Sample records for adaptor protein asc

  1. Quantification of Inflammasome Adaptor Protein ASC in Biological Samples by Multiple-Reaction Monitoring Mass Spectrometry.

    PubMed

    Ulke-Lemée, Annegret; Lau, Arthur; Nelson, Michelle C; James, Matthew T; Muruve, Daniel A; MacDonald, Justin A

    2018-06-09

    Inflammation is an integral component of many diseases, including chronic kidney disease (CKD). ASC (apoptosis-associated speck-like protein containing CARD, also PYCARD) is the key inflammasome adaptor protein in the innate immune response. Since ASC specks, a macromolecular condensate of ASC protein, can be released by inflammasome-activated cells into the extracellular space to amplify inflammatory responses, the ASC protein could be an important biomarker in diagnostic applications. Herein, we describe the development and validation of a multiple reaction monitoring mass spectrometry (MRM-MS) assay for the accurate quantification of ASC in human biospecimens. Limits of detection and quantification for the signature DLLLQALR peptide (used as surrogate for the target ASC protein) were determined by the method of standard addition using synthetic isotope-labeled internal standard (SIS) peptide and urine matrix from a healthy donor (LOQ was 8.25 pM, with a ~ 1000-fold linear range). We further quantified ASC in the urine of CKD patients (8.4 ± 1.3 ng ASC/ml urine, n = 13). ASC was positively correlated with proteinuria and urinary IL-18 in CKD samples but not with urinary creatinine. Unfortunately, the ASC protein is susceptible to degradation, and patient urine that was thawed and refrozen lost 85% of the ASC signal. In summary, the MRM-MS assay provides a robust means to quantify ASC in biological samples, including clinical biospecimens; however, sample collection and storage conditions will have a critical impact on assay reliability.

  2. Absence of the inflammasome adaptor ASC reduces hypoxia-induced pulmonary hypertension in mice.

    PubMed

    Cero, Fadila Telarevic; Hillestad, Vigdis; Sjaastad, Ivar; Yndestad, Arne; Aukrust, Pål; Ranheim, Trine; Lunde, Ida Gjervold; Olsen, Maria Belland; Lien, Egil; Zhang, Lili; Haugstad, Solveig Bjærum; Løberg, Else Marit; Christensen, Geir; Larsen, Karl-Otto; Skjønsberg, Ole Henning

    2015-08-15

    Pulmonary hypertension is a serious condition that can lead to premature death. The mechanisms involved are incompletely understood although a role for the immune system has been suggested. Inflammasomes are part of the innate immune system and consist of the effector caspase-1 and a receptor, where nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) is the best characterized and interacts with the adaptor protein apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC). To investigate whether ASC and NLRP3 inflammasome components are involved in hypoxia-induced pulmonary hypertension, we utilized mice deficient in ASC and NLRP3. Active caspase-1, IL-18, and IL-1β, which are regulated by inflammasomes, were measured in lung homogenates in wild-type (WT), ASC(-/-), and NLRP3(-/-) mice, and phenotypical changes related to pulmonary hypertension and right ventricular remodeling were characterized after hypoxic exposure. Right ventricular systolic pressure (RVSP) of ASC(-/-) mice was significantly lower than in WT exposed to hypoxia (40.8 ± 1.5 mmHg vs. 55.8 ± 2.4 mmHg, P < 0.001), indicating a substantially reduced pulmonary hypertension in mice lacking ASC. Magnetic resonance imaging further supported these findings by demonstrating reduced right ventricular remodeling. RVSP of NLRP3(-/-) mice exposed to hypoxia was not significantly altered compared with WT hypoxia. Whereas hypoxia increased protein levels of caspase-1, IL-18, and IL-1β in WT and NLRP3(-/-) mice, this response was absent in ASC(-/-) mice. Moreover, ASC(-/-) mice displayed reduced muscularization and collagen deposition around arteries. In conclusion, hypoxia-induced elevated right ventricular pressure and remodeling were attenuated in mice lacking the inflammasome adaptor protein ASC, suggesting that inflammasomes play an important role in the pathogenesis of pulmonary hypertension. Copyright © 2015 the American Physiological

  3. Functional and Structural Characterization of Zebrafish ASC.

    PubMed

    Li, Yajuan; Huang, Yi; Cao, Xiaocong; Yin, Xueying; Jin, Xiangyu; Liu, Sheng; Jiang, Jiansheng; Jiang, Wei; Xiao, Tsan Sam; Zhou, Rongbin; Cai, Gang; Hu, Bing; Jin, Tengchuan

    2018-05-23

    The zebrafish genome encodes homologs for most of the proteins involved in inflammatory pathways; however, the molecular components and activation mechanisms of fish inflammasomes are largely unknown. ASC (apoptosis-associated speck-like protein containing a caspase-recruitment domain (CARD)) is the only adaptor involved in the formation of multiple types of inflammasomes. Here, we demonstrate that zASC is also involved in inflammasome activation in zebrafish. When overexpressed in vitro and in vivo in zebrafish, both the zASC and zASC pyrin domain (PYD) proteins form speck and filament structures. Importantly, the crystal structures of the N-terminal PYD and C-terminal CARD of zebrafish ASC were determined independently as two separate entities fused to maltose-binding protein (MBP). Structure-guided mutagenesis revealed the functional relevance of the PYD hydrophilic surface found in the crystal lattice. Finally, the fish caspase-1 homolog Caspy, but not the caspase-4/11 homolog Caspy2, interacts with zASC through homotypic PYD-PYD interactions, which differ from those in mammals. These observations establish the conserved and unique structural/functional features of the zASC-dependent inflammasome pathway. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Detection of ASC Speck Formation by Flow Cytometry and Chemical Cross-linking.

    PubMed

    Hoss, Florian; Rolfes, Verena; Davanso, Mariana R; Braga, Tarcio T; Franklin, Bernardo S

    2018-01-01

    Assembly of a relatively large protein aggregate or "speck" formed by the adaptor protein ASC is a common downstream step in the activation of most inflammasomes. This unique feature of ASC allows its visualization by several imaging techniques and constitutes a reliable and feasible readout for inflammasome activation in cells and tissues. We have previously described step-by-step protocols to generate immortalized cell lines stably expressing ASC fused to a fluorescent protein for measuring inflammasome activation by confocal microscopy, and immunofluorescence of endogenous ASC in primary cells. Here, we present two more methods to detect ASC speck formation: (1) Assessment of ASC speck formation by flow cytometry; and (2) Chemical cross-linking of ASC followed by immunoblotting. These methods allow for the discrimination of inflammasome-activated versus non-activated cells, the identification of lineage-specific inflammasome activation in complex cell mixtures, and sorting of inflammasome-activated cells for further analysis.

  5. ASC filament formation serves as a signal amplification mechanism for inflammasomes

    PubMed Central

    Dick, Mathias S.; Sborgi, Lorenzo; Rühl, Sebastian; Hiller, Sebastian; Broz, Petr

    2016-01-01

    A hallmark of inflammasome activation is the ASC speck, a micrometre-sized structure formed by the inflammasome adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD), which consists of a pyrin domain (PYD) and a caspase recruitment domain (CARD). Here we show that assembly of the ASC speck involves oligomerization of ASCPYD into filaments and cross-linking of these filaments by ASCCARD. ASC mutants with a non-functional CARD only assemble filaments but not specks, and moreover disrupt endogenous specks in primary macrophages. Systematic site-directed mutagenesis of ASCPYD is used to identify oligomerization-deficient ASC mutants and demonstrate that ASC speck formation is required for efficient processing of IL-1β, but dispensable for gasdermin-D cleavage and pyroptosis induction. Our results suggest that the oligomerization of ASC creates a multitude of potential caspase-1 activation sites, thus serving as a signal amplification mechanism for inflammasome-mediated cytokine production. PMID:27329339

  6. Adaptor proteins in protein kinase C-mediated signal transduction.

    PubMed

    Schechtman, D; Mochly-Rosen, D

    2001-10-01

    Spatial and temporal organization of signal transduction is essential in determining the speed and precision by which signaling events occur. Adaptor proteins are key to organizing signaling enzymes near their select substrates and away from others in order to optimize precision and speed of response. Here, we describe the role of adaptor proteins in determining the specific function of individual protein kinase C (PKC) isozymes. These isozyme-selective proteins were called collectively RACKs (receptors for activated C-kinase). The role of RACKs in PKC-mediated signaling was determined using isozyme-specific inhibitors and activators of the binding of each isozyme to its respective RACK. In addition to anchoring activated PKC isozymes, RACKs anchor other signaling enzymes. RACK1, the anchoring protein for activated betaIIPKC, binds for example, Src tyrosine kinase, integrin, and phosphodiesterase. RACK2, the epsilonPKC-specific RACK, is a coated-vesicle protein and thus is involved in vesicular release and cell-cell communication. Therefore, RACKs are not only adaptors for PKC, but also serve as adaptor proteins for several other signaling enzymes. Because at least some of the proteins that bind to RACKs, including PKC itself, regulate cell growth, modulating their interactions with RACKs may help elucidate signaling pathways leading to carcinogenesis and could result in the identification of novel therapeutic targets.

  7. Insights into the Shc Family of Adaptor Proteins

    PubMed Central

    Prigent, Sally A.

    2017-01-01

    The Shc family of adaptor proteins is a group of proteins that lacks intrinsic enzymatic activity. Instead, Shc proteins possess various domains that allow them to recruit different signalling molecules. Shc proteins help to transduce an extracellular signal into an intracellular signal, which is then translated into a biological response. The Shc family of adaptor proteins share the same structural topography, CH2-PTB-CH1-SH2, which is more than an isoform of Shc family proteins; this structure, which includes multiple domains, allows for the posttranslational modification of Shc proteins and increases the functional diversity of Shc proteins. The deregulation of Shc proteins has been linked to different disease conditions, including cancer and Alzheimer’s, which indicates their key roles in cellular functions. Accordingly, a question might arise as to whether Shc proteins could be targeted therapeutically to correct their disturbance. To answer this question, thorough knowledge must be acquired; herein, we aim to shed light on the Shc family of adaptor proteins to understand their intracellular role in normal and disease states, which later might be applied to connote mechanisms to reverse the disease state.

  8. Current opinion in Microbiology Roles of adaptor proteins in regulation of bacterial proteolysis

    PubMed Central

    Battesti, Aurelia; Gottesman, Susan

    2013-01-01

    Elimination of non-functional or unwanted proteins is critical for cell growth and regulation. In bacteria, ATP-dependent proteases target cytoplasmic proteins for degradation, contributing to both protein quality control and regulation of specific proteins, thus playing roles parallel to that of the proteasome in eukaryotic cells. Adaptor proteins provide a way to modulate the substrate specificity of the proteases and allow regulated proteolysis. Advances over the past few years have provided new insight into how adaptor proteins interact with both substrates and proteases and how adaptor functions are regulated. An important advance has come with the recognition of the critical roles of anti-adaptor proteins in regulating adaptor availability. PMID:23375660

  9. Single-Molecule Fluorescence Reveals the Oligomerization and Folding Steps Driving the Prion-like Behavior of ASC.

    PubMed

    Gambin, Yann; Giles, Nichole; O'Carroll, Ailís; Polinkovsky, Mark; Hunter, Dominic; Sierecki, Emma

    2018-02-16

    Single-molecule fluorescence has the unique ability to quantify small oligomers and track conformational changes at a single-protein level. Here we tackled one of the most extreme protein behaviors, found recently in an inflammation pathway. Upon danger recognition in the cytosol, NLRP3 recruits its signaling adaptor, ASC. ASC start polymerizing in a prion-like manner and the system goes in "overdrive" by producing a single micron-sized "speck." By precisely controlling protein expression levels in an in vitro translation system, we could trigger the polymerization of ASC and mimic formation of specks in the absence of inflammasome nucleators. We utilized single-molecule spectroscopy to fully characterize prion-like behaviors and self-propagation of ASC fibrils. We next used our controlled system to monitor the conformational changes of ASC upon fibrillation. Indeed, ASC consists of a PYD and CARD domains, separated by a flexible linker. Individually, both domains have been found to form fibrils, but the structure of the polymers formed by the full-length ASC proteins remains elusive. For the first time, using single-molecule Förster resonance energy transfer, we studied the relative positions of the CARD and PYD domains of full-length ASC. An unexpectedly large conformational change occurred upon ASC fibrillation, suggesting that the CARD domain folds back onto the PYD domain. However, contradicting current models, the "prion-like" conformer was not initiated by binding of ASC to the NLRP3 platform. Rather, using a new method, hybrid between Photon Counting Histogram and Number and Brightness analysis, we showed that NLRP3 forms hexamers with self-binding affinities around 300nM. Overall our data suggest a new mechanism, where NLRP3 can initiate ASC polymerization simply by increasing the local concentration of ASC above a supercritical level. Copyright © 2017. Published by Elsevier Ltd.

  10. Dynamics of in vivo ASC speck formation

    PubMed Central

    2017-01-01

    Activated danger or pathogen sensors trigger assembly of the inflammasome adaptor ASC into specks, large signaling platforms considered hallmarks of inflammasome activation. Because a lack of in vivo tools has prevented the study of endogenous ASC dynamics, we generated a live ASC reporter through CRISPR/Cas9 tagging of the endogenous gene in zebrafish. We see strong ASC expression in the skin and other epithelia that act as barriers to insult. A toxic stimulus triggered speck formation and rapid pyroptosis in keratinocytes in vivo. Macrophages engulfed and digested that speck-containing, pyroptotic debris. A three-dimensional, ultrastructural reconstruction, based on correlative light and electron microscopy of the in vivo assembled specks revealed a compact network of highly intercrossed filaments, whereas pyrin domain (PYD) or caspase activation and recruitment domain alone formed filamentous aggregates. The effector caspase is recruited through PYD, whose overexpression induced pyroptosis but only after substantial delay. Therefore, formation of a single, compact speck and rapid cell-death induction in vivo requires a full-length ASC. PMID:28701426

  11. Models of crk adaptor proteins in cancer.

    PubMed

    Bell, Emily S; Park, Morag

    2012-05-01

    The Crk family of adaptor proteins (CrkI, CrkII, and CrkL), originally discovered as the oncogene fusion product, v-Crk, of the CT10 chicken retrovirus, lacks catalytic activity but engages with multiple signaling pathways through their SH2 and SH3 domains. Crk proteins link upstream tyrosine kinase and integrin-dependent signals to downstream effectors, acting as adaptors in diverse signaling pathways and cellular processes. Crk proteins are now recognized to play a role in the malignancy of many human cancers, stimulating renewed interest in their mechanism of action in cancer progression. The contribution of Crk signaling to malignancy has been predominantly studied in fibroblasts and in hematopoietic models and more recently in epithelial models. A mechanistic understanding of Crk proteins in cancer progression in vivo is still poorly understood in part due to the highly pleiotropic nature of Crk signaling. Recent advances in the structural organization of Crk domains, new roles in kinase regulation, and increased knowledge of the mechanisms and frequency of Crk overexpression in human cancers have provided an incentive for further study in in vivo models. An understanding of the mechanisms through which Crk proteins act as oncogenic drivers could have important implications in therapeutic targeting.

  12. Activation of phagocytic activity in astrocytes by reduced expression of the inflammasome component ASC and its implication in a mouse model of Alzheimer disease.

    PubMed

    Couturier, Julien; Stancu, Ilie-Cosmin; Schakman, Olivier; Pierrot, Nathalie; Huaux, François; Kienlen-Campard, Pascal; Dewachter, Ilse; Octave, Jean-Noël

    2016-01-27

    The proinflammatory cytokine interleukin-1β (IL-1β) is overexpressed in Alzheimer disease (AD) as a key regulator of neuroinflammation. Amyloid-β (Aβ) peptide triggers activation of inflammasomes, protein complexes responsible for IL-1β maturation in microglial cells. Downregulation of NALP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome has been shown to decrease amyloid load and rescue cognitive deficits in a mouse model of AD. Whereas activation of inflammasome in microglial cells has been described in AD, no data are currently available concerning activation of inflammasome in astrocytes, although they are involved in inflammatory response and phagocytosis. Here, by targeting the inflammasome adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD domain), we investigated the influence of activation of the inflammasome on the phagocytic activity of astrocytes. We used an ASC knockout mouse model, as ASC is a central protein in the inflammasome, acting as an adaptor and stabilizer of the complex and thus critical for its activation. Lipopolysaccharide (LPS)-primed primary cultures of astrocytes from newborn mice were utilized to evaluate Aβ-induced inflammasome activation by measuring IL-1β release by ECLIA (electro-chemiluminescence immunoassay). Phagocytosis efficiency was measured by incorporation of bioparticles, and the release of the chemokine CCL3 (C-C motif ligand 3) was measured by ECLIA. ASC mice were crossbred with 5xFAD (familial Alzheimer disease) mice and tested for spatial reference memory using the Morris water maze (MWM) at 7-8 months of age. Amyloid load and CCL3 were quantified by thioflavine S staining and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. Cultured astrocytes primed with LPS and treated with Aβ showed an ASC-dependent production of IL-1β resulting from inflammasome activation mediated by Aβ phagocytosis and cathepsin B enzymatic activity. ASC

  13. ASC Induces Apoptosis via Activation of Caspase-9 by Enhancing Gap Junction-Mediated Intercellular Communication

    PubMed Central

    Hida, Shigeaki; Fujii, Chifumi; Taniguchi, Shun’ichiro; Ito, Kensuke; Matsumura, Tomio; Okada, Nagisa; Sakaizawa, Takashi; Kobayashi, Akira; Takeoka, Michiko; Miyagawa, Shin-ichi

    2017-01-01

    ASC (apoptosis-associated speck-like protein containing a CARD) is a key adaptor molecule of inflammasomes that mediates inflammatory and apoptotic signals. Aberrant methylation-induced silencing of ASC has been observed in a variety of cancer cells, thus implicating ASC in tumor suppression, although this role remains incompletely defined especially in the context of closely neighboring cell proliferation. As ASC has been confirmed to be silenced by abnormal methylation in HT1080 fibrosarcoma cells as well, this cell line was investigated to characterize the precise role and mechanism of ASC in tumor progression. The effects of ASC were examined using in vitro cell cultures based on comparisons between low and high cell density conditions as well as in a xenograft murine model. ASC overexpression was established by insertion of the ASC gene into pcDNA3 and pMX-IRES-GFP vectors, the latter being packed into a retrovirus and subjected to reproducible competitive assays using parental cells as an internal control, for evaluation of cell viability. p21 and p53 were silenced using shRNA. Cell viability was suppressed in ASC-expressing transfectants as compared with control cells at high cell density conditions in in vitro culture and colony formation assays and in in vivo ectopic tumor formation trials. This suppression was not detected in low cell density conditions. Furthermore, remarkable progression of apoptosis was observed in ASC-introduced cells at a high cell density, but not at a low one. ASC-dependent apoptosis was mediated not by p21, p53, or caspase-1, but rather by cleavage of caspase-9 as well as by suppression of the NF-κB-related X-linked inhibitor-of-apoptosis protein. Caspase-9 cleavage was observed to be dependent on gap junction formation. The remarkable effect of ASC on the induction of apoptosis through caspase-9 and gap junctions revealed in this study may lead to promising new approaches in anticancer therapy. PMID:28056049

  14. ASC Methylation and Interleukin-1β Are Associated with Aerobic Capacity in Heart Failure.

    PubMed

    Butts, Brittany; Butler, Javed; Dunbar, Sandra B; Corwin, Elizabeth J; Gary, Rebecca A

    2017-06-01

    Aerobic capacity, as measured by peak oxygen uptake (V˙O2), is one of the most powerful predictors of prognosis in heart failure (HF). Inflammation is a key factor contributing to alterations in aerobic capacity, and interleukin (IL)-1 cytokines are implicated in this process. The adaptor protein ASC is necessary for inflammasome activation of IL-1β and IL-18. ASC expression is controlled through epigenetic modification; lower ASC methylation is associated with worse outcomes in HF. The purpose of this study is to examine the relationships between ASC methylation, IL-1β, and IL-18 with V˙O2peak in persons with HF. This study examined the relationship between ASC methylation, IL-1β, and IL-18 with V˙O2peak in 54 stable outpatients with HF. All participants were NYHA class II or III, not engaged in an exercise program, and physically able to complete an exercise treadmill test. Mean V˙O2peak was 16.68 ± 4.7 mL·kg·min. V˙O2peak was positively associated with mean percent ASC methylation (r = 0.47, P = 0.001) and negatively associated with IL-1β (r = -0.38, P = 0.007). Multiple linear regression models demonstrated that V˙O2peak increased by 2.30 mL·kg·min for every 1% increase in ASC methylation and decreased by 1.91 mL·kg·min for every 1 pg·mL increase in plasma IL-1β. Mean percent ASC methylation and plasma IL-1β levels are associated with clinically meaningful differences in V˙O2peak in persons with HF. Inflammasome activation may play a mechanistic role in determining aerobic capacity. ASC methylation is a potentially modifiable mechanism for reducing the inflammatory response, thereby improving aerobic capacity in HF.

  15. Two dimensional Blue Native-/SDS-PAGE analysis of SLP family adaptor protein complexes.

    PubMed

    Swamy, Mahima; Kulathu, Yogesh; Ernst, Sandra; Reth, Michael; Schamel, Wolfgang W A

    2006-04-15

    SH2 domain containing leukocyte protein (SLP) adaptor proteins serve a central role in the antigen-mediated activation of lymphocytes by organizing multiprotein signaling complexes. Here, we use two dimensional native-/SDS-gel electrophoresis to study the number, size and relative abundance of protein complexes containing SLP family proteins. In non-stimulated T cells all SLP-76 proteins are in a approximately 400 kDa complex with the small adaptor protein Grb2-like adaptor protein downstream of Shc (Gads), whereas half of Gads is monomeric. This constitutive SLP-76/Gads complex could be reconstituted in Drosophila S2 cells expressing both components, suggesting that it might not contain additional subunits. In contrast, in B cells SLP-65 exists in a 180 kDa complex as well as in monomeric form. Since the complex was not found in S2 cells expressing only SLP-65, it was not di/trimeric SLP-65. Upon antigen-stimulation only the complexed SLP-65 was phosphorylated. Surprisingly, stimulation-induced alteration of SLP complexes could not be detected, suggesting that active signaling complexes form only transiently, and are of low abundance.

  16. Structural and motional contributions of the Bacillus subtilis ClpC N-domain in adaptor protein interactions

    PubMed Central

    Kojetin, Douglas J.; McLaughlin, Patrick D.; Thompson, Richele J.; Dubnau, David; Prepiak, Peter; Rance, Mark; Cavanagh, John

    2009-01-01

    Summary The AAA+ superfamily protein ClpC is a key regulator of cell development in Bacillus subtilis. As part of a large oligomeric complex, ClpC controls an array of cellular processes by recognizing, unfolding, and providing misfolded and aggregated proteins as substrates for the ClpP peptidase. ClpC is unique compared to other HSP100/Clp proteins, as it requires an adaptor protein for all fundamental activities. The NMR solution structure of the N-terminal repeat domain of ClpC (N-ClpCR) comprises two structural repeats of a four-helix motif. NMR experiments used to map the MecA adaptor protein interaction surface of N-ClpCR reveal that regions involved in the interaction possess conformational flexibility, as well as conformational exchange on the μs-ms time-scale. The electrostatic surface of N-ClpCR differs substantially compared to the N-domain of Escherichia coli ClpA and ClpB, suggesting that the electrostatic surface characteristics of HSP100/Clp N-domains may play a role in adaptor protein and substrate interaction specificity, and perhaps contribute to the unique adaptor protein requirement of ClpC. PMID:19361434

  17. PIP2: choreographer of actin-adaptor proteins in the HIV-1 dance

    PubMed Central

    Rocha-Perugini, Vera; Gordon-Alonso, Mónica; Sánchez-Madrid, Francisco

    2014-01-01

    The actin cytoskeleton plays a key role during the replication cycle of human immunodeficiency virus-1 (HIV-1). HIV-1 infection is affected by cellular proteins that influence the clustering of viral receptors or the subcortical actin cytoskeleton. Several of these actin-adaptor proteins are controlled by the second messenger phosphatidylinositol 4,5-biphosphate (PIP2), an important regulator of actin organization. PIP2 production is induced by HIV-1 attachment and facilitates viral infection. However, the importance of PIP2 in regulating cytoskeletal proteins and thus HIV-1 infection has been overlooked. This review examines recent reports describing the roles played by actin-adaptor proteins during HIV-1 infection of CD4+ T cells, highlighting the influence of the signaling lipid PIP2 in this process. PMID:24768560

  18. The Bcr-Abl kinase regulates the actin cytoskeleton via a GADS/Slp-76/Nck1 adaptor protein pathway.

    PubMed

    Preisinger, Christian; Kolch, Walter

    2010-05-01

    Bcr-Abl is the transforming principle underlying chronic myelogenous leukaemia (CML). Here, we use a functional interaction proteomics approach to map pathways by which Bcr-Abl regulates defined cellular processes. The results show that Bcr-Abl regulates the actin cytoskeleton and non-apoptotic membrane blebbing via a GADS/Slp-76/Nck1 adaptor protein pathway. The binding of GADS to Bcr-Abl requires Bcr-Abl tyrosine kinase activity and is sensitive to the Bcr-Abl inhibitor imatinib, while the GADS/Slp-76 and Slp-76/Nck interactions are tyrosine phosphorylation independent. All three adaptor proteins co-localize with cortical actin in membrane blebs. Downregulation of each adaptor protein disrupts the actin cytoskeleton and membrane blebbing in a similar fashion and similar to imatinib. These findings highlight the importance of protein interaction dependent adaptor protein pathways in oncogenic kinase signaling. 2010 Elsevier Inc. All rights reserved.

  19. Targeted decay of a regulatory small RNA by an adaptor protein for RNase E and counteraction by an anti-adaptor RNA

    PubMed Central

    Göpel, Yvonne; Papenfort, Kai; Reichenbach, Birte; Vogel, Jörg; Görke, Boris

    2013-01-01

    Bacterial small RNAs (sRNAs) are well established to regulate diverse cellular processes, but how they themselves are regulated is less understood. Recently, we identified a regulatory circuit wherein the GlmY and GlmZ sRNAs of Escherichia coli act hierarchically to activate mRNA glmS, which encodes glucosamine-6-phosphate (GlcN6P) synthase. Although the two sRNAs are highly similar, only GlmZ is a direct activator that base-pairs with the glmS mRNA, aided by protein Hfq. GlmY, however, does not bind Hfq and activates glmS indirectly by protecting GlmZ from RNA cleavage. This complex regulation feedback controls the levels of GlmS protein in response to its product, GlcN6P, a key metabolite in cell wall biosynthesis. Here, we reveal the molecular basis for the regulated turnover of GlmZ, identifying RapZ (RNase adaptor protein for sRNA GlmZ; formerly YhbJ) as a novel type of RNA-binding protein that recruits the major endoribonuclease RNase E to GlmZ. This involves direct interaction of RapZ with the catalytic domain of RNase E. GlmY binds RapZ through a secondary structure shared by both sRNAs and therefore acts by molecular mimicry as a specific decoy for RapZ. Thus, in analogy to regulated proteolysis, RapZ is an adaptor, and GlmY is an anti-adaptor in regulated turnover of a regulatory small RNA. PMID:23475961

  20. Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump.

    PubMed

    Hinchliffe, Philip; Greene, Nicholas P; Paterson, Neil G; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2014-08-25

    Periplasmic adaptor proteins are key components of bacterial tripartite efflux pumps. The 2.85 Å resolution structure of an MFS (major facilitator superfamily) pump adaptor, Aquifex aeolicus EmrA, shows linearly arranged α-helical coiled-coil, lipoyl, and β-barrel domains, but lacks the fourth membrane-proximal domain shown in other pumps to interact with the inner membrane transporter. The adaptor α-hairpin, which binds outer membrane TolC, is exceptionally long at 127 Å, and the β-barrel contains a conserved disordered loop. The structure extends the view of adaptors as flexible, modular components that mediate diverse pump assembly, and suggests that in MFS tripartite pumps a hexamer of adaptors could provide a periplasmic seal. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  1. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export

    PubMed Central

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M.; Brandl, Holger; Schwich, Oliver D.; Steiner, Michaela C.; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M.

    2016-01-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1–7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1–7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3′ untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3′ ends. PMID:26944680

  2. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export.

    PubMed

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M; Brandl, Holger; Schwich, Oliver D; Steiner, Michaela C; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M

    2016-03-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends. © 2016 Müller-McNicoll et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Functions of Adaptor Protein (AP)-3 and AP-1 in Tyrosinase Sorting from Endosomes to MelanosomesD⃞

    PubMed Central

    Theos, Alexander C.; Tenza, Danièle; Martina, José A.; Hurbain, Ilse; Peden, Andrew A.; Sviderskaya, Elena V.; Stewart, Abigail; Robinson, Margaret S.; Bennett, Dorothy C.; Cutler, Daniel F.; Bonifacino, Juan S.; Marks, Michael S.; Raposo, Graça

    2005-01-01

    Specialized cells exploit adaptor protein complexes for unique post-Golgi sorting events, providing a unique model system to specify adaptor function. Here, we show that AP-3 and AP-1 function independently in sorting of the melanocyte-specific protein tyrosinase from endosomes to the melanosome, a specialized lysosome-related organelle distinguishable from lysosomes. AP-3 and AP-1 localize in melanocytes primarily to clathrin-coated buds on tubular early endosomes near melanosomes. Both adaptors recognize the tyrosinase dileucine-based melanosome sorting signal, and tyrosinase largely colocalizes with each adaptor on endosomes. In AP-3-deficient melanocytes, tyrosinase accumulates inappropriately in vacuolar and multivesicular endosomes. Nevertheless, a substantial fraction still accumulates on melanosomes, concomitant with increased association with endosomal AP-1. Our data indicate that AP-3 and AP-1 function in partially redundant pathways to transfer tyrosinase from distinct endosomal subdomains to melanosomes and that the AP-3 pathway ensures that tyrosinase averts entrapment on internal membranes of forming multivesicular bodies. PMID:16162817

  4. A highly versatile adaptor protein for the tethering of growth factors to gelatin-based biomaterials.

    PubMed

    Addi, Cyril; Murschel, Frédéric; Liberelle, Benoît; Riahi, Nesrine; De Crescenzo, Gregory

    2017-03-01

    In the field of tissue engineering, the tethering of growth factors to tissue scaffolds in an oriented manner can enhance their activity and increase their half-life. We chose to investigate the capture of the basic Fibroblast Growth Factor (bFGF) and the Epidermal Growth Factor (EGF) on a gelatin layer, as a model for the functionalization of collagen-based biomaterials. Our strategy relies on the use of two high affinity interactions, that is, the one between two distinct coil peptides as well as the one occurring between a collagen-binding domain (CBD) and gelatin. We expressed a chimeric protein to be used as an adaptor that comprises one of the coil peptides and a CBD derived from the human fibronectin. We proved that it has the ability to bind simultaneously to a gelatin substrate and to form a heterodimeric coiled-coil domain with recombinant growth factors being tagged with the complementary coil peptide. The tethering of the growth factors was characterized by ELISA and surface plasmon resonance-based biosensing. The bioactivity of the immobilized bFGF and EGF was evaluated by a human umbilical vein endothelial cell proliferation assay and a vascular smooth muscle cell survival assay. We found that the tethering of EGF preserved its mitogenic and anti-apoptotic activity. In the case of bFGF, when captured via our adaptor protein, changes in its natural mode of interaction with gelatin were observed. In an effort to functionalize collagen/gelatin-based biomaterials with growth factors, we have designed an adaptor protein corresponding to a collagen-binding domain fused to a coil peptide. In our strategy, this adaptor protein captures growth factors being tagged with the partner coil peptide in a specific, stable and oriented manner. We have found that the tethering of the Epidermal Growth Factor preserved its mitogenic and anti-apoptotic activity. In the case of the basic Fibroblast Growth Factor, the captured growth factor remained bioactive although its

  5. VGLUT2 Trafficking Is Differentially Regulated by Adaptor Proteins AP-1 and AP-3

    PubMed Central

    Li, Haiyan; Santos, Magda S.; Park, Chihyung K.; Dobry, Yuriy; Voglmaier, Susan M.

    2017-01-01

    Release of the major excitatory neurotransmitter glutamate by synaptic vesicle exocytosis depends on glutamate loading into synaptic vesicles by vesicular glutamate transporters (VGLUTs). The two principal isoforms, VGLUT1 and 2, exhibit a complementary pattern of expression in adult brain that broadly distinguishes cortical (VGLUT1) and subcortical (VGLUT2) systems, and correlates with distinct physiological properties in synapses expressing these isoforms. Differential trafficking of VGLUT1 and 2 has been suggested to underlie their functional diversity. Increasing evidence suggests individual synaptic vesicle proteins use specific sorting signals to engage specialized biochemical mechanisms to regulate their recycling. We observed that VGLUT2 recycles differently in response to high frequency stimulation than VGLUT1. Here we further explore the trafficking of VGLUT2 using a pHluorin-based reporter, VGLUT2-pH. VGLUT2-pH exhibits slower rates of both exocytosis and endocytosis than VGLUT1-pH. VGLUT2-pH recycling is slower than VGLUT1-pH in both hippocampal neurons, which endogenously express mostly VGLUT1, and thalamic neurons, which endogenously express mostly VGLUT2, indicating that protein identity, not synaptic vesicle membrane or neuronal cell type, controls sorting. We characterize sorting signals in the C-terminal dileucine-like motif, which plays a crucial role in VGLUT2 trafficking. Disruption of this motif abolishes synaptic targeting of VGLUT2 and essentially eliminates endocytosis of the transporter. Mutational and biochemical analysis demonstrates that clathrin adaptor proteins (APs) interact with VGLUT2 at the dileucine-like motif. VGLUT2 interacts with AP-2, a well-studied adaptor protein for clathrin mediated endocytosis. In addition, VGLUT2 also interacts with the alternate adaptors, AP-1 and AP-3. VGLUT2 relies on distinct recycling mechanisms from VGLUT1. Abrogation of these differences by pharmacological and molecular inhibition reveals that

  6. VGLUT2 Trafficking Is Differentially Regulated by Adaptor Proteins AP-1 and AP-3.

    PubMed

    Li, Haiyan; Santos, Magda S; Park, Chihyung K; Dobry, Yuriy; Voglmaier, Susan M

    2017-01-01

    Release of the major excitatory neurotransmitter glutamate by synaptic vesicle exocytosis depends on glutamate loading into synaptic vesicles by vesicular glutamate transporters (VGLUTs). The two principal isoforms, VGLUT1 and 2, exhibit a complementary pattern of expression in adult brain that broadly distinguishes cortical (VGLUT1) and subcortical (VGLUT2) systems, and correlates with distinct physiological properties in synapses expressing these isoforms. Differential trafficking of VGLUT1 and 2 has been suggested to underlie their functional diversity. Increasing evidence suggests individual synaptic vesicle proteins use specific sorting signals to engage specialized biochemical mechanisms to regulate their recycling. We observed that VGLUT2 recycles differently in response to high frequency stimulation than VGLUT1. Here we further explore the trafficking of VGLUT2 using a pHluorin-based reporter, VGLUT2-pH. VGLUT2-pH exhibits slower rates of both exocytosis and endocytosis than VGLUT1-pH. VGLUT2-pH recycling is slower than VGLUT1-pH in both hippocampal neurons, which endogenously express mostly VGLUT1, and thalamic neurons, which endogenously express mostly VGLUT2, indicating that protein identity, not synaptic vesicle membrane or neuronal cell type, controls sorting. We characterize sorting signals in the C-terminal dileucine-like motif, which plays a crucial role in VGLUT2 trafficking. Disruption of this motif abolishes synaptic targeting of VGLUT2 and essentially eliminates endocytosis of the transporter. Mutational and biochemical analysis demonstrates that clathrin adaptor proteins (APs) interact with VGLUT2 at the dileucine-like motif. VGLUT2 interacts with AP-2, a well-studied adaptor protein for clathrin mediated endocytosis. In addition, VGLUT2 also interacts with the alternate adaptors, AP-1 and AP-3. VGLUT2 relies on distinct recycling mechanisms from VGLUT1. Abrogation of these differences by pharmacological and molecular inhibition reveals that

  7. Artificial Loading of ASC Specks with Cytosolic Antigens

    PubMed Central

    Sahillioğlu, Ali Can; Özören, Nesrin

    2015-01-01

    Inflammasome complexes form upon interaction of Nod Like Receptor (NLR) proteins with pathogen associated molecular patterns (PAPMS) inside the cytosol. Stimulation of a subset of inflammasome receptors including NLRP3, NLRC4 and AIM2 triggers formation of the micrometer-sized spherical supramolecular complex called the ASC speck. The ASC speck is thought to be the platform of inflammasome activity, but the reason why a supramolecular complex is preferred against oligomeric platforms remains elusive. We observed that a set of cytosolic proteins, including the model antigen ovalbumin, tend to co-aggregate on the ASC speck. We suggest that co-aggregation of antigenic proteins on the ASC speck during intracellular infection might be instrumental in antigen presentation. PMID:26258904

  8. Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling.

    PubMed

    Brdicka, Tomás; Imrich, Martin; Angelisová, Pavla; Brdicková, Nadezda; Horváth, Ondrej; Spicka, Jirí; Hilgert, Ivan; Lusková, Petra; Dráber, Petr; Novák, Petr; Engels, Niklas; Wienands, Jürgen; Simeoni, Luca; Osterreicher, Jan; Aguado, Enrique; Malissen, Marie; Schraven, Burkhart; Horejsí, Václav

    2002-12-16

    A key molecule necessary for activation of T lymphocytes through their antigen-specific T cell receptor (TCR) is the transmembrane adaptor protein LAT (linker for activation of T cells). Upon TCR engagement, LAT becomes rapidly tyrosine phosphorylated and then serves as a scaffold organizing a multicomponent complex that is indispensable for induction of further downstream steps of the signaling cascade. Here we describe the identification and preliminary characterization of a novel transmembrane adaptor protein that is structurally and evolutionarily related to LAT and is expressed in B lymphocytes, natural killer (NK) cells, monocytes, and mast cells but not in resting T lymphocytes. This novel transmembrane adaptor protein, termed NTAL (non-T cell activation linker) is the product of a previously identified WBSCR5 gene of so far unknown function. NTAL becomes rapidly tyrosine-phosphorylated upon cross-linking of the B cell receptor (BCR) or of high-affinity Fcgamma- and Fc epsilon -receptors of myeloid cells and then associates with the cytoplasmic signaling molecules Grb2, Sos1, Gab1, and c-Cbl. NTAL expressed in the LAT-deficient T cell line J.CaM2.5 becomes tyrosine phosphorylated and rescues activation of Erk1/2 and minimal transient elevation of cytoplasmic calcium level upon TCR/CD3 cross-linking. Thus, NTAL appears to be a structural and possibly also functional homologue of LAT in non-T cells.

  9. New Insights to Clathrin and Adaptor Protein 2 for the Design and Development of Therapeutic Strategies

    PubMed Central

    Poulsen, Ebbe Toftgaard; Larsen, Agnete; Zollo, Alen; Jørgensen, Arne L.; Sanggaard, Kristian W.; Enghild, Jan J.; Matrone, Carmela

    2015-01-01

    The Amyloid Precursor Protein (APP) has been extensively studied for its role as the precursor of the β-amyloid protein (Aβ) in Alzheimer’s disease (AD). However, our understanding of the normal function of APP is still patchy. Emerging evidence indicates that a dysfunction in APP trafficking and degradation can be responsible for neuronal deficits and progressive degeneration in humans. We recently reported that the Y682 mutation in the 682YENPTY687 domain of APP affects its binding to specific adaptor proteins and leads to its anomalous trafficking, to defects in the autophagy machinery and to neuronal degeneration. In order to identify adaptors that influence APP function, we performed pull-down experiments followed by quantitative mass spectrometry (MS) on hippocampal tissue extracts of three month-old mice incubated with either the 682YENPTY687 peptide, its mutated form, 682GENPTY687 or its phosphorylated form, 682pYENPTY687. Our experiments resulted in the identification of two proteins involved in APP internalization and trafficking: Clathrin heavy chain (hc) and its Adaptor Protein 2 (AP-2). Overall our results consolidate and refine the importance of Y682 in APP normal functions from an animal model of premature aging and dementia. Additionally, they open the perspective to consider Clathrin hc and AP-2 as potential targets for the design and development of new therapeutic strategies. PMID:26690411

  10. Disabled is a putative adaptor protein that functions during signaling by the sevenless receptor tyrosine kinase.

    PubMed

    Le, N; Simon, M A

    1998-08-01

    DRK, the Drosophila homolog of the SH2-SH3 domain adaptor protein Grb2, is required during signaling by the sevenless receptor tyrosine kinase (SEV). One role of DRK is to provide a link between activated SEV and the Ras1 activator SOS. We have investigated the possibility that DRK performs other functions by identifying additional DRK-binding proteins. We show that the phosphotyrosine-binding (PTB) domain-containing protein Disabled (DAB) binds to the DRK SH3 domains. DAB is expressed in the ommatidial clusters, and loss of DAB function disrupts ommatidial development. Moreover, reduction of DAB function attenuates signaling by a constitutively activated SEV. Our biochemical analysis suggests that DAB binds SEV directly via its PTB domain, becomes tyrosine phosphorylated upon SEV activation, and then serves as an adaptor protein for SH2 domain-containing proteins. Taken together, these results indicate that DAB is a novel component of the SEV signaling pathway.

  11. RNF166 Determines Recruitment of Adaptor Proteins during Antibacterial Autophagy.

    PubMed

    Heath, Robert J; Goel, Gautam; Baxt, Leigh A; Rush, Jason S; Mohanan, Vishnu; Paulus, Geraldine L C; Jani, Vijay; Lassen, Kara G; Xavier, Ramnik J

    2016-11-22

    Xenophagy is a form of selective autophagy that involves the targeting and elimination of intracellular pathogens through several recognition, recruitment, and ubiquitination events. E3 ubiquitin ligases control substrate selectivity in the ubiquitination cascade; however, systematic approaches to map the role of E3 ligases in antibacterial autophagy have been lacking. We screened more than 600 putative human E3 ligases, identifying E3 ligases that are required for adaptor protein recruitment and LC3-bacteria colocalization, critical steps in antibacterial autophagy. An unbiased informatics approach pinpointed RNF166 as a key gene that interacts with the autophagy network and controls the recruitment of ubiquitin as well as the autophagy adaptors p62 and NDP52 to bacteria. Mechanistic studies demonstrated that RNF166 catalyzes K29- and K33-linked polyubiquitination of p62 at residues K91 and K189. Thus, our study expands the catalog of E3 ligases that mediate antibacterial autophagy and identifies a critical role for RNF166 in this process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Probing the Energetics of Dynactin Filament Assembly and the Binding of Cargo Adaptor Proteins Using Molecular Dynamics Simulation and Electrostatics-Based Structural Modeling.

    PubMed

    Zheng, Wenjun

    2017-01-10

    Dynactin, a large multiprotein complex, binds with the cytoplasmic dynein-1 motor and various adaptor proteins to allow recruitment and transportation of cellular cargoes toward the minus end of microtubules. The structure of the dynactin complex is built around an actin-like minifilament with a defined length, which has been visualized in a high-resolution structure of the dynactin filament determined by cryo-electron microscopy (cryo-EM). To understand the energetic basis of dynactin filament assembly, we used molecular dynamics simulation to probe the intersubunit interactions among the actin-like proteins, various capping proteins, and four extended regions of the dynactin shoulder. Our simulations revealed stronger intersubunit interactions at the barbed and pointed ends of the filament and involving the extended regions (compared with the interactions within the filament), which may energetically drive filament termination by the capping proteins and recruitment of the actin-like proteins by the extended regions, two key features of the dynactin filament assembly process. Next, we modeled the unknown binding configuration among dynactin, dynein tails, and a number of coiled-coil adaptor proteins (including several Bicaudal-D and related proteins and three HOOK proteins), and predicted a key set of charged residues involved in their electrostatic interactions. Our modeling is consistent with previous findings of conserved regions, functional sites, and disease mutations in the adaptor proteins and will provide a structural framework for future functional and mutational studies of these adaptor proteins. In sum, this study yielded rich structural and energetic information about dynactin and associated adaptor proteins that cannot be directly obtained from the cryo-EM structures with limited resolutions.

  13. Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation.

    PubMed

    Stylli, Stanley S; Stacey, T T I; Verhagen, Anne M; Xu, San San; Pass, Ian; Courtneidge, Sara A; Lock, Peter

    2009-08-01

    Invadopodia are actin-based projections enriched with proteases, which invasive cancer cells use to degrade the extracellular matrix (ECM). The Phox homology (PX)-Src homology (SH)3 domain adaptor protein Tks5 (also known as SH3PXD2A) cooperates with Src tyrosine kinase to promote invadopodia formation but the underlying pathway is not clear. Here we show that Src phosphorylates Tks5 at Y557, inducing it to associate directly with the SH3-SH2 domain adaptor proteins Nck1 and Nck2 in invadopodia. Tks5 mutants unable to bind Nck show reduced matrix degradation-promoting activity and recruit actin to invadopodia inefficiently. Conversely, Src- and Tks5-driven matrix proteolysis and actin assembly in invadopodia are enhanced by Nck1 or Nck2 overexpression and inhibited by Nck1 depletion. We show that clustering at the plasma membrane of the Tks5 inter-SH3 region containing Y557 triggers phosphorylation at this site, facilitating Nck recruitment and F-actin assembly. These results identify a Src-Tks5-Nck pathway in ECM-degrading invadopodia that shows parallels with pathways linking several mammalian and pathogen-derived proteins to local actin regulation.

  14. The Cytoplasmic Adaptor Protein Dok7 Activates the Receptor Tyrosine Kinase MuSK via Dimerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergamin, E.; Hallock, P; Burden, S

    Formation of the vertebrate neuromuscular junction requires, among others proteins, Agrin, a neuronally derived ligand, and the following muscle proteins: LRP4, the receptor for Agrin; MuSK, a receptor tyrosine kinase (RTK); and Dok7 (or Dok-7), a cytoplasmic adaptor protein. Dok7 comprises a pleckstrin-homology (PH) domain, a phosphotyrosine-binding (PTB) domain, and C-terminal sites of tyrosine phosphorylation. Unique among adaptor proteins recruited to RTKs, Dok7 is not only a substrate of MuSK, but also an activator of MuSK's kinase activity. Here, we present the crystal structure of the Dok7 PH-PTB domains in complex with a phosphopeptide representing the Dok7-binding site on MuSK.more » The structure and biochemical data reveal a dimeric arrangement of Dok7 PH-PTB that facilitates trans-autophosphorylation of the kinase activation loop. The structure provides the molecular basis for MuSK activation by Dok7 and for rationalizing several Dok7 loss-of-function mutations found in patients with congenital myasthenic syndromes.« less

  15. Alternative Splicing in CaV2.2 Regulates Neuronal Trafficking via Adaptor Protein Complex-1 Adaptor Protein Motifs

    PubMed Central

    Macabuag, Natsuko

    2015-01-01

    N-type voltage-gated calcium (CaV2.2) channels are expressed in neurons and targeted to the plasma membrane of presynaptic terminals, facilitating neurotransmitter release. Here, we find that the adaptor protein complex-1 (AP-1) mediates trafficking of CaV2.2 from the trans-Golgi network to the cell surface. Examination of splice variants of CaV2.2, containing either exon 37a (selectively expressed in nociceptors) or 37b in the proximal C terminus, reveal that canonical AP-1 binding motifs, YxxΦ and [DE]xxxL[LI], present only in exon 37a, enhance intracellular trafficking of exon 37a-containing CaV2.2 to the axons and plasma membrane of rat DRG neurons. Finally, we identify differential effects of dopamine-2 receptor (D2R) and its agonist-induced activation on trafficking of CaV2.2 isoforms. D2R slowed the endocytosis of CaV2.2 containing exon 37b, but not exon 37a, and activation by the agonist quinpirole reversed the effect of the D2R. Our work thus reveals key mechanisms involved in the trafficking of N-type calcium channels. SIGNIFICANCE STATEMENT CaV2.2 channels are important for neurotransmitter release, but how they are trafficked is still poorly understood. Here, we describe a novel mechanism for trafficking of CaV2.2 from the trans-Golgi network to the cell surface which is mediated by the adaptor protein AP-1. Alternative splicing of exon 37 produces CaV2.2-exon 37a, selectively expressed in nociceptors, or CaV2.2-exon 37b, which is the major splice isoform. Our study reveals that canonical AP-1 binding motifs (YxxΦ and [DE]xxxL[LI]), present in exon 37a, but not 37b, enhance intracellular trafficking of exon 37a-containing CaV2.2 to axons and plasma membrane of DRG neurons. Interaction of APs with CaV2.2 channels may also be key underlying mechanisms for differential effects of the dopamine D2 receptor on trafficking of CaV2.2 splice variants. PMID:26511252

  16. VH1/BRL2 receptor-like kinase interacts with vascular-specific adaptor proteins VIT and VIK to influence leaf venation.

    PubMed

    Ceserani, Teresa; Trofka, Anna; Gandotra, Neeru; Nelson, Timothy

    2009-03-01

    VH1/BRL2 is a receptor-like kinase of the BRI1 family with a role in vascular development. In developing Arabidopsis leaves it is expressed first in ground cells and then becomes restricted to provascular and procambial cells as venation forms. We isolated proteins interacting with the activated (phosphorylated) cytoplasmic domain of VH1/BRL2, and found that most belong to three processes: proteasome activity, vesicle traffic and intracellular signal transduction. Two adaptor proteins are included that we named VIT [VH1-interacting tetratricopeptide repeat (TPR)-containing protein] and VIK (VH1-interacting kinase), which are co-expressed in the same cells as VH1/BRL2 at two distinct time points in vein differentiation. Mutation of either adaptor or of VH1 results in vein pattern defects and in alterations in response to auxin and brassinosteroids. We propose that these two adaptors facilitate the diversification and amplification of a ligand signal perceived by VH1/BRL2 in multiple downstream pathways affecting venation.

  17. Brucella TIR-like protein TcpB/Btp1 specifically targets the host adaptor protein MAL/TIRAP to promote infection.

    PubMed

    Li, Wenna; Ke, Yuehua; Wang, Yufei; Yang, Mingjuan; Gao, Junguang; Zhan, Shaoxia; Xinying, Du; Huang, Liuyu; Li, Wenfeng; Chen, Zeliang; Li, Juan

    2016-08-26

    Brucella spp. are known to avoid host immune recognition and weaken the immune response to infection. Brucella like accomplish this by employing two clever strategies, called the stealth strategy and hijacking strategy. The TIR domain-containing protein (TcpB/Btp1) of Brucella melitensis is thought to be involved in inhibiting host NF-κB activation by binding to adaptors downstream of Toll-like receptors. However, of the five TIR domain-containing adaptors conserved in mammals, whether MyD88 or MAL, even other three adaptors, are specifically targeted by TcpB has not been identified. Here, we confirmed the effect of TcpB on B.melitensis virulence in mice and found that TcpB selectively targets MAL. By using siRNA against MAL, we found that TcpB from B.melitensis is involved in intracellular survival and that MAL affects intracellular replication of B.melitensis. Our results confirm that TcpB specifically targets MAL/TIRAP to disrupt downstream signaling pathways and promote intra-host survival of Brucella spp. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission

    PubMed Central

    Koirala, Sajjan; Guo, Qian; Kalia, Raghav; Bui, Huyen T.; Eckert, Debra M.; Frost, Adam; Shaw, Janet M.

    2013-01-01

    Mitochondrial fission is mediated by the dynamin-related GTPases Dnm1/Drp1 (yeast/mammals), which form spirals around constricted sites on mitochondria. Additional membrane-associated adaptor proteins (Fis1, Mdv1, Mff, and MiDs) are required to recruit these GTPases from the cytoplasm to the mitochondrial surface. Whether these adaptors participate in both GTPase recruitment and membrane scission is not known. Here we use a yeast strain lacking all fission proteins to identify the minimal combinations of GTPases and adaptors sufficient for mitochondrial fission. Although Fis1 is dispensable for fission, membrane-anchored Mdv1, Mff, or MiDs paired individually with their respective GTPases are sufficient to divide mitochondria. In addition to their role in Drp1 membrane recruitment, MiDs coassemble with Drp1 in vitro. The resulting heteropolymer adopts a dramatically different structure with a narrower diameter than Drp1 homopolymers assembled in isolation. This result demonstrates that an adaptor protein alters the architecture of a mitochondrial dynamin GTPase polymer in a manner that could facilitate membrane constriction and severing activity. PMID:23530241

  19. Pathfinding the Flight Advanced Stirling Convertor Design with the ASC-E3

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Kyle; Smith, Eddie; Collins, Josh

    2012-01-01

    The Advanced Stirling Convertor (ASC) was initially developed by Sunpower, Inc. under contract to NASA Glenn Research Center (GRC) as a technology development project. The ASC technology fulfills NASA's need for high efficiency power convertors for future Radioisotope Power Systems (RPS). Early successful technology demonstrations between 2003 to 2005 eventually led to the expansion of the project including the decision in 2006 to use the ASC technology on the Advanced Stirling Radioisotope Generator (ASRG). Sunpower has delivered 22 ASC convertors of progressively mature designs to date to GRC. Currently, Sunpower with support from GRC, Lockheed Martin Space System Company (LMSSC), and the Department of Energy (DOE) is developing the flight ASC-F in parallel with the ASC-E3 pathfinders. Sunpower will deliver four pairs of ASC-E3 convertors to GRC which will be used for extended operation reliability assessment, independent validation and verification testing, system interaction tests, and to support LMSSC controller verification. The ASC-E3 and -F convertors are being built to the same design and processing documentation and the same product specification. The initial two pairs of ASC-E3 are built before the flight units and will validate design and processing changes prior to implementation on the ASC-F flight convertors. This paper provides a summary on development of the ASC technology and the status of the ASC-E3 build and how they serve the vital pathfinder role ahead of the flight build for ASRG. The ASRG is part of two of the three candidate missions being considered for selection for the Discovery 12 mission.

  20. Multiple interactions drive adaptor-mediated recruitment of the ubiquitin ligase rsp5 to membrane proteins in vivo and in vitro.

    PubMed

    Sullivan, James A; Lewis, Michael J; Nikko, Elina; Pelham, Hugh R B

    2007-07-01

    Recognition of membrane proteins by the Nedd4/Rsp5 ubiquitin ligase family is a critical step in their targeting to the multivesicular body pathway. Some substrates contain "PY" motifs (PPxY), which bind to WW domains in the ligase. Others lack PY motifs and instead rely on adaptors that recruit the ligase to them. To investigate the mechanism of adaptor-mediated ubiquitination, we have characterized the interactions between the adaptor Bsd2, the ubiquitin ligase Rsp5, and the membrane proteins Cps1, Tre1, and Smf1 from Saccharomyces cerevisiae. We have reconstituted adaptor-mediated modification of Cps1 and Tre1 in vitro, and we show that two PY motifs in Bsd2 and two WW domains (WW2 and WW3) in Rsp5 are crucial for this. The binding of a weak noncanonical DMAPSY motif in Bsd2 to WW3 is an absolute requirement for Bsd2 adaptor function. We show that sorting of the manganese transporter Smf1, which requires both Bsd2 and Tre1, depends upon two PY motifs in Bsd2 and one motif in Tre1 but only two WW domains in Rsp5. We suggest that sequential assembly of first a Bsd2/Rsp5 complex, then a Tre1/Bsd2/Rsp5 complex followed by a rearrangement of PY-WW interactions is required for the ubiquitination of Smf1.

  1. Multiple Interactions Drive Adaptor-Mediated Recruitment of the Ubiquitin Ligase Rsp5 to Membrane Proteins In Vivo and In Vitro

    PubMed Central

    Sullivan, James A.; Lewis, Michael J.; Nikko, Elina

    2007-01-01

    Recognition of membrane proteins by the Nedd4/Rsp5 ubiquitin ligase family is a critical step in their targeting to the multivesicular body pathway. Some substrates contain “PY” motifs (PPxY), which bind to WW domains in the ligase. Others lack PY motifs and instead rely on adaptors that recruit the ligase to them. To investigate the mechanism of adaptor-mediated ubiquitination, we have characterized the interactions between the adaptor Bsd2, the ubiquitin ligase Rsp5, and the membrane proteins Cps1, Tre1, and Smf1 from Saccharomyces cerevisiae. We have reconstituted adaptor-mediated modification of Cps1 and Tre1 in vitro, and we show that two PY motifs in Bsd2 and two WW domains (WW2 and WW3) in Rsp5 are crucial for this. The binding of a weak noncanonical DMAPSY motif in Bsd2 to WW3 is an absolute requirement for Bsd2 adaptor function. We show that sorting of the manganese transporter Smf1, which requires both Bsd2 and Tre1, depends upon two PY motifs in Bsd2 and one motif in Tre1 but only two WW domains in Rsp5. We suggest that sequential assembly of first a Bsd2/Rsp5 complex, then a Tre1/Bsd2/Rsp5 complex followed by a rearrangement of PY–WW interactions is required for the ubiquitination of Smf1. PMID:17429078

  2. Interaction of the Human Respiratory Syncytial Virus matrix protein with cellular adaptor protein complex 3 plays a critical role in trafficking.

    PubMed

    Ward, Casey; Maselko, Maciej; Lupfer, Christopher; Prescott, Meagan; Pastey, Manoj K

    2017-01-01

    Human Respiratory Syncytial Virus (HRSV) is a leading cause of bronchopneumonia in infants and the elderly. To date, knowledge of viral and host protein interactions within HRSV is limited and are critical areas of research. Here, we show that HRSV Matrix (M) protein interacts with the cellular adaptor protein complex 3 specifically via its medium subunit (AP-3Mu3A). This novel protein-protein interaction was first detected via yeast-two hybrid screen and was further confirmed in a mammalian system by immunofluorescence colocalization and co-immunoprecipitation. This novel interaction is further substantiated by the presence of a known tyrosine-based adaptor protein MU subunit sorting signal sequence, YXXФ: where Ф is a bulky hydrophobic residue, which is conserved across the related RSV M proteins. Analysis of point-mutated HRSV M derivatives indicated that AP-3Mu3A- mediated trafficking is contingent on the presence of the tyrosine residue within the YXXL sorting sequence at amino acids 197-200 of the M protein. AP-3Mu3A is up regulated at 24 hours post-infection in infected cells versus mock-infected HEp2 cells. Together, our data suggests that the AP-3 complex plays a critical role in the trafficking of HRSV proteins specifically matrix in epithelial cells. The results of this study add new insights and targets that may lead to the development of potential antivirals and attenuating mutations suitable for candidate vaccines in the future.

  3. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins

    DOE PAGES

    Zhao, Baoyu; Shu, Chang; Gao, Xinsheng; ...

    2016-06-02

    Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)–like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here in this paper, we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF bindsmore » to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses.« less

  4. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Baoyu; Shu, Chang; Gao, Xinsheng

    Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)–like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here in this paper, we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF bindsmore » to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses.« less

  5. 77 FR 25168 - Appraisal Subcommittee (ASC); ASC Rules of Operation; Amended

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... heads of the Bureau of Consumer Financial Protection and the Federal Housing Finance Agency. The ASC Rules of Operation serve as corporate bylaws outlining the ASC's purpose, functions, authority... Title XI. The ASC Rules of Operation serve as corporate bylaws outlining the ASC's purpose, functions...

  6. Performance Measurement of Advanced Stirling Convertors (ASC-E3)

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.

    2013-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing data of the Advanced Stirling Convertor (ASC). The latest version of the ASC (ASC-E3, to represent the third cycle of engineering model test hardware) is of a design identical to the forthcoming flight convertors. For this generation of hardware, a joint Sunpower and GRC effort was initiated to improve and standardize the test support hardware. After this effort was completed, the first pair of ASC-E3 units was produced by Sunpower and then delivered to GRC in December 2012. GRC has begun operation of these units. This process included performance verification, which examined the data from various tests to validate the convertor performance to the product specification. Other tests included detailed performance mapping that encompassed the wide range of operating conditions that will exist during a mission. These convertors were then transferred to Lockheed Martin for controller checkout testing. The results of this latest convertor performance verification activity are summarized here.

  7. The p97-FAF1 Protein Complex Reveals a Common Mode of p97 Adaptor Binding*

    PubMed Central

    Ewens, Caroline A.; Panico, Silvia; Kloppsteck, Patrik; McKeown, Ciaran; Ebong, Ima-Obong; Robinson, Carol; Zhang, Xiaodong; Freemont, Paul S.

    2014-01-01

    p97, also known as valosin-containing protein, is a versatile participant in the ubiquitin-proteasome system. p97 interacts with a large network of adaptor proteins to process ubiquitylated substrates in different cellular pathways, including endoplasmic reticulum-associated degradation and transcription factor activation. p97 and its adaptor Fas-associated factor-1 (FAF1) both have roles in the ubiquitin-proteasome system during NF-κB activation, although the mechanisms are unknown. FAF1 itself also has emerging roles in other cell-cycle pathways and displays altered expression levels in various cancer cell lines. We have performed a detailed study the p97-FAF1 interaction. We show that FAF1 binds p97 stably and in a stoichiometry of 3 to 6. Cryo-EM analysis of p97-FAF1 yielded a 17 Å reconstruction of the complex with FAF1 above the p97 ring. Characteristics of p97-FAF1 uncovered in this study reveal common features in the interactions of p97, providing mechanistic insight into how p97 mediates diverse functionalities. PMID:24619421

  8. Structure-Guided Design of Peptides as Tools to Probe the Protein-Protein Interaction between Cullin-2 and Elongin BC Substrate Adaptor in Cullin RING E3 Ubiquitin Ligases.

    PubMed

    Cardote, Teresa A F; Ciulli, Alessio

    2017-09-21

    Cullin RING E3 ubiquitin ligases (CRLs) are large dynamic multi-subunit complexes that control the fate of many proteins in cells. CRLs are attractive drug targets for the development of small-molecule inhibitors and chemical inducers of protein degradation. Herein we describe a structure-guided biophysical approach to probe the protein-protein interaction (PPI) between the Cullin-2 scaffold protein and the adaptor subunits Elongin BC within the context of the von Hippel-Lindau complex (CRL2 VHL ) using peptides. Two peptides were shown to bind at the targeted binding site on Elongin C, named the "EloC site", with micromolar dissociation constants, providing a starting point for future optimization. Our results suggest ligandability of the EloC binding site to short linear peptides, unveiling the opportunity and challenges to develop small molecules that have the potential to target selectively the Cul2-adaptor PPI within CRLs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 75 FR 80813 - Appraisal Subcommittee (ASC); ASC Rules of Operation; Amended

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... name and must rely on the General Services Administration (GSA) for the procurement of office space by... administration, procurement, and other services, consistent with directives of the ASC. In executing this... Conduct Section 11.01. Ethics Provision. The ASC members of the ASC and its officers and employees shall...

  10. Arabidopsis adaptor protein 1G is critical for pollen development.

    PubMed

    Feng, Chong; Wang, Jia-Gang; Liu, Hai-Hong; Li, Sha; Zhang, Yan

    2017-09-01

    Pollen development is a pre-requisite for sexual reproduction of angiosperms, during which various cellular activities are involved. Pollen development accompanies dynamic remodeling of vacuoles through fission and fusion, disruption of which often compromises pollen viability. We previously reported that the Y subunit of adaptor protein 1 (AP1G) mediates synergid degeneration during pollen tube reception. Here, we demonstrate that AP1G is essential for pollen development. AP1G loss-of-function resulted in male gametophytic lethality due to defective pollen development. By ultrastructural analysis and fluorescence labeling, we demonstrate that AP1G loss-of-function compromised dynamic vacuolar remodeling during pollen development and impaired vacuolar acidification of pollen. Results presented here support a key role of vacuoles in gametophytic pollen development. © 2017 Institute of Botany, Chinese Academy of Sciences.

  11. The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation.

    PubMed

    Claudio, Estefania; Sønder, Søren Ulrik; Saret, Sun; Carvalho, Gabrielle; Ramalingam, Thirumalai R; Wynn, Thomas A; Chariot, Alain; Garcia-Perganeda, Antonio; Leonardi, Antonio; Paun, Andrea; Chen, Amy; Ren, Nina Y; Wang, Hongshan; Siebenlist, Ulrich

    2009-02-01

    IL-17 is the signature cytokine of recently discovered Th type 17 (Th17) cells, which are prominent in defense against extracellular bacteria and fungi as well as in autoimmune diseases, such as rheumatoid arthritis and experimental autoimmune encephalomyelitis in animal models. IL-25 is a member of the IL-17 family of cytokines, but has been associated with Th2 responses instead and may negatively cross-regulate Th17/IL-17 responses. IL-25 can initiate an allergic asthma-like inflammation in the airways, which includes recruitment of eosinophils, mucus hypersecretion, Th2 cytokine production, and airways hyperreactivity. We demonstrate that these effects of IL-25 are entirely dependent on the adaptor protein CIKS (also known as Act1). Surprisingly, this adaptor is necessary to transmit IL-17 signals as well, despite the very distinct biologic responses that these two cytokines elicit. We identify CD11c(+) macrophage-like lung cells as physiologic relevant targets of IL-25 in vivo.

  12. Adaptor protein complex 2-mediated, clathrin-dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis.

    PubMed

    Lacruz, Rodrigo S; Brookes, Steven J; Wen, Xin; Jimenez, Jaime M; Vikman, Susanna; Hu, Ping; White, Shane N; Lyngstadaas, S Petter; Okamoto, Curtis T; Smith, Charles E; Paine, Michael L

    2013-03-01

    Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real-time PCR, we show that the expression of clathrin and adaptor protein subunits are upregulated in maturation stage rodent enamel organ cells. AP complex 2 (AP-2) is the most upregulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts, with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin-dependent endocytosis, thus implying the likelihood of specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also upregulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1); cluster of differentiation 63 and 68 (Cd63 and Cd68); ATPase, H(+) transporting, lysosomal V0 subunit D2 (Atp6v0d2); ATPase, H(+) transporting, lysosomal V1 subunit B2 (Atp6v1b2); chloride channel, voltage-sensitive 7 (Clcn7); and cathepsin K (Ctsk). Immunohistologic data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain showed upregulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor-regulated pathway for the endocytosis of enamel matrix proteins. These data

  13. Advanced Stirling Convertor (ASC-E2) Performance Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore; Wilson, Scott

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG Project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, four pairs of ASCs capable of operating to 850 C and designated with the model number ASC-E2, were delivered by Sunpower of Athens, OH, to GRC in 2010. The ASC-E2s underwent a series of tests that included workmanship vibration testing, performance mapping, and extended operation. Workmanship vibration testing was performed following fabrication of each convertor to verify proper hardware build. Performance mapping consisted of operating each convertor at various conditions representing the range expected during a mission. Included were conditions representing beginning-of-mission (BOM), end-of-mission (EOM), and fueling. This same series of tests was performed by Sunpower prior to ASC-E2 delivery. The data generated during the GRC test were compared to performance before delivery. Extended operation consisted of a 500-hour period of operation with conditions maintained at the BOM point. This was performed to demonstrate steady convertor performance following performance mapping. Following this initial 500-hour period, the ASC-E2s will continue extended operation, controller development and special durability testing, during which the goal is to accumulate tens of thousands of hours of operation. Data collected during extended operation will support reliability analysis. Performance data from these tests is summarized in this paper.

  14. Advanced Stirling Convertor (ASC-E2) Performance Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore; Wilson, Scott

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG Project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, four pairs of ASCs capable of operating to 850 C and designated with the model number ASC-E2, were delivered by Sunpower of Athens, Ohio, to GRC in 2010. The ASC-E2s underwent a series of tests that included workmanship vibration testing, performance mapping, and extended operation. Workmanship vibration testing was performed following fabrication of each convertor to verify proper hardware build. Performance mapping consisted of operating each convertor at various conditions representing the range expected during a mission. Included were conditions representing beginning-of-mission (BOM), end-of-mission (EOM), and fueling. This same series of tests was performed by Sunpower prior to ASC-E2 delivery. The data generated during the GRC test were compared to performance before delivery. Extended operation consisted of a 500-hr period of operation with conditions maintained at the BOM point. This was performed to demonstrate steady convertor performance following performance mapping. Following this initial 500-hr period, the ASC-E2s will continue extended operation, controller development and special durability testing, during which the goal is to accumulate tens of thousands of hours of operation. Data collected during extended operation will support reliability analysis. Performance data from these tests is summarized in this paper.

  15. Distinct Involvement of the Gab1 and Grb2 Adaptor Proteins in Signal Transduction by the Related Receptor Tyrosine Kinases RON and MET

    PubMed Central

    Chaudhuri, Amitabha; Xie, Ming-Hong; Yang, Becky; Mahapatra, Kaushiki; Liu, Jinfeng; Marsters, Scot; Bodepudi, Sweta; Ashkenazi, Avi

    2011-01-01

    Although the signal transduction mechanisms of the receptor tyrosine kinase MET are well defined, less is known about its close relative RON. MET initiates intracellular signaling by autophosphorylation on specific cytoplasmic tyrosines that form docking sites for the adaptor proteins Grb2 and Gab1. Grb2 binds directly and is essential for all of the biological activities of MET. Gab1 docks either directly or indirectly via Grb2 and controls only a subset of MET functions. Because MET and RON possess similar adaptor binding sites, it was anticipated that their adaptor interactions would be conserved. Here we show that in contrast to MET, RON relies primarily on Gab1 for signal transmission. Surprisingly, disruption of the Grb2 docking site of RON or Grb2 depletion augments activity, whereas enhancement of Grb2 binding attenuates Gab1 recruitment and signaling. Hence, RON and MET differ in their adaptor interactions; furthermore, Grb2 performs a novel antagonistic role in the context of RON signaling. PMID:21784853

  16. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  17. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  18. Naloxone inhibits nod-like receptor protein 3 inflammasome.

    PubMed

    Lin, Han-Yu; Chang, Ya-Ying; Kao, Ming-Chang; Huang, Chun-Jen

    2017-11-01

    Naloxone, an opioid receptor antagonist, possesses potent anti-inflammation effects. We previously confirmed the effects of naloxone on inhibiting upregulation of inflammatory cytokine interleukin-1β (IL-1β). Production of mature form IL-1β is mediated by the nod-like receptor protein 3 (NLRP3) inflammasome, a multiprotein complex composed of NLRP3, and the adaptor protein apoptosis-associated speck-like protein contains a caspase recruitment domain (ASC). We elucidated whether naloxone could inhibit the activation of NLRP3 inflammasome. To induce IL-1β production and NLRP3 inflammasome activation, the human monocytic leukemia cell line THP-1 cells were first primed with lipopolysaccharide (LPS, 1 μg/mL) and then activated with adenosine triphosphate (ATP, 1 mM). For NLRP3 transcription, THP-1 cells were only treated with LPS priming. Enzyme-link immunosorbent assay data revealed that the concentration of IL-1β in THP-1 cells treated with LPS plus ATP was significantly higher than that in THP-1 cells treated with LPS plus ATP plus naloxone (0.1 μM) (P < 0.001). Real-time quantitative reverse transcription and polymerase chain reaction data also revealed that NLRP3 mRNA concentration in THP-1 cells treated with LPS was significantly higher than that in THP-1 cells treated with LPS plus naloxone (P = 0.001). ASC speck formation, that is, ASC assembles into a large protein complex, is an indicator for NLRP3 inflammasome activation. Our data revealed that the percentage of cells containing ASC specks in THP-1 cells treated with LPS plus ATP was also significantly higher than that in THP-1 cells treated with LPS plus ATP plus naloxone (P < 0.001). Naloxone inhibits NLRP3 inflammasome activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. STAM Adaptor Proteins Interact with COPII Complexes and Function in ER-to-Golgi Trafficking

    PubMed Central

    Rismanchi, Neggy; Puertollano, Rosa; Blackstone, Craig

    2009-01-01

    Signal transducing adaptor molecules (STAMs) are involved in growth factor and cytokine signaling as well as receptor degradation, and they form complexes with a number of endocytic proteins, including Hrs and Eps15. Here we demonstrate that STAM proteins also localize prominently to early exocytic compartments and profoundly regulate Golgi morphology. Upon STAM overexpression in cells the Golgi apparatus becomes extensively fragmented and dispersed, but when STAMs are depleted the Golgi becomes highly condensed. Under both scenarios, vesicular stomatitis virus G protein (VSVG)-GFP trafficking to the plasma membrane is markedly inhibited, and recovery of Golgi morphology after brefeldin A treatment is substantially impaired in STAM-depleted cells. Furthermore, STAM proteins interact with COPII proteins, probably at endoplasmic reticulum (ER) exit sites, and Sar1 activity is required to maintain the localization of STAMs at discrete sites. Thus, in addition to their roles in signaling and endocytosis, STAMs function prominently in ER-to-Golgi trafficking, most likely through direct interactions with the COPII complex. PMID:19054391

  20. Granuloma formation and host defense in chronic Mycobacterium tuberculosis infection requires PYCARD/ASC but not NLRP3 or caspase-1.

