Astrophysics Data System (ADS)
Wang, Yang; Huang, Haifeng; Dong, Zhen; Wu, Manqing
2016-04-01
This paper presents a modified patch-based locally optimal Wiener (PLOW) method for interferometric synthetic aperture radar (InSAR) phase filtering. PLOW is a linear minimum mean squared error (LMMSE) estimator based on a Gaussian additive noise condition. It jointly estimates moments, including mean and covariance, using a non-local technique. By using similarities between image patches, this method can effectively filter noise while preserving details. When applied to InSAR phase filtering, three modifications are proposed based on spatial variant noise. First, pixels are adaptively clustered according to their coherence magnitudes. Second, rather than a global estimator, a locally adaptive estimator is used to estimate noise covariance. Third, using the coherence magnitudes as weights, the mean of each cluster is estimated, using a weighted mean to further reduce noise. The performance of the proposed method is experimentally verified using simulated and real data. The results of our study demonstrate that the proposed method is on par or better than the non-local interferometric SAR (NL-InSAR) method.
Wiener filtering improves quantification of regional myocardial perfusion with thallium-201 SPECT
Links, J.M.; Jeremy, R.W.; Dyer, S.M.; Frank, T.L.; Becker, L.C. )
1990-07-01
Quantitation of myocardial perfusion with thallium-201 (201Tl) SPECT is limited by finite resolution and image noise. This study examined whether Wiener filtering could improve quantitation of the severity of myocardial perfusion deficits. In 19 anesthetized dogs, adjustable stenoses were placed on the left anterior descending (LAD, n = 12) or circumflex (LCx, n = 7) arteries. Thallium-201 SPECT images were acquired during maximal coronary vasodilation with dipyridamole, and simultaneous measurements of myocardial blood flow were made with microspheres. The relationship between SPECT and microsphere flow deficits in the LAD region was significantly better (p less than 0.05) with Wiener filtering (Y = 0.90X + 0.03, r = 0.78) than with conventional Hanning filtering (Y = 0.66X + 0.34, r = 0.61). Similarly, in the LCx region the relationship between SPECT and microsphere perfusion deficits was better (p less than 0.01) with the Wiener filter (Y = 0.91X + 0.07, r = 0.66) than with the Hanning filter (Y = 0.36X + 0.50, r = 0.40). Wiener filtering improves quantitation of the severity of regional myocardial perfusion deficits, allowing better assessment of the functional significance of coronary artery stenoses.
Intensity transform and Wiener filter in measurement of blood flow in arteriography
NASA Astrophysics Data System (ADS)
Nunes, Polyana F.; Franco, Marcelo L. N.; Filho, João. B. D.; Patrocínio, Ana C.
2015-03-01
Using the arteriography examination, it is possible to check anomalies in blood vessels and diseases such as stroke, stenosis, bleeding and especially in the diagnosis of Encephalic Death in comatose individuals. Encephalic death can be diagnosed only when there is complete interruption of all brain functions, and hence the blood stream. During the examination, there may be some interference on the sensors, such as environmental factors, poor maintenance of equipment, patient movement, among other interference, which can directly affect the noise produced in angiography images. Then, we need to use digital image processing techniques to minimize this noise and improve the pixel count. Therefore, this paper proposes to use median filter and enhancement techniques for transformation of intensity using the sigmoid function together with the Wiener filter so you can get less noisy images. It's been realized two filtering techniques to remove the noise of images, one with the median filter and the other with the Wiener filter along the sigmoid function. For 14 tests quantified, including 7 Encephalic Death and 7 other cases, the technique that achieved a most satisfactory number of pixels quantified, also presenting a lesser amount of noise, is the Wiener filter sigmoid function, and in this case used with 0.03 cuttof.
NASA Technical Reports Server (NTRS)
Full, William E.; Eppler, Duane T.
1993-01-01
The effectivity of multichannel Wiener filters to improve images obtained with passive microwave systems was investigated by applying Wiener filters to passive microwave images of first-year sea ice. Four major parameters which define the filter were varied: the lag or pixel offset between the original and the desired scenes, filter length, the number of lines in the filter, and the weight applied to the empirical correlation functions. The effect of each variable on the image quality was assessed by visually comparing the results. It was found that the application of multichannel Wiener theory to passive microwave images of first-year sea ice resulted in visually sharper images with enhanced textural features and less high-frequency noise. However, Wiener filters induced a slight blocky grain to the image and could produce a type of ringing along scan lines traversing sharp intensity contrasts.
NASA Astrophysics Data System (ADS)
Yousef, Amr H.; Li, Jiang; Karim, Mohammad
2012-05-01
Super-resolution (SR) refers to reconstructing a single high resolution (HR) image from a set of subsampled, blurred and noisy low resolution (LR) images. The reconstructed image suffers from degradations such as blur, aliasing, photo-detector noise and registration and fusion error. Wiener filter can be used to remove artifacts and enhance the visual quality of the reconstructed images. In this paper, we introduce a new fast stochasticWiener filter for SR reconstruction and restoration that can be implemented efficiently in the frequency domain. Our derivation depends on the continuous-discrete-continuous (CDC) model that represents most of the degradations encountered during the image-gathering and image-display processes. We incorporate a new parameter that accounts for LR images registration and fusion errors. Also, we speeded up the performance of the filter by constraining it to work on small patches of the images. Beside this, we introduce two figures of merits: information rate and maximum realizable fidelity, which can be used to assess the visual quality of the resultant images. Simulations and experimental results demonstrate that the derived Wiener filter that can be implemented efficiently in the frequency domain can reduce aliasing, blurring, and noise and result in a sharper reconstructed image. Also, Quantitative assessment using the proposed figures coincides with the visual qualitative assessment. Finally, we evaluate our filter against other SR techniques and its results were very competitive.
Image restoration by Wiener filtering in the presence of signal-dependent noise.
Kondo, K; Ichioka, Y; Suzuki, T
1977-09-01
An optimum filter to restore the degraded image due to blurring and the signal-dependent noise is obtained on the basis of the theory of Wiener filtering. Computer simulations of image restoration using signal-dependent noise models are carried out. It becomes clear that the optimum filter, which makes use of a priori information on the signal-dependent nature of the noise and the spectral density of the signal and the noise showing significant spatial correlation, is potentially advantageous. PMID:20168967
Wiener filtering with a seismic underground array at the Sanford Underground Research Facility
NASA Astrophysics Data System (ADS)
Coughlin, M.; Harms, J.; Christensen, N.; Dergachev, V.; DeSalvo, R.; Kandhasamy, S.; Mandic, V.
2014-11-01
A seismic array has been deployed at the Sanford Underground Research Facility in the former Homestake mine, South Dakota, USA, to study the underground seismic environment. This includes exploring the advantages of constructing a third-generation gravitational-wave (GW) detector underground. A major noise source for these detectors would be Newtonian noise (NN), which is induced by fluctuations in the local gravitational field. The hope is that a combination of a low-noise seismic environment and coherent noise subtraction using seismometers in the vicinity of the detector could suppress the NN to below the projected noise floor for future GW detectors. In this paper, certain properties of the NN subtraction problem are studied by applying similar techniques to data of a seismic array. We use Wiener filtering techniques to subtract coherent noise in a seismic array in the frequency band 0.05-1 Hz. This achieves more than an order of magnitude noise cancellation over a majority of this band. The variation in the Wiener-filter coefficients over the course of the day, including how local activities impact the filter, is analyzed. We also study the variation in coefficients over the course of a month, showing the stability of the filter with time. How varying the filter order affects the subtraction performance is also explored. It is shown that optimizing filter order can significantly improve subtraction of seismic noise.
NASA Astrophysics Data System (ADS)
Kuzma, H. A.; Kappler, K. A.; Rector, J. W.
2006-12-01
Kriging, wiener filters, support vector machines (SVMs), neural networks, linear and non-linear inversion are methods for predicting the values of one set of variables given the values of another. They can all be used to estimate a set of model parameters from measured data given that a physical relationship exists between models and data. However, since the methods were developed in different fields, the mathematics used to describe them tend to obscure rather than highlight the links between them. In this poster, we diagram the methods and clarify their connections in hopes that practitioners of one method will be able to understand and learn from the insights developed in another. At the heart of all of the methods are a set of coefficients that must be found by minimizing an objective function. The solution to the objective function can be found either by inverting a matrix, or by searching through a space of possible answers. We distinguish between direct inversion, in which the desired coefficients are those of the model itself, and indirect inversion, in which examples of models and data are used to estimate the coefficients of an inverse process that, once discovered, can be used to compute new models from new data. Kriging is developed from Geostatistics. The model is usually a rock property (such as gold concentration) and the data is a sample location (x,y,z). The desired coefficients are a set of weights which are used to predict the concentration of a sample taken at a new location based on a variogram. The variogram is computed by averaging across a given set of known samples and is manually adjusted to reflect prior knowledge. Wiener filters were developed in signal processing to predict the values of one time-series from measurements of another. A wiener filter can be derived from kriging by replacing variograms with correlation. Support vector machines are an offshoot of statistical learning theory. They can be written as a form of kriging in which
Experimental modeling of Wiener filters estimated on an operating diesel engine
NASA Astrophysics Data System (ADS)
Drouet, Julie; Leclère, Quentin; Parizet, Etienne
2015-01-01
Sound source separation in diesel engines can be implemented using a Wiener filter, or spectrofilter, that can extract the combustion contribution in the overall noise. In this study this filter characterizes the transfer function between a cylinder pressure and a measurement point. An engine is characterized by several filters (one for each cylinder) which are estimated for many operating conditions (engine speed and load). The purpose of this work is to obtain an averaged spectrofilter allowing the synthesis of combustion noise in all operating conditions. This synthesis should be accurate enough to be used in perceptive studies. In order to refine the spectrofilter estimation in the medium frequency band, this paper consists in taking advantage of the multitude of information given by the estimations from different operating conditions. To do this, an experimental model is adopted so modal parameters are extracted from a great number of measured filters. Different procedures such as the ESPRIT method or the LSCE method (modal analysis) are used to decompose the impulse responses on a complex exponential basis. The spectrofilters estimated from different operating conditions are analyzed and compared in this reduced basis, in order to identify the underlying structural parameters. These parameters are compared to the results of an experimental characterization of the stopped engine. The accuracy of the synthesis (number of components of the filter) is an important issue because these filters will be used in perceptive applications, extracting combustion noises. This paper is an extended version of the work initially presented at the conference Surveillance 6 in November 2011 in Compiègne, France [1] (J. Drouet, Quentin Leclere, Etienne Parizet. Experimental modeling of Wiener filters estimated on an operating diesel engine, in: Proceedings of the Surveillance, vol. 6, Compi'egne, France, 2011.).
Cellular Signaling Networks Function as Generalized Wiener-Kolmogorov Filters to Suppress Noise
NASA Astrophysics Data System (ADS)
Hinczewski, Michael; Thirumalai, D.
2014-10-01
Cellular signaling involves the transmission of environmental information through cascades of stochastic biochemical reactions, inevitably introducing noise that compromises signal fidelity. Each stage of the cascade often takes the form of a kinase-phosphatase push-pull network, a basic unit of signaling pathways whose malfunction is linked with a host of cancers. We show that this ubiquitous enzymatic network motif effectively behaves as a Wiener-Kolmogorov optimal noise filter. Using concepts from umbral calculus, we generalize the linear Wiener-Kolmogorov theory, originally introduced in the context of communication and control engineering, to take nonlinear signal transduction and discrete molecule populations into account. This allows us to derive rigorous constraints for efficient noise reduction in this biochemical system. Our mathematical formalism yields bounds on filter performance in cases important to cellular function—such as ultrasensitive response to stimuli. We highlight features of the system relevant for optimizing filter efficiency, encoded in a single, measurable, dimensionless parameter. Our theory, which describes noise control in a large class of signal transduction networks, is also useful both for the design of synthetic biochemical signaling pathways and the manipulation of pathways through experimental probes such as oscillatory input.
Analysis of moire fringes by Wiener filtering: An extension to the Fourier method
Harasse, Sebastien; Yashiro, Wataru; Momose, Atsushi
2012-07-31
In X-ray Talbot interferometry, tilting the phase grating with respect to the absorption grating results in the formation of spatial fringes. The analysis of this moire pattern, classically performed by the Fourier method, allows the extraction of the sample phase shift information from a single image. In this context, an extension to the Fourier method is proposed. The filter used to extract the fringe information is chosen optimally in the least-squares sense, given models for the zeroth and first order modes, noise and the modulation transfer function. The latter is obtained by measuring the detector response to moire fringes with increasing frequencies. The obtained Wiener filter allows a better reconstruction of the phase information at all fringe frequencies, compared to the usual box or gaussian filters. This is demonstrated quantitatively by experiments using synchrotron radiation.
Analysis of moiré fringes by Wiener filtering: An extension to the Fourier method
NASA Astrophysics Data System (ADS)
Harasse, Sébastien; Yashiro, Wataru; Momose, Atsushi
2012-07-01
In X-ray Talbot interferometry, tilting the phase grating with respect to the absorption grating results in the formation of spatial fringes. The analysis of this moiré pattern, classically performed by the Fourier method, allows the extraction of the sample phase shift information from a single image. In this context, an extension to the Fourier method is proposed. The filter used to extract the fringe information is chosen optimally in the least-squares sense, given models for the zeroth and first order modes, noise and the modulation transfer function. The latter is obtained by measuring the detector response to moiré fringes with increasing frequencies. The obtained Wiener filter allows a better reconstruction of the phase information at all fringe frequencies, compared to the usual box or gaussian filters. This is demonstrated quantitatively by experiments using synchrotron radiation.
Adaptive control of stochastic Hammerstein-Wiener nonlinear systems with measurement noise
NASA Astrophysics Data System (ADS)
Zhang, Bi; Mao, Zhizhong
2016-01-01
This paper deals with the adaptive control of a class of stochastic Hammerstein-Wiener nonlinear systems with measurement noise. Despite the fundamental progress achieved so far, a general theory framework about adaptive control of Hammerstein-Wiener models is still absent. Such situation is mainly due to the lack of an appropriate parameterisation model. To this end, this paper presents a novel parameterisation model that is to replace unmeasurable internal variables with their estimations. Then, the adaptive control algorithm to be applied is derived on the basis of self-tuning control. In addition, due to the use of the internal variable estimations, the stability and convergence properties are different from the self-tuning control. Our aim, in theoretical analysis, is to discover what limitations are in using the estimations instead of the true values in a control algorithm. Representative numerical examples are given and the simulation results verify the theoretical analysis.
Global mean dynamic topography based on GOCE data and Wiener filters
NASA Astrophysics Data System (ADS)
Gilardoni, Maddalena; Reguzzoni, Mirko; Albertella, Alberta
2015-04-01
A mean dynamic ocean topography (MDT) has been computed by using a GOCE-only gravity model and a given mean sea surface (MSS) obtained from satellite altimetry. Since the used gravity model, i.e. the fifth release of the time-wise solution covering the full mission lifetime, is truncated at a maximum harmonic degree of 280, the obtained MDT has to be consistently filtered. This has been done globally by using the spherical harmonic representation and following a Wiener minimization principle. This global filtering approach is convenient from the computational point of view but requires to have MDT values all over the Earth surface and therefore to fill the continents with fictitious data. The main improvements with respect to the already presented results are in the MDT filling procedure (to guarantee that the global signal has the same covariance of the one over the oceans), in the error modelling of the input MSS and in the error estimation of the filtered MDT and of the corresponding geostrophic velocities. The impact of GOCE data in the ocean circulation global modelling has been assessed by comparing the pattern of the obtained geostrophic currents with those computed by using EGM2008. Comparisons with independent circulation data based on drifters and other MDT models have been also performed with the aim of evaluating the accuracy of the obtained results.
Removing spurious signals from glow curves using an optimal Wiener filter.
van Dijk, J W E; Stadtmann, H; Grimbergen, T W M
2011-03-01
During readout, the signal of the TLD is occasionally polluted with spurious signals. These most often take the shape of a spike on the glow curve. Often these spikes are only a few milliseconds wide but can have a height that significantly influences the outcome of the dose evaluation. The detection of spikes relies generally on comparing the raw glow curve with a smoothed version of it. A spike is detected when the height of the glow curve exceeds that of the smoothed curve, using criteria based on the absolute and relative differences. The procedure proposed is based on smoothing by an optimal Wiener filter, which is, on its turn, based on Fourier analysis for which numerically very efficient methods are available. Apart from having easy to understand tuning parameters, an attractive bonus is that, with only little additional computational effort, estimates of the position of peak maxima are found from second and third derivatives: a useful feature for glow curve quality control. PMID:21450703
Full, W.E. ); Eppler, D.T. )
1993-04-01
Over the past two decades passive microwave imaging systems have proven to be effective reconnaissance tools in polar environments. However, the mechanical scan mechanism and high gain electronics characteristic of this class of sensors commonly impart noise and unwanted artifacts to image data they produce, complicating visual analysis and automated classification procedures. The fact that data in individual scan lines are characterized by statistical stationarity and that information in adjacent pixels is highly correlated due to oversampling of these image data suggests that Wiener multichannel filtering techniques may prove effective in this application. Wiener filters applied to passive microwave images of first-year sea ice were constructed. Four major parameters that define the filter (lag or pixel offset between the original and desired scenes, filter length, number of lines in the filter, and weight applied to the empirical correlation functions) were varied. Results were compared visually to assess the effect of each variable on image quality. Effective filters that limit high frequency noise and enhance ice characteristics use a lag of one pixel, consist of two or three channels, are five pixels in length, and weight the auto- and cross-correlation functions equally.
NASA Astrophysics Data System (ADS)
Stevens, Mark R.; Gutchess, Dan; Checka, Neal; Snorrason, Magnús
2006-05-01
Image exploitation algorithms for Intelligence, Surveillance and Reconnaissance (ISR) and weapon systems are extremely sensitive to differences between the operating conditions (OCs) under which they are trained and the extended operating conditions (EOCs) in which the fielded algorithms are tested. As an example, terrain type is an important OC for the problem of tracking hostile vehicles from an airborne camera. A system designed to track cars driving on highways and on major city streets would probably not do well in the EOC of parking lots because of the very different dynamics. In this paper, we present a system we call ALPS for Adaptive Learning in Particle Systems. ALPS takes as input a sequence of video images and produces labeled tracks. The system detects moving targets and tracks those targets across multiple frames using a multiple hypothesis tracker (MHT) tightly coupled with a particle filter. This tracker exploits the strengths of traditional MHT based tracking algorithms by directly incorporating tree-based hypothesis considerations into the particle filter update and resampling steps. We demonstrate results in a parking lot domain tracking objects through occlusions and object interactions.
Turbo LMS algorithm: supercharger meets adaptive filter
NASA Astrophysics Data System (ADS)
Meyer-Baese, Uwe
2006-04-01
Adaptive digital filters (ADFs) are, in general, the most sophisticated and resource intensive components of modern digital signal processing (DSP) and communication systems. Improvements in performance or the complexity of ADFs can have a significant impact on the overall size, speed, and power properties of a complete system. The least mean square (LMS) algorithm is a popular algorithm for coefficient adaptation in ADF because it is robust, easy to implement, and a close approximation to the optimal Wiener-Hopf least mean square solution. The main weakness of the LMS algorithm is the slow convergence, especially for non Markov-1 colored noise input signals with high eigenvalue ratios (EVRs). Since its introduction in 1993, the turbo (supercharge) principle has been successfully applied in error correction decoding and has become very popular because it reaches the theoretical limits of communication capacity predicted 5 decades ago by Shannon. The turbo principle applied to LMS ADF is analogous to the turbo principle used for error correction decoders: First, an "interleaver" is used to minimize crosscorrelation, secondly, an iterative improvement which uses the same data set several times is implemented using the standard LMS algorithm. Results for 6 different interleaver schemes for EVR in the range 1-100 are presented.
NASA Astrophysics Data System (ADS)
Larsen, Jakob Juul; Dalgaard, Esben; Auken, Esben
2014-02-01
The fidelity of magnetic resonance sounding signals is often severely degraded by noise, primarily electrical interference from powerline harmonics and short electromagnetic discharges. In many circumstances, the noise originates from multiple sources. We show that noise cancelling can be improved if the multiple origins of noise are taken into account. In particular, a method is developed where powerline harmonics are efficiently removed through a model-based approach. Subsequently, standard multichannel Wiener filtering can be used to provide a further noise reduction. The performance of the method depends on the distribution of noise on the particular site of measurement. Simulations on synthetic signals embedded in real noise recordings show that the combined approach can improve the signal-to-noise ratio with an accompanying improvement in retrieval of model parameters.
NASA Astrophysics Data System (ADS)
Oh, Eunsong; Ahn, Ki-Beom; Cho, Seongick; Ryu, Joo-Hyung
2013-12-01
The modulation transfer function (MTF) is a widely used indicator in assessments of remote-sensing image quality. This MTF method is also used to restore information to a standard value to compensate for image degradation caused by atmospheric or satellite jitter effects. In this study, we evaluated MTF values as an image quality indicator for the Geostationary Ocean Color Imager (GOCI). GOCI was launched in 2010 to monitor the ocean and coastal areas of the Korean peninsula. We evaluated in-orbit MTF value based on the GOCI image having a 500-m spatial resolution in the first time. The pulse method was selected to estimate a point spread function (PSF) with an optimal natural target such as a Seamangeum Seawall. Finally, image restoration was performed with a Wiener filter (WF) to calculate the PSF value required for the optimal regularization parameter. After application of the WF to the target image, MTF value is improved 35.06%, and the compensated image shows more sharpness comparing with the original image.
Liu, Jie; Ying, Dongwen; Zhou, Ping
2014-12-01
Voluntary surface electromyogram (EMG) signals from neurological injury patients are often corrupted by involuntary background interference or spikes, imposing difficulties for myoelectric control. We present a novel framework to suppress involuntary background spikes during voluntary surface EMG recordings. The framework applies a Wiener filter to restore voluntary surface EMG signals based on tracking a priori signal to noise ratio (SNR) by using the decision-directed method. Semi-synthetic surface EMG signals contaminated by different levels of involuntary background spikes were constructed from a database of surface EMG recordings in a group of spinal cord injury subjects. After the processing, the onset detection of voluntary muscle activity was significantly improved against involuntary background spikes. The magnitude of voluntary surface EMG signals can also be reliably estimated for myoelectric control purpose. Compared with the previous sample entropy analysis for suppressing involuntary background spikes, the proposed framework is characterized by quick and simple implementation, making it more suitable for application in a myoelectric control system toward neurological injury rehabilitation. PMID:25443536
Frequency domain FIR and IIR adaptive filters
NASA Technical Reports Server (NTRS)
Lynn, D. W.
1990-01-01
A discussion of the LMS adaptive filter relating to its convergence characteristics and the problems associated with disparate eigenvalues is presented. This is used to introduce the concept of proportional convergence. An approach is used to analyze the convergence characteristics of block frequency-domain adaptive filters. This leads to a development showing how the frequency-domain FIR adaptive filter is easily modified to provide proportional convergence. These ideas are extended to a block frequency-domain IIR adaptive filter and the idea of proportional convergence is applied. Experimental results illustrating proportional convergence in both FIR and IIR frequency-domain block adaptive filters is presented.
An online novel adaptive filter for denoising time series measurements.
Willis, Andrew J
2006-04-01
A nonstationary form of the Wiener filter based on a principal components analysis is described for filtering time series data possibly derived from noisy instrumentation. The theory of the filter is developed, implementation details are presented and two examples are given. The filter operates online, approximating the maximum a posteriori optimal Bayes reconstruction of a signal with arbitrarily distributed and non stationary statistics. PMID:16649562
Adaptive WMMR filters for edge enhancement
NASA Astrophysics Data System (ADS)
Zhou, Jun; Longbotham, Harold G.
1993-05-01
In this paper, an adaptive WMMR filter is introduced, which adaptively changes its window size to accommodate edge width variations. We prove that for any given one dimensional input signal convergence is to fixed points, which are PICO (piecewise constant), by iterative application of the adaptive WMMR filter. An application of the filters to one-D data (non- PICO) and images of printed circuit boards are then provided. Application to images in general is discussed.
Identification and control of nonlinear system based on Laguerre-ELM Wiener model
NASA Astrophysics Data System (ADS)
Tang, Yinggan; Han, Zhenzhen; Liu, Fucai; Guan, Xinping
2016-09-01
In this paper, a new Wiener model is presented for identification and control of single-input single-output (SISO) nonlinear systems. The proposed Wiener model consists of a linear Laguerre filter in cascaded with an extreme learning machine (ELM) neural network (called Laguerre-ELM Wiener model). Laguerre filter can approximate a stable linear system to any degree of accuracy with a small number of Laguerre filters, which provides a parsimony structure and high level accuracy simultaneously. To determine the appropriated number of Laguerre filters in Laguerre-ELM Wiener model, Lipschitz quotient criterion is adapted to determine the order of linear part. A generalized ELM algorithm is proposed to estimate the parameters of Laguerre-ELM Wiener model. Once the unknown nonlinear system is identified using Laguerre-ELM Wiener model, a generalized predictive control (GPC) algorithm is designed for control of nonlinear system. The advantage of the proposed control method is that it transfers a nonlinear control problem to a linear one by inserting the inverse of static nonlinear section. Simulation results demonstrate the effectiveness of the proposed identification and control algorithms.
NASA Astrophysics Data System (ADS)
Pei, J.-S.; Smyth, A. W.; Kosmatopoulos, E. B.