    PubMed

    McElvania Tekippe, Erin; Allen, Irving C; Hulseberg, Paul D; Sullivan, Jonathan T; McCann, Jessica R; Sandor, Matyas; Braunstein, Miriam; Ting, Jenny P-Y

    2010-08-20

    The NLR gene family mediates host immunity to various acute pathogenic stimuli, but its role in chronic infection is not known. This paper addressed the role of NLRP3 (NALP3), its adaptor protein PYCARD (ASC), and caspase-1 during infection with Mycobacterium tuberculosis (Mtb). Mtb infection of macrophages in culture induced IL-1beta secretion, and this requires the inflammasome components PYCARD, caspase-1, and NLRP3. However, in vivo Mtb aerosol infection of Nlrp3(-/-), Casp-1(-/-), and WT mice showed no differences in pulmonary IL-1beta production, bacterial burden, or long-term survival. In contrast, a significant role was observed for Pycard in host protection during chronic Mtb infection, as shown by an abrupt decrease in survival of Pycard(-/-) mice. Decreased survival of Pycard(-/-) animals was associated with defective granuloma formation. These data demonstrate that PYCARD exerts a novel inflammasome-independent role during chronic Mtb infection by containing the bacteria in granulomas.

  1. Structure and assembly of the mouse ASC inflammasome by combined NMR spectroscopy and cryo-electron microscopy

    PubMed Central

    Sborgi, Lorenzo; Ravotti, Francesco; Dandey, Venkata P.; Dick, Mathias S.; Mazur, Adam; Reckel, Sina; Chami, Mohamed; Scherer, Sebastian; Huber, Matthias; Böckmann, Anja; Egelman, Edward H.; Stahlberg, Henning; Broz, Petr; Meier, Beat H.; Hiller, Sebastian

    2015-01-01

    Inflammasomes are multiprotein complexes that control the innate immune response by activating caspase-1, thus promoting the secretion of cytokines in response to invading pathogens and endogenous triggers. Assembly of inflammasomes is induced by activation of a receptor protein. Many inflammasome receptors require the adapter protein ASC [apoptosis-associated speck-like protein containing a caspase-recruitment domain (CARD)], which consists of two domains, the N-terminal pyrin domain (PYD) and the C-terminal CARD. Upon activation, ASC forms large oligomeric filaments, which facilitate procaspase-1 recruitment. Here, we characterize the structure and filament formation of mouse ASC in vitro at atomic resolution. Information from cryo-electron microscopy and solid-state NMR spectroscopy is combined in a single structure calculation to obtain the atomic-resolution structure of the ASC filament. Perturbations of NMR resonances upon filament formation monitor the specific binding interfaces of ASC-PYD association. Importantly, NMR experiments show the rigidity of the PYD forming the core of the filament as well as the high mobility of the CARD relative to this core. The findings are validated by structure-based mutagenesis experiments in cultured macrophages. The 3D structure of the mouse ASC-PYD filament is highly similar to the recently determined human ASC-PYD filament, suggesting evolutionary conservation of ASC-dependent inflammasome mechanisms. PMID:26464513

  2. The polarity protein Par3 regulates APP trafficking and processing through the endocytic adaptor protein Numb.

    PubMed

    Sun, Miao; Asghar, Suwaiba Z; Zhang, Huaye

    2016-09-01

    The processing of amyloid precursor protein (APP) into β-amyloid peptide (Aβ) is a key step in the pathogenesis of Alzheimer's disease (AD), and trafficking dysregulations of APP and its secretases contribute significantly to altered APP processing. Here we show that the cell polarity protein Par3 plays an important role in APP processing and trafficking. We found that the expression of full length Par3 is significantly decreased in AD patients. Overexpression of Par3 promotes non-amyloidogenic APP processing, while depletion of Par3 induces intracellular accumulation of Aβ. We further show that Par3 functions by regulating APP trafficking. Loss of Par3 decreases surface expression of APP by targeting APP to the late endosome/lysosome pathway. Finally, we show that the effects of Par3 are mediated through the endocytic adaptor protein Numb, and Par3 functions by interfering with the interaction between Numb and APP. Together, our studies show a novel role for Par3 in regulating APP processing and trafficking. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Several adaptor proteins promote intracellular localisation of the transporter MRP4/ABCC4 in platelets and haematopoietic cells.

    PubMed

    Schaletzki, Yvonne; Kromrey, Marie-Luise; Bröderdorf, Susanne; Hammer, Elke; Grube, Markus; Hagen, Paul; Sucic, Sonja; Freissmuth, Michael; Völker, Uwe; Greinacher, Andreas; Rauch, Bernhard H; Kroemer, Heyo K; Jedlitschky, Gabriele

    2017-01-05

    The multidrug resistance protein 4 (MRP4/ABCC4) has been identified as an important transporter for signalling molecules including cyclic nucleotides and several lipid mediators in platelets and may thus represent a novel target to interfere with platelet function. Besides its localisation in the plasma membrane, MRP4 has been also detected in the membrane of dense granules in resting platelets. In polarised cells it is localised at the basolateral or apical plasma membrane. To date, the mechanism of MRP4 trafficking has not been elucidated; protein interactions may regulate both the localisation and function of this transporter. We approached this issue by searching for interacting proteins by in vitro binding assays, followed by immunoblotting and mass spectrometry, and by visualising their co-localisation in platelets and haematopoietic cells. We identified the PDZ domain containing scaffold proteins ezrin-binding protein 50 (EBP50/NHERF1), postsynaptic density protein 95 (PSD95), and sorting nexin 27 (SNX27), but also the adaptor protein complex 3 subunit β3A (AP3B1) and the heat shock protein HSP90 as putative interaction partners of MRP4. The knock-down of SNX27, PSD95, and AP3B1 by siRNA in megakaryoblastic leukaemia cells led to a redistribution of MRP4 from intracellular structures to the plasma membrane. Inhibition of HSP90 led to a diminished expression and retention of MRP4 in the endoplasmic reticulum. These results indicate that MRP4 localisation and function are regulated by multiple protein interactions. Changes in the adaptor proteins can hence lead to altered localisation and function of the transporter.

  4. The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation1

    PubMed Central

    Claudio, Estefania; Sønder, Søren Ulrik; Saret, Sun; Carvalho, Gabrielle; Ramalingam, Thirumalai R; Wynn, Thomas A; Chariot, Alain; Garcia-Perganeda, Antonio; Leonardi, Antonio; Paun, Andrea; Chen, Amy; Ren, Nina Y.; Wang, Hongshan; Siebenlist, Ulrich

    2008-01-01

    IL-17 is the signature cytokine of recently discovered T helper type 17 (Th17) cells, which are prominent in defense against extracellular bacteria and fungi as well as in autoimmune diseases, such as rheumatoid arthritis and experimental autoimmune encephalomyelitis in animal models. IL-25 is a member of the IL-17 family of cytokines, but has been associated with Th2 responses instead and may negatively cross-regulate Th17/IL-17 responses. IL-25 can initiate an allergic asthma-like inflammation in the airways, which includes recruitment of eosinophils, mucus hypersecretion, Th2 cytokine production and airways hyperreactivity. We demonstrate that these effects of IL-25 are entirely dependent on the adaptor protein CIKS (a.k.a. Act1). Surprisingly, this adaptor is necessary to transmit IL-17 signals as well, despite the very distinct biologic responses these two cytokines elicit. We identify CD11c+ macrophage-like lung cells as physiologic relevant targets of IL-25 in vivo. PMID:19155511

  5. Role of Adaptor Protein Toll-Like Interleukin Domain Containing Adaptor Inducing Interferon β in Toll-Like Receptor 3- and 4-Mediated Regulation of Hepatic Drug Metabolizing Enzyme and Transporter Genes.

    PubMed

    Shah, Pranav; Omoluabi, Ozozoma; Moorthy, Bhagavatula; Ghose, Romi

    2016-01-01

    The expressions and activities of hepatic drug-metabolizing enzymes and transporters (DMETs) are altered during infection and inflammation. Inflammatory responses in the liver are mediated primarily by Toll-like receptor (TLR)-signaling, which involves recruitment of Toll/interleukin (IL)-1 receptor (TIR) domain containing adaptor protein (TIRAP) and TIR domain containing adaptor inducing interferon (IFN)-β (TRIF) that eventually leads to induction of proinflammatory cytokines and mitogen-activated protein kinases (MAPKs). Lipopolysaccharide (LPS) activates the Gram-negative bacterial receptor TLR4 and polyinosinic:polycytidylic acid (polyI:C) activates the viral receptor TLR3. TLR4 signaling involves TIRAP and TRIF, whereas TRIF is the only adaptor protein involved in the TLR3 pathway. We have shown previously that LPS-mediated downregulation of DMETs is independent of TIRAP. To determine the role of TRIF, we treated TRIF(+/+) and TRIF(-/-) mice with LPS or polyI:C. LPS downregulated (∼40%-60%) Cyp3a11, Cyp2a4, Ugt1a1, Mrp2 mRNA levels, whereas polyI:C downregulated (∼30%-60%) Cyp3a11, Cyp2a4, Cyp1a2, Cyp2b10, Ugt1a1, Mrp2, and Mrp3 mRNA levels in TRIF(+/+) mice. This downregulation was not attenuated in TRIF(-/-) mice. Induction of cytokines by LPS was observed in both TRIF(+/+) and TRIF(-/-) mice. Cytokine induction was delayed in polyI:C-treated TRIF(-/-) mice, indicating that multiple mechanisms mediating polyI:C signaling exist. To assess the role of MAPKs, primary hepatocytes were pretreated with specific inhibitors before treatment with LPS/polyI:C. We found that only the c-jun-N-terminal kinase (JNK) inhibitor attenuated the down-regulation of DMETs. These results show that TRIF-independent pathways can be involved in the downregulation of DMETs through TLR4 and 3. JNK-dependent mechanisms likely mediate this downregulation. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  6. [Adipose-derived stromal cells (ASC) - basics and therapeutic approaches in otorhinolaryngology].

    PubMed

    Frölich, K; Hagen, R; Kleinsasser, N

    2014-06-01

    Adipose-derived Stromal Cells (ASC) - Basics and Therapeutic Approaches in Otorhinolaryngology Mesenchymal stem cells from adipose tissue can be easily harvested with less discomfort, low donor-site morbidity and high amount compared to bone marrow-derived stem cells. Due to their multilineage differentiation potential in various cell types, immunmodulatory properties and their capability to enhance wound healing, ASC are a promising cell source for tissue engineering approaches and regenerative medicine. They are characterized by the expression of specific surface marker proteins and their differentiation potential into the mesenchymal lineages. Whereas only preclinical studies are published for otorhinolaryngology-related therapeutic options using ASC, various diseases, for instance graft-versus-host disease, have already been treated with ASC in single cases or clinical trials. Safety and genomic stability of ASC as well as the risk of spontaneous malignant transformation are still disputed. This review summarizes the current literature on characterization and anatomic localization of ASC. In addition, beside the presentation of preclinical studies concerning therapeutic approaches in otorhinolaryngology as well as of current clinical applications, the issue of safety of ASC in human stem cell therapy is discussed. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Advanced Stirling Convertor (ASC) Technology Maturation

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle

    2015-01-01

    The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center (GRC) with contractor Sunpower Inc. to develop high efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems. Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or Engineering Units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA Engineering Units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F Pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in FY2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical tests at NASA

  8. Advanced Stirling Convertor (ASC) Technology Maturation

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle

    2016-01-01

    The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center with contractor Sunpower, Inc., to develop high-efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems (RPSs). Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or engineering units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA engineering units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in fiscal year 2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical

  9. A novel motif in the yeast mitochondrial dynamin Dnm1 is essential for adaptor binding and membrane recruitment

    PubMed Central

    Bui, Huyen T.; Karren, Mary A.; Bhar, Debjani

    2012-01-01

    To initiate mitochondrial fission, dynamin-related proteins (DRPs) must bind specific adaptors on the outer mitochondrial membrane. The structural features underlying this interaction are poorly understood. Using yeast as a model, we show that the Insert B domain of the Dnm1 guanosine triphosphatase (a DRP) contains a novel motif required for association with the mitochondrial adaptor Mdv1. Mutation of this conserved motif specifically disrupted Dnm1–Mdv1 interactions, blocking Dnm1 recruitment and mitochondrial fission. Suppressor mutations in Mdv1 that restored Dnm1–Mdv1 interactions and fission identified potential protein-binding interfaces on the Mdv1 β-propeller domain. These results define the first known function for Insert B in DRP–adaptor interactions. Based on the variability of Insert B sequences and adaptor proteins, we propose that Insert B domains and mitochondrial adaptors have coevolved to meet the unique requirements for mitochondrial fission of different organisms. PMID:23148233

  10. Regulation of In Vitro and In Vivo Immune Functions by the Cytosolic Adaptor Protein SKAP-HOM

    PubMed Central

    Togni, M.; Swanson, K. D.; Reimann, S.; Kliche, S.; Pearce, A. C.; Simeoni, L.; Reinhold, D.; Wienands, J.; Neel, B. G.; Schraven, B.; Gerber, A.

    2005-01-01

    SKAP-HOM is a cytosolic adaptor protein representing a specific substrate for the Src family protein tyrosine kinase Fyn. Previously, several groups have provided experimental evidence that SKAP-HOM (most likely in cooperation with the cytosolic adaptor protein ADAP) is involved in regulating leukocyte adhesion. To further assess the physiological role of SKAP-HOM, we investigated the immune system of SKAP-HOM-deficient mice. Our data show that T-cell responses towards a variety of stimuli are unaffected in the absence of SKAP-HOM. Similarly, B-cell receptor (BCR)-mediated total tyrosine phosphorylation and phosphorylation of Erk, p38, and JNK, as well as immunoreceptor-mediated Ca2+ responses, are normal in SKAP-HOM−/− animals. However, despite apparently normal membrane-proximal signaling events, BCR-mediated proliferation is strongly attenuated in the absence of SKAP-HOM−/−. In addition, adhesion of activated B cells to fibronectin (a ligand for β1 integrins) as well as to ICAM-1 (a ligand for β2 integrins) is strongly reduced. In vivo, the loss of SKAP-HOM results in a less severe clinical course of experimental autoimmune encephalomyelitis following immunization of mice with the encephalitogenic peptide of MOG (myelin oligodendrocyte glycoprotein). This is accompanied by strongly reduced serum levels of MOG-specific antibodies and lower MOG-specific T-cell responses. In summary, our data suggest that SKAP-HOM is required for proper activation of the immune system, likely by regulating the cross-talk between immunoreceptors and integrins. PMID:16135797

  11. PHF6 Degrees of Separation: The Multifaceted Roles of a Chromatin Adaptor Protein.

    PubMed

    Todd, Matthew A M; Ivanochko, Danton; Picketts, David J

    2015-06-19

    The importance of chromatin regulation to human disease is highlighted by the growing number of mutations identified in genes encoding chromatin remodeling proteins. While such mutations were first identified in severe developmental disorders, or in specific cancers, several genes have been implicated in both, including the plant homeodomain finger protein 6 (PHF6) gene. Indeed, germline mutations in PHF6 are the cause of the Börjeson-Forssman-Lehmann X-linked intellectual disability syndrome (BFLS), while somatic PHF6 mutations have been identified in T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). Studies from different groups over the last few years have made a significant impact towards a functional understanding of PHF6 protein function. In this review, we summarize the current knowledge of PHF6 with particular emphasis on how it interfaces with a distinct set of interacting partners and its functional roles in the nucleoplasm and nucleolus. Overall, PHF6 is emerging as a key chromatin adaptor protein critical to the regulation of neurogenesis and hematopoiesis.

  12. Nck-2, a Novel Src Homology2/3-containing Adaptor Protein That Interacts with the LIM-only Protein PINCH and Components of Growth Factor Receptor Kinase-signaling Pathways

    PubMed Central

    Tu, Yizeng; Li, Fugang; Wu, Chuanyue

    1998-01-01

    Many of the protein–protein interactions that are essential for eukaryotic intracellular signal transduction are mediated by protein binding modules including SH2, SH3, and LIM domains. Nck is a SH3- and SH2-containing adaptor protein implicated in coordinating various signaling pathways, including those of growth factor receptors and cell adhesion receptors. We report here the identification, cloning, and characterization of a widely expressed, Nck-related adaptor protein termed Nck-2. Nck-2 comprises primarily three N-terminal SH3 domains and one C-terminal SH2 domain. We show that Nck-2 interacts with PINCH, a LIM-only protein implicated in integrin-linked kinase signaling. The PINCH-Nck-2 interaction is mediated by the fourth LIM domain of PINCH and the third SH3 domain of Nck-2. Furthermore, we show that Nck-2 is capable of recognizing several key components of growth factor receptor kinase-signaling pathways including EGF receptors, PDGF receptor-β, and IRS-1. The association of Nck-2 with EGF receptors was regulated by EGF stimulation and involved largely the SH2 domain of Nck-2, although the SH3 domains of Nck-2 also contributed to the complex formation. The association of Nck-2 with PDGF receptor-β was dependent on PDGF activation and was mediated solely by the SH2 domain of Nck-2. Additionally, we have detected a stable association between Nck-2 and IRS-1 that was mediated primarily via the second and third SH3 domain of Nck-2. Thus, Nck-2 associates with PINCH and components of different growth factor receptor-signaling pathways via distinct mechanisms. Finally, we provide evidence indicating that a fraction of the Nck-2 and/or Nck-1 proteins are associated with the cytoskeleton. These results identify a novel Nck-related SH2- and SH3-domain–containing protein and suggest that it may function as an adaptor protein connecting the growth factor receptor-signaling pathways with the integrin-signaling pathways. PMID:9843575

  13. Coordination of receptor signaling in multiple hematopoietic cell lineages by the adaptor protein SLP-76.

    PubMed

    Jordan, Martha S; Koretzky, Gary A

    2010-04-01

    The adaptor protein SLP-76 is expressed in multiple hematopoietic lineages including T cells, platelets, and neutrophils. SLP-76 mediated signaling is dependent on its multiple protein interaction domains, as it creates a scaffold on which key signaling complexes are built. SLP-76 is critical for supporting signaling downstream of both immunoreceptors and integrins. The signaling molecules used both upstream and downstream of SLP-76 are similar among these receptors and across cell types; however, important differences exist. Appreciating how SLP-76 coordinates signal transduction across different cell and receptor types provides insights into the complex interplay of pathways critical for activation of cells of the immune system that are essential for host defense.

  14. Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck

    PubMed Central

    Banjade, Sudeep; Wu, Qiong; Mittal, Anuradha; Peeples, William B.; Pappu, Rohit V.; Rosen, Michael K.

    2015-01-01

    The organization of membranes, the cytosol, and the nucleus of eukaryotic cells can be controlled through phase separation of lipids, proteins, and nucleic acids. Collective interactions of multivalent molecules mediated by modular binding domains can induce gelation and phase separation in several cytosolic and membrane-associated systems. The adaptor protein Nck has three SRC-homology 3 (SH3) domains that bind multiple proline-rich segments in the actin regulatory protein neuronal Wiskott-Aldrich syndrome protein (N-WASP) and an SH2 domain that binds to multiple phosphotyrosine sites in the adhesion protein nephrin, leading to phase separation. Here, we show that the 50-residue linker between the first two SH3 domains of Nck enhances phase separation of Nck/N-WASP/nephrin assemblies. Two linear motifs within this element, as well as its overall positively charged character, are important for this effect. The linker increases the driving force for self-assembly of Nck, likely through weak interactions with the second SH3 domain, and this effect appears to promote phase separation. The linker sequence is highly conserved, suggesting that the sequence determinants of the driving forces for phase separation may be generally important to Nck functions. Our studies demonstrate that linker regions between modular domains can contribute to the driving forces for self-assembly and phase separation of multivalent proteins. PMID:26553976

  15. Adaptor Protein Complex 2 (AP-2) Mediated, Clathrin Dependent Endocytosis, And Related Gene Activities, Are A Prominent Feature During Maturation Stage Amelogenesis

    PubMed Central

    LACRUZ, Rodrigo S.; BROOKES, Steven J.; WEN, Xin; JIMENEZ, Jaime M.; VIKMAN, Susanna; HU, Ping; WHITE, Shane N.; LYNGSTADAAS, S. Petter; OKAMOTO, Curtis T.; SMITH, Charles E.; PAINE, Michael L.

    2012-01-01

    Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real time PCR, we show that the expression of clathrin and adaptor protein subunits are up-regulated in maturation stage rodent enamel organ cells. AP-2 is the most up-regulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin dependent endocytosis, thus implying the likelihood of a specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also up-regulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1), cluster of differentiation 63 and 68 (Cd63 and Cd68), ATPase, H+ transporting, lysosomal V0 subunit D2 (Atp6v0d2), ATPase, H+ transporting, lysosomal V1 subunit B2 (Atp6v1b2), chloride channel, voltage-sensitive 7 (Clcn7) and cathepsin K (Ctsk). Immunohistological data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain® showed up-regulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor regulated pathway for the endocytosis of enamel matrix proteins. These data together

  16. Artemisinin resistance in rodent malaria - mutation in the AP2 adaptor μ-chain suggests involvement of endocytosis and membrane protein trafficking

    PubMed Central

    2013-01-01

    Background The control of malaria, caused by Plasmodium falciparum, is hampered by the relentless evolution of drug resistance. Because artemisinin derivatives are now used in the most effective anti-malarial therapy, resistance to artemisinin would be catastrophic. Indeed, studies suggest that artemisinin resistance has already appeared in natural infections. Understanding the mechanisms of resistance would help to prolong the effective lifetime of these drugs. Genetic markers of resistance are therefore required urgently. Previously, a mutation in a de-ubiquitinating enzyme was shown to confer artemisinin resistance in the rodent malaria parasite Plasmodium chabaudi. Methods Here, for a mutant P. chabaudi malaria parasite and its immediate progenitor, the in vivo artemisinin resistance phenotypes and the mutations arising using Illumina whole-genome re-sequencing were compared. Results An increased artemisinin resistance phenotype is accompanied by one non-synonymous substitution. The mutated gene encodes the μ-chain of the AP2 adaptor complex, a component of the endocytic machinery. Homology models indicate that the mutated residue interacts with a cargo recognition sequence. In natural infections of the human malaria parasite P. falciparum, 12 polymorphisms (nine SNPs and three indels) were identified in the orthologous gene. Conclusion An increased artemisinin-resistant phenotype occurs along with a mutation in a functional element of the AP2 adaptor protein complex. This suggests that endocytosis and trafficking of membrane proteins may be involved, generating new insights into possible mechanisms of resistance. The genotypes of this adaptor protein can be evaluated for its role in artemisinin responses in human infections of P. falciparum. PMID:23561245

  17. T cell specific adaptor protein (TSAd) promotes interaction of Nck with Lck and SLP-76 in T cells.

    PubMed

    Hem, Cecilie Dahl; Sundvold-Gjerstad, Vibeke; Granum, Stine; Koll, Lise; Abrahamsen, Greger; Buday, Laszlo; Spurkland, Anne

    2015-07-11

    The Lck and Src binding adaptor protein TSAd (T cell specific adaptor) regulates actin polymerization in T cells and endothelial cells. The molecular details as to how TSAd regulates this process remain to be elucidated. To identify novel interaction partners for TSAd, we used a scoring matrix-assisted ligand algorithm (SMALI), and found that the Src homology 2 (SH2) domain of the actin regulator Non-catalytic region of tyrosine kinase adaptor protein (Nck) potentially binds to TSAd phosphorylated on Tyr(280) (pTyr(280)) and pTyr(305). These predictions were confirmed by peptide array analysis, showing direct binding of recombinant Nck SH2 to both pTyr(280) and pTyr(305) on TSAd. In addition, the SH3 domains of Nck interacted with the proline rich region (PRR) of TSAd. Pull-down and immunoprecipitation experiments further confirmed the Nck-TSAd interactions through Nck SH2 and SH3 domains. In line with this Nck and TSAd co-localized in Jurkat cells as assessed by confocal microscopy and imaging flow cytometry. Co-immunoprecipitation experiments in Jurkat TAg cells lacking TSAd revealed that TSAd promotes interaction of Nck with Lck and SLP-76, but not Vav1. TSAd expressing Jurkat cells contained more polymerized actin, an effect dependent on TSAd exon 7, which includes interactions sites for both Nck and Lck. TSAd binds to and co-localizes with Nck. Expression of TSAd increases both Nck-Lck and Nck-SLP-76 interaction in T cells. Recruitment of Lck and SLP-76 to Nck by TSAd could be one mechanism by which TSAd promotes actin polymerization in activated T cells.

  18. Phosphorylation-Dependent Regulation of the DNA Damage Response of Adaptor Protein KIBRA in Cancer Cells.

    PubMed

    Mavuluri, Jayadev; Beesetti, Swarnalatha; Surabhi, Rohan; Kremerskothen, Joachim; Venkatraman, Ganesh; Rayala, Suresh K

    2016-05-01

    Multifunctional adaptor proteins encompassing various protein-protein interaction domains play a central role in the DNA damage response pathway. In this report, we show that KIBRA is a physiologically interacting reversible substrate of ataxia telangiectasia mutated (ATM) kinase. We identified the site of phosphorylation in KIBRA as threonine 1006, which is embedded within the serine/threonine (S/T) Q consensus motif, by site-directed mutagenesis, and we further confirmed the same with a phospho-(S/T) Q motif-specific antibody. Results from DNA repair functional assays such as the γ-H2AX assay, pulsed-field gel electrophoresis (PFGE), Comet assay, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay, and clonogenic cell survival assay using stable overexpression clones of wild-type (wt.) KIBRA and active (T1006E) and inactive (T1006A) KIBRA phosphorylation mutants showed that T1006 phosphorylation on KIBRA is essential for optimal DNA double-strand break repair in cancer cells. Further, results from stable retroviral short hairpin RNA-mediated knockdown (KD) clones of KIBRA and KIBRA knockout (KO) model cells generated by a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system showed that depleting KIBRA levels compromised the DNA repair functions in cancer cells upon inducing DNA damage. All these phenotypic events were reversed upon reconstitution of KIBRA into cells lacking KIBRA knock-in (KI) model cells. All these results point to the fact that phosphorylated KIBRA might be functioning as a scaffolding protein/adaptor protein facilitating the platform for further recruitment of other DNA damage response factors. In summary, these data demonstrate the imperative functional role of KIBRAper se(KIBRA phosphorylation at T1006 site as a molecular switch that regulates the DNA damage response, possibly via the nonhomologous end joining [NHEJ] pathway), suggesting that KIBRA could be a potential

  19. The adaptor protein SLP-76 regulates HIV-1 release and cell to cell transmission in T-cells

    PubMed Central

    Nagaraja, Tirumuru; Anand, Appakkudal R.; Zhao, Helong; Ganju, Ramesh K.

    2014-01-01

    HIV-1 infection in T-cells is regulated by T-cell receptor (TCR) activation. However, the cellular proteins of the TCR pathway that regulate HIV-1 infection are poorly characterized. Here, we elucidated the role of SLP-76, a key adaptor protein of the TCR signaling complex, in HIV-1 infection. We observed a significant reduction of HIV-1 virus production in SLP-76-deficient Jurkat T-cells compared to wild-type and SLP-76-reconstituted Jurkat T-cells. We further confirmed the role of SLP-76 in HIV-1 infection by siRNA-mediated knockdown in MT4 cells and PBMCs. Structural-functional analysis revealed that the amino-terminal domain of SLP-76 was important for regulating HIV-1 infection. Further mechanistic studies revealed that lack of SLP-76 impaired virus release, but did not affect viral entry, integration and transcription. We also showed that SLP-76 plays a critical role in cell-to-cell transmission of HIV-1. Signaling studies revealed that SLP-76 associated with viral Nef protein and multiple signaling molecules during HIV-1 infection. Furthermore, SLP-76 facilitated the association of Nef and F-actin, suggesting that SLP-76 mediates the formation of a signaling complex that may regulate viral release via cytoskeletal changes. Taken together, our studies demonstrate a novel role for the adaptor molecule, SLP-76 in regulating HIV-1 infection in T-cells with potential to develop innovative strategies against HIV-1. PMID:22323535

  20. ASC Small Business Office

    DTIC Science & Technology

    2006-05-23

    Aeronautical Systems Center Dominant Air Power: Design For Tomorrow…Deliver Today ASC Small Business Office 23 May 2006 Teresa Rendon ASC/BC...1. REPORT DATE 23 MAY 2006 2. REPORT TYPE 3. DATES COVERED 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE ASC Small Business Office 5a...Limitation on Subcontracting • Teaming • Source Selection of Small Business Participation • Role of the Small Business Office • Questions 3 Dominant Air

  1. Stargazin regulates AMPA receptor trafficking through adaptor protein complexes during long-term depression

    NASA Astrophysics Data System (ADS)

    Matsuda, Shinji; Kakegawa, Wataru; Budisantoso, Timotheus; Nomura, Toshihiro; Kohda, Kazuhisa; Yuzaki, Michisuke

    2013-11-01

    Long-term depression (LTD) underlies learning and memory in various brain regions. Although postsynaptic AMPA receptor trafficking mediates LTD, its underlying molecular mechanisms remain largely unclear. Here we show that stargazin, a transmembrane AMPA receptor regulatory protein, forms a ternary complex with adaptor proteins AP-2 and AP-3A in hippocampal neurons, depending on its phosphorylation state. Inhibiting the stargazin-AP-2 interaction disrupts NMDA-induced AMPA receptor endocytosis, and inhibiting that of stargazin-AP-3A abrogates the late endosomal/lysosomal trafficking of AMPA receptors, thereby upregulating receptor recycling to the cell surface. Similarly, stargazin’s interaction with AP-2 or AP-3A is necessary for low-frequency stimulus-evoked LTD in CA1 hippocampal neurons. Thus, stargazin has a crucial role in NMDA-dependent LTD by regulating two trafficking pathways of AMPA receptors—transport from the cell surface to early endosomes and from early endosomes to late endosomes/lysosomes—through its sequential binding to AP-2 and AP-3A.

  2. Parallel SCF Adaptor Capture Proteomics Reveals a Role for SCFFBXL17 in NRF2 Activation via BACH1 Repressor Turnover

    PubMed Central

    Tan, Meng-Kwang Marcus; Lim, Hui-Jun; Bennett, Eric J.; Shi, Yang; Harper, J. Wade

    2014-01-01

    Modular Cullin-RING E3 ubiquitin ligases (CRLs) use substrate binding adaptor proteins to specify target ubiquitylation. Many of the ~200 human CRL adaptor proteins remain poorly studied due to a shortage of efficient methods to identify biologically relevant substrates. Here, we report the development of Parallel Adaptor Capture (PAC) proteomics, and its use to systematically identify candidate targets for the leucine-rich repeat family of F-box proteins (FBXLs) that function with SKP1-CUL1-F-box protein (SCF) E3s. In validation experiments, we identify the unstudied F-box protein FBXL17 as a regulator of the NFR2 oxidative stress pathway. We demonstrate that FBXL17 controls the transcription of the NRF2 target HMOX1 via turnover of the transcriptional repressor BACH1 in the absence or presence of extrinsic oxidative stress. This work identifies a role for SCFFBXL17 in controlling the threshold for NRF2-dependent gene activation and provides a framework for elucidating the functions of CRL adaptor proteins. PMID:24035498

  3. Parallel SCF adaptor capture proteomics reveals a role for SCFFBXL17 in NRF2 activation via BACH1 repressor turnover.

    PubMed

    Tan, Meng-Kwang Marcus; Lim, Hui-Jun; Bennett, Eric J; Shi, Yang; Harper, J Wade

    2013-10-10

    Modular cullin-RING E3 ubiquitin ligases (CRLs) use substrate binding adaptor proteins to specify target ubiquitylation. Many of the ~200 human CRL adaptor proteins remain poorly studied due to a shortage of efficient methods to identify biologically relevant substrates. Here, we report the development of parallel adaptor capture (PAC) proteomics and its use to systematically identify candidate targets for the leucine-rich repeat family of F-box proteins (FBXLs) that function with SKP1-CUL1-F-box protein (SCF) E3s. In validation experiments, we identify the unstudied F-box protein FBXL17 as a regulator of the NFR2 oxidative stress pathway. We demonstrate that FBXL17 controls the transcription of the NRF2 target HMOX1 via turnover of the transcriptional repressor BACH1 in the absence or presence of extrinsic oxidative stress. This work identifies a role for SCF(FBXL17) in controlling the threshold for NRF2-dependent gene activation and provides a framework for elucidating the functions of CRL adaptor proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein.

    PubMed

    He, X; Li, Y; Schembri-King, J; Jakes, S; Hayashi, J

    2000-08-01

    Human Lnk (hLnk) is an adaptor protein with multiple functional domains that regulates T cell activation signaling. In order to identify cellular Lnk binding partners, a yeast two-hybrid screening of human spleen cDNA library was carried out using human hLnk as bait. A polypeptide sequence identical to the C-terminal segment of the actin binding protein (ABP-280) was identified as a hLnk binding protein. The expressed hLnk and the FLAG tagged C-terminal 673 amino acid residues of ABP-280 or the endogenous ABP-280 in COS-7 cells could be co-immunoprecipitated using antibodies either to hLnk, FLAG or ABP-280, respectively. Furthermore, immunofluorescence confocal microscope showed that hLnk and ABP-280 co-localized at the plasma membrane and at juxtanuclear region of COS-7 cells. In Jurkat cells, the endogenous hLnk also associates with the endogenous ABP-280 indicating that the association of these two proteins is physiological. The interacting domains of both proteins were mapped using yeast two-hybrid assays. Our results indicate that hLnk binds to the residues 2006-2454 (repeats 19-23C) of ABP-280. The domain in hLnk that associates with ABP-280 was mapped to an interdomain region of 56 amino acids between pleckstrin homology and Src homology 2 domains. These results suggest that hLnk may exert its regulatory role through its association with ABP-280.

  5. Scaffold Functions of 14-3-3 Adaptors in B Cell Immunoglobulin Class Switch DNA Recombination

    PubMed Central

    White, Clayton A.; Li, Guideng; Pone, Egest J.; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5′-AGCT-3′ repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S–S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180–198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR. PMID:24282540

  6. SRC-like adaptor protein regulates B cell development and function.

    PubMed

    Dragone, Leonard L; Myers, Margaret D; White, Carmen; Sosinowski, Tomasz; Weiss, Arthur

    2006-01-01

    The avidity of BCRs and TCRs influences signal strength during processes of lymphocyte development. Avidity is determined by both the intrinsic affinity for Ag and surface levels of the Ag receptor. The Src-like adaptor protein (SLAP) is a regulator of TCR levels on thymocytes, and its deficiency alters thymocyte development. We hypothesized that SLAP, which is expressed in B cells, also is important in regulating BCR levels, signal strength, and B cell development. To test this hypothesis, we analyzed the B cell compartment in SLAP-deficient mice. We found increased splenic B cell numbers and decreased surface IgM levels on mature, splenic B cells deficient in SLAP. Immature bone marrow and splenic B cells from BCR-transgenic, SLAP-deficient mice were found to express higher surface levels of IgM. In contrast, mature splenic B cells from BCR-transgenic mice expressed decreased levels of surface BCR associated with decreased calcium flux and activation-induced markers, compared with controls. These data suggest that SLAP regulates BCR levels and signal strength during lymphocyte development.

  7. Mutations in the gene encoding the Sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation.

    PubMed

    Tarpey, Patrick S; Stevens, Claire; Teague, Jon; Edkins, Sarah; O'Meara, Sarah; Avis, Tim; Barthorpe, Syd; Buck, Gemma; Butler, Adam; Cole, Jennifer; Dicks, Ed; Gray, Kristian; Halliday, Kelly; Harrison, Rachel; Hills, Katy; Hinton, Jonathon; Jones, David; Menzies, Andrew; Mironenko, Tatiana; Perry, Janet; Raine, Keiran; Richardson, David; Shepherd, Rebecca; Small, Alexandra; Tofts, Calli; Varian, Jennifer; West, Sofie; Widaa, Sara; Yates, Andy; Catford, Rachael; Butler, Julia; Mallya, Uma; Moon, Jenny; Luo, Ying; Dorkins, Huw; Thompson, Deborah; Easton, Douglas F; Wooster, Richard; Bobrow, Martin; Carpenter, Nancy; Simensen, Richard J; Schwartz, Charles E; Stevenson, Roger E; Turner, Gillian; Partington, Michael; Gecz, Jozef; Stratton, Michael R; Futreal, P Andrew; Raymond, F Lucy

    2006-12-01

    In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the three XLMR-affected families, and such defects may plausibly cause abnormal synaptic development and function. AP1S2 is the first reported XLMR gene that encodes a protein directly involved in the assembly of endocytic vesicles.

  8. Crystal Structures and Thermodynamic Analysis Reveal Distinct Mechanisms of CD28 Phosphopeptide Binding to the Src Homology 2 (SH2) Domains of Three Adaptor Proteins*

    PubMed Central

    Inaba, Satomi; Numoto, Nobutaka; Ogawa, Shuhei; Morii, Hisayuki; Ikura, Teikichi; Abe, Ryo; Ito, Nobutoshi; Oda, Masayuki

    2017-01-01

    Full activation of T cells and differentiation into effector T cells are essential for many immune responses and require co-stimulatory signaling via the CD28 receptor. Extracellular ligand binding to CD28 recruits protein-tyrosine kinases to its cytoplasmic tail, which contains a YMNM motif. Following phosphorylation of the tyrosine, the proteins growth factor receptor-bound protein 2 (Grb2), Grb2-related adaptor downstream of Shc (Gads), and p85 subunit of phosphoinositide 3-kinase may bind to pYMNM (where pY is phosphotyrosine) via their Src homology 2 (SH2) domains, leading to downstream signaling to distinct immune pathways. These three adaptor proteins bind to the same site on CD28 with variable affinity, and all are important for CD28-mediated co-stimulatory function. However, the mechanism of how these proteins recognize and compete for CD28 is unclear. To visualize their interactions with CD28, we have determined the crystal structures of Gads SH2 and two p85 SH2 domains in complex with a CD28-derived phosphopeptide. The high resolution structures obtained revealed that, whereas the CD28 phosphopeptide bound to Gads SH2 is in a bent conformation similar to that when bound to Grb2 SH2, it adopts a more extended conformation when bound to the N- and C-terminal SH2 domains of p85. These differences observed in the peptide-protein interactions correlated well with the affinity and other thermodynamic parameters for each interaction determined by isothermal titration calorimetry. The detailed insight into these interactions reported here may inform the development of compounds that specifically inhibit the association of CD28 with these adaptor proteins to suppress excessive T cell responses, such as in allergies and autoimmune diseases. PMID:27927989

  9. Crystal Structures and Thermodynamic Analysis Reveal Distinct Mechanisms of CD28 Phosphopeptide Binding to the Src Homology 2 (SH2) Domains of Three Adaptor Proteins.

    PubMed

    Inaba, Satomi; Numoto, Nobutaka; Ogawa, Shuhei; Morii, Hisayuki; Ikura, Teikichi; Abe, Ryo; Ito, Nobutoshi; Oda, Masayuki

    2017-01-20

    Full activation of T cells and differentiation into effector T cells are essential for many immune responses and require co-stimulatory signaling via the CD28 receptor. Extracellular ligand binding to CD28 recruits protein-tyrosine kinases to its cytoplasmic tail, which contains a YMNM motif. Following phosphorylation of the tyrosine, the proteins growth factor receptor-bound protein 2 (Grb2), Grb2-related adaptor downstream of Shc (Gads), and p85 subunit of phosphoinositide 3-kinase may bind to pYMNM (where pY is phosphotyrosine) via their Src homology 2 (SH2) domains, leading to downstream signaling to distinct immune pathways. These three adaptor proteins bind to the same site on CD28 with variable affinity, and all are important for CD28-mediated co-stimulatory function. However, the mechanism of how these proteins recognize and compete for CD28 is unclear. To visualize their interactions with CD28, we have determined the crystal structures of Gads SH2 and two p85 SH2 domains in complex with a CD28-derived phosphopeptide. The high resolution structures obtained revealed that, whereas the CD28 phosphopeptide bound to Gads SH2 is in a bent conformation similar to that when bound to Grb2 SH2, it adopts a more extended conformation when bound to the N- and C-terminal SH2 domains of p85. These differences observed in the peptide-protein interactions correlated well with the affinity and other thermodynamic parameters for each interaction determined by isothermal titration calorimetry. The detailed insight into these interactions reported here may inform the development of compounds that specifically inhibit the association of CD28 with these adaptor proteins to suppress excessive T cell responses, such as in allergies and autoimmune diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Adaptor protein complexes-1 and 3 are involved at distinct stages of flavivirus life-cycle

    PubMed Central

    Agrawal, Tanvi; Schu, Peter; Medigeshi, Guruprasad R.

    2013-01-01

    Intracellular protein trafficking pathways are hijacked by viruses at various stages of viral life-cycle. Heterotetrameric adaptor protein complexes (APs) mediate vesicular trafficking at distinct intracellular sites and are essential for maintaining the organellar homeostasis. In the present study, we studied the effect of AP-1 and AP-3 deficiency on flavivirus infection in cells functionally lacking these proteins. We show that AP-1 and AP-3 participate in flavivirus life-cycle at distinct stages. AP-3-deficient cells showed delay in initiation of Japanese encephalitis virus and dengue virus RNA replication, which resulted in reduction of infectious virus production. AP-3 was found to colocalize with RNA replication compartments in infected wild-type cells. AP-1 deficiency affected later stages of dengue virus infection where increased intracellular accumulation of infectious virus was observed. Therefore, our results propose a novel role for AP-1 and AP-3 at distinct stages of infection of some of the RNA viruses. PMID:23657274

  11. Adaptor protein complexes-1 and 3 are involved at distinct stages of flavivirus life-cycle.

    PubMed

    Agrawal, Tanvi; Schu, Peter; Medigeshi, Guruprasad R

    2013-01-01

    Intracellular protein trafficking pathways are hijacked by viruses at various stages of viral life-cycle. Heterotetrameric adaptor protein complexes (APs) mediate vesicular trafficking at distinct intracellular sites and are essential for maintaining the organellar homeostasis. In the present study, we studied the effect of AP-1 and AP-3 deficiency on flavivirus infection in cells functionally lacking these proteins. We show that AP-1 and AP-3 participate in flavivirus life-cycle at distinct stages. AP-3-deficient cells showed delay in initiation of Japanese encephalitis virus and dengue virus RNA replication, which resulted in reduction of infectious virus production. AP-3 was found to colocalize with RNA replication compartments in infected wild-type cells. AP-1 deficiency affected later stages of dengue virus infection where increased intracellular accumulation of infectious virus was observed. Therefore, our results propose a novel role for AP-1 and AP-3 at distinct stages of infection of some of the RNA viruses.

  12. HIP1 functions in clathrin-mediated endocytosis through binding to clathrin and adaptor protein 2.

    PubMed

    Metzler, M; Legendre-Guillemin, V; Gan, L; Chopra, V; Kwok, A; McPherson, P S; Hayden, M R

    2001-10-19

    Polyglutamine expansion in huntingtin is the underlying mutation leading to neurodegeneration in Huntington disease. This mutation influences the interaction of huntingtin with different proteins, including huntingtin-interacting protein 1 (HIP1), in which affinity to bind to mutant huntingtin is profoundly reduced. Here we demonstrate that HIP1 colocalizes with markers of clathrin-mediated endocytosis in neuronal cells and is highly enriched on clathrin-coated vesicles (CCVs) purified from brain homogenates. HIP1 binds to the clathrin adaptor protein 2 (AP2) and the terminal domain of the clathrin heavy chain, predominantly through a small fragment encompassing amino acids 276-335. This region, which contains consensus clathrin- and AP2-binding sites, functions in conjunction with the coiled-coil domain to target HIP1 to CCVs. Expression of various HIP1 fragments leads to a potent block of clathrin-mediated endocytosis. Our findings demonstrate that HIP1 is a novel component of the endocytic machinery.

  13. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52

    NASA Astrophysics Data System (ADS)

    Jo, Chulman; Gundemir, Soner; Pritchard, Susanne; Jin, Youngnam N.; Rahman, Irfan; Johnson, Gail V. W.

    2014-03-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor in the defence against oxidative stress. Here we provide evidence that activation of the Nrf2 pathway reduces the levels of phosphorylated tau by induction of an autophagy adaptor protein NDP52 (also known as CALCOCO2) in neurons. The expression of NDP52, which we show has three antioxidant response elements (AREs) in its promoter region, is strongly induced by Nrf2, and its overexpression facilitates clearance of phosphorylated tau in the presence of an autophagy stimulator. In Nrf2-knockout mice, phosphorylated and sarkosyl-insoluble tau accumulates in the brains concurrent with decreased levels of NDP52. Moreover, NDP52 associates with phosphorylated tau from brain cortical samples of Alzheimer disease cases, and the amount of phosphorylated tau in sarkosyl-insoluble fractions is inversely proportional to that of NDP52. These results suggest that NDP52 plays a key role in autophagy-mediated degradation of phosphorylated tau in vivo.

  14. Advanced Stirling Convertor (ASC) Development for NASA RPS

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh

    2014-01-01

    Sunpower's Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center (GRC) and after a series of successful demonstrations, the ASC began transitioning from a technology development project to flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the U.S. In recent years, the ASC became part of the NASA-Department of Energy Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASC convertors, one with the Department of Energy/Lockheed Martin to produce the ASC-F flight convertors, and one with NASA GRC for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flight-like ASC-E3 by 2013. However, in late Fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at GRC, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  15. Adaptor assembly for coupling turbine blades to rotor disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell

    2014-09-23

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is described. The adaptor assembly includes a turbine blade having a blade root and an adaptor body having an adaptor root. The adaptor body defines a slot having an open end configured to receive the blade root of the turbine blade such that the adaptor root of the adaptor body and the blade root of the turbine blade are adjacent to one another when the blade root of the turbine blade is positioned within the slot. Both the adaptor rootmore » of the adaptor body and the blade root of the turbine blade are configured to be received within the root slot of the rotor disk.« less

  16. Adaptor Protein Complex-2 (AP-2) and Epsin-1 Mediate Protease-activated Receptor-1 Internalization via Phosphorylation- and Ubiquitination-dependent Sorting Signals*

    PubMed Central

    Chen, Buxin; Dores, Michael R.; Grimsey, Neil; Canto, Isabel; Barker, Breann L.; Trejo, JoAnn

    2011-01-01

    Signaling by protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is regulated by desensitization and internalization. PAR1 desensitization is mediated by β-arrestins, like most classic GPCRs. In contrast, internalization of PAR1 occurs through a clathrin- and dynamin-dependent pathway independent of β-arrestins. PAR1 displays two modes of internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), where the μ2-adaptin subunit binds directly to a tyrosine-based motif localized within the receptor C-tail domain. However, AP-2 depletion only partially inhibits agonist-induced internalization of PAR1, suggesting a function for other clathrin adaptors in this process. Here, we now report that AP-2 and epsin-1 are both critical mediators of agonist-stimulated PAR1 internalization. We show that ubiquitination of PAR1 and the ubiquitin-interacting motifs of epsin-1 are required for epsin-1-dependent internalization of activated PAR1. In addition, activation of PAR1 promotes epsin-1 de-ubiquitination, which may increase its endocytic adaptor activity to facilitate receptor internalization. AP-2 also regulates activated PAR1 internalization via recognition of distal C-tail phosphorylation sites rather than the canonical tyrosine-based motif. Thus, AP-2 and epsin-1 are both required to promote efficient internalization of activated PAR1 and recognize discrete receptor sorting signals. This study defines a new pathway for internalization of mammalian GPCRs. PMID:21965661

  17. Protein kinase A-induced internalization of Slack channels from the neuronal membrane occurs by adaptor protein-2/clathrin-mediated endocytosis.

    PubMed

    Gururaj, Sushmitha; Evely, Katherine M; Pryce, Kerri D; Li, Jun; Qu, Jun; Bhattacharjee, Arin

    2017-11-24

    The sodium-activated potassium (K Na ) channel Kcnt1 (Slack) is abundantly expressed in nociceptor (pain-sensing) neurons of the dorsal root ganglion (DRG), where they transmit the large outward conductance I KNa and arbitrate membrane excitability. Slack channel expression at the DRG membrane is necessary for their characteristic firing accommodation during maintained stimulation, and reduced membrane channel density causes hyperexcitability. We have previously shown that in a pro-inflammatory state, a decrease in membrane channel expression leading to reduced Slack-mediated I KNa expression underlies DRG neuronal sensitization. An important component of the inflammatory milieu, PKA internalizes Slack channels from the DRG membrane, reduces I KNa , and produces DRG neuronal hyperexcitability when activated in cultured primary DRG neurons. Here, we show that this PKA-induced retrograde trafficking of Slack channels also occurs in intact spinal cord slices and that it is carried out by adaptor protein-2 (AP-2) via clathrin-mediated endocytosis. We provide mass spectrometric and biochemical evidence of an association of native neuronal AP-2 adaptor proteins with Slack channels, facilitated by a dileucine motif housed in the cytoplasmic Slack C terminus that binds AP-2. By creating a competitive peptide blocker of AP-2-Slack binding, we demonstrated that this interaction is essential for clathrin recruitment to the DRG membrane, Slack channel endocytosis, and DRG neuronal hyperexcitability after PKA activation. Together, these findings uncover AP-2 and clathrin as players in Slack channel regulation. Given the significant role of Slack in nociceptive neuronal excitability, the AP-2 clathrin-mediated endocytosis trafficking mechanism may enable targeting of peripheral and possibly, central neuronal sensitization. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. The Caenorhabditis elegans EGL-15 Signaling Pathway Implicates a DOS-Like Multisubstrate Adaptor Protein in Fibroblast Growth Factor Signal Transduction

    PubMed Central

    Schutzman, Jennifer L.; Borland, Christina Z.; Newman, John C.; Robinson, Matthew K.; Kokel, Michelle; Stern, Michael J.

    2001-01-01

    EGL-15 is a fibroblast growth factor receptor in the nematode Caenorhabditis elegans. Components that mediate EGL-15 signaling have been identified via mutations that confer a Clear (Clr) phenotype, indicative of hyperactivity of this pathway, or a suppressor-of-Clr (Soc) phenotype, indicative of reduced pathway activity. We have isolated a gain-of-function allele of let-60 ras that confers a Clr phenotype and implicated both let-60 ras and components of a mitogen-activated protein kinase cascade in EGL-15 signaling by their Soc phenotype. Epistasis analysis indicates that the gene soc-1 functions in EGL-15 signaling by acting either upstream of or independently of LET-60 RAS. soc-1 encodes a multisubstrate adaptor protein with an amino-terminal pleckstrin homology domain that is structurally similar to the DOS protein in Drosophila and mammalian GAB1. DOS is known to act with the cytoplasmic tyrosine phosphatase Corkscrew (CSW) in signaling pathways in Drosophila. Similarly, the C. elegans CSW ortholog PTP-2 was found to be involved in EGL-15 signaling. Structure-function analysis of SOC-1 and phenotypic analysis of single and double mutants are consistent with a model in which SOC-1 and PTP-2 act together in a pathway downstream of EGL-15 and the Src homology domain 2 (SH2)/SH3-adaptor protein SEM-5/GRB2 contributes to SOC-1-independent activities of EGL-15. PMID:11689700

  19. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that it...

  20. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that it...

  1. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that it...

  2. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that it...

  3. Losses, Expansions, and Novel Subunit Discovery of Adaptor Protein Complexes in Haptophyte Algae.

    PubMed

    Lee, Laura J Y; Klute, Mary J; Herman, Emily K; Read, Betsy; Dacks, Joel B

    2015-11-01

    The phylum Haptophyta (Diaphoratickes) contains marine algae that perform biomineralization, extruding large, distinctive calcium carbonate scales (coccoliths) that completely cover the cell. Coccolith production is an important part of global carbon cycling; however, the membrane trafficking pathway by which they are secreted has not yet been elucidated. In most eukaryotes, post-Golgi membrane trafficking involves five heterotetrameric adaptor protein (AP) complexes, which impart cargo selection specificity. To better understand coccolith secretion, we performed comparative genomic, phylogenetic, and transcriptomic analyses of the AP complexes in Emiliania huxleyi strains 92A, Van556, EH2, and CCMP1516, and related haptophytes Gephyrocapsa oceanica and Isochrysis galbana; the latter has lost the ability to biomineralize. We show that haptophytes have a modified membrane trafficking system (MTS), as we found both AP subunit losses and duplications. Additionally, we identified a single conserved subunit of the AP-related TSET complex, whose expression suggests a functional role in membrane trafficking. Finally, we detected novel alpha adaptin ear and gamma adaptin ear proteins, the first of their kind to be described outside of opisthokonts. These novel ear proteins and the sculpting of the MTS may support the capacity for biomineralization in haptophytes, enhancing their ability to perform this highly specialized form of secretion. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Conformational changes in the AAA ATPase p97–p47 adaptor complex

    PubMed Central

    Beuron, Fabienne; Dreveny, Ingrid; Yuan, Xuemei; Pye, Valerie E; Mckeown, Ciaran; Briggs, Louise C; Cliff, Matthew J; Kaneko, Yayoi; Wallis, Russell; Isaacson, Rivka L; Ladbury, John E; Matthews, Steve J; Kondo, Hisao; Zhang, Xiaodong; Freemont, Paul S

    2006-01-01

    The AAA+ATPase p97/VCP, helped by adaptor proteins, exerts its essential role in cellular events such as endoplasmic reticulum-associated protein degradation or the reassembly of Golgi, ER and the nuclear envelope after mitosis. Here, we report the three-dimensional cryo-electron microscopy structures at ∼20 Å resolution in two nucleotide states of the endogenous hexameric p97 in complex with a recombinant p47 trimer, one of the major p97 adaptor proteins involved in membrane fusion. Depending on the nucleotide state, we observe the p47 trimer to be in two distinct arrangements on top of the p97 hexamer. By combining the EM data with NMR and other biophysical measurements, we propose a model of ATP-dependent p97(N) domain motions that lead to a rearrangement of p47 domains, which could result in the disassembly of target protein complexes. PMID:16601695

  5. mda-9/Syntenin protein positively regulates the activation of Akt protein by facilitating integrin-linked kinase adaptor function during adhesion to type I collagen.

    PubMed

    Hwangbo, Cheol; Park, Juhee; Lee, Jeong-Hyung

    2011-09-23

    The integrin-linked kinase (ILK)-PINCH1-α-parvin (IPP) complex functions as a signaling platform for integrins that modulates various cellular processes. ILK functions as a central adaptor for the assembly of IPP complex. We report here that mda-9/syntenin, a positive regulator of cancer metastasis, regulates the activation of Akt (also known as protein kinase B) by facilitating ILK adaptor function during adhesion to type I collagen (COL-I) in human breast cancer cells. COL-I stimulation induced the phosphorylation and plasma membrane translocation of Akt. Inhibition of mda-9/syntenin or expression of mutant ILK (E359K) significantly blocked the translocation of both ILK and Akt to the plasma membrane. mda-9/syntenin associated with ILK, and this association was increased at the plasma membrane by COL-I stimulation. Knockdown of mda-9/syntenin impaired COL-I-induced association of ILK with Akt and plasma membrane targeting of ILK-Akt complex. These results demonstrated that mda-9/syntenin regulates the activation of Akt by controlling the plasma membrane targeting of Akt via a mechanism that facilitates the association of Akt with ILK at the plasma membrane during adhesion to COL-I. On a striking note, inhibition of mda-9/syntenin impaired COL-I-induced plasma membrane translocation of the IPP complex and assembly of integrin β1-IPP signaling complexes. Thus, our study defines the role of mda-9/syntenin in ILK adaptor function and describes a new mechanism of mda-9/syntenin for regulation of cell migration.

  6. Detection of Inflammasome Activation and Pyroptotic Cell Death in Murine Bone Marrow-derived Macrophages.

    PubMed

    den Hartigh, Andreas B; Fink, Susan L

    2018-05-21

    Inflammasomes are innate immune signaling platforms that are required for the successful control of many pathogenic organisms, but also promote inflammatory and autoinflammatory diseases. Inflammasomes are activated by cytosolic pattern recognition receptors, including members of the NOD-like receptor (NLR) family. These receptors oligomerize upon the detection of microbial or damage-associated stimuli. Subsequent recruitment of the adaptor protein ASC forms a microscopically visible inflammasome complex, which activates caspase-1 through proximity-induced auto-activation. Following the activation, caspase-1 cleaves pro-IL-1β and pro-IL-18, leading to the activation and secretion of these pro-inflammatory cytokines. Caspase-1 also mediates the inflammatory form of cell death termed pyroptosis, which features the loss of membrane integrity and cell lysis. Caspase-1 cleaves gasdermin D, releasing the N-terminal fragment which forms plasma membrane pores, leading to osmotic lysis. In vitro, the activation of caspase-1 can be determined by labeling bone marrow-derived macrophages with the caspase-1 activity probe FAM-YVAD-FMK and by labeling the cells with antibodies against the adaptor protein ASC. This technique allows the identification of inflammasome formation and caspase-1 activation in individual cells using fluorescence microscopy. Pyroptotic cell death can be detected by measuring the release of cytosolic lactate dehydrogenase into the medium. This procedure is simple, cost effective and performed in a 96-well plate format, allowing adaptation for screening. In this manuscript, we show that activation of the NLRP3 inflammasome by nigericin leads to the co-localization of the adaptor protein ASC and active caspase-1, leading to pyroptosis.

  7. Adaptor protein 2–mediated endocytosis of the β-secretase BACE1 is dispensable for amyloid precursor protein processing

    PubMed Central

    Prabhu, Yogikala; Burgos, Patricia V.; Schindler, Christina; Farías, Ginny G.; Magadár, Javier G.; Bonifacino, Juan S.

    2012-01-01

    The β-site amyloid precursor protein (APP)–cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease that catalyzes the proteolytic processing of APP and other plasma membrane protein precursors. BACE1 cycles between the trans-Golgi network (TGN), the plasma membrane, and endosomes by virtue of signals contained within its cytosolic C-terminal domain. One of these signals is the DXXLL-motif sequence DISLL, which controls transport between the TGN and endosomes via interaction with GGA proteins. Here we show that the DISLL sequence is embedded within a longer [DE]XXXL[LI]-motif sequence, DDISLL, which mediates internalization from the plasma membrane by interaction with the clathrin-associated, heterotetrameric adaptor protein 2 (AP-2) complex. Mutation of this signal or knockdown of either AP-2 or clathrin decreases endosomal localization and increases plasma membrane localization of BACE1. Remarkably, internalization-defective BACE1 is able to cleave an APP mutant that itself cannot be delivered to endosomes. The drug brefeldin A reversibly prevents BACE1-catalyzed APP cleavage, ruling out that this reaction occurs in the endoplasmic reticulum (ER) or ER–Golgi intermediate compartment. Taken together, these observations support the notion that BACE1 is capable of cleaving APP in late compartments of the secretory pathway. PMID:22553349

  8. Localization of the kinesin adaptor proteins trafficking kinesin proteins 1 and 2 in primary cultures of hippocampal pyramidal and cortical neurons.

    PubMed

    Loss, Omar; Stephenson, F Anne

    2015-07-01

    Neuronal function requires regulated anterograde and retrograde trafficking of mitochondria along microtubules by using the molecular motors kinesin and dynein. Previous work has established that trafficking kinesin proteins (TRAKs),TRAK1 and TRAK2, are kinesin adaptor proteins that link mitochondria to kinesin motor proteins via an acceptor protein in the mitochondrial outer membrane, etc. the Rho GTPase Miro. Recent studies have shown that TRAK1 preferentially controls mitochondrial transport in axons of hippocampal neurons by virtue of its binding to both kinesin and dynein motor proteins, whereas TRAK2 controls mitochondrial transport in dendrites resulting from its binding to dynein. This study further investigates the subcellular localization of TRAK1 and TRAK2 in primary cultures of hippocampal and cortical neurons by using both commercial antibodies and anti-TRAK1 and anti-TRAK2 antibodies raised in our own laboratory (in-house). Whereas TRAK1 was prevalently localized in axons of hippocampal and cortical neurons, TRAK2 was more prevalent in dendrites of hippocampal neurons. In cortical neurons, TRAK2 was equally distributed between axons and dendrites. Some qualitative differences were observed between commercial and in-house-generated antibody immunostaining. © 2015 Wiley Periodicals, Inc.

  9. Selective Proteasomal Degradation of the B′β Subunit of Protein Phosphatase 2A by the E3 Ubiquitin Ligase Adaptor Kelch-like 15*

    PubMed Central

    Oberg, Elizabeth A.; Nifoussi, Shanna K.; Gingras, Anne-Claude; Strack, Stefan

    2012-01-01

    Protein phosphatase 2A (PP2A), a ubiquitous and pleiotropic regulator of intracellular signaling, is composed of a core dimer (AC) bound to a variable (B) regulatory subunit. PP2A is an enzyme family of dozens of heterotrimers with different subcellular locations and cellular substrates dictated by the B subunit. B′β is a brain-specific PP2A regulatory subunit that mediates dephosphorylation of Ca2+/calmodulin-dependent protein kinase II and tyrosine hydroxylase. Unbiased proteomic screens for B′β interactors identified Cullin3 (Cul3), a scaffolding component of E3 ubiquitin ligase complexes, and the previously uncharacterized Kelch-like 15 (KLHL15). KLHL15 is one of ∼40 Kelch-like proteins, many of which have been identified as adaptors for the recruitment of substrates to Cul3-based E3 ubiquitin ligases. Here, we report that KLHL15-Cul3 specifically targets B′β to promote turnover of the PP2A subunit by ubiquitylation and proteasomal degradation. Comparison of KLHL15 and B′β tissue expression profiles suggests that the E3 ligase adaptor contributes to selective expression of the PP2A/B′β holoenzyme in the brain. We mapped KLHL15 residues critical for homodimerization as well as interaction with Cul3 and B′β. Explaining PP2A subunit selectivity, the divergent N terminus of B′β was found necessary and sufficient for KLHL15-mediated degradation, with Tyr-52 having an obligatory role. Although KLHL15 can interact with the PP2A/B′β heterotrimer, it only degrades B′β, thus promoting exchange with other regulatory subunits. E3 ligase adaptor-mediated control of PP2A holoenzyme composition thereby adds another layer of regulation to cellular dephosphorylation events. PMID:23135275

  10. Adaptor assembly for coupling turbine blades to rotor disks

    DOEpatents

    Delvaux, John McConnel; Garcia-Crespo, Andres Jose; Joyce, Kilmer Joseph; Tindell, Allan Randall

    2014-06-03

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is disclosed. The adaptor assembly may generally include an adaptor body having a root configured to be received within the root slot. The adaptor body may also define a slot having an open end configured to receive the blade root. The adaptor body may further define a channel. The adaptor assembly may also include a plate having an outwardly extending foot. The foot may be configured to be received within the channel. Additionally, the plate may be configured to cover at least a portion of the open end of the slot when the foot is received within the channel.

  11. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device is...

  12. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device is...

  13. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device is...

  14. SH2/SH3 adaptor proteins can link tyrosine kinases to a Ste20-related protein kinase, HPK1.

    PubMed

    Anafi, M; Kiefer, F; Gish, G D; Mbamalu, G; Iscove, N N; Pawson, T

    1997-10-31

    Ste20-related protein kinases have been implicated as regulating a range of cellular responses, including stress-activated protein kinase pathways and the control of cytoskeletal architecture. An important issue involves the identities of the upstream signals and regulators that might control the biological functions of mammalian Ste20-related protein kinases. HPK1 is a protein-serine/threonine kinase that possesses a Ste20-like kinase domain, and in transfected cells activates a protein kinase pathway leading to the stress-activated protein kinase SAPK/JNK. Here we have investigated candidate upstream regulators that might interact with HPK1. HPK1 possesses an N-terminal catalytic domain and an extended C-terminal tail with four proline-rich motifs. The SH3 domains of Grb2 bound in vitro to specific proline-rich motifs in the HPK1 tail and functioned synergistically to direct the stable binding of Grb2 to HPK1 in transfected Cos1 cells. Epidermal growth factor (EGF) stimulation did not affect the binding of Grb2 to HPK1 but induced recruitment of the Grb2.HPK1 complex to the autophosphorylated EGF receptor and to the Shc docking protein. Several activated receptor and cytoplasmic tyrosine kinases, including the EGF receptor, stimulated the tyrosine phosphorylation of the HPK1 serine/threonine kinase. These results suggest that HPK1, a mammalian Ste20-related protein-serine/threonine kinase, can potentially associate with protein-tyrosine kinases through interactions mediated by SH2/SH3 adaptors such as Grb2. Such interaction may provide a possible mechanism for cross-talk between distinct biochemical pathways following the activation of tyrosine kinases.

  15. Requirement of Nck adaptors for actin dynamics and cell migration stimulated by platelet-derived growth factor B.

    PubMed

    Rivera, G M; Antoku, S; Gelkop, S; Shin, N Y; Hanks, S K; Pawson, T; Mayer, B J

    2006-06-20

    The Nck family of Src homology (SH) 2/SH3 domain adaptors functions to link tyrosine phosphorylation induced by extracellular signals with downstream regulators of actin dynamics. We investigated the role of mammalian Nck adaptors in signaling from the activated platelet-derived growth factor (PDGF) receptor (PDGFbetaR) to the actin cytoskeleton. We report here that Nck adaptors are required for cytoskeletal reorganization and chemotaxis stimulated by PDGF-B. Analysis of tyrosine-phosphorylated proteins demonstrated that Crk-associated substrate (p130(Cas)), not the activated PDGFbetaR itself, is the major Nck SH2 domain-binding protein in PDGF-B-stimulated cells. Both Nck- and p130(Cas)-deficient cells fail to display cytoskeletal rearrangements, including the formation of membrane ruffles and the disassembly of actin bundles, typically shown by their WT counterparts in response to PDGF-B. Furthermore, Nck and p130(Cas) colocalize in phosphotyrosine-enriched membrane ruffles induced by PDGF-B in NIH 3T3 cells. These results suggest that Nck adaptors play an essential role in linking the activated PDGFbetaR with actin dynamics through a pathway that involves p130(Cas).

  16. Ultrasound -Assisted Gene Transfer to Adipose Tissue-Derived Stem/Progenitor Cells (ASCs)

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshitaka; Ueno, Hitomi; Hokari, Rei; Yuan, Wenji; Kuno, Shuichi; Kakimoto, Takashi; Enosawa, Shin; Negishi, Yoichi; Yoshinaka, Kiyoshi; Matsumoto, Yoichiro; Chiba, Toshio; Hayashi, Shuji

    2011-09-01

    In recent years, multilineage adipose tissue-derived stem cells (ASCs) have become increasingly attractive as a promising source for cell transplantation and regenerative medicine. Particular interest has been expressed in the potential to make tissue stem cells, such as ASCs and marrow stromal cells (MSCs), differentiate by gene transfection. Gene transfection using highly efficient viral vectors such as adeno- and sendai viruses have been developed for this purpose. Sonoporation, or ultrasound (US)-assisted gene transfer, is an alternative gene manipulation technique which employs the creation of a jet stream by ultrasonic microbubble cavitation. Sonoporation using non-viral vectors is expected to be a much safer, although less efficient, tool for prospective clinical gene therapy. In this report, we assessed the efficacy of the sonoporation technique for gene transfer to ASCs. We isolated and cultured adipocyets from mouse adipose tissue. ASCs that have the potential to differentiate with transformation into adipocytes or osteoblasts were obtained. Using the US-assisted system, plasmid DNA containing beta-galactosidase (beta-Gal) and green fluorescent protein (GFP) genes were transferred to the ASCs. For this purpose, a Sonopore 4000 (NEPAGENE Co.) and a Sonazoid (Daiichi Sankyo Co.) instrument were used in combination. ASCs were subjected to US (3.1 MHz, 50% duty cycle, burst rate 2.0 Hz, intensity 1.2 W/cm2, exposure time 30 sec). We observed that the gene was more efficiently transferred with increased concentrations of plasmid DNA (5-150 μg/mL). However, further optimization of the US parameters is required, as the gene transfer efficiency was still relatively low. In conclusion, we herein demonstrate that a gene can be transferred to ASCs using our US-assisted system. In regenerative medicine, this system might resolve the current issues surrounding the use of viral vectors for gene transfer.

  17. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia

    2009-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and themore » software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.« less

  18. The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion

    PubMed Central

    Paul, Viktoria Désirée; Mühlenhoff, Ulrich; Stümpfig, Martin; Seebacher, Jan; Kugler, Karl G; Renicke, Christian; Taxis, Christof; Gavin, Anne-Claude; Pierik, Antonio J; Lill, Roland

    2015-01-01

    Cytosolic and nuclear iron-sulfur (Fe-S) proteins are involved in many essential pathways including translation and DNA maintenance. Their maturation requires the cytosolic Fe-S protein assembly (CIA) machinery. To identify new CIA proteins we employed systematic protein interaction approaches and discovered the essential proteins Yae1 and Lto1 as binding partners of the CIA targeting complex. Depletion of Yae1 or Lto1 results in defective Fe-S maturation of the ribosome-associated ABC protein Rli1, but surprisingly no other tested targets. Yae1 and Lto1 facilitate Fe-S cluster assembly on Rli1 in a chain of binding events. Lto1 uses its conserved C-terminal tryptophan for binding the CIA targeting complex, the deca-GX3 motifs in both Yae1 and Lto1 facilitate their complex formation, and Yae1 recruits Rli1. Human YAE1D1 and the cancer-related ORAOV1 can replace their yeast counterparts demonstrating evolutionary conservation. Collectively, the Yae1-Lto1 complex functions as a target-specific adaptor that recruits apo-Rli1 to the generic CIA machinery. DOI: http://dx.doi.org/10.7554/eLife.08231.001 PMID:26182403

  19. Autonomous osteogenic differentiation of hASCs encapsulated in methacrylated gellan-gum hydrogels.

    PubMed

    Oliveira, Mariana B; Custódio, Catarina A; Gasperini, Luca; Reis, Rui L; Mano, João F

    2016-09-01

    /growth medium. Effective cellular adhesion to methacrylated gellan gum hydrogels in the absence of any cell-ligand peptide/protein was here proved for the first time. Moreover, we showed that the encapsulated hASCs underwent osteogenic differentiation due to a mechanotransduction phenomenon dependent on the actin-myosin contractility pathway. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Multiple Functional Domains of Enterococcus faecalis Aggregation Substance Asc10 Contribute to Endocarditis Virulence ▿ †

    PubMed Central

    Chuang, Olivia N.; Schlievert, Patrick M.; Wells, Carol L.; Manias, Dawn A.; Tripp, Timothy J.; Dunny, Gary M.

    2009-01-01

    Aggregation substance proteins encoded by sex pheromone plasmids increase the virulence of Enterococcus faecalis in experimental pathogenesis models, including infectious endocarditis models. These large surface proteins may contain multiple functional domains involved in various interactions with other bacterial cells and with the mammalian host. Aggregation substance Asc10, encoded by plasmid pCF10, is induced during growth in the mammalian bloodstream, and pCF10 carriage gives E. faecalis a significant selective advantage in this environment. We employed a rabbit model to investigate the role of various functional domains of Asc10 in endocarditis. The data suggested that the bacterial load of the infected tissue was the best indicator of virulence. Isogenic strains carrying either no plasmid, wild-type pCF10, a pCF10 derivative with an in-frame deletion of the prgB gene encoding Asc10, or pCF10 derivatives expressing other alleles of prgB were examined in this model. Previously identified aggregation domains contributed to the virulence associated with the wild-type protein, and a strain expressing an Asc10 derivative in which glycine residues in two RGD motifs were changed to alanine residues showed the greatest reduction in virulence. Remarkably, this strain and the strain carrying the pCF10 derivative with the in-frame deletion of prgB were both significantly less virulent than an isogenic plasmid-free strain. The data demonstrate that multiple functional domains are important in Asc10-mediated interactions with the host during the course of experimental endocarditis and that in the absence of a functional prgB gene, pCF10 carriage is actually disadvantageous in vivo. PMID:18955479

  1. Role of the AP-5 adaptor protein complex in late endosome-to-Golgi retrieval

    PubMed Central

    Hirst, Jennifer; Itzhak, Daniel N.; Antrobus, Robin; Borner, Georg H. H.