2004-08-01
This study attempts to demystify a powerful neural network approach for modelling non-linear hysteretic systems and in turn to streamline its architecture to achieve better computational efficiency. The recently developed neural network modelling approach, the Volterra/Wiener neural network (VWNN), demonstrated its usefulness in identifying the restoring forces for hysteretic systems in an off-line or even in an adaptive (on-line) mode, however, the mechanism of how and why it works has not been thoroughly explored especially in terms of a physical interpretation. Artificial neural network are often treated as "black box" modelling tools, in contrast, here the authors carry out a detailed analysis in terms of problem formulation and network architecture to explore the inner workings of this neural network. Based on the understanding of the dynamics of hysteretic systems, some simplifications and modifications are made to the original VWNN in predicting accelerations of hysteretic systems under arbitrary force excitations. Through further examination of the algorithm related to the VWNN applications, the efficiency of the previously published approach is improved by reducing the number of the hidden nodes without affecting the modelling accuracy of the network. One training example is presented to illustrate the application of the VWNN; and another is provided to demonstrate that the VWNN is able to yield a unique set of weights when the values of the controlling design parameters are fixed. The practical issue of how to choose the values of these important parameters is discussed to aid engineering applications.
Objects tracking with adaptive correlation filters and Kalman filtering
NASA Astrophysics Data System (ADS)
Ontiveros-Gallardo, Sergio E.; Kober, Vitaly
2015-09-01
Object tracking is commonly used for applications such as video surveillance, motion based recognition, and vehicle navigation. In this work, a tracking system using adaptive correlation filters and robust Kalman prediction of target locations is proposed. Tracking is performed by means of multiple object detections in reduced frame areas. A bank of filters is designed from multiple views of a target using synthetic discriminant functions. An adaptive approach is used to improve discrimination capability of the synthesized filters adapting them to multiple types of backgrounds. With the help of computer simulation, the performance of the proposed algorithm is evaluated in terms of detection efficiency and accuracy of object tracking.
Adaptive Mallow's optimization for weighted median filters
NASA Astrophysics Data System (ADS)
Rachuri, Raghu; Rao, Sathyanarayana S.
2002-05-01
This work extends the idea of spectral optimization for the design of Weighted Median filters and employ adaptive filtering that updates the coefficients of the FIR filter from which the weights of the median filters are derived. Mallows' theory of non-linear smoothers [1] has proven to be of great theoretical significance providing simple design guidelines for non-linear smoothers. It allows us to find a set of positive weights for a WM filter whose sample selection probabilities (SSP's) are as close as possible to a SSP set predetermined by Mallow's. Sample selection probabilities have been used as a basis for designing stack smoothers as they give a measure of the filter's detail preserving ability and give non-negative filter weights. We will extend this idea to design weighted median filters admitting negative weights. The new method first finds the linear FIR filter coefficients adaptively, which are then used to determine the weights of the median filter. WM filters can be designed to have band-pass, high-pass as well as low-pass frequency characteristics. Unlike the linear filters, however, the weighted median filters are robust in the presence of impulsive noise, as shown by the simulation results.
NASA Astrophysics Data System (ADS)
Liu, Delian; Li, Zhaohui; Wang, Xiaorui; Zhang, Jianqi
2015-11-01
Target detection is of great importance both in civil and military fields. Here a new moving target detection approach is proposed, which employs a nonlinear adaptive filter to remove large fluctuations on temporal profiles that are produced by evolving clutters. Initially, this paper discusses the temporal behaviors of different pixels in infrared sequences. Then, the new nonlinear adaptive filter that is a variation of the median-modified Wiener filter is given to extract pulse signals on temporal profiles that relate to moving targets. Next, the variance of each temporal profile is estimated by segmenting each temporal profile into several segments to normalize the amplitude of the pulse signals. Finally, the proposed approach is tested via two infrared image sequences and compared with several conventional target detection algorithms. The results show our approach has a high effectiveness in extracting target temporal profiles amidst heavy and slowly evolving clutters.
Adaptive filtering in biological signal processing.
Iyer, V K; Ploysongsang, Y; Ramamoorthy, P A
1990-01-01
The high dependence of conventional optimal filtering methods on the a priori knowledge of the signal and noise statistics render them ineffective in dealing with signals whose statistics cannot be predetermined accurately. Adaptive filtering methods offer a better alternative, since the a priori knowledge of statistics is less critical, real time processing is possible, and the computations are less expensive for this approach. Adaptive filtering methods compute the filter coefficients "on-line", converging to the optimal values in the least-mean square (LMS) error sense. Adaptive filtering is therefore apt for dealing with the "unknown" statistics situation and has been applied extensively in areas like communication, speech, radar, sonar, seismology, and biological signal processing and analysis for channel equalization, interference and echo canceling, line enhancement, signal detection, system identification, spectral analysis, beamforming, modeling, control, etc. In this review article adaptive filtering in the context of biological signals is reviewed. An intuitive approach to the underlying theory of adaptive filters and its applicability are presented. Applications of the principles in biological signal processing are discussed in a manner that brings out the key ideas involved. Current and potential future directions in adaptive biological signal processing are also discussed. PMID:2180633
Adaptable Iterative and Recursive Kalman Filter Schemes
NASA Technical Reports Server (NTRS)
Zanetti, Renato
2014-01-01
Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.
Block-adaptive filtering and its application to seismic-event detection
Clark, G.A.
1981-04-01
Block digital filtering involves the calculation of a block or finite set of filter output samples from a block of input samples. The motivation for block processing arises from computational advantages of the technique. Block filters take good advantage of parallel processing architectures, which are becoming more and more attractive with the advent of very large scale integrated (VLSI) circuits. This thesis extends the block technique to Wiener and adaptive filters, both of which are statistical filters. The key ingredient to this extension turns out to be the definition of a new performance index, block mean square error (BMSE), which combines the well known sum square error (SSE) and mean square error (MSE). A block adaptive filtering procedure is derived in which the filter coefficients are adjusted once per each output block in accordance with a generalized block least mean-square (BLMS) algorithm. Convergence properties of the BLMS algorithm are studied, including conditions for guaranteed convergence, convergence speed, and convergence accuracy. Simulation examples are given for clarity. Convergence properties of the BLMS and LMS algorithms are analyzed and compared. They are shown to be analogous, and under the proper circumstances, equivalent. The block adaptive filter was applied to the problem of detecting small seismic events in microseismic background noise. The predictor outperformed the world-wide standardized seismograph network (WWSSN) seismometers in improving signal-to-noise ratio (SNR).
Enhancement of Electrolaryngeal Speech by Adaptive Filtering.
ERIC Educational Resources Information Center
Espy-Wilson, Carol Y.; Chari, Venkatesh R.; MacAuslan, Joel M.; Huang, Caroline B.; Walsh, Michael J.
1998-01-01
A study tested the quality and intelligibility, as judged by several listeners, of four users' electrolaryngeal speech, with and without filtering to compensate for perceptually objectionable acoustic characteristics. Results indicated that an adaptive filtering technique produced a noticeable improvement in the quality of the Transcutaneous…
Recursive total-least-squares adaptive filtering
NASA Astrophysics Data System (ADS)
Dowling, Eric M.; DeGroat, Ronald D.
1991-12-01
In this paper a recursive total least squares (RTLS) adaptive filter is introduced and studied. The TLS approach is more appropriate and provides more accurate results than the LS approach when there is error on both sides of the adaptive filter equation; for example, linear prediction, AR modeling, and direction finding. The RTLS filter weights are updated in time O(mr) where m is the filter order and r is the dimension of the tracked subspace. In conventional adaptive filtering problems, r equals 1, so that updates can be performed with complexity O(m). The updates are performed by tracking an orthonormal basis for the smaller of the signal or noise subspaces using a computationally efficient subspace tracking algorithm. The filter is shown to outperform both LMS and RLS in terms of tracking and steady state tap weight error norms. It is also more versatile in that it can adapt its weight in the absence of persistent excitation, i.e., when the input data correlation matrix is near rank deficient. Through simulation, the convergence and tracking properties of the filter are presented and compared with LMS and RLS.
Wiener restoration of sampled image data - End-to-end analysis
NASA Technical Reports Server (NTRS)
Fales, Carl L.; Huck, Friedrich O.; Mccormick, Judith A.; Park, Stephen K.
1988-01-01
The Wiener filter is formulated as a function of the basic image-gathering and image-reconstruction constraints, thereby providing a method for minimizing the mean-squared error between the (continuous-input) radiance field and its restored (continuous-output) representation. This formulation of the Wiener filter is further extended to the Wiener-characteristic filter, which provides a method for explicitly specifying the desired representation. Two specific examples of Wiener filters are presented.
VSP wave separation by adaptive masking filters
NASA Astrophysics Data System (ADS)
Rao, Ying; Wang, Yanghua
2016-06-01
In vertical seismic profiling (VSP) data processing, the first step might be to separate the down-going wavefield from the up-going wavefield. When using a masking filter for VSP wave separation, there are difficulties associated with two termination ends of the up-going waves. A critical challenge is how the masking filter can restore the energy tails, the edge effect associated with these terminations uniquely exist in VSP data. An effective strategy is to implement masking filters in both τ-p and f-k domain sequentially. Meanwhile it uses a median filter, producing a clean but smooth version of the down-going wavefield, used as a reference data set for designing the masking filter. The masking filter is implemented adaptively and iteratively, gradually restoring the energy tails cut-out by any surgical mute. While the τ-p and the f-k domain masking filters target different depth ranges of VSP, this combination strategy can accurately perform in wave separation from field VSP data.
Adaptive Filtering Using Recurrent Neural Networks
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.
2005-01-01
A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.
Filtering Algebraic Multigrid and Adaptive Strategies
Nagel, A; Falgout, R D; Wittum, G
2006-01-31
Solving linear systems arising from systems of partial differential equations, multigrid and multilevel methods have proven optimal complexity and efficiency properties. Due to shortcomings of geometric approaches, algebraic multigrid methods have been developed. One example is the filtering algebraic multigrid method introduced by C. Wagner. This paper proposes a variant of Wagner's method with substantially improved robustness properties. The method is used in an adaptive, self-correcting framework and tested numerically.
Musical noise reduction using an adaptive filter
NASA Astrophysics Data System (ADS)
Hanada, Takeshi; Murakami, Takahiro; Ishida, Yoshihisa; Hoya, Tetsuya
2003-10-01
This paper presents a method for reducing a particular noise (musical noise). The musical noise is artificially produced by Spectral Subtraction (SS), which is one of the most conventional methods for speech enhancement. The musical noise is the tin-like sound and annoying in human auditory. We know that the duration of the musical noise is considerably short in comparison with that of speech, and that the frequency components of the musical noise are random and isolated. In the ordinary SS-based methods, the musical noise is removed by the post-processing. However, the output of the ordinary post-processing is delayed since the post-processing uses the succeeding frames. In order to improve this problem, we propose a novel method using an adaptive filter. In the proposed system, the observed noisy signal is used as the input signal to the adaptive filter and the output of SS is used as the reference signal. In this paper we exploit the normalized LMS (Least Mean Square) algorithm for the adaptive filter. Simulation results show that the proposed method has improved the intelligibility of the enhanced speech in comparison with the conventional method.
Adaptive filters for detection of gravitational waves from coalescing binaries
Eleuteri, Antonio; Milano, Leopoldo; De Rosa, Rosario; Garufi, Fabio; Acernese, Fausto; Barone, Fabrizio; Giordano, Lara; Pardi, Silvio
2006-06-15
In this work we propose use of infinite impulse response adaptive line enhancer (IIR ALE) filters for detection of gravitational waves from coalescing binaries. We extend our previous work and define an adaptive matched filter structure. Filter performance is analyzed in terms of the tracking capability and determination of filter parameters. Furthermore, following the Neyman-Pearson strategy, receiver operating characteristics are derived, with closedform expressions for detection threshold, false alarm, and detection probability. Extensive tests demonstrate the effectiveness of adaptive filters both in terms of small computational cost and robustness.
Reduction of MPEG ringing artifacts using adaptive sigma filter
NASA Astrophysics Data System (ADS)
Pan, Hao
2006-01-01
In this paper, we propose a novel computationally efficient post-processing algorithm to reduce ringing artifacts in the decoded DCT-coded video without using coding information. While the proposed algorithm is based on edge information as most filtering-based de-ringing algorithms do, this algorithm solely uses one single computationally efficient nonlinear filter, namely sigma filter, for both edge detection and smoothing. Specifically, the sigma filter, which was originally designed for nonlinear filtering, is extended to generate edge proximity information. Different from other adaptive filtering-based methods, whose filters typically use a fixed small window but flexible weights, this sigma filter adaptively switches between small and large windows. The adaptation is designed for removing ringing artifacts only, so the algorithm cannot be used for de-blocking. Overall, the proposed algorithm achieves a good balance among removing ringing artifacts, preserving edges and details, and computational complexity.
Adaptive filtering image preprocessing for smart FPA technology
NASA Astrophysics Data System (ADS)
Brooks, Geoffrey W.
1995-05-01
This paper discusses two applications of adaptive filters for image processing on parallel architectures. The first, based on the results of previously accomplished work, summarizes the analyses of various adaptive filters implemented for pixel-level image prediction. FIR filters, fixed and adaptive IIR filters, and various variable step size algorithms were compared with a focus on algorithm complexity against the ability to predict future pixel values. A gaussian smoothing operation with varying spatial and temporal constants were also applied for comparisons of random noise reductions. The second application is a suggestion to use memory-adaptive IIR filters for detecting and tracking motion within an image. Objects within an image are made of edges, or segments, with varying degrees of motion. An application has been previously published that describes FIR filters connecting pixels and using correlations to determine motion and direction. This implementation seems limited to detecting motion coinciding with FIR filter operation rate and the associated harmonics. Upgrading the FIR structures with adaptive IIR structures can eliminate these limitations. These and any other pixel-level adaptive filtering application require data memory for filter parameters and some basic computational capability. Tradeoffs have to be made between chip real estate and these desired features. System tradeoffs will also have to be made as to where it makes the most sense to do which level of processing. Although smart pixels may not be ready to implement adaptive filters, applications such as these should give the smart pixel designer some long range goals.
Autonomous navigation system using a fuzzy adaptive nonlinear H∞ filter.
Outamazirt, Fariz; Li, Fu; Yan, Lin; Nemra, Abdelkrim
2014-01-01
Although nonlinear H∞ (NH∞) filters offer good performance without requiring assumptions concerning the characteristics of process and/or measurement noises, they still require additional tuning parameters that remain fixed and that need to be determined through trial and error. To address issues associated with NH∞ filters, a new SINS/GPS sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter is proposed for the Unmanned Aerial Vehicle (UAV) localization problem. Based on a real-time Fuzzy Inference System (FIS), the FANH∞ filter continually adjusts the higher order of the Taylor development thorough adaptive bounds and adaptive disturbance attenuation , which significantly increases the UAV localization performance. The results obtained using the FANH∞ navigation filter are compared to the NH∞ navigation filter results and are validated using a 3D UAV flight scenario. The comparison proves the efficiency and robustness of the UAV localization process using the FANH∞ filter. PMID:25244587
NASA Astrophysics Data System (ADS)
Julià, Pere
2001-06-01
Norbert Wiener (1948, 1950) subscribed to the traditional outlook on language as a formal object (L)—a system of forms and rules that can presumably be described in abstraction from speakers, listeners, and their interaction with the world and with themselves. Information and communication theories, which Wiener also pioneered, similarly reify the object of study in lieu of treating it as the natural phenomenon it obviously is. Terms like `input,' `output,' `message,' `transmission,' `processing,' etc. implicitly legitimize older views as to the use of language as a "tool" or "instrument" for expressing feelings, thoughts, ideas, etc.; more important yet, they stand in the way of a satisfactory account of self-referentiality, which finds its natural place within the broader context of self-regulation. Cybernetics may be said to have lost sight of the "kybernetes," which gave it its name. The ways in which language participates in—or even helps to integrate—the behavior of the total human individual in his/her adaptation to their milieu casts a new light on questions about self-organization, meaning, experience, and creativity.
Superresolution restoration of an image sequence: adaptive filtering approach.
Elad, M; Feuer, A
1999-01-01
This paper presents a new method based on adaptive filtering theory for superresolution restoration of continuous image sequences. The proposed methodology suggests least squares (LS) estimators which adapt in time, based on adaptive filters, least mean squares (LMS) or recursive least squares (RLS). The adaptation enables the treatment of linear space and time-variant blurring and arbitrary motion, both of them assumed known. The proposed new approach is shown to be of relatively low computational requirements. Simulations demonstrating the superresolution restoration algorithms are presented. PMID:18262881
Filter. Remix. Make.: Cultivating Adaptability through Multimodality
ERIC Educational Resources Information Center
Dusenberry, Lisa; Hutter, Liz; Robinson, Joy
2015-01-01
This article establishes traits of adaptable communicators in the 21st century, explains why adaptability should be a goal of technical communication educators, and shows how multimodal pedagogy supports adaptability. Three examples of scalable, multimodal assignments (infographics, research interviews, and software demonstrations) that evidence…
Real time adaptive filtering for digital X-ray applications.
Bockenbach, Olivier; Mangin, Michel; Schuberth, Sebastian
2006-01-01
Over the last decade, many methods for adaptively filtering a data stream have been proposed. Those methods have applications in two dimensional imaging as well as in three dimensional image reconstruction. Although the primary objective of this filtering technique is to reduce the noise while avoiding to blur the edges, diagnostic, automated segmentation and surgery show a growing interest in enhancing the features contained in the image flow. Most of the methods proposed so far emerged from thorough studies of the physics of the considered modality and therefore show only a marginal capability to be extended across modalities. Moreover, adaptive filtering belongs to the family of processing intensive algorithms. Existing technology has often driven to simplifications and modality specific optimization to sustain the expected performances. In the specific case of real time digital X-ray as used surgery, the system has to sustain a throughput of 30 frames per second. In this study, we take a generalized approach for adaptive filtering based on multiple oriented filters. Mapping the filtering part to the embedded real time image processing while a user/application defined adaptive recombination of the filter outputs allow to change the smoothing and edge enhancement properties of the filter without changing the oriented filter parameters. We have implemented the filtering on a Cell Broadband Engine processor and the adaptive recombination on an off-the-shelf PC, connected via Gigabit Ethernet. This implementation is capable of filtering images of 5122 pixels at a throughput in excess of 40 frames per second while allowing to change the parameters in real time. PMID:17354937
Adaptive Control of Flexible Structures Using Residual Mode Filters
NASA Technical Reports Server (NTRS)
Balas, Mark J.; Frost, Susan
2010-01-01
Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter. We have proposed a modified adaptive controller with a residual mode filter. The RMF is used to accommodate troublesome modes in the system that might otherwise inhibit the adaptive controller, in particular the ASPR condition. This new theory accounts for leakage of the disturbance term into the Q modes. A simple three-mode example shows that the RMF can restore stability to an otherwise unstable adaptively controlled system. This is done without modifying the adaptive controller design.
Adaptive median filtering for preprocessing of time series measurements
NASA Technical Reports Server (NTRS)
Paunonen, Matti
1993-01-01
A median (L1-norm) filtering program using polynomials was developed. This program was used in automatic recycling data screening. Additionally, a special adaptive program to work with asymmetric distributions was developed. Examples of adaptive median filtering of satellite laser range observations and TV satellite time measurements are given. The program proved to be versatile and time saving in data screening of time series measurements.
A Windowing Frequency Domain Adaptive Filter for Acoustic Echo Cancellation
NASA Astrophysics Data System (ADS)
Wu, Sheng; Qiu, Xiaojun
This letter proposes a windowing frequency domain adaptive algorithm, which reuses the filtering error to apply window function in the filter updating symmetrically. By using a proper window function to reduce the negative influence of the spectral leakage, the proposed algorithm can significantly improve the performance of the acoustic echo cancellation for speech signals.
Likelihood Methods for Adaptive Filtering and Smoothing. Technical Report #455.
ERIC Educational Resources Information Center
Butler, Ronald W.
The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…
Adaptive Restoration of Airborne Daedalus AADS1268 ATM Thermal Data
D. Yuan; E. Doak; P. Guss; A. Will
2002-01-01
To incorporate the georegistration and restoration processes into airborne data processing in support of U.S. Department of Energy's nuclear emergency response task, we developed an adaptive restoration filter for airborne Daedalus AADS1268 ATM thermal data based on the Wiener filtering theory. Preliminary assessment shows that this filter enhances the detectability of small weak thermal anomalies in AADS1268 thermal images.
A hybrid method for optimization of the adaptive Goldstein filter
NASA Astrophysics Data System (ADS)
Jiang, Mi; Ding, Xiaoli; Tian, Xin; Malhotra, Rakesh; Kong, Weixue
2014-12-01
The Goldstein filter is a well-known filter for interferometric filtering in the frequency domain. The main parameter of this filter, alpha, is set as a power of the filtering function. Depending on it, considered areas are strongly or weakly filtered. Several variants have been developed to adaptively determine alpha using different indicators such as the coherence, and phase standard deviation. The common objective of these methods is to prevent areas with low noise from being over filtered while simultaneously allowing stronger filtering over areas with high noise. However, the estimators of these indicators are biased in the real world and the optimal model to accurately determine the functional relationship between the indicators and alpha is also not clear. As a result, the filter always under- or over-filters and is rarely correct. The study presented in this paper aims to achieve accurate alpha estimation by correcting the biased estimator using homogeneous pixel selection and bootstrapping algorithms, and by developing an optimal nonlinear model to determine alpha. In addition, an iteration is also merged into the filtering procedure to suppress the high noise over incoherent areas. The experimental results from synthetic and real data show that the new filter works well under a variety of conditions and offers better and more reliable performance when compared to existing approaches.
Estimated spectrum adaptive postfilter and the iterative prepost filtering algirighms
NASA Technical Reports Server (NTRS)
Linares, Irving (Inventor)
2004-01-01
The invention presents The Estimated Spectrum Adaptive Postfilter (ESAP) and the Iterative Prepost Filter (IPF) algorithms. These algorithms model a number of image-adaptive post-filtering and pre-post filtering methods. They are designed to minimize Discrete Cosine Transform (DCT) blocking distortion caused when images are highly compressed with the Joint Photographic Expert Group (JPEG) standard. The ESAP and the IPF techniques of the present invention minimize the mean square error (MSE) to improve the objective and subjective quality of low-bit-rate JPEG gray-scale images while simultaneously enhancing perceptual visual quality with respect to baseline JPEG images.
Lossless compression of weight vectors from an adaptive filter
Bredemann, M.V.; Elliott, G.R.; Stearns, S.D.
1994-08-01
Techniques for lossless waveform compression can be applied to the transmission of weight vectors from an orbiting satellite. The vectors, which are a part of a hybrid analog/digital adaptive filter, are a representation of the radio frequency background seen by the satellite. An approach is used which treats each adaptive weight as a time-varying waveform.
Analysis on Influence Factors of Adaptive Filter Acting on ANC
NASA Astrophysics Data System (ADS)
Zhang, Xiuqun; Zou, Liang; Ni, Guangkui; Wang, Xiaojun; Han, Tao; Zhao, Quanfu
The noise problem has become more and more serious in recent years. The adaptive filter theory which is applied in ANC [1] (active noise control) has also attracted more and more attention. In this article, the basic principle and algorithm of adaptive theory are both researched. And then the influence factor that affects its covergence rate and noise reduction is also simulated.
A Nonlinear Adaptive Filter for Gyro Thermal Bias Error Cancellation
NASA Technical Reports Server (NTRS)
Galante, Joseph M.; Sanner, Robert M.
2012-01-01
Deterministic errors in angular rate gyros, such as thermal biases, can have a significant impact on spacecraft attitude knowledge. In particular, thermal biases are often the dominant error source in MEMS gyros after calibration. Filters, such as J\\,fEKFs, are commonly used to mitigate the impact of gyro errors and gyro noise on spacecraft closed loop pointing accuracy, but often have difficulty in rapidly changing thermal environments and can be computationally expensive. In this report an existing nonlinear adaptive filter is used as the basis for a new nonlinear adaptive filter designed to estimate and cancel thermal bias effects. A description of the filter is presented along with an implementation suitable for discrete-time applications. A simulation analysis demonstrates the performance of the filter in the presence of noisy measurements and provides a comparison with existing techniques.
Improving nonlinear modeling capabilities of functional link adaptive filters.
Comminiello, Danilo; Scarpiniti, Michele; Scardapane, Simone; Parisi, Raffaele; Uncini, Aurelio
2015-09-01
The functional link adaptive filter (FLAF) represents an effective solution for online nonlinear modeling problems. In this paper, we take into account a FLAF-based architecture, which separates the adaptation of linear and nonlinear elements, and we focus on the nonlinear branch to improve the modeling performance. In particular, we propose a new model that involves an adaptive combination of filters downstream of the nonlinear expansion. Such combination leads to a cooperative behavior of the whole architecture, thus yielding a performance improvement, particularly in the presence of strong nonlinearities. An advanced architecture is also proposed involving the adaptive combination of multiple filters on the nonlinear branch. The proposed models are assessed in different nonlinear modeling problems, in which their effectiveness and capabilities are shown. PMID:26057613
Dynamic analysis of neural encoding by point process adaptive filtering.
Eden, Uri T; Frank, Loren M; Barbieri, Riccardo; Solo, Victor; Brown, Emery N
2004-05-01
Neural receptive fields are dynamic in that with experience, neurons change their spiking responses to relevant stimuli. To understand how neural systems adapt their representations of biological information, analyses of receptive field plasticity from experimental measurements are crucial. Adaptive signal processing, the well-established engineering discipline for characterizing the temporal evolution of system parameters, suggests a framework for studying the plasticity of receptive fields. We use the Bayes' rule Chapman-Kolmogorov paradigm with a linear state equation and point process observation models to derive adaptive filters appropriate for estimation from neural spike trains. We derive point process filter analogues of the Kalman filter, recursive least squares, and steepest-descent algorithms and describe the properties of these new filters. We illustrate our algorithms in two simulated data examples. The first is a study of slow and rapid evolution of spatial receptive fields in hippocampal neurons. The second is an adaptive decoding study in which a signal is decoded from ensemble neural spiking activity as the receptive fields of the neurons in the ensemble evolve. Our results provide a paradigm for adaptive estimation for point process observations and suggest a practical approach for constructing filtering algorithms to track neural receptive field dynamics on a millisecond timescale. PMID:15070506
Adaptive Control Using Residual Mode Filters Applied to Wind Turbines
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.
2011-01-01
Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.
Local adaptive filtering of images corrupted by nonstationary noise
NASA Astrophysics Data System (ADS)
Lukin, Vladimir V.; Fevralev, Dmitriy V.; Ponomarenko, Nikolay N.; Pogrebnyak, Oleksiy B.; Egiazarian, Karen O.; Astola, Jaakko T.
2009-02-01
In various practical situations of remote sensing image processing it is assumed that noise is nonstationary and no a priory information on noise dependence on local mean or about local properties of noise statistics is available. It is shown that in such situations it is difficult to find a proper filter for effective image processing, i.e., for noise removal with simultaneous edge/detail preservation. To deal with such images, a local adaptive filter based on discrete cosine transform in overlapping blocks is proposed. A threshold is set locally based on a noise standard deviation estimate obtained for each block. Several other operations to improve performance of the locally adaptive filter are proposed and studied. The designed filter effectiveness is demonstrated for simulated data as well as for real life radar remote sensing and marine polarimetric radar images.
Acoustic Echo Cancellation Using Sub-Adaptive Filter
NASA Astrophysics Data System (ADS)
Ohta, Satoshi; Kajikawa, Yoshinobu; Nomura, Yasuo
In the acoustic echo canceller (AEC), the step-size parameter of the adaptive filter must be varied according to the situation if double talk occurs and/or the echo path changes. We propose an AEC that uses a sub-adaptive filter. The proposed AEC can control the step-size parameter according to the situation. Moreover, it offers superior convergence compared to the conventional AEC even when the double talk and the echo path change occur simultaneously. Simulations demonstrate that the proposed AEC can achieve higher ERLE and faster convergence than the conventional AEC. The computational complexity of the proposed AEC can be reduced by reducing the number of taps of the sub-adaptive filter.
Fault-tolerant adaptive FIR filters using variable detection threshold
NASA Astrophysics Data System (ADS)
Lin, L. K.; Redinbo, G. R.
1994-10-01
Adaptive filters are widely used in many digital signal processing applications, where tap weight of the filters are adjusted by stochastic gradient search methods. Block adaptive filtering techniques, such as block least mean square and block conjugate gradient algorithm, were developed to speed up the convergence as well as improve the tracking capability which are two important factors in designing real-time adaptive filter systems. Even though algorithm-based fault tolerance can be used as a low-cost high level fault-tolerant technique to protect the aforementioned systems from hardware failures with minimal hardware overhead, the issue of choosing a good detection threshold remains a challenging problem. First of all, the systems usually only have limited computational resources, i.e., concurrent error detection and correction is not feasible. Secondly, any prior knowledge of input data is very difficult to get in practical settings. We propose a checksum-based fault detection scheme using two-level variable detection thresholds that is dynamically dependent on the past syndromes. Simulations show that the proposed scheme reduces the possibility of false alarms and has a high degree of fault coverage in adaptive filter systems.
An information theoretic approach of designing sparse kernel adaptive filters.
Liu, Weifeng; Park, Il; Principe, José C
2009-12-01
This paper discusses an information theoretic approach of designing sparse kernel adaptive filters. To determine useful data to be learned and remove redundant ones, a subjective information measure called surprise is introduced. Surprise captures the amount of information a datum contains which is transferable to a learning system. Based on this concept, we propose a systematic sparsification scheme, which can drastically reduce the time and space complexity without harming the performance of kernel adaptive filters. Nonlinear regression, short term chaotic time-series prediction, and long term time-series forecasting examples are presented. PMID:19923047
A New Method to Cancel RFI---The Adaptive Filter
NASA Astrophysics Data System (ADS)
Bradley, R.; Barnbaum, C.
1996-12-01
An increasing amount of precious radio frequency spectrum in the VHF, UHF, and microwave bands is being utilized each year to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Some radio spectral lines of astronomical interest occur outside the protected radio astronomy bands and are unobservable due to heavy interference. Conventional approaches to deal with RFI include legislation, notch filters, RF shielding, and post-processing techniques. Although these techniques are somewhat successful, each suffers from insufficient interference cancellation. One concept of interference excision that has not been used before in radio astronomy is adaptive interference cancellation. The concept of adaptive interference canceling was first introduced in the mid-1970s as a way to reduce unwanted noise in low frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartment of automobiles. Only recently have high-speed digital filter chips made adaptive filtering possible in a bandwidth as large a few megahertz, finally opening the door to astronomical uses. The system consists of two receivers: the main beam of the radio telescope receives the desired signal corrupted by RFI coming in the sidelobes, and the reference antenna receives only the RFI. The reference antenna is processed using a digital adaptive filter and then subtracted from the signal in the main beam, thus producing the system output. The weights of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the interference canceler will lock onto the RFI and the filter will adjust itself to minimize the effect of the RFI at the system output. We are building a prototype 100 MHz receiver and will measure the cancellation
Enhancing Adaptive Filtering Approaches for Land Data Assimilation Systems
Technology Transfer Automated Retrieval System (TEKTRAN)
Recent work has presented the initial application of adaptive filtering techniques to land surface data assimilation systems. Such techniques are motivated by our current lack of knowledge concerning the structure of large-scale error in either land surface modeling output or remotely-sensed estima...
An improved adaptive deblocking filter for MPEG video decoder
NASA Astrophysics Data System (ADS)
Kwon, Do-Kyoung; Shen, Mei-Yin; Kuo, C.-C. Jay
2005-03-01
A highly adaptive deblocking algorithm is proposed for MPEG video in this research. In comparison with previous work in this area, the proposed deblocking filter improves in three aspects. First, the proposed algorithm is adaptive to the change of the quantization parameter (QP). Since blocking artifacts between two blocks encoded with different QPs tend to be more visible due to quality difference, filters should be able to adapt dynamically to the QP change between blocks. Second, the proposed algorithm classifies the block boundary into three different region modes based on local region characteristics. The three modes are active, smooth and dormant regions. The active region represents a complex region with details and high activities while the smooth and the dormant regions refer to moderately flat and extremely flat regions, respectively. By applying different filters of different strengths to each region mode, the proposed algorithm can minimize the undesirable blur so that both subjective and objective qualities improve for various types of sequences at a wide range of bitrates. Finally, the proposed algorithm also provides a way to determine the threshold values. The proposed adaptive deblocking algorithms require several thresholds in determining proper region modes and filters. Since the quality of image sequences after filtering depends largely on the threshold values, they have to be determined carefully. In the proposed algorithm, thresholds are determined adaptively to the strength of the blocking artifact and, as a result, to various encoding parameters such as QP, absolute difference between QPs, the coding type, and motion vectors. It is shown by experimental results that the proposed algorithm can achieve 0.2-0.4 dB gains for I- and P-frames, and 0.1-0.3 dB gains for the B-frame when bit streams are encoded using the TM5 rate control algorithm.
Extended adaptive filtering for wide-angle SAR image formation
NASA Astrophysics Data System (ADS)
Wang, Yanwei; Roberts, William; Li, Jian
2005-05-01
For two-dimensional (2-D) spectral analysis, the adaptive filtering based technologies, such as CAPON and APES (Amplitude and Phase EStimation), are developed under the implicit assumption that the data sets are rectangular. However, in real SAR applications, especially for the wide-angle cases, the collected data sets are always non-rectangular. This raises the problem of how to extend the original adaptive filtering based algorithms for such kind of scenarios. In this paper, we propose an extended adaptive filtering (EAF) approach, which includes Extended APES (E-APES) and Extended CAPON (E-CAPON), for arbitrarily shaped 2-D data. The EAF algorithms adopt a missing-data approach where the unavailable data samples close to the collected data set are assumed missing. Using a group of filter-banks with varying sizes, these algorithms are non-iterative and do not require the estimation of the unavailable samples. The improved imaging results of the proposed algorithms are demonstrated by applying them to two different SAR data sets.
Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.
Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing
2016-01-01
This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches. PMID:27472336
NASA Astrophysics Data System (ADS)
Chen, Yangkang
2016-07-01
The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. One only needs to specify the number of dip components to be separated. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.
NASA Astrophysics Data System (ADS)
Chen, Yangkang
2016-04-01
The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. One only need to specify the number of dip components to be separated. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.
Fuel-flow filter for internal combustion engine, adaptable for use with a by-pass filter
Schmidt, R.
1987-06-16
This patent describes a filter apparatus for an internal combustion engine to replace a spin-on, full-flow oil filter threadably connected to an oil filter bushing. The engine has an oil system with an oil pump, an oil pan, and an oil cap at a low pressure side of the oil system. The apparatus comprises: a full-flow filter to be connected to the oil filter bushing to permit oil within the oil system to flow into the full-flow filter. The full-flow filter is of such density and filtering capacity that the oil flows from the oil pump through the full-flow filter with a minimum pressure drop; adapter means to permit use of the full-flow filter either with or without a by-pass filter. The adapter means is a nut located at the forward end of the full-flow filter opposite the oil filter bushing and extending outwardly. The nut defines an area that can be either left intact, permitting all of the oil flow outward from the full-flow filter after filtering, or punctured, permitting most of the oil to flow outward from the full-flow filter after filtering. A small portion of the oil to flows outward therefrom prior to filtering. The nut is within a specific range of depth and circumference so as to provide a means for controlling the size of the hole. The nut is inwardly threaded.
Adaptive gain and filtering circuit for a sound reproduction system
NASA Technical Reports Server (NTRS)
Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor)
1998-01-01
Adaptive compressive gain and level dependent spectral shaping circuitry for a hearing aid include a microphone to produce an input signal and a plurality of channels connected to a common circuit output. Each channel has a preset frequency response. Each channel includes a filter with a preset frequency response to receive the input signal and to produce a filtered signal, a channel amplifier to amplify the filtered signal to produce a channel output signal, a threshold register to establish a channel threshold level, and a gain circuit. The gain circuit increases the gain of the channel amplifier when the channel output signal falls below the channel threshold level and decreases the gain of the channel amplifier when the channel output signal rises above the channel threshold level. A transducer produces sound in response to the signal passed by the common circuit output.
Kalman filtering to suppress spurious signals in Adaptive Optics control
Poyneer, L; Veran, J P
2010-03-29
In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.
Infinite impulse response modal filtering in visible adaptive optics
NASA Astrophysics Data System (ADS)
Agapito, G.; Arcidiacono, C.; Quirós-Pacheco, F.; Puglisi, A.; Esposito, S.
2012-07-01
Diffraction limited resolution adaptive optics (AO) correction in visible wavelengths requires a high performance control. In this paper we investigate infinite impulse response filters that optimize the wavefront correction: we tested these algorithms through full numerical simulations of a single-conjugate AO system comprising an adaptive secondary mirror with 1127 actuators and a pyramid wavefront sensor (WFS). The actual practicability of the algorithms depends on both robustness and knowledge of the real system: errors in the system model may even worsen the performance. In particular we checked the robustness of the algorithms in different conditions, proving that the proposed method can reject both disturbance and calibration errors.
Adaptive control of large space structures using recursive lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Goglia, G. L.
1985-01-01
The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance.
Adaptive control of large space structures using recursive lattice filters
NASA Technical Reports Server (NTRS)
Goglia, G. L.
1985-01-01
The use of recursive lattice filters for identification and adaptive control of large space structures was studied. Lattice filters are used widely in the areas of speech and signal processing. Herein, they are used to identify the structural dynamics model of the flexible structures. This identified model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures control is engaged. This type of validation scheme prevents instability when the overall loop is closed. The results obtained from simulation were compared to those obtained from experiments. In this regard, the flexible beam and grid apparatus at the Aerospace Control Research Lab (ACRL) of NASA Langley Research Center were used as the principal candidates for carrying out the above tasks. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods.
Penny, B.C.; King, M.A.; Glick, S.J. . Dept. of Nuclear Medicine)
1990-04-01
This study applies two image-dependent restoration filters to projection image sets obtained with single photon emission computed tomography (SPECT). Wiener and Metz restoration of combined conjugate views are compared to: each other, Wiener restoration of individual projection images, and to one-dimensional (1D) Butterworth smoothing. The combined view restoration filters adapt to the average thickness of the object by estimating a modulation transfer function (MTF) for that thickness. Simulated Tc-99m liver-spleen studies with randomly placed cold spot tumors, a projector which accounts for the spatially variant blurring in SPECT, and a Poisson noise generator are used to compute simulated projection image sets.
Model Adaptation for Prognostics in a Particle Filtering Framework
NASA Technical Reports Server (NTRS)
Saha, Bhaskar; Goebel, Kai Frank
2011-01-01
One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the "curse of dimensionality", i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for "well-designed" particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.
Wiener-matrix image restoration beyond the sampling passband
NASA Astrophysics Data System (ADS)
Rahman, Zia-ur; Alter-Gartenberg, Rachel; Fales, Carl L.; Huck, Friedrich O.
1991-09-01
A finer-than-sampling-lattice resolution image can be obtained using multiresponse image gathering and Wiener-matrix restoration. The multiresponse image gathering weighs the within-passband and aliased signal components differently, allowing the Wiener-matrix restoration filter to unscramble these signal components and restore spatial frequencies beyond the sampling passband of the photodetector array. Thus, A multiresponse images can be reassembled into a single minimum mean square error image with a resolution that is (root)A times finer than the photodetector-array sampling lattice.
Wiener-matrix image restoration beyond the sampling passband
NASA Technical Reports Server (NTRS)
Rahman, Zia-Ur; Alter-Gartenberg, Rachel; Fales, Carl L.; Huck, Friedrich O.
1991-01-01
A finer-than-sampling-lattice resolution image can be obtained using multiresponse image gathering and Wiener-matrix restoration. The multiresponse image gathering weighs the within-passband and aliased signal components differently, allowing the Wiener-matrix restoration filter to unscramble these signal components and restore spatial frequencies beyond the sampling passband of the photodetector array. A multiresponse images can be reassembled into a single minimum mean square error image with a resolution that is sq rt A times finer than the photodetector-array sampling lattice.
Image super-resolution via adaptive filtering and regularization
NASA Astrophysics Data System (ADS)
Ren, Jingbo; Wu, Hao; Dong, Weisheng; Shi, Guangming
2014-11-01
Image super-resolution (SR) is widely used in the fields of civil and military, especially for the low-resolution remote sensing images limited by the sensor. Single-image SR refers to the task of restoring a high-resolution (HR) image from the low-resolution image coupled with some prior knowledge as a regularization term. One classic method regularizes image by total variation (TV) and/or wavelet or some other transform which introduce some artifacts. To compress these shortages, a new framework for single image SR is proposed by utilizing an adaptive filter before regularization. The key of our model is that the adaptive filter is used to remove the spatial relevance among pixels first and then only the high frequency (HF) part, which is sparser in TV and transform domain, is considered as the regularization term. Concretely, through transforming the original model, the SR question can be solved by two alternate iteration sub-problems. Before each iteration, the adaptive filter should be updated to estimate the initial HF. A high quality HF part and HR image can be obtained by solving the first and second sub-problem, respectively. In experimental part, a set of remote sensing images captured by Landsat satellites are tested to demonstrate the effectiveness of the proposed framework. Experimental results show the outstanding performance of the proposed method in quantitative evaluation and visual fidelity compared with the state-of-the-art methods.
Frequency-shift low-pass filtering and least mean square adaptive filtering for ultrasound imaging
NASA Astrophysics Data System (ADS)
Wang, Shanshan; Li, Chunyu; Ding, Mingyue; Yuchi, Ming
2016-04-01
Ultrasound image quality enhancement is a problem of considerable interest in medical imaging modality and an ongoing challenge to date. This paper investigates a method based on frequency-shift low-pass filtering (FSLF) and least mean square adaptive filtering (LMSAF) for ultrasound image quality enhancement. FSLF is used for processing the ultrasound signal in the frequency domain, while LMSAPF in the time domain. Firstly, FSLF shifts the center frequency of the focused signal to zero. Then the real and imaginary part of the complex data are filtered respectively by finite impulse response (FIR) low-pass filter. Thus the information around the center frequency are retained while the undesired ones, especially background noises are filtered. Secondly, LMSAF multiplies the signals with an automatically adjusted weight vector to further eliminate the noises and artifacts. Through the combination of the two filters, the ultrasound image is expected to have less noises and artifacts and higher resolution, and contrast. The proposed method was verified with the RF data of the CIRS phantom 055A captured by SonixTouch DAQ system. Experimental results show that the background noises and artifacts can be efficiently restrained, the wire object has a higher resolution and the contrast ratio (CR) can be enhanced for about 12dB to 15dB at different image depth comparing to delay-and-sum (DAS).
Adaptive distributed Kalman filtering with wind estimation for astronomical adaptive optics.
Massioni, Paolo; Gilles, Luc; Ellerbroek, Brent
2015-12-01
In the framework of adaptive optics (AO) for astronomy, it is a common assumption to consider the atmospheric turbulent layers as "frozen flows" sliding according to the wind velocity profile. For this reason, having knowledge of such a velocity profile is beneficial in terms of AO control system performance. In this paper we show that it is possible to exploit the phase estimate from a Kalman filter running on an AO system in order to estimate wind velocity. This allows the update of the Kalman filter itself with such knowledge, making it adaptive. We have implemented such an adaptive controller based on the distributed version of the Kalman filter, for a realistic simulation of a multi-conjugate AO system with laser guide stars on a 30 m telescope. Simulation results show that this approach is effective and promising and the additional computational cost with respect to the distributed filter is negligible. Comparisons with a previously published slope detection and ranging wind profiler are made and the impact of turbulence profile quantization is assessed. One of the main findings of the paper is that all flavors of the adaptive distributed Kalman filter are impacted more significantly by turbulence profile quantization than the static minimum mean square estimator which does not incorporate wind profile information. PMID:26831389
A New Adaptive Framework for Collaborative Filtering Prediction.
Almosallam, Ibrahim A; Shang, Yi
2008-06-01
Collaborative filtering is one of the most successful techniques for recommendation systems and has been used in many commercial services provided by major companies including Amazon, TiVo and Netflix. In this paper we focus on memory-based collaborative filtering (CF). Existing CF techniques work well on dense data but poorly on sparse data. To address this weakness, we propose to use z-scores instead of explicit ratings and introduce a mechanism that adaptively combines global statistics with item-based values based on data density level. We present a new adaptive framework that encapsulates various CF algorithms and the relationships among them. An adaptive CF predictor is developed that can self adapt from user-based to item-based to hybrid methods based on the amount of available ratings. Our experimental results show that the new predictor consistently obtained more accurate predictions than existing CF methods, with the most significant improvement on sparse data sets. When applied to the Netflix Challenge data set, our method performed better than existing CF and singular value decomposition (SVD) methods and achieved 4.67% improvement over Netflix's system. PMID:21572924
Switched Band-Pass Filters for Adaptive Transceivers
NASA Technical Reports Server (NTRS)
Wang, Ray
2007-01-01
Switched band-pass filters are key components of proposed adaptive, software- defined radio transceivers that would be parts of envisioned digital-data-communication networks that would enable real-time acquisition and monitoring of data from geographically distributed sensors. Examples of sensors to be connected to such networks include security cameras, radio-frequency identification units, and geolocation units based on the Global Positioning System. Through suitable software configuration and without changing hardware, these transceivers could be made to operate according to any of a number of complex wireless-communication standards that could be characterized by diverse modulation schemes, bandwidths, and data-handling protocols. The adaptive transceivers would include field-programmable gate arrays (FPGAs) and digital signal-processing hardware. In the receiving path of a transceiver, the incoming signal would be amplified by a low-noise amplifier (LNA). The output spectrum of the LNA would be processed by a band-pass filter operating in the frequency range between 900 MHz and 2.4 GHz. Then a down-converter would translate the signal to a lower frequency range to facilitate analog-to-digital conversion, which would be followed by baseband processing by one or more FPGAs. In the transmitting path, a digital stream would first be converted to an analog signal, which would then be up-converted to a selected frequency band before being applied to a transmitting power amplifier. The aforementioned band-pass filter in the receiving path would be a combination of resonant inductor-and-capacitor filters and switched band-pass filters. The overall combination would implement a switch function designed mathematically to exhibit desired frequency responses and to switch the signal in each frequency band to an analog-to-digital converter appropriate for that band to produce a digital intermediate-frequency signal for digital signal processing.
NASA Astrophysics Data System (ADS)
Meng, Yang; Gao, Shesheng; Zhong, Yongmin; Hu, Gaoge; Subic, Aleksandar
2016-03-01
The use of the direct filtering approach for INS/GNSS integrated navigation introduces nonlinearity into the system state equation. As the unscented Kalman filter (UKF) is a promising method for nonlinear problems, an obvious solution is to incorporate the UKF concept in the direct filtering approach to address the nonlinearity involved in INS/GNSS integrated navigation. However, the performance of the standard UKF is dependent on the accurate statistical characterizations of system noise. If the noise distributions of inertial instruments and GNSS receivers are not appropriately described, the standard UKF will produce deteriorated or even divergent navigation solutions. This paper presents an adaptive UKF with noise statistic estimator to overcome the limitation of the standard UKF. According to the covariance matching technique, the innovation and residual sequences are used to determine the covariance matrices of the process and measurement noises. The proposed algorithm can estimate and adjust the system noise statistics online, and thus enhance the adaptive capability of the standard UKF. Simulation and experimental results demonstrate that the performance of the proposed algorithm is significantly superior to that of the standard UKF and adaptive-robust UKF under the condition without accurate knowledge on system noise, leading to improved navigation precision.
Statistical-uncertainty-based adaptive filtering of lidar signals
Fuehrer, P. L.; Friehe, C. A.; Hristov, T. S.; Cooper, D. I.; Eichinger, W. E.
2000-02-10
An adaptive filter signal processing technique is developed to overcome the problem of Raman lidar water-vapor mixing ratio (the ratio of the water-vapor density to the dry-air density) with a highly variable statistical uncertainty that increases with decreasing photomultiplier-tube signal strength and masks the true desired water-vapor structure. The technique, applied to horizontal scans, assumes only statistical horizontal homogeneity. The result is a variable spatial resolution water-vapor signal with a constant variance out to a range limit set by a specified signal-to-noise ratio. The technique was applied to Raman water-vapor lidar data obtained at a coastal pier site together with in situ instruments located 320 m from the lidar. The micrometerological humidity data were used to calibrate the ratio of the lidar gains of the H{sub 2}O and the N{sub 2} photomultiplier tubes and set the water-vapor mixing ratio variance for the adaptive filter. For the coastal experiment the effective limit of the lidar range was found to be approximately 200 m for a maximum noise-to-signal variance ratio of 0.1 with the implemented data-reduction procedure. The technique can be adapted to off-horizontal scans with a small reduction in the constraints and is also applicable to other remote-sensing devices that exhibit the same inherent range-dependent signal-to-noise ratio problem. (c) 2000 Optical Society of America.
Fast Source Camera Identification Using Content Adaptive Guided Image Filter.
Zeng, Hui; Kang, Xiangui
2016-03-01
Source camera identification (SCI) is an important topic in image forensics. One of the most effective fingerprints for linking an image to its source camera is the sensor pattern noise, which is estimated as the difference between the content and its denoised version. It is widely believed that the performance of the sensor-based SCI heavily relies on the denoising filter used. This study proposes a novel sensor-based SCI method using content adaptive guided image filter (CAGIF). Thanks to the low complexity nature of the CAGIF, the proposed method is much faster than the state-of-the-art methods, which is a big advantage considering the potential real-time application of SCI. Despite the advantage of speed, experimental results also show that the proposed method can achieve comparable or better performance than the state-of-the-art methods in terms of accuracy. PMID:27404627
An adaptive filter method for spacecraft using gravity assist
NASA Astrophysics Data System (ADS)
Ning, Xiaolin; Huang, Panpan; Fang, Jiancheng; Liu, Gang; Ge, Shuzhi Sam
2015-04-01
Celestial navigation (CeleNav) has been successfully used during gravity assist (GA) flyby for orbit determination in many deep space missions. Due to spacecraft attitude errors, ephemeris errors, the camera center-finding bias, and the frequency of the images before and after the GA flyby, the statistics of measurement noise cannot be accurately determined, and yet have time-varying characteristics, which may introduce large estimation error and even cause filter divergence. In this paper, an unscented Kalman filter (UKF) with adaptive measurement noise covariance, called ARUKF, is proposed to deal with this problem. ARUKF scales the measurement noise covariance according to the changes in innovation and residual sequences. Simulations demonstrate that ARUKF is robust to the inaccurate initial measurement noise covariance matrix and time-varying measurement noise. The impact factors in the ARUKF are also investigated.
Attitude determination using an adaptive multiple model filtering Scheme
NASA Technical Reports Server (NTRS)
Lam, Quang; Ray, Surendra N.
1995-01-01
Attitude determination has been considered as a permanent topic of active research and perhaps remaining as a forever-lasting interest for spacecraft system designers. Its role is to provide a reference for controls such as pointing the directional antennas or solar panels, stabilizing the spacecraft or maneuvering the spacecraft to a new orbit. Least Square Estimation (LSE) technique was utilized to provide attitude determination for the Nimbus 6 and G. Despite its poor performance (estimation accuracy consideration), LSE was considered as an effective and practical approach to meet the urgent need and requirement back in the 70's. One reason for this poor performance associated with the LSE scheme is the lack of dynamic filtering or 'compensation'. In other words, the scheme is based totally on the measurements and no attempts were made to model the dynamic equations of motion of the spacecraft. We propose an adaptive filtering approach which employs a bank of Kalman filters to perform robust attitude estimation. The proposed approach, whose architecture is depicted, is essentially based on the latest proof on the interactive multiple model design framework to handle the unknown of the system noise characteristics or statistics. The concept fundamentally employs a bank of Kalman filter or submodel, instead of using fixed values for the system noise statistics for each submodel (per operating condition) as the traditional multiple model approach does, we use an on-line dynamic system noise identifier to 'identify' the system noise level (statistics) and update the filter noise statistics using 'live' information from the sensor model. The advanced noise identifier, whose architecture is also shown, is implemented using an advanced system identifier. To insure the robust performance for the proposed advanced system identifier, it is also further reinforced by a learning system which is implemented (in the outer loop) using neural networks to identify other unknown
Attitude determination using an adaptive multiple model filtering Scheme
NASA Astrophysics Data System (ADS)
Lam, Quang; Ray, Surendra N.