    2018-01-01

    The AP-5 adaptor protein complex is presumed to function in membrane traffic, but so far nothing is known about its pathway or its cargo. We have used CRISPR-Cas9 to knock out the AP-5 ζ subunit gene, AP5Z1, in HeLa cells, and then analysed the phenotype by subcellular fractionation profiling and quantitative mass spectrometry. The retromer complex had an altered steady-state distribution in the knockout cells, and several Golgi proteins, including GOLIM4 and GOLM1, were depleted from vesicle-enriched fractions. Immunolocalisation showed that loss of AP-5 led to impaired retrieval of the cation-independent mannose 6-phosphate receptor (CIMPR), GOLIM4, and GOLM1 from endosomes back to the Golgi region. Knocking down the retromer complex exacerbated this phenotype. Both the CIMPR and sortilin interacted with the AP-5–associated protein SPG15 in pull-down assays, and we propose that sortilin may act as a link between Golgi proteins and the AP-5/SPG11/SPG15 complex. Together, our findings suggest that AP-5 functions in a novel sorting step out of late endosomes, acting as a backup pathway for retromer. This provides a mechanistic explanation for why mutations in AP-5/SPG11/SPG15 cause cells to accumulate aberrant endolysosomes, and highlights the role of endosome/lysosome dysfunction in the pathology of hereditary spastic paraplegia and other neurodegenerative disorders. PMID:29381698

  2. THREADED ADAPTOR FOR LUGGED PIPE ENDS

    DOEpatents

    Robb, J.E.

    1962-06-01

    An adaptor is designed for enabling a threaded part to be connected to a member at a region having lugs normally receiving bayonet slots of another part for attachment of the latter. It has been found desirable to replace a closure cap connected in a bayonet joint to the end of a coolant tube containing nuclear- reactor fuel elements, with a threaded valve. An adaptor is used which has J- slots receiving lugs on the end of the reactor tube, a thread for connection with the valve, and gear-tooth section enabling a gear-type of tool to rotate the adaptor to seal the valve to the end of the reactor tube. (AEC)

  3. CD6 and Linker of Activated T Cells are Potential Interaction Partners for T Cell-Specific Adaptor Protein.

    PubMed

    Hem, C D; Ekornhol, M; Granum, S; Sundvold-Gjerstad, V; Spurkland, A

    2017-02-01

    The T cell-specific adaptor protein (TSAd) contains several protein interaction domains, and is merging as a modulator of T cell activation. Several interaction partners for the TSAd proline-rich region and phosphotyrosines have been identified, including the Src and Tec family kinases lymphocyte-specific protein tyrosine kinase and interleukin 2-inducible T cell kinase. Via its Src homology 2 (SH2) domain, TSAd may thus function as a link between these enzymes and other signalling molecules. However, few binding partners to the TSAd SH2 domain in T cells are hitherto known. Through the use of in silico ligand prediction, peptide spot arrays, pull-down and immunoprecipitation experiments, we here report novel interactions between the TSAd SH2 domain and CD6 phosphotyrosine (pTyr) 629 and linker of activated T cells (LAT) pTyr 171 , pTyr 191 and pTyr 226 . © 2016 The Foundation for the Scandinavian Journal of Immunology.

  4. ATP Binding to p97/VCP D1 Domain Regulates Selective Recruitment of Adaptors to Its Proximal N-Domain

    PubMed Central

    Chia, Wei Sheng; Chia, Diana Xueqi; Rao, Feng; Bar Nun, Shoshana; Geifman Shochat, Susana

    2012-01-01

    p97/Valosin-containing protein (VCP) is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD). It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell. PMID:23226521

  5. ATP binding to p97/VCP D1 domain regulates selective recruitment of adaptors to its proximal N-domain.

    PubMed

    Chia, Wei Sheng; Chia, Diana Xueqi; Rao, Feng; Bar Nun, Shoshana; Geifman Shochat, Susana

    2012-01-01

    p97/Valosin-containing protein (VCP) is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD). It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell.

  6. Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.

    2010-01-01

    Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC-E2 heater head assembly. These mechanical tests were collectively referred to as "lateral load tests" since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.

  7. Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.

    2011-01-01

    Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC-E2 heater head assembly. These mechanical tests were collectively referred to as "lateral load tests" since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.

  8. GrpL, a Grb2-related Adaptor Protein, Interacts with SLP-76 to Regulate Nuclear Factor of Activated T Cell Activation

    PubMed Central

    Law, Che-Leung; Ewings, Maria K.; Chaudhary, Preet M.; Solow, Sasha A.; Yun, Theodore J.; Marshall, Aaron J.; Hood, Leroy; Clark, Edward A.

    1999-01-01

    Propagation of signals from the T cell antigen receptor (TCR) involves a number of adaptor molecules. SH2 domain–containing protein 76 (SLP-76) interacts with the guanine nucleotide exchange factor Vav to activate the nuclear factor of activated cells (NF-AT), and its expression is required for normal T cell development. We report the cloning and characterization of a novel Grb2-like adaptor molecule designated as Grb2-related protein of the lymphoid system (GrpL). Expression of GrpL is restricted to hematopoietic tissues, and it is distinguished from Grb2 by having a proline-rich region. GrpL can be coimmunoprecipitated with SLP-76 but not with Sos1 or Sos2 from Jurkat cell lysates. In contrast, Grb2 can be coimmunoprecipitated with Sos1 and Sos2 but not with SLP-76. Moreover, tyrosine-phosphorylated LAT/pp36/38 in detergent lysates prepared from anti-CD3 stimulated T cells associated with Grb2 but not GrpL. These data reveal the presence of distinct complexes involving GrpL and Grb2 in T cells. A functional role of the GrpL–SLP-76 complex is suggested by the ability of GrpL to act alone or in concert with SLP-76 to augment NF-AT activation in Jurkat T cells. PMID:10209041

  9. Systematic VCP-UBXD Adaptor Network Proteomics Identifies a Role for UBXN10 in Regulating Ciliogenesis

    PubMed Central

    Raman, Malavika; Sergeev, Mikhail; Garnaas, Maija; Lydeard, John R.; Huttlin, Edward L.; Goessling, Wolfram; Shah, Jagesh V.; Harper, J. Wade

    2015-01-01

    The AAA-ATPase VCP (also known as p97 or CDC48) uses ATP hydrolysis to “segregate” ubiquitinated proteins from their binding partners. VCP acts via UBX-domain containing adaptors that provide target specificity, but targets and functions of UBXD proteins remain poorly understood. Through systematic proteomic analysis of UBXD proteins in human cells, we reveal a network of over 195 interacting proteins, implicating VCP in diverse cellular pathways. We have explored one such complex between an unstudied adaptor UBXN10 and the intraflagellar transport B (IFT-B) complex, which regulates anterograde transport into cilia. UBXN10 localizes to cilia in a VCP-dependent manner and both VCP and UBXN10 are required for ciliogenesis. Pharmacological inhibition of VCP destabilized the IFT-B complex and increased trafficking rates. Depletion of UBXN10 in zebrafish embryos causes defects in left-right asymmetry, which depends on functional cilia. This study provides a resource for exploring the landscape of UBXD proteins in biology and identifies an unexpected requirement for VCP-UBXN10 in ciliogenesis. PMID:26389662

  10. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor...

  11. In vitro formation of recycling vesicles from endosomes requires adaptor protein-1/clathrin and is regulated by rab4 and the connector rabaptin-5.

    PubMed

    Pagano, Adriana; Crottet, Pascal; Prescianotto-Baschong, Cristina; Spiess, Martin

    2004-11-01

    The involvement of clathrin and associated adaptor proteins in receptor recycling from endosomes back to the plasma membrane is controversial. We have used an in vitro assay to identify the molecular requirements for the formation of recycling vesicles. Cells expressing the asialoglycoprotein receptor H1, a typical recycling receptor, were surface biotinylated and then allowed to endocytose for 10 min. After stripping away surface-biotin, the cells were permeabilized and the cytosol washed away. In a temperature-, cytosol-, and nucleotide-dependent manner, the formation of sealed vesicles containing biotinylated H1 could be reconstituted. Vesicle formation was strongly inhibited upon immunodepletion of adaptor protein (AP)-1, but not of AP-2 or AP-3, from the cytosol, and was restored by readdition of purified AP-1. Vesicle formation was stimulated by supplemented clathrin, but inhibited by brefeldin A, consistent with the involvement of ARF1 and a brefeldin-sensitive guanine nucleotide exchange factor. The GTPase rab4, but not rab5, was required to generate endosome-derived vesicles. Depletion of rabaptin-5/rabex-5, a known interactor of both rab4 and gamma-adaptin, stimulated and addition of the purified protein strongly inhibited vesicle production. The results indicate that recycling is mediated by AP-1/clathrin-coated vesicles and regulated by rab4 and rabaptin-5/rabex-5.

  12. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1: ASC software quality engineering practices, Version 2.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  13. Macromolecular assembly of the adaptor SLP-65 at intracellular vesicles in resting B cells.

    PubMed

    Engelke, Michael; Pirkuliyeva, Sona; Kühn, Julius; Wong, Leo; Boyken, Janina; Herrmann, Nadine; Becker, Stefan; Griesinger, Christian; Wienands, Jürgen

    2014-08-19

    The traditional view of how intracellular effector proteins are recruited to the B cell antigen receptor (BCR) complex at the plasma membrane is based on the occurrence of direct protein-protein interactions, as exemplified by the recruitment of the tyrosine kinase Syk (spleen tyrosine kinase) to phosphorylated motifs in BCR signaling subunits. By contrast, the subcellular targeting of the cytosolic adaptor protein SLP-65 (Src homology 2 domain-containing leukocyte adaptor protein of 65 kD), which serves as a proximal Syk substrate, is unclear. We showed that SLP-65 activation required its association at vesicular compartments in resting B cells. A module of ~50 amino acid residues located at the amino terminus of SLP-65 anchored SLP-65 to the vesicles. Nuclear magnetic resonance spectroscopy showed that the SLP-65 amino terminus was structurally disordered in solution but could bind in a structured manner to noncharged lipid components of cellular membranes. Our finding that preformed vesicular signaling scaffolds are required for B cell activation indicates that vesicles may deliver preassembled signaling cargo to sites of BCR activation. Copyright © 2014, American Association for the Advancement of Science.

  14. Advanced Stirling Convertor (ASC) Technology Maturation in Preparation for Flight

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Cornell, Peggy A.

    2012-01-01

    The Advanced Stirling Convertor (ASC) is being developed by an integrated team of Sunpower and National Aeronautics and Space Administration s (NASA s) Glenn Research Center (GRC). The ASC development, funded by NASA s Science Mission Directorate, started as a technology development effort in 2003 and has since evolved through progressive convertor builds and successful testing to demonstrate high conversion efficiency, low mass, and capability to meet long-life Radioisotope Power System (RPS) requirements. The technology has been adopted by the Department of Energy and Lockheed Martin Space Systems Company s Advanced Stirling Radioisotope Generator (ASRG), which has been selected for potential flight demonstration on Discovery 12. This paper provides an overview of the status of ASC development including the most recent ASC-E2 convertors that have been delivered to GRC and an introduction to the ASC-E3 and ASC flight convertors that Sunpower will build next. The paper also describes the technology maturation and support tasks being conducted at GRC to support ASC and ASRG development in the areas of convertor and generator extended operation, high-temperature materials, heater head life assessment, organics, nondestructive inspection, spring fatigue testing, and other reliability verification tasks.

  15. Styles of Creativity: Adaptors and Innovators in a Singapore Context

    ERIC Educational Resources Information Center

    Ee, Jessie; Seng, Tan Oon; Kwang, Ng Aik

    2007-01-01

    Kirton (1976) described two creative styles, namely adaptors and innovators. Adaptors prefer to "do things better" whilst, innovators prefer to "do things differently". This study explored the relationship between two creative styles (adaptor and innovator) and the Big Five personality traits (extraversion, agreeableness, conscientiousness,…

  16. Biochemical and genetic analysis of the Drk SH2/SH3 adaptor protein of Drosophila.

    PubMed

    Raabe, T; Olivier, J P; Dickson, B; Liu, X; Gish, G D; Pawson, T; Hafen, E

    1995-06-01

    The Drk SH3-SH2-SH3 adaptor protein has been genetically identified in a screen for rate-limiting components acting downstream of the Sevenless (Sev) receptor tyrosine kinase in the developing eye of Drosophila. It provides a link between the activated Sev receptor and Sos, a guanine nucleotide release factor that activates Ras1. We have used a combined biochemical and genetic approach to study the interactions between Sev, Drk and Sos. We show that Tyr2546 in the cytoplasmic tail of Sev is required for Drk binding, probably because it provides a recognition site for the Drk SH2 domain. Interestingly, a mutation at this site does not completely block Sev function in vivo. This may suggest that Sev can signal in a Drk-independent, parallel pathway or that Drk can also bind to an intermediate docking protein. Analysis of the Drk-Sos interaction has identified a high affinity binding site for Drk SH3 domains in the Sos tail. We show that the N-terminal Drk SH3 domain is primarily responsible for binding to the tail of Sos in vitro, and for signalling to Ras in vivo.

  17. Src-like adaptor protein down-regulates T cell receptor (TCR)-CD3 expression by targeting TCRzeta for degradation.

    PubMed

    Myers, Margaret D; Dragone, Leonard L; Weiss, Arthur

    2005-07-18

    Src-like adaptor protein (SLAP) down-regulates expression of the T cell receptor (TCR)-CD3 complex during a specific stage of thymocyte development when the TCR repertoire is selected. Consequently, SLAP-/- thymocytes display alterations in thymocyte development. Here, we have studied the mechanism of SLAP function. We demonstrate that SLAP-deficient thymocytes have increased TCRzeta chain expression as a result of a defect in TCRzeta degradation. Failure to degrade TCRzeta leads to an increased pool of fully assembled TCR-CD3 complexes that are capable of recycling back to the cell surface. We also provide evidence that SLAP functions in a pathway that requires the phosphorylated TCRzeta chain and the Src family kinase Lck, but not ZAP-70 (zeta-associated protein of 70 kD). These studies reveal a unique mechanism by which SLAP contributes to the regulation of TCR expression during a distinct stage of thymocyte development.

  18. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert

    2005-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management andmore » software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.« less

  19. Advanced Stirling Convertor (ASC-E2) Characterization Testing

    NASA Technical Reports Server (NTRS)

    Williams, Zachary D.; Oriti, Salvatore M.

    2012-01-01

    Testing has been conducted on Advanced Stirling Convertors (ASCs)-E2 at NASA Glenn Research Center in support of the Advanced Stirling Radioisotope Generator (ASRG) project. This testing has been conducted to understand sensitivities of convertor parameters due to environmental and operational changes during operation of the ASRG in missions to space. This paper summarizes test results and explains the operation of the ASRG during space missions

  20. The MYO6 interactome reveals adaptor complexes coordinating early endosome and cytoskeletal dynamics.

    PubMed

    O'Loughlin, Thomas; Masters, Thomas A; Buss, Folma

    2018-04-01

    The intracellular functions of myosin motors requires a number of adaptor molecules, which control cargo attachment, but also fine-tune motor activity in time and space. These motor-adaptor-cargo interactions are often weak, transient or highly regulated. To overcome these problems, we use a proximity labelling-based proteomics strategy to map the interactome of the unique minus end-directed actin motor MYO6. Detailed biochemical and functional analysis identified several distinct MYO6-adaptor modules including two complexes containing RhoGEFs: the LIFT (LARG-Induced F-actin for Tethering) complex that controls endosome positioning and motility through RHO-driven actin polymerisation; and the DISP (DOCK7-Induced Septin disPlacement) complex, a novel regulator of the septin cytoskeleton. These complexes emphasise the role of MYO6 in coordinating endosome dynamics and cytoskeletal architecture. This study provides the first in vivo interactome of a myosin motor protein and highlights the power of this approach in uncovering dynamic and functionally diverse myosin motor complexes. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  1. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING

    DOE PAGES

    Shi, Heping; Wu, Jiaxi; Chen, Zhijian J.; ...

    2015-07-06

    Cyclic GMP-AMP containing a unique combination of mixed phosphodiester linkages (2'3'-cGAMP) is an endogenous second messenger molecule that activates the type-I IFN pathway upon binding to the homodimer of the adaptor protein STING on the surface of endoplasmic reticulum membrane. However, the preferential binding of the asymmetric ligand 2'3'-cGAMP to the symmetric dimer of STING represents a physicochemical enigma. In this paper, we show that 2'3'-cGAMP, but not its linkage isomers, adopts an organized free-ligand conformation that resembles the STING-bound conformation and pays low entropy and enthalpy costs in converting into the active conformation. Finally, our results demonstrate that analysesmore » of free-ligand conformations can be as important as analyses of protein conformations in understanding protein–ligand interactions.« less

  2. Advanced Stirling Convertor (ASC) - From Technology Development to Future Flight Product

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wood, J. Gary; Wilson, Kyle

    2008-01-01

    The Advanced Stirling Convertor (ASC) is being developed by Sunpower, Inc. under contract to NASA s Glenn Research Center (GRC) with critical technology support tasks lead by GRC. The ASC development, funded by NASA s Science Mission Directorate, started in 2003 as one of 10 competitively awarded contracts that were to address future Radioisotope Power System (RPS) advanced power conversion needs. The ASC technology has since evolved through progressive convertor builds and successful testing to demonstrate high conversion efficiency (38 %), low mass (1.3 kg), hermetic sealing, launch vibration simulation, EMI characterization, and is undergoing extended operation. The GRC and Sunpower team recently delivered three ASC-E machines to the Department of Energy (DOE) and Lockheed Martin Space Systems Company, two units for integration onto the Advanced Stirling Radioisotope Generator Engineering Unit (ASRG EU) plus one spare. The design has recently been initiated for the ASC-E2, an evolution from the ASC-E that substitutes higher temperature materials enabling improved performance and higher reliability margins. This paper summarizes the history and status of the ASC project and discusses plans for this technology which enables RPS specific power of 8 W/kg for future NASA missions.

  3. The Ubiquitin Ligase RNF125 Targets Innate Immune Adaptor Protein TRIM14 for Ubiquitination and Degradation.

    PubMed

    Jia, Xue; Zhou, Hongli; Wu, Chao; Wu, Qiankun; Ma, Shichao; Wei, Congwen; Cao, Ye; Song, Jingdong; Zhong, Hui; Zhou, Zhuo; Wang, Jianwei

    2017-06-15

    Tripartite motif-containing 14 (TRIM14) is a mitochondrial adaptor that facilitates innate immune signaling. Upon virus infection, the expression of TRIM14 is significantly induced, which stimulates the production of type-I IFNs and proinflammatory cytokines. As excessive immune responses lead to harmful consequences, TRIM14-mediated signaling needs to be tightly balanced. In this study, we identify really interesting new gene-type zinc finger protein 125 (RNF125) as a negative regulator of TRIM14 in the innate antiviral immune response. Overexpression of RNF125 inhibits TRIM14-mediated antiviral response, whereas knockdown of RNF125 has the opposite effect. RNF125 interacts with TRIM14 and acts as an E3 ubiquitin ligase that catalyzes TRIM14 ubiquitination. RNF125 promotes K48-linked polyubiquitination of TRIM14 and mediates its degradation via the ubiquitin-proteasome pathway. Consequently, wild-type mouse embryonic fibroblasts show significantly reduced TRIM14 protein levels in late time points of viral infection, whereas TRIM14 protein is retained in RNF125-deficient mouse embryonic fibroblasts. Collectively, our data suggest that RNF125 plays a new role in innate immune response by regulating TRIM14 ubiquitination and degradation. Copyright © 2017 by The American Association of Immunologists, Inc.

  4. The Adaptor Protein CD2AP Is a Coordinator of Neurotrophin Signaling-Mediated Axon Arbor Plasticity

    PubMed Central

    Harrison, Benjamin J.; Venkat, Gayathri; Lamb, James L.; Hutson, Tom H.; Drury, Cassa; Rau, Kristofer K.; Bunge, Mary Barlett; Mendell, Lorne M.; Gage, Fred H.; Johnson, Richard D.; Hill, Caitlin E.; Rouchka, Eric C.; Moon, Lawrence D.F.

    2016-01-01

    Growth of intact axons of noninjured neurons, often termed collateral sprouting, contributes to both adaptive and pathological plasticity in the adult nervous system, but the intracellular factors controlling this growth are largely unknown. An automated functional assay of genes regulated in sensory neurons from the rat in vivo spared dermatome model of collateral sprouting identified the adaptor protein CD2-associated protein (CD2AP; human CMS) as a positive regulator of axon growth. In non-neuronal cells, CD2AP, like other adaptor proteins, functions to selectively control the spatial/temporal assembly of multiprotein complexes that transmit intracellular signals. Although CD2AP polymorphisms are associated with increased risk of late-onset Alzheimer's disease, its role in axon growth is unknown. Assessments of neurite arbor structure in vitro revealed CD2AP overexpression, and siRNA-mediated knockdown, modulated (1) neurite length, (2) neurite complexity, and (3) growth cone filopodia number, in accordance with CD2AP expression levels. We show, for the first time, that CD2AP forms a novel multiprotein complex with the NGF receptor TrkA and the PI3K regulatory subunit p85, with the degree of TrkA:p85 association positively regulated by CD2AP levels. CD2AP also regulates NGF signaling through AKT, but not ERK, and regulates long-range signaling though TrkA+/RAB5+ signaling endosomes. CD2AP mRNA and protein levels were increased in neurons during collateral sprouting but decreased following injury, suggesting that, although typically considered together, these two adult axonal growth processes are fundamentally different. These data position CD2AP as a major intracellular signaling molecule coordinating NGF signaling to regulate collateral sprouting and structural plasticity of intact adult axons. SIGNIFICANCE STATEMENT Growth of noninjured axons in the adult nervous system contributes to adaptive and maladaptive plasticity, and dysfunction of this process may

  5. Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors Mal and MyD88.

    PubMed

    Dunne, Aisling; Ejdeback, Mikael; Ludidi, Phumzile L; O'Neill, Luke A J; Gay, Nicholas J

    2003-10-17

    The Toll/interleukin 1 receptor (TIR) domain is a region found in the cytoplasmic tails of members of the Toll-like receptor/interleukin-1 receptor superfamily. The domain is essential for signaling and is also found in the adaptor proteins Mal (MyD88 adaptor-like) and MyD88, which function to couple activation of the receptor to downstream signaling components. Experimental structures of two Toll/interleukin 1 receptor domains reveal a alpha-beta-fold similar to that of the bacterial chemotaxis protein CheY, and other evidence suggests that the adaptors can make heterotypic interactions with both the receptors and themselves. Here we show that the purified TIR domains of Mal and MyD88 can form stable heterodimers and also that Mal homodimers and oligomers are dissociated in the presence of ATP. To identify structural features that may contribute to the formation of signaling complexes, we produced models of the TIR domains from human Toll-like receptor 4 (TLR4), Mal, and MyD88. We found that although the overall fold is conserved the electrostatic surface potentials are quite distinct. Docking studies of the models suggest that Mal and MyD88 bind to different regions in TLRs 2 and 4, a finding consistent with a cooperative role of the two adaptors in signaling. Mal and MyD88 are predicted to interact at a third non-overlapping site, suggesting that the receptor and adaptors may form heterotetrameric complexes. The theoretical model of the interactions is supported by experimental data from glutathione S-transferase pull-downs and co-immunoprecipitations. Neither theoretical nor experimental data suggest a direct role for the conserved proline in the BB-loop in the association of TLR4, Mal, and MyD88. Finally we show a sequence relationship between the Drosophila protein Tube and Mal that may indicate a functional equivalence of these two adaptors in the Drosophila and vertebrate Toll pathways.

  6. Crystal structure of the C-terminal SH3 domain of the adaptor protein GADS in complex with SLP-76 motif peptide reveals a unique SH3-SH3 interaction.

    PubMed

    Dimasi, Nazzareno

    2007-01-01

    The Grb2-like adaptor protein GADS is essential for tyrosine kinase-dependent signaling in T lymphocytes. Following T cell receptor ligation, GADS interacts through its C-terminal SH3 domain with the adaptors SLP-76 and LAT, to form a multiprotein signaling complex that is crucial for T cell activation. To understand the structural basis for the selective recognition of GADS by SLP-76, herein is reported the crystal structure at 1.54 Angstrom of the C-terminal SH3 domain of GADS bound to the SLP-76 motif 233-PSIDRSTKP-241, which represents the minimal binding site. In addition to the unique structural features adopted by the bound SLP-76 peptide, the complex structure reveals a unique SH3-SH3 interaction. This homophilic interaction, which is observed in presence of the SLP-76 peptide and is present in solution, extends our understanding of the molecular mechanisms that could be employed by modular proteins to increase their signaling transduction specificity.

  7. Human innate immunity to Toxoplasma gondii is mediated by host caspase-1 and ASC and parasite GRA15.

    PubMed

    Gov, Lanny; Karimzadeh, Alborz; Ueno, Norikiyo; Lodoen, Melissa B

    2013-07-09

    Interleukin-1β (IL-1β) functions as a key regulator of inflammation and innate immunity. The protozoan parasite Toxoplasma gondii actively infects human blood monocytes and induces the production of IL-1β; however, the host and parasite factors that mediate IL-1β production during T. gondii infection are poorly understood. We report that T. gondii induces IL-1β transcript, processing/cleavage, and release from infected primary human monocytes and THP-1 cells. Treating monocytes with the caspase-1 inhibitor Ac-YVAD-CMK reduced IL-1β release, suggesting a role for the inflammasome in T. gondii-induced IL-1β production. This was confirmed by performing short hairpin RNA (shRNA) knockdown of caspase-1 and of the inflammasome adaptor protein ASC. IL-1β induction required active parasite invasion of monocytes, since heat-killed or mycalolide B-treated parasites did not induce IL-1β. Among the type I, II, and III strains of T. gondii, the type II strain induced substantially more IL-1β mRNA and protein release than did the type I and III strains. Since IL-1β transcript is known to be induced downstream of NF-κB signaling, we investigated a role for the GRA15 protein, which induces sustained NF-κB signaling in a parasite strain-specific manner. By infecting human monocytes with a GRA15-knockout type II strain and a type I strain stably expressing type II GRA15, we determined that GRA15 is responsible for IL-1β induction during T. gondii infection of human monocytes. This research defines a pathway driving human innate immunity by describing a role for the classical inflammasome components caspase-1 and ASC and the parasite GRA15 protein in T. gondii-induced IL-1β production. Monocytes are immune cells that protect against infection by increasing inflammation and antimicrobial activities in the body. Upon infection with the parasitic pathogen Toxoplasma gondii, human monocytes release interleukin-1β (IL-1β), a "master regulator" of inflammation, which

  8. Advanced Stirling Convertor (ASC)--From Technology Development to Future Flight Product

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wood, J. Gary; Wilson, Kyle

    2008-01-01

    The Advanced Stirling Convertor (ASC) is being developed by Sunpower Inc. under contract to NASA s Glenn Research Center (GRC) with critical technology support tasks led by GRC. The ASC development, funded by NASA s Science Mission Directorate, started in 2003 as one of 10 competitively awarded contracts that were intended to address the power conversion needs of future Radioisotope Power Systems (RPS). The ASC technology has since evolved through progressive convertor builds and successful testing to demonstrate high conversion efficiency (38 percent), low mass (1.3 kg), hermetic sealing, launch vibration simulation, EMI characterization, and is undergoing extended operation. The GRC and Sunpower team recently delivered two ASC-E convertors to the Department of Energy (DOE) and Lockheed Martin Space Systems Company for integration onto the Advanced Stirling Radioisotope Generator Engineering Unit (ASRG EU) plus one spare. The design of the next build, called the ASC-E2, has recently been initiated and is based on the heritage ASC-E with design refinements to increase reliability margin and offer higher temperature operation and improve performance. The ASC enables RPS system specific power of about 7 to 8 W/kg. This paper provides a chronology of ASC development to date and summarizes technical achievements including advancements toward flight implementation of the technology on ASRG by as early as 2013.

  9. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins.

    PubMed

    Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann

    2014-01-17

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.

  10. Cross-talk between Tetraspanin CD9 and Transmembrane Adaptor Protein Non-T Cell Activation Linker (NTAL) in Mast Cell Activation and Chemotaxis*

    PubMed Central

    Hálová, Ivana; Dráberová, Lubica; Bambousková, Monika; Machyna, Martin; Stegurová, Lucie; Smrž, Daniel; Dráber, Petr

    2013-01-01

    Chemotaxis, a process leading to movement of cells toward increasing concentrations of chemoattractants, is essential, among others, for recruitment of mast cells within target tissues where they play an important role in innate and adaptive immunity. Chemotaxis is driven by chemoattractants, produced by various cell types, as well as by intrinsic cellular regulators, which are poorly understood. In this study we prepared a new mAb specific for the tetraspanin CD9. Binding of the antibody to bone marrow-derived mast cells triggered activation events that included cell degranulation, Ca2+ response, dephosphorylation of ezrin/radixin/moesin (ERM) family proteins, and potent tyrosine phosphorylation of the non-T cell activation linker (NTAL) but only weak phosphorylation of the linker for activation of T cells (LAT). Phosphorylation of the NTAL was observed with whole antibody but not with its F(ab)2 or Fab fragments. This indicated involvement of the Fcγ receptors. As documented by electron microscopy of isolated plasma membrane sheets, CD9 colocalized with the high-affinity IgE receptor (FcϵRI) and NTAL but not with LAT. Further tests showed that both anti-CD9 antibody and its F(ab)2 fragment inhibited mast cell chemotaxis toward antigen. Experiments with bone marrow-derived mast cells deficient in NTAL and/or LAT revealed different roles of these two adaptors in antigen-driven chemotaxis. The combined data indicate that chemotaxis toward antigen is controlled in mast cells by a cross-talk among FcϵRI, tetraspanin CD9, transmembrane adaptor proteins NTAL and LAT, and cytoskeleton-regulatory proteins of the ERM family. PMID:23443658

  11. 21 CFR 870.4290 - Cardiopulmonary bypass adaptor, stopcock, manifold, or fitting.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass adaptor, stopcock, manifold... Devices § 870.4290 Cardiopulmonary bypass adaptor, stopcock, manifold, or fitting. (a) Identification. A cardiopulmonary bypass adaptor, stopcock, manifold, or fitting is a device used in cardiovascular diagnostic...

  12. 21 CFR 870.4290 - Cardiopulmonary bypass adaptor, stopcock, manifold, or fitting.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass adaptor, stopcock, manifold... Devices § 870.4290 Cardiopulmonary bypass adaptor, stopcock, manifold, or fitting. (a) Identification. A cardiopulmonary bypass adaptor, stopcock, manifold, or fitting is a device used in cardiovascular diagnostic...

  13. Systematic proteomics of the VCP-UBXD adaptor network identifies a role for UBXN10 in regulating ciliogenesis.

    PubMed

    Raman, Malavika; Sergeev, Mikhail; Garnaas, Maija; Lydeard, John R; Huttlin, Edward L; Goessling, Wolfram; Shah, Jagesh V; Harper, J Wade

    2015-10-01

    The AAA-ATPase VCP (also known as p97 or CDC48) uses ATP hydrolysis to 'segregate' ubiquitylated proteins from their binding partners. VCP acts through UBX-domain-containing adaptors that provide target specificity, but the targets and functions of UBXD proteins remain poorly understood. Through systematic proteomic analysis of UBXD proteins in human cells, we reveal a network of over 195 interacting proteins, implicating VCP in diverse cellular pathways. We have explored one such complex between an unstudied adaptor UBXN10 and the intraflagellar transport B (IFT-B) complex, which regulates anterograde transport into cilia. UBXN10 localizes to cilia in a VCP-dependent manner and both VCP and UBXN10 are required for ciliogenesis. Pharmacological inhibition of VCP destabilized the IFT-B complex and increased trafficking rates. Depletion of UBXN10 in zebrafish embryos causes defects in left-right asymmetry, which depends on functional cilia. This study provides a resource for exploring the landscape of UBXD proteins in biology and identifies an unexpected requirement for VCP-UBXN10 in ciliogenesis.

  14. The adaptor protein CrkII regulates IGF-1-induced biological behaviors of pancreatic ductal adenocarcinoma.

    PubMed

    Liu, Rui; Wang, Qing; Xu, Guangying; Li, Kexin; Zhou, Lingli; Xu, Baofeng

    2016-01-01

    Recently, the adaptor protein CrkII has been proved to function in initiating signals for proliferation and invasion in some malignancies. However, the specific mechanisms underlying insulin-like growth factor 1 (IGF-1)-CrkII signaling-induced proliferation of pancreatic ductal adenocarcinoma (PDAC) were not unraveled. In this work, PDAC tissues and cell lines were subjected to in vitro and in vivo assays. Our findings showed that CrkII was abundantly expressed in PDAC tissues and closely correlated with tumor-node-metastasis (TNM) stage and invasion. When cells were subjected to si-CrkII, si-CrkII inhibited IGF-1-mediated PDAC cell growth. In vitro, we demonstrated the upregulation of CrkII, p-Erk1/2, and p-Akt occurring in IGF-1-treated PDAC cells. Conversely, si-CrkII affected upregulation of CrkII, p-Erk1/2, and p-Akt. In addition, cell cycle and in vivo assay identified that knockdown of CrkII inhibited the entry of G1 into S phase and the increase of PDAC tumor weight. In conclusion, CrkII mediates IGF-1 signaling and further balanced PDAC biological behaviors via Erk1/2 and Akt pathway, which indicates that CrkII gene and protein may act as an effective target for the treatment of PDAC.

  15. Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature.

    PubMed

    Abou Jamra, Rami; Philippe, Orianne; Raas-Rothschild, Annick; Eck, Sebastian H; Graf, Elisabeth; Buchert, Rebecca; Borck, Guntram; Ekici, Arif; Brockschmidt, Felix F; Nöthen, Markus M; Munnich, Arnold; Strom, Tim M; Reis, Andre; Colleaux, Laurence

    2011-06-10

    Intellectual disability inherited in an autosomal-recessive fashion represents an important fraction of severe cognitive-dysfunction disorders. Yet, the extreme heterogeneity of these conditions markedly hampers gene identification. Here, we report on eight affected individuals who were from three consanguineous families and presented with severe intellectual disability, absent speech, shy character, stereotypic laughter, muscular hypotonia that progressed to spastic paraplegia, microcephaly, foot deformity, decreased muscle mass of the lower limbs, inability to walk, and growth retardation. Using a combination of autozygosity mapping and either Sanger sequencing of candidate genes or next-generation exome sequencing, we identified one mutation in each of three genes encoding adaptor protein complex 4 (AP4) subunits: a nonsense mutation in AP4S1 (NM_007077.3: c.124C>T, p.Arg42(∗)), a frameshift mutation in AP4B1 (NM_006594.2: c.487_488insTAT, p.Glu163_Ser739delinsVal), and a splice mutation in AP4E1 (NM_007347.3: c.542+1_542+4delGTAA, r.421_542del, p.Glu181Glyfs(∗)20). Adaptor protein complexes (AP1-4) are ubiquitously expressed, evolutionarily conserved heterotetrameric complexes that mediate different types of vesicle formation and the selection of cargo molecules for inclusion into these vesicles. Interestingly, two mutations affecting AP4M1 and AP4E1 have recently been found to cause cerebral palsy associated with severe intellectual disability. Combined with previous observations, these results support the hypothesis that AP4-complex-mediated trafficking plays a crucial role in brain development and functioning and demonstrate the existence of a clinically recognizable syndrome due to deficiency of the AP4 complex. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Adaptor Protein Complex 4 Deficiency Causes Severe Autosomal-Recessive Intellectual Disability, Progressive Spastic Paraplegia, Shy Character, and Short Stature

    PubMed Central

    Abou Jamra, Rami; Philippe, Orianne; Raas-Rothschild, Annick; Eck, Sebastian H.; Graf, Elisabeth; Buchert, Rebecca; Borck, Guntram; Ekici, Arif; Brockschmidt, Felix F.; Nöthen, Markus M.; Munnich, Arnold; Strom, Tim M.; Reis, Andre; Colleaux, Laurence

    2011-01-01

    Intellectual disability inherited in an autosomal-recessive fashion represents an important fraction of severe cognitive-dysfunction disorders. Yet, the extreme heterogeneity of these conditions markedly hampers gene identification. Here, we report on eight affected individuals who were from three consanguineous families and presented with severe intellectual disability, absent speech, shy character, stereotypic laughter, muscular hypotonia that progressed to spastic paraplegia, microcephaly, foot deformity, decreased muscle mass of the lower limbs, inability to walk, and growth retardation. Using a combination of autozygosity mapping and either Sanger sequencing of candidate genes or next-generation exome sequencing, we identified one mutation in each of three genes encoding adaptor protein complex 4 (AP4) subunits: a nonsense mutation in AP4S1 (NM_007077.3: c.124C>T, p.Arg42∗), a frameshift mutation in AP4B1 (NM_006594.2: c.487_488insTAT, p.Glu163_Ser739delinsVal), and a splice mutation in AP4E1 (NM_007347.3: c.542+1_542+4delGTAA, r.421_542del, p.Glu181Glyfs∗20). Adaptor protein complexes (AP1-4) are ubiquitously expressed, evolutionarily conserved heterotetrameric complexes that mediate different types of vesicle formation and the selection of cargo molecules for inclusion into these vesicles. Interestingly, two mutations affecting AP4M1 and AP4E1 have recently been found to cause cerebral palsy associated with severe intellectual disability. Combined with previous observations, these results support the hypothesis that AP4-complex-mediated trafficking plays a crucial role in brain development and functioning and demonstrate the existence of a clinically recognizable syndrome due to deficiency of the AP4 complex. PMID:21620353

  17. Human adipose stem cell and ASC-derived cardiac progenitor cellular therapy improves outcomes in a murine model of myocardial infarction

    PubMed Central

    Davy, Philip MC; Lye, Kevin D; Mathews, Juanita; Owens, Jesse B; Chow, Alice Y; Wong, Livingston; Moisyadi, Stefan; Allsopp, Richard C

    2015-01-01

    Background Adipose tissue is an abundant and potent source of adult stem cells for transplant therapy. In this study, we present our findings on the potential application of adipose-derived stem cells (ASCs) as well as induced cardiac-like progenitors (iCPs) derived from ASCs for the treatment of myocardial infarction. Methods and results Human bone marrow (BM)-derived stem cells, ASCs, and iCPs generated from ASCs using three defined cardiac lineage transcription factors were assessed in an immune-compromised mouse myocardial infarction model. Analysis of iCP prior to transplant confirmed changes in gene and protein expression consistent with a cardiac phenotype. Endpoint analysis was performed 1 month posttransplant. Significantly increased endpoint fractional shortening, as well as reduction in the infarct area at risk, was observed in recipients of iCPs as compared to the other recipient cohorts. Both recipients of iCPs and ASCs presented higher myocardial capillary densities than either recipients of BM-derived stem cells or the control cohort. Furthermore, mice receiving iCPs had a significantly higher cardiac retention of transplanted cells than all other groups. Conclusion Overall, iCPs generated from ASCs outperform BM-derived stem cells and ASCs in facilitating recovery from induced myocardial infarction in mice. PMID:26604802

  18. Adaptor proteins GIR1 and GIR2. II. Interaction with the co-repressor TOPLESS and promotion of histone deacetylation of target chromatin.

    PubMed

    Wu, Renhong; Citovsky, Vitaly

    2017-07-08

    Understanding how root hair development is controlled is important for understanding of many fundamental aspects of plant biology. Previously, we identified two plant-specific adaptor proteins GIR1 and GIR2 that interact with the major regulator of root hair development GL2 and suppress formation of root hair. Here, we show that GIR1 and GIR2 also interact with the co-repressor TOPLESS (TPL). This interaction required the GIR1 protein EAR motif, and was essential for the transcriptional repressor activity of GIR1. Both GIR1 and GIR2 promoted histone hypoacetylation of their target chromatin. Potentially, GIR1 and GIR2 might may link TPL to and participate in epigenetic regulation of root hair development. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Elimination of the NLRP3-ASC Inflammasome Protects against Chronic Obesity-Induced Pancreatic Damage

    PubMed Central

    Youm, Yun-Hee; Adijiang, Ayinuer; Vandanmagsar, Bolormaa; Burk, David; Ravussin, Anthony

    2011-01-01

    Clinical evidence that the blockade of IL-1β in type-2 diabetic patients improves glycemia is indicative of an autoinflammatory mechanism that may trigger adiposity-driven pancreatic damage. IL-1β is a key contributor to the obesity-induced inflammation and subsequent insulin resistance, pancreatic β-cell dysfunction, and the onset of type 2 diabetes. Our previous studies demonstrated that the ceramides activate the Nod-like receptor family, pyrin domain containing 3 (Nlrp3) inflammasome to cause the generation of mature IL-1β and ablation of the Nlrp3 inflammasome in diet-induced obesity improves insulin signaling. However, it remains unclear whether the posttranslational processing of active IL-1β in pancreas is regulated by the NLRP3 inflammasome or whether the alternate mechanisms play a dominant role in chronic obesity-induced pancreatic β-cell exhaustion. Here we show that loss of ASC, a critical adaptor required for the assembly of the NLRP3 and absent in melanoma 2 inflammasome substantially improves the insulin action. Surprisingly, despite lower insulin resistance in the chronically obese NLRP3 and ASC knockout mice, the insulin levels were substantially higher when the inflammasome pathway was eliminated. The obesity-induced increase in maturation of pancreatic IL-1β and pancreatic islet fibrosis was dependent on the NLRP3 inflammasome activation. Furthermore, elimination of NLRP3 inflammasome protected the pancreatic β-cells from cell death caused by long-term high-fat feeding during obesity with significant increase in the size of the islets of Langerhans. Collectively, this study provides direct in vivo evidence that activation of the NLRP3 inflammasome in diet-induced obesity is a critical trigger in causing pancreatic damage and is an important mechanism of progression toward type 2 diabetes. PMID:21862613

  20. HIV-1 Vpu Antagonizes CD317/Tetherin by Adaptor Protein-1-Mediated Exclusion from Virus Assembly Sites

    PubMed Central

    Pujol, François M.; Laketa, Vibor; Schmidt, Florian; Mukenhirn, Markus; Müller, Barbara; Boulant, Steeve; Grimm, Dirk; Keppler, Oliver T.

    2016-01-01

    ABSTRACT The host cell restriction factor CD317/tetherin traps virions at the surface of producer cells to prevent their release. The HIV-1 accessory protein Vpu antagonizes this restriction. Vpu reduces the cell surface density of the restriction factor and targets it for degradation; however, these activities are dispensable for enhancing particle release. Instead, Vpu has been suggested to antagonize CD317/tetherin by preventing recycling of internalized CD317/tetherin to the cell surface, blocking anterograde transport of newly synthesized CD317/tetherin, and/or displacing the restriction factor from virus assembly sites at the plasma membrane. At the molecular level, antagonism relies on the physical interaction of Vpu with CD317/tetherin. Recent findings suggested that phosphorylation of a diserine motif enables Vpu to bind to adaptor protein 1 (AP-1) trafficking complexes via two independent interaction motifs and to couple CD317/tetherin to the endocytic machinery. Here, we used a panel of Vpu proteins with specific mutations in individual interaction motifs to define which interactions are required for antagonism of CD317/tetherin. Impairing recycling or anterograde transport of CD317/tetherin to the plasma membrane was insufficient for antagonism. In contrast, excluding CD317/tetherin from HIV-1 assembly sites depended on Vpu motifs for interaction with AP-1 and CD317/tetherin and correlated with antagonism of the particle release restriction. Consistently, interference with AP-1 function or its expression blocked these Vpu activities. Our results define displacement from HIV-1 assembly sites as active principle of CD317/tetherin antagonism by Vpu and support a role of tripartite complexes between Vpu, AP-1, and CD317/tetherin in this process. IMPORTANCE CD317/tetherin poses an intrinsic barrier to human immunodeficiency virus type 1 (HIV-1) replication in human cells by trapping virus particles at the surface of producer cells and thereby preventing

  1. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case.

    PubMed

    Halova, Ivana; Draber, Petr

    2016-01-01

    The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.

  2. Amyloid precursor protein and Presenilin1 interact with the adaptor GRB2 and modulate ERK 1,2 signaling.

    PubMed

    Nizzari, Mario; Venezia, Valentina; Repetto, Emanuela; Caorsi, Valentina; Magrassi, Raffaella; Gagliani, Maria Cristina; Carlo, Pia; Florio, Tullio; Schettini, Gennaro; Tacchetti, Carlo; Russo, Tommaso; Diaspro, Alberto; Russo, Claudio

    2007-05-04

    The amyloid precursor protein (APP) and the presenilins 1 and 2 are genetically linked to the development of familial Alzheimer disease. APP is a single-pass transmembrane protein and precursor of fibrillar and toxic amyloid-beta peptides, which are considered responsible for Alzheimer disease neurodegeneration. Presenilins are multipass membrane proteins, involved in the enzymatic cleavage of APP and other signaling receptors and transducers. The role of APP and presenilins in Alzheimer disease development seems to be related to the formation of amyloid-beta peptides; however, their physiological function, reciprocal interaction, and molecular mechanisms leading to neurodegeneration are unclear. APP and presenilins are also involved in multiple interactions with intracellular proteins, the significance of which is under investigation. Among the different APP-interacting proteins, we focused our interest on the GRB2 adaptor protein, which connects cell surface receptors to intracellular signaling pathways. In this study we provide evidence by co-immunoprecipitation experiments, confocal and electron microscopy, and by fluorescence resonance energy transfer experiments that both APP and presenilin1 interact with GRB2 in vesicular structures at the centrosome of the cell. The final target for these interactions is ERK1,2, which is activated in mitotic centrosomes in a PS1- and APP-dependent manner. These data suggest that both APP and presenilin1 can be part of a common signaling pathway that regulates ERK1,2 and the cell cycle.

  3. 12 CFR 1102.302 - ASC authority and functions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false ASC authority and functions. 1102.302 Section 1102.302 Banks and Banking FEDERAL FINANCIAL INSTITUTIONS EXAMINATION COUNCIL APPRAISER REGULATION Description of Office, Procedures, Public Information § 1102.302 ASC authority and functions. (a) Authority...

  4. Adaptor proteins GIR1 and GIR2. I. Interaction with the repressor GLABRA2 and regulation of root hair development.

    PubMed

    Wu, Renhong; Citovsky, Vitaly

    2017-07-01

    Plants use specialized root outgrowths, termed root hairs, to enhance acquisition of nutrients and water, help secure anchorage, and facilitate interactions with soil microbiome. One of the major regulators of this process is GLABRA2 (GL2), a transcriptional repressor of root hair differentiation. However, regulation of the GL2-function is relatively well characterized, it remains completely unknown whether GL2 itself functions in complex with other transcriptional regulators. We identified GIR1 and GIR2, a plant-specific two-member family of closely related proteins that interact with GL2. Loss-of-function mutants of GIR1 and GIR2 enhanced development of root hair whereas gain-of-function mutants repressed it. Thus, GIR1 and GIR2 might function as adaptor proteins that associate with GL2 and participate in control of root hair formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Shugoshins: Tension-Sensitive Pericentromeric Adaptors Safeguarding Chromosome Segregation

    PubMed Central

    2014-01-01

    The shugoshin/Mei-S332 family are proteins that associate with the chromosomal region surrounding the centromere (the pericentromere) and that play multiple and distinct roles in ensuring the accuracy of chromosome segregation during both mitosis and meiosis. The underlying role of shugoshins appears to be to serve as pericentromeric adaptor proteins that recruit several different effectors to this region of the chromosome to regulate processes critical for chromosome segregation. Crucially, shugoshins undergo changes in their localization in response to the tension that is exerted on sister chromosomes by the forces of the spindle that will pull them apart. This has led to the idea that shugoshins provide a platform for activities required at the pericentromere only when sister chromosomes lack tension. Conversely, disassembly of the shugoshin pericentromeric platform may provide a signal that sister chromosomes are under tension. Here the functions and regulation of these important tension-sensitive pericentromeric proteins are discussed. PMID:25452306

  6. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 {mu}1A (AP-1 mu1A)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawasdee, Nunghathai; Junking, Mutita; Ngaojanlar, Piengpaga

    Research highlights: {yields} Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. {yields} Adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) was firstly reported to interact with kAE1. {yields} The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. {yields} AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. {yields} AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl{supmore » -}) and bicarbonate (HCO{sub 3}{sup -}) exchange at the basolateral membrane of kidney {alpha}-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange at the basolateral membrane and failure of proton (H{sup +}) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the k

  7. Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.

    2010-01-01

    Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC E2 heater head assembly. These mechanical tests were collectively referred to as lateral load tests since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.

  8. Test Hardware Design for Flightlike Operation of Advanced Stirling Convertors (ASC-E3)

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.

  9. Bul Proteins, a Nonredundant, Antagonistic Family of Ubiquitin Ligase Regulatory Proteins

    PubMed Central

    Novoselova, Tatiana V.; Zahira, Kiran; Rose, Ruth-Sarah

    2012-01-01

    Like other Nedd4 ligases, Saccharomyces cerevisiae E3 Rsp5p utilizes adaptor proteins to interact with some substrates. Previous studies have indentified Bul1p and Bul2p as adaptor proteins that facilitate the ligase-substrate interaction. Here, we show the identification of a third member of the Bul family, Bul3p, the product of two adjacent open reading frames separated by a stop codon that undergoes readthrough translation. Combinatorial analysis of BUL gene deletions reveals that they regulate some, but not all, of the cellular pathways known to involve Rsp5p. Surprisingly, we find that Bul proteins can act antagonistically to regulate the same ubiquitin-dependent process, and the nature of this antagonistic activity varies between different substrates. We further show, using in vitro ubiquitination assays, that the Bul proteins have different specificities for WW domains and that the two forms of Bul3p interact differently with Rsp5p, potentially leading to alternate functional outcomes. These data introduce a new level of complexity into the regulatory interactions that take place between Rsp5p and its adaptors and substrates and suggest a more critical role for the Bul family of proteins in controlling adaptor-mediated ubiquitination. PMID:22307975

  10. TIRAP, an Adaptor Protein for TLR2/4, Transduces a Signal from RAGE Phosphorylated upon Ligand Binding

    PubMed Central

    Sakaguchi, Masakiyo; Murata, Hitoshi; Yamamoto, Ken-ichi; Ono, Tomoyuki; Sakaguchi, Yoshihiko; Motoyama, Akira; Hibino, Toshihiko; Kataoka, Ken; Huh, Nam-ho

    2011-01-01

    The receptor for advanced glycation end products (RAGE) is thought to be involved in the pathogenesis of a broad range of inflammatory, degenerative and hyperproliferative diseases. It binds to diverse ligands and activates multiple intracellular signaling pathways. Despite these pivotal functions, molecular events just downstream of ligand-activated RAGE have been surprisingly unknown. Here we show that the cytoplasmic domain of RAGE is phosphorylated at Ser391 by PKCζ upon binding of ligands. TIRAP and MyD88, which are known to be adaptor proteins for Toll-like receptor-2 and -4 (TLR2/4), bound to the phosphorylated RAGE and transduced a signal to downstream molecules. Blocking of the function of TIRAP and MyD88 largely abrogated intracellular signaling from ligand-activated RAGE. Our findings indicate that functional interaction between RAGE and TLRs coordinately regulates inflammation, immune response and other cellular functions. PMID:21829704

  11. Recruitment of the Adaptor Protein Grb2 to EGFR Tetramers

    PubMed Central

    2015-01-01

    Adaptor protein Grb2 binds phosphotyrosines in the epidermal growth factor (EGF) receptor (EGFR) and thereby links receptor activation to intracellular signaling cascades. Here, we investigated how recruitment of Grb2 to EGFR is affected by the spatial organization and quaternary state of activated EGFR. We used the techniques of image correlation spectroscopy (ICS) and lifetime-detected Förster resonance energy transfer (also known as FLIM-based FRET or FLIM–FRET) to measure ligand-induced receptor clustering and Grb2 binding to activated EGFR in BaF/3 cells. BaF/3 cells were stably transfected with fluorescently labeled forms of Grb2 (Grb2–mRFP) and EGFR (EGFR–eGFP). Following stimulation of the cells with EGF, we detected nanometer-scale association of Grb2–mRFP with EGFR–eGFP clusters, which contained, on average, 4 ± 1 copies of EGFR–eGFP per cluster. In contrast, the pool of EGFR–eGFP without Grb2–mRFP had an average cluster size of 1 ± 0.3 EGFR molecules per punctum. In the absence of EGF, there was no association between EGFR–eGFP and Grb2–mRFP. To interpret these data, we extended our recently developed model for EGFR activation, which considers EGFR oligomerization up to tetramers, to include recruitment of Grb2 to phosphorylated EGFR. The extended model, with adjustment of one new parameter (the ratio of the Grb2 and EGFR copy numbers), is consistent with a cluster size distribution where 2% of EGFR monomers, 5% of EGFR dimers, <1% of EGFR trimers, and 94% of EGFR tetramers are associated with Grb2. Together, our experimental and modeling results further implicate tetrameric EGFR as the key signaling unit and call into question the widely held view that dimeric EGFR is the predominant signaling unit. PMID:24697349

  12. 42 CFR 416.171 - Determination of payment rates for ASC services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Determination of payment rates for ASC services... Determination of payment rates for ASC services. (a) Standard methodology. The standard methodology for determining the national unadjusted payment rate for ASC services is to calculate the product of the...

  13. Clinical Relevance of ASC-H Cytologies: Experience in a Single Tertiary Hospital.

    PubMed

    Díaz Del Arco, Cristina; Sanabria Montoro, M Carmen; García López, Dolores; Rodríguez Escudero, Eva; Fernández Aceñero, M Jesús

    2016-01-01

    To review the cases of atypical squamous cells (ASC), cannot exclude squamous intraepithelial lesion (ASC-H) diagnosed at a single institution and to discuss the interpretation challenges and clinical management of these cases. The ASC-H cases diagnosed at our institution from 2006 to 2015 were studied retrospectively; of 159,000 Pap smears, there were 959 cases of ASC of undetermined significance (ASC-US) and 148 cases of ASC-H. We have reviewed the clinical records of the ASC-H cases, and data have been analyzed using SPSS 20.0. Median age was 43.1 years; 49.6% of the patients had previous cervical cytologies, and 55.9% of them were negative. Following ASC-H diagnosis, another smear was obtained in 97.1% of the cases and in 67.6% a biopsy was performed. Biopsy revealed low-grade dysplasia in 18.8% of the cases, high-grade dysplasia in 27.8%, and infiltrating carcinoma in 2.3%. Patients with significant lesions in histology were younger than patients with negative results (p = 0.08). A diagnosis of ASC-H/squamous intraepithelial lesion in the repeated cytology had a sensitivity of 74.2%, specificity of 39.6%, positive predictive value of 44.8%, and negative predictive value of 70% for the diagnosis of dysplasia. ASC-H diagnosis is associated with a high incidence of histological high-grade lesions. A repeat cytology can aid in the selection of high-risk patients, but there may be false-negative results. © 2016 S. Karger AG, Basel.

  14. The Sla1 adaptor-clathrin interaction regulates coat formation and progression of endocytosis.

    PubMed

    Tolsma, Thomas O; Cuevas, Lena M; Di Pietro, Santiago M

    2018-06-01

    Clathrin-mediated endocytosis is a fundamental transport pathway that depends on numerous protein-protein interactions. Testing the importance of the adaptor protein-clathrin interaction for coat formation and progression of endocytosis in vivo has been difficult due to experimental constrains. Here, we addressed this question using the yeast clathrin adaptor Sla1, which is unique in showing a cargo endocytosis defect upon substitution of 3 amino acids in its clathrin-binding motif (sla1 AAA ) that disrupt clathrin binding. Live-cell imaging showed an impaired Sla1-clathrin interaction causes reduced clathrin levels but increased Sla1 levels at endocytic sites. Moreover, the rate of Sla1 recruitment was reduced indicating proper dynamics of both clathrin and Sla1 depend on their interaction. sla1 AAA cells showed a delay in progression through the various stages of endocytosis. The Arp2/3-dependent actin polymerization machinery was present for significantly longer time before actin polymerization ensued, revealing a link between coat formation and activation of actin polymerization. Ultimately, in sla1 AAA cells a larger than normal actin network was formed, dramatically higher levels of various machinery proteins other than clathrin were recruited, and the membrane profile of endocytic invaginations was longer. Thus, the Sla1-clathrin interaction is important for coat formation, regulation of endocytic progression and membrane bending. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer APPL1 regulates the protein level of EGFR in response to EGF stimulation. Black-Right-Pointing-Pointer Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. Black-Right-Pointing-Pointer Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation.more » Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.« less

  16. Internal amino acids promote Gap1 permease ubiquitylation via TORC1/Npr1/14-3-3-dependent control of the Bul arrestin-like adaptors.

    PubMed

    Merhi, Ahmad; André, Bruno

    2012-11-01

    Ubiquitylation of many plasma membrane proteins promotes their endocytosis followed by degradation in the lysosome. The yeast general amino acid permease, Gap1, is ubiquitylated and downregulated when a good nitrogen source like ammonium is provided to cells growing on a poor nitrogen source. This ubiquitylation requires the Rsp5 ubiquitin ligase and the redundant arrestin-like Bul1 and Bul2 adaptors. Previous studies have shown that Gap1 ubiquitylation involves the TORC1 kinase complex, which inhibits the Sit4 phosphatase. This causes inactivation of the protein kinase Npr1, which protects Gap1 against ubiquitylation. However, the mechanisms inducing Gap1 ubiquitylation after Npr1 inactivation remain unknown. We here show that on a poor nitrogen source, the Bul adaptors are phosphorylated in an Npr1-dependent manner and bound to 14-3-3 proteins that protect Gap1 against downregulation. After ammonium is added and converted to amino acids, the Bul proteins are dephosphorylated, dissociate from the 14-3-3 proteins, and undergo ubiquitylation. Furthermore, dephosphorylation of Bul requires the Sit4 phosphatase, which is essential to Gap1 downregulation. The data support the emerging concept that permease ubiquitylation results from activation of the arrestin-like adaptors of the Rsp5 ubiquitin ligase, this coinciding with their dephosphorylation, dissociation from the inhibitory 14-3-3 proteins, and ubiquitylation.

  17. Contrasting roles of DAP10 and KARAP/DAP12 signaling adaptors in activation of the RBL-2H3 leukemic mast cell line.

    PubMed

    Anfossi, Nicolas; Lucas, Mathias; Diefenbach, Andreas; Bühring, Hans-Jörg; Raulet, David; Tomasello, Elena; Vivier, Eric

    2003-12-01

    A common feature of hematopoietic activating immunoreceptors resides in their association at the cell surface with transmembrane signaling adaptors. Several adaptors, such as the CD3 molecules, FcRgamma and KARAP/DAP12, harbor intracytoplasmic immunoreceptor tyrosine-based activation motifs (ITAM) that activate Syk-family protein tyrosine kinases. In contrast, another transmembrane adaptor, DAP10, bears a YxxM motif that delivers signals by activation of lipid kinase pathways. We show here that the human signal-regulatory protein SIRPbeta1 can associate with both DAP10 and KARAP/DAP12 in a model of RBL-2H3 cell transfectants. In association with KARAP/DAP12, SIRPbeta1 complexes are capable of inducing serotonin release and tumor necrosis factor (TNF) secretion. By contrast,in the absence of KARAP/DAP12, engagement of SIRPbeta1:DAP10 complexes does not lead to detectable serotonin release or TNF secretion by RBL-2H3 transfectants. However, triggering of SIRPbeta1:DAP10 complexes co-stimulates RBL-2H3 effector function induced by sub-optimal stimulation of the endogenous FcepsilonRI complex. Therefore, we report here a cellular model in which the association of a cell surface receptor with various signaling adaptors dictates the co-stimulatory or the direct stimulatory properties of the complex.

  18. A Big-Five Personality Profile of the Adaptor and Innovator.

    ERIC Educational Resources Information Center

    Kwang, Ng Aik; Rodrigues, Daphne

    2002-01-01

    A study explored the relationship between two creative types (adaptor and innovator) and the Big Five personality traits (extraversion, agreeableness, conscientiousness, neuroticism, and openness to experience), in 164 teachers in Singapore. Adaptors were significantly more conscientious than innovators, while innovators were significantly more…

  19. Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays

    DOEpatents

    Li, Zheng; Chen, Wei

    2016-07-05

    A drift detector array, preferably a silicon drift detector (SDD) array, that uses a low current biasing adaptor is disclosed. The biasing adaptor is customizable for any desired geometry of the drift detector single cell with minimum drift time of carriers. The biasing adaptor has spiral shaped ion-implants that generate the desired voltage profile. The biasing adaptor can be processed on the same wafer as the drift detector array and only one biasing adaptor chip/side is needed for one drift detector array to generate the voltage profiles on the front side and back side of the detector array.

  20. Adaptor protein complex 2-mediated endocytosis is crucial for male reproductive organ development in Arabidopsis.

    PubMed

    Kim, Soo Youn; Xu, Zheng-Yi; Song, Kyungyoung; Kim, Dae Heon; Kang, Hyangju; Reichardt, Ilka; Sohn, Eun Ju; Friml, Jirí; Juergens, Gerd; Hwang, Inhwan

    2013-08-01

    Fertilization in flowering plants requires the temporal and spatial coordination of many developmental processes, including pollen production, anther dehiscence, ovule production, and pollen tube elongation. However, it remains elusive as to how this coordination occurs during reproduction. Here, we present evidence that endocytosis, involving heterotetrameric adaptor protein complex 2 (AP-2), plays a crucial role in fertilization. An Arabidopsis thaliana mutant ap2m displays multiple defects in pollen production and viability, as well as elongation of staminal filaments and pollen tubes, all of which are pivotal processes needed for fertilization. Of these abnormalities, the defects in elongation of staminal filaments and pollen tubes were partially rescued by exogenous auxin. Moreover, DR5rev:GFP (for green fluorescent protein) expression was greatly reduced in filaments and anthers in ap2m mutant plants. At the cellular level, ap2m mutants displayed defects in both endocytosis of N-(3-triethylammonium-propyl)-4-(4-diethylaminophenylhexatrienyl) pyridinium dibromide, a lypophilic dye used as an endocytosis marker, and polar localization of auxin-efflux carrier PIN FORMED2 (PIN2) in the stamen filaments. Moreover, these defects were phenocopied by treatment with Tyrphostin A23, an inhibitor of endocytosis. Based on these results, we propose that AP-2-dependent endocytosis plays a crucial role in coordinating the multiple developmental aspects of male reproductive organs by modulating cellular auxin level through the regulation of the amount and polarity of PINs.

  1. MADM, a novel adaptor protein that mediates phosphorylation of the 14-3-3 binding site of myeloid leukemia factor 1.

    PubMed

    Lim, Raelene; Winteringham, Louise N; Williams, James H; McCulloch, Ross K; Ingley, Evan; Tiao, Jim Y-H; Lalonde, Jean-Philippe; Tsai, Schickwann; Tilbrook, Peta A; Sun, Yi; Wu, Xiaohua; Morris, Stephan W; Klinken, S Peter

    2002-10-25

    A yeast two-hybrid screen was conducted to identify binding partners of Mlf1, an oncoprotein recently identified in a translocation with nucleophosmin that causes acute myeloid leukemia. Two proteins isolated in this screen were 14-3-3zeta and a novel adaptor, Madm. Mlf1 contains a classic RSXSXP sequence for 14-3-3 binding and is associated with 14-3-3zeta via this phosphorylated motif. Madm co-immunoprecipitated with Mlf1 and co-localized in the cytoplasm. In addition, Madm recruited a serine kinase, which phosphorylated both Madm and Mlf1 including the RSXSXP motif. In contrast to wild-type Mlf1, the oncogenic fusion protein nucleophosmin (NPM)-MLF1 did not bind 14-3-3zeta, had altered Madm binding, and localized exclusively in the nucleus. Ectopic expression of Madm in M1 myeloid cells suppressed cytokine-induced differentiation unlike Mlf1, which promotes maturation. Because the Mlf1 binding region of Madm and its own dimerization domain overlapped, the levels of Madm and Mlf1 may affect complex formation and regulate differentiation. In summary, this study has identified two partner proteins of Mlf1 that may influence its subcellular localization and biological function.

  2. The Legionella IcmSW Complex Directly Interacts with DotL to Mediate Translocation of Adaptor-Dependent Substrates

    PubMed Central

    Sutherland, Molly C.; Nguyen, Thuy Linh; Tseng, Victor; Vogel, Joseph P.

    2012-01-01

    Legionella pneumophila is a Gram-negative bacterium that replicates within human alveolar macrophages by evasion of the host endocytic pathway through the formation of a replicative vacuole. Generation of this vacuole is dependent upon the secretion of over 275 effector proteins into the host cell via the Dot/Icm type IVB secretion system (T4SS). The type IV coupling protein (T4CP) subcomplex, consisting of DotL, DotM, DotN, IcmS and IcmW, was recently defined. DotL is proposed to be the T4CP of the L. pneumophila T4SS based on its homology to known T4CPs, which function as inner-membrane receptors for substrates. As a result, DotL is hypothesized to play an integral role(s) in the L. pneumophila T4SS for the engagement and translocation of substrates. To elucidate this role, a genetic approach was taken to screen for dotL mutants that were unable to survive inside host cells. One mutant, dotLY725Stop, did not interact with the type IV adaptor proteins IcmS/IcmW (IcmSW) leading to the identification of an IcmSW-binding domain on DotL. Interestingly, the dotLY725Stop mutant was competent for export of one class of secreted effectors, the IcmSW-independent substrates, but exhibited a specific defect in secretion of IcmSW-dependent substrates. This differential secretion illustrates that DotL requires a direct interaction with the type IV adaptor proteins for the secretion of a major class of substrates. Thus, by identifying a new target for IcmSW, we have discovered that the type IV adaptors perform an additional role in the export of substrates by the L. pneumophila Dot/Icm T4SS. PMID:23028312

  3. Phosphotyrosine signaling proteins that drive oncogenesis tend to be highly interconnected.

    PubMed

    Koytiger, Grigoriy; Kaushansky, Alexis; Gordus, Andrew; Rush, John; Sorger, Peter K; MacBeath, Gavin

    2013-05-01

    Mutation and overexpression of receptor tyrosine kinases or the proteins they regulate serve as oncogenic drivers in diverse cancers. To better understand receptor tyrosine kinase signaling and its link to oncogenesis, we used protein microarrays to systematically and quantitatively measure interactions between virtually every SH2 or PTB domain encoded in the human genome and all known sites of tyrosine phosphorylation on 40 receptor tyrosine kinases and on most of the SH2 and PTB domain-containing adaptor proteins. We found that adaptor proteins, like RTKs, have many high affinity bindings sites for other adaptor proteins. In addition, proteins that drive cancer, including both receptors and adaptor proteins, tend to be much more highly interconnected via networks of SH2 and PTB domain-mediated interactions than nononcogenic proteins. Our results suggest that network topological properties such as connectivity can be used to prioritize new drug targets in this well-studied family of signaling proteins.

  4. POP1 might be recruiting its type-Ia interface for NLRP3-mediated PYD-PYD interaction: Insights from MD simulation.

    PubMed

    Maharana, Jitendra; Vats, Ashutosh; Gautam, Santwana; Nayak, Bibhu Prasad; Kumar, Sushil; Sendha, Jasobanta; De, Sachinandan

    2017-09-01

    Inflammasomes are multiprotein caspase-activating complexes that enhance the maturation and release of proinflammatory cytokines (IL-1β and IL-18) in response to the invading pathogen and/or host-derived cellular stress. These are assembled by the sensory proteins (viz NLRC4, NLRP1, NLRP3, and AIM-2), adaptor protein (ASC), and effector molecule procaspase-1. In NLRP3-mediated inflammasome activation, ASC acts as a mediator between NLRP3 and procaspase-1 for the transmission of signals. A series of homotypic protein-protein interactions (NLRP3 PYD :ASC PYD and ASC CARD :CASP1 CARD ) propagates the downstream signaling for the production of proinflammatory cytokines. Pyrin-only protein 1 (POP1) is known to act as the regulator of inflammasome. It modulates the ASC-mediated inflammasome assembly by interacting with pyrin domain (PYD) of ASC. However, despite similar electrostatic surface potential, the interaction of POP1 with NLRP3 PYD is obscured till date. Herein, to explore the possible PYD-PYD interactions between NLRP3 PYD and POP1, a combined approach of protein-protein docking and molecular dynamics simulation was adapted. The current study revealed that POP1's type-Ia interface and type-Ib interface of NLRP3 PYD might be crucial for 1:1 PYD-PYD interaction. In addition to type-I mode of interaction, we also observed type-II and type-III interaction modes in two different dynamically stable heterotrimeric complexes (POP1-NLRP3-NLRP3 and POP1-NLRP3-POP1). The inter-residual/atomic distance calculation exposed several critical residues that possibly govern the said interaction, which need further investigation. Overall, the findings of this study will shed new light on hitherto concealed molecular mechanisms underlying NLRP3-mediated inflammasome, which will have strong future therapeutic implications. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Adaptor proteins NUMB and NUMBL promote cell cycle withdrawal by targeting ERBB2 for degradation

    PubMed Central

    Hirai, Maretoshi; Arita, Yoh; McGlade, C. Jane; Lee, Kuo-Fen; Chen, Ju; Evans, Sylvia M.

    2017-01-01

    Failure of trabecular myocytes to undergo appropriate cell cycle withdrawal leads to ventricular noncompaction and heart failure. Signaling of growth factor receptor ERBB2 is critical for myocyte proliferation and trabeculation. However, the mechanisms underlying appropriate downregulation of trabecular ERBB2 signaling are little understood. Here, we have found that the endocytic adaptor proteins NUMB and NUMBL were required for downregulation of ERBB2 signaling in maturing trabeculae. Loss of NUMB and NUMBL resulted in a partial block of late endosome formation, resulting in sustained ERBB2 signaling and STAT5 activation. Unexpectedly, activated STAT5 overrode Hippo-mediated inhibition and drove YAP1 to the nucleus. Consequent aberrant cardiomyocyte proliferation resulted in ventricular noncompaction that was markedly rescued by heterozygous loss of function of either ERBB2 or YAP1. Further investigations revealed that NUMB and NUMBL interacted with small GTPase Rab7 to transition ERBB2 from early to late endosome for degradation. Our studies provide insight into mechanisms by which NUMB and NUMBL promote cardiomyocyte cell cycle withdrawal and highlight previously unsuspected connections between pathways that are important for cardiomyocyte cell cycle reentry, with relevance to ventricular noncompaction cardiomyopathy and regenerative medicine. PMID:28067668

  6. Adaptor protein Lnk negatively regulates the mutant MPL, MPLW515L associated with myeloproliferative disorders

    PubMed Central

    Gueller, Saskia; Chumakova, Katya; Kawamata, Norihiko; Liu, Liqin; Koeffler, H. Phillip

    2007-01-01

    Recently, activating myeloproliferative leukemia virus oncogene (MPL) mutations, MPLW515L/K, were described in myeloproliferative disorder (MPD) patients. MPLW515L leads to activation of downstream signaling pathways and cytokine-independent proliferation in hematopoietic cells. The adaptor protein Lnk is a negative regulator of several cytokine receptors, including MPL. We show that overexpression of Lnk in Ba/F3-MPLW515L cells inhibits cytokine-independent growth, while suppression of Lnk in UT7-MPLW515L cells enhances proliferation. Lnk blocks the activation of Jak2, Stat3, Erk, and Akt in these cells. Furthermore, MPLW515L-expressing cells are more susceptible to Lnk inhibitory functions than their MPL wild-type (MPLWT)–expressing counterparts. Lnk associates with activated MPLWT and MPLW515L and colocalizes with the receptors at the plasma membrane. The SH2 domain of Lnk is essential for its binding and for its down-regulation of MPLWT and MPLW515L. Lnk itself is tyrosine-phosphorylated following thrombopoietin stimulation. Further elucidating the cellular pathways that attenuate MPLW515L will provide insight into the pathogenesis of MPD and could help develop specific therapeutic approaches. PMID:17693582

  7. Adaptor protein Lnk negatively regulates the mutant MPL, MPLW515L associated with myeloproliferative disorders.

    PubMed

    Gery, Sigal; Gueller, Saskia; Chumakova, Katya; Kawamata, Norihiko; Liu, Liqin; Koeffler, H Phillip

    2007-11-01

    Recently, activating myeloproliferative leukemia virus oncogene (MPL) mutations, MPLW515L/K, were described in myeloproliferative disorder (MPD) patients. MPLW515L leads to activation of downstream signaling pathways and cytokine-independent proliferation in hematopoietic cells. The adaptor protein Lnk is a negative regulator of several cytokine receptors, including MPL. We show that overexpression of Lnk in Ba/F3-MPLW515L cells inhibits cytokine-independent growth, while suppression of Lnk in UT7-MPLW515L cells enhances proliferation. Lnk blocks the activation of Jak2, Stat3, Erk, and Akt in these cells. Furthermore, MPLW515L-expressing cells are more susceptible to Lnk inhibitory functions than their MPL wild-type (MPLWT)-expressing counterparts. Lnk associates with activated MPLWT and MPLW515L and colocalizes with the receptors at the plasma membrane. The SH2 domain of Lnk is essential for its binding and for its down-regulation of MPLWT and MPLW515L. Lnk itself is tyrosine-phosphorylated following thrombopoietin stimulation. Further elucidating the cellular pathways that attenuate MPLW515L will provide insight into the pathogenesis of MPD and could help develop specific therapeutic approaches.