1995-05-01
Attitude determination has been considered as a permanent topic of active research and perhaps remaining as a forever-lasting interest for spacecraft system designers. Its role is to provide a reference for controls such as pointing the directional antennas or solar panels, stabilizing the spacecraft or maneuvering the spacecraft to a new orbit. Least Square Estimation (LSE) technique was utilized to provide attitude determination for the Nimbus 6 and G. Despite its poor performance (estimation accuracy consideration), LSE was considered as an effective and practical approach to meet the urgent need and requirement back in the 70's. One reason for this poor performance associated with the LSE scheme is the lack of dynamic filtering or 'compensation'. In other words, the scheme is based totally on the measurements and no attempts were made to model the dynamic equations of motion of the spacecraft. We propose an adaptive filtering approach which employs a bank of Kalman filters to perform robust attitude estimation. The proposed approach, whose architecture is depicted, is essentially based on the latest proof on the interactive multiple model design framework to handle the unknown of the system noise characteristics or statistics. The concept fundamentally employs a bank of Kalman filter or submodel, instead of using fixed values for the system noise statistics for each submodel (per operating condition) as the traditional multiple model approach does, we use an on-line dynamic system noise identifier to 'identify' the system noise level (statistics) and update the filter noise statistics using 'live' information from the sensor model. The advanced noise identifier, whose architecture is also shown, is implemented using an advanced system identifier. To insure the robust performance for the proposed advanced system identifier, it is also further reinforced by a learning system which is implemented (in the outer loop) using neural networks to identify other unknown
NASA Astrophysics Data System (ADS)
Campos Trujillo, Oliver G.; Díaz Blancas, Gerardo
2014-09-01
In recent years, many proposals that consider an adaptive perspective had been developed to solve some drawbacks, such as geometric distortions, background noise and target discrimination. The metrics are based only in the correlation peak output for the filter synthesis. In this paper, the correlation shape is studied to implement adaptive correlation filters guided by the peak and shape of the correlation output. Furthermore, the shape of correlation output is studied to improve the search in the filters bank. In addition, parallel algorithms are developed for accelerated the search in the filters bank. Some results are shown, such as time of synthesis, filter performance and comparisons with other adaptive correlation filter proposals.
Residual mode filters and adaptive control in large space structures
NASA Technical Reports Server (NTRS)
Davidson, Roger A.; Balas, Mark J.
1989-01-01
One of the most difficult problems in controlling large systems and structures is compensating for the destructive interaction which can occur between the reduced-order model (ROM) of the plant, which is used by the controller, and the unmodeled dynamics of the plant, often called the residual modes. The problem is more significant in the case of large space structures because their naturally light damping and high performance requirements lead to more frequent, destructive residual mode interaction (RMI). Using the design/compensation technique of residual mode filters (RMF's), effective compensation of RMI can be accomplished in a straightforward manner when using linear controllers. The use of RMF's has been shown to be effective for a variety of large structures, including a space-based laser and infinite dimensional systems. However, the dynamics of space structures is often uncertain and may even change over time due to on-orbit erosion from space debris and corrosive chemicals in the upper atmosphere. In this case, adaptive control can be extremely beneficial in meeting the performance requirements of the structure. Adaptive control for large structures is also based on ROM's and so destructive RMI may occur. Unfortunately, adaptive control is inherently nonlinear, and therefore the known results of RMF's cannot be applied. The purpose is to present the results of new research showing the effects of RMI when using adaptive control and the work which will hopefully lead to RMF compensation of this problem.
Multimodal Medical Image Fusion by Adaptive Manifold Filter.
Geng, Peng; Liu, Shuaiqi; Zhuang, Shanna
2015-01-01
Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images. PMID:26664494
On application of adaptive decorrelation filtering to assistive listening
NASA Astrophysics Data System (ADS)
Zhao, Yunxin; Yen, Kuan-Chieh; Soli, Sig; Gao, Shawn; Vermiglio, Andy
2002-02-01
This paper describes an application of the multichannel signal processing technique of adaptive decorrelation filtering to the design of an assistive listening system. A simulated ``dinner table'' scenario was studied. The speech signal of a desired talker was corrupted by three simultaneous speech jammers and by a speech-shaped diffusive noise. The technique of adaptive decorrelation filtering processing was used to extract the desired speech from the interference speech and noise. The effectiveness of the assistive listening system was evaluated by observing improvements in A-weighted signal-to-noise ratio (SNR) and in sentence intelligibility, where the latter was evaluated in a listening test with eight normal hearing subjects and three subjects with hearing impairments. Significant improvements in SNR and sentence intelligibility were achieved with the use of the assistive listening system. For subjects with normal hearing, the speech reception threshold was improved by 3 to 5 dBA, and for subjects with hearing impairments, the threshold was improved by 4 to 8 dBA.
A wavelet packet adaptive filtering algorithm for enhancing manatee vocalizations.
Gur, M Berke; Niezrecki, Christopher
2011-04-01
Approximately a quarter of all West Indian manatee (Trichechus manatus latirostris) mortalities are attributed to collisions with watercraft. A boater warning system based on the passive acoustic detection of manatee vocalizations is one possible solution to reduce manatee-watercraft collisions. The success of such a warning system depends on effective enhancement of the vocalization signals in the presence of high levels of background noise, in particular, noise emitted from watercraft. Recent research has indicated that wavelet domain pre-processing of the noisy vocalizations is capable of significantly improving the detection ranges of passive acoustic vocalization detectors. In this paper, an adaptive denoising procedure, implemented on the wavelet packet transform coefficients obtained from the noisy vocalization signals, is investigated. The proposed denoising algorithm is shown to improve the manatee detection ranges by a factor ranging from two (minimum) to sixteen (maximum) compared to high-pass filtering alone, when evaluated using real manatee vocalization and background noise signals of varying signal-to-noise ratios (SNR). Furthermore, the proposed method is also shown to outperform a previously suggested feedback adaptive line enhancer (FALE) filter on average 3.4 dB in terms of noise suppression and 0.6 dB in terms of waveform preservation. PMID:21476661
An adaptive filtered back-projection for photoacoustic image reconstruction
Huang, He; Bustamante, Gilbert; Peterson, Ralph; Ye, Jing Yong
2015-01-01
Purpose: The purpose of this study is to develop an improved filtered-back-projection (FBP) algorithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality compared to images reconstructed through traditional algorithms. Methods: A rigorous expression of a weighting function has been derived directly from a photoacoustic wave equation and used as a ramp filter in Fourier domain. The authors’ new algorithm utilizes this weighting function to precisely calculate each photoacoustic signal’s contribution and then reconstructs the image based on the retarded potential generated from the photoacoustic sources. In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass filter. Two computational phantoms were created to test the algorithm. The first phantom contained five spheres with each sphere having different absorbances. The phantom was used to test the capability for correctly representing both the geometry and the relative absorbed energy in a planar measurement system. The authors also used another phantom containing absorbers of different sizes with overlapping geometry to evaluate the performance of the new method for complicated geometry. In addition, random noise background was added to the simulated data, which were obtained by using an arc-shaped array of 50 evenly distributed transducers that spanned 160° over a circle with a radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting measurement signals in PAT simulations. The authors assumed that the scanned object was mounted on a holder that rotated over the full 360° and the scans were set to a sampling rate of 20.48 MHz. Results: The authors have obtained reconstructed images of the computerized phantoms by utilizing the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new approach allows not only obtaining a sharp image but also showing
An adaptive filtered back-projection for photoacoustic image reconstruction
Huang, He; Bustamante, Gilbert; Peterson, Ralph; Ye, Jing Yong
2015-05-15
Purpose: The purpose of this study is to develop an improved filtered-back-projection (FBP) algorithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality compared to images reconstructed through traditional algorithms. Methods: A rigorous expression of a weighting function has been derived directly from a photoacoustic wave equation and used as a ramp filter in Fourier domain. The authors’ new algorithm utilizes this weighting function to precisely calculate each photoacoustic signal’s contribution and then reconstructs the image based on the retarded potential generated from the photoacoustic sources. In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass filter. Two computational phantoms were created to test the algorithm. The first phantom contained five spheres with each sphere having different absorbances. The phantom was used to test the capability for correctly representing both the geometry and the relative absorbed energy in a planar measurement system. The authors also used another phantom containing absorbers of different sizes with overlapping geometry to evaluate the performance of the new method for complicated geometry. In addition, random noise background was added to the simulated data, which were obtained by using an arc-shaped array of 50 evenly distributed transducers that spanned 160° over a circle with a radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting measurement signals in PAT simulations. The authors assumed that the scanned object was mounted on a holder that rotated over the full 360° and the scans were set to a sampling rate of 20.48 MHz. Results: The authors have obtained reconstructed images of the computerized phantoms by utilizing the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new approach allows not only obtaining a sharp image but also showing
Controller-structure interaction compensation using adaptive residual mode filters
NASA Technical Reports Server (NTRS)
Davidson, Roger A.; Balas, Mark J.
1990-01-01
It is not feasible to construct controllers for large space structures or large scale systems (LSS's) which are of the same order as the structures. The complexity of the dynamics of these systems is such that full knowledge of its behavior cannot by processed by today's controller design methods. The controller for system performance of such a system is therefore based on a much smaller reduced-order model (ROM). Unfortunately, the interaction between the LSS and the ROM-based controller can produce instabilities in the closed-loop system due to the unmodeled dynamics of the LSS. Residual mode filters (RMF's) allow the systematic removal of these instabilities in a matter which does not require a redesign of the controller. In addition RMF's have a strong theoretical basis. As simple first- or second-order filters, the RMF CSI compensation technique is at once modular, simple and highly effective. RMF compensation requires knowledge of the dynamics of the system modes which resulted in the previous closed-loop instabilities (the residual modes), but this information is sometimes known imperfectly. An adaptive, self-tuning RMF design, which compensates for uncertainty in the frequency of the residual mode, has been simulated using continuous-time and discrete-time models of a flexible robot manipulator. Work has also been completed on the discrete-time experimental implementation on the Martin Marietta flexible robot manipulator experiment. This paper will present the results of that work on adaptive, self-tuning RMF's, and will clearly show the advantage of this adaptive compensation technique for controller-structure interaction (CSI) instabilities in actively-controlled LSS's.
Aging Wiener-Khinchin Theorem.
Leibovich, N; Barkai, E
2015-08-21
The Wiener-Khinchin theorem shows how the power spectrum of a stationary random signal I(t) is related to its correlation function ⟨I(t)I(t+τ)⟩. We consider nonstationary processes with the widely observed aging correlation function ⟨I(t)I(t+τ)⟩∼t(γ)ϕ(EA)(τ/t) and relate it to the sample spectrum. We formulate two aging Wiener-Khinchin theorems relating the power spectrum to the time- and ensemble-averaged correlation functions, discussing briefly the advantages of each. When the scaling function ϕ(EA)(x) exhibits a nonanalytical behavior in the vicinity of its small argument we obtain the aging 1/f-type of spectrum. We demonstrate our results with three examples: blinking quantum dots, single-file diffusion, and Brownian motion in a logarithmic potential, showing that our approach is valid for a wide range of physical mechanisms. PMID:26340172
A note about Norbert Wiener and his contribution to Harmonic Analysis and Tauberian Theorems
NASA Astrophysics Data System (ADS)
Almira, J. M.; Romero, A. E.
2009-05-01
In this note we explain the main motivations Norbert Wiener had for the creation of his Generalized Harmonic Analysis [13] and his Tauberian Theorems [14]. Although these papers belong to the most pure mathematical tradition, they were deeply based on some Engineering and Physics Problems and Wiener was able to use them for such diverse areas as Optics, Brownian motion, Filter Theory, Prediction Theory and Cybernetics.
Reduced-Rank Adaptive Filtering Using Krylov Subspace
NASA Astrophysics Data System (ADS)
Burykh, Sergueï; Abed-Meraim, Karim
2003-12-01
A unified view of several recently introduced reduced-rank adaptive filters is presented. As all considered methods use Krylov subspace for rank reduction, the approach taken in this work is inspired from Krylov subspace methods for iterative solutions of linear systems. The alternative interpretation so obtained is used to study the properties of each considered technique and to relate one reduced-rank method to another as well as to algorithms used in computational linear algebra. Practical issues are discussed and low-complexity versions are also included in our study. It is believed that the insight developed in this paper can be further used to improve existing reduced-rank methods according to known results in the domain of Krylov subspace methods.
Adaptive Data Filtering of Inertial Sensors with Variable Bandwidth
Alam, Mushfiqul; Rohac, Jan
2015-01-01
MEMS (micro-electro-mechanical system)-based inertial sensors, i.e., accelerometers and angular rate sensors, are commonly used as a cost-effective solution for the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. These tri-axial inertial sensors form an inertial measurement unit (IMU), which is a core unit of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight and power consumption, they suffer from bias instability, noisy output and insufficient resolution. Furthermore, the sensor's behavior can be significantly affected by strong vibration when it operates in harsh environments. All of these constitute conditions require treatment through data processing. As long as the navigation solution is primarily based on using only inertial data, this paper proposes a novel concept in adaptive data pre-processing by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the accelerometer's data in order to reduce the effects of vibration and sensor noise before attitude estimation is processed. Low frequency vibration generally limits the conditions under which the accelerometers can be used to aid the attitude estimation process, which is primarily based on angular rate data and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables using accelerometers as an aiding source by effective data smoothing, even when they are affected by low frequency vibration. Verification of the proposed concept is performed on simulation and real-flight data obtained on an ultra-light aircraft. The results of both types of experiments confirm the suitability of the concept for inertial data pre-processing. PMID:25648711
Adaptive data filtering of inertial sensors with variable bandwidth.
Alam, Mushfiqul; Rohac, Jan
2015-01-01
MEMS (micro-electro-mechanical system)-based inertial sensors, i.e., accelerometers and angular rate sensors, are commonly used as a cost-effective solution for the purposes of navigation in a broad spectrum of terrestrial and aerospace applications. These tri-axial inertial sensors form an inertial measurement unit (IMU), which is a core unit of navigation systems. Even if MEMS sensors have an advantage in their size, cost, weight and power consumption, they suffer from bias instability, noisy output and insufficient resolution. Furthermore, the sensor's behavior can be significantly affected by strong vibration when it operates in harsh environments. All of these constitute conditions require treatment through data processing. As long as the navigation solution is primarily based on using only inertial data, this paper proposes a novel concept in adaptive data pre-processing by using a variable bandwidth filtering. This approach utilizes sinusoidal estimation to continuously adapt the filtering bandwidth of the accelerometer's data in order to reduce the effects of vibration and sensor noise before attitude estimation is processed. Low frequency vibration generally limits the conditions under which the accelerometers can be used to aid the attitude estimation process, which is primarily based on angular rate data and, thus, decreases its accuracy. In contrast, the proposed pre-processing technique enables using accelerometers as an aiding source by effective data smoothing, even when they are affected by low frequency vibration. Verification of the proposed concept is performed on simulation and real-flight data obtained on an ultra-light aircraft. The results of both types of experiments confirm the suitability of the concept for inertial data pre-processing. PMID:25648711
Adaptive noise cancellation based on beehive pattern evolutionary digital filter
NASA Astrophysics Data System (ADS)
Zhou, Xiaojun; Shao, Yimin
2014-01-01
Evolutionary digital filtering (EDF) exhibits the advantage of avoiding the local optimum problem by using cloning and mating searching rules in an adaptive noise cancellation system. However, convergence performance is restricted by the large population of individuals and the low level of information communication among them. The special beehive structure enables the individuals on neighbour beehive nodes to communicate with each other and thus enhance the information spread and random search ability of the algorithm. By introducing the beehive pattern evolutionary rules into the original EDF, this paper proposes an improved beehive pattern evolutionary digital filter (BP-EDF) to overcome the defects of the original EDF. In the proposed algorithm, a new evolutionary rule which combines competing cloning, complete cloning and assistance mating methods is constructed to enable the individuals distributed on the beehive to communicate with their neighbours. Simulation results are used to demonstrate the improved performance of the proposed algorithm in terms of convergence speed to the global optimum compared with the original methods. Experimental results also verify the effectiveness of the proposed algorithm in extracting feature signals that are contaminated by significant amounts of noise during the fault diagnosis task.
Modeling of Rate-Dependent Hysteresis Using a GPO-Based Adaptive Filter.
Zhang, Zhen; Ma, Yaopeng
2016-01-01
A novel generalized play operator-based (GPO-based) nonlinear adaptive filter is proposed to model rate-dependent hysteresis nonlinearity for smart actuators. In the proposed filter, the input signal vector consists of the output of a tapped delay line. GPOs with various thresholds are used to construct a nonlinear network and connected with the input signals. The output signal of the filter is composed of a linear combination of signals from the output of GPOs. The least-mean-square (LMS) algorithm is used to adjust the weights of the nonlinear filter. The modeling results of four adaptive filter methods are compared: GPO-based adaptive filter, Volterra filter, backlash filter and linear adaptive filter. Moreover, a phenomenological operator-based model, the rate-dependent generalized Prandtl-Ishlinskii (RDGPI) model, is compared to the proposed adaptive filter. The various rate-dependent modeling methods are applied to model the rate-dependent hysteresis of a giant magnetostrictive actuator (GMA). It is shown from the modeling results that the GPO-based adaptive filter can describe the rate-dependent hysteresis nonlinear of the GMA more accurately and effectively. PMID:26861349
Modeling of Rate-Dependent Hysteresis Using a GPO-Based Adaptive Filter
Zhang, Zhen; Ma, Yaopeng
2016-01-01
A novel generalized play operator-based (GPO-based) nonlinear adaptive filter is proposed to model rate-dependent hysteresis nonlinearity for smart actuators. In the proposed filter, the input signal vector consists of the output of a tapped delay line. GPOs with various thresholds are used to construct a nonlinear network and connected with the input signals. The output signal of the filter is composed of a linear combination of signals from the output of GPOs. The least-mean-square (LMS) algorithm is used to adjust the weights of the nonlinear filter. The modeling results of four adaptive filter methods are compared: GPO-based adaptive filter, Volterra filter, backlash filter and linear adaptive filter. Moreover, a phenomenological operator-based model, the rate-dependent generalized Prandtl-Ishlinskii (RDGPI) model, is compared to the proposed adaptive filter. The various rate-dependent modeling methods are applied to model the rate-dependent hysteresis of a giant magnetostrictive actuator (GMA). It is shown from the modeling results that the GPO-based adaptive filter can describe the rate-dependent hysteresis nonlinear of the GMA more accurately and effectively. PMID:26861349
Subsurface characterization with localized ensemble Kalman filter employing adaptive thresholding
NASA Astrophysics Data System (ADS)
Delijani, Ebrahim Biniaz; Pishvaie, Mahmoud Reza; Boozarjomehry, Ramin Bozorgmehry
2014-07-01
Ensemble Kalman filter, EnKF, as a Monte Carlo sequential data assimilation method has emerged promisingly for subsurface media characterization during past decade. Due to high computational cost of large ensemble size, EnKF is limited to small ensemble set in practice. This results in appearance of spurious correlation in covariance structure leading to incorrect or probable divergence of updated realizations. In this paper, a universal/adaptive thresholding method is presented to remove and/or mitigate spurious correlation problem in the forecast covariance matrix. This method is, then, extended to regularize Kalman gain directly. Four different thresholding functions have been considered to threshold forecast covariance and gain matrices. These include hard, soft, lasso and Smoothly Clipped Absolute Deviation (SCAD) functions. Three benchmarks are used to evaluate the performances of these methods. These benchmarks include a small 1D linear model and two 2D water flooding (in petroleum reservoirs) cases whose levels of heterogeneity/nonlinearity are different. It should be noted that beside the adaptive thresholding, the standard distance dependant localization and bootstrap Kalman gain are also implemented for comparison purposes. We assessed each setup with different ensemble sets to investigate the sensitivity of each method on ensemble size. The results indicate that thresholding of forecast covariance yields more reliable performance than Kalman gain. Among thresholding function, SCAD is more robust for both covariance and gain estimation. Our analyses emphasize that not all assimilation cycles do require thresholding and it should be performed wisely during the early assimilation cycles. The proposed scheme of adaptive thresholding outperforms other methods for subsurface characterization of underlying benchmarks.
On Wiener polarity index of bicyclic networks
NASA Astrophysics Data System (ADS)
Ma, Jing; Shi, Yongtang; Wang, Zhen; Yue, Jun
2016-01-01
Complex networks are ubiquitous in biological, physical and social sciences. Network robustness research aims at finding a measure to quantify network robustness. A number of Wiener type indices have recently been incorporated as distance-based descriptors of complex networks. Wiener type indices are known to depend both on the network’s number of nodes and topology. The Wiener polarity index is also related to the cluster coefficient of networks. In this paper, based on some graph transformations, we determine the sharp upper bound of the Wiener polarity index among all bicyclic networks. These bounds help to understand the underlying quantitative graph measures in depth.
On Wiener polarity index of bicyclic networks.
Ma, Jing; Shi, Yongtang; Wang, Zhen; Yue, Jun
2016-01-01
Complex networks are ubiquitous in biological, physical and social sciences. Network robustness research aims at finding a measure to quantify network robustness. A number of Wiener type indices have recently been incorporated as distance-based descriptors of complex networks. Wiener type indices are known to depend both on the network's number of nodes and topology. The Wiener polarity index is also related to the cluster coefficient of networks. In this paper, based on some graph transformations, we determine the sharp upper bound of the Wiener polarity index among all bicyclic networks. These bounds help to understand the underlying quantitative graph measures in depth. PMID:26750820
On Wiener polarity index of bicyclic networks
Ma, Jing; Shi, Yongtang; Wang, Zhen; Yue, Jun
2016-01-01
Complex networks are ubiquitous in biological, physical and social sciences. Network robustness research aims at finding a measure to quantify network robustness. A number of Wiener type indices have recently been incorporated as distance-based descriptors of complex networks. Wiener type indices are known to depend both on the network’s number of nodes and topology. The Wiener polarity index is also related to the cluster coefficient of networks. In this paper, based on some graph transformations, we determine the sharp upper bound of the Wiener polarity index among all bicyclic networks. These bounds help to understand the underlying quantitative graph measures in depth. PMID:26750820
NASA Astrophysics Data System (ADS)
Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang
2016-02-01
Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses
NASA Astrophysics Data System (ADS)
Hu, Hongtao; Jing, Zhongliang; Hu, Shiqiang
2006-12-01
A novel adaptive algorithm for tracking maneuvering targets is proposed. The algorithm is implemented with fuzzy-controlled current statistic model adaptive filtering and unscented transformation. A fuzzy system allows the filter to tune the magnitude of maximum accelerations to adapt to different target maneuvers, and unscented transformation can effectively handle nonlinear system. A bearing-only tracking scenario simulation results show the proposed algorithm has a robust advantage over a wide range of maneuvers and overcomes the shortcoming of the traditional current statistic model and adaptive filtering algorithm.
The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.
Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck
2016-01-01
This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively. PMID:27438835
The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation
Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck
2016-01-01
This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix ‘R’ and the system noise V-C matrix ‘Q’. Then, the global filter uses R to calculate the information allocation factor ‘β’ for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively. PMID:27438835
Kneissler, Jan; Drugowitsch, Jan; Friston, Karl; Butz, Martin V
2015-01-01
Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF). PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than 10-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares. PMID:25983690
An Adaptive Fourier Filter for Relaxing Time Stepping Constraints for Explicit Solvers
Gelb, Anne; Archibald, Richard K
2015-01-01
Filtering is necessary to stabilize piecewise smooth solutions. The resulting diffusion stabilizes the method, but may fail to resolve the solution near discontinuities. Moreover, high order filtering still requires cost prohibitive time stepping. This paper introduces an adaptive filter that controls spurious modes of the solution, but is not unnecessarily diffusive. Consequently we are able to stabilize the solution with larger time steps, but also take advantage of the accuracy of a high order filter.
Burst noise reduction of image by decimation and adaptive weighted median filter
NASA Astrophysics Data System (ADS)
Nakayama, Fumitaka; Meguro, Mitsuhiko; Hamada, Nozomu
2000-12-01
The removal of noise in image is one of the important issues, and useful as a preprocessing for edge detection, motion estimation and so on. Recently, many studies on the nonlinear digital filter for impulsive noise reduction have been reported. The median filter, the representative of the nonlinear filters, is very effective for removing impulsive noise and preserving sharp edge. In some cases, burst (i.e., successive) impulsive noise is added to image, and this type of noise is difficult to remove by using the median filter. In this paper, we propose an Adaptive Weighted Median (AWM) filter with Decimation (AWM-D filter) for burst noise reduction. This method can also be applied to recover large destructive regions, such as blotch and scratch. The proposed filter is an extension of the Decimated Median (DM) filter, which is useful for reducing successive impulsive noise. The DM filter can split long impulsive noise sequences into short ones, and remove burst noise in spite of the short filter window. Nevertheless, the DM filter also has two disadvantages. One is that the signals without added noise is unnecessary filtered. The other is that the position information in the window is not considered in the weight determinative process, as common in the median type filter. To improve detail-preserving property of the DM filter, we use the noise detection procedure and the AWM-D filter, which can be tuned by Least Mean Absolute (LMA) algorithm. The AWM-D filter preserves details more precisely than the median-type filter, because the AWM-D filter has the weights that can control the filter output. Through some simulations, the higher performance of the proposed filter is shown compared with the simple median, the WM filter, and the DM filter.
Adaptive RSOV filter using the FELMS algorithm for nonlinear active noise control systems
NASA Astrophysics Data System (ADS)
Zhao, Haiquan; Zeng, Xiangping; He, Zhengyou; Li, Tianrui
2013-01-01
This paper presents a recursive second-order Volterra (RSOV) filter to solve the problems of signal saturation and other nonlinear distortions that occur in nonlinear active noise control systems (NANC) used for actual applications. Since this nonlinear filter based on an infinite impulse response (IIR) filter structure can model higher than second-order and third-order nonlinearities for systems where the nonlinearities are harmonically related, the RSOV filter is more effective in NANC systems with either a linear secondary path (LSP) or a nonlinear secondary path (NSP). Simulation results clearly show that the RSOV adaptive filter using the multichannel structure filtered-error least mean square (FELMS) algorithm can further greatly reduce the computational burdens and is more suitable to eliminate nonlinear distortions in NANC systems than a SOV filter, a bilinear filter and a third-order Volterra (TOV) filter.
Discrete cosine transform-based local adaptive filtering of images corrupted by nonstationary noise
NASA Astrophysics Data System (ADS)
Lukin, Vladimir V.; Fevralev, Dmitriy V.; Ponomarenko, Nikolay N.; Abramov, Sergey K.; Pogrebnyak, Oleksiy; Egiazarian, Karen O.; Astola, Jaakko T.
2010-04-01
In many image-processing applications, observed images are contaminated by a nonstationary noise and no a priori information on noise dependence on local mean or about local properties of noise statistics is available. In order to remove such a noise, a locally adaptive filter has to be applied. We study a locally adaptive filter based on evaluation of image local activity in a ``blind'' manner and on discrete cosine transform computed in overlapping blocks. Two mechanisms of local adaptation are proposed and applied. The first mechanism takes into account local estimates of noise standard deviation while the second one exploits discrimination of homogeneous and heterogeneous image regions by adaptive threshold setting. The designed filter performance is tested for simulated data as well as for real-life remote-sensing and maritime radar images. Recommendations concerning filter parameter setting are provided. An area of applicability of the proposed filter is defined.
Geometric-Algebra LMS Adaptive Filter and Its Application to Rotation Estimation
NASA Astrophysics Data System (ADS)
Lopes, Wilder B.; Al-Nuaimi, Anas; Lopes, Cassio G.
2016-06-01
This paper exploits Geometric (Clifford) Algebra (GA) theory in order to devise and introduce a new adaptive filtering strategy. From a least-squares cost function, the gradient is calculated following results from Geometric Calculus (GC), the extension of GA to handle differential and integral calculus. The novel GA least-mean-squares (GA-LMS) adaptive filter, which inherits properties from standard adaptive filters and from GA, is developed to recursively estimate a rotor (multivector), a hypercomplex quantity able to describe rotations in any dimension. The adaptive filter (AF) performance is assessed via a 3D point-clouds registration problem, which contains a rotation estimation step. Calculating the AF computational complexity suggests that it can contribute to reduce the cost of a full-blown 3D registration algorithm, especially when the number of points to be processed grows. Moreover, the employed GA/GC framework allows for easily applying the resulting filter to estimating rotors in higher dimensions.
NASA Technical Reports Server (NTRS)
Benardini, James N.; Koukol, Robert C.; Schubert, Wayne W.; Morales, Fabian; Klatte, Marlin F.
2012-01-01
A report describes an adaptation of a filter assembly to enable it to be used to filter out microorganisms from a propulsion system. The filter assembly has previously been used for particulates greater than 2 micrometers. Projects that utilize large volumes of nonmetallic materials of planetary protection concern pose a challenge to their bioburden budget, as a conservative specification value of 30 spores per cubic centimeter is typically used. Helium was collected utilizing an adapted filtration approach employing an existing Millipore filter assembly apparatus used by the propulsion team for particulate analysis. The filter holder on the assembly has a 47-mm diameter, and typically a 1.2-5 micrometer pore-size filter is used for particulate analysis making it compatible with commercially available sterilization filters (0.22 micrometers) that are necessary for biological sampling. This adaptation to an existing technology provides a proof-of-concept and a demonstration of successful use in a ground equipment system. This adaptation has demonstrated that the Millipore filter assembly can be utilized to filter out microorganisms from a propulsion system, whereas in previous uses the filter assembly was utilized for particulates greater than 2 micrometers.
Adaptive mean filtering for noise reduction in CT polymer gel dosimetry
Hilts, Michelle; Jirasek, Andrew
2008-01-15
X-ray computed tomography (CT) as a method of extracting 3D dose information from irradiated polymer gel dosimeters is showing potential as a practical means to implement gel dosimetry in a radiation therapy clinic. However, the response of CT contrast to dose is weak and noise reduction is critical in order to achieve adequate dose resolutions with this method. Phantom design and CT imaging technique have both been shown to decrease image noise. In addition, image postprocessing using noise reduction filtering techniques have been proposed. This work evaluates in detail the use of the adaptive mean filter for reducing noise in CT gel dosimetry. Filter performance is systematically tested using both synthetic patterns mimicking a range of clinical dose distribution features as well as actual clinical dose distributions. Both low and high signal-to-noise ratio (SNR) situations are examined. For all cases, the effects of filter kernel size and the number of iterations are investigated. Results indicate that adaptive mean filtering is a highly effective tool for noise reduction CT gel dosimetry. The optimum filtering strategy depends on characteristics of the dose distributions and image noise level. For low noise images (SNR {approx}20), the filtered results are excellent and use of adaptive mean filtering is recommended as a standard processing tool. For high noise images (SNR {approx}5) adaptive mean filtering can also produce excellent results, but filtering must be approached with more caution as spatial and dose distortions of the original dose distribution can occur.
Analysis of dynamic deformation processes with adaptive KALMAN-filtering
NASA Astrophysics Data System (ADS)
Eichhorn, Andreas
2007-05-01
In this paper the approach of a full system analysis is shown quantifying a dynamic structural ("white-box"-) model for the calculation of thermal deformations of bar-shaped machine elements. The task was motivated from mechanical engineering searching new methods for the precise prediction and computational compensation of thermal influences in the heating and cooling phases of machine tools (i.e. robot arms, etc.). The quantification of thermal deformations under variable dynamic loads requires the modelling of the non-stationary spatial temperature distribution inside the object. Based upon FOURIERS law of heat flow the high-grade non-linear temperature gradient is represented by a system of partial differential equations within the framework of a dynamic Finite Element topology. It is shown that adaptive KALMAN-filtering is suitable to quantify relevant disturbance influences and to identify thermal parameters (i.e. thermal diffusivity) with a deviation of only 0,2%. As result an identified (and verified) parametric model for the realistic prediction respectively simulation of dynamic temperature processes is presented. Classifying the thermal bend as the main deformation quantity of bar-shaped machine tools, the temperature model is extended to a temperature deformation model. In lab tests thermal load steps are applied to an aluminum column. Independent control measurements show that the identified model can be used to predict the columns bend with a mean deviation (
Relative importance of the error sources in Wiener restoration of scintigrams.
Penney, B C; Glick, S J; King, M A
1990-01-01
Through simulation studies, the relative importance of three error sources in Wiener filtering as applied to scintigrams is quantified. The importance of these error sources has been quantified using the percentage changed in squared error (compared to that of an image restored using an ideal Wiener filter) which is caused by estimating one of three factors in the Wiener filter. Estimating the noise power spectrum using the total image count produced to appreciable change in the squared error (less than 1%). Estimating the power spectrum of the true image from that of the degraded image produced small to moderate increases in the squared error (4-139%). In scintigraphic imaging, the modular transfer function (MTF) is dependent on source depth; hence, this study underscores the importance of using methods which reduce the depth dependence of the effective MTF prior to applying restoration filters. A novel method of estimating the power spectrum of the true image from that of the degraded images is also described and evaluated. Wiener restoration filters based on this spectral estimation method are found to be competitive with the image-dependent Metz restoration filter. PMID:18222751
2014-01-01
Background Extracting cardiorespiratory signals from non-invasive and non-contacting sensor arrangements, i.e. magnetic induction sensors, is a challenging task. The respiratory and cardiac signals are mixed on top of a large and time-varying offset and are likely to be disturbed by measurement noise. Basic filtering techniques fail to extract relevant information for monitoring purposes. Methods We present a real-time filtering system based on an adaptive Kalman filter approach that separates signal offsets, respiratory and heart signals from three different sensor channels. It continuously estimates respiration and heart rates, which are fed back into the system model to enhance performance. Sensor and system noise covariance matrices are automatically adapted to the aimed application, thus improving the signal separation capabilities. We apply the filtering to two different subjects with different heart rates and sensor properties and compare the results to the non-adaptive version of the same Kalman filter. Also, the performance, depending on the initialization of the filters, is analyzed using three different configurations ranging from best to worst case. Results Extracted data are compared with reference heart rates derived from a standard pulse-photoplethysmographic sensor and respiration rates from a flowmeter. In the worst case for one of the subjects the adaptive filter obtains mean errors (standard deviations) of -0.2 min −1 (0.3 min −1) and -0.7 bpm (1.7 bpm) (compared to -0.2 min −1 (0.4 min −1) and 42.0 bpm (6.1 bpm) for the non-adaptive filter) for respiration and heart rate, respectively. In bad conditions the heart rate is only correctly measurable when the Kalman matrices are adapted to the target sensor signals. Also, the reduced mean error between the extracted offset and the raw sensor signal shows that adapting the Kalman filter continuously improves the ability to separate the desired signals from the raw sensor data. The average
A New Adaptive Image Denoising Method Based on Neighboring Coefficients
NASA Astrophysics Data System (ADS)
Biswas, Mantosh; Om, Hari
2016-03-01
Many good techniques have been discussed for image denoising that include NeighShrink, improved adaptive wavelet denoising method based on neighboring coefficients (IAWDMBNC), improved wavelet shrinkage technique for image denoising (IWST), local adaptive wiener filter (LAWF), wavelet packet thresholding using median and wiener filters (WPTMWF), adaptive image denoising method based on thresholding (AIDMT). These techniques are based on local statistical description of the neighboring coefficients in a window. These methods however do not give good quality of the images since they cannot modify and remove too many small wavelet coefficients simultaneously due to the threshold. In this paper, a new image denoising method is proposed that shrinks the noisy coefficients using an adaptive threshold. Our method overcomes these drawbacks and it has better performance than the NeighShrink, IAWDMBNC, IWST, LAWF, WPTMWF, and AIDMT denoising methods.
An Efficient Adaptive Weighted Switching Median Filter for Removing High Density Impulse Noise
NASA Astrophysics Data System (ADS)
Nair, Madhu S.; Ameera Mol, P. M.
2014-09-01
Restoration of images corrupted by impulse noise is a very active research area in image processing. In this paper, an Efficient Adaptive Weighted Switching Median filter for restoration of images that are corrupted by high density impulse noise is proposed. The filtering is performed as a two phase process—a detection phase followed by a filtering phase. In the proposed method, noise detection is done by HEIND algorithm proposed by Duan et al. The filtering algorithm is then applied to the pixels which are detected as noisy by the detection algorithm. All uncorrupted pixels in the image are left unchanged. The filtering window size is chosen adaptively depending on the local noise distribution around each corrupted pixels. Noisy pixels are replaced by a weighted median value of uncorrupted pixels in the filtering window. The weight value assigned to each uncorrupted pixels depends on its closeness to the central pixel.
Adaptive multidirectional frequency domain filter for noise removal in wrapped phase patterns.
Liu, Guixiong; Chen, Dongxue; Peng, Yanhua; Zeng, Qilin
2016-08-01
In order to avoid the detrimental effects of excessive noise in the phase fringe patterns of a laser digital interferometer over the accuracy of phase unwrapping and the successful detection of mechanical fatigue defects, an effective method of adaptive multidirectional frequency domain filtering is introduced based on the characteristics of the energy spectrum of localized wrapped phase patterns. Not only can this method automatically set the cutoff frequency, but it can also effectively filter out noise while preserving the image edge information. Compared with the sine and cosine transform filtering and the multidirectional frequency domain filtering, the experimental results demonstrate that the image filtered by our method has the fewest number of residues and is the closest to the noise-free image, compared to the two aforementioned methods, demonstrating the effectiveness of this adaptive multidirectional frequency domain filter. PMID:27505376
Adaptive Filtering for Large Space Structures: A Closed-Form Solution
NASA Technical Reports Server (NTRS)
Rauch, H. E.; Schaechter, D. B.
1985-01-01
In a previous paper Schaechter proposes using an extended Kalman filter to estimate adaptively the (slowly varying) frequencies and damping ratios of a large space structure. The time varying gains for estimating the frequencies and damping ratios can be determined in closed form so it is not necessary to integrate the matrix Riccati equations. After certain approximations, the time varying adaptive gain can be written as the product of a constant matrix times a matrix derived from the components of the estimated state vector. This is an important savings of computer resources and allows the adaptive filter to be implemented with approximately the same effort as the nonadaptive filter. The success of this new approach for adaptive filtering was demonstrated using synthetic data from a two mode system.
Impulse radar imaging for dispersive concrete using inverse adaptive filtering techniques
Arellano, J.; Hernandez, J.M.; Brase, J.
1993-05-01
This publication addresses applications of a delayed inverse model adaptive filter for modeled data obtained from short-pulse radar reflectometry. To determine the integrity of concrete, a digital adaptive filter was used, which allows compensation of dispersion and clutter generated by the concrete. A standard set of weights produced by an adaptive filter are used on modeled data to obtain the inverse-impulse response of the concrete. The data for this report include: Multiple target, nondispersive data; single-target, variable-size dispersive data; single-target, variable-depth dispersive data; and single-target, variable transmitted-pulse-width dispersive data. Results of this simulation indicate that data generated by the weights of the adaptive filter, coupled with a two-dimensional, synthetic-aperture focusing technique, successfully generate two-dimensional images of targets within the concrete from modeled data.
Applying well flow adapted filtering to transient pumping tests
NASA Astrophysics Data System (ADS)
Zech, Alraune; Attinger, Sabine
2014-05-01
Transient pumping tests are often used to estimate porous medium characteristics like hydraulic conductivity and storativity. The interpretation of pumping test drawdowns is based on methods which are normally developed under the assumption of homogeneous porous media. However aquifer heterogeneity strongly impacts on well flow pattern, in particular in the vicinity of the pumping well. The purpose of this work is to present a method to interpret drawdowns of transient pumping tests in heterogeneous porous media. With this method we are able to describe the effects that statistical quantities like variance and correlation length have on pumping test drawdowns. Furthermore it allows inferring on the statistical parameters of aquifer heterogeneity from drawdown data by invers estimation, which is not possible using methods for homogeneous media like Theis' solution. The method is based on a representative description of hydraulic conductivity for radial flow regimes. It is derived from a well flow adapted filtering procedure (Coarse Graining), where the heterogeneity of hydraulic conductivity is assumed to be log-normal distributed with a Gaussian correlation structure. applying the up scaled hydraulic conductivity to the groundwater flow equation results in a hydraulic head which depends on the statistical parameters of the porous medium. It describes the drawdown of a transient pumping test in heterogeneous media. We used an ensemble of transient pumping test simulations to verify the up scaled drawdown solution. We generated transient pumping tests in heterogeneous media for various values of the statistical parameters variance and correlation length and evaluated their impact on the drawdown behavior as well as on the temporal evolution. We further examined the impact of several aspects like the location of an observation well or the local conductivity at the pumping well on the drawdown behavior. This work can be understood as an expansion of the work of Zech et
Microwave Photonic Filters for Interference Cancellation and Adaptive Beamforming
NASA Astrophysics Data System (ADS)
Chang, John
Wireless communication has experienced an explosion of growth, especially in the past half- decade, due to the ubiquity of wireless devices, such as tablets, WiFi-enabled devices, and especially smartphones. Proliferation of smartphones with powerful processors and graphic chips have given an increasing amount of people the ability to access anything from anywhere. Unfortunately, this ease of access has greatly increased mobile wireless bandwidth and have begun to stress carrier networks and spectra. Wireless interference cancellation will play a big role alongside the popularity of wire- less communication. In this thesis, we will investigate optical signal processing methods for wireless interference cancellation methods. Optics provide the perfect backdrop for interference cancellation. Mobile wireless data is already aggregated and transported through fiber backhaul networks in practice. By sandwiching the signal processing stage between the receiver and the fiber backhaul, processing can easily be done locally in one location. Further, optics offers the advantages of being instantaneously broadband and size, weight, and power (SWAP). We are primarily concerned with two methods for interference cancellation, based on microwave photonic filters, in this thesis. The first application is for a co-channel situation, in which a transmitter and receiver are co-located and transmitting at the same frequency. A novel analog optical technique extended for multipath interference cancellation of broadband signals is proposed and experimentally demonstrated in this thesis. The proposed architecture was able to achieve a maximum of 40 dB of cancellation over 200 MHz and 50 dB of cancellation over 10 MHz. The broadband nature of the cancellation, along with its depth, demonstrates both the precision of the optical components and the validity of the architecture. Next, we are interested in a scenario with dynamically changing interference, which requires an adaptive photonic
Adaptive box filters for removal of random noise from digital images
Eliason, E.M.; McEwen, A.S.
1990-01-01
We have developed adaptive box-filtering algorithms to (1) remove random bit errors (pixel values with no relation to the image scene) and (2) smooth noisy data (pixels related to the image scene but with an additive or multiplicative component of noise). For both procedures, we use the standard deviation (??) of those pixels within a local box surrounding each pixel, hence they are adaptive filters. This technique effectively reduces speckle in radar images without eliminating fine details. -from Authors
Object tracking with adaptive HOG detector and adaptive Rao-Blackwellised particle filter
NASA Astrophysics Data System (ADS)
Rosa, Stefano; Paleari, Marco; Ariano, Paolo; Bona, Basilio
2012-01-01
Scenarios for a manned mission to the Moon or Mars call for astronaut teams to be accompanied by semiautonomous robots. A prerequisite for human-robot interaction is the capability of successfully tracking humans and objects in the environment. In this paper we present a system for real-time visual object tracking in 2D images for mobile robotic systems. The proposed algorithm is able to specialize to individual objects and to adapt to substantial changes in illumination and object appearance during tracking. The algorithm is composed by two main blocks: a detector based on Histogram of Oriented Gradient (HOG) descriptors and linear Support Vector Machines (SVM), and a tracker which is implemented by an adaptive Rao-Blackwellised particle filter (RBPF). The SVM is re-trained online on new samples taken from previous predicted positions. We use the effective sample size to decide when the classifier needs to be re-trained. Position hypotheses for the tracked object are the result of a clustering procedure applied on the set of particles. The algorithm has been tested on challenging video sequences presenting strong changes in object appearance, illumination, and occlusion. Experimental tests show that the presented method is able to achieve near real-time performances with a precision of about 7 pixels on standard video sequences of dimensions 320 × 240.
Hernandez, Wilmar; de Vicente, Jesús; Sergiyenko, Oleg Y; Fernández, Eduardo
2010-01-01
In this paper, the fast least-mean-squares (LMS) algorithm was used to both eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications, and improve the convergence rate of the filtering process based on the conventional LMS algorithm. The response of the accelerometer under test was corrupted by process and measurement noise, and the signal processing stage was carried out by using both conventional filtering, which was already shown in a previous paper, and optimal adaptive filtering. The adaptive filtering process relied on the LMS adaptive filtering family, which has shown to have very good convergence and robustness properties, and here a comparative analysis between the results of the application of the conventional LMS algorithm and the fast LMS algorithm to solve a real-life filtering problem was carried out. In short, in this paper the piezoresistive accelerometer was tested for a multi-frequency acceleration excitation. Due to the kind of test conducted in this paper, the use of conventional filtering was discarded and the choice of one adaptive filter over the other was based on the signal-to-noise ratio improvement and the convergence rate. PMID:22315579
Adaptive Spatial Filtering with Principal Component Analysis for Biomedical Photoacoustic Imaging
NASA Astrophysics Data System (ADS)
Nagaoka, Ryo; Yamazaki, Rena; Saijo, Yoshifumi
Photoacoustic (PA) signal is very sensitive to noise generated by peripheral equipment such as power supply, stepping motor or semiconductor laser. Band-pass filter is not effective because the frequency bandwidth of the PA signal also covers the noise frequency. The objective of the present study is to reduce the noise by using an adaptive spatial filter with principal component analysis (PCA).
Adaptive high temperature superconducting filters for interference rejection
Raihn, K.F.; Fenzi, N.O.; Hey-Shipton, G.L.; Saito, E.R.; Loung, P.V.; Aidnik, D.L.
1996-07-01
An optically switched high temperature superconducting (HTS) band-reject filter bank is presented. Fast low loss switching of high quality (Q) factor HTS filter elements enables digital selection of arbitrary pass-bands and stop-bands. Patterned pieces of GaAs and silicon are used in the manufacture of the photosensitive switches. Fiber optic cabling is used to transfer the optical energy from an LED to the switch. The fiber optic cable minimizes the thermal loading of the filter package and de-couples the switch`s power source from the RF circuit. This paper will discuss the development of a computer-controlled HTS bank of optically switchable, narrow band, high Q bandstop filters which incorporates a cryocooler to maintain the 77 K operating temperature of the HTS microwave circuit.
NASA Astrophysics Data System (ADS)
Shanmugavadivu, P.; Eliahim Jeevaraj, P. S.
2014-06-01
The Adaptive Iterated Functions Systems (AIFS) Filter presented in this paper has an outstanding potential to attenuate the fixed-value impulse noise in images. This filter has two distinct phases namely noise detection and noise correction which uses Measure of Statistics and Iterated Function Systems (IFS) respectively. The performance of AIFS filter is assessed by three metrics namely, Peak Signal-to-Noise Ratio (PSNR), Mean Structural Similarity Index Matrix (MSSIM) and Human Visual Perception (HVP). The quantitative measures PSNR and MSSIM endorse the merit of this filter in terms of degree of noise suppression and details/edge preservation respectively, in comparison with the high performing filters reported in the recent literature. The qualitative measure HVP confirms the noise suppression ability of the devised filter. This computationally simple noise filter broadly finds application wherein the images are highly degraded by fixed-value impulse noise.
Adaptive filtering of radar images for autofocus applications
NASA Technical Reports Server (NTRS)
Stiles, J. A.; Frost, V. S.; Gardner, J. S.; Eland, D. R.; Shanmugam, K. S.; Holtzman, J. C.
1981-01-01
Autofocus techniques are being designed at the Jet Propulsion Laboratory to automatically choose the filter parameters (i.e., the focus) for the digital synthetic aperture radar correlator; currently, processing relies upon interaction with a human operator who uses his subjective assessment of the quality of the processed SAR data. Algorithms were devised applying image cross-correlation to aid in the choice of filter parameters, but this method also has its drawbacks in that the cross-correlation result may not be readily interpretable. Enhanced performance of the cross-correlation techniques of JPL was hypothesized given that the images to be cross-correlated were first filtered to improve the signal-to-noise ratio for the pair of scenes. The results of experiments are described and images are shown.
Learning Motivation and Adaptive Video Caption Filtering for EFL Learners Using Handheld Devices
ERIC Educational Resources Information Center
Hsu, Ching-Kun
2015-01-01
The aim of this study was to provide adaptive assistance to improve the listening comprehension of eleventh grade students. This study developed a video-based language learning system for handheld devices, using three levels of caption filtering adapted to student needs. Elementary level captioning excluded 220 English sight words (see Section 1…
Low-Complexity Lossless Compression of Hyperspectral Imagery Via Adaptive Filtering
NASA Technical Reports Server (NTRS)
Klimesh, Matthew A.
2005-01-01
A low-complexity, adaptive predictive technique for lossless compression of hyperspectral data is presented. The technique relies on the sign algorithm from the repertoire of adaptive filtering. The compression effectiveness obtained with the technique is competitive with that of the best of previously described techniques with similar complexity.
Low-Complexity Lossless Compression of Hyperspectral Imagery via Adaptive Filtering
NASA Technical Reports Server (NTRS)
Klimesh, M.
2005-01-01
A low-complexity, adaptive predictive technique for lossless compression of hyperspectral data is presented. The technique relies on the sign algorithm from the repertoire of adaptive filtering. The compression effectiveness obtained with the technique is competitive with that of the best of previously described techniques with similar complexity.
Theory and experimental study on low-light-level images by adaptive mode filter
NASA Astrophysics Data System (ADS)
Bai, Lianfa; Zhang, Baomin; Liu, Yunfen; Chen, Qian
1996-09-01
Real-time low light level (LLL) image processing technology is the important developmental subject in the area of LLL night vision. But there is an essential distinction between the LLL TV image and ordinary TV image, so the conventional digital image processing technique aren't suitable for LLL image. In this paper, the noise theoretical model of LLL imaging system is described and the LLL image processing system is set up. With regard to the characteristics of LLL image and its noise, a novel noise suppression method, adaptive mode filter, is presented. The experimental results show that the adaptive mode filter can suppress the sharp noise of LLL image effectively, and as for the protection of the image edge, the property of adaptive mode filter is better that of median filter. Finally, the processing results and the conclusions are given.
Real-time 3D adaptive filtering for portable imaging systems
NASA Astrophysics Data System (ADS)
Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark
2015-03-01
Portable imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often not able to run with sufficient performance on a portable platform. In recent years, advanced multicore DSPs have been introduced that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms like 3D adaptive filtering, improving the image quality of portable medical imaging devices. In this study, the performance of a 3D adaptive filtering algorithm on a digital signal processor (DSP) is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec.
Adaptive box filters for removal of random noise from digital images
NASA Technical Reports Server (NTRS)
Eliason, Eric M.; Mcewen, Alfred S.
1990-01-01
Adaptive box-filtering algorithms to remove random bit errors and to smooth noisy data have been developed. For both procedures, the standard deviation of those pixels within a local box surrounding each pixel is used. A series of two or three filters with decreasing box sizes can be run to clean up extremely noisy images and to remove bit errors near sharp edges. The second filter, for noise smoothing, is similar to the 'sigma filter' of Lee (1983). The technique effectively reduces speckle in radar images without eliminating fine details.