  8. The adaptor protein SLP-76 regulates HIV-1 release and cell-to-cell transmission in T cells.

    PubMed

    Nagaraja, Tirumuru; Anand, Appakkudal R; Zhao, Helong; Ganju, Ramesh K

    2012-03-15

    HIV-1 infection in T cells is regulated by TCR activation. However, the cellular proteins of the TCR pathway that regulate HIV-1 infection are poorly characterized. In this study, in HIV-1 infection, we observed a significant reduction of HIV-1 virus production in Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76)-deficient Jurkat T cells compared with wild-type and SLP-76-reconstituted Jurkat T cells. We further confirmed the role of SLP-76 in HIV-1 infection by small interfering RNA-mediated knockdown in MT4 cells and PBMCs. Structural-functional analysis revealed that the N-terminal domain of SLP-76 was important for regulating HIV-1 infection. Further mechanistic studies revealed that lack of SLP-76 impaired virus release, but did not affect viral entry, integration, and transcription. We also showed that SLP-76 plays a critical role in cell-to-cell transmission of HIV-1. Signaling studies revealed that SLP-76 associated with viral negative regulatory factor protein and multiple signaling molecules during HIV-1 infection. Furthermore, SLP-76 facilitated the association of negative regulatory factor and F-actin, suggesting that SLP-76 mediates the formation of a signaling complex that may regulate viral release via cytoskeletal changes. Taken together, our studies demonstrate a novel role for the adaptor molecule SLP-76 in regulating HIV-1 infection in T cells with the potential to develop innovative strategies against HIV-1.

  9. Signaling by Kit protein-tyrosine kinase--the stem cell factor receptor.

    PubMed

    Roskoski, Robert

    2005-11-11

    Signaling by stem cell factor and Kit, its receptor, plays important roles in gametogenesis, hematopoiesis, mast cell development and function, and melanogenesis. Moreover, human and mouse embryonic stem cells express Kit transcripts. Stem cell factor exists as both a soluble and a membrane-bound glycoprotein while Kit is a receptor protein-tyrosine kinase. The complete absence of stem cell factor or Kit is lethal. Deficiencies of either produce defects in red and white blood cell production, hypopigmentation, and sterility. Gain-of-function mutations of Kit are associated with several human neoplasms including acute myelogenous leukemia, gastrointestinal stromal tumors, and mastocytomas. Kit consists of an extracellular domain, a transmembrane segment, a juxtamembrane segment, and a protein kinase domain that contains an insert of about 80 amino acid residues. Binding of stem cell factor to Kit results in receptor dimerization and activation of protein kinase activity. The activated receptor becomes autophosphorylated at tyrosine residues that serve as docking sites for signal transduction molecules containing SH2 domains. The adaptor protein APS, Src family kinases, and Shp2 tyrosyl phosphatase bind to phosphotyrosine 568. Shp1 tyrosyl phosphatase and the adaptor protein Shc bind to phosphotyrosine 570. C-terminal Src kinase homologous kinase and the adaptor Shc bind to both phosphotyrosines 568 and 570. These residues occur in the juxtamembrane segment of Kit. Three residues in the kinase insert domain are phosphorylated and attract the adaptor protein Grb2 (Tyr703), phosphatidylinositol 3-kinase (Tyr721), and phospholipase Cgamma (Tyr730). Phosphotyrosine 900 in the distal kinase domain binds phosphatidylinositol 3-kinase which in turn binds the adaptor protein Crk. Phosphotyrosine 936, also in the distal kinase domain, binds the adaptor proteins APS, Grb2, and Grb7. Kit has the potential to participate in multiple signal transduction pathways as a result of

  10. The Endocytic Adaptor Eps15 Controls Marginal Zone B Cell Numbers

    PubMed Central

    Pozzi, Benedetta; Amodio, Stefania; Lucano, Caterina; Sciullo, Anna; Ronzoni, Simona; Castelletti, Daniela; Adler, Thure; Treise, Irina; Betsholtz, Ingrid Holmberg; Rathkolb, Birgit; Busch, Dirk H.; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valérie; de Angelis, Martin Hrabě; Betsholtz, Christer; Casola, Stefano; Di Fiore, Pier Paolo; Offenhäuser, Nina

    2012-01-01

    Eps15 is an endocytic adaptor protein involved in clathrin and non-clathrin mediated endocytosis. In Caenorhabditis elegans and Drosophila melanogaster lack of Eps15 leads to defects in synaptic vesicle recycling and synapse formation. We generated Eps15-KO mice to investigate its function in mammals. Eps15-KO mice are born at the expected Mendelian ratio and are fertile. Using a large-scale phenotype screen covering more than 300 parameters correlated to human disease, we found that Eps15-KO mice did not show any sign of disease or neural deficits. Instead, altered blood parameters pointed to an immunological defect. By competitive bone marrow transplantation we demonstrated that Eps15-KO hematopoietic precursor cells were more efficient than the WT counterparts in repopulating B220+ bone marrow cells, CD19− thymocytes and splenic marginal zone (MZ) B cells. Eps15-KO mice showed a 2-fold increase in MZ B cell numbers when compared with controls. Using reverse bone marrow transplantation, we found that Eps15 regulates MZ B cell numbers in a cell autonomous manner. FACS analysis showed that although MZ B cells were increased in Eps15-KO mice, transitional and pre-MZ B cell numbers were unaffected. The increase in MZ B cell numbers in Eps15 KO mice was not dependent on altered BCR signaling or Notch activity. In conclusion, in mammals, the endocytic adaptor protein Eps15 is a regulator of B-cell lymphopoiesis. PMID:23226392

  11. The Adaptor Protein SAP Directly Associates with CD3ζ Chain and Regulates T Cell Receptor Signaling

    PubMed Central

    Proust, Richard; Bertoglio, Jacques; Gesbert, Franck

    2012-01-01

    Mutations altering the gene encoding the SLAM associated protein (SAP) are responsible for the X-linked lymphoproliferative disease or XLP1. Its absence is correlated with a defective NKT cells development, a decrease in B cell functions and a reduced T cells and NK cells cytotoxic activities, thus leading to an immunodeficiency syndrome. SAP is a small 128 amino-acid long protein that is almost exclusively composed of an SH2 domain. It has been shown to interact with the CD150/SLAM family of receptors, and in a non-canonical manner with SH3 containing proteins such as Fyn, βPIX, PKCθ and Nck1. It would thus play the role of a minimal adaptor protein. It has been shown that SAP plays an important function in the activation of T cells through its interaction with the SLAM family of receptors. Therefore SAP defective T cells display a reduced activation of signaling events downstream of the TCR-CD3 complex triggering. In the present work, we evidence that SAP is a direct interactor of the CD3ζ chain. This direct interaction occurs through the first ITAM of CD3ζ, proximal to the membrane. Additionally, we show that, in the context of the TCR-CD3 signaling, an Sh-RNA mediated silencing of SAP is responsible for a decrease of several canonical T cell signaling pathways including Erk, Akt and PLCγ1 and to a reduced induction of IL-2 and IL-4 mRNA. Altogether, we show that SAP plays a central function in the T cell activation processes through a direct association with the CD3 complex. PMID:22912825

  12. Develop Probabilistic Tsunami Design Maps for ASCE 7

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Thio, H. K.; Chock, G.; Titov, V. V.

    2014-12-01

    A national standard for engineering design for tsunami effects has not existed before and this significant risk is mostly ignored in engineering design. The American Society of Civil Engineers (ASCE) 7 Tsunami Loads and Effects Subcommittee is completing a chapter for the 2016 edition of ASCE/SEI 7 Standard. Chapter 6, Tsunami Loads and Effects, would become the first national tsunami design provisions. These provisions will apply to essential facilities and critical infrastructure. This standard for tsunami loads and effects will apply to designs as part of the tsunami preparedness. The provisions will have significance as the post-tsunami recovery tool, to plan and evaluate for reconstruction. Maps of 2,500-year probabilistic tsunami inundation for Alaska, Washington, Oregon, California, and Hawaii need to be developed for use with the ASCE design provisions. These new tsunami design zone maps will define the coastal zones where structures of greater importance would be designed for tsunami resistance and community resilience. The NOAA Center for Tsunami Research (NCTR) has developed 75 tsunami inundation models as part of the operational tsunami model forecast capability for the U.S. coastline. NCTR, UW, and URS are collaborating with ASCE to develop the 2,500-year tsunami design maps for the Pacific states using these tsunami models. This ensures the probabilistic criteria are established in ASCE's tsunami design maps. URS established a Probabilistic Tsunami Hazard Assessment approach consisting of a large amount of tsunami scenarios that include both epistemic uncertainty and aleatory variability (Thio et al., 2010). Their study provides 2,500-year offshore tsunami heights at the 100-m water depth, along with the disaggregated earthquake sources. NOAA's tsunami models are used to identify a group of sources that produce these 2,500-year tsunami heights. The tsunami inundation limits and runup heights derived from these sources establish the tsunami design map

  13. The adaptor protein p62 is involved in RANKL-induced autophagy and osteoclastogenesis.

    PubMed

    Li, Rui-Fang; Chen, Gang; Ren, Jian-Gang; Zhang, Wei; Wu, Zhong-Xing; Liu, Bing; Zhao, Yi; Zhao, Yi-Fang

    2014-12-01

    Previous studies have implicated autophagy in osteoclast differentiation. The aim of this study was to investigate the potential role of p62, a characterized adaptor protein for autophagy, in RANKL-induced osteoclastogenesis. Real-time quantitative PCR and western blot analyses were used to evaluate the expression levels of autophagy-related markers during RANKL-induced osteoclastogenesis in mouse macrophage-like RAW264.7 cells. Meanwhile, the potential relationship between p62/LC3 localization and F-actin ring formation was tested using double-labeling immunofluorescence. Then, the expression of p62 in RAW264.7 cells was knocked down using small-interfering RNA (siRNA), followed by detecting its influence on RANKL-induced autophagy activation, osteoclast differentiation, and F-actin ring formation. The data showed that several key autophagy-related markers including p62 were significantly altered during RANKL-induced osteoclast differentiation. In addition, the expression and localization of p62 showed negative correlation with LC3 accumulation and F-actin ring formation, as demonstrated by western blot and immunofluorescence analyses, respectively. Importantly, the knockdown of p62 obviously attenuated RANKL-induced expression of autophagy- and osteoclastogenesis-related genes, formation of TRAP-positive multinuclear cells, accumulation of LC3, as well as formation of F-actin ring. Our study indicates that p62 may play essential roles in RANKL-induced autophagy and osteoclastogenesis, which may help to develop a novel therapeutic strategy against osteoclastogenesis-related diseases. © The Author(s) 2014.

  14. ASC-AD penetration modeling FY05 status report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kistler, Bruce L.; Ostien, Jakob T.; Chiesa, Michael L.

    2006-04-01

    Sandia currently lacks a high fidelity method for predicting loads on and subsequent structural response of earth penetrating weapons. This project seeks to test, debug, improve and validate methodologies for modeling earth penetration. Results of this project will allow us to optimize and certify designs for the B61-11, Robust Nuclear Earth Penetrator (RNEP), PEN-X and future nuclear and conventional penetrator systems. Since this is an ASC Advanced Deployment project the primary goal of the work is to test, debug, verify and validate new Sierra (and Nevada) tools. Also, since this project is part of the V&V program within ASC, uncertaintymore » quantification (UQ), optimization using DAKOTA [1] and sensitivity analysis are an integral part of the work. This project evaluates, verifies and validates new constitutive models, penetration methodologies and Sierra/Nevada codes. In FY05 the project focused mostly on PRESTO [2] using the Spherical Cavity Expansion (SCE) [3,4] and PRESTO Lagrangian analysis with a preformed hole (Pen-X) methodologies. Modeling penetration tests using PRESTO with a pilot hole was also attempted to evaluate constitutive models. Future years work would include the Alegra/SHISM [5] and AlegrdEP (Earth Penetration) methodologies when they are ready for validation testing. Constitutive models such as Soil-and-Foam, the Sandia Geomodel [6], and the K&C Concrete model [7] were also tested and evaluated. This report is submitted to satisfy annual documentation requirements for the ASC Advanced Deployment program. This report summarizes FY05 work performed in the Penetration Mechanical Response (ASC-APPS) and Penetration Mechanics (ASC-V&V) projects. A single report is written to document the two projects because of the significant amount of technical overlap.« less

  15. SRC-like adaptor protein 2 (SLAP2) is a negative regulator of KIT-D816V-mediated oncogenic transformation.

    PubMed

    Rupar, Kaja; Moharram, Sausan A; Kazi, Julhash U; Rönnstrand, Lars

    2018-04-23

    KIT is a receptor tyrosine kinase (RTK) involved in several cellular processes such as regulation of proliferation, survival and differentiation of early hematopoietic cells, germ cells and melanocytes. Activation of KIT results in phosphorylation of tyrosine residues in the receptor, and recruitment of proteins that mediate downstream signaling and also modulate receptor signaling. Here we show that the SRC-like adaptor protein 2 (SLAP2) binds to wild-type KIT in a ligand-dependent manner and is furthermore found constitutively associated with the oncogenic mutant KIT-D816V. Peptide fishing analysis mapped pY568 and pY570 as potential SLAP2 association sites in KIT, which overlaps with the SRC binding sites in KIT. Expression of SLAP2 in cells expressing the transforming mutant KIT-D816V led to reduced cell viability and reduced colony formation. SLAP2 also partially blocked phosphorylation of several signal transduction molecules downstream of KIT such as AKT, ERK, p38 and STAT3. Finally, SLAP2 expression enhanced ubiquitination of KIT and its subsequent degradation. Taken together, our data demonstrate that SLAP2 negatively modulates KIT-D816V-mediated transformation by enhancing degradation of the receptor.

  16. Complementary phosphorylation sites in the adaptor protein SLP-76 promote synergistic activation of natural killer cells.

    PubMed

    Kim, Hun Sik; Long, Eric O

    2012-07-10

    The cytotoxic effects of natural killer (NK) cells and their ability to secrete cytokines require synergistic signals from specific pairs of co-activation receptors, such as CD314 (also known as NKG2D) and CD244 (2B4), which bind to distinct ligands present on target cells. These signals are required to overcome inhibition mediated by the E3 ubiquitin ligase c-Cbl of the guanine nucleotide exchange factor Vav1, which promotes activation of NK cells. Here, we showed that the adaptor protein SLP-76 (Src homology 2 domain-containing leukocyte phosphoprotein of 76 kilodaltons) was required for this synergy and that distinct tyrosine residues in SLP-76 were phosphorylated by each member of a pair of synergistic receptors. Selective phosphorylation of tyrosine 113 or tyrosine 128 in SLP-76 enabled binding of SLP-76 to Vav1. Selective phosphorylation of SLP-76 at these residues was restricted to receptors that stimulated ligand-dependent target cell killing; antibody-dependent stimulation of the Fc receptor CD16 promoted phosphorylation at both sites. Knockdown and reconstitution experiments with SLP-76 mutant proteins showed the distinct role of each tyrosine in the synergistic mobilization of Ca2+, revealing an unexpected degree of selectivity in the phosphorylation of SLP-76 by NK cell co-activation receptors. Together, these data suggest that combined phosphorylation of separate tyrosine residues in SLP-76 forms the basis of synergistic NK cell activation.

  17. Evolutionary genomics suggests that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Davi R.; Zhulin, Igor B.; Punta, Marco

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linkingmore » the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Altogether, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex.« less

  18. Evolutionary genomics suggests that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex

    DOE PAGES

    Ortega, Davi R.; Zhulin, Igor B.; Punta, Marco

    2016-02-04

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linkingmore » the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Altogether, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex.« less

  19. The unique GGA clathrin adaptor of Drosophila melanogaster is not essential.

    PubMed

    Luan, Shan; Ilvarsonn, Anne M; Eissenberg, Joel C

    2012-01-01

    The Golgi-localized, γ-ear-containing, ARF binding proteins (GGAs) are a highly conserved family of monomeric clathrin adaptor proteins implicated in clathrin-mediated protein sorting between the trans-Golgi network and endosomes. GGA RNAi knockdowns in Drosophila have resulted in conflicting data concerning whether the Drosophila GGA (dGGA) is essential. The goal of this study was to define the null phenotype for the unique Drosophila GGA. We describe two independently derived dGGA mutations. Neither allele expresses detectable dGGA protein. Homozygous and hemizygous flies with each allele are viable and fertile. In contrast to a previous report using RNAi knockdown, GGA mutant flies show no evidence of age-dependent retinal degeneration or cathepsin missorting. Our results demonstrate that several of the previous RNAi knockdown phenotypes were the result of off-target effects. However, GGA null flies are hypersensitive to dietary chloroquine and to starvation, implicating GGA in lysosomal function and autophagy.

  20. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms

    PubMed Central

    Oh, Stephen T.; Simonds, Erin F.; Jones, Carol; Hale, Matthew B.; Goltsev, Yury; Gibbs, Kenneth D.; Merker, Jason D.; Zehnder, James L.; Nolan, Garry P.

    2010-01-01

    Dysregulated Janus kinase–signal transducer and activator of transcription (JAK-STAT) signaling due to activation of tyrosine kinases is a common feature of myeloid malignancies. Here we report the first human disease-related mutations in the adaptor protein LNK, a negative regulator of JAK-STAT signaling, in 2 patients with JAK2 V617F–negative myeloproliferative neoplasms (MPNs). One patient exhibited a 5 base-pair deletion and missense mutation leading to a premature stop codon and loss of the pleckstrin homology (PH) and Src homology 2 (SH2) domains. A second patient had a missense mutation (E208Q) in the PH domain. BaF3-MPL cells transduced with these LNK mutants displayed augmented and sustained thrombopoietin-dependent growth and signaling. Primary samples from MPN patients bearing LNK mutations exhibited aberrant JAK-STAT activation, and cytokine-responsive CD34+ early progenitors were abnormally abundant in both patients. These findings indicate that JAK-STAT activation due to loss of LNK negative feedback regulation is a novel mechanism of MPN pathogenesis. PMID:20404132

  1. Increased autophagic sequestration in adaptor protein-3 deficient dendritic cells limits inflammasome activity and impairs antibacterial immunity

    PubMed Central

    Casson, Cierra N.; Lefkovith, Ariel J.

    2017-01-01

    Bacterial pathogens that compromise phagosomal membranes stimulate inflammasome assembly in the cytosol, but the molecular mechanisms by which membrane dynamics regulate inflammasome activity are poorly characterized. We show that in murine dendritic cells (DCs), the endosomal adaptor protein AP-3 –which optimizes toll-like receptor signaling from phagosomes–sustains inflammasome activation by particulate stimuli. AP-3 independently regulates inflammasome positioning and autophagy induction, together resulting in delayed inflammasome inactivation by autophagy in response to Salmonella Typhimurium (STm) and other particulate stimuli specifically in DCs. AP-3-deficient DCs, but not macrophages, hyposecrete IL-1β and IL-18 in response to particulate stimuli in vitro, but caspase-1 and IL-1β levels are restored by silencing autophagy. Concomitantly, AP-3-deficient mice exhibit higher mortality and produce less IL-1β, IL-18, and IL-17 than controls upon oral STm infection. Our data identify a novel link between phagocytosis, inflammasome activity and autophagy in DCs, potentially explaining impaired antibacterial immunity in AP-3-deficient patients. PMID:29253868

  2. Inflammasome assembly in the chorioamniotic membranes during spontaneous labor at term.

    PubMed

    Gomez-Lopez, Nardhy; Romero, Roberto; Xu, Yi; Garcia-Flores, Valeria; Leng, Yaozhu; Panaitescu, Bogdan; Miller, Derek; Abrahams, Vikki M; Hassan, Sonia S

    2017-05-01

    Inflammasome activation requires two steps: priming and assembly of the multimeric complex. The second step includes assembly of the sensor molecule and adaptor protein ASC (an apoptosis-associated speck-like protein containing a CARD), which results in ASC speck formation and the recruitment of caspase (CASP)-1. Herein, we investigated whether there is inflammasome assembly in the chorioamniotic membranes and choriodecidual leukocytes from women who underwent spontaneous labor at term. Using in situ proximity ligation assays, ASC/CASP-1 complexes were determined in the chorioamniotic membranes from women who delivered at term without labor or underwent spontaneous labor at term with or without acute histologic chorioamnionitis (n=10-11 each). Also, ASC speck formation was determined by flow cytometry in the choriodecidual leukocytes isolated from women who delivered at term with or without spontaneous labor (n=9-12 each). (i) ASC/CASP-1 complexes were detected in the chorioamniotic membranes; (ii) ASC/CASP-1 complexes were greater in the chorioamniotic membranes from women who underwent spontaneous labor at term than in those without labor; (iii) ASC/CASP-1 complexes were even more abundant in the chorioamniotic membranes from women who underwent spontaneous labor at term with acute histologic chorioamnionitis than in those without this placental lesion; (iv) ASC speck formation was detected in the choriodecidual leukocytes; and (v) ASC speck formation was greater in the choriodecidual leukocytes isolated from women who underwent spontaneous labor at term than in those without labor. There is inflammasome assembly in the chorioamniotic membranes and choriodecidual leukocytes during spontaneous labor at term. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  3. Inflammasome Assembly in the Chorioamniotic Membranes during Spontaneous Labor at Term

    PubMed Central

    Gomez-Lopez, Nardhy; Romero, Roberto; Xu, Yi; Garcia-Flores, Valeria; Leng, Yaozhu; Panaitescu, Bogdan; Miller, Derek; Abrahams, Vikki M.; Hassan, Sonia S.

    2017-01-01

    Problem Inflammasome activation requires two steps: priming and assembly of the multimeric complex. The second step includes assembly of the sensor molecule and adaptor protein ASC (an apoptosis-associated speck-like protein containing a CARD), which results in ASC speck formation and the recruitment of caspase (CASP)-1. Herein, we investigated whether there is inflammasome assembly in the chorioamniotic membranes and choriodecidual leukocytes from women who underwent spontaneous labor at term. Method of Study Using in situ proximity ligation assays, ASC/CASP-1 complexes were determined in the chorioamniotic membranes from women who delivered at term without labor or underwent spontaneous labor at term with or without acute histologic chorioamnionitis (n=10–11 each). Also, ASC speck formation was determined by flow cytometry in the choriodecidual leukocytes isolated from women who delivered at term with or without spontaneous labor (n=9–12 each). Results 1) ASC/CASP-1 complexes were detected in the chorioamniotic membranes; 2) ASC/CASP-1 complexes were greater in the chorioamniotic membranes from women who underwent spontaneous labor at term than in those without labor; 3) ASC/CASP-1 complexes were even more abundant in the chorioamniotic membranes from women who underwent spontaneous labor at term with acute histologic chorioamnionitis than in those without this placental lesion; 4) ASC speck formation was detected in the choriodecidual leukocytes; and 5) ASC speck formation was greater in the choriodecidual leukocytes isolated from women who underwent spontaneous labor at term than in those without labor. Conclusion There is inflammasome assembly in the chorioamniotic membranes and choriodecidual leukocytes during spontaneous labor at term. PMID:28233423

  4. Peptidoglycan-Sensing Receptors Trigger the Formation of Functional Amyloids of the Adaptor Protein Imd to Initiate Drosophila NF-κB Signaling.

    PubMed

    Kleino, Anni; Ramia, Nancy F; Bozkurt, Gunes; Shen, Yanfang; Nailwal, Himani; Huang, Jing; Napetschnig, Johanna; Gangloff, Monique; Chan, Francis Ka-Ming; Wu, Hao; Li, Jixi; Silverman, Neal

    2017-10-17

    In the Drosophila immune response, bacterial derived diaminopimelic acid-type peptidoglycan binds the receptors PGRP-LC and PGRP-LE, which through interaction with the adaptor protein Imd leads to activation of the NF-κB homolog Relish and robust antimicrobial peptide gene expression. PGRP-LC, PGRP-LE, and Imd each contain a motif with some resemblance to the RIP Homotypic Interaction Motif (RHIM), a domain found in mammalian RIPK proteins forming functional amyloids during necroptosis. Here we found that despite sequence divergence, these Drosophila cryptic RHIMs formed amyloid fibrils in vitro and in cells. Amyloid formation was required for signaling downstream of Imd, and in contrast to the mammalian RHIMs, was not associated with cell death. Furthermore, amyloid formation constituted a regulatable step and could be inhibited by Pirk, an endogenous feedback regulator of this pathway. Thus, diverse sequence motifs are capable of forming amyloidal signaling platforms, and the formation of these platforms may present a regulatory point in multiple biological processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A Transgenic Drosophila Model Demonstrates That the Helicobacter pylori CagA Protein Functions as a Eukaryotic Gab Adaptor

    PubMed Central

    Botham, Crystal M.; Wandler, Anica M.; Guillemin, Karen

    2008-01-01

    Infection with the human gastric pathogen Helicobacter pylori is associated with a spectrum of diseases including gastritis, peptic ulcers, gastric adenocarcinoma, and gastric mucosa–associated lymphoid tissue lymphoma. The cytotoxin-associated gene A (CagA) protein of H. pylori, which is translocated into host cells via a type IV secretion system, is a major risk factor for disease development. Experiments in gastric tissue culture cells have shown that once translocated, CagA activates the phosphatase SHP-2, which is a component of receptor tyrosine kinase (RTK) pathways whose over-activation is associated with cancer formation. Based on CagA's ability to activate SHP-2, it has been proposed that CagA functions as a prokaryotic mimic of the eukaryotic Grb2-associated binder (Gab) adaptor protein, which normally activates SHP-2. We have developed a transgenic Drosophila model to test this hypothesis by investigating whether CagA can function in a well-characterized Gab-dependent process: the specification of photoreceptors cells in the Drosophila eye. We demonstrate that CagA expression is sufficient to rescue photoreceptor development in the absence of the Drosophila Gab homologue, Daughter of Sevenless (DOS). Furthermore, CagA's ability to promote photoreceptor development requires the SHP-2 phosphatase Corkscrew (CSW). These results provide the first demonstration that CagA functions as a Gab protein within the tissue of an organism and provide insight into CagA's oncogenic potential. Since many translocated bacterial proteins target highly conserved eukaryotic cellular processes, such as the RTK signaling pathway, the transgenic Drosophila model should be of general use for testing the in vivo function of bacterial effector proteins and for identifying the host genes through which they function. PMID:18483552

  6. The emerging role of ASC in dendritic cell metabolism during Chlamydia infection

    PubMed Central

    McKeithen, Danielle N.; Ryans, Khamia; Mu, Jing; Xie, Zhonglin; Simoneaux, Tankya; Blas-machado, Uriel; Eko, Francis O.; Black, Carolyn M.; Igietseme, Joseph U.; He, Qing

    2017-01-01

    Chlamydia trachomatis is a bacterial agent that causes sexually transmitted infections worldwide. The regulatory functions of dendritic cells (DCs) play a major role in protective immunity against Chlamydia infections. Here, we investigated the role of ASC in DCs metabolism and the regulation of DCs activation and function during Chlamydia infection. Following Chlamydia stimulation, maturation and antigen presenting functions were impaired in ASC-/- DCs compared to wild type (WT) DCs, in addition, ASC deficiency induced a tolerant phenotype in Chlamydia stimulated DCs. Using real-time extracellular flux analysis, we showed that activation in Chlamydia stimulated WT DCs is associated with a metabolic change in which mitochondrial oxidative phosphorylation (OXPHOS) is inhibited and the cells become committed to utilizing glucose through aerobic glycolysis for differentiation and antigen presenting functions. However, in ASC-/- DCs Chlamydia-induced metabolic change was prevented and there was a significant effect on mitochondrial morphology. The mitochondria of Chlamydia stimulated ASC-/- DCs had disrupted cristae compared to the normal narrow pleomorphic cristae found in stimulated WT DCs. In conclusion, our results suggest that Chlamydia-mediated activation of DCs is associated with a metabolic transition in which OXPHOS is inhibited, thereby dedicating the DCs to aerobic glycolysis, while ASC deficiency disrupts DCs function by inhibiting the reprogramming of DCs metabolism within the mitochondria, from glycolysis to electron transport chain. PMID:29216217

  7. Impaired Lysosomal Integral Membrane Protein 2-dependent Peroxiredoxin 6 Delivery to Lamellar Bodies Accounts for Altered Alveolar Phospholipid Content in Adaptor Protein-3-deficient pearl Mice.

    PubMed

    Kook, Seunghyi; Wang, Ping; Young, Lisa R; Schwake, Michael; Saftig, Paul; Weng, Xialian; Meng, Ying; Neculai, Dante; Marks, Michael S; Gonzales, Linda; Beers, Michael F; Guttentag, Susan

    2016-04-15

    The Hermansky Pudlak syndromes (HPS) constitute a family of disorders characterized by oculocutaneous albinism and bleeding diathesis, often associated with lethal lung fibrosis. HPS results from mutations in genes of membrane trafficking complexes that facilitate delivery of cargo to lysosome-related organelles. Among the affected lysosome-related organelles are lamellar bodies (LB) within alveolar type 2 cells (AT2) in which surfactant components are assembled, modified, and stored. AT2 from HPS patients and mouse models of HPS exhibit enlarged LB with increased phospholipid content, but the mechanism underlying these defects is unknown. We now show that AT2 in the pearl mouse model of HPS type 2 lacking the adaptor protein 3 complex (AP-3) fails to accumulate the soluble enzyme peroxiredoxin 6 (PRDX6) in LB. This defect reflects impaired AP-3-dependent trafficking of PRDX6 to LB, because pearl mouse AT2 cells harbor a normal total PRDX6 content. AP-3-dependent targeting of PRDX6 to LB requires the transmembrane protein LIMP-2/SCARB2, a known AP-3-dependent cargo protein that functions as a carrier for lysosomal proteins in other cell types. Depletion of LB PRDX6 in AP-3- or LIMP-2/SCARB2-deficient mice correlates with phospholipid accumulation in lamellar bodies and with defective intraluminal degradation of LB disaturated phosphatidylcholine. Furthermore, AP-3-dependent LB targeting is facilitated by protein/protein interaction between LIMP-2/SCARB2 and PRDX6 in vitro and in vivo Our data provide the first evidence for an AP-3-dependent cargo protein required for the maturation of LB in AT2 and suggest that the loss of PRDX6 activity contributes to the pathogenic changes in LB phospholipid homeostasis found HPS2 patients. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Impaired Lysosomal Integral Membrane Protein 2-dependent Peroxiredoxin 6 Delivery to Lamellar Bodies Accounts for Altered Alveolar Phospholipid Content in Adaptor Protein-3-deficient pearl Mice*

    PubMed Central

    Kook, Seunghyi; Wang, Ping; Young, Lisa R.; Schwake, Michael; Saftig, Paul; Weng, Xialian; Meng, Ying; Neculai, Dante; Marks, Michael S.; Gonzales, Linda; Beers, Michael F.; Guttentag, Susan

    2016-01-01

    The Hermansky Pudlak syndromes (HPS) constitute a family of disorders characterized by oculocutaneous albinism and bleeding diathesis, often associated with lethal lung fibrosis. HPS results from mutations in genes of membrane trafficking complexes that facilitate delivery of cargo to lysosome-related organelles. Among the affected lysosome-related organelles are lamellar bodies (LB) within alveolar type 2 cells (AT2) in which surfactant components are assembled, modified, and stored. AT2 from HPS patients and mouse models of HPS exhibit enlarged LB with increased phospholipid content, but the mechanism underlying these defects is unknown. We now show that AT2 in the pearl mouse model of HPS type 2 lacking the adaptor protein 3 complex (AP-3) fails to accumulate the soluble enzyme peroxiredoxin 6 (PRDX6) in LB. This defect reflects impaired AP-3-dependent trafficking of PRDX6 to LB, because pearl mouse AT2 cells harbor a normal total PRDX6 content. AP-3-dependent targeting of PRDX6 to LB requires the transmembrane protein LIMP-2/SCARB2, a known AP-3-dependent cargo protein that functions as a carrier for lysosomal proteins in other cell types. Depletion of LB PRDX6 in AP-3- or LIMP-2/SCARB2-deficient mice correlates with phospholipid accumulation in lamellar bodies and with defective intraluminal degradation of LB disaturated phosphatidylcholine. Furthermore, AP-3-dependent LB targeting is facilitated by protein/protein interaction between LIMP-2/SCARB2 and PRDX6 in vitro and in vivo. Our data provide the first evidence for an AP-3-dependent cargo protein required for the maturation of LB in AT2 and suggest that the loss of PRDX6 activity contributes to the pathogenic changes in LB phospholipid homeostasis found HPS2 patients. PMID:26907692

  9. Adaptor Protein Complex 2–Mediated Endocytosis Is Crucial for Male Reproductive Organ Development in Arabidopsis[W

    PubMed Central

    Kim, Soo Youn; Xu, Zheng-Yi; Song, Kyungyoung; Kim, Dae Heon; Kang, Hyangju; Reichardt, Ilka; Sohn, Eun Ju; Friml, Jiří; Juergens, Gerd; Hwang, Inhwan

    2013-01-01

    Fertilization in flowering plants requires the temporal and spatial coordination of many developmental processes, including pollen production, anther dehiscence, ovule production, and pollen tube elongation. However, it remains elusive as to how this coordination occurs during reproduction. Here, we present evidence that endocytosis, involving heterotetrameric adaptor protein complex 2 (AP-2), plays a crucial role in fertilization. An Arabidopsis thaliana mutant ap2m displays multiple defects in pollen production and viability, as well as elongation of staminal filaments and pollen tubes, all of which are pivotal processes needed for fertilization. Of these abnormalities, the defects in elongation of staminal filaments and pollen tubes were partially rescued by exogenous auxin. Moreover, DR5rev:GFP (for green fluorescent protein) expression was greatly reduced in filaments and anthers in ap2m mutant plants. At the cellular level, ap2m mutants displayed defects in both endocytosis of N-(3-triethylammonium-propyl)-4-(4-diethylaminophenylhexatrienyl) pyridinium dibromide, a lypophilic dye used as an endocytosis marker, and polar localization of auxin-efflux carrier PIN FORMED2 (PIN2) in the stamen filaments. Moreover, these defects were phenocopied by treatment with Tyrphostin A23, an inhibitor of endocytosis. Based on these results, we propose that AP-2–dependent endocytosis plays a crucial role in coordinating the multiple developmental aspects of male reproductive organs by modulating cellular auxin level through the regulation of the amount and polarity of PINs. PMID:23975898

  10. The adaptor CRADD/RAIDD controls activation of endothelial cells by proinflammatory stimuli.

    PubMed

    Qiao, Huan; Liu, Yan; Veach, Ruth A; Wylezinski, Lukasz; Hawiger, Jacek

    2014-08-08

    A hallmark of inflammation, increased vascular permeability, is induced in endothelial cells by multiple agonists through stimulus-coupled assembly of the CARMA3 signalosome, which contains the adaptor protein BCL10. Previously, we reported that BCL10 in immune cells is targeted by the "death" adaptor CRADD/RAIDD (CRADD), which negatively regulates nuclear factor κB (NFκB)-dependent cytokine and chemokine expression in T cells (Lin, Q., Liu, Y., Moore, D. J., Elizer, S. K., Veach, R. A., Hawiger, J., and Ruley, H. E. (2012) J. Immunol. 188, 2493-2497). This novel anti-inflammatory CRADD-BCL10 axis prompted us to analyze CRADD expression and its potential anti-inflammatory action in non-immune cells. We focused our study on microvascular endothelial cells because they play a key role in inflammation. We found that CRADD-deficient murine endothelial cells display heightened BCL10-mediated expression of the pleotropic proinflammatory cytokine IL-6 and chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2) in response to LPS and thrombin. Moreover, these agonists also induce significantly increased permeability in cradd(-/-), as compared with cradd(+/+), primary murine endothelial cells. CRADD-deficient cells displayed more F-actin polymerization with concomitant disruption of adherens junctions. In turn, increasing intracellular CRADD by delivery of a novel recombinant cell-penetrating CRADD protein (CP-CRADD) restored endothelial barrier function and suppressed the induction of IL-6 and MCP-1 evoked by LPS and thrombin. Likewise, CP-CRADD enhanced barrier function in CRADD-sufficient endothelial cells. These results indicate that depletion of endogenous CRADD compromises endothelial barrier function in response to inflammatory signals. Thus, we define a novel function for CRADD in endothelial cells as an inducible suppressor of BCL10, a key mediator of responses to proinflammatory agonists. © 2014 by The American Society for Biochemistry and Molecular Biology

  11. Aeroacoustics research in Europe: The CEAS-ASC report on 2016 highlights

    NASA Astrophysics Data System (ADS)

    Wilson, Alexander G.

    2018-08-01

    The Council of European Aerospace Societies (CEAS) Aeroacoustics Specialists Committee (ASC) supports and promotes the interests of the scientific and industrial aeroacoustics community on the European scale, and European aeronautics activities internationally. Each year, the committee highlights several of the research and development projects in Europe. This paper is the 2016 issue of this collection of Aeroacoustic Highlights, compiled from contributions submitted to the CEAS-ASC. The contributions are classified under three main headings; Aircraft and Turbomachinery Noise, Experimental and Numerical Methods and Further Applications of Aeroacoustics. A concise summary of the CEAS-ASC workshop held in Southampton, England, in September 2016 is also included in this report.

  12. Pre-Milestone I Program Development Process Guide (ASC/YX).

    DTIC Science & Technology

    1993-11-01

    the PMD tasking to a particular Center. In the case of ASC, the task is entered into the ASC New Work Review process for internal allocation. AFMC/XP...0 Prooect Team to support decisions they make in response to external and - - internal requirements. Data base inputs 1 I"" 11. 12 0EVEFJ.O RA" DW...other international capabilities (COD). Although these are considered during the pre-MS 0 tasks (Task 0.2), they are examined once again during the

  13. Adaptor protein 1 B mu subunit does not contribute to the recycling of kAE1 protein in polarized renal epithelial cells.

    PubMed

    Almomani, Ensaf Y; Touret, Nicolas; Cordat, Emmanuelle

    2018-04-13

    Mutations in the gene encoding the kidney anion exchanger 1 (kAE1) can lead to distal renal tubular acidosis (dRTA). dRTA mutations reported within the carboxyl (C)-terminal tail of kAE1 result in apical mis-targeting of the exchanger in polarized renal epithelial cells. As kAE1 physically interacts with the μ subunit of epithelial adaptor protein 1 B (AP-1B), we investigated the role of heterologously expressed μ1B subunit of the AP-1B complex for kAE1 retention to the basolateral membrane in polarized porcine LLC-PK1 renal epithelial cells that are devoid of endogenous AP-1B. We confirmed the interaction and close proximity between kAE1 and μ1B using immunoprecipitation and proximity ligation assay, respectively. Expressing the human μ1B subunit in these cells decreased significantly the amount of cell surface kAE1 at the steady state, but had no significant effect on kAE1 recycling and endocytosis. We show that (i) heterologous expression of μ1B displaces the physical interaction of endogenous GAPDH with kAE1 WT supporting that both AP-1B and GAPDH proteins bind to an overlapping site on kAE1 and (ii) phosphorylation of tyrosine 904 within the potential YDEV interaction motif does not alter the kAE1/AP-1B interaction. We conclude that μ1B subunit is not involved in recycling of kAE1.

  14. A design of coaxial-to-radial line adaptors in radial line slot antennas

    NASA Astrophysics Data System (ADS)

    Natori, Makoto; Ando, Makoto; Goto, Naohisa

    1990-11-01

    A numerical design of a coaxial-to-radial line adaptor is presented for the use as a feed in a radial line slot antenna. To realize stable performances in mass production, the reflection from a probe type adaptor in which only the outer conductor of a coaxial line is in contact with the waveguide, is analyzed and suppressed. The tolerance for the change and the errors in the height of the waveguide as well as the bandwidth is highlighted; the advantages of the conical probe over the conventional shorting post and the coax-gap adaptor are emphasized.

  15. A View on the Function of Self-Adaptors and Their Communication Consequences.

    ERIC Educational Resources Information Center

    Genova, B. K. L.

    The purpose of this paper is to examine the function served by self-adaptor type behaviors (defined here as "hand touch" on the face, body, the other hand, and the fingers) in order to discover why people perform self-adaptors and what happens when they do. Following an extensive review of the literature, it is proposed that…

  16. Risk-Informed Mean Recurrence Intervals for Updated Wind Maps in ASCE 7-16.

    PubMed

    McAllister, Therese P; Wang, Naiyu; Ellingwood, Bruce R

    2018-05-01

    ASCE 7 is moving toward adopting load requirements that are consistent with risk-informed design goals characteristic of performance-based engineering (PBE). ASCE 7-10 provided wind maps that correspond to return periods of 300, 700, and 1,700 years for Risk Categories I, II, and combined III/IV, respectively. The risk targets for Risk Categories III and IV buildings and other structures (designated as essential facilities) are different in PBE. The reliability analyses reported in this paper were conducted using updated wind load data to (1) confirm that the return periods already in ASCE 7-10 were also appropriate for risk-informed PBE, and (2) to determine a new risk-based return period for Risk Category IV. The use of data for wind directionality factor, K d , which has become available from recent wind tunnel tests, revealed that reliabilities associated with wind load combinations for Risk Category II structures are, in fact, consistent with the reliabilities associated with the ASCE 7 gravity load combinations. This paper shows that the new wind maps in ASCE 7-16, which are based on return periods of 300, 700, 1,700, and 3,000 years for Risk Categories I, II, III, and IV, respectively), achieve the reliability targets in Section 1.3.1.3 of ASCE 7-16 for nonhurricane wind loads.

  17. Clathrin Terminal Domain-Ligand Interactions Regulate Sorting of Mannose 6-Phosphate Receptors Mediated by AP-1 and GGA Adaptors*

    PubMed Central

    Stahlschmidt, Wiebke; Robertson, Mark J.; Robinson, Phillip J.; McCluskey, Adam; Haucke, Volker

    2014-01-01

    Clathrin plays important roles in intracellular membrane traffic including endocytosis of plasma membrane proteins and receptors and protein sorting between the trans-Golgi network (TGN) and endosomes. Whether clathrin serves additional roles in receptor recycling, degradative sorting, or constitutive secretion has remained somewhat controversial. Here we have used acute pharmacological perturbation of clathrin terminal domain (TD) function to dissect the role of clathrin in intracellular membrane traffic. We report that internalization of major histocompatibility complex I (MHCI) is inhibited in cells depleted of clathrin or its major clathrin adaptor complex 2 (AP-2), a phenotype mimicked by application of Pitstop® inhibitors of clathrin TD function. Hence, MHCI endocytosis occurs via a clathrin/AP-2-dependent pathway. Acute perturbation of clathrin also impairs the dynamics of intracellular clathrin/adaptor complex 1 (AP-1)- or GGA (Golgi-localized, γ-ear-containing, Arf-binding protein)-coated structures at the TGN/endosomal interface, resulting in the peripheral dispersion of mannose 6-phosphate receptors. By contrast, secretory traffic of vesicular stomatitis virus G protein, recycling of internalized transferrin from endosomes, or degradation of EGF receptor proceeds unperturbed in cells with impaired clathrin TD function. These data indicate that clathrin is required for the function of AP-1- and GGA-coated carriers at the TGN but may be dispensable for outward traffic en route to the plasma membrane. PMID:24407285

  18. An Interaction between KSHV ORF57 and UIF Provides mRNA-Adaptor Redundancy in Herpesvirus Intronless mRNA Export

    PubMed Central

    Jackson, Brian R.; Boyne, James R.; Noerenberg, Marko; Taylor, Adam; Hautbergue, Guillaume M.; Walsh, Matthew J.; Wheat, Rachel; Blackbourn, David J.; Wilson, Stuart A.; Whitehouse, Adrian

    2011-01-01

    The hTREX complex mediates cellular bulk mRNA nuclear export by recruiting the nuclear export factor, TAP, via a direct interaction with the export adaptor, Aly. Intriguingly however, depletion of Aly only leads to a modest reduction in cellular mRNA nuclear export, suggesting the existence of additional mRNA nuclear export adaptor proteins. In order to efficiently export Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs from the nucleus, the KSHV ORF57 protein recruits hTREX onto viral intronless mRNAs allowing access to the TAP-mediated export pathway. Similarly however, depletion of Aly only leads to a modest reduction in the nuclear export of KSHV intronless mRNAs. Herein, we identify a novel interaction between ORF57 and the cellular protein, UIF. We provide the first evidence that the ORF57-UIF interaction enables the recruitment of hTREX and TAP to KSHV intronless mRNAs in Aly-depleted cells. Strikingly, depletion of both Aly and UIF inhibits the formation of an ORF57-mediated nuclear export competent ribonucleoprotein particle and consequently prevents ORF57-mediated mRNA nuclear export and KSHV protein production. Importantly, these findings highlight that redundancy exists in the eukaryotic system for certain hTREX components involved in the mRNA nuclear export of intronless KSHV mRNAs. PMID:21814512

  19. Role of adaptor proteins and clathrin in the trafficking of human kidney anion exchanger 1 (kAE1) to the cell surface.

    PubMed

    Junking, Mutita; Sawasdee, Nunghathai; Duangtum, Natapol; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2014-07-01

    Kidney anion exchanger 1 (kAE1) plays an important role in acid-base homeostasis by mediating chloride/bicarbornate (Cl-/HCO3-) exchange at the basolateral membrane of α-intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease - distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans-Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral-related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non-polarized kidney cells. By using RNA interference, co-immunoprecipitation, yellow fluorescent protein-based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin (but not AP-1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral-related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid-secreting α-intercalated cells. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Lnk adaptor suppresses radiation resistance and radiation-induced B-cell malignancies by inhibiting IL-11 signaling

    PubMed Central

    Louria-Hayon, Igal; Frelin, Catherine; Ruston, Julie; Gish, Gerald; Jin, Jing; Kofler, Michael M.; Lambert, Jean-Philippe; Adissu, Hibret A.; Milyavsky, Michael; Herrington, Robert; Minden, Mark D.; Dick, John E.; Gingras, Anne-Claude; Iscove, Norman N.; Pawson, Tony

    2013-01-01

    The Lnk (Sh2b3) adaptor protein dampens the response of hematopoietic stem cells and progenitors (HSPCs) to a variety of cytokines by inhibiting JAK2 signaling. As a consequence, Lnk−/− mice develop hematopoietic hyperplasia, which progresses to a phenotype resembling the nonacute phase of myeloproliferative neoplasm. In addition, Lnk mutations have been identified in human myeloproliferative neoplasms and acute leukemia. We find that Lnk suppresses the development of radiation-induced acute B-cell malignancies in mice. Lnk-deficient HSPCs recover more effectively from irradiation than their wild-type counterparts, and this resistance of Lnk−/− HSPCs to radiation underlies the subsequent emergence of leukemia. A search for the mechanism responsible for radiation resistance identified the cytokine IL-11 as being critical for the ability of Lnk−/− HSPCs to recover from irradiation and subsequently become leukemic. In IL-11 signaling, wild-type Lnk suppresses tyrosine phosphorylation of the Src homology region 2 domain-containing phosphatase-2/protein tyrosine phosphatase nonreceptor type 11 and its association with the growth factor receptor-bound protein 2, as well as activation of the Erk MAP kinase pathway. Indeed, Src homology region 2 domain-containing phosphatase-2 has a binding motif for the Lnk Src Homology 2 domain that is phosphorylated in response to IL-11 stimulation. IL-11 therefore drives a pathway that enhances HSPC radioresistance and radiation-induced B-cell malignancies, but is normally attenuated by the inhibitory adaptor Lnk. PMID:24297922

  1. The Src-like adaptor protein regulates GM-CSFR signaling and monocytic dendritic cell maturation.

    PubMed

    Liontos, Larissa M; Dissanayake, Dilan; Ohashi, Pamela S; Weiss, Arthur; Dragone, Leonard L; McGlade, C Jane

    2011-02-15

    GM-CSF is an important cytokine involved in myeloid differentiation and inflammatory processes. Signaling through the GM-CSFR also plays a critical role in the generation of monocyte-derived dendritic cells (DC). In this article, we report that the Src-like adaptor protein (SLAP) functions as a negative regulator of the GM-CSFR. In bone marrow-derived DC (BM-DC) lacking SLAP and the closely related SLAP2, downregulation of GM-CSFRβ is impaired, leading to enhanced phosphorylation of Jak2 and prolonged activation of Akt and Erk1/2 in response to GM-CSF stimulation. Compared with wild-type bone marrow, SLAP/SLAP2(-/-) bone marrow gave rise to similar numbers of CD11c(+) and CD11b(+) DC, but SLAP/SLAP2(-/-) BM-DC failed to acquire high levels of MHC class II, CD80, and CD86, indicating an impairment in maturation. Furthermore, MHC class II expression in SLAP/SLAP2(-/-) BM-DC was rescued by decreasing GM-CSF concentration, suggesting that enhanced GM-CSF signaling mediates the block in maturation. In addition, SLAP/SLAP2(-/-) BM-DC produced less IL-12 and TNF-α in response to LPS compared with controls and failed to stimulate T cells in an MLR. Ag-specific T cell activation assays showed that SLAP/SLAP2(-/-) BM-DC were less robust at inducing IFN-γ secretion by DO11.10 T cells. These results indicated that SLAP-mediated GM-CSFR regulation is important for the generation of functionally mature monocytic DC.

  2. ASC-ATDM Performance Portability Requirements for 2015-2019

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Harold C.; Trott, Christian Robert

    This report outlines the research, development, and support requirements for the Advanced Simulation and Computing (ASC ) Advanced Technology, Development, and Mitigation (ATDM) Performance Portability (a.k.a., Kokkos) project for 2015 - 2019 . The research and development (R&D) goal for Kokkos (v2) has been to create and demonstrate a thread - parallel programming model a nd standard C++ library - based implementation that enables performance portability across diverse manycore architectures such as multicore CPU, Intel Xeon Phi, and NVIDIA Kepler GPU. This R&D goal has been achieved for algorithms that use data parallel pat terns including parallel - for, parallelmore » - reduce, and parallel - scan. Current R&D is focusing on hierarchical parallel patterns such as a directed acyclic graph (DAG) of asynchronous tasks where each task contain s nested data parallel algorithms. This five y ear plan includes R&D required to f ully and performance portably exploit thread parallelism across current and anticipated next generation platforms (NGP). The Kokkos library is being evaluated by many projects exploring algorithm s and code design for NGP. Some production libraries and applications such as Trilinos and LAMMPS have already committed to Kokkos as their foundation for manycore parallelism an d performance portability. These five year requirements includes support required for current and antic ipated ASC projects to be effective and productive in their use of Kokkos on NGP. The greatest risk to the success of Kokkos and ASC projects relying upon Kokkos is a lack of staffing resources to support Kokkos to the degree needed by these ASC projects. This support includes up - to - date tutorials, documentation, multi - platform (hardware and software stack) testing, minor feature enhancements, thread - scalable algorithm consulting, and managing collaborative R&D.« less

  3. Required number of records for ASCE/SEI 7 ground-motion scaling procedure

    USGS Publications Warehouse

    Reyes, Juan C.; Kalkan, Erol

    2011-01-01

    The procedures and criteria in 2006 IBC (International Council of Building Officials, 2006) and 2007 CBC (International Council of Building Officials, 2007) for the selection and scaling ground-motions for use in nonlinear response history analysis (RHA) of structures are based on ASCE/SEI 7 provisions (ASCE, 2005, 2010). According to ASCE/SEI 7, earthquake records should be selected from events of magnitudes, fault distance, and source mechanisms that comply with the maximum considered earthquake, and then scaled so that the average value of the 5-percent-damped response spectra for the set of scaled records is not less than the design response spectrum over the period range from 0.2Tn to 1.5Tn sec (where Tn is the fundamental vibration period of the structure). If at least seven ground-motions are analyzed, the design values of engineering demand parameters (EDPs) are taken as the average of the EDPs determined from the analyses. If fewer than seven ground-motions are analyzed, the design values of EDPs are taken as the maximum values of the EDPs. ASCE/SEI 7 requires a minimum of three ground-motions. These limits on the number of records in the ASCE/SEI 7 procedure are based on engineering experience, rather than on a comprehensive evaluation. This study statistically examines the required number of records for the ASCE/SEI 7 procedure, such that the scaled records provide accurate, efficient, and consistent estimates of" true" structural responses. Based on elastic-perfectly-plastic and bilinear single-degree-of-freedom systems, the ASCE/SEI 7 scaling procedure is applied to 480 sets of ground-motions. The number of records in these sets varies from three to ten. The records in each set were selected either (i) randomly, (ii) considering their spectral shapes, or (iii) considering their spectral shapes and design spectral-acceleration value, A(Tn). As compared to benchmark (that is, "true") responses from unscaled records using a larger catalog of ground

  4. Progranulin, a Major Secreted Protein of Mouse Adipose-Derived Stem Cells, Inhibits Light-Induced Retinal Degeneration

    PubMed Central

    Tsuruma, Kazuhiro; Yamauchi, Mika; Sugitani, Sou; Otsuka, Tomohiro; Ohno, Yuta; Nagahara, Yuki; Ikegame, Yuka; Shimazawa, Masamitsu; Yoshimura, Shinichi; Iwama, Toru

    2014-01-01

    Adipose tissue stromal vascular fraction contains mesenchymal stem cells, which show protective effects when administered to damaged tissues, mainly through secreted trophic factors. We examined the protective effects of adipose-derived stem cells (ASCs) and ASC-conditioned medium (ASC-CM) against retinal damage and identified the neuroprotective factors in ASC-CM. ASCs and mature adipocytes were isolated from mouse subcutaneous tissue. ASCs were injected intravitreally in a mouse model of light-induced retinal damage, and ASC injection recovered retinal function as measured by electroretinogram and inhibited outer nuclear layer, thinning, without engraftment of ASCs. ASC-CM and mature adipocyte-conditioned medium were collected after 72 hours of culture. In vitro, H2O2- and light-induced cell death was reduced in a photoreceptor cell line with ASC-CM but not with mature adipocyte-conditioned medium. In vivo, light-induced photoreceptor damage was evaluated by measurement of outer nuclear layer thickness at 5 days after light exposure and by electroretinogram recording. ASC-CM significantly inhibited photoreceptor degeneration and retinal dysfunction after light exposure. Progranulin was identified as a major secreted protein of ASCs that showed protective effects against retinal damage in vitro and in vivo. Furthermore, progranulin phosphorylated extracellular signal-regulated kinase, cAMP response element binding protein, and hepatocyte growth factor receptor, and protein kinase C signaling pathways were involved in the protective effects of progranulin. These findings suggest that ASC-CM and progranulin have neuroprotective effects in the light-induced retinal-damage model. Progranulin may be a potential target for the treatment of the degenerative diseases of the retina. PMID:24233842

  5. Progranulin, a major secreted protein of mouse adipose-derived stem cells, inhibits light-induced retinal degeneration.

    PubMed

    Tsuruma, Kazuhiro; Yamauchi, Mika; Sugitani, Sou; Otsuka, Tomohiro; Ohno, Yuta; Nagahara, Yuki; Ikegame, Yuka; Shimazawa, Masamitsu; Yoshimura, Shinichi; Iwama, Toru; Hara, Hideaki

    2014-01-01

    Adipose tissue stromal vascular fraction contains mesenchymal stem cells, which show protective effects when administered to damaged tissues, mainly through secreted trophic factors. We examined the protective effects of adipose-derived stem cells (ASCs) and ASC-conditioned medium (ASC-CM) against retinal damage and identified the neuroprotective factors in ASC-CM. ASCs and mature adipocytes were isolated from mouse subcutaneous tissue. ASCs were injected intravitreally in a mouse model of light-induced retinal damage, and ASC injection recovered retinal function as measured by electroretinogram and inhibited outer nuclear layer, thinning, without engraftment of ASCs. ASC-CM and mature adipocyte-conditioned medium were collected after 72 hours of culture. In vitro, H2O2- and light-induced cell death was reduced in a photoreceptor cell line with ASC-CM but not with mature adipocyte-conditioned medium. In vivo, light-induced photoreceptor damage was evaluated by measurement of outer nuclear layer thickness at 5 days after light exposure and by electroretinogram recording. ASC-CM significantly inhibited photoreceptor degeneration and retinal dysfunction after light exposure. Progranulin was identified as a major secreted protein of ASCs that showed protective effects against retinal damage in vitro and in vivo. Furthermore, progranulin phosphorylated extracellular signal-regulated kinase, cAMP response element binding protein, and hepatocyte growth factor receptor, and protein kinase C signaling pathways were involved in the protective effects of progranulin. These findings suggest that ASC-CM and progranulin have neuroprotective effects in the light-induced retinal-damage model. Progranulin may be a potential target for the treatment of the degenerative diseases of the retina.

  6. UVA Light-excited Kynurenines Oxidize Ascorbate and Modify Lens Proteins through the Formation of Advanced Glycation End Products

    PubMed Central

    Linetsky, Mikhail; Raghavan, Cibin T.; Johar, Kaid; Fan, Xingjun; Monnier, Vincent M.; Vasavada, Abhay R.; Nagaraj, Ram H.

    2014-01-01

    Advanced glycation end products (AGEs) contribute to lens protein pigmentation and cross-linking during aging and cataract formation. In vitro experiments have shown that ascorbate (ASC) oxidation products can form AGEs in proteins. However, the mechanisms of ASC oxidation and AGE formation in the human lens are poorly understood. Kynurenines are tryptophan oxidation products produced from the indoleamine 2,3-dioxygenase (IDO)-mediated kynurenine pathway and are present in the human lens. This study investigated the ability of UVA light-excited kynurenines to photooxidize ASC and to form AGEs in lens proteins. UVA light-excited kynurenines in both free and protein-bound forms rapidly oxidized ASC, and such oxidation occurred even in the absence of oxygen. High levels of GSH inhibited but did not completely block ASC oxidation. Upon UVA irradiation, pigmented proteins from human cataractous lenses also oxidized ASC. When exposed to UVA light (320–400 nm, 100 milliwatts/cm2, 45 min to 2 h), young human lenses (20–36 years), which contain high levels of free kynurenines, lost a significant portion of their ASC content and accumulated AGEs. A similar formation of AGEs was observed in UVA-irradiated lenses from human IDO/human sodium-dependent vitamin C transporter-2 mice, which contain high levels of kynurenines and ASC. Our data suggest that kynurenine-mediated ASC oxidation followed by AGE formation may be an important mechanism for lens aging and the development of senile cataracts in humans. PMID:24798334

  7. IraL Is an RssB Anti-adaptor That Stabilizes RpoS during Logarithmic Phase Growth in Escherichia coli and Shigella

    PubMed Central

    Hryckowian, Andrew J.; Battesti, Aurelia; Lemke, Justin J.; Meyer, Zachary C.

    2014-01-01

    ABSTRACT RpoS (σS), the general stress response sigma factor, directs the expression of genes under a variety of stressful conditions. Control of the cellular σS concentration is critical for appropriately scaled σS-dependent gene expression. One way to maintain appropriate levels of σS is to regulate its stability. Indeed, σS degradation is catalyzed by the ClpXP protease and the recognition of σS by ClpXP depends on the adaptor protein RssB. Three anti-adaptors (IraD, IraM, and IraP) exist in Escherichia coli K-12; each interacts with RssB and inhibits RssB activity under different stress conditions, thereby stabilizing σS. Unlike K-12, some E. coli isolates, including uropathogenic E. coli strain CFT073, show comparable cellular levels of σS during the logarithmic and stationary growth phases, suggesting that there are differences in the regulation of σS levels among E. coli strains. Here, we describe IraL, an RssB anti-adaptor that stabilizes σS during logarithmic phase growth in CFT073 and other E. coli and Shigella strains. By immunoblot analyses, we show that IraL affects the levels and stability of σS during logarithmic phase growth. By computational and PCR-based analyses, we reveal that iraL is found in many E. coli pathotypes but not in laboratory-adapted strains. Finally, by bacterial two-hybrid and copurification analyses, we demonstrate that IraL interacts with RssB by a mechanism distinct from that used by other characterized anti-adaptors. We introduce a fourth RssB anti-adaptor found in E. coli species and suggest that differences in the regulation of σS levels may contribute to host and niche specificity in pathogenic and nonpathogenic E. coli strains. PMID:24865554

  8. Comparison of Simulated Microgravity and Hydrostatic Pressure for Chondrogenesis of hASC.

    PubMed

    Mellor, Liliana F; Steward, Andrew J; Nordberg, Rachel C; Taylor, Michael A; Loboa, Elizabeth G

    2017-04-01

    Cartilage tissue engineering is a growing field due to the lack of regenerative capacity of native tissue. The use of bioreactors for cartilage tissue engineering is common, but the results are controversial. Some studies suggest that microgravity bioreactors are ideal for chondrogenesis, while others show that mimicking hydrostatic pressure is crucial for cartilage formation. A parallel study comparing the effects of loading and unloading on chondrogenesis has not been performed. The goal of this study was to evaluate chondrogenesis of human adipose-derived stem cells (hASC) under two different mechanical stimuli relative to static culture: microgravity and cyclic hydrostatic pressure (CHP). Pellets of hASC were cultured for 14 d under simulated microgravity using a rotating wall vessel bioreactor or under CHP (7.5 MPa, 1 Hz, 4 h · d-1) using a hydrostatic pressure vessel. We found that CHP increased mRNA expression of Aggrecan, Sox9, and Collagen II, caused a threefold increase in sulfated glycosaminoglycan production, and resulted in stronger vimentin staining intensity and organization relative to microgravity. In addition, Wnt-signaling patterns were altered in a manner that suggests that simulated microgravity decreases chondrogenic differentiation when compared to CHP. Our goal was to compare chondrogenic differentiation of hASC using a microgravity bioreactor and a hydrostatic pressure vessel, two commonly used bioreactors in cartilage tissue engineering. Our results indicate that CHP promotes hASC chondrogenesis and that microgravity may inhibit hASC chondrogenesis. Our findings further suggest that cartilage formation and regeneration might be compromised in space due to the lack of mechanical loading.Mellor LF, Steward AJ, Nordberg RC, Taylor MA, Loboa EG. Comparison of simulated microgravity and hydrostatic pressure for chondrogenesis of hASC. Aerosp Med Hum Perform. 2017; 88(4):377-384.

  9. 76 FR 27668 - ASC Machine Tools, Inc., Spokane Valley, WA; Notice of Negative Determination on Reconsideration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,971] ASC Machine Tools, Inc... workers and former workers of ASC Machine Tools, Inc., Spokane Valley, Washington (the subject firm). The... workers of ASC Machine Tools, Inc., Spokane Valley, Washington. Signed in Washington, DC, on this 2nd day...

  10. NECAPs are negative regulators of the AP2 clathrin adaptor complex

    PubMed Central

    Beacham, Gwendolyn M; Partlow, Edward A; Lange, Jeffrey J

    2018-01-01

    Eukaryotic cells internalize transmembrane receptors via clathrin-mediated endocytosis, but it remains unclear how the machinery underpinning this process is regulated. We recently discovered that membrane-associated muniscin proteins such as FCHo and SGIP initiate endocytosis by converting the AP2 clathrin adaptor complex to an open, active conformation that is then phosphorylated (Hollopeter et al., 2014). Here we report that loss of ncap-1, the sole C. elegans gene encoding an adaptiN Ear-binding Coat-Associated Protein (NECAP), bypasses the requirement for FCHO-1. Biochemical analyses reveal AP2 accumulates in an open, phosphorylated state in ncap-1 mutant worms, suggesting NECAPs promote the closed, inactive conformation of AP2. Consistent with this model, NECAPs preferentially bind open and phosphorylated forms of AP2 in vitro and localize with constitutively open AP2 mutants in vivo. NECAPs do not associate with phosphorylation-defective AP2 mutants, implying that phosphorylation precedes NECAP recruitment. We propose NECAPs function late in endocytosis to inactivate AP2. PMID:29345618

  11. Adipose-derived stem cell (ASC)-enriched fat grafting: experiments using White rabbits and an automated cell processing apparatus.

    PubMed

    Kakudo, Natsuko; Morimoto, Naoki; Ogawa, Takeshi; Hihara, Masakatsu; Lai, Fangyuan; Kusumoto, Kenji

    2017-09-01

    The grafting of fat mixed with adipose-derived stem cells (ASCs) is being increasingly applied to compensate for the disadvantages of previous fat grafting methods. Devices that automatically isolate fat stem cells also have recently been developed. ASCs were isolated from the inguinal region of White rabbits using Icellator ® , and the number of cells and their viability were measured. The cell count per fat graft (mL) was adjusted to the following concentrations and subcutaneously transplanted into the back: Control group, Fat + PBS; Fat + ASCs (×0.5) group, 1.6 × 10 5 cells/mL; and Fat + ASCs (×1) group, 3.2 × 10 5 cells/mL. Grafted fat weight was measured after 8 weeks, and histological, immunohistological, and specifically stained sections were prepared. Fat absorption was reduced in Fat + ASCs (×0.5) and Fat + ASCs (×1) groups. The number of blood vessels was higher in Fat + ASCs (×1) than in the control group, and blood vessel areas were higher in Fat + ASCs (×0.5) and Fat + ASCs (×1) groups than in the control group. The usefulness of the automated cell processing apparatus, Icellator ® , was confirmed, and the results obtained suggest that grafted ASCs promote the vascularization and engraftment of fat grafts.

  12. Creation and Transplantation of an Adipose-derived Stem Cell (ASC) Sheet in a Diabetic Wound-healing Model.

    PubMed

    Kato, Yuka; Iwata, Takanori; Washio, Kaoru; Yoshida, Toshiyuki; Kuroda, Hozue; Morikawa, Shunichi; Hamada, Mariko; Ikura, Kazuki; Kaibuchi, Nobuyuki; Yamato, Masayuki; Okano, Teruo; Uchigata, Yasuko

    2017-08-04

    Artificial skin has achieved considerable therapeutic results in clinical practice. However, artificial skin treatments for wounds in diabetic patients with impeded blood flow or with large wounds might be prolonged. Cell-based therapies have appeared as a new technique for the treatment of diabetic ulcers, and cell-sheet engineering has improved the efficacy of cell transplantation. A number of reports have suggested that adipose-derived stem cells (ASCs), a type of mesenchymal stromal cell (MSC), exhibit therapeutic potential due to their relative abundance in adipose tissue and their accessibility for collection when compared to MSCs from other tissues. Therefore, ASCs appear to be a good source of stem cells for therapeutic use. In this study, ASC sheets from the epididymal adipose fat of normal Lewis rats were successfully created using temperature-responsive culture dishes and normal culture medium containing ascorbic acid. The ASC sheets were transplanted into Zucker diabetic fatty (ZDF) rats, a rat model of type 2 diabetes and obesity, that exhibit diminished wound healing. A wound was created on the posterior cranial surface, ASC sheets were transplanted into the wound, and a bilayer artificial skin was used to cover the sheets. ZDF rats that received ASC sheets had better wound healing than ZDF rats without the transplantation of ASC sheets. This approach was limited because ASC sheets are sensitive to dry conditions, requiring the maintenance of a moist wound environment. Therefore, artificial skin was used to cover the ASC sheet to prevent drying. The allogenic transplantation of ASC sheets in combination with artificial skin might also be applicable to other intractable ulcers or burns, such as those observed with peripheral arterial disease and collagen disease, and might be administered to patients who are undernourished or are using steroids. Thus, this treatment might be the first step towards improving the therapeutic options for diabetic wound

  13. Experimental study of ASCs combined with POC-PLA patch for the reconstruction of full-thickness chest wall defects.

    PubMed

    Zhang, Yuanzheng; Fang, Shuo; Dai, Jiezhi; Zhu, Lei; Fan, Hao; Tang, Weiya; Fan, Yongjie; Dai, Haiying; Zhang, Peipei; Wang, Ying; Xing, Xin; Yang, Chao

    2017-01-01

    To explore the repairing effect of combination of adipose stem cells (ASCs) and composite scaffolds on CWR, the electrospun Poly 1, 8-octanediol-co-citric acid (POC)-poly-L-lactide acid (PLA) composite scaffolds were prepared, followed by in vitro and in vivo biocompatibility evaluation of the scaffolds. Afterwards, ASCs were seeded on POC-PLA to construct the POC-PLA-ASCs scaffolds, and the POC-PLA, POC-PLA-ASCs, and traditional materials expanded polytetrafluoroethylene (ePTFE) were adopt for CWR in New Zealand white (NZW) rabbit models. As results, the POC-PLA-ASCs patches possessed good biocompatibility as the high proliferation ability of cells surrounding the patches. Rabbits in POC-PLA-ASCs groups showed better pulmonary function, less pleural adhesion, higher degradation rate and more neovascularization when compared with that in other two groups. The results of western blot indicated that POC-PLA-ASCs patches accelerated the expression of VEGF and Collagen I in rabbit models. From the above, our present study demonstrated that POC-PLA material was applied for CWR successfully, and ASCs seeded on the sheets could improve the pleural adhesions and promote the reparation of chest wall defects.