An Adaptive Kalman Filter using a Simple Residual Tuning Method
NASA Technical Reports Server (NTRS)
Harman, Richard R.
1999-01-01
One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.
An Adaptive Kalman Filter Using a Simple Residual Tuning Method
NASA Technical Reports Server (NTRS)
Harman, Richard R.
1999-01-01
One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. A. H. Jazwinski developed a specialized version of this technique for estimation of process noise. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.
New Approach for IIR Adaptive Lattice Filter Structure Using Simultaneous Perturbation Algorithm
NASA Astrophysics Data System (ADS)
Martinez, Jorge Ivan Medina; Nakano, Kazushi; Higuchi, Kohji
Adaptive infinite impulse response (IIR), or recursive, filters are less attractive mainly because of the stability and the difficulties associated with their adaptive algorithms. Therefore, in this paper the adaptive IIR lattice filters are studied in order to devise algorithms that preserve the stability of the corresponding direct-form schemes. We analyze the local properties of stationary points, a transformation achieving this goal is suggested, which gives algorithms that can be efficiently implemented. Application to the Steiglitz-McBride (SM) and Simple Hyperstable Adaptive Recursive Filter (SHARF) algorithms is presented. Also a modified version of Simultaneous Perturbation Stochastic Approximation (SPSA) is presented in order to get the coefficients in a lattice form more efficiently and with a lower computational cost and complexity. The results are compared with previous lattice versions of these algorithms. These previous lattice versions may fail to preserve the stability of stationary points.
Prototype adaptive bow-tie filter based on spatial exposure time modulation
NASA Astrophysics Data System (ADS)
Badal, Andreu
2016-03-01
In recent years, there has been an increased interest in the development of dynamic bow-tie filters that are able to provide patient-specific x-ray beam shaping. We introduce the first physical prototype of a new adaptive bow-tie filter design based on the concept of "spatial exposure time modulation." While most existing bow-tie filters operate by attenuating the radiation beam differently in different locations using partially attenuating objects, the presented filter shapes the radiation field using two movable completely radio-opaque collimators. The aperture and speed of the collimators is modulated in synchrony with the x-ray exposure to selectively block the radiation emitted to different parts of the object. This mode of operation does not allow the reproduction of every possible attenuation profile, but it can reproduce the profile of any object with an attenuation profile monotonically decreasing from the center to the periphery, such as an object with an elliptical cross section. Therefore, the new adaptive filter provides the same advantages as the currently existing static bow-tie filters, which are typically designed to work for a pre-determined cylindrical object at a fixed distance from the source, and provides the additional capability to adapt its performance at image acquisition time to better compensate for the actual diameter and location of the imaged object. A detailed description of the prototype filter, the implemented control methods, and a preliminary experimental validation of its performance are presented.
An adaptive filter bank for motor imagery based Brain Computer Interface.
Thomas, Kavitha P; Guan, Cuntai; Tong, Lau Chiew; Prasad, Vinod A
2008-01-01
Brain Computer Interface (BCI) provides an alternative communication and control method for people with severe motor disabilities. Motor imagery patterns are widely used in Electroencephalogram (EEG) based BCIs. These motor imagery activities are associated with variation in alpha and beta band power of EEG signals called Event Related Desynchronization/synchronization (ERD/ERS). The dominant frequency bands are subject-specific and therefore performance of motor imagery based BCIs are sensitive to both temporal filtering and spatial filtering. As the optimum filter is strongly subject-dependent, we propose a method that selects the subject-specific discriminative frequency components using time-frequency plots of Fisher ratio of two-class motor imagery patterns. We also propose a low complexity adaptive Finite Impulse Response (FIR) filter bank system based on coefficient decimation technique which can realize the subject-specific bandpass filters adaptively depending on the information of Fisher ratio map. Features are extracted only from the selected frequency components. The proposed adaptive filter bank based system offers average classification accuracy of about 90%, which is slightly better than the existing fixed filter bank system. PMID:19162856
Stent enhancement in digital x-ray fluoroscopy using an adaptive feature enhancement filter
NASA Astrophysics Data System (ADS)
Jiang, Yuhao; Zachary, Josey
2016-03-01
Fluoroscopic images belong to the classes of low contrast and high noise. Simply lowering radiation dose will render the images unreadable. Feature enhancement filters can reduce patient dose by acquiring images at low dose settings and then digitally restoring them to the original quality. In this study, a stent contrast enhancement filter is developed to selectively improve the contrast of stent contour without dramatically boosting the image noise including quantum noise and clinical background noise. Gabor directional filter banks are implemented to detect the edges and orientations of the stent. A high orientation resolution of 9° is used. To optimize the use of the information obtained from Gabor filters, a computerized Monte Carlo simulation followed by ROC study is used to find the best nonlinear operator. The next stage of filtering process is to extract symmetrical parts in the stent. The global and local symmetry measures are used. The information gathered from previous two filter stages are used to generate a stent contour map. The contour map is then scaled and added back to the original image to get a contrast enhanced stent image. We also apply a spatio-temporal channelized Hotelling observer model and other numerical measures to characterize the response of the filters and contour map to optimize the selections of parameters for image quality. The results are compared to those filtered by an adaptive unsharp masking filter previously developed. It is shown that stent enhancement filter can effectively improve the stent detection and differentiation in the interventional fluoroscopy.
Independent motion detection with a rival penalized adaptive particle filter
NASA Astrophysics Data System (ADS)
Becker, Stefan; Hübner, Wolfgang; Arens, Michael
2014-10-01
Aggregation of pixel based motion detection into regions of interest, which include views of single moving objects in a scene is an essential pre-processing step in many vision systems. Motion events of this type provide significant information about the object type or build the basis for action recognition. Further, motion is an essential saliency measure, which is able to effectively support high level image analysis. When applied to static cameras, background subtraction methods achieve good results. On the other hand, motion aggregation on freely moving cameras is still a widely unsolved problem. The image flow, measured on a freely moving camera is the result from two major motion types. First the ego-motion of the camera and second object motion, that is independent from the camera motion. When capturing a scene with a camera these two motion types are adverse blended together. In this paper, we propose an approach to detect multiple moving objects from a mobile monocular camera system in an outdoor environment. The overall processing pipeline consists of a fast ego-motion compensation algorithm in the preprocessing stage. Real-time performance is achieved by using a sparse optical flow algorithm as an initial processing stage and a densely applied probabilistic filter in the post-processing stage. Thereby, we follow the idea proposed by Jung and Sukhatme. Normalized intensity differences originating from a sequence of ego-motion compensated difference images represent the probability of moving objects. Noise and registration artefacts are filtered out, using a Bayesian formulation. The resulting a posteriori distribution is located on image regions, showing strong amplitudes in the difference image which are in accordance with the motion prediction. In order to effectively estimate the a posteriori distribution, a particle filter is used. In addition to the fast ego-motion compensation, the main contribution of this paper is the design of the probabilistic
NASA Technical Reports Server (NTRS)
Kelly, D. A.; Fermelia, A.; Lee, G. K. F.
1990-01-01
An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.
Adaptive filtering and prediction of the Southern Oscillation index
NASA Astrophysics Data System (ADS)
Keppenne, Christian L.; Ghil, Michael
1992-12-01
Singular spectrum analysis (SSA), a variant of principal component analysis, is applied to a time series of the Southern Oscillation index (SOI). The analysis filters out variability unrelated to the Southern Oscillation and separates the high-frequency, 2- to 3-year variability, including the quasi-biennial oscillation, from the lower-frequency 4- to 6-year El Niño cycle. The maximum entropy method (MEM) is applied to forecasting the prefiltered SOI. Prediction based on MEM-associated autoregressive models has useful skill for 30-36 months. A 1993-1994 La Niña event is predicted based on data through February 1992.
Adaptive filtering and prediction of the Southern Oscillation index
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Ghil, Michael
1992-01-01
Singular spectrum analysis (SSA), a variant of principal component analysis, is applied to a time series of the Southern Oscillation index (SOI). The analysis filters out variability unrelated to the Southern Oscillation and separates the high-frequency, 2- to 3-year variability, including the quasi-biennial oscillation, from the lower-frequency 4- to 6-year El Nino cycle. The maximum entropy method (MEM) is applied to forecasting the prefiltered SOI. Prediction based on MEM-associated autoregresive models has useful skill for 30-36 months. A 1993-1994 La Nina event is predicted based on data through February 1992.
Adaptive filtering and prediction of the Southern Oscillation index
Keppenne, C.L. California Inst. of Technology, Pasadena ); Ghil, M. )
1992-12-20
Singular spectrum analysis (SSA), a variant of principal component analysis, is applied to a time series of the Southern Oscillation index (SOI). The analysis filters out variability unrelated to the Southern Oscillation and separates the high-frequency, 2- to 3-year variability, including the quasi-biennial oscillation, from the lower-frequency 4- to 6-year El Nino cycle. The maximum entropy method (MEM) is applied to forecasting the prefiltered SOI. Prediction based on MEM-associated autoregressive models has useful skill for 30-36 months. A 1993-1994 La Nina event is predicted based on data through February 1992. 52 refs., 4 figs.
Predicting Hyper-Chaotic Time Series Using Adaptive Higher-Order Nonlinear Filter
NASA Astrophysics Data System (ADS)
Zhang, Jia-Shu; Xiao, Xian-Ci
2001-03-01
A newly proposed method, i.e. the adaptive higher-order nonlinear finite impulse response (HONFIR) filter based on higher-order sparse Volterra series expansions, is introduced to predict hyper-chaotic time series. The effectiveness of using the adaptive HONFIR filter for making one-step and multi-step predictions is tested based on very few data points by computer-generated hyper-chaotic time series including the Mackey-Glass equation and four-dimensional nonlinear dynamical system. A comparison is made with some neural networks for predicting the Mackey-Glass hyper-chaotic time series. Numerical simulation results show that the adaptive HONFIR filter proposed here is a very powerful tool for making prediction of hyper-chaotic time series.
Adaptive filters for suppressing irregular hostile jamming in direct sequence spread-spectrum system
NASA Astrophysics Data System (ADS)
Lee, Jung Hoon; Lee, Choong Woong
A stable and high-performance adaptive filter for suppressing irregular hostile jamming in direct-sequence (DS) spread-spectrum systems is designed. A gradient-search fast converging algorithm (GFC) is suggested. For the case of a sudden parameter jump or incoming of an interference, the transient behaviors of the receiver using a GFC adaptive filter are investigated and compared with those of the receiver using a least-mean-square (LMS) or a lattice adaptive filter. The results are shown in the response graphs of the simulated receiver during the short period when the characteristic of a jammer is suddenly changed. Steady-state performances of those receivers are also evaluated in the sense of the excess mean-square error over that of an optimum receiver for suppressing stationary interferences.
A study of infrared spectroscopy de-noising based on LMS adaptive filter
NASA Astrophysics Data System (ADS)
Mo, Jia-qing; Lv, Xiao-yi; Yu, Xiao
2015-12-01
Infrared spectroscopy has been widely used, but which often contains a lot of noise, so the spectral characteristic of the sample is seriously affected. Therefore the de-noising is very important in the spectrum analysis and processing. In the study of infrared spectroscopy, the least mean square (LMS) adaptive filter was applied in the field firstly. LMS adaptive filter algorithm can reserve the detail and envelope of the effective signal when the method was applied to infrared spectroscopy of breast cancer which signal-to-noise ratio (SNR) is lower than 10 dB, contrast and analysis the result with result of wavelet transform and ensemble empirical mode decomposition (EEMD). The three evaluation standards (SNR, root mean square error (RMSE) and the correlation coefficient (ρ)) fully proved de-noising advantages of LMS adaptive filter in infrared spectroscopy of breast cancer.
ROI extraction of chest CT images using adaptive opening filter
NASA Astrophysics Data System (ADS)
Yamada, Nobuhiro; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Eguchi, Kenji; Omatsu, Hironobu; Kakinuma, Ryutaro; Kaneko, Masahiro; Kusumoto, Masahiko; Nishiyama, Hiroyuki; Moriyama, Noriyuki
2003-05-01
We have already developed a prototype of computer-aided diagnosis (CAD) system that can automatically detect suspicious shadows from Chest CT images. But the CAD system cannot detect Ground-Grass-Attenuation perfectly. In many cases, this reason depends on the inaccurate extraction of the region of interests (ROI) that CAD system analyzes, so we need to improve it. In this paper, we propose a method of an accurate extraction of the ROI, and compare proposed method to ordinary method that have used in CAD system. Proposed Method is performed by application of the three steps. Firstly we extract lung area using threshold. Secondly we remove the slowly varying bias field using flexible Opening Filter. This Opening Filter is calculated by the combination of the ordinary opening value and the distribution which CT value and contrast follow. Finally we extract Region of Interest using fuzzy clustering. When we applied proposal method to Chest CT images, we got a good result in which ordinary method cannot achieve. In this study we used the Helical CT images that are obtained under the following measurement: 10mm beam width; 20mm/sec table speed; 120kV tube voltage; 50mA tube current; 10mm reconstruction interval.
An Adaptive Filter for the Removal of Drifting Sinusoidal Noise Without a Reference.
Kelly, John W; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei
2016-01-01
This paper presents a method for filtering sinusoidal noise with a variable bandwidth filter that is capable of tracking a sinusoid's drifting frequency. The method, which is based on the adaptive noise canceling (ANC) technique, will be referred to here as the adaptive sinusoid canceler (ASC). The ASC eliminates sinusoidal contamination by tracking its frequency and achieving a narrower bandwidth than typical notch filters. The detected frequency is used to digitally generate an internal reference instead of relying on an external one as ANC filters typically do. The filter's bandwidth adjusts to achieve faster and more accurate convergence. In this paper, the focus of the discussion and the data is physiological signals, specifically electrocorticographic (ECoG) neural data contaminated with power line noise, but the presented technique could be applicable to other recordings as well. On simulated data, the ASC was able to reliably track the noise's frequency, properly adjust its bandwidth, and outperform comparative methods including standard notch filters and an adaptive line enhancer. These results were reinforced by visual results obtained from real ECoG data. The ASC showed that it could be an effective method for increasing signal to noise ratio in the presence of drifting sinusoidal noise, which is of significant interest for biomedical applications. PMID:25474814
Seasonal signal capturing in time series of up coordinates by means of adaptive filters
NASA Astrophysics Data System (ADS)
Yalvac, S.; Ustun, A.
2013-12-01
Digital filters, is a system that performs mathematical operations on a sampled or discrete time signals. Adaptive filters designed for noise canceling are capable tools of decomposing correlated parts of data sets. This kind of filters which optimize itself using Least Mean Square (LMS) algorithm is a powerful tool for understand the truth hidden into the complex data sets like time series in Geosciences. The complex data sets such as CGPS (Continuously operating reference station) station's time series can be understood better with adaptive noise canceling by means of decompose coherent (seasonal effect, tectonic plate motion) and incoherent (noise; site-specific effects) parts of data. In this study, it is aimed to model the subsidence caused by groundwater withdrawal based on the seasonal correlation between consecutive years of CGPS time series. For this purpose, two stations where located into subsidence area of 3 year time series have analyzed with adaptive noise canceling filter. According to the results, the annual movement of these two stations have strong relationship. Also, subsidence behavior are correlated with annual rainfall data. BELD station one year filtered movement KAMN station one year filtered movements
NASA Astrophysics Data System (ADS)
Li, Wei; Haese-Coat, Veronique; Ronsin, Joseph
1996-03-01
An adaptive GA scheme is adopted for the optimal morphological filter design problem. The adaptive crossover and mutation rate which make the GA avoid premature and at the same time assure convergence of the program are successfully used in optimal morphological filter design procedure. In the string coding step, each string (chromosome) is composed of a structuring element coding chain concatenated with a filter sequence coding chain. In decoding step, each string is divided into 3 chains which then are decoded respectively into one structuring element with a size inferior to 5 by 5 and two concatenating morphological filter operators. The fitness function in GA is based on the mean-square-error (MSE) criterion. In string selection step, a stochastic tournament procedure is used to replace the simple roulette wheel program in order to accelerate the convergence. The final convergence of our algorithm is reached by a two step converging strategy. In presented applications of noise removal from texture images, it is found that with the optimized morphological filter sequences, the obtained MSE values are smaller than those using corresponding non-adaptive morphological filters, and the optimized shapes and orientations of structuring elements take approximately the same shapes and orientations as those of the image textons.
New cardiac MRI gating method using event-synchronous adaptive digital filter.
Park, Hodong; Park, Youngcheol; Cho, Sungpil; Jang, Bongryoel; Lee, Kyoungjoung
2009-11-01
When imaging the heart using MRI, an artefact-free electrocardiograph (ECG) signal is not only important for monitoring the patient's heart activity but also essential for cardiac gating to reduce noise in MR images induced by moving organs. The fundamental problem in conventional ECG is the distortion induced by electromagnetic interference. Here, we propose an adaptive algorithm for the suppression of MR gradient artefacts (MRGAs) in ECG leads of a cardiac MRI gating system. We have modeled MRGAs by assuming a source of strong pulses used for dephasing the MR signal. The modeled MRGAs are rectangular pulse-like signals. We used an event-synchronous adaptive digital filter whose reference signal is synchronous to the gradient peaks of MRI. The event detection processor for the event-synchronous adaptive digital filter was implemented using the phase space method-a sort of topology mapping method-and least-squares acceleration filter. For evaluating the efficiency of the proposed method, the filter was tested using simulation and actual data. The proposed method requires a simple experimental setup that does not require extra hardware connections to obtain the reference signals of adaptive digital filter. The proposed algorithm was more effective than the multichannel approach. PMID:19644754
Method and system for training dynamic nonlinear adaptive filters which have embedded memory
NASA Technical Reports Server (NTRS)
Rabinowitz, Matthew (Inventor)
2002-01-01
Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.
An Application Specific Instruction Set Processor (ASIP) for Adaptive Filters in Neural Prosthetics.
Xin, Yao; Li, Will X Y; Zhang, Zhaorui; Cheung, Ray C C; Song, Dong; Berger, Theodore W
2015-01-01
Neural coding is an essential process for neuroprosthetic design, in which adaptive filters have been widely utilized. In a practical application, it is needed to switch between different filters, which could be based on continuous observations or point process, when the neuron models, conditions, or system requirements have changed. As candidates of coding chip for neural prostheses, low-power general purpose processors are not computationally efficient especially for large scale neural population coding. Application specific integrated circuits (ASICs) do not have flexibility to switch between different adaptive filters while the cost for design and fabrication is formidable. In this research work, we explore an application specific instruction set processor (ASIP) for adaptive filters in neural decoding activity. The proposed architecture focuses on efficient computation for the most time-consuming matrix/vector operations among commonly used adaptive filters, being able to provide both flexibility and throughput. Evaluation and implementation results are provided to demonstrate that the proposed ASIP design is area-efficient while being competitive to commercial CPUs in computational performance. PMID:26451817
Sudeep, P V; Issac Niwas, S; Palanisamy, P; Rajan, Jeny; Xiaojun, Yu; Wang, Xianghong; Luo, Yuemei; Liu, Linbo
2016-04-01
Optical coherence tomography (OCT) has continually evolved and expanded as one of the most valuable routine tests in ophthalmology. However, noise (speckle) in the acquired images causes quality degradation of OCT images and makes it difficult to analyze the acquired images. In this paper, an iterative approach based on bilateral filtering is proposed for speckle reduction in multiframe OCT data. Gamma noise model is assumed for the observed OCT image. First, the adaptive version of the conventional bilateral filter is applied to enhance the multiframe OCT data and then the bias due to noise is reduced from each of the filtered frames. These unbiased filtered frames are then refined using an iterative approach. Finally, these refined frames are averaged to produce the denoised OCT image. Experimental results on phantom images and real OCT retinal images demonstrate the effectiveness of the proposed filter. PMID:26907572
Adaptive identification and control of structural dynamics systems using recursive lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Montgomery, R. C.; Williams, J. P.
1985-01-01
A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.
Stent enhancement using a locally adaptive unsharp masking filter in digital x-ray fluoroscopy
NASA Astrophysics Data System (ADS)
Jiang, Yuhao; Ekanayake, Eranda
2014-03-01
Low exposure X-ray fluoroscopy is used to guide some complicate interventional procedures. Due to the inherent high levels of noise, improving the visibility of some interventional devices such as stent will greatly benefit those interventional procedures. Stent, which is made up of tiny steel wires, is also suffered from contrast dilutions of large flat panel detector pixels. A novel adaptive unsharp masking filter has been developed to improve stent contrast in real-time applications. In unsharp masking processing, the background is estimated and subtracted from the original input image to create a foreground image containing objects of interest. A background estimator is therefore critical in the unsharp masking processing. In this specific study, orientation filter kernels are used as the background estimator. To make the process simple and fast, the kernels average along a line of pixels. A high orientation resolution of 18° is used. A nonlinear operator is then used to combine the information from the images generated from convolving the original background and noise only images with orientation filters. A computerized Monte Carlo simulation followed by ROC study is used to identify the best nonlinear operator. We then apply the unsharp masking filter to the images with stents present. It is shown that the locally adaptive unsharp making filter is an effective filter for improving stent visibility in the interventional fluoroscopy. We also apply a spatio-temporal channelized human observer model to quantitatively optimize and evaluate the filter.
Cubature on Wiener Space: Pathwise Convergence
Bayer, Christian Friz, Peter K.
2013-04-15
Cubature on Wiener space (Lyons and Victoir in Proc. R. Soc. Lond. A 460(2041):169-198, 2004) provides a powerful alternative to Monte Carlo simulation for the integration of certain functionals on Wiener space. More specifically, and in the language of mathematical finance, cubature allows for fast computation of European option prices in generic diffusion models.We give a random walk interpretation of cubature and similar (e.g. the Ninomiya-Victoir) weak approximation schemes. By using rough path analysis, we are able to establish weak convergence for general path-dependent option prices.
A Self-Adaptive Missile Guidance System for Statistical Inputs
NASA Technical Reports Server (NTRS)
Peery, H. Rodney
1960-01-01
A method of designing a self-adaptive missile guidance system is presented. The system inputs are assumed to be known in a statistical sense only. Newton's modified Wiener theory is utilized in the design of the system and to establish the performance criterion. The missile is assumed to be a beam rider, to have a g limiter, and to operate over a flight envelope where the open-loop gain varies by a factor of 20. It is shown that the percent of time that missile acceleration limiting occurs can be used effectively to adjust the coefficients of the Wiener filter. The result is a guidance system which adapts itself to a changing environment and gives essentially optimum filtering and minimum miss distance.
Adaptive error covariances estimation methods for ensemble Kalman filters
Zhen, Yicun; Harlim, John
2015-08-01
This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for using information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.
NASA Technical Reports Server (NTRS)
Balas, Mark; Frost, Susan
2012-01-01
Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter.
Zurbenko, I.; Chen, J.; Rao, S.T.
1997-11-01
The issue of global climate change due to increased anthropogenic emissions of greenhouse gases in the atmosphere has gained considerable attention and importance. Climate change studies require the interpretation of weather data collected in numerous locations and/or over the span of several decades. Unfortunately, these data contain biases caused by changes in instruments and data acquisition procedures. It is essential that biases are identified and/or removed before these data can be used confidently in the context of climate change research. The purpose of this paper is to illustrate the use of an adaptive moving average filter and compare it with traditional parametric methods. The advantage of the adaptive filter over traditional parametric methods is that it is less effected by seasonal patterns and trends. The filter has been applied to upper air relative humidity and temperature data. Applied to generated data, the filter has a root mean squared error accuracy of about 600 days when locating changes of 0.1 standard deviations and about 20 days for changes of 0.5 standard deviations. In some circumstances, the accuracy of location estimation can be improved through parametric techniques used in conjunction with the adaptive filter.
NASA Astrophysics Data System (ADS)
Boz, Utku; Basdogan, Ipek
2015-12-01
Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.
Maier, Andreas; Wigström, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu, Lei; Strobel, Norbert; Fahrig, Rebecca
2011-01-01
Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia’s CUDA Interface provided an 8
Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca
2011-11-15
Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold
NASA Astrophysics Data System (ADS)
Hayes, Charles E.; McClellan, James H.; Scott, Waymond R.; Kerr, Andrew J.
2016-05-01
This work introduces two advances in wide-band electromagnetic induction (EMI) processing: a novel adaptive matched filter (AMF) and matched subspace detection methods. Both advances make use of recent work with a subspace SVD approach to separating the signal, soil, and noise subspaces of the frequency measurements The proposed AMF provides a direct approach to removing the EMI self-response while improving the signal to noise ratio of the data. Unlike previous EMI adaptive downtrack filters, this new filter will not erroneously optimize the EMI soil response instead of the EMI target response because these two responses are projected into separate frequency subspaces. The EMI detection methods in this work elaborate on how the signal and noise subspaces in the frequency measurements are ideal for creating the matched subspace detection (MSD) and constant false alarm rate matched subspace detection (CFAR) metrics developed by Scharf The CFAR detection metric has been shown to be the uniformly most powerful invariant detector.
A multi-stage noise adaptive switching filter for extremely corrupted images
NASA Astrophysics Data System (ADS)
Dinh, Hai; Adhami, Reza; Wang, Yi
2015-07-01
A multi-stage noise adaptive switching filter (MSNASF) is proposed for the restoration of images extremely corrupted by impulse and impulse-like noise. The filter consists of two steps: noise detection and noise removal. The proposed extrema-based noise detection scheme utilizes the false contouring effect to get better over detection rate at low noise density. It is adaptive and will detect not only impulse but also impulse-like noise. In the noise removal step, a novel multi-stage filtering scheme is proposed. It replaces corrupted pixel with the nearest uncorrupted median to preserve details. When compared with other methods, MSNASF provides better peak signal to noise ratio (PSNR) and structure similarity index (SSIM). A subjective evaluation carried out online also demonstrates that MSNASF yields higher fidelity.