  14. ARF1·GTP, Tyrosine-based Signals, and Phosphatidylinositol 4,5-Bisphosphate Constitute a Minimal Machinery to Recruit the AP-1 Clathrin Adaptor to Membranes

    PubMed Central

    Crottet, Pascal; Meyer, Daniel M.; Rohrer, Jack; Spiess, Martin

    2002-01-01

    At the trans-Golgi network, clathrin coats containing AP-1 adaptor complexes are formed in an ARF1-dependent manner, generating vesicles transporting cargo proteins to endosomes. The mechanism of site-specific targeting of AP-1 and the role of cargo are poorly understood. We have developed an in vitro assay to study the recruitment of purified AP-1 adaptors to chemically defined liposomes presenting peptides corresponding to tyrosine-based sorting motifs. AP-1 recruitment was found to be dependent on myristoylated ARF1, GTP or nonhydrolyzable GTP-analogs, tyrosine signals, and small amounts of phosphoinositides, most prominently phosphatidylinositol 4,5-bisphosphate, in the absence of any additional cytosolic or membrane bound proteins. AP-1 from cytosol could be recruited to a tyrosine signal independently of the lipid composition, but the rate of recruitment was increased by phosphatidylinositol 4,5-bisphosphate. The results thus indicate that cargo proteins are involved in coat recruitment and that the local lipid composition contributes to specifying the site of vesicle formation. PMID:12388765

  15. Inflammasome activation mediates inflammation and outcome in humans and mice with pneumococcal meningitis

    PubMed Central

    2013-01-01

    Background Inflammasomes are multi-protein intracellular signaling complexes that have recently been hypothesized to play a role in the regulation of the inflammation response. We studied associations between inflammasome-associated cytokines IL-1β and IL-18 in cerebrospinal fluid (CSF) of patients with bacterial meningitis and clinical outcome, and pneumococcal serotype. In a murine model of pneumococcal meningitis we examined the pathophysiological roles of two inflammasome proteins, NLRP3 (Nod-like receptor protein-3) and adaptor protein ASC (apoptosis-associated speck-like protein). Methods In a nationwide prospective cohort study, CSF cytokine levels were measured and related to clinical outcome and pneumococcal serotype. In a murine model of pneumococcal meningitis using Streptococcus pneumoniae serotype 3, we examined bacterial titers, cytokine profiles and brain histology at 6 and 30 hours after inoculation in wild-type (WT), Asc and Nlrp3 deficient mice. Results In patients with bacterial meningitis, CSF levels of inflammasome associated cytokines IL-1β and IL-18 were related to complications, and unfavorable disease outcome. CSF levels of IL-1β were associated with pneumococcal serotype (p<0.001). In our animal model, Asc and Nlrp3 deficient mice had decreased systemic inflammatory responses and bacterial outgrowth as compared to WT mice. Differences between Asc−/− and WT mice appeared sooner after bacterial inoculation and were more widespread (lower pro-inflammatory cytokine levels in both blood and brain homogenate) than in Nlrp3-/-mice. Nlrp3 deficiency was associated with an increase of cerebral neutrophil infiltration and cerebral hemorrhages when compared to WT controls. Conclusions Our results implicate an important role for inflammasome proteins NLRP3 and ASC in the regulation of the systemic inflammatory response and the development of cerebral damage during pneumococcal meningitis, which may dependent on the pneumococcal serotype. PMID

  16. The adaptor protein Crk controls activation and inhibition of natural killer cells.

    PubMed

    Liu, Dongfang; Peterson, Mary E; Long, Eric O

    2012-04-20

    Natural killer (NK) cell inhibitory receptors recruit tyrosine phosphatases to prevent activation, induce phosphorylation and dissociation of the small adaptor Crk from cytoskeleton scaffold complexes, and maintain NK cells in a state of responsiveness to subsequent activation events. How Crk contributes to inhibition is unknown. We imaged primary NK cells over lipid bilayers carrying IgG1 Fc to stimulate CD16 and human leukocyte antigen (HLA)-E to inhibit through receptor CD94-NKG2A. HLA-E alone induced Crk phosphorylation in NKG2A(+) NK cells. At activating synapses with Fc alone, Crk was required for the movement of Fc microclusters and their ability to trigger activation signals. At inhibitory synapses, HLA-E promoted central accumulation of both Fc and phosphorylated Crk and blocked the Fc-induced buildup of F-actin. We propose a unified model for inhibitory receptor function: Crk phosphorylation prevents essential Crk-dependent activation signals and blocks F-actin network formation, thereby reducing constraints on subsequent engagement of activation receptors. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Complementary Phosphorylation Sites in the Adaptor Protein SLP-76 Promote Synergistic Activation of Natural Killer Cells

    PubMed Central

    Kim, Hun Sik; Long, Eric O.

    2013-01-01

    The cytotoxic effects of natural killer (NK) cells and their ability to secrete cytokines require the induction of synergistic signals from co-activation receptors, such as CD314 (NKG2D) and CD244 (2B4), which bind to ligands expressed on target cells. Synergy is required to overcome inhibition of the guanine nucleotide exchange factor (GEF) Vav1, a central regulator of NK cell activation, by the E3 ubiquitin ligase c-Cbl. However, the molecular basis for this synergy is unknown. Here, we showed that the adaptor protein Src homology 2 (SH2) domain–containing leukocyte phosphoprotein of 76 kD (SLP-76) was required for this synergy, and that distinct tyrosine residues in SLP-76 were phosphorylated by each receptor of a synergistic pair. Selective phosphorylation of tyrosine 113 or tyrosine 128 in SLP-76, each of which enables binding of SLP-76 to Vav1, was unique to receptors that stimulate ligand-dependent target cell killing, because antibody-dependent stimulation by Fc receptor CD16 promoted phosphorylation at both sites. Knockdown and reconstitution experiments with SLP-76 showed the distinct role of each tyrosine in the synergistic mobilization of Ca2+, revealing an unexpected degree of selectivity in the phosphorylation of SLP-76 by NK cell co-activation receptors. Together, these data suggest that complementation of separate phospho-tyrosine targets in SLP-76 forms the basis of synergistic NK cell activation. PMID:22786724

  18. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrocardiograph lead switching adaptor. 870.2350 Section 870.2350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2350...

  19. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrocardiograph lead switching adaptor. 870.2350 Section 870.2350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2350...

  20. Reliability Quantification of Advanced Stirling Convertor (ASC) Components

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Korovaichuk, Igor; Zampino, Edward

    2010-01-01

    The Advanced Stirling Convertor, is intended to provide power for an unmanned planetary spacecraft and has an operational life requirement of 17 years. Over this 17 year mission, the ASC must provide power with desired performance and efficiency and require no corrective maintenance. Reliability demonstration testing for the ASC was found to be very limited due to schedule and resource constraints. Reliability demonstration must involve the application of analysis, system and component level testing, and simulation models, taken collectively. Therefore, computer simulation with limited test data verification is a viable approach to assess the reliability of ASC components. This approach is based on physics-of-failure mechanisms and involves the relationship among the design variables based on physics, mechanics, material behavior models, interaction of different components and their respective disciplines such as structures, materials, fluid, thermal, mechanical, electrical, etc. In addition, these models are based on the available test data, which can be updated, and analysis refined as more data and information becomes available. The failure mechanisms and causes of failure are included in the analysis, especially in light of the new information, in order to develop guidelines to improve design reliability and better operating controls to reduce the probability of failure. Quantified reliability assessment based on fundamental physical behavior of components and their relationship with other components has demonstrated itself to be a superior technique to conventional reliability approaches based on utilizing failure rates derived from similar equipment or simply expert judgment.

  1. ASC Addresses Unit Commanders’ Concerns through LBE and Reset Programs

    DTIC Science & Technology

    2008-09-01

    Distribution Management Center (DMC). The DMC, based at ASC Headquarters on Rock Island Arsenal, Ilinois, has become the single ASC integrator for LBE and field-level reset in support of ARFORGEN. The reset of units returning from OEF/OIF consists of a series of actions to restore the units to a desired level of combat capability commensurate with future mission requirements. These actions include the repair of equipment, replacement of equipment lost during operations, and recapitalization of equipment where feasible and

  2. Crystal structure of Toll-like receptor adaptor MAL/TIRAP reveals the molecular basis for signal transduction and disease protection

    PubMed Central

    Valkov, Eugene; Stamp, Anna; DiMaio, Frank; Baker, David; Verstak, Brett; Roversi, Pietro; Kellie, Stuart; Sweet, Matthew J.; Mansell, Ashley; Gay, Nicholas J.; Martin, Jennifer L.; Kobe, Bostjan

    2011-01-01

    Initiation of the innate immune response requires agonist recognition by pathogen-recognition receptors such as the Toll-like receptors (TLRs). Toll/interleukin-1 receptor (TIR) domain-containing adaptors are critical in orchestrating the signal transduction pathways after TLR and interleukin-1 receptor activation. Myeloid differentiation primary response gene 88 (MyD88) adaptor-like (MAL)/TIR domain-containing adaptor protein (TIRAP) is involved in bridging MyD88 to TLR2 and TLR4 in response to bacterial infection. Genetic studies have associated a number of unique single-nucleotide polymorphisms in MAL with protection against invasive microbial infection, but a molecular understanding has been hampered by a lack of structural information. The present study describes the crystal structure of MAL TIR domain. Significant structural differences exist in the overall fold of MAL compared with other TIR domain structures: A sequence motif comprising a β-strand in other TIR domains instead corresponds to a long loop, placing the functionally important “BB loop” proline motif in a unique surface position in MAL. The structure suggests possible dimerization and MyD88-interacting interfaces, and we confirm the key interface residues by coimmunoprecipitation using site-directed mutants. Jointly, our results provide a molecular and structural basis for the role of MAL in TLR signaling and disease protection. PMID:21873236

  3. Overall accuracy of cervical cytology and clinicopathological significance of LSIL cells in ASC-H cytology.

    PubMed

    Kim, S H; Lee, J M; Yun, H G; Park, U S; Hwang, S U; Pyo, J-S; Sohn, J H

    2017-02-01

    The aims of this study were (i) to investigate the diagnostic accuracy of Papanicolaou (Pap) smears and (ii) to evaluate the clinicopathological significance of the presence of low-grade squamous intraepithelial lesion (LSIL) cells in atypical squamous cells cannot exclude high-grade squamous intraepithelial lesion (HSIL) (ASC-H) cytology. We retrospectively reviewed paired cytological and histological findings from 3141 patients. ASC-H cytology was classified as either ASC-H or LSIL with some features suggestive of the presence of a concurrent HSIL (LSIL-H). Clinicopathological characteristics were evaluated through a retrospective study and meta-analysis. The accuracy of the cytological diagnosis was 93.7% (2942 of 3141 cases). The positive predictive value (PPV) of ASC-H for cervical intraepithelial neoplasia grade 2 or worse (CIN 2+ ) was 51.4%. In cases of LSIL-H, CIN 2+ histology was more prevalent in the pre-menopausal period (19-44 years) than in peri- and postmenopausal periods (older than 45 years) (P = 0.024). There was no difference in the ability of LSIL-H and ASC-H to predict CIN 2+. The Pap smear is a good cervical cancer screening method. Although there was no difference in the predictive value for CIN 2+ between LSIL-H and ASC-H, the presence of definite LSIL cells was more predictive of CIN 2+ in younger patients than in older patients. © 2016 John Wiley & Sons Ltd.

  4. Acute stress among adolescents and female rape victims measured by ASC-Kids: a pilot study.

    PubMed

    Nilsson, Doris; Nordenstam, Carin; Green, Sara; Wetterhall, Annika; Lundin, Tom; Svedin, Carl Göran

    2015-01-01

    Rape is considered a stressful trauma and often with durable consequences. How the aftermath of rape is for young adolescents' girls considering acute stress is an overlooked field and remains to be studied. In this study, we wanted to investigate acute stress among adolescent victims of rape and the psychometric properties of the Acute Stress Checklist for Children (ASC-Kids). A clinical sample (n = 79) of raped girls, 13-17 years old who had turned to a special rape victim unit for treatment, answered the ASC-Kids. ASC-Kids was also given to a group of minor stressed, non-raped adolescents in the same age range (n = 154) together with the University of California at Los Angeles Post-traumatic Stress Disorder Reaction Index (UCLA PTSD RI), and the Sense of Coherence Scale 13 (SOC-13). The scores from the groups were compared and showed significant differences in mean values on all the diagnostic criteria of acute stress disorder. In the clinical group, 36.7% obtained full ASD criteria. ASC-Kids could discriminate well between groups. Cronbach's alpha was found to be excellent, and the correlation between the UCLA PTSD RI and ASC-Kids found to be good; both ASC-Kids and UCLA PTSD RI had a good and moderate negative correlation with SOC-13. Adolescent female rape victims were shown to have a very high level of acute stress, and the ASC-Kids was found to have sound psychometrics and can be a valuable screening instrument to support clinicians in their assessments of an indication of adolescents after potentially stressful events such as rape.

  5. Impaired thymic selection in mice expressing altered levels of the SLP-76 adaptor protein.

    PubMed

    Ramsey, Kimberley; Luckashenak, Nancy; Koretzky, Gary A; Clements, James L

    2008-02-01

    Intracellular signaling initiated by ligation of the TCR influences cell fate at multiple points during the lifespan of a T cell. This is especially evident during thymic selection, where the nature of TCR-dependent signaling helps to establish a MHC-restricted, self-tolerant T cell repertoire. The Src homology 2 domain-containing leukocyte-specific phosphoprotein of 76 kDa (SLP-76) adaptor protein is a required intermediate in multiple signaling pathways triggered by TCR engagement, several of which have been implicated in dictating the outcome of thymic selection (e.g., intracellular calcium flux and activation of ERK family MAPKs). To determine if thymocyte maturation and selection at later stages of development are sensitive to perturbations in SLP-76 levels, we analyzed these crucial events using several transgenic (Tg) lines of mice expressing altered levels of SLP-76 in the thymus. In Tg mice expressing low levels of SLP-76 in preselection thymocytes, the CD4:CD8 ratio in the thymus and spleen was skewed in a manner consistent with impaired selection and/or maturation of CD4+ thymocytes. Low SLP-76 expression also correlated with reduced CD5 expression on immature thymocytes, consistent with reduced TCR signaling potential. In contrast, reconstitution of SLP-76 at higher levels resulted in normal thymic CD5 expression and CD4:CD8 ratios in the thymus and periphery. It is curious that thymic deletion of TCR-Tg (HY) thymocytes was markedly impaired in both lines of Tg-reconstituted SLP-76-/- mice. Studies using chimeric mice indicate that the defect in deletion of HY+ thymocytes is intrinsic to the developing thymocyte, suggesting that maintenance of sufficient SLP-76 expression from the endogenous locus is a key element in the selection process.

  6. A Novel Function of the Fe65 Neuronal Adaptor in Estrogen Receptor Action in Breast Cancer Cells*

    PubMed Central

    Sun, Yuefeng; Kasiappan, Ravi; Tang, Jinfu; Webb, Panida L.; Quarni, Waise; Zhang, Xiaohong; Bai, Wenlong

    2014-01-01

    Fe65 is a multidomain adaptor with established functions in neuronal cells and neurodegeneration diseases. It binds to the C terminus of the Aβ amyloid precursor protein and is involved in regulating gene transcription. The present studies show that Fe65 is expressed in breast cancer (BCa) cells and acts as an ERα transcriptional coregulator that is recruited by 17β-estradiol to the promoters of estrogen target genes. Deletion analyses mapped the ERα binding domain to the phosphotyrosine binding domain 2 (PTB2). Ectopic Fe65 increased the transcriptional activity of the ERα in a PTB2-dependent manner in reporter assays. Fe65 knockdown decreased, whereas its stable expression increased the transcriptional activity of endogenous ERα in BCa cells and the ability of estrogens to stimulate target gene expression, ERα, and coactivator recruitment to target gene promoters and cell growth. Furthermore, Fe65 expression decreased the antagonistic activity of tamoxifen (TAM), suggesting a role for Fe65 in TAM resistance. Overall, the studies define a novel role for the neuronal adaptor in estrogen actions in BCa cells. PMID:24619425

  7. The adaptor protein SAP directly associates with PECAM-1 and regulates PECAM-1-mediated-cell adhesion in T-like cell lines.

    PubMed

    Proust, Richard; Crouin, Catherine; Gandji, Leslie Yewakon; Bertoglio, Jacques; Gesbert, Franck

    2014-04-01

    SAP is a small cytosolic adaptor protein expressed in hematopoietic lineages whose main function is to regulate intracellular signaling pathways induced by the triggering of members of the SLAM receptor family. In this paper, we have identified the adhesion molecule PECAM-1 as a new partner for SAP in a conditional yeast two-hybrid screen. PECAM-1 is an immunoglobulin-like molecule expressed by endothelial cells and leukocytes, which possesses both pro- and anti-inflammatory properties. However, little is known about PECAM-1 functions in T cells. We show that SAP directly and specifically interacts with the cytosolic tyrosine 686 of PECAM-1. We generated different T-like cell lines in which SAP or PECAM-1 are expressed or down modulated and we demonstrate that a diminished SAP expression correlates with a diminished PECAM-1-mediated adhesion. Although SAP has mainly been shown to associate with SLAM receptors, we evidence here that SAP is a new actor downstream of PECAM-1. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. How many records should be used in ASCE/SEI-7 ground motion scaling procedure?

    USGS Publications Warehouse

    Reyes, Juan C.; Kalkan, Erol

    2012-01-01

    U.S. national building codes refer to the ASCE/SEI-7 provisions for selecting and scaling ground motions for use in nonlinear response history analysis of structures. Because the limiting values for the number of records in the ASCE/SEI-7 are based on engineering experience, this study examines the required number of records statistically, such that the scaled records provide accurate, efficient, and consistent estimates of “true” structural responses. Based on elastic–perfectly plastic and bilinear single-degree-of-freedom systems, the ASCE/SEI-7 scaling procedure is applied to 480 sets of ground motions; the number of records in these sets varies from three to ten. As compared to benchmark responses, it is demonstrated that the ASCE/SEI-7 scaling procedure is conservative if fewer than seven ground motions are employed. Utilizing seven or more randomly selected records provides more accurate estimate of the responses. Selecting records based on their spectral shape and design spectral acceleration increases the accuracy and efficiency of the procedure.

  9. The adaptor Lnk (SH2B3): an emerging regulator in vascular cells and a link between immune and inflammatory signaling.

    PubMed

    Devallière, Julie; Charreau, Béatrice

    2011-11-15

    A better knowledge of the process by which inflammatory extracellular signals are relayed from the plasma membrane to specific intracellular sites is a key step to understand how inflammation develops and how it is regulated. This review focuses on Lnk (SH2B3) a member, with SH2B1 and SH2B2, of the SH2B family of adaptor proteins that influences a variety of signaling pathways mediated by Janus kinase and receptor tyrosine kinases. SH2B adaptor proteins contain conserved dimerization, pleckstrin homology, and SH2 domains. Initially described as a regulator of hematopoiesis and lymphocyte differentiation, Lnk now emerges as a key regulator in hematopoeitic and non hematopoeitic cells such as endothelial cells (EC) moderating growth factor and cytokine receptor-mediated signaling. In EC, Lnk is a negative regulator of TNF signaling that reduce proinflammatory phenotype and prevent EC from apoptosis. Lnk is a modulator in integrin signaling and actin cytoskeleton organization in both platelets and EC with an impact on cell adhesion, migration and thrombosis. In this review, we discuss some recent insights proposing Lnk as a key regulator of bone marrow-endothelial progenitor cell kinetics, including the ability to cell growth, endothelial commitment, mobilization, and recruitment for vascular regeneration. Finally, novel findings also provided evidences that mutations in Lnk gene are strongly linked to myeloproliferative disorders but also autoimmune and inflammatory syndromes where both immune and vascular cells display a role. Overall, these studies emphasize the importance of the Lnk adaptor molecule not only as prognostic marker but also as potential therapeutic target. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Validation of Organics for Advanced Stirling Convertor (ASC)

    NASA Astrophysics Data System (ADS)

    Shin, E. Eugene; Scheiman, Dan; Cybulski, Michelle; Quade, Derek; Inghram, Linda; Burke, Chris

    2008-01-01

    Organic materials are an essential part of the Advanced Stirling Convertor (ASC) construction as adhesives, potting, wire insulation, lubrication coatings, bobbins, bumpers, insulators, thread lockers. Since a long lifetime of such convertors to be used in the Advanced Stirling Radioisotope Generator (ASRG), sometimes up to 17 years, is required in various space applications such as Mars rovers, deep space missions, and lunar surface power, performance, durability and reliability of those organics should be critically evaluated in every possible material-process-fabrication-service environment relations. The objective of this study was to evaluate, validate, and recommend organics for use in ASCs. Systematic and extensive evaluation methodologies were developed and conducted for various organic materials. The overall efforts dealing with organics materials for the last several years are summarized in the key areas, e.g., process-fabrication optimization, adhesive bonding integrity, outgassing, thermal stability, and durability

  11. Purple L1 Milestone Review Panel TotalView Debugger Functionality and Performance for ASC Purple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, M

    2006-12-12

    ASC code teams require a robust software debugging tool to help developers quickly find bugs in their codes and get their codes running. Development debugging commonly runs up to 512 processes. Production jobs run up to full ASC Purple scale, and at times require introspection while running. Developers want a debugger that runs on all their development and production platforms and that works with all compilers and runtimes used with ASC codes. The TotalView Multiprocess Debugger made by Etnus was specified for ASC Purple to address this needed capability. The ASC Purple environment builds on the environment seen by TotalViewmore » on ASCI White. The debugger must now operate with the Power5 CPU, Federation switch, AIX 5.3 operating system including large pages, IBM compilers 7 and 9, POE 4.2 parallel environment, and rs6000 SLURM resource manager. Users require robust, basic debugger functionality with acceptable performance at development debugging scale. A TotalView installation must be provided at the beginning of the early user access period that meets these requirements. A functional enhancement, fast conditional data watchpoints, and a scalability enhancement, capability up to 8192 processes, are to be demonstrated.« less

  12. Specificity of binding of clathrin adaptors to signals on the mannose-6-phosphate/insulin-like growth factor II receptor.

    PubMed Central

    Glickman, J N; Conibear, E; Pearse, B M

    1989-01-01

    Adaptors mediate the interaction of clathrin with select groups of receptors. Two distinct types of adaptors, the HA-II adaptors (found in plasma membrane coated pits) and the HA-I adaptors (localized to Golgi coated pits) bind to the cytoplasmic portion of the 270 kd mannose 6-phosphate (M6P) receptor-a receptor which is concentrated in coated pits on both the plasma membrane and in the trans-Golgi network. Neither type of adaptor appears to compete with the other for binding, suggesting that each type recognizes a distinct site on the M6P receptor tail. Mutation of the two tyrosines in the tail essentially eliminates the interaction with the HA-II plasma membrane adaptor, which recognizes a 'tyrosine' signal on other endocytosed receptors (for example, the LDL receptor and the poly Ig receptor). In contrast, the wild type and the mutant M6P receptor tail (lacking tyrosines) are equally effective at binding HA-I adaptors. This suggests that there is an HA-I recognition signal in another region of the M6P receptor tail, C-terminal to the tyrosine residues, which remains intact in the mutant. This signal is presumably responsible for the concentration of the M6P receptor, with bound lysosomal enzymes, into coated pits which bud from the trans-Golgi network, thus mediating efficient transfer of these enzymes to lysosomes. Images PMID:2545438

  13. NECAPs are negative regulators of the AP2 clathrin adaptor complex.

    PubMed

    Beacham, Gwendolyn M; Partlow, Edward A; Lange, Jeffrey J; Hollopeter, Gunther

    2018-01-18

    Eukaryotic cells internalize transmembrane receptors via clathrin-mediated endocytosis, but it remains unclear how the machinery underpinning this process is regulated. We recently discovered that membrane-associated muniscin proteins such as FCHo and SGIP initiate endocytosis by converting the AP2 clathrin adaptor complex to an open, active conformation that is then phosphorylated (Hollopeter et al., 2014). Here we report that loss of ncap-1 , the sole C. elegans gene encoding an adaptiN Ear-binding Coat-Associated Protein (NECAP), bypasses the requirement for FCHO-1. Biochemical analyses reveal AP2 accumulates in an open, phosphorylated state in ncap-1 mutant worms, suggesting NECAPs promote the closed, inactive conformation of AP2. Consistent with this model, NECAPs preferentially bind open and phosphorylated forms of AP2 in vitro and localize with constitutively open AP2 mutants in vivo. NECAPs do not associate with phosphorylation-defective AP2 mutants, implying that phosphorylation precedes NECAP recruitment. We propose NECAPs function late in endocytosis to inactivate AP2. © 2018, Beacham et al.

  14. Recent advances in inflammasome biology.

    PubMed

    Place, David E; Kanneganti, Thirumala-Devi

    2018-02-01

    The inflammasome is a complex of proteins that through the activity of caspase-1 and the downstream substrates gasdermin D, IL-1β, and IL-18 execute an inflammatory form of cell death termed pyroptosis. Activation of this complex often involves the adaptor protein ASC and upstream sensors including NLRP1, NLRP3, NLRC4, AIM2, and pyrin, which are activated by different stimuli including infectious agents and changes in cell homeostasis. Here we discuss new regulatory mechanisms that have been identified for the canonical inflammasomes, the most recently identified NLRP9b inflammasome, and the new gasdermin family of proteins that mediate pyroptosis and other forms of regulated cell death. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Structural and functional characterization of cargo-binding sites on the μ4-subunit of adaptor protein complex 4.

    PubMed

    Ross, Breyan H; Lin, Yimo; Corales, Esteban A; Burgos, Patricia V; Mardones, Gonzalo A

    2014-01-01

    Adaptor protein (AP) complexes facilitate protein trafficking by playing key roles in the selection of cargo molecules to be sorted in post-Golgi compartments. Four AP complexes (AP-1 to AP-4) contain a medium-sized subunit (μ1-μ4) that recognizes YXXØ-sequences (Ø is a bulky hydrophobic residue), which are sorting signals in transmembrane proteins. A conserved, canonical region in μ subunits mediates recognition of YXXØ-signals by means of a critical aspartic acid. Recently we found that a non-canonical YXXØ-signal on the cytosolic tail of the Alzheimer's disease amyloid precursor protein (APP) binds to a distinct region of the μ4 subunit of the AP-4 complex. In this study we aimed to determine the functionality of both binding sites of μ4 on the recognition of the non-canonical YXXØ-signal of APP. We found that substitutions in either binding site abrogated the interaction with the APP-tail in yeast-two hybrid experiments. Further characterization by isothermal titration calorimetry showed instead loss of binding to the APP signal with only the substitution R283D at the non-canonical site, in contrast to a decrease in binding affinity with the substitution D190A at the canonical site. We solved the crystal structure of the C-terminal domain of the D190A mutant bound to this non-canonical YXXØ-signal. This structure showed no significant difference compared to that of wild-type μ4. Both differential scanning fluorimetry and limited proteolysis analyses demonstrated that the D190A substitution rendered μ4 less stable, suggesting an explanation for its lower binding affinity to the APP signal. Finally, in contrast to overexpression of the D190A mutant, and acting in a dominant-negative manner, overexpression of μ4 with either a F255A or a R283D substitution at the non-canonical site halted APP transport at the Golgi apparatus. Together, our analyses support that the functional recognition of the non-canonical YXXØ-signal of APP is limited to the non

  16. Structural and Functional Characterization of Cargo-Binding Sites on the μ4-Subunit of Adaptor Protein Complex 4

    PubMed Central

    Ross, Breyan H.; Lin, Yimo; Corales, Esteban A.; Burgos, Patricia V.; Mardones, Gonzalo A.

    2014-01-01

    Adaptor protein (AP) complexes facilitate protein trafficking by playing key roles in the selection of cargo molecules to be sorted in post-Golgi compartments. Four AP complexes (AP-1 to AP-4) contain a medium-sized subunit (μ1-μ4) that recognizes YXXØ-sequences (Ø is a bulky hydrophobic residue), which are sorting signals in transmembrane proteins. A conserved, canonical region in μ subunits mediates recognition of YXXØ-signals by means of a critical aspartic acid. Recently we found that a non-canonical YXXØ-signal on the cytosolic tail of the Alzheimer's disease amyloid precursor protein (APP) binds to a distinct region of the μ4 subunit of the AP-4 complex. In this study we aimed to determine the functionality of both binding sites of μ4 on the recognition of the non-canonical YXXØ-signal of APP. We found that substitutions in either binding site abrogated the interaction with the APP-tail in yeast-two hybrid experiments. Further characterization by isothermal titration calorimetry showed instead loss of binding to the APP signal with only the substitution R283D at the non-canonical site, in contrast to a decrease in binding affinity with the substitution D190A at the canonical site. We solved the crystal structure of the C-terminal domain of the D190A mutant bound to this non-canonical YXXØ-signal. This structure showed no significant difference compared to that of wild-type μ4. Both differential scanning fluorimetry and limited proteolysis analyses demonstrated that the D190A substitution rendered μ4 less stable, suggesting an explanation for its lower binding affinity to the APP signal. Finally, in contrast to overexpression of the D190A mutant, and acting in a dominant-negative manner, overexpression of μ4 with either a F255A or a R283D substitution at the non-canonical site halted APP transport at the Golgi apparatus. Together, our analyses support that the functional recognition of the non-canonical YXXØ-signal of APP is limited to the non

  17. VizieR Online Data Catalog: ASC Gaia Attitude Star Catalog (Smart, 2015)

    NASA Astrophysics Data System (ADS)

    Smart, R. L.

    2015-04-01

    The ASC is a compilation produced for the Gaia mission. We have combined data from the following catalogs or datasets to produce a homogenous list of positions, proper motions, photometry in a blue and red band and estimates of the magnitudes in the Gaia G and G_RVS bands: Tycho2, UCAC4, Hipparcos, PPMXL, GSC2.3 and Sky2000. Originally ASC sources were selected from the Initial Gaia Source List (IGSL, I/324). However, here we produce a cleaner catalog starting from the bright source catalogs and using the following criteria: 1) The candidate must be in the Tycho2, UCAC4, Hipparcos or Sky2000 catalog. 2) The Gaia G magnitude must be brighter than 13.4. 3) The star must be isolated from other objects of similar magnitudes 4) The object must not be in the Washington Double Star catalog 5) If a healpix 6th region has more than 1000 objects the magnitude limit is reduced to reduce the number of objects in that region. Since the ASC was produced independently from the IGSL using different procedures there is not a direct 1 to 1 match between ASC and IGSL entries. We have matched the ASC to the IGSL and found that 9 out of the 8 million entries do not have a clear match. Since there may still remain ambiguous matches in the 8 million matched objects, we decided to assign the sourceIDs of the IGSL with the adjustment that the runningnumber is equal to the IGSL runningnumber + 320000. Included Catalogs: Tycho2, UCAC4, Sky2000, HIPPARCOS for candidates and the PPMXL, GSC2.3 were used to calculating magnitudes. (2 data files).

  18. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougherty, Gerard W.; Section on Structural Cell Biology, National Institute on Deafness and Communication Disorders; Chopp, Treasa

    2005-05-15

    Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5more » domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion.« less

  19. Downregulation of adaptor protein MyD88 compromises the angiogenic potential of B16 murine melanoma

    PubMed Central

    Araya, Paula; Nuñez, Nicolás Gonzalo; Mena, Hebe Agustina; Bocco, José Luis; Negrotto, Soledad; Maccioni, Mariana

    2017-01-01

    The mechanisms that link inflammatory responses to cancer development remain a subject of intense investigation, emphasizing the need to better understand the cellular and molecular pathways that create a tumor promoting microenvironment. The myeloid differentiation primary response protein MyD88 acts as a main adaptor molecule for the signaling cascades initiated from Toll-like receptors (TLRs) and the interleukin 1 receptor (IL-1R). MyD88 has been shown to contribute to tumorigenesis in many inflammation-associated cancer models. In this study, we sought to better define the role of MyD88 in neoplastic cells using a murine melanoma model. Herein, we have demonstrated that MyD88 expression is required to maintain the angiogenic switch that supports B16 melanoma growth. By knocking down MyD88 we reduced TLR-mediated NF-κB activation with no evident effects over cell proliferation and survival. In addition, MyD88 downregulation was associated with a decrease of HIF1α levels and its target gene VEGF, in correlation with an impaired capability to induce capillary sprouting and tube formation of endothelial cells. Melanomas developed from cells lacking MyD88 showed an enhanced secretion of chemoattractant ligands such as CCL2, CXCL10 and CXCL1 and have an improved infiltration of macrophages to the tumor site. Our results imply that cell-autonomous signaling through MyD88 is required to sustain tumor growth and underscore its function as an important positive modulator of tumor angiogenesis. PMID:28662055

  20. Rift Valley fever virus infection induces activation of the NLRP3 inflammasome.

    PubMed

    Ermler, Megan E; Traylor, Zachary; Patel, Krupen; Schattgen, Stefan A; Vanaja, Sivapriya K; Fitzgerald, Katherine A; Hise, Amy G

    2014-01-20

    Inflammasome activation is gaining recognition as an important mechanism for protection during viral infection. Here, we investigate whether Rift Valley fever virus, a negative-strand RNA virus, can induce inflammasome responses and IL-1β processing in immune cells. We have determined that RVFV induces NLRP3 inflammasome activation in murine dendritic cells, and that this process is dependent upon ASC and caspase-1. Furthermore, absence of the cellular RNA helicase adaptor protein MAVS/IPS-1 significantly reduces extracellular IL-1β during infection. Finally, direct imaging using confocal microscopy shows that the MAVS protein co-localizes with NLRP3 in the cytoplasm of RVFV infected cells. © 2013 Published by Elsevier Inc.

  1. Inhibition of the Jun N-Terminal Protein Kinase Pathway by SHIP-1, a Lipid Phosphatase That Interacts with the Adaptor Molecule Dok-3

    PubMed Central

    Robson, Jeffrey D.; Davidson, Dominique; Veillette, André

    2004-01-01

    Dok-3 is a Dok-related adaptor expressed in B cells and macrophages. Previously, we reported that Dok-3 is an inhibitor of B-cell activation in A20 B cells and that it associates with SHIP-1, a 5′ inositol-specific lipid phosphatase, as well as Csk, a negative regulator of Src kinases. Here, we demonstrate that Dok-3 suppresses B-cell activation by way of its interaction with SHIP-1, rather than Csk. Our biochemical analyses showed that the Dok-3-SHIP-1 complex acts by selectively inhibiting the B-cell receptor (BCR)-evoked activation of the Jun N-terminal protein kinase (JNK) cascade without affecting overall protein tyrosine phosphorylation or activation of previously described SHIP-1 targets like Btk and Akt/PKB. Studies of B cells derived from SHIP-1-deficient mice showed that BCR-triggered activation of JNK is enhanced in the absence of SHIP-1, implying that the Dok-3-SHIP-1 complex (or a related mechanism) is a physiological negative regulator of the JNK cascade in normal B cells. Together, these data elucidate the mechanism by which Dok-3 inhibits B-cell activation. Furthermore, they provide evidence that SHIP-1 can be a negative regulator of JNK signaling in B cells. PMID:14993273

  2. A versatile targeting system with lentiviral vectors bearing the biotin-adaptor peptide

    PubMed Central

    Morizono, Kouki; Xie, Yiming; Helguera, Gustavo; Daniels, Tracy R.; Lane, Timothy F.; Penichet, Manuel L.; Chen, Irvin S. Y.

    2010-01-01

    Background Targeted gene transduction in vivo is the ultimate preferred method for gene delivery. We previously developed targeting lentiviral vectors that specifically recognize cell surface molecules with conjugated antibodies and mediate targeted gene transduction both in vitro and in vivo. Although effective in some experimental settings, the conjugation of virus with antibodies is mediated by the interaction between protein A and the Fc region of antibodies, which is not as stable as covalent conjugation. We have now developed a more stable conjugation strategy utilizing the interaction between avidin and biotin. Methods We inserted the biotin-adaptor-peptide, which was biotinylated by secretory biotin ligase at specific sites, into our targeting envelope proteins, enabling conjugation of the pseudotyped virus with avidin, streptavidin or neutravidin. Results When conjugated with avidin-antibody fusion proteins or the complex of avidin and biotinylated targeting molecules, the vectors could mediate specific transduction to targeted cells recognized by the targeting molecules. When conjugated with streptavidin-coated magnetic beads, transduction by the vectors was targeted to the locations of magnets. Conclusions This targeting vector system can be used for broad applications of targeted gene transduction using biotinylated targeting molecules or targeting molecules fused with avidin. PMID:19455593

  3. Nlrp6- and ASC-Dependent Inflammasomes Do Not Shape the Commensal Gut Microbiota Composition.

    PubMed

    Mamantopoulos, Michail; Ronchi, Francesca; Van Hauwermeiren, Filip; Vieira-Silva, Sara; Yilmaz, Bahtiyar; Martens, Liesbet; Saeys, Yvan; Drexler, Stefan K; Yazdi, Amir S; Raes, Jeroen; Lamkanfi, Mohamed; McCoy, Kathy D; Wullaert, Andy

    2017-08-15

    The gut microbiota regulate susceptibility to multiple human diseases. The Nlrp6-ASC inflammasome is widely regarded as a hallmark host innate immune axis that shapes the gut microbiota composition. This notion stems from studies reporting dysbiosis in mice lacking these inflammasome components when compared with non-littermate wild-type animals. Here, we describe microbial analyses in inflammasome-deficient mice while minimizing non-genetic confounders using littermate-controlled Nlrp6-deficient mice and ex-germ-free littermate-controlled ASC-deficient mice that were all allowed to shape their gut microbiota naturally after birth. Careful microbial phylogenetic analyses of these cohorts failed to reveal regulation of the gut microbiota composition by the Nlrp6- and ASC-dependent inflammasomes. Our results obtained in two geographically separated animal facilities dismiss a generalizable impact of Nlrp6- and ASC-dependent inflammasomes on the composition of the commensal gut microbiota and highlight the necessity for littermate-controlled experimental design in assessing the influence of host immunity on gut microbial ecology. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Allelic Variation in the Toll-Like Receptor Adaptor Protein Ticam2 Contributes to SARS-Coronavirus Pathogenesis in Mice.

    PubMed

    Gralinski, Lisa E; Menachery, Vineet D; Morgan, Andrew P; Totura, Allison L; Beall, Anne; Kocher, Jacob; Plante, Jessica; Harrison-Shostak, D Corinne; Schäfer, Alexandra; Pardo-Manuel de Villena, Fernando; Ferris, Martin T; Baric, Ralph S

    2017-06-07

    Host genetic variation is known to contribute to differential pathogenesis following infection. Mouse models allow direct assessment of host genetic factors responsible for susceptibility to Severe Acute Respiratory Syndrome coronavirus (SARS-CoV). Based on an assessment of early stage lines from the Collaborative Cross mouse multi-parent population, we identified two lines showing highly divergent susceptibilities to SARS-CoV: the resistant CC003/Unc and the susceptible CC053/Unc. We generated 264 F2 mice between these strains, and infected them with SARS-CoV. Weight loss, pulmonary hemorrhage, and viral load were all highly correlated disease phenotypes. We identified a quantitative trait locus of major effect on chromosome 18 (27.1-58.6 Mb) which affected weight loss, viral titer and hemorrhage. Additionally, each of these three phenotypes had distinct quantitative trait loci [Chr 9 (weight loss), Chrs 7 and 12 (virus titer), and Chr 15 (hemorrhage)]. We identified Ticam2 , an adaptor protein in the TLR signaling pathways, as a candidate driving differential disease at the Chr 18 locus. Ticam2 -/- mice were highly susceptible to SARS-CoV infection, exhibiting increased weight loss and more pulmonary hemorrhage than control mice. These results indicate a critical role for Ticam2 in SARS-CoV disease, and highlight the importance of host genetic variation in disease responses. Copyright © 2017 Gralinski et al.

  5. Allelic Variation in the Toll-Like Receptor Adaptor Protein Ticam2 Contributes to SARS-Coronavirus Pathogenesis in Mice

    PubMed Central

    Gralinski, Lisa E.; Menachery, Vineet D.; Morgan, Andrew P.; Totura, Allison L.; Beall, Anne; Kocher, Jacob; Plante, Jessica; Harrison-Shostak, D. Corinne; Schäfer, Alexandra; Pardo-Manuel de Villena, Fernando; Ferris, Martin T.; Baric, Ralph S.

    2017-01-01

    Host genetic variation is known to contribute to differential pathogenesis following infection. Mouse models allow direct assessment of host genetic factors responsible for susceptibility to Severe Acute Respiratory Syndrome coronavirus (SARS-CoV). Based on an assessment of early stage lines from the Collaborative Cross mouse multi-parent population, we identified two lines showing highly divergent susceptibilities to SARS-CoV: the resistant CC003/Unc and the susceptible CC053/Unc. We generated 264 F2 mice between these strains, and infected them with SARS-CoV. Weight loss, pulmonary hemorrhage, and viral load were all highly correlated disease phenotypes. We identified a quantitative trait locus of major effect on chromosome 18 (27.1–58.6 Mb) which affected weight loss, viral titer and hemorrhage. Additionally, each of these three phenotypes had distinct quantitative trait loci [Chr 9 (weight loss), Chrs 7 and 12 (virus titer), and Chr 15 (hemorrhage)]. We identified Ticam2, an adaptor protein in the TLR signaling pathways, as a candidate driving differential disease at the Chr 18 locus. Ticam2−/− mice were highly susceptible to SARS-CoV infection, exhibiting increased weight loss and more pulmonary hemorrhage than control mice. These results indicate a critical role for Ticam2 in SARS-CoV disease, and highlight the importance of host genetic variation in disease responses. PMID:28592648

  6. 75 FR 65516 - ASC Machine Tools, Inc., Spokane Valley, WA; Notice of Affirmative Determination Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,971] ASC Machine Tools, Inc... workers and former workers of ASC Machine Tools, Inc., Spokane Valley, Washington (the subject firm). The... cut metal, including assembled equipment, component parts of equipment, and spare parts. The negative...

  7. U1 Adaptor Oligonucleotides Targeting BCL2 and GRM1 Suppress Growth of Human Melanoma Xenografts In Vivo

    PubMed Central

    Goraczniak, Rafal; Wall, Brian A; Behlke, Mark A; Lennox, Kim A; Ho, Eric S; Zaphiros, Nikolas H; Jakubowski, Christopher; Patel, Neil R; Zhao, Steven; Magaway, Carlo; Subbie, Stacey A; Jenny Yu, Lumeng; LaCava, Stephanie; Reuhl, Kenneth R; Chen, Suzie; Gunderson, Samuel I

    2013-01-01

    U1 Adaptor is a recently discovered oligonucleotide-based gene-silencing technology with a unique mechanism of action that targets nuclear pre-mRNA processing. U1 Adaptors have two distinct functional domains, both of which must be present on the same oligonucleotide to exert their gene-silencing function. Here, we present the first in vivo use of U1 Adaptors by targeting two different human genes implicated in melanomagenesis, B-cell lymphoma 2 (BCL2) and metabotropic glutamate receptor 1 (GRM1), in a human melanoma cell xenograft mouse model system. Using a newly developed dendrimer delivery system, anti-BCL2 U1 Adaptors were very potent and suppressed tumor growth at doses as low as 34 µg/kg with twice weekly intravenous (iv) administration. Anti-GRM1 U1 Adaptors suppressed tumor xenograft growth with similar potency. Mechanism of action was demonstrated by showing target gene suppression in tumors and by observing that negative control U1 Adaptors with just one functional domain show no tumor suppression activity. The anti-BCL2 and anti-GRM1 treatments were equally effective against cell lines harboring either wild-type or a mutant V600E B-RAF allele, the most common mutation in melanoma. Treatment of normal immune-competent mice (C57BL6) indicated no organ toxicity or immune stimulation. These proof-of-concept studies represent an in-depth (over 800 mice in ~108 treatment groups) validation that U1 Adaptors are a highly potent gene-silencing therapeutic and open the way for their further development to treat other human diseases. PMID:23673539

  8. Development of SH2 probes and pull-down assays to detect pathogen-induced, site-specific tyrosine phosphorylation of the TLR adaptor SCIMP.

    PubMed

    Luo, Lin; Tong, Samuel J; Wall, Adam A; Khromykh, Tatiana; Sweet, Matthew J; Stow, Jennifer L

    2017-07-01

    Protein tyrosine phosphorylation guides many molecular interactions for cellular functions. SCIMP is a transmembrane adaptor protein (TRAP) family member that mediates selective proinflammatory cytokine responses generated by pathogen-activated Toll-like receptor (TLR) pathways in macrophages. TLR activation triggers SCIMP phosphorylation and selective phosphorylation of distinct tyrosine residues on this adaptor offers the potential for regulating or biasing inflammatory responses. To analyze site-specific phosphorylation events, we developed three probes based on the SH2 domains of known SCIMP effectors, and used them for pull-downs from macrophage extracts. CRISPR-mediated SCIMP-deficient RAW264.7 macrophage-like cells were reconstituted with various phosphorylation-deficient (Y58F, Y96F, Y120F) SCIMPs, and used to demonstrate the specificity of LPS/TLR4-induced, site-specific phosphorylation of SCIMP for the temporal recruitment of the effectors Grb2, Csk and SLP65. Our findings reveal potential for differential SCIMP phosphorylation and specific effectors to influence TLR signaling and inflammatory programs. Furthermore, the use of Csk-SH2 pull-downs to identify additional known and new Csk targets in LPS-activated macrophages reveals the wider utility of our SH2 probes.

  9. Seneca Valley Virus Suppresses Host Type I Interferon Production by Targeting Adaptor Proteins MAVS, TRIF, and TANK for Cleavage

    PubMed Central

    Qian, Suhong; Fan, Wenchun; Liu, Tingting; Wu, Mengge; Zhang, Huawei; Cui, Xiaofang; Zhou, Yun; Hu, Junjie; Wei, Shaozhong; Chen, Huanchun

    2017-01-01

    ABSTRACT Seneca Valley virus (SVV) is an oncolytic RNA virus belonging to the Picornaviridae family. Its nucleotide sequence is highly similar to those of members of the Cardiovirus genus. SVV is also a neuroendocrine cancer-selective oncolytic picornavirus that can be used for anticancer therapy. However, the interaction between SVV and its host is yet to be fully characterized. In this study, SVV inhibited antiviral type I interferon (IFN) responses by targeting different host adaptors, including mitochondrial antiviral signaling (MAVS), Toll/interleukin 1 (IL-1) receptor domain-containing adaptor inducing IFN-β (TRIF), and TRAF family member-associated NF-κB activator (TANK), via viral 3C protease (3Cpro). SVV 3Cpro mediated the cleavage of MAVS, TRIF, and TANK at specific sites, which required its protease activity. The cleaved MAVS, TRIF, and TANK lost the ability to regulate pattern recognition receptor (PRR)-mediated IFN production. The cleavage of TANK also facilitated TRAF6-induced NF-κB activation. SVV was also found to be sensitive to IFN-β. Therefore, SVV suppressed antiviral IFN production to escape host antiviral innate immune responses by cleaving host adaptor molecules. IMPORTANCE Host cells have developed various defenses against microbial pathogen infection. The production of IFN is the first line of defense against microbial infection. However, viruses have evolved many strategies to disrupt this host defense. SVV, a member of the Picornavirus genus, is an oncolytic virus that shows potential functions in anticancer therapy. It has been demonstrated that IFN can be used in anticancer therapy for certain tumors. However, the relationship between oncolytic virus and innate immune response in anticancer therapy is still not well known. In this study, we showed that SVV has evolved as an effective mechanism to inhibit host type I IFN production by using its 3Cpro to cleave the molecules MAVS, TRIF, and TANK directly. These molecules are crucial

  10. Seneca Valley Virus Suppresses Host Type I Interferon Production by Targeting Adaptor Proteins MAVS, TRIF, and TANK for Cleavage.

    PubMed

    Qian, Suhong; Fan, Wenchun; Liu, Tingting; Wu, Mengge; Zhang, Huawei; Cui, Xiaofang; Zhou, Yun; Hu, Junjie; Wei, Shaozhong; Chen, Huanchun; Li, Xiangmin; Qian, Ping

    2017-08-15

    Seneca Valley virus (SVV) is an oncolytic RNA virus belonging to the Picornaviridae family. Its nucleotide sequence is highly similar to those of members of the Cardiovirus genus. SVV is also a neuroendocrine cancer-selective oncolytic picornavirus that can be used for anticancer therapy. However, the interaction between SVV and its host is yet to be fully characterized. In this study, SVV inhibited antiviral type I interferon (IFN) responses by targeting different host adaptors, including mitochondrial antiviral signaling (MAVS), Toll/interleukin 1 (IL-1) receptor domain-containing adaptor inducing IFN-β (TRIF), and TRAF family member-associated NF-κB activator (TANK), via viral 3C protease (3C pro ). SVV 3C pro mediated the cleavage of MAVS, TRIF, and TANK at specific sites, which required its protease activity. The cleaved MAVS, TRIF, and TANK lost the ability to regulate pattern recognition receptor (PRR)-mediated IFN production. The cleavage of TANK also facilitated TRAF6-induced NF-κB activation. SVV was also found to be sensitive to IFN-β. Therefore, SVV suppressed antiviral IFN production to escape host antiviral innate immune responses by cleaving host adaptor molecules. IMPORTANCE Host cells have developed various defenses against microbial pathogen infection. The production of IFN is the first line of defense against microbial infection. However, viruses have evolved many strategies to disrupt this host defense. SVV, a member of the Picornavirus genus, is an oncolytic virus that shows potential functions in anticancer therapy. It has been demonstrated that IFN can be used in anticancer therapy for certain tumors. However, the relationship between oncolytic virus and innate immune response in anticancer therapy is still not well known. In this study, we showed that SVV has evolved as an effective mechanism to inhibit host type I IFN production by using its 3C pro to cleave the molecules MAVS, TRIF, and TANK directly. These molecules are crucial for

  11. Enhancement of B-cell receptor signaling by a point mutation of adaptor protein 3BP2 identified in human inherited disease cherubism.

    PubMed

    Ogi, Kazuhiro; Nakashima, Kenji; Chihara, Kazuyasu; Takeuchi, Kenji; Horiguchi, Tomoko; Fujieda, Shigeharu; Sada, Kiyonao

    2011-09-01

    Tyrosine phosphorylation of adaptor protein c-Abl-Src homology 3 (SH3) domain-binding protein-2 (3BP2, also referred to SH3BP2) positively regulates the B-cell antigen receptor (BCR)-mediated signal transduction, leading to the activation of nuclear factor of activated T cells (NFAT). Here we showed the effect of the proline to arginine substitution of 3BP2 in which is the most common mutation in patients with cherubism (P418R) on B-cell receptor signaling. Comparing to the wild type, overexpression of the mutant form of 3BP2 (3BP2-P416R, corresponding to P418R in human protein) enhanced BCR-mediated activation of NFAT. 3BP2-P416R increased the signaling complex formation with Syk, phospholipase C-γ2 (PLC-γ2), and Vav1. In contrast, 3BP2-P416R could not change the association with the negative regulator 14-3-3. Loss of the association mutant that was incapable to associate with 14-3-3 could not mimic BCR-mediated NFAT activation in Syk-deficient cells. Moreover, BCR-mediated phosphorylation of extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was not affected by P416R mutation. These results showed that P416R mutation of 3BP2 causes the gain of function in B cells by increasing the interaction with specific signaling molecules. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  12. Adaptor Protein-1 Complex Affects the Endocytic Trafficking and Function of Peptidylglycine α-Amidating Monooxygenase, a Luminal Cuproenzyme*

    PubMed Central

    Bonnemaison, Mathilde L.; Bäck, Nils; Duffy, Megan E.; Ralle, Martina; Mains, Richard E.; Eipper, Betty A.

    2015-01-01

    The adaptor protein-1 complex (AP-1), which transports cargo between the trans-Golgi network and endosomes, plays a role in the trafficking of Atp7a, a copper-transporting P-type ATPase, and peptidylglycine α-amidating monooxygenase (PAM), a copper-dependent membrane enzyme. Lack of any of the four AP-1 subunits impairs function, and patients with MEDNIK syndrome, a rare genetic disorder caused by lack of expression of the σ1A subunit, exhibit clinical and biochemical signs of impaired copper homeostasis. To explore the role of AP-1 in copper homeostasis in neuroendocrine cells, we used corticotrope tumor cells in which AP-1 function was diminished by reducing expression of its μ1A subunit. Copper levels were unchanged when AP-1 function was impaired, but cellular levels of Atp7a declined slightly. The ability of PAM to function was assessed by monitoring 18-kDa fragment-NH2 production from proopiomelanocortin. Reduced AP-1 function made 18-kDa fragment amidation more sensitive to inhibition by bathocuproine disulfonate, a cell-impermeant Cu(I) chelator. The endocytic trafficking of PAM was altered, and PAM-1 accumulated on the cell surface when AP-1 levels were reduced. Reduced AP-1 function increased the Atp7a presence in early/recycling endosomes but did not alter the ability of copper to stimulate its appearance on the plasma membrane. Co-immunoprecipitation of a small fraction of PAM and Atp7a supports the suggestion that copper can be transferred directly from Atp7a to PAM, a process that can occur only when both proteins are present in the same subcellular compartment. Altered luminal cuproenzyme function may contribute to deficits observed when the AP-1 function is compromised. PMID:26170456

  13. The ASC/SIL ratio for cytopathologists as a quality control measure: a follow-up study.

    PubMed

    Nascimento, Alessandra F; Cibas, Edmund S

    2007-10-01

    Monitoring the relative frequency of the interpretations of atypical squamous cells (ASC) and squamous intraepithelial lesions (SIL) has been proposed as a quality control measure. To assess its value, an ASC/SIL ratio was calculated every 6 months for 3.5 years, and confidential feedback was provided to 10 cytopathologists (CPs). By using simple regression analysis, we analyzed the initial and final ASC/SIL ratios for individual CPs and for the entire group. The ratio was below the upper benchmark of 3:1 for all but 1 CP during every 6-month period. The ratio for all CPs combined showed a downward trend (from 2.05 to 1.73). The ratio for 6 CPs decreased, and for two of them the decrease was statistically significant. One CP showed a statistically significant increase in the ASC/SIL ratio. The decrease for some CPs likely reflects the salutary effect of confidential feedback and counseling.

  14. Antiproliferative effect of ASC-J9 delivered by PLGA nanoparticles against estrogen-dependent breast cancer cells.

    PubMed

    Verderio, Paolo; Pandolfi, Laura; Mazzucchelli, Serena; Marinozzi, Maria Rosaria; Vanna, Renzo; Gramatica, Furio; Corsi, Fabio; Colombo, Miriam; Morasso, Carlo; Prosperi, Davide

    2014-08-04

    Among polymeric nanoparticles designed for cancer therapy, PLGA nanoparticles have become one of the most popular polymeric devices for chemotherapeutic-based nanoformulations against several kinds of malignant diseases. Promising properties, including long-circulation time, enhanced tumor localization, interference with "multidrug" resistance effects, and environmental biodegradability, often result in an improvement of the drug bioavailability and effectiveness. In the present work, we have synthesized 1,7-bis(3,4-dimethoxyphenyl)-5-hydroxyhepta-1,4,6-trien-3-one (ASC-J9) and developed uniform ASC-J9-loaded PLGA nanoparticles of about 120 nm, which have been prepared by a single-emulsion process. Structural and morphological features of the nanoformulation were analyzed, followed by an accurate evaluation of the in vitro drug release kinetics, which exhibited Fickian law diffusion over 10 days. The intracellular degradation of ASC-J9-bearing nanoparticles within estrogen-dependent MCF-7 breast cancer cells was correlated to a time- and dose-dependent activity of the released drug. A cellular growth inhibition associated with a specific cell cycle G2/M blocking effect caused by ASC-J9 release inside the cytosol allowed us to put forward a hypothesis on the action mechanism of this nanosystem, which led to the final cell apoptosis. Our study was accomplished using Annexin V-based cell death analysis, MTT assessment of proliferation, radical scavenging activity, and intracellular ROS evaluation. Moreover, the intracellular localization of nanoformulated ASC-J9 was confirmed by a Raman optical imaging experiment designed ad hoc. PLGA nanoparticles and ASC-J9 proved also to be safe for a healthy embryo fibroblast cell line (3T3-L1), suggesting a possible clinical translation of this potential nanochemotherapeutic to expand the inherently poor bioavailability of hydrophobic ASC-J9 that could be proposed for the treatment of malignant breast cancer.

  15. Environmental Loss Characterization of an Advanced Stirling Convertor (ASC-E2) Insulation Package Using a Mock Heater Head

    NASA Technical Reports Server (NTRS)

    Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a specified electrical power output for a given net heat input. While electrical power output can be precisely quantified, thermal power input to the Stirling cycle cannot be directly measured. In an effort to improve net heat input predictions, the Mock Heater Head was developed with the same relative thermal paths as a convertor using a conducting rod to represent the Stirling cycle and tested to provide a direct comparison to numerical and empirical models used to predict convertor net heat input. The Mock Heater Head also served as the pathfinder for a higher fidelity version of validation test hardware, known as the Thermal Standard. This paper describes how the Mock Heater Head was tested and utilized to validate a process for the Thermal Standard.

  16. Crystal structure of Src-like adaptor protein 2 reveals close association of SH3 and SH2 domains through β-sheet formation.

    PubMed

    Wybenga-Groot, Leanne E; McGlade, C Jane

    2013-12-01

    The Src-like adaptor proteins (SLAP/SLAP2) are key components of Cbl-dependent downregulation of antigen receptor, cytokine receptor, and receptor tyrosine kinase signaling in hematopoietic cells. SLAP and SLAP2 consist of adjacent SH3 and SH2 domains that are most similar in sequence to Src family kinases (SFKs). Notably, the SH3-SH2 connector sequence is significantly shorter in SLAP/SLAP2 than in SFKs. To understand the structural implication of a short SH3-SH2 connector sequence, we solved the crystal structure of a protein encompassing the SH3 domain, SH3-SH2 connector, and SH2 domain of SLAP2 (SLAP2-32). While both domains adopt typical folds, the short SH3-SH2 connector places them in close association. Strand βe of the SH3 domain interacts with strand βA of the SH2 domain, resulting in the formation of a continuous β sheet that spans the length of the protein. Disruption of the SH3/SH2 interface through mutagenesis decreases SLAP-32 stability in vitro, consistent with inter-domain binding being an important component of SLAP2 structure and function. The canonical peptide binding pockets of the SH3 and SH2 domains are fully accessible, in contrast to other protein structures that display direct interaction between SH3 and SH2 domains, in which either peptide binding surface is obstructed by the interaction. Our results reveal potential sites of novel interaction for SH3 and SH2 domains, and illustrate the adaptability of SH2 and SH3 domains in mediating interactions. As well, our results suggest that the SH3 and SH2 domains of SLAP2 function interdependently, with implications on their mode of substrate binding. © 2013.

  17. SLP-65 signal transduction requires Src homology 2 domain-mediated membrane anchoring and a kinase-independent adaptor function of Syk.

    PubMed

    Abudula, Abulizi; Grabbe, Annika; Brechmann, Markus; Polaschegg, Christian; Herrmann, Nadine; Goldbeck, Ingo; Dittmann, Kai; Wienands, Jürgen

    2007-09-28

    The family of SLPs (Src homology 2 domain-containing leukocyte adaptor proteins) are cytoplasmic signal effectors of lymphocyte antigen receptors. A main function of SLP is to orchestrate the assembly of Ca(2+)-mobilizing enzymes at the inner leaflet of the plasma membrane. For this purpose, SLP-76 in T cells utilizes the transmembrane adaptor LAT, but the mechanism of SLP-65 membrane anchoring in B cells remains an enigma. We now employed two genetic reconstitution systems to unravel structural requirements of SLP-65 for the initiation of Ca(2+) mobilization and subsequent activation of gene transcription. First, mutational analysis of SLP-65 in DT40 B cells revealed that its C-terminal Src homology 2 domain controls efficient tyrosine phosphorylation by the kinase Syk, plasma membrane recruitment, as well as downstream signaling to NFAT activation. Second, we dissected these processes by expressing SLP-65 in SLP-76-deficient T cells and found that a kinase-independent adaptor function of Syk is required to link phosphorylated SLP-65 to Ca(2+) mobilization. These approaches unmask a mechanistic complexity of SLP-65 activation and coupling to signaling cascades in that Syk is upstream as well as downstream of SLP-65. Moreover, membrane anchoring of the SLP-65-assembled Ca(2+) initiation complex, which appears to be fundamentally different from that of closely related SLP-76, does not necessarily involve a B cell-specific component.

  18. 7 CFR 1945.28 - Relationship between ASCS and FmHA or its successor agency under Public Law 103-354.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... intended to assist in maintaining and improving the working relationship between the ASCS and the FmHA or... 7 Agriculture 13 2010-01-01 2009-01-01 true Relationship between ASCS and FmHA or its successor...) EMERGENCY Disaster Assistance-General § 1945.28 Relationship between ASCS and FmHA or its successor agency...

  19. Hypoxia triggers angiogenesis by increasing expression of LOX genes in 3-D culture of ASCs and ECs.

    PubMed

    Xie, Qiang; Xie, Jiamin; Tian, Taoran; Ma, Quanquan; Zhang, Qi; Zhu, Bofeng; Cai, Xiaoxiao

    2017-03-01

    This study aimed to investigate the expression changes of LOX (lysyl oxidase) family genes, VEGFA, and VEGFB under hypoxic conditions in a co-culture system of ASCs (adipose-derived stromal cells) and ECs (endothelial cells). ASCs and ECs were co-cultured under hypoxic and normal oxygen conditions in a 1:1 ratio, and the formation of vessel-like was detected at 7 days. The transwell co-culture system was used and cell lysates were collected at 7 days after co-culture in hypoxic and normal oxygen condition. Semi-quantitative PCR was performed to quantify the mRNA expression of VEGFA, VEGFB, and the LOX genes (LOX, LOXL-1, LOXL-2, LOXL-3, and LOXL-4). Expression changes were determined by densitomery. Enhanced angiogenesis was detected in the co-culture of ASCs and ECs under hypoxic conditions. Among the genes screened, VEGFA, VEGFB, LOXL-1, and LOXL-3 in ECs, both mono-cultured and co-cultured, were significantly enhanced after culturing under hypoxic conditions. In ASCs, VEGFB, LOXL-1, and LOXL-3 were upregulated. Contact co-culture between ASCs and ECs promotes angiogenesis under hypoxia. LOXL-1 and LOXL-3 expressions were increased in both ASCs and ECs and might play important roles in the enhanced angiogenesis promoted by hypoxia. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Src-like adaptor protein (SLAP) regulates B cell receptor levels in a c-Cbl-dependent manner.

    PubMed

    Dragone, Leonard L; Myers, Margaret D; White, Carmen; Gadwal, Shyam; Sosinowski, Tomasz; Gu, Hua; Weiss, Arthur

    2006-11-28

    Src-like adaptor protein (SLAP) and c-Cbl recently have been shown to cooperate in regulating T cell receptor (TCR) levels in developing T cells. SLAP also is expressed in developing B cells, and its deficiency leads to alterations in B cell receptor (BCR) levels and B cell development. Hence, we hypothesized that SLAP and c-Cbl may cooperate during B cell development to regulate BCR levels. In mice deficient in both SLAP and c-Cbl, we found that B cell development is altered, suggesting that they function through intersecting pathways. To study the mechanism by which SLAP and c-Cbl alter BCR levels, we coexpressed them in a mature mouse B cell line (Bal-17). First we determined that SLAP associates with proximal components of the BCR complex after stimulation and internalization. Coexpression of SLAP and c-Cbl in Bal-17 led to decreased surface and total BCR levels. This decrease in BCR levels depended on intact Src homology 2 (SH2) and C-terminal domains of SLAP. In addition, a mutation in the SH2 domain of SLAP blocked its colocalization with c-Cbl and the BCR complex, whereas deletion of the C terminus did not affect its localization. Last, coexpression of SLAP and c-Cbl altered BCR complex recycling. This alteration in BCR complex recycling depended on enzymatically active c-Cbl and Src family kinases, as well as the intact SH2 and C-terminal domains of SLAP. These data suggest that SLAP has a conserved function in B and T cells by adapting c-Cbl to the antigen-receptor complex and targeting it for degradation.

  1. Src-like adaptor protein (SLAP) regulates B cell receptor levels in a c-Cbl-dependent manner

    PubMed Central

    Dragone, Leonard L.; Myers, Margaret D.; White, Carmen; Gadwal, Shyam; Sosinowski, Tomasz; Gu, Hua; Weiss, Arthur

    2006-01-01

    Src-like adaptor protein (SLAP) and c-Cbl recently have been shown to cooperate in regulating T cell receptor (TCR) levels in developing T cells. SLAP also is expressed in developing B cells, and its deficiency leads to alterations in B cell receptor (BCR) levels and B cell development. Hence, we hypothesized that SLAP and c-Cbl may cooperate during B cell development to regulate BCR levels. In mice deficient in both SLAP and c-Cbl, we found that B cell development is altered, suggesting that they function through intersecting pathways. To study the mechanism by which SLAP and c-Cbl alter BCR levels, we coexpressed them in a mature mouse B cell line (Bal-17). First we determined that SLAP associates with proximal components of the BCR complex after stimulation and internalization. Coexpression of SLAP and c-Cbl in Bal-17 led to decreased surface and total BCR levels. This decrease in BCR levels depended on intact Src homology 2 (SH2) and C-terminal domains of SLAP. In addition, a mutation in the SH2 domain of SLAP blocked its colocalization with c-Cbl and the BCR complex, whereas deletion of the C terminus did not affect its localization. Last, coexpression of SLAP and c-Cbl altered BCR complex recycling. This alteration in BCR complex recycling depended on enzymatically active c-Cbl and Src family kinases, as well as the intact SH2 and C-terminal domains of SLAP. These data suggest that SLAP has a conserved function in B and T cells by adapting c-Cbl to the antigen-receptor complex and targeting it for degradation. PMID:17110436

  2. In Vivo d-Serine Hetero-Exchange through Alanine-Serine-Cysteine (ASC) Transporters Detected by Microelectrode Biosensors

    PubMed Central

    2013-01-01

    d-Serine, a co-agonist of N-methyl d-aspartate (NMDA) receptors, has been implicated in neurological and psychiatric disorders such as cerebral ischemia, lateral amyotrophic sclerosis, or schizophrenia. d-Serine signaling represents an important pharmacological target for treating these diseases; however, the biochemical mechanisms controlling extracellular d-serine levels in vivo are still unclear. d-Serine heteroexchange through small neutral amino acid transporters has been shown in cell cultures and brain slices and could provide a biochemical mechanism for the control of d-serine extracellular concentration in vivo. Alternatively, exocytotic d-serine release has also been proposed. In this study, the dynamics of d-serine release and clearance were explored in vivo on a second-by-second time scale using microelectrode biosensors. The rate of d-serine clearance in the rat frontal cortex after a microionophoretic injection revealed a transporter-mediated uptake mechanism. d-Serine uptake was blocked by small neutral l-amino acids, implicating alanine-serine-cysteine (ASC) transporters, in particular high affinity Asc-1 and low affinity ASCT2 transporters. Interestingly, changes in alanine, serine, or threonine levels resulted in d-serine release through ASC transporters. Asc-1, but not ASCT2, appeared to release d-serine in response to changes in amino acid concentrations. Finally, neuronal silencing by tetrodotoxin increased d-serine extracellular concentration by an ASC-transporter-dependent mechanism. Together, these results indicate that d-serine heteroexchange through ASC transporters is present in vivo and may constitute a key component in the regulation of d-serine extracellular concentration. PMID:23581544

  3. Myosin 7 and its adaptors link cadherins to actin.

    PubMed

    Yu, I-Mei; Planelles-Herrero, Vicente J; Sourigues, Yannick; Moussaoui, Dihia; Sirkia, Helena; Kikuti, Carlos; Stroebel, David; Titus, Margaret A; Houdusse, Anne

    2017-06-29

    Cadherin linkages between adjacent stereocilia and microvilli are essential for mechanotransduction and maintaining their organization. They are anchored to actin through interaction of their cytoplasmic domains with related tripartite complexes consisting of a class VII myosin and adaptor proteins: Myo7a/SANS/Harmonin in stereocilia and Myo7b/ANKS4B/Harmonin in microvilli. Here, we determine high-resolution structures of Myo7a and Myo7b C-terminal MyTH4-FERM domain (MF2) and unveil how they recognize harmonin using a novel binding mode. Systematic definition of interactions between domains of the tripartite complex elucidates how the complex assembles and prevents possible self-association of harmonin-a. Several Myo7a deafness mutants that map to the surface of MF2 disrupt harmonin binding, revealing the molecular basis for how they impact the formation of the tripartite complex and disrupt mechanotransduction. Our results also suggest how switching between different harmonin isoforms can regulate the formation of networks with Myo7a motors and coordinate force sensing in stereocilia.

  4. Myosin 7 and its adaptors link cadherins to actin

    PubMed Central

    Yu, I-Mei; Planelles-Herrero, Vicente J.; Sourigues, Yannick; Moussaoui, Dihia; Sirkia, Helena; Kikuti, Carlos; Stroebel, David; Titus, Margaret A.; Houdusse, Anne

    2017-01-01

    Cadherin linkages between adjacent stereocilia and microvilli are essential for mechanotransduction and maintaining their organization. They are anchored to actin through interaction of their cytoplasmic domains with related tripartite complexes consisting of a class VII myosin and adaptor proteins: Myo7a/SANS/Harmonin in stereocilia and Myo7b/ANKS4B/Harmonin in microvilli. Here, we determine high-resolution structures of Myo7a and Myo7b C-terminal MyTH4-FERM domain (MF2) and unveil how they recognize harmonin using a novel binding mode. Systematic definition of interactions between domains of the tripartite complex elucidates how the complex assembles and prevents possible self-association of harmonin-a. Several Myo7a deafness mutants that map to the surface of MF2 disrupt harmonin binding, revealing the molecular basis for how they impact the formation of the tripartite complex and disrupt mechanotransduction. Our results also suggest how switching between different harmonin isoforms can regulate the formation of networks with Myo7a motors and coordinate force sensing in stereocilia. PMID:28660889

  5. New therapy with ASC-J9® to suppress the prostatitis via altering the cytokine CCL2 signals

    PubMed Central

    Lin, Shin-Jen; Chou, Fu-Ju; Lin, Chang-Yi; Chang, Hong-Chiang; Yeh, Shuyuan; Chang, Chawnshang

    2016-01-01

    Prostatitis is a common disease contributing to 8% of all urologist visits. Yet the etiology and effective treatment remain to be further elucidated. Using a non-obese diabetes mouse model that can be induced by autoimmune response for the spontaneous development of prostatitis, we found that injection of the ASC-J9® at 75 mg/Kg body weight/48 hours led to significantly suppressed prostatitis that was accompanied with reduction of lymphocyte infiltration with reduced CD4+ T cells in prostate. In vitro studies with a co-culture system also confirmed that ASC-J9® treatment could suppress the CD4+ T cell migration to prostate stromal cells. Mechanisms dissection indicated that ASC-J9® can suppress CD4+ T cell migration via decreasing the cytokine CCL2 in vitro and in vivo, and restoring CCL2 could interrupt the ASC-J9® suppressed CD4+ T cell migration. Together, results from in vivo and in vitro studies suggest that ASC-J9® can suppress prostatitis by altering the autoimmune response induced by CD4+ T cell recruitment, and using ASC-J9® may help us to develop a potential new therapy to battle the prostatitis with little side effects. PMID:27564257

  6. New therapy with ASC-J9® to suppress the prostatitis via altering the cytokine CCL2 signals.

    PubMed

    Lin, Shin-Jen; Chou, Fu-Ju; Lin, Chang-Yi; Chang, Hong-Chiang; Yeh, Shuyuan; Chang, Chawnshang

    2016-10-11

    Prostatitis is a common disease contributing to 8% of all urologist visits. Yet the etiology and effective treatment remain to be further elucidated. Using a non-obese diabetes mouse model that can be induced by autoimmune response for the spontaneous development of prostatitis, we found that injection of the ASC-J9® at 75 mg/Kg body weight/48 hours led to significantly suppressed prostatitis that was accompanied with reduction of lymphocyte infiltration with reduced CD4+ T cells in prostate. In vitro studies with a co-culture system also confirmed that ASC-J9® treatment could suppress the CD4+ T cell migration to prostate stromal cells. Mechanisms dissection indicated that ASC-J9® can suppress CD4+ T cell migration via decreasing the cytokine CCL2 in vitro and in vivo, and restoring CCL2 could interrupt the ASC-J9® suppressed CD4+ T cell migration. Together, results from in vivo and in vitro studies suggest that ASC-J9® can suppress prostatitis by altering the autoimmune response induced by CD4+ T cell recruitment, and using ASC-J9® may help us to develop a potential new therapy to battle the prostatitis with little side effects.

  7. The chemokine CXCL12 generates costimulatory signals in T cells to enhance phosphorylation and clustering of the adaptor protein SLP-76.

    PubMed

    Smith, Xin; Schneider, Helga; Köhler, Karsten; Liu, Hebin; Lu, Yuning; Rudd, Christopher E

    2013-07-30

    The CXC chemokine CXCL12 mediates the chemoattraction of T cells and enhances the stimulation of T cells through the T cell receptor (TCR). The adaptor SLP-76 [Src homology 2 (SH2) domain-containing leukocyte protein of 76 kD] has two key tyrosine residues, Tyr(113) and Tyr(128), that mediate signaling downstream of the TCR. We investigated the effect of CXCL12 on SLP-76 phosphorylation and the TCR-dependent formation of SLP-76 microclusters. Although CXCL12 alone failed to induce SLP-76 cluster formation, it enhanced the number, stability, and phosphorylation of SLP-76 microclusters formed in response to stimulation of the TCR by an activating antibody against CD3, a component of the TCR complex. Addition of CXCL12 to anti-CD3-stimulated cells resulted in F-actin polymerization that stabilized SLP-76 microclusters in the cells' periphery at the interface with antibody-coated coverslips and increased the interaction between SLP-76 clusters and those containing ZAP-70, the TCR-associated kinase that phosphorylates SLP-76, as well as increased TCR-dependent gene expression. Costimulation with CXCL12 and anti-CD3 increased the extent of phosphorylation of SLP-76 at Tyr(113) and Tyr(128), but not that of other TCR-proximal components, and mutation of either one of these residues impaired the CXCL12-dependent effect on SLP-76 microcluster formation, F-actin polymerization, and TCR-dependent gene expression. The effects of CXCL12 on SLP-76 microcluster formation were dependent on the coupling of its receptor CXCR4 to G(i)-family G proteins (heterotrimeric guanine nucleotide-binding proteins). Thus, we identified a costimulatory mechanism by which CXCL12 and antigen converge at SLP-76 microcluster formation to enhance T cell responses.

  8. The American Satellite Company (ASC) satellite deployed from payload bay

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The American Satellite Company (ASC) communications satellite is deployed from the payload bay of the Shuttle Discovery. A portion of the cloudy surface of the earth can be seen to the left of the frame.

  9. Reflex-free digital fundus photography using a simple and portable camera adaptor system. A viable alternative.

    PubMed

    Pirie, Chris G; Pizzirani, Stefano

    2011-12-01

    To describe a digital single lens reflex (dSLR) camera adaptor for posterior segment photography. A total of 30 normal canine and feline animals were imaged using a dSLR adaptor which mounts between a dSLR camera body and lens. Posterior segment viewing and imaging was performed with the aid of an indirect lens ranging from 28-90D. Coaxial illumination for viewing was provided by a single white light emitting diode (LED) within the adaptor, while illumination during exposure was provided by the pop-up flash or an accessory flash. Corneal and/or lens reflections were reduced using a pair of linear polarizers, having their azimuths perpendicular to one another. Quality high-resolution, reflection-free, digital images of the retina were obtained. Subjective image evaluation demonstrated the same amount of detail, as compared to a conventional fundus camera. A wide range of magnification(s) [1.2-4X] and/or field(s) of view [31-95 degrees, horizontal] were obtained by altering the indirect lens utilized. The described adaptor may provide an alternative to existing fundus camera systems. Quality images were obtained and the adapter proved to be versatile, portable and of low cost.

  10. The cytokine release inhibitory drug CRID3 targets ASC oligomerisation in the NLRP3 and AIM2 inflammasomes.

    PubMed

    Coll, Rebecca C; Robertson, Avril; Butler, Mark; Cooper, Matthew; O'Neill, Luke A J

    2011-01-01

    The Inflammasomes are multi-protein complexes that regulate caspase-1 activation and the production of the pro-inflammatory cytokine IL-1β. Previous studies identified a class of diarylsulfonylurea containing compounds called Cytokine Release Inhibitory Drugs (CRIDs) that inhibited the post-translational processing of IL-1β. Further work identified Glutathione S-Transferase Omega 1 (GSTO1) as a possible target of these CRIDs. This study aimed to investigate the mechanism of the inhibitory activity of the CRID CP-456,773 (termed CRID3) in light of recent advances in the area of inflammasome activation, and to clarify the potential role of GSTO1 in the regulation of IL-1β production. In murine bone marrow derived macrophages, CRID3 inhibited IL-1β secretion and caspase 1 processing in response to stimulation of NLRP3 and AIM2 but not NLRC4. CRID3 also prevented AIM2 dependent pyroptosis in contrast to the NLRP3 inhibitors glyburide and parthenolide, which do not inhibit AIM2 activation. Confocal microscopy and Western blotting assays indicated that CRID3 inhibited the formation of ASC complexes or 'specks' in response to NLRP3 and AIM2 stimulation. Co-immunoprecipitation assays show that GSTO1 interacted with ASC. These results identify CRID3 as a novel inhibitor of the NLRP3 and AIM2 inflammasomes and provide an insight into the mechanism of action of this small molecule. In addition GSTO1 may be a component of the inflammasome that is required for ASC complex formation. © 2011 Coll, O’Neill.

  11. FY17 ASC CSSE L2 Milestone 6018: Power Usage Characteristics of Workloads Running on Trinity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedretti, Kevin

    The overall goal of this work was to utilize the Advanced Power Management (APM) capabilities of the ATS-1 Trinity platform to understand the power usage behavior of ASC workloads running on Trinity and gain insight into the potential for utilizing power management techniques on future ASC platforms.

  12. Baculovirus vectors expressing F proteins in combination with virus-induced signaling adaptor (VISA) molecules confer protection against respiratory syncytial virus infection.

    PubMed

    Zhang, Yuan; Qiao, Lei; Hu, Xiao; Zhao, Kang; Zhang, Yanwen; Chai, Feng; Pan, Zishu

    2016-01-04

    Baculovirus has been exploited for use as a novel vaccine vector. To investigate the feasibility and efficacy of recombinant baculoviruses (rBVs) expressing respiratory syncytial virus (RSV) fusion (F) proteins, four constructs (Bac-tF/64, Bac-CF, Bac-CF/tF64 and Bac-CF/tF64-VISA) were generated. Bac-tF64 displays the F ectodomain (tF) on the envelope of rBVs, whereas Bac-CF expresses full-length F protein in transduced mammalian cells. Bac-CF/tF64 not only displays tF on the envelope but also expresses F in cells. Bac-CF/tF64-VISA comprises Bac-CF/tF64 harboring the virus-induced signaling adaptor (VISA) gene. After administration to BALB/c mice, all four vectors elicited RSV neutralizing antibody (Ab), systemic Ab (IgG, IgG1, and IgG2a), and cytokine responses. Compared with Bac-tF64, mice inoculated with Bac-CF and Bac-CF/tF64 exhibited an increased mixed Th1/Th2 cytokine response, increased ratios of IgG2a/IgG1 antibody responses, and reduced immunopathology upon RSV challenge. Intriguingly, co-expression of VISA reduced Th2 cytokine (IL-4, IL-5, and IL-10) production induced by Bac-CF/tF64, thus relieving lung pathology upon a subsequent RSV challenge. Our results indicated that the Bac-CF/tF64 vector incorporated with the VISA molecule may provide an effective vaccine strategy for protection against RSV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Protease-activated Receptor-4 Signaling and Trafficking Is Regulated by the Clathrin Adaptor Protein Complex-2 Independent of β-Arrestins*

    PubMed Central

    Smith, Thomas H.; Coronel, Luisa J.; Li, Julia G.; Dores, Michael R.; Nieman, Marvin T.; Trejo, JoAnn

    2016-01-01

    Protease-activated receptor-4 (PAR4) is a G protein-coupled receptor (GPCR) for thrombin and is proteolytically activated, similar to the prototypical PAR1. Due to the irreversible activation of PAR1, receptor trafficking is intimately linked to signal regulation. However, unlike PAR1, the mechanisms that control PAR4 trafficking are not known. Here, we sought to define the mechanisms that control PAR4 trafficking and signaling. In HeLa cells depleted of clathrin by siRNA, activated PAR4 failed to internalize. Consistent with clathrin-mediated endocytosis, expression of a dynamin dominant-negative K44A mutant also blocked activated PAR4 internalization. However, unlike most GPCRs, PAR4 internalization occurred independently of β-arrestins and the receptor's C-tail domain. Rather, we discovered a highly conserved tyrosine-based motif in the third intracellular loop of PAR4 and found that the clathrin adaptor protein complex-2 (AP-2) is important for internalization. Depletion of AP-2 inhibited PAR4 internalization induced by agonist. In addition, mutation of the critical residues of the tyrosine-based motif disrupted agonist-induced PAR4 internalization. Using Dami megakaryocytic cells, we confirmed that AP-2 is required for agonist-induced internalization of endogenous PAR4. Moreover, inhibition of activated PAR4 internalization enhanced ERK1/2 signaling, whereas Akt signaling was markedly diminished. These findings indicate that activated PAR4 internalization requires AP-2 and a tyrosine-based motif and occurs independent of β-arrestins, unlike most classical GPCRs. Moreover, these findings are the first to show that internalization of activated PAR4 is linked to proper ERK1/2 and Akt activation. PMID:27402844

  14. Safeguards of Neurotransmission: Endocytic Adaptors as Regulators of Synaptic Vesicle Composition and Function

    PubMed Central

    Kaempf, Natalie; Maritzen, Tanja

    2017-01-01

    Communication between neurons relies on neurotransmitters which are released from synaptic vesicles (SVs) upon Ca2+ stimuli. To efficiently load neurotransmitters, sense the rise in intracellular Ca2+ and fuse with the presynaptic membrane, SVs need to be equipped with a stringently controlled set of transmembrane proteins. In fact, changes in SV protein composition quickly compromise neurotransmission and most prominently give rise to epileptic seizures. During exocytosis SVs fully collapse into the presynaptic membrane and consequently have to be replenished to sustain neurotransmission. Therefore, surface-stranded SV proteins have to be efficiently retrieved post-fusion to be used for the generation of a new set of fully functional SVs, a process in which dedicated endocytic sorting adaptors play a crucial role. The question of how the precise reformation of SVs is achieved is intimately linked to how SV membranes are retrieved. For a long time both processes were believed to be two sides of the same coin since Clathrin-mediated endocytosis (CME), the proposed predominant SV recycling mode, will jointly retrieve SV membranes and proteins. However, with the recent proposal of Clathrin-independent SV recycling pathways SV membrane retrieval and SV reformation turn into separable events. This review highlights the progress made in unraveling the molecular mechanisms mediating the high-fidelity retrieval of SV proteins and discusses how the gathered knowledge about SV protein recycling fits in with the new notions of SV membrane endocytosis. PMID:29085282

  15. Overview of ASC Capability Computing System Governance Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doebling, Scott W.

    This document contains a description of the Advanced Simulation and Computing Program's Capability Computing System Governance Model. Objectives of the Governance Model are to ensure that the capability system resources are allocated on a priority-driven basis according to the Program requirements; and to utilize ASC Capability Systems for the large capability jobs for which they were designed and procured.

  16. Probability-Based Design Criteria of the ASCE 7 Tsunami Loads and Effects Provisions (Invited)

    NASA Astrophysics Data System (ADS)

    Chock, G.

    2013-12-01

    Mitigation of tsunami risk requires a combination of emergency preparedness for evacuation in addition to providing structural resilience of critical facilities, infrastructure, and key resources necessary for immediate response and economic and social recovery. Critical facilities would include emergency response, medical, tsunami refuges and shelters, ports and harbors, lifelines, transportation, telecommunications, power, financial institutions, and major industrial/commercial facilities. The Tsunami Loads and Effects Subcommittee of the ASCE/SEI 7 Standards Committee is developing a proposed new Chapter 6 - Tsunami Loads and Effects for the 2016 edition of the ASCE 7 Standard. ASCE 7 provides the minimum design loads and requirements for structures subject to building codes such as the International Building Code utilized in the USA. In this paper we will provide a review emphasizing the intent of these new code provisions and explain the design methodology. The ASCE 7 provisions for Tsunami Loads and Effects enables a set of analysis and design methodologies that are consistent with performance-based engineering based on probabilistic criteria. . The ASCE 7 Tsunami Loads and Effects chapter will be initially applicable only to the states of Alaska, Washington, Oregon, California, and Hawaii. Ground shaking effects and subsidence from a preceding local offshore Maximum Considered Earthquake will also be considered prior to tsunami arrival for Alaska and states in the Pacific Northwest regions governed by nearby offshore subduction earthquakes. For national tsunami design provisions to achieve a consistent reliability standard of structural performance for community resilience, a new generation of tsunami inundation hazard maps for design is required. The lesson of recent tsunami is that historical records alone do not provide a sufficient measure of the potential heights of future tsunamis. Engineering design must consider the occurrence of events greater than

  17. Listeriolysin O Regulates the Expression of Optineurin, an Autophagy Adaptor That Inhibits the Growth of Listeria monocytogenes.

    PubMed

    Puri, Madhu; La Pietra, Luigi; Mraheil, Mobarak Abu; Lucas, Rudolf; Chakraborty, Trinad; Pillich, Helena

    2017-09-05

    Autophagy, a well-established defense mechanism, enables the elimination of intracellular pathogens including Listeria monocytogenes . Host cell recognition results in ubiquitination of L . monocytogenes and interaction with autophagy adaptors p62/SQSTM1 and NDP52, which target bacteria to autophagosomes by binding to microtubule-associated protein 1 light chain 3 (LC3). Although studies have indicated that L . monocytogenes induces autophagy, the significance of this process in the infectious cycle and the mechanisms involved remain poorly understood. Here, we examined the role of the autophagy adaptor optineurin (OPTN), the phosphorylation of which by the TANK binding kinase 1 (TBK1) enhances its affinity for LC3 and promotes autophagosomal degradation, during L . monocytogenes infection. In LC3- and OPTN-depleted host cells, intracellular replicating L . monocytogenes increased, an effect not seen with a mutant lacking the pore-forming toxin listeriolysin O (LLO). LLO induced the production of OPTN. In host cells expressing an inactive TBK1, bacterial replication was also inhibited. Our studies have uncovered an OPTN-dependent pathway in which L . monocytogenes uses LLO to restrict bacterial growth. Hence, manipulation of autophagy by L . monocytogenes , either through induction or evasion, represents a key event in its intracellular life style and could lead to either cytosolic growth or persistence in intracellular vacuolar structures.

  18. Brief Report: Attentional Cueing to Images of Social Interactions is Automatic for Neurotypical Individuals But Not Those with ASC.

    PubMed

    Morrisey, Marcus Neil; Reed, Catherine L; McIntosh, Daniel N; Rutherford, M D

    2018-04-25

    Human actions induce attentional orienting toward the target of the action. We examined the influence of action cueing in social (man throwing toward a human) and non-social (man throwing toward a tree) contexts in observers with and without autism spectrum condition (ASC). Results suggested that a social interaction enhanced the cueing effect for neurotypical participants. Participants with ASC did not benefit from non-predictive cues and were slower in social contexts, although they benefitted from reliably predictive cues. Social orienting appears to be automatic in the context of an implied social interaction for neurotypical observers, but not those with ASC. Neurotypical participants' behavior may be driven by automatic processing, while participants with ASC use an alternative, effortful strategy.

  19. 42 CFR 416.125 - ASC facility services payment rate.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false ASC facility services payment rate. 416.125 Section 416.125 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... connection with the performance of that procedure. (b) The payment must be substantially less than would have...

  20. 42 CFR 416.125 - ASC facility services payment rate.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false ASC facility services payment rate. 416.125 Section 416.125 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... connection with the performance of that procedure. (b) The payment must be substantially less than would have...

  1. Effects of Autologous Fat and ASCs on Swine Hypertrophic Burn Scars: A Multimodal Quantitative Analysis

    PubMed Central

    Pan, Brian S.; Schwentker, Ann R.; Van Aalst, John

    2017-01-01

    Background: Hypertrophic scar formation is unpredictable and poorly understood, afflicting both the pediatric and adult populations. Treatment methods with conservative and invasive approaches have low rates of compliance and high rates of morbidity. The purpose of this study was to test a reproducible scar model and investigate a new technique of scar modification through the use of adipose- derived progenitor stromal cells (ASCs). Methods: Twenty thermal deep-partial thickness contact burns were created on the dorsum of three 8-week-old domestic swine and allowed to mature for 10 weeks. Scars were then injected with 2 cc saline, expanded autologous ASCs, or 2 cc fresh lipoaspirate and sampled at 2 week intervals up to 10 weeks postinjection. Volumetric analysis with a 3-D scanner, mechanical elasticity testing through negative pressure transduction, and standardized photography evaluation with Image J was performed. RNA sequencing was performed on scar tissue samples, cultured cells, and fresh lipoaspirate to determine relevant gene transcription regulation. Immunohistochemistry was used to verify expression level changes within the scars. Results: Volumetric analysis demonstrates a reduction in average scar thickness at 6 weeks when injected with ASCs (−1.6 cc3) and autologous fat (−1.95 cc3) relative to controls (−0.121 cc3; P < 0.05). A decrease in overall tissue compliance is observed with fat or ASC injection when compared with unburned skin at 8 weeks (35.99/37.94 versus 49.36 mm Hg × mm; P < 0.01). RNA sequencing demonstrates altered regulation of fibroblast gene expression and a decreased inflammatory profile when scars are injected with autologous fat/ASCs over controls. Conclusion: Early results suggest that autologous fat and/or ASCs may improve healing of hypertrophic scarring by altering the cellular and structural components during wound remodeling up to 20 weeks after injury. This may have beneficial applications in early treatment of

  2. Effects of bodybuilding and protein supplements in saliva, gingival crevicular fluid, and serum.

    PubMed

    Aral, Kübra; Berdeli, Eynar; Aral, Cüneyt A; Berdeli, Afig; Atan, Merve

    2017-01-01

    The effects of bodybuilding and protein supplements on periodontal tissues have not yet been evaluated. The present study aimed to examine the periodontal status and interleukin (IL)-1β, apoptosis-associated speck-like protein containing C-terminal caspase-recruitment domain (ASC), and caspase 1 (CASP1) gene expression levels of body builders compared with those of controls. Twenty-five bodybuilders with gingivitis (BB-G) who used protein powder supplements were compared with 25 nonexercising males with (G) and 25 without (H) gingivitis. Saliva, gingival crevicular fluid (GCF), and serum were collected for gene expression analysis. Plaque index (PI), gingival index (GI), probing depth (PD), clinical attachment level (CAL), and bleeding on probing (BOP) were recorded. GI and BOP were higher in group BB-G and G than in group H (P < 0.01), but PI, PD, and CAL were similar between groups (P > 0.05). In GCF, CASP1, ASC, and IL-1β expression were upregulated in group G compared with groups BB-G and H (P < 0.01). In addition, ASC (P < 0.05) and IL-1β (P < 0.01) were downregulated in group BB-G compared with group H. CASP1, IL-1β (P < 0.01), and ASC in the saliva were downregulated in group BB-G compared with groups H and G (P < 0.05). CASP1, IL-1β, and ASC may play a role in the pathogenesis of gingivitis. Bodybuilding and supplement usage may decrease gingival inflammation by downregulating CASP1, IL-1β, and ASC.

  3. Targeting endogenous proteins for degradation through the affinity-directed protein missile system.

    PubMed

    Fulcher, Luke J; Hutchinson, Luke D; Macartney, Thomas J; Turnbull, Craig; Sapkota, Gopal P

    2017-05-01

    Targeted proteolysis of endogenous proteins is desirable as a research toolkit and in therapeutics. CRISPR/Cas9-mediated gene knockouts are irreversible and often not feasible for many genes. Similarly, RNA interference approaches necessitate prolonged treatments, can lead to incomplete knockdowns and are often associated with off-target effects. Targeted proteolysis can overcome these limitations. In this report, we describe an affinity-directed protein missile (AdPROM) system that harbours the von Hippel-Lindau (VHL) protein, the substrate receptor of the Cullin2 (CUL2) E3 ligase complex, tethered to polypeptide binders that selectively bind and recruit endogenous target proteins to the CUL2-E3 ligase complex for ubiquitination and proteasomal degradation. By using synthetic monobodies that selectively bind the protein tyrosine phosphatase SHP2 and a camelid-derived VHH nanobody that selectively binds the human ASC protein, we demonstrate highly efficient AdPROM-mediated degradation of endogenous SHP2 and ASC in human cell lines. We show that AdPROM-mediated loss of SHP2 in cells impacts SHP2 biology. This study demonstrates for the first time that small polypeptide binders that selectively recognize endogenous target proteins can be exploited for AdPROM-mediated destruction of the target proteins. © 2017 The Authors.

  4. Targeting endogenous proteins for degradation through the affinity-directed protein missile system

    PubMed Central

    Fulcher, Luke J.; Hutchinson, Luke D.; Macartney, Thomas J.; Turnbull, Craig

    2017-01-01

    Targeted proteolysis of endogenous proteins is desirable as a research toolkit and in therapeutics. CRISPR/Cas9-mediated gene knockouts are irreversible and often not feasible for many genes. Similarly, RNA interference approaches necessitate prolonged treatments, can lead to incomplete knockdowns and are often associated with off-target effects. Targeted proteolysis can overcome these limitations. In this report, we describe an affinity-directed protein missile (AdPROM) system that harbours the von Hippel–Lindau (VHL) protein, the substrate receptor of the Cullin2 (CUL2) E3 ligase complex, tethered to polypeptide binders that selectively bind and recruit endogenous target proteins to the CUL2-E3 ligase complex for ubiquitination and proteasomal degradation. By using synthetic monobodies that selectively bind the protein tyrosine phosphatase SHP2 and a camelid-derived VHH nanobody that selectively binds the human ASC protein, we demonstrate highly efficient AdPROM-mediated degradation of endogenous SHP2 and ASC in human cell lines. We show that AdPROM-mediated loss of SHP2 in cells impacts SHP2 biology. This study demonstrates for the first time that small polypeptide binders that selectively recognize endogenous target proteins can be exploited for AdPROM-mediated destruction of the target proteins. PMID:28490657

  5. Adaptor protein-3 is required in dendritic cells for optimal Toll-like receptor signaling from phagosomes and antigen presentation to CD4+ T cells

    PubMed Central

    Mantegazza, Adriana R.; Guttentag, Susan H.; El-Benna, Jamel; Sasai, Miwa; Iwasaki, Akiko; Shen, Hao; Laufer, Terri M.; Marks, Michael S.

    2012-01-01

    SUMMARY Effective major histocompatibility complex-II (MHC-II) antigen presentation from phagocytosed particles requires phagosome-intrinsic toll-like receptor (TLR) signaling, but the molecular mechanisms underlying TLR delivery to phagosomes and how signaling regulates antigen presentation are incompletely understood. We show a requirement in dendritic cells (DCs) for adaptor protein-3 (AP-3) in efficient TLR recruitment to phagosomes and MHC-II presentation of antigens internalized by phagocytosis but not receptor-mediated endocytosis. DCs from AP-3-deficient pearl mice elicited impaired CD4+ T cell activation and Th1 effector function to particulate antigen in vitro and to recombinant Listeria monocytogenes infection in vivo. Whereas phagolysosome maturation and peptide:MHC-II complex assembly proceeded normally in pearl DCs, peptide:MHC-II export to the cell surface was impeded. This correlated with reduced TLR4 recruitment and proinflammatory signaling from phagosomes by particulate TLR ligands. We propose that AP-3-dependent TLR delivery from endosomes to phagosomes and subsequent signaling mobilize peptide:MHC-II export from intracellular stores. PMID:22560444

  6. NLRP3 and ASC suppress lupus-like autoimmunity by driving the immunosuppressive effects of TGF-β receptor signalling.

    PubMed

    Lech, Maciej; Lorenz, Georg; Kulkarni, Onkar P; Grosser, Marian O O; Stigrot, Nora; Darisipudi, Murthy N; Günthner, Roman; Wintergerst, Maximilian W M; Anz, David; Susanti, Heni Eka; Anders, Hans-Joachim

    2015-12-01

    The NLRP3/ASC inflammasome drives host defence and autoinflammatory disorders by activating caspase-1 to trigger the secretion of mature interleukin (IL)-1β/IL-18, but its potential role in autoimmunity is speculative. We generated and phenotyped Nlrp3-deficient, Asc-deficient, Il-1r-deficient and Il-18-deficient C57BL/6-lpr/lpr mice, the latter being a mild model of spontaneous lupus-like autoimmunity. While lack of IL-1R or IL-18 did not affect the C57BL/6-lpr/lpr phenotype, lack of NLRP3 or ASC triggered massive lymphoproliferation, lung T cell infiltrates and severe proliferative lupus nephritis within 6 months, which were all absent in age-matched C57BL/6-lpr/lpr controls. Lack of NLRP3 or ASC increased dendritic cell and macrophage activation, the expression of numerous proinflammatory mediators, lymphocyte necrosis and the expansion of most T cell and B cell subsets. In contrast, plasma cells and autoantibody production were hardly affected. This unexpected immunosuppressive effect of NLRP3 and ASC may relate to their known role in SMAD2/3 phosphorylation during tumour growth factor (TGF)-β receptor signalling, for example, Nlrp3-deficiency and Asc-deficiency significantly suppressed the expression of numerous TGF-β target genes in C57BL/6-lpr/lpr mice and partially recapitulated the known autoimmune phenotype of Tgf-β1-deficient mice. These data identify a novel non-canonical immunoregulatory function of NLRP3 and ASC in autoimmunity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. Enigma interacts with adaptor protein with PH and SH2 domains to control insulin-induced actin cytoskeleton remodeling and glucose transporter 4 translocation.

    PubMed

    Barrès, Romain; Grémeaux, Thierry; Gual, Philippe; Gonzalez, Teresa; Gugenheim, Jean; Tran, Albert; Le Marchand-Brustel, Yannick; Tanti, Jean-François

    2006-11-01

    APS (adaptor protein with PH and SH2 domains) initiates a phosphatidylinositol 3-kinase-independent pathway involved in insulin-stimulated glucose transport. We recently identified Enigma, a PDZ and LIM domain-containing protein, as a partner of APS and showed that APS-Enigma complex plays a critical role in actin cytoskeleton organization in fibroblastic cells. Because actin rearrangement is important for insulin-induced glucose transporter 4 (Glut 4) translocation, we studied the potential involvement of Enigma in insulin-induced glucose transport in 3T3-L1 adipocytes. Enigma mRNA was expressed in differentiated adipocytes and APS and Enigma were colocalized with cortical actin. Expression of an APS mutant unable to bind Enigma increased the insulin-induced Glut 4 translocation to the plasma membrane. By contrast, overexpression of Enigma inhibited insulin-stimulated glucose transport and Glut 4 translocation without alterations in proximal insulin signaling. This inhibitory effect was prevented with the deletion of the LIM domains of Enigma. Using time-lapse fluorescent microscopy of green fluorescent protein-actin, we demonstrated that the overexpression of Enigma altered insulin-induced actin rearrangements, whereas the expression of Enigma without its LIM domains was without effect. A physiological link between increased expression of Enigma and an alteration in insulin-induced glucose uptake was suggested by the increase in Enigma mRNA expression in adipose tissue of diabetic obese patients. Taken together, these data strongly suggest that the interaction between APS and Enigma is involved in insulin-induced Glut 4 translocation by regulating cortical actin remodeling and raise the possibility that modification of APS/Enigma ratio could participate in the alteration of insulin-induced glucose uptake in adipose tissue.

  8. Design and Calibration of a Dispersive Imaging Spectrometer Adaptor for a Fast IR Camera on NSTX-U

    NASA Astrophysics Data System (ADS)

    Reksoatmodjo, Richard; Gray, Travis; Princeton Plasma Physics Laboratory Team

    2017-10-01

    A dispersive spectrometer adaptor was designed, constructed and calibrated for use on a fast infrared camera employed to measure temperatures on the lower divertor tiles of the NSTX-U tokamak. This adaptor efficiently and evenly filters and distributes long-wavelength infrared photons between 8.0 and 12.0 microns across the 128x128 pixel detector of the fast IR camera. By determining the width of these separated wavelength bands across the camera detector, and then determining the corresponding average photon count for each photon wavelength, a very accurate measurement of the temperature, and thus heat flux, of the divertor tiles can be calculated using Plank's law. This approach of designing an exterior dispersive adaptor for the fast IR camera allows accurate temperature measurements to be made of materials with unknown emissivity. Further, the relative simplicity and affordability of this adaptor design provides an attractive option over more expensive, slower, dispersive IR camera systems. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  9. ASC Tri-lab Co-design Level 2 Milestone Report 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornung, Rich; Jones, Holger; Keasler, Jeff

    2015-09-23

    In 2015, the three Department of Energy (DOE) National Laboratories that make up the Advanced Sci- enti c Computing (ASC) Program (Sandia, Lawrence Livermore, and Los Alamos) collaboratively explored performance portability programming environments in the context of several ASC co-design proxy applica- tions as part of a tri-lab L2 milestone executed by the co-design teams at each laboratory. The programming environments that were studied included Kokkos (developed at Sandia), RAJA (LLNL), and Legion (Stan- ford University). The proxy apps studied included: miniAero, LULESH, CoMD, Kripke, and SNAP. These programming models and proxy-apps are described herein. Each lab focused on amore » particular combination of abstractions and proxy apps, with the goal of assessing performance portability using those. Performance portability was determined by: a) the ability to run a single application source code on multiple advanced architectures, b) comparing runtime performance between \

  10. An Adaptor Domain-Mediated Auto-Catalytic Interfacial Kinase Reaction

    PubMed Central

    Liao, Xiaoli; Su, Jing; Mrksich, Milan

    2010-01-01

    This paper describes a model system for studying the auto-catalytic phosphorylation of an immobilized substrate by a kinase enzyme. This work uses self-assembled monolayers (SAMs) of alkanethiolates on gold to present the peptide substrate on a planar surface. Treatment of the monolayer with Abl kinase results in phosphorylation of the substrate. The phosphorylated peptide then serves as a ligand for the SH2 adaptor domain of the kinase and thereby directs the kinase activity to nearby peptide substrates. This directed reaction is intramolecular and proceeds with a faster rate than does the initial, intermolecular reaction, making this an auto-catalytic process. The kinetic non-linearity gives rise to properties that have no counterpart in the corresponding homogeneous phase reaction: in one example, the rate for phosphorylation of a mixture of two peptides is faster than the sum of the rates for phosphorylation of each peptide when presented alone. This work highlights the use of an adaptor domain in modulating the activity of a kinase enzyme for an immobilized substrate and offers a new approach for studying biochemical reactions in spatially inhomogeneous settings. PMID:19821459

  11. Non-Essential Role for TLR2 and Its Signaling Adaptor Mal/TIRAP in Preserving Normal Lung Architecture in Mice

    PubMed Central

    Ruwanpura, Saleela M.; McLeod, Louise; Lilja, Andrew R.; Brooks, Gavin; Dousha, Lovisa F.; Seow, Huei J.; Bozinovski, Steven; Vlahos, Ross; Hertzog, Paul J.; Anderson, Gary P.; Jenkins, Brendan J.

    2013-01-01

    Myeloid differentiation factor 88 (MyD88) and MyD88-adaptor like (Mal)/Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) play a critical role in transducing signals downstream of the Toll-like receptor (TLR) family. While genetic ablation of the TLR4/MyD88 signaling axis in mice leads to pulmonary cell death and oxidative stress culminating in emphysema, the involvement of Mal, as well as TLR2 which like TLR4 also signals via MyD88 and Mal, in the pathogenesis of emphysema has not been studied. By employing an in vivo genetic approach, we reveal here that unlike the spontaneous pulmonary emphysema which developed in Tlr4−/− mice by 6 months of age, the lungs of Tlr2−/− mice showed no physiological or morphological signs of emphysema. A more detailed comparative analysis of the lungs from these mice confirmed that elevated oxidative protein carbonylation levels and increased numbers of alveolar cell apoptosis were only detected in Tlr4−/− mice, along with up-regulation of NADPH oxidase 3 (Nox3) mRNA expression. With respect to Mal, the architecture of the lungs of Mal−/− mice was normal. However, despite normal oxidative protein carbonylation levels in the lungs of emphysema-free Mal−/− mice, these mice displayed increased levels of apoptosis comparable to those observed in emphysematous Tlr4−/− mice. In conclusion, our data provide in vivo evidence for the non-essential role for TLR2, unlike the related TLR4, in maintaining the normal architecture of the lung. In addition, we reveal that Mal differentially facilitates the anti-apoptotic, but not oxidant suppressive, activities of TLR4 in the lung, both of which appear to be essential for TLR4 to prevent the onset of emphysema. PMID:24205107

  12. Huntingtin interacting protein 1 modulates the transcriptional activity of nuclear hormone receptors.

    PubMed

    Mills, Ian G; Gaughan, Luke; Robson, Craig; Ross, Theodora; McCracken, Stuart; Kelly, John; Neal, David E

    2005-07-18

    Internalization of activated receptors regulates signaling, and endocytic adaptor proteins are well-characterized in clathrin-mediated uptake. One of these adaptor proteins, huntingtin interacting protein 1 (HIP1), induces cellular transformation and is overexpressed in some prostate cancers. We have discovered that HIP1 associates with the androgen receptor through a central coiled coil domain and is recruited to DNA response elements upon androgen stimulation. HIP1 is a novel androgen receptor regulator, significantly repressing transcription when knocked down using a silencing RNA approach and activating transcription when overexpressed. We have also identified a functional nuclear localization signal at the COOH terminus of HIP1, which contributes to the nuclear translocation of the protein. In conclusion, we have discovered that HIP1 is a nucleocytoplasmic protein capable of associating with membranes and DNA response elements and regulating transcription.

  13. Huntingtin interacting protein 1 modulates the transcriptional activity of nuclear hormone receptors

    PubMed Central

    Mills, Ian G.; Gaughan, Luke; Robson, Craig; Ross, Theodora; McCracken, Stuart; Kelly, John; Neal, David E.

    2005-01-01

    Internalization of activated receptors regulates signaling, and endocytic adaptor proteins are well-characterized in clathrin-mediated uptake. One of these adaptor proteins, huntingtin interacting protein 1 (HIP1), induces cellular transformation and is overexpressed in some prostate cancers. We have discovered that HIP1 associates with the androgen receptor through a central coiled coil domain and is recruited to DNA response elements upon androgen stimulation. HIP1 is a novel androgen receptor regulator, significantly repressing transcription when knocked down using a silencing RNA approach and activating transcription when overexpressed. We have also identified a functional nuclear localization signal at the COOH terminus of HIP1, which contributes to the nuclear translocation of the protein. In conclusion, we have discovered that HIP1 is a nucleocytoplasmic protein capable of associating with membranes and DNA response elements and regulating transcription. PMID:16027218

  14. Low-intensity pulsed ultrasound stimulation facilitates in vitro osteogenic differentiation of human adipose-derived stem cells via up-regulation of heat shock protein (HSP)70, HSP90, and bone morphogenetic protein (BMP) signaling pathway.

    PubMed

    Zhang, Zhonglei; Ma, Yalin; Guo, Shaowen; He, Yi; Bai, Gang; Zhang, Wenjun

    2018-05-29

    Low-intensity pulsed ultrasound (LIPUS) has positive effects on osteogenic differentiation. However, the effect of LIPUS on osteogenic differentiation of human adipose-derived stem cells (hASCs) is unclear. In the present study, we investigated whether LIPUS could promote the proliferation and osteogenic differentiation of hASCs. hASCs were isolated and osteogenically induced with LIPUS stimulation at 20 and 30 mW cm -2 for 30 min day -1 Cell proliferation and osteogenic differentiation potential of hASCs were respectively analyzed by cell counting kit-8 assay, Alizarin Red S staining, real-time polymerase chain reaction, and Western blotting. The results indicated that LIPUS stimulation did not significantly affect the proliferation of hASCs, but significantly increased their alkaline phosphatase activity on day 6 of culture and markedly promoted the formation of mineralized nodules on day 21 of culture. The mRNA expression levels of runt-related transcription factor, osteopontin, and osteocalcin were significantly up-regulated by LIPUS stimulation. LIPUS stimulation did not affect the expression of heat shock protein (HSP) 27, HSP40, bone morphogenetic protein (BMP)-6 and BMP-9, but significantly up-regulated the protein levels of HSP70, HSP90, BMP-2, and BMP-7 in the hASCs. Further studies found that LIPUS increased the mRNA levels of Smad 1 and Smad 5, elevated the phosphorylation of Smad 1/5, and suppressed the expression of BMP antagonist Noggin. These findings indicated that LIPUS stimulation enhanced osteogenic differentiation of hASCs possibly through the up-regulation of HSP70 and HSP90 expression and activation of BMP signaling pathway. Therefore, LIPUS might have the potential to promote the repair of bone defect. © 2018 The Author(s).

  15. Aeroacoustics research in Europe: The CEAS-ASC report on 2013 highlights

    NASA Astrophysics Data System (ADS)

    Bennett, G. J.; Kennedy, J.; Meskell, C.; Carley, M.; Jordan, P.; Rice, H.

    2015-03-01

    The Council of European Aerospace Societies (CEAS) Aeroacoustics Specialists Committee (ASC) supports and promotes the interests of the scientific and industrial aeroacoustics community on an European scale and European aeronautics activities internationally. In this context, "aeroacoustics" encompasses all aerospace acoustics and related areas. Each year the committee highlights some of the research and development projects in Europe. This paper is a report on highlights of aeroacoustics research in Europe in 2013, compiled from information provided to the ASC of the CEAS. During 2013, a number of research programmes involving aeroacoustics were funded by the European Commission. Some of the highlights from these programmes are summarised in this paper, as well as highlights from other programmes funded by national programmes or by industry. Furthermore, a concise summary of the CEAS-ASC workshop "Atmospheric and Ground Effects on Aircraft Noise" held in Seville, Spain in September 2013 is included in this report. Enquiries concerning all contributions should be addressed to the authors who are given at the end of each subsection. This issue of the "highlights" paper is dedicated to the memory of Prof. John A. Fitzpatrick, Professor of Mechanical Engineering, Trinity College Dublin, and a valued member of the Aeroacoustics Specialists Committee. John passed away in September 2012 and is fondly missed across the globe by the friends he made in the Aeroacoustics Community. This paper is edited by PhD graduates and colleagues of John's who conduct research in aeroacoustics, inspired by his thirst for knowledge.

  16. Maintenance of human adipose derived stem cell (hASC) differentiation capabilities using a 3D culture.

    PubMed

    Lin, Ching-Yu; Huang, Chi-Hui; Wu, Yuan-Kun; Cheng, Nai-Chen; Yu, Jiashing

    2014-07-01

    In this study, 3D culture system for human adipose-derived stem cell (hASC) using a BioLevitator as the bioreactor for microcarrier-based cultures was established. During the culturing period, hASCs preferred to grow in crevices between microcarriers and a high viability was maintained even when reaching confluency. Adipogenic or osteogenic differential medium was used to induce hASCs and differential potentials of these cells were compared between 2D and 3D environments via RT-PCR and staining quantifications. CEBP/α gene expression was significant higher in 3D condition at day 21 (P < 0.05). Staining quantification indicates that cells cultured in 3D condition have significant better differentiation potential from day 14 to 21 for both adipogenic and osteogenic lineages (P < 0.01).

  17. Aeroacoustics research in Europe: The CEAS-ASC report on 2012 highlights

    NASA Astrophysics Data System (ADS)

    Bodén, H.; Efraimsson, G.

    2013-12-01

    The Council of European Aerospace Societies (CEAS) Aeroacoustics Specialists Committee (ASC) supports and promotes the interests of the scientific and industrial aeroacoustics community on an European scale and European aeronautics activities internationally. In this context, "aeroacoustics" encompasses all aerospace acoustics and related areas. Each year the committee highlights some of the research and development projects in Europe. This paper is a report on highlights of aeroacoustics research in Europe in 2012, compiled from information provided to the ASC of the CEAS. During 2012, a number of research programmes involving aeroacoustics were funded by the European Commission. Some of the highlights from these programmes are summarized in this paper, as well as highlights from other programmes funded by national programmes or by industry. Enquiries concerning all contributions should be addressed to the authors who are given at the end of each subsection.

  18. ATM-Dependent Phosphorylation of All Three Members of the MRN Complex: From Sensor to Adaptor.

    PubMed

    Lavin, Martin F; Kozlov, Sergei; Gatei, Magtouf; Kijas, Amanda W

    2015-10-23

    The recognition, signalling and repair of DNA double strand breaks (DSB) involves the participation of a multitude of proteins and post-translational events that ensure maintenance of genome integrity. Amongst the proteins involved are several which when mutated give rise to genetic disorders characterised by chromosomal abnormalities, cancer predisposition, neurodegeneration and other pathologies. ATM (mutated in ataxia-telangiectasia (A-T) and members of the Mre11/Rad50/Nbs1 (MRN complex) play key roles in this process. The MRN complex rapidly recognises and locates to DNA DSB where it acts to recruit and assist in ATM activation. ATM, in the company of several other DNA damage response proteins, in turn phosphorylates all three members of the MRN complex to initiate downstream signalling. While ATM has hundreds of substrates, members of the MRN complex play a pivotal role in mediating the downstream signalling events that give rise to cell cycle control, DNA repair and ultimately cell survival or apoptosis. Here we focus on the interplay between ATM and the MRN complex in initiating signaling of breaks and more specifically on the adaptor role of the MRN complex in mediating ATM signalling to downstream substrates to control different cellular processes.

  19. Profiling Autism Symptomatology: An Exploration of the Q-ASC Parental Report Scale in Capturing Sex Differences in Autism

    ERIC Educational Resources Information Center

    Ormond, Sarah; Brownlow, Charlotte; Garnett, Michelle Sarah; Rynkiewicz, Agnieszka; Attwood, Tony

    2018-01-01

    The Questionnaire for Autism Spectrum Conditions (Q-ASC) was developed by Attwood et al. (2011) to identify gender-sensitive profiles of autism symptomatology; prioritise and adjust the direction of clinical interventions; and support positive psychosocial outcomes and prognosis into adulthood. The current research piloted the Q-ASC with parents…

  20. Allostery Mediates Ligand Binding to Grb2 Adaptor in a Mutually Exclusive Manner

    PubMed Central

    McDonald, Caleb B.; El Hokayem, Jimmy; Zafar, Nawal; Balke, Jordan E.; Bhat, Vikas; Mikles, David C.; Deegan, Brian J.; Seldeen, Kenneth L.; Farooq, Amjad

    2012-01-01

    Allostery plays a key role in dictating the stoichiometry and thermodynamics of multi-protein complexes driving a plethora of cellular processes central to health and disease. Herein, using various biophysical tools, we demonstrate that although Sos1 nucleotide exchange factor and Gab1 docking protein recognize two non-overlapping sites within the Grb2 adaptor, allostery promotes the formation of two distinct pools of Grb2-Sos1 and Grb2-Gab1 binary signaling complexes in concert in lieu of a composite Sos1-Grb2-Gab1 ternary complex. Of particular interest is the observation that the binding of Sos1 to the nSH3 domain within Grb2 sterically blocks the binding of Gab1 to the cSH3 domain and vice versa in a mutually exclusive manner. Importantly, the formation of both the Grb2-Sos1 and Grb2-Gab1 binary complexes is governed by a stoichiometry of 2:1, whereby the respective SH3 domains within Grb2 homodimer bind to Sos1 and Gab1 via multivalent interactions. Collectively, our study sheds new light on the role of allostery in mediating cellular signaling machinery. PMID:23334917

  1. p130Cas scaffolds the signalosome to direct adaptor-effector cross talk during Kaposi's sarcoma-associated herpesvirus trafficking in human microvascular dermal endothelial cells.

    PubMed

    Bandyopadhyay, Chirosree; Veettil, Mohanan Valiya; Dutta, Sujoy; Chandran, Bala

    2014-12-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with cell surface receptors, such as heparan sulfate, integrins (α3β1, αVβ3, and αVβ5), and EphrinA2 (EphA2), and activates focal adhesion kinase (FAK), Src, phosphoinositol 3-kinase (PI3-K), c-Cbl, and RhoA GTPase signal molecules early during lipid raft (LR)-dependent productive macropinocytic entry into human dermal microvascular endothelial cells. Our recent studies have identified CIB1 as a signal amplifier facilitating EphA2 phosphorylation and subsequent cytoskeletal cross talk during KSHV macropinocytosis. Although CIB1 lacks an enzymatic activity and traditional adaptor domain or known interacting sequence, it associated with the KSHV entry signal complex and the CIB1-KSHV association was sustained over 30 min postinfection. To identify factors scaffolding the EphA2-CIB1 signal axis, the role of major cellular scaffold protein p130Cas (Crk-associated substrate of Src) was investigated. Inhibitor and small interfering RNA (siRNA) studies demonstrated that KSHV induced p130Cas in an EphA2-, CIB1-, and Src-dependent manner. p130Cas and Crk were associated with KSHV, LRs, EphA2, and CIB1 early during infection. Live-cell microscopy and biochemical studies demonstrated that p130Cas knockdown did not affect KSHV entry but significantly reduced productive nuclear trafficking of viral DNA and routed KSHV to lysosomal degradation. p130Cas aided in scaffolding adaptor Crk to downstream guanine nucleotide exchange factor phospho-C3G possibly to coordinate GTPase signaling during KSHV trafficking. Collectively, these studies demonstrate that p130Cas acts as a bridging molecule between the KSHV-induced entry signal complex and the downstream trafficking signalosome in endothelial cells and suggest that simultaneous targeting of KSHV entry receptors with p130Cas would be an attractive potential avenue for therapeutic intervention in KSHV infection. Eukaryotic cell adaptor molecules, without any intrinsic

  2. The role of protein-protein interactions in the intracellular traffic of the potassium channels TASK-1 and TASK-3.

    PubMed

    Kilisch, Markus; Lytovchenko, Olga; Schwappach, Blanche; Renigunta, Vijay; Daut, Jürgen

    2015-05-01

    The intracellular transport of membrane proteins is controlled by trafficking signals: Short peptide motifs that mediate the contact with COPI, COPII or various clathrin-associated coat proteins. In addition, many membrane proteins interact with accessory proteins that are involved in the sorting of these proteins to different intracellular compartments. In the K2P channels, TASK-1 and TASK-3, the influence of protein-protein interactions on sorting decisions has been studied in some detail. Both TASK paralogues interact with the adaptor protein 14-3-3; TASK-1 interacts, in addition, with the adaptor protein p11 (S100A10) and the endosomal SNARE protein syntaxin-8. The role of these interacting proteins in controlling the intracellular traffic of the channels and the underlying molecular mechanisms are summarised in this review. In the case of 14-3-3, the interacting protein masks a retention signal in the C-terminus of the channel; in the case of p11, the interacting protein carries a retention signal that localises the channel to the endoplasmic reticulum; and in the case of syntaxin-8, the interacting protein carries an endocytosis signal that complements an endocytosis signal of the channel. These examples illustrate some of the mechanisms by which interacting proteins may determine the itinerary of a membrane protein within a cell and suggest that the intracellular traffic of membrane proteins may be adapted to the specific functions of that protein by multiple protein-protein interactions.

  3. The Role of the Clathrin Adaptor AP-1: Polarized Sorting and Beyond

    PubMed Central

    Nakatsu, Fubito; Hase, Koji; Ohno, Hiroshi

    2014-01-01

    The selective transport of proteins or lipids by vesicular transport is a fundamental process supporting cellular physiology. The budding process involves cargo sorting and vesicle formation at the donor membrane and constitutes an important process in vesicular transport. This process is particularly important for the polarized sorting in epithelial cells, in which the cargo molecules need to be selectively sorted and transported to two distinct destinations, the apical or basolateral plasma membrane. Adaptor protein (AP)-1, a member of the AP complex family, which includes the ubiquitously expressed AP-1A and the epithelium-specific AP-1B, regulates polarized sorting at the trans-Golgi network and/or at the recycling endosomes. A growing body of evidence, especially from studies using model organisms and animals, demonstrates that the AP-1-mediated polarized sorting supports the development and physiology of multi-cellular units as functional organs and tissues (e.g., cell fate determination, inflammation and gut immune homeostasis). Furthermore, a possible involvement of AP-1B in the pathogenesis of human diseases, such as Crohn’s disease and cancer, is now becoming evident. These data highlight the significant contribution of AP-1 complexes to the physiology of multicellular organisms, as master regulators of polarized sorting in epithelial cells. PMID:25387275

  4. RIOK3 Is an Adaptor Protein Required for IRF3-Mediated Antiviral Type I Interferon Production

    PubMed Central

    Feng, Jun; De Jesus, Paul D.; Su, Victoria; Han, Stephanie; Gong, Danyang; Wu, Nicholas C.; Tian, Yuan; Li, Xudong; Wu, Ting-Ting; Chanda, Sumit K.

    2014-01-01

    ABSTRACT Detection of cytosolic nucleic acids by pattern recognition receptors leads to the induction of type I interferons (IFNs) and elicits the innate immune response. We report here the identification of RIOK3 as a novel adaptor protein that is essential for the cytosolic nucleic acid-induced type I IFN production and for the antiviral response to gammaherpesvirus through two independent kinome-wide RNA interference screens. RIOK3 knockdown blocks both cytosolic double-stranded B-form DNA and double-stranded RNA-induced IRF3 activation and IFN-β production. In contrast, the overexpression of RIOK3 activates IRF3 and induces IFN-β. RIOK3 functions downstream of TBK1 and upstream of IRF3 activation. Furthermore, RIOK3 physically interacts with both IRF3 and TBK1 and is necessary for the interaction between TBK1 and IRF3. In addition, global transcriptome analysis shows that the expression of many gene involved antiviral responses is dependent on RIOK3. Thus, knockdown of RIOK3 inhibits cellular antiviral responses against both DNA and RNA viruses (herpesvirus and influenza A virus). Our data suggest that RIOK3 plays a critical role in the antiviral type I IFN pathway by bridging TBK1 and IRF3. IMPORTANCE The innate immune response, such as the production of type I interferons, acts as the first line of defense, limiting infectious pathogens directly and shaping the adaptive immune response. In this study, we identified RIOK3 as a novel regulator of the antiviral type I interferon pathway. Specifically, we found that RIOK3 physically interacts with TBK1 and IRF3 and bridges the functions between TBK1 and IRF3 in the activation of type I interferon pathway. The identification of a cellular kinase that plays a role the type I interferon pathway adds another level of complexity in the regulation of innate immunity and will have implications for developing novel strategies to combat viral infection. PMID:24807708

  5. CpG island methylation of TMS1/ASC and CASP8 genes in cervical cancer

    PubMed Central

    2009-01-01

    Background Gene silencing associated with aberrant methylation of promoter region CpG islands is an acquired epigenetic alteration that serves as an alternative to genetic defects in the inactivation of tumor suppressor and other genes in human cancers. Aims This study describes the methylation status of TMS1/ASC and CASP8 genes in cervical cancer. We also examined the prevalence of TMS1/ASC and CASP8 genes methylation in cervical cancer tissue and none - neo plastic samples in an effort to correlate with smoking habit and clinicopathological features. Method Target DNA was modified by sodium bisulfite, converting all unmethylated, but not methylated, cytosines to uracil, and subsequently amplified by Methylation Specific (MS) PCR with primers specific for methylated versus unmethylated DNA. The PCR product was detected by gel electrophoresis and combined with the clinical records of patients. Results The methylation pattern of the TMS1/ASC and CASP8 genes in specimens of cervical cancer and adjacent normal tissues were detected [5/80 (6.2%), 3/80 (3.75%)-2/80 (2.5%), 1/80 (1.2%) respectively]. No statistical differences were seen in the extent of differentiation, invasion, pathological type and smoking habit between the methylated and unmethylated tissues (P > 0.05). Conclusion The present study conclude that the frequency of TMS1/ASC and CASP8 genes methylation in cervical cancer are rare (< 6%), and have no any critical role in development of cervical cancer. PMID:19258216

  6. Distinct conformations of the protein complex p97-Ufd1-Npl4 revealed by electron cryomicroscopy

    PubMed Central

    Bebeacua, Cecilia; Förster, Andreas; McKeown, Ciarán; Meyer, Hemmo H.; Zhang, Xiaodong; Freemont, Paul S.

    2012-01-01

    p97 is a key regulator of numerous cellular pathways and associates with ubiquitin-binding adaptors to remodel ubiquitin-modified substrate proteins. How adaptor binding to p97 is coordinated and how adaptors contribute to substrate remodeling is unclear. Here we present the 3D electron cryomicroscopy reconstructions of the major Ufd1-Npl4 adaptor in complex with p97. Our reconstructions show that p97-Ufd1-Npl4 is highly dynamic and that Ufd1-Npl4 assumes distinct positions relative to the p97 ring upon addition of nucleotide. Our results suggest a model for substrate remodeling by p97 and also explains how p97-Ufd1-Npl4 could form other complexes in a hierarchical model of p97-cofactor assembly. PMID:22232657

  7. Differential regulation of protein tyrosine kinase signalling by Dock and the PTP61F variants.

    PubMed

    Willoughby, Lee F; Manent, Jan; Allan, Kirsten; Lee, Han; Portela, Marta; Wiede, Florian; Warr, Coral; Meng, Tzu-Ching; Tiganis, Tony; Richardson, Helena E

    2017-07-01

    Tyrosine phosphorylation-dependent signalling is coordinated by the opposing actions of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). There is a growing list of adaptor proteins that interact with PTPs and facilitate the dephosphorylation of substrates. The extent to which any given adaptor confers selectivity for any given substrate in vivo remains unclear. Here we have taken advantage of Drosophila melanogaster as a model organism to explore the influence of the SH3/SH2 adaptor protein Dock on the abilities of the membrane (PTP61Fm)- and nuclear (PTP61Fn)-targeted variants of PTP61F (the Drosophila othologue of the mammalian enzymes PTP1B and TCPTP respectively) to repress PTK signalling pathways in vivo. PTP61Fn effectively repressed the eye overgrowth associated with activation of the epidermal growth factor receptor (EGFR), PTK, or the expression of the platelet-derived growth factor/vascular endothelial growth factor receptor (PVR) or insulin receptor (InR) PTKs. PTP61Fn repressed EGFR and PVR-induced mitogen-activated protein kinase signalling and attenuated PVR-induced STAT92E signalling. By contrast, PTP61Fm effectively repressed EGFR- and PVR-, but not InR-induced tissue overgrowth. Importantly, coexpression of Dock with PTP61F allowed for the efficient repression of the InR-induced eye overgrowth, but did not enhance the PTP61Fm-mediated inhibition of EGFR and PVR-induced signalling. Instead, Dock expression increased, and PTP61Fm coexpression further exacerbated the PVR-induced eye overgrowth. These results demonstrate that Dock selectively enhances the PTP61Fm-mediated attenuation of InR signalling and underscores the specificity of PTPs and the importance of adaptor proteins in regulating PTP function in vivo. © 2017 Federation of European Biochemical Societies.

  8. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Min Sun; Biosystems and Bioengineering Program, University of Science and Technology; Mun, Ji-Young

    2013-07-19

    Highlights: •MyoD was engineered to contain protein transduction domain and endosome-disruptive INF7 peptide. •The engineered MyoD-IT showed efficient nuclear targeting through an endosomal escape by INF7 peptide. •By applying MyoD-IT, human adipose-derived stem cells (hASCs) were differentiated into myogenic cells. •hASCs differentiated by applying MyoD-IT fused to myotubes through co-culturing with mouse myoblasts. •Myogenic differentiation using MyoD-IT is a safe method without the concern of altering the genome. -- Abstract: Human adipose-derived stem cells (hASCs) have great potential as cell sources for the treatment of muscle disorders. To provide a safe method for the myogenic differentiation of hASCs, we engineeredmore » the MyoD protein, a key transcription factor for myogenesis. The engineered MyoD (MyoD-IT) was designed to contain the TAT protein transduction domain for cell penetration and the membrane-disrupting INF7 peptide, which is an improved version of the HA2 peptide derived from influenza. MyoD-IT showed greatly improved nuclear targeting ability through an efficient endosomal escape induced by the pH-sensitive membrane disruption of the INF7 peptide. By applying MyoD-IT to a culture, hASCs were efficiently differentiated into long spindle-shaped myogenic cells expressing myosin heavy chains. Moreover, these cells differentiated by an application of MyoD-IT fused to myotubes with high efficiency through co-culturing with mouse C2C12 myoblasts. Because internalized proteins can be degraded in cells without altering the genome, the myogenic differentiation of hASCs using MyoD-IT would be a safe and clinically applicable method.« less

  9. 18 CFR Appendix 1 to Part 301 - ASC Utility Filing Template

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false ASC Utility Filing Template 1 Appendix 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  10. 18 CFR Appendix 1 to Part 301 - ASC Utility Filing Template

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false ASC Utility Filing Template 1 Appendix 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  11. 18 CFR Appendix 1 to Part 301 - ASC Utility Filing Template

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false ASC Utility Filing Template 1 Appendix 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  12. 18 CFR Appendix 1 to Part 301 - ASC Utility Filing Template

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false ASC Utility Filing Template 1 Appendix 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  13. 18 CFR Appendix 1 to Part 301 - ASC Utility Filing Template

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false ASC Utility Filing Template 1 Appendix 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  14. Membranes and mammalian glycolipid transferring proteins.

    PubMed

    Tuuf, Jessica; Mattjus, Peter

    2014-02-01

    Glycolipids are synthesized in and on various organelles throughout the cell. Their trafficking inside the cell is complex and involves both vesicular and protein-mediated machineries. Most important for the bulk lipid transport is the vesicular system, however, lipids moved by transfer proteins are also becoming more characterized. Here we review the latest advances in the glycolipid transfer protein (GLTP) and the phosphoinositol 4-phosphate adaptor protein-2 (FAPP2) field, from a membrane point of view. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. The antiporter-like subunit constituent of the universal adaptor of complex I, group 4 membrane-bound [NiFe]-hydrogenases and related complexes.

    PubMed

    Batista, Ana P; Marreiros, Bruno C; Pereira, Manuela M

    2013-05-01

    We have recently investigated the long-recognized relationship between complex I and group 4 [NiFe] hydrogenases and we have established the so-called Energy-converting hydrogenase related (Ehr) complex as a new member of the family. We have also observed that four subunits, homologues to NuoB, D, H and L, are common to the members of the family. We have designated this common group of subunits the universal adaptor. Taking into account the similarity of the Na(+)/H(+) antiporter-like subunits of complex I (NuoL, NuoM and NuoN) and the unique structural characteristic of the long amphipathic α helix part of NuoL, the nature of the antiporter-like subunit of the universal adaptor was questioned. Thus, in this work we further explore the properties of the universal adaptor, investigating which antiporter-like subunit is part of the universal adaptor. We observe that the universal adaptor contains an antiporter-like subunit with a long amphipathic α helix, similar to NuoL. Consequently, the long helix is a common denominator that has been conserved in all members of the family. Such conservation surely reflects the key role of such helix in the energy transduction mechanism of this family of enzymes.

  16. Caenorhabditis elegans fibroblast growth factor receptor signaling can occur independently of the multi-substrate adaptor FRS2.

    PubMed

    Lo, Te-Wen; Bennett, Daniel C; Goodman, S Jay; Stern, Michael J

    2010-06-01

    The components of receptor tyrosine kinase signaling complexes help to define the specificity of the effects of their activation. The Caenorhabditis elegans fibroblast growth factor receptor (FGFR), EGL-15, regulates a number of processes, including sex myoblast (SM) migration guidance and fluid homeostasis, both of which require a Grb2/Sos/Ras cassette of signaling components. Here we show that SEM-5/Grb2 can bind directly to EGL-15 to mediate SM chemoattraction. A yeast two-hybrid screen identified SEM-5 as able to interact with the carboxy-terminal domain (CTD) of EGL-15, a domain that is specifically required for SM chemoattraction. This interaction requires the SEM-5 SH2-binding motifs present in the CTD (Y(1009) and Y(1087)), and these sites are required for the CTD role of EGL-15 in SM chemoattraction. SEM-5, but not the SEM-5 binding sites located in the CTD, is required for the fluid homeostasis function of EGL-15, indicating that SEM-5 can link to EGL-15 through an alternative mechanism. The multi-substrate adaptor protein FRS2 serves to link vertebrate FGFRs to Grb2. In C. elegans, an FRS2-like gene, rog-1, functions upstream of a Ras/MAPK pathway for oocyte maturation but is not required for EGL-15 function. Thus, unlike the vertebrate FGFRs, which require the multi-substrate adaptor FRS2 to recruit Grb2, EGL-15 can recruit SEM-5/Grb2 directly.

  17. An adaptor role for cytoplasmic Sam68 in modulating Src activity during cell polarization.

    PubMed

    Huot, Marc-Etienne; Brown, Claire M; Lamarche-Vane, Nathalie; Richard, Stéphane

    2009-04-01

    The Src-associated substrate during mitosis with a molecular mass of 68 kDa (Sam68) is predominantly nuclear and is known to associate with proteins containing the Src homology 3 (SH3) and SH2 domains. Although Sam68 is a Src substrate, little is known about the signaling pathway that link them. Src is known to be activated transiently after cell spreading, where it modulates the activity of small Rho GTPases. Herein we report that Sam68-deficient cells exhibit loss of cell polarity and cell migration. Interestingly, Sam68-deficient cells exhibited sustained Src activity after cell attachment, resulting in the constitutive tyrosine phosphorylation and activation of p190RhoGAP and its association with p120rasGAP. Consistently, we observed that Sam68-deficient cells exhibited deregulated RhoA and Rac1 activity. By using total internal reflection fluorescence microscopy, we observed Sam68 near the plasma membrane after cell attachment coinciding with phosphorylation of its C-terminal tyrosines and association with Csk. These findings show that Sam68 localizes near the plasma membrane during cell attachment and serves as an adaptor protein to modulate Src activity for proper signaling to small Rho GTPases.

  18. ATM-Dependent Phosphorylation of All Three Members of the MRN Complex: From Sensor to Adaptor

    PubMed Central

    Lavin, Martin F.; Kozlov, Sergei; Gatei, Magtouf; Kijas, Amanda W.

    2015-01-01

    The recognition, signalling and repair of DNA double strand breaks (DSB) involves the participation of a multitude of proteins and post-translational events that ensure maintenance of genome integrity. Amongst the proteins involved are several which when mutated give rise to genetic disorders characterised by chromosomal abnormalities, cancer predisposition, neurodegeneration and other pathologies. ATM (mutated in ataxia-telangiectasia (A-T) and members of the Mre11/Rad50/Nbs1 (MRN complex) play key roles in this process. The MRN complex rapidly recognises and locates to DNA DSB where it acts to recruit and assist in ATM activation. ATM, in the company of several other DNA damage response proteins, in turn phosphorylates all three members of the MRN complex to initiate downstream signalling. While ATM has hundreds of substrates, members of the MRN complex play a pivotal role in mediating the downstream signalling events that give rise to cell cycle control, DNA repair and ultimately cell survival or apoptosis. Here we focus on the interplay between ATM and the MRN complex in initiating signaling of breaks and more specifically on the adaptor role of the MRN complex in mediating ATM signalling to downstream substrates to control different cellular processes. PMID:26512707

  19. 7 CFR 1945.28 - Relationship between ASCS and FmHA or its successor agency under Public Law 103-354.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 13 2011-01-01 2009-01-01 true Relationship between ASCS and FmHA or its successor...) EMERGENCY Disaster Assistance-General § 1945.28 Relationship between ASCS and FmHA or its successor agency under Public Law 103-354. Exhibit A of FmHA Instruction 2000-JJ (a copy of which is available in any Fm...

  20. An Alternative Optimization Model and Robust Experimental Design for the Assignment Scheduling Capability for Unmanned Aerial Vehicles (ASC-U) Simulation

    DTIC Science & Technology

    2007-06-01

    introduces ASC-U’s approach for solving the dynamic UAV allocation problem. 26 Christopher J...18 Figure 6. Assignments Dynamics Example (after) .........................................................20 Figure 7. ASC-U Dynamic Cueing...decisions in order to respond to the dynamic environment they face. Thus, to succeed, the Army’s transformation cannot rely

  1. Androgen receptor (AR) degradation enhancer ASC-J9® in an FDA-approved formulated solution suppresses castration resistant prostate cancer cell growth.

    PubMed

    Cheng, Max A; Chou, Fu-Ju; Wang, Keliang; Yang, Rachel; Ding, Jie; Zhang, Qiaoxia; Li, Gonghui; Yeh, Shuyuan; Xu, Defeng; Chang, Chawnshang

    2018-03-28

    ASC-J9 ® is a recently-developed androgen receptor (AR)-degradation enhancer that effectively suppresses castration resistant prostate cancer (PCa) cell proliferation and invasion. The optimal half maximum inhibitory concentrations (IC 50 ) of ASC-J9 ® at various PCa cell confluences (20%, 50%, and 100%) were assessed via both short-term MTT growth assays and long-term clonogenic proliferation assays. Our results indicate that the IC 50 values for ASC-J9 ® increased with increasing cell confluency. The IC 50 values were significantly decreased in PCa AR-positive cells compared to PCa AR-negative cells or in normal prostate cells. This suggests that ASC-J9 ® may function mainly via targeting the AR-positive PCa cells with limited unwanted side-effects to suppress the surrounding normal prostate cells. Mechanism dissection indicated that ASC-J9 ® might function via altering the apoptosis signals to suppress the PCa AR-negative PC-3 cells. Preclinical studies using multiple in vitro PCa cell lines and an in vivo mouse model with xenografted castration-resistant PCa CWR22Rv1 cells demonstrated that ASC-J9 ® has similar AR degradation effects when dissolved in FDA-approved solvents, including DMSO, PEG-400:Tween-80 (95:5), DMA:Labrasol:Tween-80 (10:45:45), and DMA:Labrasol:Tween-20 (10:45:45). Together, results from preclinical studies suggest a potential new therapy with AR-degradation enhancer ASC-J9 ® may potentially be ready to be used in human clinical trials in order to better suppress PCa at later castration resistant stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. EGF and hydrocortisone as critical factors for the co-culture of adipogenic differentiated ASCs and endothelial cells.

    PubMed

    Volz, Ann-Cathrin; Huber, Birgit; Schwandt, Alina Maria; Kluger, Petra Juliane

    In vitro composed vascularized adipose tissue is and will continue to be in great demand e.g. for the treatment of extensive high-graded burns or the replacement of tissue after tumor removal. Up to date, the lack of adequate culture conditions, mainly a culture medium, decelerates further achievements. In our study, we evaluated the influence of epidermal growth factor (EGF) and hydrocortisone (HC), often supplemented in endothelial cell (EC) specific media, on the co-culture of adipogenic differentiated adipose-derived stem cells (ASCs) and microvascular endothelial cells (mvECs). In ASCs, EGF and HC are thought to inhibit adipogenic differentiation and have lipolytic activities. Our results showed that in indirect co-culture for 14 days, adipogenic differentiated ASCs further incorporated lipids and partly gained an univacuolar morphology when kept in media with low levels of EGF and HC. In media with high EGF and HC levels, cells did not incorporate further lipids, on the contrary, cells without lipid droplets appeared. Glycerol release, to measure lipolysis, also increased with elevated amounts of EGF and HC in the culture medium. Adipogenic differentiated ASCs were able to release leptin in all setups. MvECs were functional and expressed the cell specific markers, CD31 and von Willebrand factor (vWF), independent of the EGF and HC content as long as further EC specific factors were present. Taken together, our study demonstrates that adipogenic differentiated ASCs can be successfully co-cultured with mvECs in a culture medium containing low or no amounts of EGF and HC, as long as further endothelial cell and adipocyte specific factors are available. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  3. Reconstituted AIM2 inflammasome in cell-free system.

    PubMed

    Kaneko, Naoe; Ito, Yuki; Iwasaki, Tomoyuki; Takeda, Hiroyuki; Sawasaki, Tatsuya; Migita, Kiyoshi; Agematsu, Kazunaga; Kawakami, Atsushi; Morikawa, Shinnosuke; Mokuda, Sho; Kurata, Mie; Masumoto, Junya

    2015-11-01

    Absent in melanoma 2 (AIM2) is an intracellular pattern-recognition receptor, which is a member of the PYHIN protein family, consisting of a PYD domain and an IFN-inducible nuclear localization (HIN) domain. AIM2 is reported to oligomerize with adaptor protein ASC upon sensing bacterial and viral cytosolic DNA in order to form the AIM2 inflammasome, which activates caspase-1 leading to IL-1β secretion. Dysregulation of AIM2 inflammasome is supposed to result in autoinflammatory and autoimmune diseases. Thus, the development of new targeted drugs against AIM2 inflammasome would be important for the treatment of these diseases. However, since AIM2 inflammasome is an intracellular receptor, enforced internalization of both ligands and candidate molecules is necessary for the screening of AIM2-inflammasome-targeted molecules. We developed a reconstituted AIM2 inflammasome in a cell-free system with amplified luminescent proximity homogeneous assay (Alpha). Strong Alpha signal was detected upon incubation with poly-deoxyadenylic-deoxythymidylic acid, poly(dA:dT), whereas no Alpha signal was detected upon incubation with muramyl dipeptide, one of the NLR ligands of Nod2 ligand. The interaction between AIM2 and ASC was disrupted by an anti-human ASC monoclonal antibody, CRID3, a class of diarylsulfonylurea-containing compounds, and glycyrrhizin, a substance found in liquorice root. Thus, the reconstituted AIM2 inflammasome in a cell-free system is useful for screening AIM2-inflammasome-targeted therapeutic molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The adaptor molecule CARD9 is essential for tuberculosis control

    PubMed Central

    Dorhoi, Anca; Desel, Christiane; Yeremeev, Vladimir; Pradl, Lydia; Brinkmann, Volker; Mollenkopf, Hans-Joachim; Hanke, Karin; Gross, Olaf; Ruland, Jürgen

    2010-01-01

    The cross talk between host and pathogen starts with recognition of bacterial signatures through pattern recognition receptors (PRRs), which mobilize downstream signaling cascades. We investigated the role of the cytosolic adaptor caspase recruitment domain family, member 9 (CARD9) in tuberculosis. This adaptor was critical for full activation of innate immunity by converging signals downstream of multiple PRRs. Card9−/− mice succumbed early after aerosol infection, with higher mycobacterial burden, pyogranulomatous pneumonia, accelerated granulocyte recruitment, and higher abundance of proinflammatory cytokines and granulocyte colony-stimulating factor (G-CSF) in serum and lung. Neutralization of G-CSF and neutrophil depletion significantly prolonged survival, indicating that an exacerbated systemic inflammatory disease triggered lethality of Card9−/− mice. CARD9 deficiency had no apparent effect on T cell responses, but a marked impact on the hematopoietic compartment. Card9−/− granulocytes failed to produce IL-10 after Mycobaterium tuberculosis infection, suggesting that an absent antiinflammatory feedback loop accounted for granulocyte-dominated pathology, uncontrolled bacterial replication, and, ultimately, death of infected Card9−/− mice. Our data provide evidence that deregulated innate responses trigger excessive lung inflammation and demonstrate a pivotal role of CARD9 signaling in autonomous innate host defense against tuberculosis. PMID:20351059

  5. A Study of HPV Typing for the Management of HPV-Positive ASC-US Cervical Cytologic Results

    PubMed Central

    Schiffman, Mark; Vaughan, Laurence; Raine-Bennett, Tina R.; Castle, Philip E.; Katki, Hormuzd A.; Gage, Julia C.; Fetterman, Barbara; Befano, Brian; Wentzensen, Nicolas

    2015-01-01

    Background In US cervical screening, immediate colposcopy is recommended for women with HPV-positive ASC-US (equivocal) cytology. We evaluated whether partial typing by Onclarity™ (BD) might identify HPV-positive women with low enough CIN3+ risk to permit 1-year follow-up instead. Methods The NCI-Kaiser Permanente Northern California Persistence and Progression Cohort includes a subset of 13,890 women aged 21+ with HC2 (Qiagen)-positive ASC-US at enrollment; current median follow-up is 3.0 years. Using stratified random sampling, we typed 2,079 archived enrollment specimens including 329 women subsequently diagnosed with CIN3+, 563 with CIN2, and 1,187 with ASC-US was 5.2%; this establishes the “benchmark” risk for colposcopic referral. Hierarchically, 3-year cumulative risks for each typing channel were 16.0% for HPV16, 7.4% for HPV18, 7.0% for HPV31, 7.1% for grouped HPV33/58, 4.4% for HPV52, 3.9% for HPV45, 2.7% for HPV51, 1.6% for HPV39/68/35, and 1.3% for HPV59/56/66. Discussion ASC-US linked to HPV16, HPV18, HPV31, or HPV33/58 warrants immediate colposcopy. Optimal management of women with HPV52 or HPV45 is uncertain. Risk of women with only HPV51, HPV39/68/35, or HPV59/56/66 might be low enough to recommend 1-year retesting permitting viral clearance. This strategy would defer colposcopy for 40% of women with HPV-positive ASC-US, half of whom would be cotest-negative at 1-year return. Approximately 10% of those with CIN3 diagnosable at enrollment would be delayed 1 year instead. Cost-effectiveness analyses are needed. PMID:26148763

  6. A study of HPV typing for the management of HPV-positive ASC-US cervical cytologic results.

    PubMed

    Schiffman, Mark; Vaughan, Laurence M; Raine-Bennett, Tina R; Castle, Philip E; Katki, Hormuzd A; Gage, Julia C; Fetterman, Barbara; Befano, Brian; Wentzensen, Nicolas

    2015-09-01

    In US cervical screening, immediate colposcopy is recommended for women with HPV-positive ASC-US (equivocal) cytology. We evaluated whether partial typing by Onclarity™ (BD) might identify HPV-positive women with low enough CIN3+ risk to permit 1-year follow-up instead. The NCI-Kaiser Permanente Northern California Persistence and Progression cohort includes a subset of 13,890 women aged 21+ with HC2 (Qiagen)-positive ASC-US at enrollment; current median follow-up is 3.0years. Using stratified random sampling, we typed 2079 archived enrollment specimens including 329 women subsequently diagnosed with CIN3+, 563 with CIN2, and 1187 with ASC-US was 5.2%; this establishes the "benchmark" risk for colposcopic referral. Hierarchically, 3-year cumulative risks for each typing channel were 16.0% for HPV16, 7.4% for HPV18, 7.0% for HPV31, 7.1% for grouped HPV33/58, 4.3% for HPV52, 3.9% for HPV45, 2.7% for HPV51, 1.6% for HPV39/68/35, and 1.3% for HPV59/56/66. ASC-US linked to HPV16, HPV18, HPV31, or HPV33/58 warrants immediate colposcopy. Optimal management of women with HPV52 or HPV45 is uncertain. Risk of women with only HPV51, HPV39/68/35, or HPV59/56/66 might be low enough to recommend 1-year retesting permitting viral clearance. This strategy would defer colposcopy for 40% of women with HPV-positive ASC-US, half of whom would be cotest-negative at 1-year return. Approximately 10% of those with CIN3 diagnosable at enrollment would be delayed 1year instead. Cost-effectiveness analyses are needed. Published by Elsevier Inc.