Codimension- p Paley-Wiener theorems
NASA Astrophysics Data System (ADS)
Yang, Yan; Qian, Tao; Sommen, Frank
2007-04-01
We obtain the generalized codimension- p Cauchy-Kovalevsky extension of the exponential function e^{i
Ham, Bumsub; Min, Dongbo; Sohn, Kwanghoon
2013-03-01
Anisotropic diffusion has been known to be closely related to adaptive smoothing and discretized in a similar manner. This paper revisits a fundamental relationship between two approaches. It is shown that adaptive smoothing and anisotropic diffusion have different theoretical backgrounds by exploring their characteristics with the perspective of normalization, evolution step size, and energy flow. Based on this principle, adaptive smoothing is derived from a second order partial differential equation (PDE), not a conventional anisotropic diffusion, via the coupling of Fick's law with a generalized continuity equation where a "source" or "sink" exists, which has not been extensively exploited. We show that the source or sink is closely related to the asymmetry of energy flow as well as the normalization term of adaptive smoothing. It enables us to analyze behaviors of adaptive smoothing, such as the maximum principle and stability with a perspective of a PDE. Ultimately, this relationship provides new insights into application-specific filtering algorithm design. By modeling the source or sink in the PDE, we introduce two specific diffusion filters, the robust anisotropic diffusion and the robust coherence enhancing diffusion, as novel instantiations which are more robust against the outliers than the conventional filters. PMID:23193236
Guo, Qing; Sun, Ping; Yin, Jing-Min; Yu, Tian; Jiang, Dan
2016-05-01
Some unknown parameter estimation of electro-hydraulic system (EHS) should be considered in hydraulic controller design due to many parameter uncertainties in practice. In this study, a parametric adaptive backstepping control method is proposed to improve the dynamic behavior of EHS under parametric uncertainties and unknown disturbance (i.e., hydraulic parameters and external load). The unknown parameters of EHS model are estimated by the parametric adaptive estimation law. Then the recursive backstepping controller is designed by Lyapunov technique to realize the displacement control of EHS. To avoid explosion of virtual control in traditional backstepping, a decayed memory filter is presented to re-estimate the virtual control and the dynamic external load. The effectiveness of the proposed controller has been demonstrated by comparison with the controller without adaptive and filter estimation. The comparative experimental results in critical working conditions indicate the proposed approach can achieve better dynamic performance on the motion control of Two-DOF robotic arm. PMID:26920086
Neural Network Aided Adaptive Extended Kalman Filtering Approach for DGPS Positioning
NASA Astrophysics Data System (ADS)
Jwo, Dah-Jing; Huang, Hung-Chih
2004-09-01
The extended Kalman filter, when employed in the GPS receiver as the navigation state estimator, provides optimal solutions if the noise statistics for the measurement and system are completely known. In practice, the noise varies with time, which results in performance degradation. The covariance matching method is a conventional adaptive approach for estimation of noise covariance matrices. The technique attempts to make the actual filter residuals consistent with their theoretical covariance. However, this innovation-based adaptive estimation shows very noisy results if the window size is small. To resolve the problem, a multilayered neural network is trained to identify the measurement noise covariance matrix, in which the back-propagation algorithm is employed to iteratively adjust the link weights using the steepest descent technique. Numerical simulations show that based on the proposed approach the adaptation performance is substantially enhanced and the positioning accuracy is substantially improved.
A unified set-based test with adaptive filtering for gene-environment interaction analyses.
Liu, Qianying; Chen, Lin S; Nicolae, Dan L; Pierce, Brandon L
2016-06-01
In genome-wide gene-environment interaction (GxE) studies, a common strategy to improve power is to first conduct a filtering test and retain only the SNPs that pass the filtering in the subsequent GxE analyses. Inspired by two-stage tests and gene-based tests in GxE analysis, we consider the general problem of jointly testing a set of parameters when only a few are truly from the alternative hypothesis and when filtering information is available. We propose a unified set-based test that simultaneously considers filtering on individual parameters and testing on the set. We derive the exact distribution and approximate the power function of the proposed unified statistic in simplified settings, and use them to adaptively calculate the optimal filtering threshold for each set. In the context of gene-based GxE analysis, we show that although the empirical power function may be affected by many factors, the optimal filtering threshold corresponding to the peak of the power curve primarily depends on the size of the gene. We further propose a resampling algorithm to calculate P-values for each gene given the estimated optimal filtering threshold. The performance of the method is evaluated in simulation studies and illustrated via a genome-wide gene-gender interaction analysis using pancreatic cancer genome-wide association data. PMID:26496228
A unified set-based test with adaptive filtering for gene-environment interaction analyses
Liu, Qianying; Chen, Lin S.; Nicolae, Dan L.; Pierce, Brandon L.
2015-01-01
Summary In genome-wide gene-environment interaction (GxE) studies, a common strategy to improve power is to first conduct a filtering test and retain only the SNPs that pass the filtering in the subsequent GxE analyses. Inspired by two-stage tests and gene-based tests in GxE analysis, we consider the general problem of jointly testing a set of parameters when only a few are truly from the alternative hypothesis and when filtering information is available. We propose a unified set-based test that simultaneously considers filtering on individual parameters and testing on the set. We derive the exact distribution and approximate the power function of the proposed unified statistic in simplified settings, and use them to adaptively calculate the optimal filtering threshold for each set. In the context of gene-based GxE analysis, we show that although the empirical power function may be affected by many factors, the optimal filtering threshold corresponding to the peak of the power curve primarily depends on the size of the gene. We further propose a resampling algorithm to calculate p-values for each gene given the estimated optimal filtering threshold. The performance of the method is evaluated in simulation studies and illustrated via a genome-wide gene-gender interaction analysis using pancreatic cancer genome-wide association data. PMID:26496228
Filter accuracy for the Lorenz 96 model: Fixed versus adaptive observation operators
NASA Astrophysics Data System (ADS)
Law, K. J. H.; Sanz-Alonso, D.; Shukla, A.; Stuart, A. M.
2016-06-01
In the context of filtering chaotic dynamical systems it is well-known that partial observations, if sufficiently informative, can be used to control the inherent uncertainty due to chaos. The purpose of this paper is to investigate, both theoretically and numerically, conditions on the observations of chaotic systems under which they can be accurately filtered. In particular, we highlight the advantage of adaptive observation operators over fixed ones. The Lorenz '96 model is used to exemplify our findings. We consider discrete-time and continuous-time observations in our theoretical developments. We prove that, for fixed observation operator, the 3DVAR filter can recover the system state within a neighbourhood determined by the size of the observational noise. It is required that a sufficiently large proportion of the state vector is observed, and an explicit form for such sufficient fixed observation operator is given. Numerical experiments, where the data is incorporated by use of the 3DVAR and extended Kalman filters, suggest that less informative fixed operators than given by our theory can still lead to accurate signal reconstruction. Adaptive observation operators are then studied numerically; we show that, for carefully chosen adaptive observation operators, the proportion of the state vector that needs to be observed is drastically smaller than with a fixed observation operator. Indeed, we show that the number of state coordinates that need to be observed may even be significantly smaller than the total number of positive Lyapunov exponents of the underlying system.
NASA Technical Reports Server (NTRS)
Keel, Byron M.
1989-01-01
An optimum adaptive clutter rejection filter for use with airborne Doppler weather radar is presented. The radar system is being designed to operate at low-altitudes for the detection of windshear in an airport terminal area where ground clutter returns may mask the weather return. The coefficients of the adaptive clutter rejection filter are obtained using a complex form of a square root normalized recursive least squares lattice estimation algorithm which models the clutter return data as an autoregressive process. The normalized lattice structure implementation of the adaptive modeling process for determining the filter coefficients assures that the resulting coefficients will yield a stable filter and offers possible fixed point implementation. A 10th order FIR clutter rejection filter indexed by geographical location is designed through autoregressive modeling of simulated clutter data. Filtered data, containing simulated dry microburst and clutter return, are analyzed using pulse-pair estimation techniques. To measure the ability of the clutter rejection filters to remove the clutter, results are compared to pulse-pair estimates of windspeed within a simulated dry microburst without clutter. In the filter evaluation process, post-filtered pulse-pair width estimates and power levels are also used to measure the effectiveness of the filters. The results support the use of an adaptive clutter rejection filter for reducing the clutter induced bias in pulse-pair estimates of windspeed.
Kikuchi, Kazuro
2011-03-14
We analyze the clock-recovery process based on adaptive finite-impulse-response (FIR) filtering in digital coherent optical receivers. When the clock frequency is synchronized between the transmitter and the receiver, only five taps in half-symbol-spaced FIR filters can adjust the sampling phase of analog-to-digital conversion optimally, enabling bit-error rate performance independent of the initial sampling phase. Even if the clock frequency is not synchronized between them, the clock-frequency misalignment can be adjusted within an appropriate block interval; thus, we can achieve an asynchronous clock mode of operation of digital coherent receivers with block processing of the symbol sequence. PMID:21445201
Parameter estimation with an iterative version of the adaptive Gaussian mixture filter
NASA Astrophysics Data System (ADS)
Stordal, A.; Lorentzen, R.
2012-04-01
The adaptive Gaussian mixture filter (AGM) was introduced in Stordal et. al. (ECMOR 2010) as a robust filter technique for large scale applications and an alternative to the well known ensemble Kalman filter (EnKF). It consists of two analysis steps, one linear update and one weighting/resampling step. The bias of AGM is determined by two parameters, one adaptive weight parameter (forcing the weights to be more uniform to avoid filter collapse) and one pre-determined bandwidth parameter which decides the size of the linear update. It has been shown that if the adaptive parameter approaches one and the bandwidth parameter decrease with increasing sample size, the filter can achieve asymptotic optimality. For large scale applications with a limited sample size the filter solution may be far from optimal as the adaptive parameter gets close to zero depending on how well the samples from the prior distribution match the data. The bandwidth parameter must often be selected significantly different from zero in order to make large enough linear updates to match the data, at the expense of bias in the estimates. In the iterative AGM we take advantage of the fact that the history matching problem is usually estimation of parameters and initial conditions. If the prior distribution of initial conditions and parameters is close to the posterior distribution, it is possible to match the historical data with a small bandwidth parameter and an adaptive weight parameter that gets close to one. Hence the bias of the filter solution is small. In order to obtain this scenario we iteratively run the AGM throughout the data history with a very small bandwidth to create a new prior distribution from the updated samples after each iteration. After a few iterations, nearly all samples from the previous iteration match the data and the above scenario is achieved. A simple toy problem shows that it is possible to reconstruct the true posterior distribution using the iterative version of
NASA Astrophysics Data System (ADS)
Lee, Seunghee; Bae, Kwanghyuk; Kyung, Kyu-min; Kim, Tae-Chan
2012-03-01
In this work, we present an adaptive switching filter for noise reduction and sharpness preservation in depth maps provided by Time-of-Flight (ToF) image sensors. Median filter and bilateral filter are commonly used in cost-sensitive applications where low computational complexity is needed. However, median filter blurs fine details and edges in depth map while bilateral filter works poorly with impulse noise present in the image. Since the variance of depth is inversely proportional to amplitude, we suggest an adaptive filter that switches between median filter and bilateral filter based on the level of amplitude. If a region of interest has low amplitude indicating low confidence level of measured depth data, then median filter is applied on the depth at the position while regions with high level of amplitude is processed with bilateral filter using Gaussian kernel with adaptive weights. Results show that the suggested algorithm performs surface smoothing and detail preservation as well as median filter and bilateral filter, respectively. By using the suggested algorithm, significant gain in visual quality is obtained in depth maps while low computational cost is maintained.
Adaptive approximation of higher order posterior statistics
Lee, Wonjung
2014-02-01
Filtering is an approach for incorporating observed data into time-evolving systems. Instead of a family of Dirac delta masses that is widely used in Monte Carlo methods, we here use the Wiener chaos expansion for the parametrization of the conditioned probability distribution to solve the nonlinear filtering problem. The Wiener chaos expansion is not the best method for uncertainty propagation without observations. Nevertheless, the projection of the system variables in a fixed polynomial basis spanning the probability space might be a competitive representation in the presence of relatively frequent observations because the Wiener chaos approach not only leads to an accurate and efficient prediction for short time uncertainty quantification, but it also allows to apply several data assimilation methods that can be used to yield a better approximate filtering solution. The aim of the present paper is to investigate this hypothesis. We answer in the affirmative for the (stochastic) Lorenz-63 system based on numerical simulations in which the uncertainty quantification method and the data assimilation method are adaptively selected by whether the dynamics is driven by Brownian motion and the near-Gaussianity of the measure to be updated, respectively.
Adaptive nonlocal means filtering based on local noise level for CT denoising
Li, Zhoubo; Trzasko, Joshua D.; Lake, David S.; Blezek, Daniel J.; Manduca, Armando; Yu, Lifeng; Fletcher, Joel G.; McCollough, Cynthia H.
2014-01-15
Purpose: To develop and evaluate an image-domain noise reduction method based on a modified nonlocal means (NLM) algorithm that is adaptive to local noise level of CT images and to implement this method in a time frame consistent with clinical workflow. Methods: A computationally efficient technique for local noise estimation directly from CT images was developed. A forward projection, based on a 2D fan-beam approximation, was used to generate the projection data, with a noise model incorporating the effects of the bowtie filter and automatic exposure control. The noise propagation from projection data to images was analytically derived. The analytical noise map was validated using repeated scans of a phantom. A 3D NLM denoising algorithm was modified to adapt its denoising strength locally based on this noise map. The performance of this adaptive NLM filter was evaluated in phantom studies in terms of in-plane and cross-plane high-contrast spatial resolution, noise power spectrum (NPS), subjective low-contrast spatial resolution using the American College of Radiology (ACR) accreditation phantom, and objective low-contrast spatial resolution using a channelized Hotelling model observer (CHO). Graphical processing units (GPU) implementation of this noise map calculation and the adaptive NLM filtering were developed to meet demands of clinical workflow. Adaptive NLM was piloted on lower dose scans in clinical practice. Results: The local noise level estimation matches the noise distribution determined from multiple repetitive scans of a phantom, demonstrated by small variations in the ratio map between the analytical noise map and the one calculated from repeated scans. The phantom studies demonstrated that the adaptive NLM filter can reduce noise substantially without degrading the high-contrast spatial resolution, as illustrated by modulation transfer function and slice sensitivity profile results. The NPS results show that adaptive NLM denoising preserves the
Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces
NASA Astrophysics Data System (ADS)
Lu, Jun; McFarland, Dennis J.; Wolpaw, Jonathan R.
2013-02-01
Objective. Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an ‘adaptive Laplacian (ALAP) filter’, can provide better performance for SMR-based BCIs. Approach. An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible. Main results. Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Significance. Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.
A phenomenological calculus of Wiener description space.
Richardson, I W; Louie, A H
2007-10-01
The phenomenological calculus is a categorical example of Robert Rosen's modeling relation. This paper is an alligation of the phenomenological calculus and generalized harmonic analysis, another categorical example. Our epistemological exploration continues into the realm of Wiener description space, in which constitutive parameters are extended from vectors to vector-valued functions of a real variable. Inherent in the phenomenology are fundamental representations of time and nearness to equilibrium. PMID:17955459
A 3D approach for object recognition in illuminated scenes with adaptive correlation filters
NASA Astrophysics Data System (ADS)
Picos, Kenia; Díaz-Ramírez, Víctor H.
2015-09-01
In this paper we solve the problem of pose recognition of a 3D object in non-uniformly illuminated and noisy scenes. The recognition system employs a bank of space-variant correlation filters constructed with an adaptive approach based on local statistical parameters of the input scene. The position and orientation of the target are estimated with the help of the filter bank. For an observed input frame, the algorithm computes the correlation process between the observed image and the bank of filters using a combination of data and task parallelism by taking advantage of a graphics processing unit (GPU) architecture. The pose of the target is estimated by finding the template that better matches the current view of target within the scene. The performance of the proposed system is evaluated in terms of recognition accuracy, location and orientation errors, and computational performance.
Adaptive filtering for reduction of speckle in ultrasonic pulse-echo images.
Bamber, J C; Daft, C
1986-01-01
Current medical ultrasonic scanning instrumentation permits the display of fine image detail (speckle) which does not transfer useful information but degrades the apparent low contrast resolution in the image. An adaptive two-dimensional filter has been developed which uses local features of image texture to recognize and maximally low-pass filter those parts of the image which correspond to fully developed speckle, while substantially preserving information associated with resolved-object structure. A first implementation of the filter is described which uses the ratio of the local variance and the local mean as the speckle recognition feature. Preliminary results of applying this form of display processing to medical ultrasound images are very encouraging; it appears that the visual perception of features such as small discrete structures, subtle fluctuations in mean echo level and changes in image texture may be enhanced relative to that for unprocessed images. PMID:3510500
NASA Technical Reports Server (NTRS)
Smith, J. W.; Edwards, J. W.
1980-01-01
Analysis of a longitudinal pilot-induced oscillation (PIO) experienced just prior to touchdown on the final flight of the space shuttle's approach landing tests indicated that the source of the problem was a combination of poor basic handling qualities aggravated by time delays through the digital flight control computer and rate limiting of the elevator actuators due to high pilot gain. A nonlinear PIO suppression (PIOS) filter was designed and developed to alleviate the vehicle's PIO tendencies by reducing the gain in the command path. From analytical and simulator studies it was shown that the PIOS filter, in an adaptive fashion, can attenuate the command path gain without adding phase lag to the system. With the pitch attitude loop of a simulated shuttle model closed, the PIOS filter increased the gain margin by a factor of about two.
Biohybrid Control of General Linear Systems Using the Adaptive Filter Model of Cerebellum
Wilson, Emma D.; Assaf, Tareq; Pearson, Martin J.; Rossiter, Jonathan M.; Dean, Paul; Anderson, Sean R.; Porrill, John
2015-01-01
The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems, such as the vestibulo-ocular reflex (VOR), and to sensory processing problems, such as the adaptive cancelation of reafferent noise. It has also been successfully applied to problems in robotics, such as adaptive camera stabilization and sensor noise cancelation. In previous applications to inverse control problems, the algorithm was applied to the velocity control of a plant dominated by viscous and elastic elements. Naive application of the adaptive filter model to the displacement (as opposed to velocity) control of this plant results in unstable learning and control. To be more generally useful in engineering problems, it is essential to remove this restriction to enable the stable control of plants of any order. We address this problem here by developing a biohybrid model reference adaptive control (MRAC) scheme, which stabilizes the control algorithm for strictly proper plants. We evaluate the performance of this novel cerebellar-inspired algorithm with MRAC scheme in the experimental control of a dielectric electroactive polymer, a class of artificial muscle. The results show that the augmented cerebellar algorithm is able to accurately control the displacement response of the artificial muscle. The proposed solution not only greatly extends the practical applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar involvement in a wider range of biological control tasks. PMID:26257638
NASA Astrophysics Data System (ADS)
Ma, Shaokang; Wu, Peijun; Ji, Jinhu; Li, Xuchun
2016-02-01
This article presents a sensorless control approach of salient PMSM with an online parameter identifier. Adaptive Integrator is proposed and utilised for the estimation of active flux and rotor position. As a result, integrator overflow caused by DC offset is avoided. Meanwhile, an online stator resistance identification algorithm using strong tracking filter is employed, and the identified stator resistance is fed back to the estimating algorithm. Thus, the estimating algorithm can calculate the rotor position correctly. Simulations and experimental results validate the feasibility of both adaptive integrator and the parameter identification method.
Particle filter based visual tracking with multi-cue adaptive fusion
NASA Astrophysics Data System (ADS)
Li, Anping; Jing, Zhongliang; Hu, Shiqiang
2005-06-01
To improve the robustness of visual tracking in complex environments such as: cluttered backgrounds, partial occlusions, similar distraction and pose variations, a novel tracking method based on adaptive fusion and particle filter is proposed in this paper. In this method, the image color and shape cues are adaptively fused to represent the target observation; fuzzy logic is applied to dynamically adjust each cue weight according to its associated reliability in the past frame; particle filter is adopted to deal with non-linear and non-Gaussian problems in visual tracking. The method is demonstrated to be robust to illumination changes, pose variations, partial occlusions, cluttered backgrounds and camera motion for a test image sequence.
Denoising preterm EEG by signal decomposition and adaptive filtering: a comparative study.
Navarro, X; Porée, F; Beuchée, A; Carrault, G
2015-03-01
Electroencephalography (EEG) from preterm infant monitoring systems is usually contaminated by several sources of noise that have to be removed in order to correctly interpret signals and perform automated analysis reliably. Band-pass and adaptive filters (AF) continue to be systematically applied, but their efficacy may be decreased facing preterm EEG patterns such as the tracé alternant and slow delta-waves. In this paper, we propose the combination of EEG decomposition with AF to improve the overall denoising process. Using artificially contaminated signals from real EEGs, we compared the quality of filtered signals applying different decomposition techniques: the discrete wavelet transform, the empirical mode decomposition (EMD) and a recent improved version, the complete ensemble EMD with adaptive noise. Simulations demonstrate that introducing EMD-based techniques prior to AF can reduce up to 30% the root mean squared errors in denoised EEGs. PMID:25659233
Li, Yongxiao; Wang, Zinan; Peng, Chao; Li, Zhengbin
2014-10-10
Conventional signal processing methods for improving the random walk coefficient and the bias stability of interferometric fiber-optic gyroscopes are usually implemented in one-dimension sequence. In this paper, as a comparison, we allocated synchronous adaptive filters with the calculations of correlations of multidimensional signals in the perspective of the signal subspace. First, two synchronous independent channels are obtained through quadrature demodulation. Next, synchronous adaptive filters were carried out in order to project the original channels to the high related error channels and the approximation channels. The error channel signals were then processed by principal component analysis for suppressing coherent noises. Finally, an optimal state estimation of these error channels and approximation channels based on the Kalman gain coefficient was operated. Experimental results show that this signal processing method improved the raw measurements' variance from 0.0630 [(°/h)2] to 0.0103 [(°/h)2]. PMID:25322393
NASA Technical Reports Server (NTRS)
Penland, Cecile; Ghil, Michael; Weickmann, Klaus M.
1991-01-01
The spectral resolution and statistical significance of a harmonic analysis obtained by low-order MEM can be improved by subjecting the data to an adaptive filter. This adaptive filter consists of projecting the data onto the leading temporal empirical orthogonal functions obtained from singular spectrum analysis (SSA). The combined SSA-MEM method is applied both to a synthetic time series and a time series of AAM data. The procedure is very effective when the background noise is white and less so when the background noise is red. The latter case obtains in the AAM data. Nevertheless, reliable evidence for intraseasonal and interannual oscillations in AAM is detected. The interannual periods include a quasi-biennial one and an LF one, of 5 years, both related to the El Nino/Southern Oscillation. In the intraseasonal band, separate oscillations of about 48.5 and 51 days are ascertained.
Ensembles of adaptive spatial filters increase BCI performance: an online evaluation
NASA Astrophysics Data System (ADS)
Sannelli, Claudia; Vidaurre, Carmen; Müller, Klaus-Robert; Blankertz, Benjamin
2016-08-01
Objective: In electroencephalographic (EEG) data, signals from distinct sources within the brain are widely spread by volume conduction and superimposed such that sensors receive mixtures of a multitude of signals. This reduction of spatial information strongly hampers single-trial analysis of EEG data as, for example, required for brain–computer interfacing (BCI) when using features from spontaneous brain rhythms. Spatial filtering techniques are therefore greatly needed to extract meaningful information from EEG. Our goal is to show, in online operation, that common spatial pattern patches (CSPP) are valuable to counteract this problem. Approach: Even though the effect of spatial mixing can be encountered by spatial filters, there is a trade-off between performance and the requirement of calibration data. Laplacian derivations do not require calibration data at all, but their performance for single-trial classification is limited. Conversely, data-driven spatial filters, such as common spatial patterns (CSP), can lead to highly distinctive features; however they require a considerable amount of training data. Recently, we showed in an offline analysis that CSPP can establish a valuable compromise. In this paper, we confirm these results in an online BCI study. In order to demonstrate the paramount feature that CSPP requires little training data, we used them in an adaptive setting with 20 participants and focused on users who did not have success with previous BCI approaches. Main results: The results of the study show that CSPP adapts faster and thereby allows users to achieve better feedback within a shorter time than previous approaches performed with Laplacian derivations and CSP filters. The success of the experiment highlights that CSPP has the potential to further reduce BCI inefficiency. Significance: CSPP are a valuable compromise between CSP and Laplacian filters. They allow users to attain better feedback within a shorter time and thus reduce BCI
Blended particle methods with adaptive subspaces for filtering turbulent dynamical systems
NASA Astrophysics Data System (ADS)
Qi, Di; Majda, Andrew J.
2015-04-01
It is a major challenge throughout science and engineering to improve uncertain model predictions by utilizing noisy data sets from nature. Hybrid methods combining the advantages of traditional particle filters and the Kalman filter offer a promising direction for filtering or data assimilation in high dimensional turbulent dynamical systems. In this paper, blended particle filtering methods that exploit the physical structure of turbulent dynamical systems are developed. Non-Gaussian features of the dynamical system are captured adaptively in an evolving-in-time low dimensional subspace through particle methods, while at the same time statistics in the remaining portion of the phase space are amended by conditional Gaussian mixtures interacting with the particles. The importance of both using the adaptively evolving subspace and introducing conditional Gaussian statistics in the orthogonal part is illustrated here by simple examples. For practical implementation of the algorithms, finding the most probable distributions that characterize the statistics in the phase space as well as effective resampling strategies is discussed to handle realizability and stability issues. To test the performance of the blended algorithms, the forty dimensional Lorenz 96 system is utilized with a five dimensional subspace to run particles. The filters are tested extensively in various turbulent regimes with distinct statistics and with changing observation time frequency and both dense and sparse spatial observations. In real applications perfect dynamical models are always inaccessible considering the complexities in both modeling and computation of high dimensional turbulent system. The effects of model errors from imperfect modeling of the systems are also checked for these methods. The blended methods show uniformly high skill in both capturing non-Gaussian statistics and achieving accurate filtering results in various dynamical regimes with and without model errors.
Speckle reduction in optical coherence tomography images using digital filtering
Ozcan, Aydogan; Bilenca, Alberto; Desjardins, Adrien E.; Bouma, Brett E.; Tearney, Guillermo J.
2009-01-01
Speckle noise is a ubiquitous artifact that limits the interpretation of optical coherence tomography images. Here we apply various speckle-reduction digital filters to optical coherence tomography images and compare their performance. Our results indicate that shift-invariant, nonorthogonal wavelet-transform-based filters together with enhanced Lee and adaptive Wiener filters can significantly reduce speckle and increase the signal-to-noise ratio, while preserving strong edges. The speckle reduction capabilities of these filters are also compared with speckle reduction from incoherent angular compounding. Our results suggest that by using these digital filters, the number of individual angles required to attain a certain level of speckle reduction can be decreased. PMID:17728812
Gas image enhancement based on adaptive time-domain filtering and morphology
NASA Astrophysics Data System (ADS)
Zhang, Changxing; Wang, Lingxue; Li, Jiakun; Long, Yunting; Zhang, Bei
2011-05-01
The fingerprint region of most gases is within 3 to 14μm. A mid-wave or long-wave infrared thermal imager is therefore commonly applied in gas detection. With further influence of low gas concentration and heterogeneity of infrared focal plane arrays, the image has numerous drawbacks. These include loud noise, weak gas signal, gridding, and dead points, all of which are particularly evident in sequential images. In order to solve these problems, we take into account the characteristics of the leaking gas image and propose an enhancement method based on adaptive time-domain filtering with morphology. The adaptive time-domain filtering which operates on time sequence images is a hybrid method combining the recursive filtering and mean filtering. It segments gas and background according to a selected threshold; removes speckle noise according to the median; and removes background domain using weighted difference image. The morphology method can not only dilate the gas region along the direction of gas diffusion to greatly enhance the visibility of the leakage area, but also effectively remove the noise, and smooth the contour. Finally, the false color is added to the gas domain. Results show that the gas infrared region is effectively enhanced.
Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators.
Hooshmand, Rahmat Allah; Torabian Esfahani, Mahdi
2011-04-01
Thyristor controlled reactor with fixed capacitor (TCR/FC) compensators have the capability of compensating reactive power and improving power quality phenomena. Delay in the response of such compensators degrades their performance. In this paper, a new method based on adaptive filters (AF) is proposed in order to eliminate delay and increase the response of the TCR compensator. The algorithm designed for the adaptive filters is performed based on the least mean square (LMS) algorithm. In this design, instead of fixed capacitors, band-pass LC filters are used. To evaluate the filter, a TCR/FC compensator was used for nonlinear and time varying loads of electric arc furnaces (EAFs). These loads caused occurrence of power quality phenomena in the supplying system, such as voltage fluctuation and flicker, odd and even harmonics and unbalancing in voltage and current. The above design was implemented in a realistic system model of a steel complex. The simulation results show that applying the proposed control in the TCR/FC compensator efficiently eliminated delay in the response and improved the performance of the compensator in the power system. PMID:21193194
Gong, Yushun; Yu, Tao; Chen, Bihua; He, Mi; Li, Yongqin
2014-01-01
Current automated external defibrillators mandate interruptions of chest compression to avoid the effect of artifacts produced by CPR for reliable rhythm analyses. But even seconds of interruption of chest compression during CPR adversely affects the rate of restoration of spontaneous circulation and survival. Numerous digital signal processing techniques have been developed to remove the artifacts or interpret the corrupted ECG with promising result, but the performance is still inadequate, especially for nonshockable rhythms. In the present study, we suppressed the CPR artifacts with an enhanced adaptive filtering method. The performance of the method was evaluated by comparing the sensitivity and specificity for shockable rhythm detection before and after filtering the CPR corrupted ECG signals. The dataset comprised 283 segments of shockable and 280 segments of nonshockable ECG signals during CPR recorded from 22 adult pigs that experienced prolonged cardiac arrest. For the unfiltered signals, the sensitivity and specificity were 99.3% and 46.8%, respectively. After filtering, a sensitivity of 93.3% and a specificity of 96.0% were achieved. This animal trial demonstrated that the enhanced adaptive filtering method could significantly improve the detection of nonshockable rhythms without compromising the ability to detect a shockable rhythm during uninterrupted CPR. PMID:24795878
Design of adaptive control systems by means of self-adjusting transversal filters
NASA Technical Reports Server (NTRS)
Merhav, S. J.
1986-01-01
The design of closed-loop adaptive control systems based on nonparametric identification was addressed. Implementation is by self-adjusting Least Mean Square (LMS) transversal filters. The design concept is Model Reference Adaptive Control (MRAC). Major issues are to preserve the linearity of the error equations of each LMS filter, and to prevent estimation bias that is due to process or measurement noise, thus providing necessary conditions for the convergence and stability of the control system. The controlled element is assumed to be asymptotically stable and minimum phase. Because of the nonparametric Finite Impulse Response (FIR) estimates provided by the LMS filters, a-priori information on the plant model is needed only in broad terms. Following a survey of control system configurations and filter design considerations, system implementation is shown here in Single Input Single Output (SISO) format which is readily extendable to multivariable forms. In extensive computer simulation studies the controlled element is represented by a second-order system with widely varying damping, natural frequency, and relative degree.
Adaptive non-local means filtering based on local noise level for CT denoising
NASA Astrophysics Data System (ADS)
Li, Zhoubo; Yu, Lifeng; Trzasko, Joshua D.; Fletcher, Joel G.; McCollough, Cynthia H.; Manduca, Armando
2012-03-01
Radiation dose from CT scans is an increasing health concern in the practice of radiology. Higher dose scans can produce clearer images with high diagnostic quality, but may increase the potential risk of radiation-induced cancer or other side effects. Lowering radiation dose alone generally produces a noisier image and may degrade diagnostic performance. Recently, CT dose reduction based on non-local means (NLM) filtering for noise reduction has yielded promising results. However, traditional NLM denoising operates under the assumption that image noise is spatially uniform noise, while in CT images the noise level varies significantly within and across slices. Therefore, applying NLM filtering to CT data using a global filtering strength cannot achieve optimal denoising performance. In this work, we have developed a technique for efficiently estimating the local noise level for CT images, and have modified the NLM algorithm to adapt to local variations in noise level. The local noise level estimation technique matches the true noise distribution determined from multiple repetitive scans of a phantom object very well. The modified NLM algorithm provides more effective denoising of CT data throughout a volume, and may allow significant lowering of radiation dose. Both the noise map calculation and the adaptive NLM filtering can be performed in times that allow integration with the clinical workflow.
NASA Astrophysics Data System (ADS)
Man, Jun; Li, Weixuan; Zeng, Lingzao; Wu, Laosheng
2016-06-01
The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a sufficiently large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the polynomial chaos expansion (PCE) to represent and propagate the uncertainties in parameters and states. However, PCKF suffers from the so-called "curse of dimensionality". Its computational cost increases drastically with the increasing number of parameters and system nonlinearity. Furthermore, PCKF may fail to provide accurate estimations due to the joint updating scheme for strongly nonlinear models. Motivated by recent developments in uncertainty quantification and EnKF, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problems. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected at each assimilation step; the "restart" scheme is utilized to eliminate the inconsistency between updated model parameters and states variables. The performance of RAPCKF is systematically tested with numerical cases of unsaturated flow models. It is shown that the adaptive approach and restart scheme can significantly improve the performance of PCKF. Moreover, RAPCKF has been demonstrated to be more efficient than EnKF with the same computational cost.
Wiener-Hammerstein system identification - an evolutionary approach
NASA Astrophysics Data System (ADS)
Naitali, Abdessamad; Giri, Fouad
2016-01-01
The problem of identifying parametric Wiener-Hammerstein (WH) systems is addressed within the evolutionary optimisation context. Specifically, a hybrid culture identification method is developed that involves model structure adaptation using genetic recombination and model parameter learning using particle swarm optimisation. The method enjoys three interesting features: (1) the risk of premature convergence of model parameter estimates to local optima is significantly reduced, due to the constantly maintained diversity of model candidates; (2) no prior knowledge is needed except for upper bounds on the system structure indices; (3) the method is fully autonomous as no interaction is needed with the user during the optimum search process. The performances of the proposed method will be illustrated and compared to alternative methods using a well-established WH benchmark.
Ship detection for high resolution optical imagery with adaptive target filter
NASA Astrophysics Data System (ADS)
Ju, Hongbin
2015-10-01
Ship detection is important due to both its civil and military use. In this paper, we propose a novel ship detection method, Adaptive Target Filter (ATF), for high resolution optical imagery. The proposed framework can be grouped into two stages, where in the first stage, a test image is densely divided into different detection windows and each window is transformed to a feature vector in its feature space. The Histograms of Oriented Gradients (HOG) is accumulated as a basic feature descriptor. In the second stage, the proposed ATF highlights all the ship regions and suppresses the undesired backgrounds adaptively. Each detection window is assigned a score, which represents the degree of the window belonging to a certain ship category. The ATF can be adaptively obtained by the weighted Logistic Regression (WLR) according to the distribution of backgrounds and targets of the input image. The main innovation of our method is that we only need to collect positive training samples to build the filter, while the negative training samples are adaptively generated by the input image. This is different to other classification method such as Support Vector Machine (SVM) and Logistic Regression (LR), which need to collect both positive and negative training samples. The experimental result on 1-m high resolution optical images shows the proposed method achieves a desired ship detection performance with higher quality and robustness than other methods, e.g., SVM and LR.
Filter accuracy for the Lorenz 96 model: Fixed versus adaptive observation operators
Stuart, Andrew M.; Shukla, Abhishek; Sanz-Alonso, Daniel; Law, K. J. H.
2016-02-23
In the context of filtering chaotic dynamical systems it is well-known that partial observations, if sufficiently informative, can be used to control the inherent uncertainty due to chaos. The purpose of this paper is to investigate, both theoretically and numerically, conditions on the observations of chaotic systems under which they can be accurately filtered. In particular, we highlight the advantage of adaptive observation operators over fixed ones. The Lorenz ’96 model is used to exemplify our findings. Here, we consider discrete-time and continuous-time observations in our theoretical developments. We prove that, for fixed observation operator, the 3DVAR filter can recovermore » the system state within a neighbourhood determined by the size of the observational noise. It is required that a sufficiently large proportion of the state vector is observed, and an explicit form for such sufficient fixed observation operator is given. Numerical experiments, where the data is incorporated by use of the 3DVAR and extended Kalman filters, suggest that less informative fixed operators than given by our theory can still lead to accurate signal reconstruction. Adaptive observation operators are then studied numerically; we show that, for carefully chosen adaptive observation operators, the proportion of the state vector that needs to be observed is drastically smaller than with a fixed observation operator. Indeed, we show that the number of state coordinates that need to be observed may even be significantly smaller than the total number of positive Lyapunov exponents of the underlying system.« less
Li, Xiaofan; Zhao, Yubin; Zhang, Sha; Fan, Xiaopeng
2016-01-01
Particle filters (PFs) are widely used for nonlinear signal processing in wireless sensor networks (WSNs). However, the measurement uncertainty makes the WSN observations unreliable to the actual case and also degrades the estimation accuracy of the PFs. In addition to the algorithm design, few works focus on improving the likelihood calculation method, since it can be pre-assumed by a given distribution model. In this paper, we propose a novel PF method, which is based on a new likelihood fusion method for WSNs and can further improve the estimation performance. We firstly use a dynamic Gaussian model to describe the nonparametric features of the measurement uncertainty. Then, we propose a likelihood adaptation method that employs the prior information and a belief factor to reduce the measurement noise. The optimal belief factor is attained by deriving the minimum Kullback-Leibler divergence. The likelihood adaptation method can be integrated into any PFs, and we use our method to develop three versions of adaptive PFs for a target tracking system using wireless sensor network. The simulation and experimental results demonstrate that our likelihood adaptation method has greatly improved the estimation performance of PFs in a high noise environment. In addition, the adaptive PFs are highly adaptable to the environment without imposing computational complexity. PMID:27249002
Li, Xiaofan; Zhao, Yubin; Zhang, Sha; Fan, Xiaopeng
2016-01-01
Particle filters (PFs) are widely used for nonlinear signal processing in wireless sensor networks (WSNs). However, the measurement uncertainty makes the WSN observations unreliable to the actual case and also degrades the estimation accuracy of the PFs. In addition to the algorithm design, few works focus on improving the likelihood calculation method, since it can be pre-assumed by a given distribution model. In this paper, we propose a novel PF method, which is based on a new likelihood fusion method for WSNs and can further improve the estimation performance. We firstly use a dynamic Gaussian model to describe the nonparametric features of the measurement uncertainty. Then, we propose a likelihood adaptation method that employs the prior information and a belief factor to reduce the measurement noise. The optimal belief factor is attained by deriving the minimum Kullback–Leibler divergence. The likelihood adaptation method can be integrated into any PFs, and we use our method to develop three versions of adaptive PFs for a target tracking system using wireless sensor network. The simulation and experimental results demonstrate that our likelihood adaptation method has greatly improved the estimation performance of PFs in a high noise environment. In addition, the adaptive PFs are highly adaptable to the environment without imposing computational complexity. PMID:27249002
NASA Astrophysics Data System (ADS)
Yushkov, Konstantin B.; Molchanov, Vladimir Y.; Belousov, Pavel V.; Abrosimov, Aleksander Y.
2016-01-01
We report a method for edge enhancement in the images of transparent samples using analog image processing in coherent light. The experimental technique is based on adaptive spatial filtering with an acousto-optic tunable filter in a telecentric optical system. We demonstrate processing of microscopic images of unstained and stained histological sections of human thyroid tumor with improved contrast.
Adaptive Spatial Filtering of Interferometric Data Stack Oriented to Distributed Scatterers
NASA Astrophysics Data System (ADS)
Zhang, Y.; Xie, C.; Shao, Y.; Yuan, M.
2013-07-01
Standard interferometry poses a challenge in non-urban areas due to temporal and spatial decorrelation of the radar signal, where there is high signal noise. Techniques such as Small Baseline Subset Algorithm (SBAS) have been proposed to make use of multiple interferometric combinations to alleviate the problem. However, the interferograms used in SBAS are multilooked with a boxcar (rectangle) filter to reduce phase noise, resulting in a loss of resolution and signal superstition from different objects. In this paper, we proposed a modified adaptive spatial filtering algorithm for accurate estimation of interferogram and coherence without resolution loss even in rural areas, to better support the deformation monitoring with time series interferometric synthetic aperture radar (InSAR) technique. The implemented method identifies the statistically homogenous pixels in a neighbourhood based on the goodness-of-fit test, and then applies an adaptive spatial filtering of interferograms. Three statistical tests for the identification of distributed targets will be presented, applied to real data. PALSAR data of the yellow river delta in China is used for demonstrating the effectiveness of this algorithm in rural areas.
Improving the Response of Accelerometers for Automotive Applications by Using LMS Adaptive Filters
Hernandez, Wilmar; de Vicente, Jesús; Sergiyenko, Oleg; Fernández, Eduardo
2010-01-01
In this paper, the least-mean-squares (LMS) algorithm was used to eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications. This kind of accelerometer is designed to be easily mounted in hard to reach places on vehicles under test, and they usually feature ranges from 50 to 2,000 g (where is the gravitational acceleration, 9.81 m/s2) and frequency responses to 3,000 Hz or higher, with DC response, durable cables, reliable performance and relatively low cost. However, here we show that the response of the sensor under test had a lot of noise and we carried out the signal processing stage by using both conventional and optimal adaptive filtering. Usually, designers have to build their specific analog and digital signal processing circuits, and this fact increases considerably the cost of the entire sensor system and the results are not always satisfactory, because the relevant signal is sometimes buried in a broad-band noise background where the unwanted information and the relevant signal sometimes share a very similar frequency band. Thus, in order to deal with this problem, here we used the LMS adaptive filtering algorithm and compare it with others based on the kind of filters that are typically used for automotive applications. The experimental results are satisfactory. PMID:22315542
Automated detection scheme of architectural distortion in mammograms using adaptive Gabor filter
NASA Astrophysics Data System (ADS)
Yoshikawa, Ruriha; Teramoto, Atsushi; Matsubara, Tomoko; Fujita, Hiroshi
2013-03-01
Breast cancer is a serious health concern for all women. Computer-aided detection for mammography has been used for detecting mass and micro-calcification. However, there are challenges regarding the automated detection of the architectural distortion about the sensitivity. In this study, we propose a novel automated method for detecting architectural distortion. Our method consists of the analysis of the mammary gland structure, detection of the distorted region, and reduction of false positive results. We developed the adaptive Gabor filter for analyzing the mammary gland structure that decides filter parameters depending on the thickness of the gland structure. As for post-processing, healthy mammary glands that run from the nipple to the chest wall are eliminated by angle analysis. Moreover, background mammary glands are removed based on the intensity output image obtained from adaptive Gabor filter. The distorted region of the mammary gland is then detected as an initial candidate using a concentration index followed by binarization and labeling. False positives in the initial candidate are eliminated using 23 types of characteristic features and a support vector machine. In the experiments, we compared the automated detection results with interpretations by a radiologist using 50 cases (200 images) from the Digital Database of Screening Mammography (DDSM). As a result, true positive rate was 82.72%, and the number of false positive per image was 1.39. There results indicate that the proposed method may be useful for detecting architectural distortion in mammograms.
High performance 3D adaptive filtering for DSP based portable medical imaging systems
NASA Astrophysics Data System (ADS)
Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark
2015-03-01
Portable medical imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. Despite their constraints on power, size and cost, portable imaging devices must still deliver high quality images. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often cannot be run with sufficient performance on a portable platform. In recent years, advanced multicore digital signal processors (DSP) have been developed that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms on a portable platform. In this study, the performance of a 3D adaptive filtering algorithm on a DSP is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec with an Ultrasound 3D probe. Relative performance and power is addressed between a reference PC (Quad Core CPU) and a TMS320C6678 DSP from Texas Instruments.
Chen, Xiyuan; Wang, Xiying; Xu, Yuan
2014-01-01
This paper deals with the problem of state estimation for the vector-tracking loop of a software-defined Global Positioning System (GPS) receiver. For a nonlinear system that has the model error and white Gaussian noise, a noise statistics estimator is used to estimate the model error, and based on this, a modified iterated extended Kalman filter (IEKF) named adaptive iterated Kalman filter (AIEKF) is proposed. A vector-tracking GPS receiver utilizing AIEKF is implemented to evaluate the performance of the proposed method. Through road tests, it is shown that the proposed method has an obvious accuracy advantage over the IEKF and Adaptive Extended Kalman filter (AEKF) in position determination. The results show that the proposed method is effective to reduce the root-mean-square error (RMSE) of position (including longitude, latitude and altitude). Comparing with EKF, the position RMSE values of AIEKF are reduced by about 45.1%, 40.9% and 54.6% in the east, north and up directions, respectively. Comparing with IEKF, the position RMSE values of AIEKF are reduced by about 25.7%, 19.3% and 35.7% in the east, north and up directions, respectively. Compared with AEKF, the position RMSE values of AIEKF are reduced by about 21.6%, 15.5% and 30.7% in the east, north and up directions, respectively. PMID:25502124
Ray, Jaideep; Lefantzi, Sophia; Najm, Habib N.; Kennedy, Christopher A.
2006-01-01
Block-structured adaptively refined meshes (SAMR) strive for efficient resolution of partial differential equations (PDEs) solved on large computational domains by clustering mesh points only where required by large gradients. Previous work has indicated that fourth-order convergence can be achieved on such meshes by using a suitable combination of high-order discretizations, interpolations, and filters and can deliver significant computational savings over conventional second-order methods at engineering error tolerances. In this paper, we explore the interactions between the errors introduced by discretizations, interpolations and filters. We develop general expressions for high-order discretizations, interpolations, and filters, in multiple dimensions, using a Fourier approach, facilitating the high-order SAMR implementation. We derive a formulation for the necessary interpolation order for given discretization and derivative orders. We also illustrate this order relationship empirically using one and two-dimensional model problems on refined meshes. We study the observed increase in accuracy with increasing interpolation order. We also examine the empirically observed order of convergence, as the effective resolution of the mesh is increased by successively adding levels of refinement, with different orders of discretization, interpolation, or filtering.
NASA Astrophysics Data System (ADS)
Fang, Hao; Li, Qian; Huang, Zhenghua
2015-12-01
Denoising algorithms based on gradient dependent energy functionals, such as Perona-Malik, total variation and adaptive total variation denoising, modify images towards piecewise constant functions. Although edge sharpness and location is well preserved, important information, encoded in image features like textures or certain details, is often compromised in the process of denoising. In this paper, We propose a novel Spatially Adaptive Guide-Filtering Total Variation (SAGFTV) regularization with image restoration algorithm for denoising images. The guide-filter is extended to the variational formulations of imaging problem, and the spatially adaptive operator can easily distinguish flat areas from texture areas. Our simulating experiments show the improvement of peak signal noise ratio (PSNR), root mean square error (RMSE) and structure similarity increment measurement (SSIM) over other prior algorithms. The results of both simulating and practical experiments are more appealing visually. This type of processing can be used for a variety of tasks in PDE-based image processing and computer vision, and is stable and meaningful from a mathematical viewpoint.
Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui
2016-07-01
In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF. PMID:27475606
NASA Astrophysics Data System (ADS)
Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui
2016-07-01
In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF.
Automatic artifact suppression in simultaneous tDCS-EEG using adaptive filtering.
Mancini, Matteo; Pellicciari, Maria Concetta; Brignani, Debora; Mauri, Piercarlo; De Marchis, Cristiano; Miniussi, Carlo; Conforto, Silvia
2015-08-01
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method that can be used in cognitive and clinical protocols in order to modulate neural activity. Although some macro effects are known, the underlying mechanisms are still not clear. tDCS in combination with electroencephalography (EEG) could help to understand these mechanisms from a neural point of view. However, simultaneous tDCS-EEG still remains challenging because of the artifacts that affect the recorded signals. In this paper, an automated artifact cancellation method based on adaptive filtering is proposed. Using independent component analysis (ICA), the artifacts were characterized using data from both a phantom and a group of healthy subjects. The resulting filter can successfully remove tDCS-related artifacts during anodal and cathodal stimulations. PMID:26736856
A DSP-Based Beam Current Monitoring System for Machine Protection Using Adaptive Filtering
J. Musson; H. Dong; R. Flood; C. Hovater; J. Hereford
2001-06-01
The CEBAF accelerator at Jefferson Lab is currently using an analog beam current monitoring (BCM) system for its machine protection system (MPS), which has a loss accuracy of 2 micro-amps. Recent burn-through simulations predict catastrophic beam line component failures below 1 micro-amp of loss, resulting in a blind spot for the MPS. Revised MPS requirements target an ultimate beam loss accuracy of 250 nA. A new beam current monitoring system has been developed which utilizes modern digital receiver technology and digital signal processing concepts. The receiver employs a direct-digital down converter integrated circuit, mated with a Jefferson Lab digital signal processor VME card. Adaptive filtering is used to take advantage of current-dependent burn-through rates. Benefits of such a system include elimination of DC offsets, generic algorithm development, extensive filter options, and interfaces to UNIX-based control systems.
Cardiac fiber tracking using adaptive particle filtering based on tensor rotation invariant in MRI
NASA Astrophysics Data System (ADS)
Kong, Fanhui; Liu, Wanyu; Magnin, Isabelle E.; Zhu, Yuemin
2016-03-01
Diffusion magnetic resonance imaging (dMRI) is a non-invasive method currently available for cardiac fiber tracking. However, accurate and efficient cardiac fiber tracking is still a challenge. This paper presents a probabilistic cardiac fiber tracking method based on particle filtering. In this framework, an adaptive sampling technique is presented to describe the posterior distribution of fiber orientations by adjusting the number and status of particles according to the fractional anisotropy of diffusion. An observation model is then proposed to update the weight of particles by rotating diffusion tensor from the primary eigenvector to a given fiber orientation while keeping the shape of the tensor invariant. The results on human cardiac dMRI show that the proposed method is robust to noise and outperforms conventional streamline and particle filtering techniques.
Automatic balancing of AMB systems using plural notch filter and adaptive synchronous compensation
NASA Astrophysics Data System (ADS)
Xu, Xiangbo; Chen, Shao; Zhang, Yanan
2016-07-01
To achieve automatic balancing in active magnetic bearing (AMB) system, a control method with notch filters and synchronous compensators is widely employed. However, the control precision is significantly affected by the synchronous compensation error, which is caused by parameter errors and variations of the power amplifiers. Furthermore, the computation effort may become intolerable if a 4-degree-of-freedom (dof) AMB system is studied. To solve these problems, an adaptive automatic balancing control method in the AMB system is presented in this study. Firstly, a 4-dof radial AMB system is described and analyzed. To simplify the controller design, the 4-dof dynamic equations are transferred into two plural functions related to translation and rotation, respectively. Next, to achieve automatic balancing of the AMB system, two synchronous equations are formed. Solution of them leads to a control strategy based on notch filters and feedforward controllers with an inverse function of the power amplifier. The feedforward controllers can be simplified as synchronous phases and amplitudes. Then, a plural phase-shift notch filter which can identify the synchronous components in 2-dof motions is formulated, and an adaptive compensation method that can form two closed-loop systems to tune the synchronous amplitude of the feedforward controller and the phase of the plural notch filter is proposed. Finally, the proposed control strategy is verified by both simulations and experiments on a test rig of magnetically suspended control moment gyro. The results indicate that this method can fulfill the automatic balancing of the AMB system with a light computational load.