  7. NSP-CAS Protein Complexes: Emerging Signaling Modules in Cancer.

    PubMed

    Wallez, Yann; Mace, Peter D; Pasquale, Elena B; Riedl, Stefan J

    2012-05-01

    The CAS (CRK-associated substrate) family of adaptor proteins comprises 4 members, which share a conserved modular domain structure that enables multiple protein-protein interactions, leading to the assembly of intracellular signaling platforms. Besides their physiological role in signal transduction downstream of a variety of cell surface receptors, CAS proteins are also critical for oncogenic transformation and cancer cell malignancy through associations with a variety of regulatory proteins and downstream effectors. Among the regulatory partners, the 3 recently identified adaptor proteins constituting the NSP (novel SH2-containing protein) family avidly bind to the conserved carboxy-terminal focal adhesion-targeting (FAT) domain of CAS proteins. NSP proteins use an anomalous nucleotide exchange factor domain that lacks catalytic activity to form NSP-CAS signaling modules. Additionally, the NSP SH2 domain can link NSP-CAS signaling assemblies to tyrosine-phosphorylated cell surface receptors. NSP proteins can potentiate CAS function by affecting key CAS attributes such as expression levels, phosphorylation state, and subcellular localization, leading to effects on cell adhesion, migration, and invasion as well as cell growth. The consequences of these activities are well exemplified by the role that members of both families play in promoting breast cancer cell invasiveness and resistance to antiestrogens. In this review, we discuss the intriguing interplay between the NSP and CAS families, with a particular focus on cancer signaling networks.

  8. Prevalence of cervical intraepithelial neoplasia grades II/III and cervical cancer in patients with cytological diagnosis of atypical squamous cells when high-grade intraepithelial lesions (ASC-H) cannot be ruled out.

    PubMed

    Cytryn, Andréa; Russomano, Fábio Bastos; Camargo, Maria José de; Zardo, Lucília Maria Gama; Horta, Nilza Maria Sobral Rebelo; Fonseca, Rachel de Carvalho Silveira de Paula; Tristão, Maria Aparecida; Monteiro, Aparecida Cristina Sampaio

    2009-09-01

    The latest update of the Bethesda System divided the category of atypical squamous cells of undetermined significance (ASCUS) into ASC-US (undetermined significance) and ASC-H (high-grade intraepithelial lesion cannot be ruled out). The aims here were to measure the prevalence of pre-invasive lesions (cervical intraepithelial neoplasia, CIN II/III) and cervical cancer among patients referred to Instituto Fernandes Figueira (IFF) with ASC-H cytology, and compare them with ASC-US cases. Cross-sectional study with retrospective data collection, at the IFF Cervical Pathology outpatient clinic. ASCUS cases referred to IFF from November 1997 to September 2007 were reviewed according to the 2001 Bethesda System to reach cytological consensus. The resulting ASC-H and ASC-US cases, along with new cases, were analyzed relative to the outcome of interest. The histological diagnosis (or cytocolposcopic follow-up in cases without such diagnosis) was taken as the gold standard. The prevalence of CIN II/III in cases with ASC-H cytology was 19.29% (95% confidence interval, CI, 9.05-29.55%) and the risk of these lesions was greater among patients with ASC-H than with ASC-US cytology (prevalence ratio, PR, 10.42; 95% CI, 2.39-45.47; P = 0.0000764). Pre-invasive lesions were more frequently found in patients under 50 years of age with ASC-H cytology (PR, 2.67; 95% CI, 0.38-18.83); P = 0.2786998). There were no uterine cervical cancer cases. The prevalence of CIN II/III in patients with ASC-H cytology was significantly higher than with ASC-US, and division into ASC diagnostic subcategories had good capacity for discriminating the presence of pre-invasive lesions.

  9. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, T.; Niepel, M.; McDermott, J. E.

    It is not known whether cancer cells generally show quantitative differences in the expression of signaling pathway proteins that could dysregulate signal transduction. To explore this issue, we first defined the primary components of the EGF-MAPK pathway in normal human mammary epithelial cells, identifying 16 core proteins and 10 feedback regulators. We then quantified their absolute abundance across a panel of normal and cancer cell lines. We found that core pathway proteins were expressed at very similar levels across all cell types. In contrast, the EGFR and transcriptionally controlled feedback regulators were expressed at highly variable levels. The absolute abundancemore » of most core pathway proteins was between 50,000- 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower levels (2,000-5,000 per cell). MAPK signaling showed saturation in all cells between 3,000-10,000 occupied EGFR, consistent with the idea that low adaptor levels limit signaling. Our results suggest that the core MAPK pathway is essentially invariant across different cell types, with cell- specific differences in signaling likely due to variable levels of feedback regulators. The low abundance of adaptors relative to the EGFR could be responsible for previous observation of saturable signaling, endocytosis, and high affinity EGFR.« less

  10. The Astrobiology in Secondary Classrooms (ASC) curriculum: focusing upon diverse students and teachers.

    PubMed

    Arino de la Rubia, Leigh S

    2012-09-01

    The Minority Institution Astrobiology Collaborative (MIAC) began working with the NASA Goddard Center for Astrobiology in 2003 to develop curriculum materials for high school chemistry and Earth science classes based on astrobiology concepts. The Astrobiology in Secondary Classrooms (ASC) modules emphasize interdisciplinary connections in astronomy, biology, chemistry, geoscience, physics, mathematics, and ethics through hands-on activities that address national educational standards. Field-testing of the Astrobiology in Secondary Classrooms materials occurred over three years in eight U.S. locations, each with populations that are underrepresented in the career fields of science, technology, engineering, and mathematics. Analysis of the educational research upon the high school students participating in the ASC project showed statistically significant increases in students' perceived knowledge and science reasoning. The curriculum is in its final stages, preparing for review to become a NASA educational product.

  11. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation.

    PubMed

    Faustin, Benjamin; Lartigue, Lydia; Bruey, Jean-Marie; Luciano, Frederic; Sergienko, Eduard; Bailly-Maitre, Beatrice; Volkmann, Niels; Hanein, Dorit; Rouiller, Isabelle; Reed, John C

    2007-03-09

    Interleukin (IL)-1beta maturation is accomplished by caspase-1-mediated proteolysis, an essential element of innate immunity. NLRs constitute a recently recognized family of caspase-1-activating proteins, which contain a nucleotide-binding oligomerization domain and leucine-rich repeat (LRR) domains and which assemble into multiprotein complexes to create caspase-1-activating platforms called "inflammasomes." Using purified recombinant proteins, we have reconstituted the NALP1 inflammasome and have characterized the requirements for inflammasome assembly and caspase-1 activation. Oligomerization of NALP1 and activation of caspase-1 occur via a two-step mechanism, requiring microbial product, muramyl-dipeptide, a component of peptidoglycan, followed by ribonucleoside triphosphates. Caspase-1 activation by NALP1 does not require but is enhanced by adaptor protein ASC. The findings provide the biochemical basis for understanding how inflammasome assembly and function are regulated, and shed light on NALP1 as a direct sensor of bacterial components in host defense against pathogens.

  12. Inhibition of caspase-1 or gasdermin-D enable caspase-8 activation in the Naip5/NLRC4/ASC inflammasome

    PubMed Central

    Pereira, Marcelo S. F.; Manin, Graziele Z.; Cunha, Larissa D.

    2017-01-01

    Legionella pneumophila is a Gram-negative, flagellated bacterium that survives in phagocytes and causes Legionnaires’ disease. Upon infection of mammalian macrophages, cytosolic flagellin triggers the activation of Naip/NLRC4 inflammasome, which culminates in pyroptosis and restriction of bacterial replication. Although NLRC4 and caspase-1 participate in the same inflammasome, Nlrc4-/- mice and their macrophages are more permissive to L. pneumophila replication compared with Casp1/11-/-. This feature supports the existence of a pathway that is NLRC4-dependent and caspase-1/11-independent. Here, we demonstrate that caspase-8 is recruited to the Naip5/NLRC4/ASC inflammasome in response to flagellin-positive bacteria. Accordingly, caspase-8 is activated in Casp1/11-/- macrophages in a process dependent on flagellin, Naip5, NLRC4 and ASC. Silencing caspase-8 in Casp1/11-/- cells culminated in macrophages that were as susceptible as Nlrc4-/- for the restriction of L. pneumophila replication. Accordingly, macrophages and mice deficient in Asc/Casp1/11-/- were more susceptible than Casp1/11-/- and as susceptible as Nlrc4-/- for the restriction of infection. Mechanistically, we found that caspase-8 activation triggers gasdermin-D-independent pore formation and cell death. Interestingly, caspase-8 is recruited to the Naip5/NLRC4/ASC inflammasome in wild-type macrophages, but it is only activated when caspase-1 or gasdermin-D is inhibited. Our data suggest that caspase-8 activation in the Naip5/NLRC4/ASC inflammasome enable induction of cell death when caspase-1 or gasdermin-D is suppressed. PMID:28771586

  13. Inhibition of caspase-1 or gasdermin-D enable caspase-8 activation in the Naip5/NLRC4/ASC inflammasome.

    PubMed

    Mascarenhas, Danielle P A; Cerqueira, Daiane M; Pereira, Marcelo S F; Castanheira, Fernanda V S; Fernandes, Talita D; Manin, Graziele Z; Cunha, Larissa D; Zamboni, Dario S

    2017-08-01

    Legionella pneumophila is a Gram-negative, flagellated bacterium that survives in phagocytes and causes Legionnaires' disease. Upon infection of mammalian macrophages, cytosolic flagellin triggers the activation of Naip/NLRC4 inflammasome, which culminates in pyroptosis and restriction of bacterial replication. Although NLRC4 and caspase-1 participate in the same inflammasome, Nlrc4-/- mice and their macrophages are more permissive to L. pneumophila replication compared with Casp1/11-/-. This feature supports the existence of a pathway that is NLRC4-dependent and caspase-1/11-independent. Here, we demonstrate that caspase-8 is recruited to the Naip5/NLRC4/ASC inflammasome in response to flagellin-positive bacteria. Accordingly, caspase-8 is activated in Casp1/11-/- macrophages in a process dependent on flagellin, Naip5, NLRC4 and ASC. Silencing caspase-8 in Casp1/11-/- cells culminated in macrophages that were as susceptible as Nlrc4-/- for the restriction of L. pneumophila replication. Accordingly, macrophages and mice deficient in Asc/Casp1/11-/- were more susceptible than Casp1/11-/- and as susceptible as Nlrc4-/- for the restriction of infection. Mechanistically, we found that caspase-8 activation triggers gasdermin-D-independent pore formation and cell death. Interestingly, caspase-8 is recruited to the Naip5/NLRC4/ASC inflammasome in wild-type macrophages, but it is only activated when caspase-1 or gasdermin-D is inhibited. Our data suggest that caspase-8 activation in the Naip5/NLRC4/ASC inflammasome enable induction of cell death when caspase-1 or gasdermin-D is suppressed.

  14. Mutational Analysis of the Adaptor Protein 2 Sigma Subunit (AP2S1) Gene: Search for Autosomal Dominant Hypocalcemia Type 3 (ADH3)

    PubMed Central

    Rogers, Angela; Nesbit, M. Andrew; Hannan, Fadil M.; Howles, Sarah A.; Gorvin, Caroline M.; Cranston, Treena; Allgrove, Jeremy; Bevan, John S.; Bano, Gul; Brain, Caroline; Datta, Vipan; Grossman, Ashley B.; Hodgson, Shirley V.; Izatt, Louise; Millar-Jones, Lynne; Pearce, Simon H.; Robertson, Lisa; Selby, Peter L.; Shine, Brian; Snape, Katie; Warner, Justin

    2014-01-01

    Context: Autosomal dominant hypocalcemia (ADH) types 1 and 2 are due to calcium-sensing receptor (CASR) and G-protein subunit-α11 (GNA11) gain-of-function mutations, respectively, whereas CASR and GNA11 loss-of-function mutations result in familial hypocalciuric hypercalcemia (FHH) types 1 and 2, respectively. Loss-of-function mutations of adaptor protein-2 sigma subunit (AP2σ 2), encoded by AP2S1, cause FHH3, and we therefore sought for gain-of-function AP2S1 mutations that may cause an additional form of ADH, which we designated ADH3. Objective: The objective of the study was to investigate the hypothesis that gain-of-function AP2S1 mutations may cause ADH3. Design: The sample size required for the detection of at least one mutation with a greater than 95% likelihood was determined by binomial probability analysis. Nineteen patients (including six familial cases) with hypocalcemia in association with low or normal serum PTH concentrations, consistent with ADH, but who did not have CASR or GNA11 mutations, were ascertained. Leukocyte DNA was used for sequence and copy number variation analysis of AP2S1. Results: Binomial probability analysis, using the assumption that AP2S1 mutations would occur in hypocalcemic patients at a prevalence of 20%, which is observed in FHH patients without CASR or GNA11 mutations, indicated that the likelihood of detecting at least one AP2S1 mutation was greater than 95% and greater than 98% in sample sizes of 14 and 19 hypocalcemic patients, respectively. AP2S1 mutations and copy number variations were not detected in the 19 hypocalcemic patients. Conclusion: The absence of AP2S1 abnormalities in hypocalcemic patients, suggests that ADH3 may not occur or otherwise represents a rare hypocalcemic disorder. PMID:24708097

  15. Artemisia Extract Suppresses NLRP3 and AIM2 Inflammasome Activation by Inhibition of ASC Phosphorylation.

    PubMed

    Kwak, Su-Bin; Koppula, Sushruta; In, Eun-Jung; Sun, Xiao; Kim, Young-Kyu; Kim, Myong-Ki; Lee, Kwang-Ho; Kang, Tae-Bong

    2018-01-01

    Artemisia princeps var. orientalis (Asteraceae, A. princeps ) is a well-known traditional medicinal herb used for treating various inflammatory disorders in Korea, Japan, China, and other Asian countries. In the present study, we investigated the effects of A. princeps extract (APO) on interleukin- (IL-) 1 β regulation and inflammasome activation in bone marrow-derived macrophages (BMDMs) and monosodium urate- (MSU-) induced peritonitis mouse model in vivo . The APO treatment to BMDMs primed with lipopolysaccharide (LPS) attenuated the NLRP3 and AIM2 inflammasome activation induced by danger signals, such as ATP, nigericin, silica crystals, and poly (dA:dT), respectively. Mechanistic study revealed that APO suppressed the ASC oligomerization and speck formation, which are required for inflammasome activation. APO treatment also reduced the ASC phosphorylation induced by the combination of LPS and a tyrosine phosphatase inhibitor. In vivo evaluation revealed that intraperitoneal administration of APO reduced IL-1 β levels, significantly ( p < 0.05) and dose dependently, in the MSU-induced peritonitis mouse model. In conclusion, our study is the first to report that the extract of A. princeps inhibits inflammasome activation through the modulation of ASC phosphorylation. Therefore, APO might be developed as therapeutic potential in the treatment of inflammasome-mediated inflammatory disorders, such as gouty arthritis.

  16. Artemisia Extract Suppresses NLRP3 and AIM2 Inflammasome Activation by Inhibition of ASC Phosphorylation

    PubMed Central

    Kwak, Su-Bin; Koppula, Sushruta; In, Eun-Jung; Sun, Xiao; Kim, Young-Kyu

    2018-01-01

    Artemisia princeps var. orientalis (Asteraceae, A. princeps) is a well-known traditional medicinal herb used for treating various inflammatory disorders in Korea, Japan, China, and other Asian countries. In the present study, we investigated the effects of A. princeps extract (APO) on interleukin- (IL-) 1β regulation and inflammasome activation in bone marrow-derived macrophages (BMDMs) and monosodium urate- (MSU-) induced peritonitis mouse model in vivo. The APO treatment to BMDMs primed with lipopolysaccharide (LPS) attenuated the NLRP3 and AIM2 inflammasome activation induced by danger signals, such as ATP, nigericin, silica crystals, and poly (dA:dT), respectively. Mechanistic study revealed that APO suppressed the ASC oligomerization and speck formation, which are required for inflammasome activation. APO treatment also reduced the ASC phosphorylation induced by the combination of LPS and a tyrosine phosphatase inhibitor. In vivo evaluation revealed that intraperitoneal administration of APO reduced IL-1β levels, significantly (p < 0.05) and dose dependently, in the MSU-induced peritonitis mouse model. In conclusion, our study is the first to report that the extract of A. princeps inhibits inflammasome activation through the modulation of ASC phosphorylation. Therefore, APO might be developed as therapeutic potential in the treatment of inflammasome-mediated inflammatory disorders, such as gouty arthritis. PMID:29686531

  17. Amyloid precursor protein modulates ERK-1 and -2 signaling.

    PubMed

    Venezia, Valentina; Nizzari, Mario; Repetto, Emanuela; Violani, Elisabetta; Corsaro, Alessandro; Thellung, Stefano; Villa, Valentina; Carlo, Pia; Schettini, Gennaro; Florio, Tullio; Russo, Claudio

    2006-12-01

    The amyloid precursor protein (APP) is a transmembrane protein with a short cytoplasmic tail whose physiological function is unclear, although it is well documented that the proteolytic processing of APP could influence the development of Alzheimer's disease (AD) through the formation of membrane-bound C-terminal fragments (CTFs) and of beta-amyloid peptides (Abeta). We have recently shown that tyrosine-phosphorylated APP and CTFs may interact with Grb2 and ShcA adaptor proteins and that this coupling occurs at a higher extent in AD subjects only. To study the interaction between APP or CTFs and ShcA/Grb2 and to investigate their molecular target we have used as experimental model two different cell lines: H4 human neuroglioma cells and APP/APLP null mouse embryonic fibroblast cells (MEFs). Here we show that in H4 cells APP interacts with Grb2; conversely in APP/APLP-null MEF cells this interaction is possible only after the reintroduction of human APP by transfection. We have also shown that in MEF cells the transfection of a plasmid encoding for human APP wild-type enhances the phosphorylation of ERK-1 and -2 as revealed by Western blotting and immunofluorescence experiments. Finally, also in H4 cells the overexpression of APP upregulates the levels of phospho-ERK-1 and -2. In summary our data suggest that APP may influence phospho-ERK-1 and -2 signaling through its binding with Grb2 and ShcA adaptors. The meaning of this event is not clear, but APP interaction with these adaptors could be relevant to regulate mitogenic pathway.

  18. The Murine Nck SH2/SH3 Adaptors Are Important for the Development of Mesoderm-Derived Embryonic Structures and for Regulating the Cellular Actin Network

    PubMed Central

    Bladt, Friedhelm; Aippersbach, Elke; Gelkop, Sigal; Strasser, Geraldine A.; Nash, Piers; Tafuri, Anna; Gertler, Frank B.; Pawson, Tony

    2003-01-01

    Mammalian Nck1 and Nck2 are closely related adaptor proteins that possess three SH3 domains, followed by an SH2 domain, and are implicated in coupling phosphotyrosine signals to polypeptides that regulate the actin cytoskeleton. However, the in vivo functions of Nck1 and Nck2 have not been defined. We have mutated the murine Nck1 and Nck2 genes and incorporated β-galactosidase reporters into the mutant loci. In mouse embryos, the two Nck genes have broad and overlapping expression patterns. They are functionally redundant in the sense that mice deficient for either Nck1 or Nck2 are viable, whereas inactivation of both Nck1 and Nck2 results in profound defects in mesoderm-derived notochord and embryonic lethality at embryonic day 9.5. Fibroblast cell lines derived from Nck1−/− Nck2−/− embryos have defects in cell motility and in the organization of the lamellipodial actin network. These data suggest that the Nck SH2/SH3 adaptors have important functions in the development of mesodermal structures during embryogenesis, potentially linked to a role in cell movement and cytoskeletal organization. PMID:12808099

  19. The murine Nck SH2/SH3 adaptors are important for the development of mesoderm-derived embryonic structures and for regulating the cellular actin network.

    PubMed

    Bladt, Friedhelm; Aippersbach, Elke; Gelkop, Sigal; Strasser, Geraldine A; Nash, Piers; Tafuri, Anna; Gertler, Frank B; Pawson, Tony

    2003-07-01

    Mammalian Nck1 and Nck2 are closely related adaptor proteins that possess three SH3 domains, followed by an SH2 domain, and are implicated in coupling phosphotyrosine signals to polypeptides that regulate the actin cytoskeleton. However, the in vivo functions of Nck1 and Nck2 have not been defined. We have mutated the murine Nck1 and Nck2 genes and incorporated beta-galactosidase reporters into the mutant loci. In mouse embryos, the two Nck genes have broad and overlapping expression patterns. They are functionally redundant in the sense that mice deficient for either Nck1 or Nck2 are viable, whereas inactivation of both Nck1 and Nck2 results in profound defects in mesoderm-derived notochord and embryonic lethality at embryonic day 9.5. Fibroblast cell lines derived from Nck1(-/-) Nck2(-/-) embryos have defects in cell motility and in the organization of the lamellipodial actin network. These data suggest that the Nck SH2/SH3 adaptors have important functions in the development of mesodermal structures during embryogenesis, potentially linked to a role in cell movement and cytoskeletal organization.

  20. SH2 domain-containing adaptor protein B expressed in dendritic cells is involved in T-cell homeostasis by regulating dendritic cell-mediated Th2 immunity.

    PubMed

    Ahmed, Md Selim; Kang, Myeong-Ho; Lee, Ezra; Park, Yujin; Jeong, Yideul; Bae, Yong-Soo

    2017-01-01

    The Src homology 2 domain-containing adaptor protein B (SHB) is widely expressed in immune cells and acts as an important regulator for hematopoietic cell function. SHB silencing induces Th2 immunity in mice. SHB is also involved in T-cell homeostasis in vivo . However, SHB has not yet been studied and addressed in association with dendritic cells (DCs). The effects of SHB expression on the immunogenicity of DCs were assessed by Shb gene silencing in mouse bone marrow-derived DCs (BMDCs). After silencing, surface phenotype, cytokine expression profile, and T-cell stimulation capacity of BMDCs were examined. We investigated the signaling pathways involved in SHB expression during BMDC development. We also examined the immunogenicity of SHB-knockdown (SHB KD ) BMDCs in a mouse atopic dermatitis model. SHB was steadily expressed in mouse splenic DCs and in in vitro -generated BMDCs in both immature and mature stages. SHB expression was contingent on activation of the mitogen- activated protein kinase/Foxa2 signaling pathway during DC development. SHB KD increased the expression of MHC class II and costimulatory molecules without affecting the cytokine expression of BMDCs. When co-cultured with T cells, SHB KD in BMDCs significantly induced CD4 + T-cell proliferation and the expression of Th2 cytokines, while the regulatory T cell (Treg) population was downregulated. In mouse atopic dermatitis model, mice inoculated with SHB KD DCs developed more severe symptoms of atopic dermatitis compared with mice injected with control DCs. SHB expression in DCs plays an important role in T-cell homeostasis in vivo by regulating DC-mediated Th2 polarization.

  1. Src-like adaptor protein regulates TCR expression on thymocytes by linking the ubiquitin ligase c-Cbl to the TCR complex.

    PubMed

    Myers, Margaret D; Sosinowski, Tomasz; Dragone, Leonard L; White, Carmen; Band, Hamid; Gu, Hua; Weiss, Arthur

    2006-01-01

    The adaptor molecule SLAP and E3 ubiquitin ligase c-Cbl each regulate expression of T cell receptor (TCR)-CD3 on thymocytes. Here we provide genetic and biochemical evidence that both molecules function in the same pathway. TCR-CD3 expression was similar in the absence of SLAP and/or c-Cbl. SLAP and c-Cbl were found to interact, and their expression together downregulated CD3epsilon. This required multiple domains in SLAP and the ring finger of c-Cbl. Furthermore, expression of SLAP and c-Cbl together induced TCRzeta ubiquitination and degradation, preventing the accumulation of fully assembled recycling TCR complexes. These studies indicate that SLAP links the E3 ligase activity of c-Cbl to the TCR, allowing for stage-specific regulation of TCR expression.

  2. [Design of new anti-tumor agents interrupting deregulated signaling pathways induced by tyrosine kinase proteins. Inhibition of protein-protein interaction involving Grb2].

    PubMed

    Vidal, Michel; Liu, Wang Qing; Gril, Brunile; Assayag, Franck; Poupon, Marie-France; Garbay, Christiane

    2004-01-01

    Cellular signaling pathways induced by growth-factor receptors are frequently deregulated in cancer. Anti-tumor agents that inhibit their enzymatic tyrosine kinase activity have been designed and are now used in human chemotherapy. We propose here an alternative way to interrupt over-expressed signaling by inhibiting protein-protein interactions that involve either the over-expressed proteins or proteins located downstream. The adaptor protein Grb2 over-expressed in connection with HER2/ErbB2/neu in Ras signaling pathway was chosen as a target. Peptides with very high affinity for Grb2 were rationally designed from structural data. Their capacity to interrupt the signaling pathway, their anti-proliferative activity as well as their potential anti-tumor properties are described.

  3. A high affinity RIM-binding protein/Aplip1 interaction prevents the formation of ectopic axonal active zones.

    PubMed

    Siebert, Matthias; Böhme, Mathias A; Driller, Jan H; Babikir, Husam; Mampell, Malou M; Rey, Ulises; Ramesh, Niraja; Matkovic, Tanja; Holton, Nicole; Reddy-Alla, Suneel; Göttfert, Fabian; Kamin, Dirk; Quentin, Christine; Klinedinst, Susan; Andlauer, Till Fm; Hell, Stefan W; Collins, Catherine A; Wahl, Markus C; Loll, Bernhard; Sigrist, Stephan J

    2015-08-14

    Synaptic vesicles (SVs) fuse at active zones (AZs) covered by a protein scaffold, at Drosophila synapses comprised of ELKS family member Bruchpilot (BRP) and RIM-binding protein (RBP). We here demonstrate axonal co-transport of BRP and RBP using intravital live imaging, with both proteins co-accumulating in axonal aggregates of several transport mutants. RBP, via its C-terminal Src-homology 3 (SH3) domains, binds Aplip1/JIP1, a transport adaptor involved in kinesin-dependent SV transport. We show in atomic detail that RBP C-terminal SH3 domains bind a proline-rich (PxxP) motif of Aplip1/JIP1 with submicromolar affinity. Pointmutating this PxxP motif provoked formation of ectopic AZ-like structures at axonal membranes. Direct interactions between AZ proteins and transport adaptors seem to provide complex avidity and shield synaptic interaction surfaces of pre-assembled scaffold protein transport complexes, thus, favouring physiological synaptic AZ assembly over premature assembly at axonal membranes.

  4. Draft Genome Sequence of Heavy Metal-Resistant Cupriavidus alkaliphilus ASC-732 T, Isolated from Agave Rhizosphere in the Northeast of Mexico

    DOE PAGES

    Rojas-Rojas, Fernando Uriel; Huntemann, Marcel; Clum, Alicia; ...

    2016-09-22

    Cupriavidus alkaliphilus ASC-732 T was isolated from the rhizosphere of agave plant growing in alkaline soils in San Carlos, Tamaulipas, Mexico. The species is able to grow in the presence of arsenic, zinc, and copper. The genome sequence of strain ASC-732 T is 6,125,055 bp with 5,586 genes and an average G+C content of 67.81%.

  5. Draft Genome Sequence of Heavy Metal-Resistant Cupriavidus alkaliphilus ASC-732 T, Isolated from Agave Rhizosphere in the Northeast of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas-Rojas, Fernando Uriel; Huntemann, Marcel; Clum, Alicia

    Cupriavidus alkaliphilus ASC-732 T was isolated from the rhizosphere of agave plant growing in alkaline soils in San Carlos, Tamaulipas, Mexico. The species is able to grow in the presence of arsenic, zinc, and copper. The genome sequence of strain ASC-732 T is 6,125,055 bp with 5,586 genes and an average G+C content of 67.81%.

  6. Investigating the effect of key mutations on the conformational dynamics of toll-like receptor dimers through molecular dynamics simulations and protein structure networks.

    PubMed

    Mahita, Jarjapu; Sowdhamini, Ramanathan

    2018-04-01

    The Toll-like receptors (TLRs) are critical components of the innate immune system due to their ability to detect conserved pathogen-associated molecular patterns, present in bacteria, viruses, and other microorganisms. Ligand detection by TLRs leads to a signaling cascade, mediated by interactions among TIR domains present in the receptors, the bridging adaptors and sorting adaptors. The BB loop is a highly conserved region present in the TIR domain and is crucial for mediating interactions among TIR domain-containing proteins. Mutations in the BB loop of the Toll-like receptors, such as the A795P mutation in TLR3 and the P712H mutation (Lps d mutation) in TLR4, have been reported to disrupt or alter downstream signaling. While the phenotypic effect of these mutations is known, the underlying effect of these mutations on the structure, dynamics and interactions with other TIR domain-containing proteins is not well understood. Here, we have attempted to investigate the effect of the BB loop mutations on the dimer form of TLRs, using TLR2 and TLR3 as case studies. Our results based on molecular dynamics simulations, protein-protein interaction analyses and protein structure network analyses highlight significant differences between the dimer interfaces of the wild-type and mutant forms and provide a logical reasoning for the effect of these mutations on adaptor binding to TLRs. Furthermore, it also leads us to propose a hypothesis for the differential requirement of signaling and bridging adaptors by TLRs. This could aid in further understanding of the mechanisms governing such signaling pathways. © 2018 Wiley Periodicals, Inc.

  7. Structural basis for recognition of the T cell adaptor protein SLP-76 by the SH3 domain of phospholipase Cgamma1.

    PubMed

    Deng, Lu; Velikovsky, C Alejandro; Swaminathan, Chittoor P; Cho, Sangwoo; Mariuzza, Roy A

    2005-09-09

    The enzyme phospholipase Cgamma1 (PLCgamma1) is essential for T cell signaling and activation. Following T cell receptor ligation, PLCgamma1 interacts through its SH2 and SH3 domains with the adaptors LAT and SLP-76, respectively, to form a multiprotein signaling complex that leads to activation of PLCgamma1 by Syk tyrosine kinases. To identify the binding site for PLCgamma1 in SLP-76, we used isothermal titration calorimetry to measure affinities for the interaction of PLCgamma1-SH3 with a set of overlapping peptides spanning the central proline-rich region of SLP-76. PLCgamma1-SH3 bound with high specificity to the SLP-76 motif 186PPVPPQRP193, which represents the minimal binding site. To understand the basis for selective recognition, we determined the crystal structures of PLCgamma1-SH3 in free form, and bound to a 10-mer peptide containing this site, to resolutions of 1.60 A and 1.81 A, respectively. The structures reveal that several key contacting residues of the SH3 shift toward the SLP-76 peptide upon complex formation, optimizing the fit and strengthening hydrophobic interactions. Selectivity results mainly from strict shape complementarity between protein and peptide, rather than sequence-specific hydrogen bonding. In addition, Pro193 of SLP-76 assists in positioning Arg192 into the compass pocket of PLCgamma1-SH3, which coordinates the compass residue through an unusual aspartate. The PLCgamma1-SH3/SLP-76 structure provides insights into ligand binding by SH3 domains related to PLCgamma1-SH3, as well as into recognition by PLCgamma1 of signaling partners other than SLP-76.

  8. Characterisation and cloning of a Na(+)-dependent broad-specificity neutral amino acid transporter from NBL-1 cells: a novel member of the ASC/B(0) transporter family.

    PubMed

    Pollard, Matthew; Meredith, David; McGivan, John D

    2002-04-12

    Na(+)-dependent neutral amino acid transport into the bovine renal epithelial cell line NBL-1 is catalysed by a broad-specificity transporter originally termed System B(0). This transporter is shown to differ in specificity from the B(0) transporter cloned from JAR cells [J. Biol. Chem. 271 (1996) 18657] in that it interacts much more strongly with phenylalanine. Using probes designed to conserved transmembrane regions of the ASC/B(0) transporter family we have isolated a cDNA encoding the NBL-1 cell System B(0) transporter. When expressed in Xenopus oocytes the clone catalysed Na(+)-dependent alanine uptake which was inhibited by glutamine, leucine and phenylalanine. However, the clone did not catalyse Na(+)-dependent phenylalanine transport, again as in NBL-1 cells. The clone encoded a protein of 539 amino acids; the predicted transmembrane domains were almost identical in sequence to those of the other members of the B(0)/ASC transporter family. Comparison of the sequences of NBL-1 and JAR cell transporters showed some differences near the N-terminus, C-terminus and in the loop between helices 3 and 4. The NBL-1 B(0) transporter is not the same as the renal brush border membrane transporter since it does not transport phenylalanine. Differences in specificity in this protein family arise from relatively small differences in amino acid sequence.

  9. The adaptor SASH1 acts through NOTCH1 and its inhibitor DLK1 in a 3D model of lumenogenesis involving CEACAM1.

    PubMed

    Stubblefield, Kandis; Chean, Jennifer; Nguyen, Tung; Chen, Charng-Jui; Shively, John E

    2017-10-15

    CEACAM1 transfection into breast cancer cells restores lumen formation in a 3D culture model. Among the top up-regulated genes that were associated with restoration of lumen formation, the adaptor protein SASH1 was identified. Furthermore, SASH1 was shown to be critical for lumen formation by RNAi inhibition. Upon analyzing the gene array from CEACAM1/MCF7 cells treated with SASH1 RNAi, DLK1, an inhibitor of NOTCH1 signaling, was found to be down-regulated to the same extent as SASH1. Subsequent treatment of CEACAM1/MCF7 cells with RNAi to DLK1 also inhibited lumen formation, supporting its association with SASH1. In agreement with the role of DLK1 as a NOTCH1 inhibitor, NOTCH1, as well as its regulated genes HES1 and HEY1, were down-regulated in CEACAM1/MCF7 cells by the action of DLK1 RNAi, and up-regulated by SASH1 RNAi. When CEACAM1/MCF7 cells were treated with a γ-secretase inhibitor known to inhibit NOTCH signaling, lumen formation was inhibited. We conclude that restoration of lumen formation by CEACAM1 regulates the NOTCH1 signaling pathway via the adaptor protein SASH1 and the NOTCH1 inhibitor DLK1. These data suggest that the putative involvement of NOTCH1 as a tumor-promoting gene in breast cancer may depend on its lack of regulation in cancer, whereas its involvement in normal lumen formation requires activation of its expression, and subsequently, inhibition of its signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster.

    PubMed

    Rodriguez-Fernandez, Imilce A; Dell'Angelica, Esteban C

    2015-01-01

    The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions--which together covered most of the autosomal chromosomes-to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated in

  11. Iterative Focused Screening with Biological Fingerprints Identifies Selective Asc-1 Inhibitors Distinct from Traditional High Throughput Screening.

    PubMed

    Kutchukian, Peter S; Warren, Lee; Magliaro, Brian C; Amoss, Adam; Cassaday, Jason A; O'Donnell, Gregory; Squadroni, Brian; Zuck, Paul; Pascarella, Danette; Culberson, J Chris; Cooke, Andrew J; Hurzy, Danielle; Schlegel, Kelly-Ann Sondra; Thomson, Fiona; Johnson, Eric N; Uebele, Victor N; Hermes, Jeffrey D; Parmentier-Batteur, Sophie; Finley, Michael

    2017-02-17

    N-methyl-d-aspartate receptors (NMDARs) mediate glutamatergic signaling that is critical to cognitive processes in the central nervous system, and NMDAR hypofunction is thought to contribute to cognitive impairment observed in both schizophrenia and Alzheimer's disease. One approach to enhance the function of NMDAR is to increase the concentration of an NMDAR coagonist, such as glycine or d-serine, in the synaptic cleft. Inhibition of alanine-serine-cysteine transporter-1 (Asc-1), the primary transporter of d-serine, is attractive because the transporter is localized to neurons in brain regions critical to cognitive function, including the hippocampus and cortical layers III and IV, and is colocalized with d-serine and NMDARs. To identify novel Asc-1 inhibitors, two different screening approaches were performed with whole-cell amino acid uptake in heterologous cells stably expressing human Asc-1: (1) a high-throughput screen (HTS) of 3 M compounds measuring 35 S l-cysteine uptake into cells attached to scintillation proximity assay beads in a 1536 well format and (2) an iterative focused screen (IFS) of a 45 000 compound diversity set using a 3 H d-serine uptake assay with a liquid scintillation plate reader in a 384 well format. Critically important for both screening approaches was the implementation of counter screens to remove nonspecific inhibitors of radioactive amino acid uptake. Furthermore, a 15 000 compound expansion step incorporating both on- and off-target data into chemical and biological fingerprint-based models for selection of additional hits enabled the identification of novel Asc-1-selective chemical matter from the IFS that was not identified in the full-collection HTS.

  12. HPV-DNA testing for patients with ASC-US helps identify the women who have a high risk for precancerous cervical lesions.

    PubMed

    Moarcăs, M; Georgescu, I C; Moarcăs, R; Badea, M; Cîrstoiu, M

    2014-01-01

    The cytological interpretation of ASC-US represents a category of morphologic uncertainty. For patients with this result, other tests are necessary in order to determine the risk for cervical lesions. 198 patients with ASC-US cytology have been analyzed between 2008 and 2013. All the patients included in the study have subsequently had a high oncogenic HPV testing and colposcopy risk. 103 (52%) patients tested positive for high risk HPV and 21 (10%) had associated colposcopy changes and precancerous and cancerous lesions identified through biopsy. 95 (48%) patients tested negative for HPV and none of these women had lesions at colposcopy. High oncogenic risk HPV testing was proven useful in identifying the patients with ASC-US cytology who are at high risk for cervical lesions (100% sensibility). In this study, the HPV testing had a negative predictive value of 100%, which uselessly renders a further colposcopy evaluation. HPV testing for women with ASC-US is not specific in identifying women with cervical lesions (Specificity 53%) and this results from a high prevalence of limited HPV infections in an age group which is less than 30 years old. High risk HPV testing for women with ASC-US cervical cytology is useful in determining the risk for precancerous and cancerous cervical lesions. A positive result is associated with a high risk for cervical lesions (20%) and for these patients colposcopy is necessary. For women with a negative result, the risk for cervical lesions is practically null so colposcopy is not required.

  13. Inducing Heat Shock Proteins Enhances the Stemness of Frozen-Thawed Adipose Tissue-Derived Stem Cells.

    PubMed

    Shaik, Shahensha; Hayes, Daniel; Gimble, Jeffrey; Devireddy, Ram

    2017-04-15

    Extensive research has been performed to determine the effect of freezing protocol and cryopreservation agents on the viability of adipose tissue-derived stromal/stem cells (ASCs) as well as other cells. Unfortunately, the conclusion one may draw after decades of research utilizing fundamentally similar cryopreservation techniques is that a barrier exists, which precludes full recovery. We hypothesize that agents capable of inducing a subset of heat shock proteins (HSPs) and chaperones will reduce the intrinsic barriers to the post-thaw recovery of ASCs. ASCs were exposed to 43°C for 1 h to upregulate HSPs, and the temporal HSP expression profile postheat shock was determined by performing quantitative polymerase chain reaction (PCR) and western blotting assays. The expression levels of HSP70 and HSP32 were found to be maximum at 3 h after the heat shock, whereas HSP90 and HSP27 remain unchanged. The heat shocked ASCs cryopreserved during maximal HSPs expression exhibited increased post-thaw viability than the nonheat shocked samples. Histochemical staining and quantitative reverse transcription-PCR indicated that the ASC differentiation potential was retained. Thus, suggesting that the upregulation of HSPs before a freezing insult is beneficial to ASCs and a potential alternative to the use of harmful cryoprotective agents.

  14. Differential Recognition Preferences of the Three Src Homology 3 (SH3) Domains from the Adaptor CD2-associated Protein (CD2AP) and Direct Association with Ras and Rab Interactor 3 (RIN3)*

    PubMed Central

    Rouka, Evgenia; Simister, Philip C.; Janning, Melanie; Kumbrink, Joerg; Konstantinou, Tassos; Muniz, João R. C.; Joshi, Dhira; O'Reilly, Nicola; Volkmer, Rudolf; Ritter, Brigitte; Knapp, Stefan; von Delft, Frank; Kirsch, Kathrin H.; Feller, Stephan M.

    2015-01-01

    CD2AP is an adaptor protein involved in membrane trafficking, with essential roles in maintaining podocyte function within the kidney glomerulus. CD2AP contains three Src homology 3 (SH3) domains that mediate multiple protein-protein interactions. However, a detailed comparison of the molecular binding preferences of each SH3 remained unexplored, as well as the discovery of novel interactors. Thus, we studied the binding properties of each SH3 domain to the known interactor Casitas B-lineage lymphoma protein (c-CBL), conducted a peptide array screen based on the recognition motif PxPxPR and identified 40 known or novel candidate binding proteins, such as RIN3, a RAB5-activating guanine nucleotide exchange factor. CD2AP SH3 domains 1 and 2 generally bound with similar characteristics and specificities, whereas the SH3-3 domain bound more weakly to most peptide ligands tested yet recognized an unusually extended sequence in ALG-2-interacting protein X (ALIX). RIN3 peptide scanning arrays revealed two CD2AP binding sites, recognized by all three SH3 domains, but SH3-3 appeared non-functional in precipitation experiments. RIN3 recruited CD2AP to RAB5a-positive early endosomes via these interaction sites. Permutation arrays and isothermal titration calorimetry data showed that the preferred binding motif is Px(P/A)xPR. Two high-resolution crystal structures (1.65 and 1.11 Å) of CD2AP SH3-1 and SH3-2 solved in complex with RIN3 epitopes 1 and 2, respectively, indicated that another extended motif is relevant in epitope 2. In conclusion, we have discovered novel interaction candidates for CD2AP and characterized subtle yet significant differences in the recognition preferences of its three SH3 domains for c-CBL, ALIX, and RIN3. PMID:26296892

  15. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4.

    PubMed

    Skrott, Zdenek; Mistrik, Martin; Andersen, Klaus Kaae; Friis, Søren; Majera, Dusana; Gursky, Jan; Ozdian, Tomas; Bartkova, Jirina; Turi, Zsofia; Moudry, Pavel; Kraus, Marianne; Michalova, Martina; Vaclavkova, Jana; Dzubak, Petr; Vrobel, Ivo; Pouckova, Pavla; Sedlacek, Jindrich; Miklovicova, Andrea; Kutt, Anne; Li, Jing; Mattova, Jana; Driessen, Christoph; Dou, Q Ping; Olsen, Jørgen; Hajduch, Marian; Cvek, Boris; Deshaies, Raymond J; Bartek, Jiri

    2017-12-14

    Cancer incidence is rising and this global challenge is further exacerbated by tumour resistance to available medicines. A promising approach to meet the need for improved cancer treatment is drug repurposing. Here we highlight the potential for repurposing disulfiram (also known by the trade name Antabuse), an old alcohol-aversion drug that has been shown to be effective against diverse cancer types in preclinical studies. Our nationwide epidemiological study reveals that patients who continuously used disulfiram have a lower risk of death from cancer compared to those who stopped using the drug at their diagnosis. Moreover, we identify the ditiocarb-copper complex as the metabolite of disulfiram that is responsible for its anti-cancer effects, and provide methods to detect preferential accumulation of the complex in tumours and candidate biomarkers to analyse its effect on cells and tissues. Finally, our functional and biophysical analyses reveal the molecular target of disulfiram's tumour-suppressing effects as NPL4, an adaptor of p97 (also known as VCP) segregase, which is essential for the turnover of proteins involved in multiple regulatory and stress-response pathways in cells.

  16. Preparation of next-generation sequencing libraries using Nextera™ technology: simultaneous DNA fragmentation and adaptor tagging by in vitro transposition.

    PubMed

    Caruccio, Nicholas

    2011-01-01

    DNA library preparation is a common entry point and bottleneck for next-generation sequencing. Current methods generally consist of distinct steps that often involve significant sample loss and hands-on time: DNA fragmentation, end-polishing, and adaptor-ligation. In vitro transposition with Nextera™ Transposomes simultaneously fragments and covalently tags the target DNA, thereby combining these three distinct steps into a single reaction. Platform-specific sequencing adaptors can be added, and the sample can be enriched and bar-coded using limited-cycle PCR to prepare di-tagged DNA fragment libraries. Nextera technology offers a streamlined, efficient, and high-throughput method for generating bar-coded libraries compatible with multiple next-generation sequencing platforms.

  17. Environmental impact of non-certified versus certified (ASC) intensive Pangasius aquaculture in Vietnam, a comparison based on a statistically supported LCA.

    PubMed

    Nhu, Trang T; Schaubroeck, Thomas; Henriksson, Patrik J G; Bosma, Roel; Sorgeloos, Patrick; Dewulf, Jo

    2016-12-01

    Pangasius production in Vietnam is widely known as a success story in aquaculture, the fastest growing global food system because of its tremendous expansion by volume, value and the number of international markets to which Pangasius has been exported in recent years. While certification schemes are becoming significant features of international fish trade and marketing, an increasing number of Pangasius producers have followed at least one of the certification schemes recognised by international markets to incorporate environmental and social sustainability practices in aquaculture, typically the Pangasius Aquaculture Dialogue (PAD) scheme certified by the Aquaculture Stewardship Council (ASC). An assessment of the environmental benefit of applying certification schemes on Pangasius production, however, is still needed. This article compared the environmental impact of ASC-certified versus non-ASC certified intensive Pangasius aquaculture, using a statistically supported LCA. We focused on both resource-related (water, land and total resources) and emissions-related (global warming, acidification, freshwater and marine eutrophication) categories. The ASC certification scheme was shown to be a good approach for determining adequate environmental sustainability, especially concerning emissions-related categories, in Pangasius production. However, the non-ASC certified farms, due to the large spread, the impact (e.g., water resources and freshwater eutrophication) was possibly lower for a certain farm. However, this result was not generally prominent. Further improvements in intensive Pangasius production to inspire certification schemes are proposed, e.g., making the implementation of certification schemes more affordable, well-oriented and facilitated; reducing consumed feed amounts and of the incorporated share in fishmeal, especially domestic fishmeal, etc. However, their implementation should be vetted with key stakeholders to assess their feasibility. Copyright

  18. The SH2/SH3 adaptor protein dock interacts with the Ste20-like kinase misshapen in controlling growth cone motility.

    PubMed

    Ruan, W; Pang, P; Rao, Y

    1999-11-01

    Recent studies suggest that the SH2/SH3 adaptor Dock/Nck transduces tyrosine phosphorylation signals to the actin cytoskeleton in regulating growth cone motility. The signaling cascade linking the action of Dock/Nck to the reorganization of cytoskeleton is poorly understood. We now demonstrate that Dock interacts with the Ste20-like kinase Misshapen (Msn) in the Drosophila photoreceptor (R cell) growth cones. Loss of msn causes a failure of growth cones to stop at the target, a phenotype similar to loss of dock, whereas overexpression of msn induces pretarget growth cone termination. Physical and genetic interactions between Msn and Dock indicate a role for Msn in the Dock signaling pathway. We propose that Msn functions as a key controller of growth cone cytoskeleton in response to Dock-mediated signals.

  19. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation.

    PubMed

    Das, Rupali; Bassiri, Hamid; Guan, Peng; Wiener, Susan; Banerjee, Pinaki P; Zhong, Ming-Chao; Veillette, André; Orange, Jordan S; Nichols, Kim E

    2013-04-25

    The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.

  20. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation

    PubMed Central

    Das, Rupali; Bassiri, Hamid; Guan, Peng; Wiener, Susan; Banerjee, Pinaki P.; Zhong, Ming-Chao; Veillette, André; Orange, Jordan S.

    2013-01-01

    The adaptor molecule signaling lymphocytic activation molecule–associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase–mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)–induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell–mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA–mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS. PMID:23430111

  1. The effect of magnetic stimulation on the osteogenic and chondrogenic differentiation of human stem cells derived from the adipose tissue (hASCs)

    NASA Astrophysics Data System (ADS)

    Lima, João; Gonçalves, Ana I.; Rodrigues, Márcia T.; Reis, Rui L.; Gomes, Manuela E.

    2015-11-01

    The use of magnetic nanoparticles (MNPs) towards the musculoskeletal tissues has been the focus of many studies, regarding MNPs ability to promote and direct cellular stimulation and orient tissue responses. This is thought to be mainly achieved by mechano-responsive pathways, which can induce changes in cell behavior, including the processes of proliferation and differentiation, in response to external mechanical stimuli. Thus, the application of MNP-based strategies in tissue engineering may hold potential to propose novel solutions for cell therapy on bone and cartilage strategies to accomplish tissue regeneration. The present work aims at studying the influence of MNPs on the osteogenic and chondrogenic differentiation of human adipose derived stem cells (hASCs). MNPs were incorporated in hASCs and cultured in medium supplemented for osteogenic and chondrogenic differentiation. Cultures were maintained up to 28 days with/without an external magnetic stimulus provided by a magnetic bioreactor, to determine if the MNPs alone could affect the osteogenic or chondrogenic phenotype of the hASCs. Results indicate that the incorporation of MNPs does not negatively affect the viability nor the proliferation of hASCs. Furthermore, Alizarin Red staining evidences an enhancement in extracellular (ECM) mineralization under the influence of an external magnetic field. Although not as evident as for osteogenic differentiation, Toluidine blue and Safranin-O stainings also suggest the presence of a cartilage-like ECM with glycosaminoglycans and proteoglycans under the magnetic stimulus provided. Thus, MNPs incorporated in hASCs under the influence of an external magnetic field have the potential to induce differentiation towards the osteogenic and chondrogenic lineages.

  2. Nuclear adaptor Ldb1 regulates a transcriptional program essential for the maintenance of hematopoietic stem cells.

    PubMed

    Li, LiQi; Jothi, Raja; Cui, Kairong; Lee, Jan Y; Cohen, Tsadok; Gorivodsky, Marat; Tzchori, Itai; Zhao, Yangu; Hayes, Sandra M; Bresnick, Emery H; Zhao, Keji; Westphal, Heiner; Love, Paul E

    2011-02-01

    The nuclear adaptor Ldb1 functions as a core component of multiprotein transcription complexes that regulate differentiation in diverse cell types. In the hematopoietic lineage, Ldb1 forms a complex with the non-DNA-binding adaptor Lmo2 and the transcription factors E2A, Scl and GATA-1 (or GATA-2). Here we demonstrate a critical and continuous requirement for Ldb1 in the maintenance of both fetal and adult mouse hematopoietic stem cells (HSCs). Deletion of Ldb1 in hematopoietic progenitors resulted in the downregulation of many transcripts required for HSC maintenance. Genome-wide profiling by chromatin immunoprecipitation followed by sequencing (ChIP-Seq) identified Ldb1 complex-binding sites at highly conserved regions in the promoters of genes involved in HSC maintenance. Our results identify a central role for Ldb1 in regulating the transcriptional program responsible for the maintenance of HSCs.

  3. Nuclear adaptor Ldb1 regulates a transcriptional program essential for the maintenance of hematopoietic stem cells

    PubMed Central

    Li, LiQi; Jothi, Raja; Cui, Kairong; Lee, Jan Y; Cohen, Tsadok; Gorivodsky, Marat; Tzchori, Itai; Zhao, Yangu; Hayes, Sandra M; Bresnick, Emery H; Zhao, Keji; Westphal, Heiner; Love, Paul E

    2013-01-01

    The nuclear adaptor Ldb1 functions as a core component of multiprotein transcription complexes that regulate differentiation in diverse cell types. In the hematopoietic lineage, Ldb1 forms a complex with the non–DNA-binding adaptor Lmo2 and the transcription factors E2A, Scl and GATA-1 (or GATA-2). Here we demonstrate a critical and continuous requirement for Ldb1 in the maintenance of both fetal and adult mouse hematopoietic stem cells (HSCs). Deletion of Ldb1 in hematopoietic progenitors resulted in the downregulation of many transcripts required for HSC maintenance. Genome-wide profiling by chromatin immunoprecipitation followed by sequencing (ChIP-Seq) identified Ldb1 complex–binding sites at highly conserved regions in the promoters of genes involved in HSC maintenance. Our results identify a central role for Ldb1 in regulating the transcriptional program responsible for the maintenance of HSCs. PMID:21186366

  4. Optimizing the ASC WAN: evaluating network performance tools for comparing transport protocols.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lydick, Christopher L.

    2007-07-01

    The Advanced Simulation & Computing Wide Area Network (ASC WAN), which is a high delay-bandwidth network connection between US Department of Energy National Laboratories, is constantly being examined and evaluated for efficiency. One of the current transport-layer protocols which is used, TCP, was developed for traffic demands which are different from that on the ASC WAN. The Stream Control Transport Protocol (SCTP), on the other hand, has shown characteristics which make it more appealing to networks such as these. Most important, before considering a replacement for TCP on any network, a testing tool that performs well against certain criteria needsmore » to be found. In order to try to find such a tool, two popular networking tools (Netperf v.2.4.3 & v.2.4.6 (OpenSS7 STREAMS), and Iperf v.2.0.6) were tested. These tools implement both TCP and SCTP and were evaluated using four metrics: (1) How effectively can the tool reach a throughput near the bandwidth? (2) How much of the CPU does the tool utilize during operation? (3) Is the tool freely and widely available? And, (4) Is the tool actively developed? Following the analysis of those tools, this paper goes further into explaining some recommendations and ideas for future work.« less

  5. Development of agent-based on-line adaptive signal control (ASC) framework using connected vehicle (CV) technology.

    DOT National Transportation Integrated Search

    2016-04-01

    In this study, we developed an adaptive signal control (ASC) framework for connected vehicles (CVs) using agent-based modeling technique. : The proposed framework consists of two types of agents: 1) vehicle agents (VAs); and 2) signal controller agen...

  6. Program to convert SUDS2ASC files to a single binary SEGY file

    USGS Publications Warehouse

    Goldman, Mark

    2000-01-01

    This program, SUDS2SEGY, converts and combines ASCII files created using SUDS2ASC Version 2.60, to a single SEGY file. SUDS2ASC has been used previously to create an ASCII file of three-component seismic data for an individual recording station. However, many seismic processing packages have difficulty reading in ASCII data. In addition, it may be cumbersome to process a separate file for each recording station, particularly if traces from different recording stations contain a different number of data samples and/or a different start time. This new program - SUDS2SEGY - combines these recording station files into a single SEGY file. In addition, SUDS2SEGY normalizes the trace times so that each trace starts at a given time and consists of a fixed number of samples. This normalization allows seismic data from many different stations to be read in as a single "data gather". SUDS2SEGY also produces a report summarizing the offset and maximum absolute amplitude for each component in a station file. These data are output separately to an ASCII file and can be subsequently input to a plotting package.

  7. ASC FY17 Implementation Plan, Rev. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, P. G.

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computationalmore » resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resources, including technical staff, hardware, simulation software, and computer science solutions.« less

  8. Report of experiments and evidence for ASC L2 milestone 4467 : demonstration of a legacy application's path to exascale.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curry, Matthew L.; Ferreira, Kurt Brian; Pedretti, Kevin Thomas Tauke

    2012-03-01

    This report documents thirteen of Sandia's contributions to the Computational Systems and Software Environment (CSSE) within the Advanced Simulation and Computing (ASC) program between fiscal years 2009 and 2012. It describes their impact on ASC applications. Most contributions are implemented in lower software levels allowing for application improvement without source code changes. Improvements are identified in such areas as reduced run time, characterizing power usage, and Input/Output (I/O). Other experiments are more forward looking, demonstrating potential bottlenecks using mini-application versions of the legacy codes and simulating their network activity on Exascale-class hardware. The purpose of this report is to provemore » that the team has completed milestone 4467-Demonstration of a Legacy Application's Path to Exascale. Cielo is expected to be the last capability system on which existing ASC codes can run without significant modifications. This assertion will be tested to determine where the breaking point is for an existing highly scalable application. The goal is to stretch the performance boundaries of the application by applying recent CSSE RD in areas such as resilience, power, I/O, visualization services, SMARTMAP, lightweight LWKs, virtualization, simulation, and feedback loops. Dedicated system time reservations and/or CCC allocations will be used to quantify the impact of system-level changes to extend the life and performance of the ASC code base. Finally, a simulation of anticipated exascale-class hardware will be performed using SST to supplement the calculations. Determine where the breaking point is for an existing highly scalable application: Chapter 15 presented the CSSE work that sought to identify the breaking point in two ASC legacy applications-Charon and CTH. Their mini-app versions were also employed to complete the task. There is no single breaking point as more than one issue was found with the two codes. The results were that

  9. Fluorescent Immortalized Human Adipose Derived Stromal Cells (hASCs-TS/GFP+) for Studying Cell Drug Delivery Mediated by Microvesicles.

    PubMed

    Cocce, Valentina; Balducci, Luigi; Falchetti, Maria L; Pascucci, Luisa; Ciusani, Emilio; Brini, Anna T; Sisto, Francesca; Piovani, Giovanna; Alessandri, Giulio; Parati, Eugenio; Cabeza, Laura; Pessina, Augusto

    2017-11-24

    A new tool for the drug delivery is based on the use of Mesenchymal Stromal Cells (MSCs) loaded in vitro with anti-cancer drugs. Unfortunately, the restricted lifespan of MSCs represents a significant limitation to produce them in high amounts and for long time studies. Immortalized MSCs from adipose tissue (hASCs) have been generated as good source of cells with stable features. These cells could improve the development of standardized procedures for both in vitro and preclinical studies. Furthermore they facilitate procedures for preparing large amounts of secretome containing microvesicles (MVs). We used human adipose tissue derived MSCs immortalized with hTERT+SV40 (TS) genes and transfected with GFP (hASCs-TS/GFP+). This line was investigated for its ability to uptake and release anticancer drugs. Microvesicles associated to paclitaxel (MVs/PTX) were isolated, quantified, and tested on pancreatic cancer cells. The line hASCs-TS/GFP+ maintained the main mesenchymal characters and was able to uptake and release, in active form, both paclitaxel and gemcitabine. From paclitaxel loaded hASCs-TS/GFP+ cells were isolated microvesicles in sufficient amount to inhibit "in vitro" the proliferation of pancreatic tumor cells. Our study suggests that human immortalized MSCs could be used for a large scale production of cells for mediated drug delivery. Moreover, the secretion of drug-associated MVs could represent a new way for producing new drug formulation by "biogenesis". In the context of the "advanced cell therapy procedure", the MVs/PTX production would use less resource and time and it could possibly contribute to simplification of GMP procedures. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. ATP Induces IL-1β Secretion in Neisseria gonorrhoeae-Infected Human Macrophages by a Mechanism Not Related to the NLRP3/ASC/Caspase-1 Axis

    PubMed Central

    García, Killen; Escobar, Gisselle; Mendoza, Pablo; Beltran, Caroll; Perez, Claudio; Vernal, Rolando; Acuña-Castillo, Claudio

    2016-01-01

    Neisseria gonorrhoeae (Ngo) has developed multiple immune evasion mechanisms involving the innate and adaptive immune responses. Recent findings have reported that Ngo reduces the IL-1β secretion of infected human monocyte-derived macrophages (MDM). Here, we investigate the role of adenosine triphosphate (ATP) in production and release of IL-1β in Ngo-infected MDM. We found that the exposure of Ngo-infected MDM to ATP increases IL-1β levels about ten times compared with unexposed Ngo-infected MDM (P < 0.01). However, we did not observe any changes in inflammasome transcriptional activation of speck-like protein containing a caspase recruitment domain (CARD) (ASC, P > 0.05) and caspase-1 (CASP1, P > 0.05). In addition, ATP was not able to modify caspase-1 activity in Ngo-infected MDM but was able to increase pyroptosis (P > 0.01). Notably ATP treatment defined an increase of positive staining for IL-1β with a distinctive intracellular pattern of distribution. Collectively, these data demonstrate that ATP induces IL-1β secretion by a mechanism not related to the NLRP3/ASC/caspase-1 axis and likely is acting at the level of vesicle trafficking or pore formation. PMID:27803513

  11. The Cladophora glomerata Enriched by Biosorption Process in Cr(III) Improves Viability, and Reduces Oxidative Stress and Apoptosis in Equine Metabolic Syndrome Derived Adipose Mesenchymal Stromal Stem Cells (ASCs) and Their Extracellular Vesicles (MV's).

    PubMed

    Marycz, Krzysztof; Michalak, Izabela; Kocherova, Ievgeniia; Marędziak, Monika; Weiss, Christine

    2017-12-08

    This study investigated in vitro effects of freshwater alga Cladophora glomerata water extract enriched during a biosorption process in Cr(III) trivalent chromium and chromium picolinate on adipose-derived mesenchymal stromal stem cells (ASCs) and extracellular microvesicles (MVs) in equine metabolic syndrome-affected horses. Chemical characterisation of natural Cladophora glomerata was performed with special emphasis on: vitamin C, vitamin E, total phenols, fatty acids, free and protein-bound amino acids as well as measured Cr in algal biomass. To examine the influence of Cladophora glomerata water extracts, in vitro viability, oxidative stress factor accumulation, apoptosis, inflammatory response, biogenesis of mitochondria, autophagy in ASCs of EMS and secretory activity manifested by MV release were investigated. For this purpose, various methods of molecular biology and microscopic observations (i.e., immunofluorescence staining, SEM, TEM, FIB observations, mRNA and microRNA expression by RT-qPCR) were applied. The extract of Cladophora glomerata enriched with Cr(III) ions reduced apoptosis and inflammation in ASCs of EMS horses through improvement of mitochondrial dynamics, decreasing of PDK4 expression and reduction of endoplastic reticulum stress. Moreover, it was found, that Cladophora glomerata and Cr(III) induce antioxidative protection coming from enhanced SOD activity Therefore, Cladophora glomerata enriched with Cr(III) ions might become an interesting future therapeutic agent in the pharmacological treatment of EMS horses.

  12. The Adaptor Molecule Signaling Lymphocytic Activation Molecule (SLAM)-associated Protein (SAP) Is Essential in Mechanisms Involving the Fyn Tyrosine Kinase for Induction and Progression of Collagen-induced Arthritis

    PubMed Central

    Zhong, Ming-Chao; Veillette, André

    2013-01-01

    Signaling lymphocytic activation molecule-associated protein (SAP) is an Src homology 2 domain-only adaptor involved in multiple immune cell functions. It has also been linked to immunodeficiencies and autoimmune diseases, such as systemic lupus erythematosus. Here, we examined the role and mechanism of action of SAP in autoimmunity using a mouse model of autoimmune arthritis, collagen-induced arthritis (CIA). We found that SAP was essential for development of CIA in response to collagen immunization. It was also required for production of collagen-specific antibodies, which play a key role in disease pathogenesis. These effects required SAP expression in T cells, not in B cells. In mice immunized with a high dose of collagen, the activity of SAP was nearly independent of its ability to bind the protein tyrosine kinase Fyn and correlated with the capacity of SAP to promote full differentiation of follicular T helper (TFH) cells. However, with a lower dose of collagen, the role of SAP was more dependent on Fyn binding, suggesting that additional mechanisms other than TFH cell differentiation were involved. Further studies suggested that this might be due to a role of the SAP-Fyn interaction in natural killer T cell development through the ability of SAP-Fyn to promote Vav-1 activation. We also found that removal of SAP expression during progression of CIA attenuated disease severity. However, it had no effect on disease when CIA was clinically established. Together, these results indicate that SAP plays an essential role in CIA because of Fyn-independent and Fyn-dependent effects on TFH cells and, possibly, other T cell types. PMID:24045941

  13. The adaptor molecule signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is essential in mechanisms involving the Fyn tyrosine kinase for induction and progression of collagen-induced arthritis.

    PubMed

    Zhong, Ming-Chao; Veillette, André

    2013-11-01

    Signaling lymphocytic activation molecule-associated protein (SAP) is an Src homology 2 domain-only adaptor involved in multiple immune cell functions. It has also been linked to immunodeficiencies and autoimmune diseases, such as systemic lupus erythematosus. Here, we examined the role and mechanism of action of SAP in autoimmunity using a mouse model of autoimmune arthritis, collagen-induced arthritis (CIA). We found that SAP was essential for development of CIA in response to collagen immunization. It was also required for production of collagen-specific antibodies, which play a key role in disease pathogenesis. These effects required SAP expression in T cells, not in B cells. In mice immunized with a high dose of collagen, the activity of SAP was nearly independent of its ability to bind the protein tyrosine kinase Fyn and correlated with the capacity of SAP to promote full differentiation of follicular T helper (TFH) cells. However, with a lower dose of collagen, the role of SAP was more dependent on Fyn binding, suggesting that additional mechanisms other than TFH cell differentiation were involved. Further studies suggested that this might be due to a role of the SAP-Fyn interaction in natural killer T cell development through the ability of SAP-Fyn to promote Vav-1 activation. We also found that removal of SAP expression during progression of CIA attenuated disease severity. However, it had no effect on disease when CIA was clinically established. Together, these results indicate that SAP plays an essential role in CIA because of Fyn-independent and Fyn-dependent effects on TFH cells and, possibly, other T cell types.

  14. Characterization of C-terminal adaptors, UFD-2 and UFD-3, of CDC-48 on the polyglutamine aggregation in C. elegans.

    PubMed

    Murayama, Yuki; Ogura, Teru; Yamanaka, Kunitoshi

    2015-03-27

    CDC-48 (also called VCP or p97 in mammals and Cdc48p in yeast) is a AAA (ATPases associated with diverse cellular activities) chaperone and participates in a wide range of cellular activities including modulation of protein complexes and protein aggregates. UFD-2 and UFD-3, C-terminal adaptors for CDC-48, reportedly bind to CDC-48 in a mutually exclusive manner and they may modulate the fate of substrates for CDC-48. However, their cellular functions have not yet been elucidated. In this study, we found that CDC-48 preferentially interacts with UFD-3 in Caenorhabditis elegans. We also found that the number of polyglutamine (polyQ) aggregates was reduced in the ufd-3 deletion mutant but not in the ufd-2 deletion mutant. Furthermore, the lifespan and motility of the ufd-3 deletion mutant, where polyQ40::GFP was expressed, were greatly decreased. Taken together, we propose that UFD-3 may promote the formation of polyQ aggregates to reduce the polyQ toxicity in C. elegans. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. WW domain-binding protein 2: an adaptor protein closely linked to the development of breast cancer.

    PubMed

    Chen, Shuai; Wang, Han; Huang, Yu-Fan; Li, Ming-Li; Cheng, Jiang-Hong; Hu, Peng; Lu, Chuan-Hui; Zhang, Ya; Liu, Na; Tzeng, Chi-Meng; Zhang, Zhi-Ming

    2017-07-19

    The WW domain is composed of 38 to 40 semi-conserved amino acids shared with structural, regulatory, and signaling proteins. WW domain-binding protein 2 (WBP2), as a binding partner of WW domain protein, interacts with several WW-domain-containing proteins, such as Yes kinase-associated protein (Yap), paired box gene 8 (Pax8), WW-domain-containing transcription regulator protein 1 (TAZ), and WW-domain-containing oxidoreductase (WWOX) through its PPxY motifs within C-terminal region, and further triggers the downstream signaling pathway in vitro and in vivo. Studies have confirmed that phosphorylated form of WBP2 can move into nuclei and activate the transcription of estrogen receptor (ER) and progesterone receptor (PR), whose expression were the indicators of breast cancer development, indicating that WBP2 may participate in the progression of breast cancer. Both overexpression of WBP2 and activation of tyrosine phosphorylation upregulate the signal cascades in the cross-regulation of the Wnt and ER signaling pathways in breast cancer. Following the binding of WBP2 to the WW domain region of TAZ which can accelerate migration, invasion and is required for the transformed phenotypes of breast cancer cells, the transformation of epithelial to mesenchymal of MCF10A is activated, suggesting that WBP2 is a key player in regulating cell migration. When WBP2 binds with WWOX, a tumor suppressor, ER transactivation and tumor growth can be suppressed. Thus, WBP2 may serve as a molecular on/off switch that controls the crosstalk between E2, WWOX, Wnt, TAZ, and other oncogenic signaling pathways. This review interprets the relationship between WBP2 and breast cancer, and provides comprehensive views about the function of WBP2 in the regulation of the pathogenesis of breast cancer and endocrine therapy in breast cancer treatment.

  16. The adaptor protein alpha-syntrophin regulates adipocyte lipid droplet growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisinger, Kristina; Rein-Fischboeck, Lisa; Pohl, Rebekka

    The scaffold protein alpha-syntrophin (SNTA) regulates lipolysis indicating a role in lipid homeostasis. Adipocytes are the main lipid storage cells in the body, and here, the function of SNTA has been analyzed in 3T3-L1 cells. SNTA is expressed in preadipocytes and is induced early during adipogenesis. Knock-down of SNTA in preadipocytes increases their proliferation. Proteins which are induced during adipogenesis like adiponectin and caveolin-1, and the inflammatory cytokine IL-6 are at normal levels in the mature cells differentiated from preadipocytes with low SNTA. This suggests that SNTA does neither affect differentiation nor inflammation. Expression of proteins with a role inmore » cholesterol and triglyceride homeostasis is unchanged. Consequently, basal and epinephrine induced lipolysis as well as insulin stimulated phosphorylation of Akt and ERK1/2 are normal. Importantly, adipocytes with low SNTA form smaller lipid droplets and store less triglycerides. Stearoyl-CoA reductase and MnSOD are reduced upon SNTA knock-down but do not contribute to lower lipid levels. Oleate uptake is even increased in cells with SNTA knock-down. In summary, current data show that SNTA is involved in the expansion of lipid droplets independent of adipogenesis. Enhanced preadipocyte proliferation and capacity to store surplus fatty acids may protect adipocytes with low SNTA from lipotoxicity in obesity. - Highlights: • Alpha-syntrophin (SNTA) is expressed in 3T3-L1adipocytes. • SNTA knock-down in preadipocytes has no effect on adipogenesis. • Mature 3T3-L1 differentiated from cells with low SNTA form small lipid droplets. • SCD1 and MnSOD are reduced in adipocytes with low SNTA. • SCD1 knock-down does not alter triglyceride levels.« less

  17. gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes.

    PubMed

    Braun, L; Ghebrehiwet, B; Cossart, P

    2000-04-03

    InlB is a Listeria monocytogenes protein that promotes entry of the bacterium into mammalian cells by stimulating tyrosine phosphorylation of the adaptor proteins Gab1, Cbl and Shc, and activation of phosphatidyl- inositol (PI) 3-kinase. Using affinity chromatography and enzyme-linked immunosorbent assay, we demonstrate a direct interaction between InlB and the mammalian protein gC1q-R, the receptor of the globular part of the complement component C1q. Soluble C1q or anti-gC1q-R antibodies impair InlB-mediated entry. Transient transfection of GPC16 cells, which are non-permissive to InlB-mediated entry, with a plasmid-expressing human gC1q-R promotes entry of InlB-coated beads. Furthermore, several experiments indicate that membrane recruitment and activation of PI 3-kinase involve an InlB-gC1q-R interaction and that gC1q-R associates with Gab1 upon stimulation of Vero cells with InlB. Thus, gC1q-R constitutes a cellular receptor involved in InlB-mediated activation of PI 3-kinase and tyrosine phosphorylation of the adaptor protein Gab1. After E-cadherin, the receptor for internalin, gC1q-R is the second identified mammalian receptor promoting entry of L. monocytogenes into mammalian cells.

  18. The N-terminus of IFT46 mediates intraflagellar transport of outer arm dynein and its cargo-adaptor ODA16

    PubMed Central

    Hou, Yuqing; Witman, George B.

    2017-01-01

    Cilia are assembled via intraflagellar transport (IFT). The IFT machinery is composed of motors and multisubunit particles, termed IFT-A and IFT-B, that carry cargo into the cilium. Knowledge of how the IFT subunits interact with their cargo is of critical importance for understanding how the unique ciliary domain is established. We previously reported a Chlamydomonas mutant, ift46-1, that fails to express the IFT-B protein IFT46, has greatly reduced levels of other IFT-B proteins, and assembles only very short flagella. A spontaneous suppression of ift46-1 restored IFT-B levels and enabled growth of longer flagella, but the flagella lacked outer dynein arms. Here we show that the suppression is due to insertion of the transposon MRC1 into the ift46-1 allele, causing the expression of a fusion protein including the IFT46 C-terminal 240 amino acids. The IFT46 C-terminus can assemble into and stabilize IFT-B but does not support transport of outer arm dynein into flagella. ODA16, a cargo adaptor specific for outer arm dynein, also fails to be imported into the flagella in the absence of the IFT46 N-terminus. We conclude that the IFT46 N-terminus, ODA16, and outer arm dynein interact for IFT of the latter. PMID:28701346

  19. Prediction of cervical intraepithelial neoplasia grade 2+ (CIN2+) using HPV DNA testing after a diagnosis of atypical squamous cell of undetermined significance (ASC-US) in Catalonia, Spain.

    PubMed

    Ibáñez, Raquel; Moreno-Crespi, Judit; Sardà, Montserrat; Autonell, Josefina; Fibla, Montserrat; Gutiérrez, Cristina; Lloveras, Belen; Alejo, María; Català, Isabel; Alameda, Francesc; Casas, Miquel; Bosch, F Xavier; de Sanjosé, Silvia

    2012-01-26

    A protocol for cervical cancer screening among sexually active women 25 to 65 years of age was introduced in 2006 in Catalonia, Spain to increase coverage and to recommend a 3-year-interval between screening cytology. In addition, Human Papillomavirus (HPV) was offered as a triage test for women with a diagnosis of atypical squamous cells of undetermined significance (ASC-US). HPV testing was recommended within 3 months of ASC-US diagnosis. According to protocol, HPV negative women were referred to regular screening including a cytological exam every 3 years while HPV positive women were referred to colposcopy and closer follow-up. We evaluated the implementation of the protocol and the prediction of HPV testing as a triage tool for cervical intraepithelial lesions grade two or worse (CIN2+) in women with a cytological diagnosis of ASC-US. During 2007-08 a total of 611 women from five reference laboratories in Catalonia with a novel diagnosis of ASC-US were referred for high risk HPV (hrHPV) triage using high risk Hybrid Capture version 2. Using routine record linkage data, women were followed for 3 years to evaluate hrHPV testing efficacy for predicting CIN2+ cases. Logistic regression analysis was used to estimate the odds ratio for CIN2 +. Among the 611 women diagnosed with ASC-US, 493 (80.7%) had at least one follow-up visit during the study period. hrHPV was detected in 48.3% of the women at study entry (mean age 35.2 years). hrHPV positivity decreased with increasing age from 72.6% among women younger than 25 years to 31.6% in women older than 54 years (p < 0.01). At the end of the 3 years follow-up period, 37 women with a diagnosis of CIN2+ (18 CIN2, 16 CIN3, 2 cancers, and 1 with high squamous intraepithelial lesions--HSIL) were identified and all but one had a hrHPV positive test at study entry. Sensitivity to detect CIN2+ of hrHPV was 97.2% (95%confidence interval (CI) = 85.5-99.9) and specificity was 68.3% (95%CI = 63.1-73.2). The odds ratio for CIN2

  20. The Cladophora glomerata Enriched by Biosorption Process in Cr(III) Improves Viability, and Reduces Oxidative Stress and Apoptosis in Equine Metabolic Syndrome Derived Adipose Mesenchymal Stromal Stem Cells (ASCs) and Their Extracellular Vesicles (MV’s)

    PubMed Central

    Marycz, Krzysztof; Marędziak, Monika; Weiss, Christine

    2017-01-01

    This study investigated in vitro effects of freshwater alga Cladophora glomerata water extract enriched during a biosorption process in Cr(III) trivalent chromium and chromium picolinate on adipose-derived mesenchymal stromal stem cells (ASCs) and extracellular microvesicles (MVs) in equine metabolic syndrome-affected horses. Chemical characterisation of natural Cladophora glomerata was performed with special emphasis on: vitamin C, vitamin E, total phenols, fatty acids, free and protein-bound amino acids as well as measured Cr in algal biomass. To examine the influence of Cladophora glomerata water extracts, in vitro viability, oxidative stress factor accumulation, apoptosis, inflammatory response, biogenesis of mitochondria, autophagy in ASCs of EMS and secretory activity manifested by MV release were investigated. For this purpose, various methods of molecular biology and microscopic observations (i.e., immunofluorescence staining, SEM, TEM, FIB observations, mRNA and microRNA expression by RT-qPCR) were applied. The extract of Cladophora glomerata enriched with Cr(III) ions reduced apoptosis and inflammation in ASCs of EMS horses through improvement of mitochondrial dynamics, decreasing of PDK4 expression and reduction of endoplastic reticulum stress. Moreover, it was found, that Cladophora glomerata and Cr(III) induce antioxidative protection coming from enhanced SOD activity Therefore, Cladophora glomerata enriched with Cr(III) ions might become an interesting future therapeutic agent in the pharmacological treatment of EMS horses. PMID:29292726

  1. Loss of PDZ-adaptor protein NHERF2 affects membrane localization and cGMP- and [Ca2+]- but not cAMP-dependent regulation of Na+/H+ exchanger 3 in murine intestine

    PubMed Central

    Chen, Mingmin; Sultan, Ayesha; Cinar, Ayhan; Yeruva, Sunil; Riederer, Brigitte; Singh, Anurag Kumar; Li, Junhua; Bonhagen, Janina; Chen, Gang; Yun, Chris; Donowitz, Mark; Hogema, Boris; deJonge, Hugo; Seidler, Ursula

    2010-01-01

    Trafficking and regulation of the epithelial brush border membrane (BBM) Na+/H+ exchanger 3 (NHE3) in the intestine involves interaction with four different members of the NHERF family in a signal-dependent and possibly segment-specific fashion. The aim of this research was to study the role of NHERF2 (E3KARP) in intestinal NHE3 BBM localization and second messenger-mediated and receptor-mediated inhibition of NHE3. Immunolocalization of NHE3 in WT mice revealed predominant microvillar localization in jejunum and colon, a mixed distribution in the proximal ileum but localization near the terminal web in the distal ileum. The terminal web localization of NHE3 in the distal ileum correlated with reduced acid-activated NHE3 activity (fluorometrically assessed). NHERF2 ablation resulted in a shift of NHE3 to the microvilli and higher basal fluid absorption rates in the ileum, but no change in overall NHE3 protein or mRNA expression. Forskolin-induced NHE3 inhibition was preserved in the absence of NHERF2, whereas Ca2+ ionophore- or carbachol-mediated inhibition was abolished. Likewise, Escherichia coli heat stable enterotoxin peptide (STp) lost its inhibitory effect on intestinal NHE3. It is concluded that in native murine intestine, the NHE3 adaptor protein NHERF2 plays important roles in tethering NHE3 to a position near the terminal web and in second messenger inhibition of NHE3 in a signal- and segment-specific fashion, and is therefore an important regulator of intestinal fluid transport. PMID:20962002

  2. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner.

    PubMed

    Conos, Stephanie A; Chen, Kaiwen W; De Nardo, Dominic; Hara, Hideki; Whitehead, Lachlan; Núñez, Gabriel; Masters, Seth L; Murphy, James M; Schroder, Kate; Vaux, David L; Lawlor, Kate E; Lindqvist, Lisa M; Vince, James E

    2017-02-07

    Necroptosis is a physiological cell suicide mechanism initiated by receptor-interacting protein kinase-3 (RIPK3) phosphorylation of mixed-lineage kinase domain-like protein (MLKL), which results in disruption of the plasma membrane. Necroptotic cell lysis, and resultant release of proinflammatory mediators, is thought to cause inflammation in necroptotic disease models. However, we previously showed that MLKL signaling can also promote inflammation by activating the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome to recruit the adaptor protein apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) and trigger caspase-1 processing of the proinflammatory cytokine IL-1β. Here, we provide evidence that MLKL-induced activation of NLRP3 requires (i) the death effector four-helical bundle of MLKL, (ii) oligomerization and association of MLKL with cellular membranes, and (iii) a reduction in intracellular potassium concentration. Although genetic or pharmacological targeting of NLRP3 or caspase-1 prevented MLKL-induced IL-1β secretion, they did not prevent necroptotic cell death. Gasdermin D (GSDMD), the pore-forming caspase-1 substrate required for efficient NLRP3-triggered pyroptosis and IL-1β release, was not essential for MLKL-dependent death or IL-1β secretion. Imaging of MLKL-dependent ASC speck formation demonstrated that necroptotic stimuli activate NLRP3 cell-intrinsically, indicating that MLKL-induced NLRP3 inflammasome formation and IL-1β cleavage occur before cell lysis. Furthermore, we show that necroptotic activation of NLRP3, but not necroptotic cell death alone, is necessary for the activation of NF-κB in healthy bystander cells. Collectively, these results demonstrate the potential importance of NLRP3 inflammasome activity as a driving force for inflammation in MLKL-dependent diseases.

  3. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner

    PubMed Central

    Conos, Stephanie A.; Hara, Hideki; Whitehead, Lachlan; Núñez, Gabriel; Masters, Seth L.; Murphy, James M.; Schroder, Kate; Vaux, David L.; Lawlor, Kate E.; Vince, James E.

    2017-01-01

    Necroptosis is a physiological cell suicide mechanism initiated by receptor-interacting protein kinase-3 (RIPK3) phosphorylation of mixed-lineage kinase domain-like protein (MLKL), which results in disruption of the plasma membrane. Necroptotic cell lysis, and resultant release of proinflammatory mediators, is thought to cause inflammation in necroptotic disease models. However, we previously showed that MLKL signaling can also promote inflammation by activating the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome to recruit the adaptor protein apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) and trigger caspase-1 processing of the proinflammatory cytokine IL-1β. Here, we provide evidence that MLKL-induced activation of NLRP3 requires (i) the death effector four-helical bundle of MLKL, (ii) oligomerization and association of MLKL with cellular membranes, and (iii) a reduction in intracellular potassium concentration. Although genetic or pharmacological targeting of NLRP3 or caspase-1 prevented MLKL-induced IL-1β secretion, they did not prevent necroptotic cell death. Gasdermin D (GSDMD), the pore-forming caspase-1 substrate required for efficient NLRP3-triggered pyroptosis and IL-1β release, was not essential for MLKL-dependent death or IL-1β secretion. Imaging of MLKL-dependent ASC speck formation demonstrated that necroptotic stimuli activate NLRP3 cell-intrinsically, indicating that MLKL-induced NLRP3 inflammasome formation and IL-1β cleavage occur before cell lysis. Furthermore, we show that necroptotic activation of NLRP3, but not necroptotic cell death alone, is necessary for the activation of NF-κB in healthy bystander cells. Collectively, these results demonstrate the potential importance of NLRP3 inflammasome activity as a driving force for inflammation in MLKL-dependent diseases. PMID:28096356

  4. The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3' kinase pathway.

    PubMed

    Sattler, M; Salgia, R; Okuda, K; Uemura, N; Durstin, M A; Pisick, E; Xu, G; Li, J L; Prasad, K V; Griffin, J D

    1996-02-15

    Chronic myelogenous leukemia (CML) and some acute lymphoblastic leukemias (ALL) are caused by the t(9;22) chromosome translocation, which produces the constitutively activated BCR/ABL tyrosine kinase. When introduced into factor dependent hematopoietic cell lines, BCR/ABL induces the tyrosine phosphorylation of many cellular proteins. One prominent BCR/ABL substrate is p120CBL, the cellular homolog of the v-Cbl oncoprotein. In an effort to understand the possible contribution of p120CBL to transformation by BCR/ABL, we looked for cellular proteins which associate with p120CBL in hematopoietic cell lines transformed by BCR/ABL. In addition to p210BCR/ABL and c-ABL, p120CBL coprecipitated with an 85 kDa phosphoprotein, which was identified as the p85 subunit of PI3K. Anti-p120CBL immunoprecipitates from BCR/ABL-transformed, but not from untransformed, cell lines contained PI3K lipid kinase activity. Interestingly, the adaptor proteins CRKL and c-CRK were also found in these complexes. In vitro binding studies indicated that the SH2 domains of CRKL and c-CRK bound directly to p120CBL, while the SH3 domains of c-CRK and CRKL bound to BCR/ABL and c-ABL. The N-terminal and the C-terminal SH2 and the SH3 domain of p85PI3K bound directly in vitro to p120CBL. The ABL-SH2, but not ABL-SH3, could also bind to p120CBL. These data suggest that BCR/ABL may induce the formation of multimeric complexes of signaling proteins which include p120CBL, PI3K, c-CRK or CRKL, c-ABL and BCR/ABL itself.

  5. Biophysical basis of the binding of WWOX tumor suppressor to WBP1 and WBP2 adaptors.

    PubMed

    McDonald, Caleb B; Buffa, Laura; Bar-Mag, Tomer; Salah, Zaidoun; Bhat, Vikas; Mikles, David C; Deegan, Brian J; Seldeen, Kenneth L; Malhotra, Arun; Sudol, Marius; Aqeilan, Rami I; Nawaz, Zafar; Farooq, Amjad

    2012-09-07

    The WW-containing oxidoreductase (WWOX) tumor suppressor participates in a diverse array of cellular activities by virtue of its ability to recognize WW-binding protein 1 (WBP1) and WW-binding protein 2 (WBP2) signaling adaptors among a wide variety of other ligands. Herein, using a multitude of biophysical techniques, we provide evidence that while the WW1 domain of WWOX binds to PPXY motifs within WBP1 and WBP2 in a physiologically relevant manner, the WW2 domain exhibits no affinity toward any of these PPXY motifs. Importantly, our data suggest that while R25/W44 residues located within the binding pocket of a triple-stranded β-fold of WW1 domain are critical for the recognition of PPXY ligands, they are replaced by the chemically distinct E66/Y85 duo at structurally equivalent positions within the WW2 domain, thereby accounting for its failure to bind PPXY ligands. Predictably, not only does the introduction of E66R/Y85W double substitution within the WW2 domain result in gain of function but the resulting engineered domain, hereinafter referred to as WW2_RW, also appears to be a much stronger binding partner of WBP1 and WBP2 than the wild-type WW1 domain. We also show that while the WW1 domain is structurally disordered and folds upon ligand binding, the WW2 domain not only adopts a fully structured conformation but also aids stabilization and ligand binding to WW1 domain. This salient observation implies that the WW2 domain likely serves as a chaperone to augment the physiological function of WW1 domain within WWOX. Collectively, our study lays the groundwork for understanding the molecular basis of a key protein-protein interaction pertinent to human health and disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Inflammasome components ASC and AIM2 modulate the acute phase of biomaterial implant-induced foreign body responses.

    PubMed

    Christo, Susan N; Diener, Kerrilyn R; Manavis, Jim; Grimbaldeston, Michele A; Bachhuka, Akash; Vasilev, Krasimir; Hayball, John D

    2016-02-10

    Detailing the inflammatory mechanisms of biomaterial-implant induced foreign body responses (FBR) has implications for revealing targetable pathways that may reduce leukocyte activation and fibrotic encapsulation of the implant. We have adapted a model of poly(methylmethacrylate) (PMMA) bead injection to perform an assessment of the mechanistic role of the ASC-dependent inflammasome in this process. We first demonstrate that ASC(-/-) mice subjected to PMMA bead injections had reduced cell infiltration and altered collagen deposition, suggesting a role for the inflammasome in the FBR. We next investigated the NLRP3 and AIM2 sensors because of their known contributions in recognising damaged and apoptotic cells. We found that NLRP3 was dispensable for the fibrotic encapsulation; however AIM2 expression influenced leukocyte infiltration and controlled collagen deposition, suggesting a previously unexplored link between AIM2 and biomaterial-induced FBR.

  7. Programmable DNA scaffolds for spatially-ordered protein assembly

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Arun Richard

    2016-02-01

    Ever since the notion of using DNA as a material was realized, it has been employed in the construction of complex structures that facilitate the assembly of nanoparticles or macromolecules with nanometer-scale precision. Specifically, tiles fashioned from DNA strands and DNA origami sheets have been shown to be suitable as scaffolds for immobilizing proteins with excellent control over their spatial positioning. Supramolecular assembly of proteins into periodic arrays in one or more dimensions is one of the most challenging aspects in the design of scaffolds for biomolecular investigations and macromolecular crystallization. This review provides a brief overview of how various biomolecular interactions with high degree of specificity such as streptavidin-biotin, antigen-antibody, and aptamer-protein interactions have been used to fabricate linear and multidimensional assemblies of structurally intact and functional proteins. The use of DNA-binding proteins as adaptors, polyamide recognition on DNA scaffolds and oligonucleotide linkers for protein assembly are also discussed.Ever since the notion of using DNA as a material was realized, it has been employed in the construction of complex structures that facilitate the assembly of nanoparticles or macromolecules with nanometer-scale precision. Specifically, tiles fashioned from DNA strands and DNA origami sheets have been shown to be suitable as scaffolds for immobilizing proteins with excellent control over their spatial positioning. Supramolecular assembly of proteins into periodic arrays in one or more dimensions is one of the most challenging aspects in the design of scaffolds for biomolecular investigations and macromolecular crystallization. This review provides a brief overview of how various biomolecular interactions with high degree of specificity such as streptavidin-biotin, antigen-antibody, and aptamer-protein interactions have been used to fabricate linear and multidimensional assemblies of structurally

  8. Evidence against roles for phorbol binding protein Munc13-1, ADAM adaptor Eve-1, or vesicle trafficking phosphoproteins Munc18 or NSF as phospho-state-sensitive modulators of phorbol/PKC-activated Alzheimer APP ectodomain shedding

    PubMed Central

    Ikin, Annat F; Causevic, Mirsada; Pedrini, Steve; Benson, Lyndsey S; Buxbaum, Joseph D; Suzuki, Toshiharu; Lovestone, Simon; Higashiyama, Shigeki; Mustelin, Tomas; Burgoyne, Robert D; Gandy, Sam

    2007-01-01

    Background Shedding of the Alzheimer amyloid precursor protein (APP) ectodomain can be accelerated by phorbol esters, compounds that act via protein kinase C (PKC) or through unconventional phorbol-binding proteins such as Munc13-1. We have previously demonstrated that application of phorbol esters or purified PKC potentiates budding of APP-bearing secretory vesicles at the trans-Golgi network (TGN) and toward the plasma membrane where APP becomes a substrate for enzymes responsible for shedding, known collectively as α-secretase(s). However, molecular identification of the presumptive "phospho-state-sensitive modulators of ectodomain shedding" (PMES) responsible for regulated shedding has been challenging. Here, we examined the effects on APP ectodomain shedding of four phorbol-sensitive proteins involved in regulation of vesicular membrane trafficking of APP: Munc13-1, Munc18, NSF, and Eve-1. Results Overexpression of either phorbol-sensitive wildtype Munc13-1 or phorbol-insensitive Munc13-1 H567K resulted in increased basal APP ectodomain shedding. However, in contrast to the report of Roßner et al (2004), phorbol ester-dependent APP ectodomain shedding from cells overexpressing APP and Munc13-1 wildtype was indistinguishable from that observed following application of phorbol to cells overexpressing APP and Munc13-1 H567K mutant. This pattern of similar effects on basal and stimulated APP shedding was also observed for Munc18 and NSF. Eve-1, an ADAM adaptor protein reported to be essential for PKC-regulated shedding of pro-EGF, was found to play no obvious role in regulated shedding of sAPPα. Conclusion Our results indicate that, in the HEK293 system, Munc13-1, Munc18, NSF, and EVE-1 fail to meet essential criteria for identity as PMES for APP. PMID:18067682

  9. Evidence against roles for phorbol binding protein Munc13-1, ADAM adaptor Eve-1, or vesicle trafficking phosphoproteins Munc18 or NSF as phospho-state-sensitive modulators of phorbol/PKC-activated Alzheimer APP ectodomain shedding.

    PubMed

    Ikin, Annat F; Causevic, Mirsada; Pedrini, Steve; Benson, Lyndsey S; Buxbaum, Joseph D; Suzuki, Toshiharu; Lovestone, Simon; Higashiyama, Shigeki; Mustelin, Tomas; Burgoyne, Robert D; Gandy, Sam

    2007-12-09

    Shedding of the Alzheimer amyloid precursor protein (APP) ectodomain can be accelerated by phorbol esters, compounds that act via protein kinase C (PKC) or through unconventional phorbol-binding proteins such as Munc13-1. We have previously demonstrated that application of phorbol esters or purified PKC potentiates budding of APP-bearing secretory vesicles at the trans-Golgi network (TGN) and toward the plasma membrane where APP becomes a substrate for enzymes responsible for shedding, known collectively as alpha-secretase(s). However, molecular identification of the presumptive "phospho-state-sensitive modulators of ectodomain shedding" (PMES) responsible for regulated shedding has been challenging. Here, we examined the effects on APP ectodomain shedding of four phorbol-sensitive proteins involved in regulation of vesicular membrane trafficking of APP: Munc13-1, Munc18, NSF, and Eve-1. Overexpression of either phorbol-sensitive wildtype Munc13-1 or phorbol-insensitive Munc13-1 H567K resulted in increased basal APP ectodomain shedding. However, in contrast to the report of Rossner et al (2004), phorbol ester-dependent APP ectodomain shedding from cells overexpressing APP and Munc13-1 wildtype was indistinguishable from that observed following application of phorbol to cells overexpressing APP and Munc13-1 H567K mutant. This pattern of similar effects on basal and stimulated APP shedding was also observed for Munc18 and NSF. Eve-1, an ADAM adaptor protein reported to be essential for PKC-regulated shedding of pro-EGF, was found to play no obvious role in regulated shedding of sAPPalpha. Our results indicate that, in the HEK293 system, Munc13-1, Munc18, NSF, and EVE-1 fail to meet essential criteria for identity as PMES for APP.

  10. Enlarged squamous cell nuclei in cervical cytologic specimens from perimenopausal women ("PM Cells") : a cause of ASC overdiagnosis.

    PubMed

    Cibas, Edmund S; Browne, Tara-Jane; Bassichis, Michelle H Mantel; Lee, Kenneth R

    2005-07-01

    We studied the appropriateness of interpreting squamous cells with enlarged, smooth, bland nuclei in perimenopausal women ("PM cells") as atypical squamous cells (ASCs). Papanicolaou smears (Paps) from 100 women (40-55 years old) with a cytologic interpretation of ASC of undetermined significance (ASCUS) and human papillomavirus (HPV) testing or a biopsy within 6 months were reviewed by 2 observers without knowledge of the biopsy diagnosis or HPV results. Cases in which both reviewers agreed that the Paps were diagnosed more properly as "negative for intraepithelial lesion or malignancy" were compared with cases of "true ASCUS," using histologic squamous intraepithelial lesion and/or a positive high-risk HPV test as a positive outcome (abnormal follow-up). Of 100 cases, 28 were reclassified as benign by both observers. In 15 of these, the original ASCUS interpretation was based on cells with bland nuclear enlargement (2-3 times the area of intermediate cell nuclei), smooth nuclear membranes, and fine chromatin. Abnormal follow-up was identified in 1 (7%) of 15 benign cases but in 30 (42%) of 72 true ASCUS cases (P = .023). PM cells are a significant cause of ASC overdiagnosis in women 40 to 55 years old. Cervical Paps with cells no more atypical than these can be interpreted safely as negative for intraepithelial lesion or malignancy.

  11. Adaptor protein SH2-B linking receptor-tyrosine kinase and Akt promotes adipocyte differentiation by regulating peroxisome proliferator-activated receptor gamma messenger ribonucleic acid levels.

    PubMed

    Yoshiga, Daigo; Sato, Naoichi; Torisu, Takehiro; Mori, Hiroyuki; Yoshida, Ryoko; Nakamura, Seiji; Takaesu, Giichi; Kobayashi, Takashi; Yoshimura, Akihiko

    2007-05-01

    Adipocyte differentiation is regulated by insulin and IGF-I, which transmit signals by activating their receptor tyrosine kinase. SH2-B is an adaptor protein containing pleckstrin homology and Src homology 2 (SH2) domains that have been implicated in insulin and IGF-I receptor signaling. In this study, we found a strong link between SH2-B levels and adipogenesis. The fat mass and expression of adipogenic genes including peroxisome proliferator-activated receptor gamma (PPARgamma) were reduced in white adipose tissue of SH2-B-/- mice. Reduced adipocyte differentiation of SH2-B-deficient mouse embryonic fibroblasts (MEFs) was observed in response to insulin and dexamethasone, whereas retroviral SH2-B overexpression enhanced differentiation of 3T3-L1 preadipocytes to adipocytes. SH2-B overexpression enhanced mRNA level of PPARgamma in 3T3-L1 cells, whereas PPARgamma levels were reduced in SH2-B-deficient MEFs in response to insulin. SH2-B-mediated up-regulation of PPARgamma mRNA was blocked by a phosphatidylinositol 3-kinase inhibitor, but not by a MAPK kinase inhibitor. Insulin-induced Akt activation and the phosphorylation of forkhead transcription factor (FKHR/Foxo1), a negative regulator of PPARgamma transcription, were up-regulated by SH2-B overexpression, but reduced in SH2-B-deficient MEFs. These data indicate that SH2-B is a key regulator of adipogenesis both in vivo and in vitro by regulating the insulin/IGF-I receptor-Akt-Foxo1-PPARgamma pathway.

  12. Vaccinia Virus Immunomodulator A46: A Lipid and Protein-Binding Scaffold for Sequestering Host TIR-Domain Proteins

    PubMed Central

    Radakovics, Katharina; Smith, Terry K.; Bobik, Nina; Round, Adam; Djinović-Carugo, Kristina; Usón, Isabel

    2016-01-01

    Vaccinia virus interferes with early events of the activation pathway of the transcriptional factor NF-kB by binding to numerous host TIR-domain containing adaptor proteins. We have previously determined the X-ray structure of the A46 C-terminal domain; however, the structure and function of the A46 N-terminal domain and its relationship to the C-terminal domain have remained unclear. Here, we biophysically characterize residues 1–83 of the N-terminal domain of A46 and present the X-ray structure at 1.55 Å. Crystallographic phases were obtained by a recently developed ab initio method entitled ARCIMBOLDO_BORGES that employs tertiary structure libraries extracted from the Protein Data Bank; data analysis revealed an all β-sheet structure. This is the first such structure solved by this method which should be applicable to any protein composed entirely of β-sheets. The A46(1–83) structure itself is a β-sandwich containing a co-purified molecule of myristic acid inside a hydrophobic pocket and represents a previously unknown lipid-binding fold. Mass spectrometry analysis confirmed the presence of long-chain fatty acids in both N-terminal and full-length A46; mutation of the hydrophobic pocket reduced the lipid content. Using a combination of high resolution X-ray structures of the N- and C-terminal domains and SAXS analysis of full-length protein A46(1–240), we present here a structural model of A46 in a tetrameric assembly. Integrating affinity measurements and structural data, we propose how A46 simultaneously interferes with several TIR-domain containing proteins to inhibit NF-κB activation and postulate that A46 employs a bipartite binding arrangement to sequester the host immune adaptors TRAM and MyD88. PMID:27973613

  13. Rat and mouse CD94 associate directly with the activating transmembrane adaptor proteins DAP12 and DAP10 and activate NK cell cytotoxicity.

    PubMed

    Saether, Per C; Hoelsbrekken, Sigurd E; Fossum, Sigbjørn; Dissen, Erik

    2011-12-15

    Signaling by the CD94/NKG2 heterodimeric NK cell receptor family has been well characterized in the human but has remained unclear in the mouse and rat. In the human, the activating receptor CD94/NKG2C associates with DAP12 by an ionic bond between oppositely charged residues within the transmembrane regions of NKG2C and DAP12. The lysine residue responsible for DAP12 association is absent in rat and mouse NKG2C and -E, raising questions about signaling mechanisms in these species. As a possible substitute, rat and mouse NKG2C and -E contain an arginine residue in the transition between the transmembrane and stalk regions. In this article, we demonstrate that, similar to their human orthologs, NKG2A inhibits, whereas NKG2C activates, rat NK cells. Redirected lysis assays using NK cells transfected with a mutated NKG2C construct indicated that the activating function of CD94/NKG2C did not depend on the transmembrane/stalk region arginine residue. Flow cytometry and biochemical analysis demonstrated that both DAP12 and DAP10 can associate with rat CD94/NKG2C. Surprisingly, DAP12 and DAP10 did not associate with NKG2C but instead with CD94. These associations depended on a transmembrane lysine residue in CD94 that is unique to rodents. Thus, in the mouse and rat, the ability to bind activating adaptor proteins has been transferred from NKG2C/E to the CD94 chain as a result of mutation events in both chains. Remarkable from a phylogenetic perspective, this sheds new light on the evolution and function of the CD94/NKG2 receptor family.

  14. Clinical significance of HPV DNA cotesting in Korean women with ASCUS or ASC-H.

    PubMed

    Lee, Sanghoon; Kim, Jae Won; Hong, Jin Hwa; Song, Jae Yun; Lee, Jae Kwan; Kim, In Sun; Lee, Nak Woo

    2014-12-01

    The purpose of this study was to evaluate the clinical significance of Human papillomavirus (HPV) DNA cotesting in Korean women with abnormal Papanicolaou (Pap) smear results based on colposcopic pathology. A total of 1012 women underwent liquid-based Pap smears and hybrid capture II HPV DNA tests followed by colposcopy at the Korea University Hospital from January 2007 to May 2012. Of these women, 832 women were included in this retrospective study. The mean patient age was 45.4 ± 13.7 years (range:15-80). The distribution of Pap smear results was normal (4.7%), atypical squamous cells of uncertain significance (ASCUS) (42.1%), low-grade squamous intraepithelial lesion (26.8%), ASC-H (7.0%), and high-grade squamous intraepithelial lesion (HSIL) (19.5%). In women with ASCUS, none of the 87 HPV-negative had ≥cervical intraepithelial neoplasia (CIN2) (P < 0.001). In women with ASC-H, only one out of 17 HPV-negative vs. 14 out of 41 HPV-positive had ≥CIN2 (P = 0.025). In patients with HSIL, 54.5% of HPV-negative had ≥CIN2, as compared to 80.8% of HPV-positive with ≥CIN2 (P = 0.039). Patients were further analyzed by age groups: <30 and ≥30 years. In HPV-negative women, there was a significant difference in the ratio of ≥CIN2 (30.8% <30 vs. 4.5% ≥30, P = 0.005). When the HPV DNA test was negative in women ≥30, the risk of ≥CIN2 was significantly lower (P < 0.001). HPV DNA cotesting in women with ASCUS and ASC-H furnish healthcare providers with informative data. There is a lower proportion of ≥CIN2 in HPV-negative women and a higher proportion of ≥CIN2 in HPV-positive. When HPV data were further evaluated by age group, the risk of ≥CIN2 was lower in HPV-negative women, especially in women ≥30. © 2014 Wiley Periodicals, Inc.

  15. Nod-like receptor protein 1 inflammasome mediates neuron injury under high glucose.

    PubMed

    Meng, Xian-Fang; Wang, Xiao-Lan; Tian, Xiu-Juan; Yang, Zhi-Hua; Chu, Guang-Pin; Zhang, Jing; Li, Man; Shi, Jing; Zhang, Chun

    2014-04-01

    Diabetic encephalopathy is one of the most common complications of diabetes. Inflammatory events during diabetes may be an important mechanism of diabetic encephalopathy. Inflammasome is a multiprotein complex consisting of Nod-like receptor proteins (NLRPs), apoptosis-associated speck-like protein (ASC), and caspase 1 or 5, which functions to switch on the inflammatory process and the release of inflammatory factors. The present study hypothesized that the formation and activation of NLRP1 inflammasome turns on neuroinflammation and neuron injury during hyperglycemia. The results demonstrated that the levels of interleukin-1 beta (IL-1β) were increased in the cortex of streptozocin (STZ)-induced diabetic rats. The levels of mature IL-1β and IL-18 were also elevated in culture medium of neurons treated with high glucose (50 mM). The expression of three essential components of the NLRP1 inflammasome complex, namely, NLRP1, ASC, and caspase 1, was also upregulated in vivo and in vitro under high glucose. Silencing the ASC gene prevented the caspase-1 activation, and inhibiting caspase 1 activity blocked hyperglycemia-induced release of inflammatory factors and neuron injury. Moreover, we found that pannexin 1 mediated the actvitation of NLRP1 inflammasome under high glucose. These results suggest that hyperglycemia induces neuroinflammation through activation of NLRP1 inflammasome, which represents a novel mechanism of diabetes-associated neuron injury.

  16. DNA-repair scaffolds dampen checkpoint signalling by counteracting the adaptor Rad9.

    PubMed

    Ohouo, Patrice Y; Bastos de Oliveira, Francisco M; Liu, Yi; Ma, Chu Jian; Smolka, Marcus B

    2013-01-03

    In response to genotoxic stress, a transient arrest in cell-cycle progression enforced by the DNA-damage checkpoint (DDC) signalling pathway positively contributes to genome maintenance. Because hyperactivated DDC signalling can lead to a persistent and detrimental cell-cycle arrest, cells must tightly regulate the activity of the kinases involved in this pathway. Despite their importance, the mechanisms for monitoring and modulating DDC signalling are not fully understood. Here we show that the DNA-repair scaffolding proteins Slx4 and Rtt107 prevent the aberrant hyperactivation of DDC signalling by lesions that are generated during DNA replication in Saccharomyces cerevisiae. On replication stress, cells lacking Slx4 or Rtt107 show hyperactivation of the downstream DDC kinase Rad53, whereas activation of the upstream DDC kinase Mec1 remains normal. An Slx4-Rtt107 complex counteracts the checkpoint adaptor Rad9 by physically interacting with Dpb11 and phosphorylated histone H2A, two positive regulators of Rad9-dependent Rad53 activation. A decrease in DDC signalling results from hypomorphic mutations in RAD53 and H2A and rescues the hypersensitivity to replication stress of cells lacking Slx4 or Rtt107. We propose that the Slx4-Rtt107 complex modulates Rad53 activation by a competition-based mechanism that balances the engagement of Rad9 at replication-induced lesions. Our findings show that DDC signalling is monitored and modulated through the direct action of DNA-repair factors.

  17. Adipose derived stem cells (ASCs) isolated from breast cancer tissue express IL-4, IL-10 and TGF-β1 and upregulate expression of regulatory molecules on T cells: do they protect breast cancer cells from the immune response?

    PubMed

    Razmkhah, Mahboobeh; Jaberipour, Mansooreh; Erfani, Nasrollah; Habibagahi, Mojtaba; Talei, Abdol-rasoul; Ghaderi, Abbas

    2011-01-01

    Immunomodulatory function of bone marrow derived mesenchymal stem cells in cancer has recently been investigated. But the resident mesenchymal stem cells as whole in cancer and in the breast cancer tissue have not been studied well. In the present work we isolated adipose derived stem cells (ASCs) from breast cancer and normal breast tissues to investigate the expressions of IL-4, IL-10 and transforming growth factor (TGF)-β1 in ASCs and to see if ASCs isolated from patients can modulate the regulatory molecules on peripheral blood lymphocytes. Our results showed that IL-10 and TGF-β1 have significantly higher mRNA expressions in ASCs isolated from breast cancer patients than those from normal individuals (P value <0.05). The culture supernatant of ASCs isolated from breast cancer patients with pathological stage III induced upregulation of the mRNA expression levels of IL-4, TGF-β1, IL-10, CCR4 and CD25 in PBLs. In addition, the percentage of CD4+CD25(high)Foxp3(+) T regulatory cells was increased in vitro. When the same culture supernatant was added to ASCs isolated from normal subjects augmentation of the mRNA expressions of IL-4, IL-10, IL-8, MMP2, VEGF and SDF-1 in normal ASCs was also observed. These data collectively conclude that resident ASCs in breast cancer tissue may have crucial roles in breast tumor growth and progression by inducing regulatory molecules and promoting anti-inflammatory reaction within the tumor microenvironment. Further investigation is required to see if the immune suppression induced by ASCs is an independent property from tumor cells or ASCs gain their immunosuppressive potential from malignant cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus.

    PubMed

    Masutani, Hiroshi; Yoshihara, Eiji; Masaki, So; Chen, Zhe; Yodoi, Junji

    2012-01-01

    Thioredoxin binding protein -2/ thioredoxin interacting protein is an α-arrestin protein that has attracted much attention as a multifunctional regulator. Thioredoxin binding protein -2 expression is downregulated in tumor cells and the level of thioredoxin binding protein is correlated with clinical stage of cancer. Mice with mutations or knockout of the thioredoxin binding protein -2 gene are much more susceptible to carcinogenesis than wild-type mice, indicating a role for thioredoxin binding protein -2 in cancer suppression. Studies have also revealed roles for thioredoxin binding protein -2 in metabolic control. Enhancement of thioredoxin binding protein -2 expression causes impairment of insulin sensitivity and glucose-induced insulin secretion, and β-cell apoptosis. These changes are important characteristics of type 2 diabetes mellitus. Thioredoxin binding protein -2 regulates transcription of metabolic regulating genes. Thioredoxin binding protein -2-like inducible membrane protein/ arrestin domain containing 3 regulates endocytosis of receptors such as the β(2)-adrenergic receptor. The α-arrestin family possesses PPXY motifs and may function as an adaptor/scaffold for NEDD family ubiquitin ligases. Elucidation of the molecular mechanisms of α-arrestin proteins would provide a new pharmacological basis for developing approaches against cancer and type 2 diabetes mellitus.

  19. Protein kinase inhibitor SU6668 attenuates positive regulation of Gli proteins in cancer and multipotent progenitor cells.

    PubMed

    Piirsoo, Alla; Kasak, Lagle; Kauts, Mari-Liis; Loog, Mart; Tints, Kairit; Uusen, Piia; Neuman, Toomas; Piirsoo, Marko

    2014-04-01

    Observations that Glioma-associated transcription factors Gli1 and Gli2 (Gli1/2), executers of the Sonic Hedgehog (Shh) signaling pathway and targets of the Transforming Growth Factor β (TGF-β) signaling axis, are involved in numerous developmental and pathological processes unveil them as attractive pharmaceutical targets. Unc-51-like serine/threonine kinase Ulk3 has been suggested to play kinase activity dependent and independent roles in the control of Gli proteins in the context of the Shh signaling pathway. This study aimed at investigating whether the mechanism of generation of Gli1/2 transcriptional activators has similarities regardless of the signaling cascade evoking their activation. We also elucidate further the role of Ulk3 kinase in regulation of Gli1/2 proteins and examine SU6668 as an inhibitor of Ulk3 catalytic activity and a compound targeting Gli1/2 proteins in different cell-based experimental models. Here we demonstrate that Ulk3 is required not only for maintenance of basal levels of Gli1/2 proteins but also for TGF-β or Shh dependent activation of endogenous Gli1/2 proteins in human adipose tissue derived multipotent stromal cells (ASCs) and mouse immortalized progenitor cells, respectively. We show that cultured ASCs possess the functional Shh signaling axis and differentiate towards osteoblasts in response to Shh. Also, we demonstrate that similarly to Ulk3 RNAi, SU6668 prevents de novo expression of Gli1/2 proteins and antagonizes the Gli-dependent activation of the gene expression programs induced by either Shh or TGF-β. Our data suggest SU6668 as an efficient inhibitor of Ulk3 kinase allowing manipulation of the Gli-dependent transcriptional outcome. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Identification of AOSC-binding proteins in neurons

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Nie, Qin; Xin, Xianliang; Geng, Meiyu

    2008-11-01

    Acidic oligosaccharide sugar chain (AOSC), a D-mannuronic acid oligosaccharide, derived from brown algae polysaccharide, has been completed Phase I clinical trial in China as an anti-Alzheimer’s Disease (AD) drug candidate. The identification of AOSC-binding protein(s) in neurons is very important for understanding its action mechanism. To determine the binding protein(s) of AOSC in neurons mediating its anti-AD activities, confocal microscopy, affinity chromatography, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were used. Confocal microscopy analysis shows that AOSC binds to SH-SY5Y cells in concentration-, time-, and temperature-dependent fashions. The AOSC binding proteins were purified by affinity chromatography and identified by LC-MS/MS analysis. The results showed that there are 349 proteins binding AOSC, including clathrin, adaptor protein-2 (AP-2) and amyloid precursor protein (APP). These results suggest that the binding/entrance of AOSC to neurons is probably responsible for anti-AD activities.

  1. Effects of Metal Micro and Nano-Particles on hASCs: An In Vitro Model.

    PubMed

    Palombella, Silvia; Pirrone, Cristina; Rossi, Federica; Armenia, Ilaria; Cherubino, Mario; Valdatta, Luigi; Raspanti, Mario; Bernardini, Giovanni; Gornati, Rosalba

    2017-08-03

    As the knowledge about the interferences of nanomaterials on human staminal cells are scarce and contradictory, we undertook a comparative multidisciplinary study based on the size effect of zero-valent iron, cobalt, and nickel microparticles (MPs) and nanoparticles (NPs) using human adipose stem cells (hASCs) as a model, and evaluating cytotoxicity, morphology, cellular uptake, and gene expression. Our results suggested that the medium did not influence the cell sensitivity but, surprisingly, the iron microparticles (FeMPs) resulted in being toxic. These data were supported by modifications in mRNA expression of some genes implicated in the inflammatory response. Microscopic analysis confirmed that NPs, mainly internalized by endocytosis, persist in the vesicles without any apparent cell damage. Conversely, MPs are not internalized, and the effects on hASCs have to be ascribed to the release of ions in the culture medium, or to the reduced oxygen and nutrient exchange efficiency due to the presence of MP agglomerating around the cells. Notwithstanding the results depicting a heterogeneous scene that does not allow drawing a general conclusion, this work reiterates the importance of comparative investigations on MPs, NPs, and corresponding ions, and the need to continue the thorough verification of NP and MP innocuousness to ensure unaffected stem cell physiology and differentiation.

  2. The origin of polynucleotide-directed protein synthesis

    NASA Technical Reports Server (NTRS)

    Orgel, Leslie E.

    1989-01-01

    If protein synthesis evolved in an RNA world it was probably preceded by simpler processes by means of which interaction with amino acids conferred selective advantage on replicating RNA molecules. It is suggested that at first the simple attachment of amino acids to the 2'(3') termini of RNA templates favored initiation of replication at the end of the template rather than at internal positions. The second stage in the evolution of protein synthesis would probably have been the association of pairs of charged RNA adaptors in such a way as to favor noncoded formation of peptides. Only after this process had become efficient could coded synthesis have begun.

  3. Effectiveness of Needleless Vial Adaptors and Blunt Cannulas for Drug Administration in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Hailey, M.; Bayuse, T.

    2010-01-01

    Fluid Isolation in the medication vial: Air/ fluid isolation maneuvers were used to move the medication to the septum end of vial. This isolation may be achieved in multiple ways based on the experience of the astronaut with fluid management in microgravity. If vial adaptors/blunt cannula or syringe assembly is inserted into the to vial before fluid isolation commences, the stability of this assembly should be considered in an effort to limit the risk of "slinging off" of the vial during isolation. Alternatively, fluid isolation can be performed prior to attaching the syringe/vial adaptor assembly. Terrestrial practices for medication withdrawal from a nonvented vial require injection of an equivalent amount of air as the expected medication volume prior to withdrawing liquid. In microgravity, this action is still valid, however the injection of additional air into the vial creates a multitude of micro bubbles and increases the volume of medication mixed with air that then must be withdrawn to achieve the desired drug volume in syringe. This practice is more likely to be required when using vials >30ml in size and injection volumes >10mL. It is felt that based on the microgravity flight, the practice of air injection is more of a hindrance than help.

  4. The Accuracy of p16/Ki-67 and HPV Test in the Detection of CIN2/3 in Women Diagnosed with ASC-US or LSIL

    PubMed Central

    Possati-Resende, Júlio C.; Fregnani, José H. T. G.; Kerr, Ligia M.; Mauad, Edmundo C.; Longatto-Filho, Adhemar; Scapulatempo-Neto, Cristovam

    2015-01-01

    The objective of this study was to compare the accuracies of double staining for p16/Ki-67 and the molecular test for high-risk HPV (hr-HPV) to identify high-grade cervical intraepithelial neoplasia (CIN2/CIN3) in women with cervical cytology of atypical squamous cells of undetermined significance (ASC-US) and low-grade squamous intraepithelial lesion (LSIL). Data were collected from 201 women who underwent cervical cytology screening in the Barretos Cancer Hospital and their results were categorized as ASC-US (n=96) or LSIL (n=105). All patients underwent colposcopy with or without cervical biopsy for diagnosis of CIN2/CIN3. The hr-HPV test (Cobas 4800 test) and immunocytochemistry were performed to detect biomarkers p16/Ki-67 (CINtec PLUS test). Two samples (1 ASC-US/1 LSIL) were excluded from the analysis due to inconclusive results of the histologic examination. There were 8 cases of CIN2/CIN3 among 95 women with ASC-US (8.4%), and 23 cases of CIN2/CIN3 among 104 women with LSIL (22.1%). In the group of women with ASC-US, the sensitivity and specificity in diagnosing CIN2/CIN3 were 87.5% and 79.5% for the HPV test and 62.5% and 93.1% for p16/Ki-67. Among women with LSIL, the sensitivity and specificity in the diagnosis of CIN2/CIN3 were 87% and 34.7% for the HPV test and 69.6% and 75.3% for immunocytochemistry. Superior performance was observed for p16/Ki-67 double staining, especially among women under 30 for whom the test had an area under the ROC curve of 0.762 (p<0.001). Both p16/Ki-67 double staining and the hr-HPV DNA test had similar performance in predicting high-grade cervical intraepithelial neoplasia among women with ASC-US. The best performance was observed in women aged >30 years. In younger women (≤30 years) with LSIL, p16/Ki-67 had greater accuracy in identifying precursor lesions. Among women >30 years diagnosed with LSIL, the two methods showed similar performance. PMID:26230097

  5. Detection of Memory B Activity Against a Therapeutic Protein in Treatment-Naïve Subjects.

    PubMed

    Liao, Karen; Derbyshire, Stacy; Wang, Kai-Fen; Caucci, Cherilyn; Tang, Shuo; Holland, Claire; Loercher, Amy; Gunn, George R

    2018-03-16

    Bridging immunoassays commonly used to detect and characterize immunogenicity during biologic development do not provide direct information on the presence or development of a memory anti-drug antibody (ADA) response. In this study, a B cell ELISPOT assay method was used to evaluate pre-existing ADA for anti-TNFR1 domain antibody, GSK1995057, an experimental biologic in treatment naive subjects. This assay utilized a 7-day activation of PBMCs by a combination of GSK1995057 (antigen) and polyclonal stimulator followed by GSK1995057-specific ELISPOT for the enumeration of memory B cells that have differentiated into antibody secreting cells (ASC) in vitro. We demonstrated that GSK1995057-specific ASC were detectable in treatment-naïve subjects with pre-existing ADA; the frequency of drug-specific ASC was low and ranged from 1 to 10 spot forming units (SFU) per million cells. Interestingly, the frequency of drug-specific ASC correlated with the ADA level measured using an in vitro ADA assay. We further confirmed that the ASC originated from CD27 + memory B cells, not from CD27 - -naïve B cells. Our data demonstrated the utility of the B cell ELISPOT method in therapeutic protein immunogenicity evaluation, providing a novel way to confirm and characterize the cell population producing pre-existing ADA. This novel application of a B cell ELISPOT assay informs and characterizes immune memory activity regarding incidence and magnitude associated with a pre-existing ADA response.

  6. Circulating Gut-Homing (α4β7+) Plasmablast Responses against Shigella Surface Protein Antigens among Hospitalized Patients with Diarrhea

    PubMed Central

    Sinha, Anuradha; Dey, Ayan; Saletti, Giulietta; Samanta, Pradip; Chakraborty, Partha Sarathi; Bhattacharya, M. K.; Ghosh, Santanu; Ramamurthy, T.; Kim, Jae-Ouk; Yang, Jae Seung; Kim, Dong Wook

    2016-01-01

    Developing countries are burdened with Shigella diarrhea. Understanding mucosal immune responses associated with natural Shigella infection is important to identify potential correlates of protection and, as such, to design effective vaccines. We performed a comparative analysis of circulating mucosal plasmablasts producing specific antibodies against highly conserved invasive plasmid antigens (IpaC, IpaD20, and IpaD120) and two recently identified surface protein antigens, pan-Shigella surface protein antigen 1 (PSSP1) and PSSP2, common to all virulent Shigella strains. We examined blood and stool specimens from 37 diarrheal patients admitted to the Infectious Diseases & Beliaghata General Hospital, Kolkata, India. The etiological agent of diarrhea was investigated in stool specimens by microbiological methods and real-time PCR. Gut-homing (α4β7+) antibody-secreting cells (ASCs) were isolated from patient blood by means of combined magnetic cell sorting and two-color enzyme-linked immunosorbent spot (ELISPOT) assay. Overall, 57% (21 of 37) and 65% (24 of 37) of the patients were positive for Shigella infection by microbiological and real-time PCR assays, respectively. The frequency of α4β7+ IgG ASC responders against Ipas was higher than that observed against PSSP1 or PSSP2, regardless of the Shigella serotype isolated from these patients. Thus, α4β7+ ASC responses to Ipas may be considered an indirect marker of Shigella infection. The apparent weakness of ASC responses to PSSP1 is consistent with the lack of cross-protection induced by natural Shigella infection. The finding that ASC responses to IpaD develop in patients with recent-onset shigellosis indicates that such responses may not be protective or may wane too rapidly and/or be of insufficient magnitude. PMID:27193041

  7. Circulating Gut-Homing (α4β7+) Plasmablast Responses against Shigella Surface Protein Antigens among Hospitalized Patients with Diarrhea.

    PubMed

    Sinha, Anuradha; Dey, Ayan; Saletti, Giulietta; Samanta, Pradip; Chakraborty, Partha Sarathi; Bhattacharya, M K; Ghosh, Santanu; Ramamurthy, T; Kim, Jae-Ouk; Yang, Jae Seung; Kim, Dong Wook; Czerkinsky, Cecil; Nandy, Ranjan K

    2016-07-01

    Developing countries are burdened with Shigella diarrhea. Understanding mucosal immune responses associated with natural Shigella infection is important to identify potential correlates of protection and, as such, to design effective vaccines. We performed a comparative analysis of circulating mucosal plasmablasts producing specific antibodies against highly conserved invasive plasmid antigens (IpaC, IpaD20, and IpaD120) and two recently identified surface protein antigens, pan-Shigella surface protein antigen 1 (PSSP1) and PSSP2, common to all virulent Shigella strains. We examined blood and stool specimens from 37 diarrheal patients admitted to the Infectious Diseases & Beliaghata General Hospital, Kolkata, India. The etiological agent of diarrhea was investigated in stool specimens by microbiological methods and real-time PCR. Gut-homing (α4β7 (+)) antibody-secreting cells (ASCs) were isolated from patient blood by means of combined magnetic cell sorting and two-color enzyme-linked immunosorbent spot (ELISPOT) assay. Overall, 57% (21 of 37) and 65% (24 of 37) of the patients were positive for Shigella infection by microbiological and real-time PCR assays, respectively. The frequency of α4β7 (+) IgG ASC responders against Ipas was higher than that observed against PSSP1 or PSSP2, regardless of the Shigella serotype isolated from these patients. Thus, α4β7 (+) ASC responses to Ipas may be considered an indirect marker of Shigella infection. The apparent weakness of ASC responses to PSSP1 is consistent with the lack of cross-protection induced by natural Shigella infection. The finding that ASC responses to IpaD develop in patients with recent-onset shigellosis indicates that such responses may not be protective or may wane too rapidly and/or be of insufficient magnitude. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Frodo proteins: modulators of Wnt signaling in vertebrate development.

    PubMed

    Brott, Barbara K; Sokol, Sergei Y

    2005-09-01

    The Frodo/dapper (Frd) proteins are recently discovered signaling adaptors, which functionally and physically interact with Wnt and Nodal signaling pathways during vertebrate development. The Frd1 and Frd2 genes are expressed in dynamic patterns in early embryos, frequently in cells undergoing epithelial-mesenchymal transition. The Frd proteins function in multiple developmental processes, including mesoderm and neural tissue specification, early morphogenetic cell movements, and organogenesis. Loss-of-function studies using morpholino antisense oligonucleotides demonstrate that the Frd proteins regulate Wnt signal transduction in a context-dependent manner and may be involved in Nodal signaling. The identification of Frd-associated factors and cellular targets of the Frd proteins should shed light on the molecular mechanisms underlying Frd functions in embryonic development and in cancer.

  9. Triage of ASC-H: a meta-analysis of the accuracy of hrHPV testing and other markers to detect cervical precancer

    PubMed Central

    Xu, Lan; Verdoodt, Freija; Wentzensen, Nicolas; Bergeron, Christine; Arbyn, Marc

    2015-01-01

    Background Women with a cytological diagnosis of atypical squamous cells, cannot exclude high-grade squamous intraepithelial lesion (ASC-H) are usually immediately referred to colposcopy. However, triage may reduce the burden of diagnostic work-up and avoid over-treatment. Methods A meta-analysis was conducted to assess the accuracy of hrHPV testing, and testing for other molecular markers to detect CIN of grade II or III or worse (CIN2+ or CIN3+) in women with ASC-H. An additional question assessed was whether triage is useful given the relatively high pre-triage probability of underlying precancer. Results The pooled absolute sensitivity and specificity for CIN2+ of HC2 (derived from 19 studies) was 93% (95% CI: 89–95%) and 45% (95% CI: 41–50%), respectively. The p16INK4a staining (only 3 studies) has similar sensitivity (93%, 95% CI:75–100%) but superior specificity (specificity ratio: 1.69) to HC2 for CIN2+. Testing for PAX1 gene methylation (only 1 study) showed a superior specificity of 95% (specificity ratio: 2.08). The average pre-test risk was 34% for CIN2+ and 20% for CIN3+. A negative HC2 result decreased this to 8% and 5%, whereas a positive result upgraded the risk to 47% and 28%. Conclusions Due to the high probability of precancer in ASC-H, the utility of triage is limited. The usual recommendation to refer women with ASC-H to colposcopy is not altered by a positive triage test, whatever the test used. A negative hrHPV DNA or p16INK4a test may allow for repeat testing but this recommendation will depend on local decision thresholds for referral. PMID:26618614

  10. SR proteins SRp20 and 9G8 contribute to efficient export of herpes simplex virus 1 mRNAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escudero-Paunetto, Laurimar; Li Ling; Hernandez, Felicia P.

    2010-06-05

    Herpes simplex virus 1 (HSV-1) mRNAs are exported to the cytoplasm through the export receptor TAP/NFX1. HSV-1 multifunctional protein ICP27 interacts with TAP/NXF1, binds viral RNAs, and is required for efficient viral RNA export. In ICP27 mutant infections, viral RNA export is reduced but not ablated, indicating that other export adaptors can aid in viral RNA export. Export adaptor protein Aly/REF is recruited to viral replication compartments, however, Aly/REF knockdown has little effect on viral RNA export. SR proteins SRp20 and 9G8 interact with TAP/NXF1 and mediate export of some cellular RNAs. We report that siRNA knockdown of SRp20 ormore » 9G8 resulted in about a 10 fold decrease in virus yields and in nuclear accumulation of poly(A+) RNA. In infected cells depleted of SRp20, newly transcribed Bromouridine-labeled RNA also accumulated in the nucleus. We conclude that SRp20 and 9G8 contribute to HSV-1 RNA export.« less

  11. Triage of women with atypical squamous cells of undetermined significance (ASC-US): results of an Italian multicentric study.

    PubMed

    Del Mistro, Annarosa; Frayle-Salamanca, Helena; Trevisan, Rossana; Matteucci, Mario; Pinarello, Antonella; Zambenedetti, Pamela; Buoso, Rita; Fantin, Gian Piero; Zorzi, Manuel; Minucci, Daria

    2010-04-01

    To compare the performance of immediate colposcopy, repeat Pap test and HPV test as triage options for women diagnosed as having atypical squamous cells of undetermined significance (ASC-US) while attending organised screening for cervical carcinoma in five centres of the Veneto region. Women consecutively diagnosed as having ASC-US were included in a prospective study, and underwent colposcopy and collection of cervico-vaginal cells for conventional Pap test and HPV test (Hybrid Capture 2, High-risk probe set, Digene). Repetition of all three tests was scheduled for 12 months later. DNA was subsequently extracted from residual cells of positive samples, and analysed by polymerase chain reaction with several primers for typing of HPV sequences. Sensitivity, specificity and positive predictive value (PPV) of the different triage options for histology-confirmed cervical intraepithelial neoplasia, grade 2 or worse (CIN2+) were calculated among all women and by age (under and above 35 years). Seven hundred forty-nine women 25-64 years old (median age 42 years) were enrolled in the study. Pap smears at enrolment were read as ASC-US or more severe in 211 (29.4%) cases, colposcopy disclosed an atypical transformation zone in 254 (34.2%) women, and HPV test was positive in 181 (24.2%). High-grade cervical lesions developed in 29/749 (3.9%) women. HPV typing was possible in 163 (90%) of the samples, and carcinogenic types were present in 123. HPV test showed the best performance; overall, it had the highest sensitivity (92.3%), specificity (78.6%) and PPV (14.9%). Copyright 2009 Elsevier Inc. All rights reserved.

  12. KCTD2, an adaptor of Cullin3 E3 ubiquitin ligase, suppresses gliomagenesis by destabilizing c-Myc

    PubMed Central

    Kim, Eun-Jung; Kim, Sung-Hak; Jin, Xiong; Jin, Xun; Kim, Hyunggee

    2017-01-01

    Cullin3 E3 ubiquitin ligase ubiquitinates a wide range of substrates through substrate-specific adaptors Bric-a-brac, Tramtrack, and Broad complex (BTB) domain proteins. These E3 ubiquitin ligase complexes are involved in diverse cellular functions. Our recent study demonstrated that decreased Cullin3 expression induces glioma initiation and correlates with poor prognosis of patients with malignant glioma. However, the substrate recognition mechanism associated with tumorigenesis is not completely understood. Through yeast two-hybrid screening, we identified potassium channel tetramerization domain-containing 2 (KCTD2) as a BTB domain protein that binds to Cullin3. The interaction of Cullin3 and KCTD2 was verified using immunoprecipitation and immunofluorescence. Of interest, KCTD2 expression was markedly decreased in patient-derived glioma stem cells (GSCs) compared with non-stem glioma cells. Depletion of KCTD2 using a KCTD2-specific short-hairpin RNA in U87MG glioma cells and primary Ink4a/Arf-deficient murine astrocytes markedly increased self-renewal activity in addition with an increased expression of stem cell markers, and mouse in vivo intracranial tumor growth. As an underlying mechanism for these KCTD2-mediated phenotypic changes, we demonstrated that KCTD2 interacts with c-Myc, which is a key stem cell factor, and causes c-Myc protein degradation by ubiquitination. As a result, KCTD2 depletion acquires GSC features and affects aerobic glycolysis via expression changes in glycolysis-associated genes through c-Myc protein regulation. Of clinical significance was our finding that patients having a profile of KCTD2 mRNA-low and c-Myc gene signature-high, but not KCTD2 mRNA-low and c-Myc mRNA-high, are strongly associated with poor prognosis. This study describes a novel regulatory mode of c-Myc protein in malignant gliomas and provides a potential framework for glioma therapy by targeting c-Myc function. PMID:28060381

  13. Role of two adaptor molecules SLP-76 and LAT in the PI3K signaling pathway in activated T cells.

    PubMed

    Shim, Eun Kyung; Jung, Seung Hee; Lee, Jong Ran

    2011-03-01

    Previously, we identified p85, a subunit of PI3K, as one of the molecules that interacts with the N-terminal region of Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76). We also demonstrated that tyrosine phosphorylation either at the 113 and/or 128 position is sufficient for the association of SLP-76 with the Src homology 2 domain near the N terminus of p85. The present study further examines the role of the association of these two molecules on the activation of PI3K signaling cascade. Experiments were done to determine the role of SLP-76, either wild-type, tyrosine mutants, or membrane-targeted forms of various SLP-76 constructs, on the membrane localization and phosphorylation of Akt, which is an event downstream of PI3K activation. Reconstitution studies with these various SLP-76 constructs in a Jurkat variant cell line that lacks SLP-76 or linker for activation of T cells (LAT) show that the activation of PI3K pathway following TCR ligation requires both SLP-76 and LAT adaptor proteins. The results suggest that SLP-76 associates with p85 after T cell activation and that LAT recruits this complex to the membrane, leading to Akt activation.

  14. A Novel Interaction between the SH2 Domain of Signaling Adaptor Protein Nck-1 and the Upstream Regulator of the Rho Family GTPase Rac1 Engulfment and Cell Motility 1 (ELMO1) Promotes Rac1 Activation and Cell Motility*

    PubMed Central

    Zhang, Guo; Chen, Xia; Qiu, Fanghua; Zhu, Fengxin; Lei, Wenjing; Nie, Jing

    2014-01-01

    Nck family proteins function as adaptors to couple tyrosine phosphorylation signals to actin cytoskeleton reorganization. Several lines of evidence indicate that Nck family proteins involve in regulating the activity of Rho family GTPases. In the present study, we characterized a novel interaction between Nck-1 with engulfment and cell motility 1 (ELMO1). GST pull-down and co-immunoprecipitation assay demonstrated that the Nck-1-ELMO1 interaction is mediated by the SH2 domain of Nck-1 and the phosphotyrosine residues at position 18, 216, 395, and 511 of ELMO1. A R308K mutant of Nck-1 (in which the SH2 domain was inactive), or a 4YF mutant of ELMO1 lacking these four phosphotyrosine residues, diminished Nck-1-ELMO1 interaction. Conversely, tyrosine phosphatase inhibitor treatment and overexpression of Src family kinase Hck significantly enhanced Nck-1-ELMO1 interaction. Moreover, wild type Nck-1, but not R308K mutant, significantly augmented the interaction between ELMO1 and constitutively active RhoG (RhoGV12A), thus promoted Rac1 activation and cell motility. Taken together, the present study characterized a novel Nck-1-ELMO1 interaction and defined a new role for Nck-1 in regulating Rac1 activity. PMID:24928514

  15. Vacuolar protein sorting mechanisms in plants.

    PubMed

    Xiang, Li; Etxeberria, Ed; Van den Ende, Wim

    2013-02-01

    Plant vacuoles are unique, multifunctional organelles among eukaryotes. Considerable new insights in plant vacuolar protein sorting have been obtained recently. The basic machinery of protein export from the endoplasmic reticulum to the Golgi and the classical route to the lytic vacuole and the protein storage vacuole shows many similarities to vacuolar/lysosomal sorting in other eukaryotes. However, as a result of its unique functions in plant defence and as a storage compartment, some plant-specific entities and sorting determinants appear to exist. The alternative post-Golgi route, as found in animals and yeast, probably exists in plants as well. Likely, adaptor protein complex 3 fulfils a central role in this route. A Golgi-independent route involving plant-specific endoplasmic reticulum bodies appears to provide sedentary organisms such as plants with extra flexibility to cope with changing environmental conditions. © 2012 The Authors Journal compilation © 2012 FEBS.

  16. Comparison of lysimeter based and calculated ASCE reference evapotranspiration in a subhumid climate

    NASA Astrophysics Data System (ADS)

    Nolz, Reinhard; Cepuder, Peter; Eitzinger, Josef

    2016-04-01

    The standardized form of the well-known FAO Penman-Monteith equation, published by the Environmental and Water Resources Institute of the American Society of Civil Engineers (ASCE-EWRI), is recommended as a standard procedure for calculating reference evapotranspiration (ET ref) and subsequently plant water requirements. Applied and validated under different climatic conditions it generally achieved good results compared to other methods. However, several studies documented deviations between measured and calculated reference evapotranspiration depending on environmental and weather conditions. Therefore, it seems generally advisable to evaluate the model under local environmental conditions. In this study, reference evapotranspiration was determined at a subhumid site in northeastern Austria from 2005 to 2010 using a large weighing lysimeter (ET lys). The measured data were compared with ET ref calculations. Daily values differed slightly during a year, at which ET ref was generally overestimated at small values, whereas it was rather underestimated when ET was large, which is supported also by other studies. In our case, advection of sensible heat proved to have an impact, but it could not explain the differences exclusively. Obviously, there were also other influences, such as seasonal varying surface resistance or albedo. Generally, the ASCE-EWRI equation for daily time steps performed best at average weather conditions. The outcomes should help to correctly interpret ET ref data in the region and in similar environments and improve knowledge on the dynamics of influencing factors causing deviations.

  17. Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus

    PubMed Central

    Masutani, Hiroshi; Yoshihara, Eiji; Masaki, So; Chen, Zhe; Yodoi, Junji

    2012-01-01

    Thioredoxin binding protein −2/ thioredoxin interacting protein is an α-arrestin protein that has attracted much attention as a multifunctional regulator. Thioredoxin binding protein −2 expression is downregulated in tumor cells and the level of thioredoxin binding protein is correlated with clinical stage of cancer. Mice with mutations or knockout of the thioredoxin binding protein −2 gene are much more susceptible to carcinogenesis than wild-type mice, indicating a role for thioredoxin binding protein −2 in cancer suppression. Studies have also revealed roles for thioredoxin binding protein −2 in metabolic control. Enhancement of thioredoxin binding protein −2 expression causes impairment of insulin sensitivity and glucose-induced insulin secretion, and β-cell apoptosis. These changes are important characteristics of type 2 diabetes mellitus. Thioredoxin binding protein −2 regulates transcription of metabolic regulating genes. Thioredoxin binding protein −2-like inducible membrane protein/ arrestin domain containing 3 regulates endocytosis of receptors such as the β2-adrenergic receptor. The α-arrestin family possesses PPXY motifs and may function as an adaptor/scaffold for NEDD family ubiquitin ligases. Elucidation of the molecular mechanisms of α-arrestin proteins would provide a new pharmacological basis for developing approaches against cancer and type 2 diabetes mellitus. PMID:22247597

  18. Addition of bone morphogenetic protein type 2 to ascorbate and β-glycerophosphate supplementation did not enhance osteogenic differentiation of human adipose-derived stem cells.

    PubMed

    Cruz, Ariadne Cristiane Cabral; Silva, Mariana Lúcia; Caon, Thiago; Simões, Cláudia Maria Oliveira

    2012-01-01

    Bone morphogenetic protein type 2 (BMP-2) is a potent local factor, which promotes bone formation and has been used as an osteogenic supplement for mesenchymal stem cells. This study evaluated the effect of a recombinant BMP-2 as well as the endogenous BMP-4 and BMP-7 in the osteogenic differentiation of adipose-derived stem cells (ASCs) in medium supplemented with ascorbate and β-glycerophosphate. Human ASCs were treated with osteogenic medium in the presence (ASCs+OM+BMP-2) or absence (ASCs+OM) of BMP-2. The alkaline phosphatase (ALP) activity was determined and the extracellular matrix mineralization was evaluated by Von Kossa staining and calcium quantification. The expressions of BMP-4, BMP-7, Smad1, Smad4, and phosphorylated Smad1/5/8 were analyzed by western blotting. Relative mRNA expressions of Smad1, BMP receptor type II (BMPR-II), osteonectin, and osteocalcin were evaluated by qPCR. ASCs+OM demonstrated the highest expression of BMP-4 and BMP-7 at days 21 and 7, respectively, the highest levels of BMPR-II mRNA expression at day 28, and the highest levels of Smad1 mRNA at days 14 and 28. ASCs+OM+BMP-2 demonstrated the highest levels of Smad1 mRNA expression at days 1, 7, and 21, the highest expression of Smad1 at day 7, the highest expression of Smad4 at day 14, the highest ALP activity at days 14 and 21, and expression of phosphorylated Smad1/5/8 at day 7. ASCs+OM and ASCs+OM+BMP2 showed similar ALP activity at days 7 and 28, similar osteonectin and osteocalcin mRNA expression at all time periods, and similar calcium depositions at all time periods. We concluded that human ASCs expressed endogenous BMP-4 and BMP-7. Moreover, the supplementation of ASCs with BMP-2 did not increase the level of osteogenic markers in the initial (ALP activity), intermediate (osteonectin and osteocalcin), or final (calcium deposition) phases, suggesting that the exogenous addition of BMP-2 did not improve the in vitro osteogenesis process of human ASCs.

  19. Addition of bone morphogenetic protein type 2 to ascorbate and β-glycerophosphate supplementation did not enhance osteogenic differentiation of human adipose-derived stem cells

    PubMed Central

    CRUZ, Ariadne Cristiane Cabral; SILVA, Mariana Lúcia; CAON, Thiago; SIMÕES, Cláudia Maria Oliveira

    2012-01-01

    Bone morphogenetic protein type 2 (BMP-2) is a potent local factor, which promotes bone formation and has been used as an osteogenic supplement for mesenchymal stem cells. Objectives This study evaluated the effect of a recombinant BMP-2 as well as the endogenous BMP-4 and BMP-7 in the osteogenic differentiation of adipose-derived stem cells (ASCs) in medium supplemented with ascorbate and β-glycerophosphate. Material and Methods Human ASCs were treated with osteogenic medium in the presence (ASCs+OM+BMP-2) or absence (ASCs+OM) of BMP-2. The alkaline phosphatase (ALP) activity was determined and the extracellular matrix mineralization was evaluated by Von Kossa staining and calcium quantification. The expressions of BMP-4, BMP-7, Smad1, Smad4, and phosphorylated Smad1/5/8 were analyzed by western blotting. Relative mRNA expressions of Smad1, BMP receptor type II (BMPR-II), osteonectin, and osteocalcin were evaluated by qPCR. Results: ASCs+OM demonstrated the highest expression of BMP-4 and BMP-7 at days 21 and 7, respectively, the highest levels of BMPR-II mRNA expression at day 28, and the highest levels of Smad1 mRNA at days 14 and 28. ASCs+OM+BMP-2 demonstrated the highest levels of Smad1 mRNA expression at days 1, 7, and 21, the highest expression of Smad1 at day 7, the highest expression of Smad4 at day 14, the highest ALP activity at days 14 and 21, and expression of phosphorylated Smad1/5/8 at day 7. ASCs+OM and ASCs+OM+BMP2 showed similar ALP activity at days 7 and 28, similar osteonectin and osteocalcin mRNA expression at all time periods, and similar calcium depositions at all time periods. Conclusions We concluded that human ASCs expressed endogenous BMP-4 and BMP-7. Moreover, the supplementation of ASCs with BMP-2 did not increase the level of osteogenic markers in the initial (ALP activity), intermediate (osteonectin and osteocalcin), or final (calcium deposition) phases, suggesting that the exogenous addition of BMP-2 did not improve the in vitro

  20. Differential Regulation of the Ascorbic Acid Transporter SVCT2 during Development and in Response to Ascorbic Acid Depletion

    PubMed Central

    Meredith, M. Elizabeth; Harrison, Fiona E.; May, James M.

    2011-01-01

    The sodium-dependent vitamin C transporter-2 (SVCT2) is the only ascorbic acid (ASC) transporter significantly expressed in brain. It is required for life and critical during brain development to supply adequate levels of ASC. To assess SVCT2 function in the developing brain, we studied time-dependent SVCT2 mRNA and protein expression in mouse brain, using liver as a comparison tissue because it is the site of ASC synthesis. We found that SVCT2 expression followed an inverse relationship with ASC levels in the developing brain. In cortex and cerebellum, ASC levels were high throughout late embryonic stages and early post-natal stages and decreased with age, whereas SVCT2 mRNA and protein levels were low in embryos and increased with age. A different response was observed for liver, in which ASC levels and SVCT2 expression were both low throughout embryogenesis and increased post-natally. To determine whether low intracellular ASC might be capable of driving SVCT2 expression, we depleted ASC by diet in adult mice unable to synthesize ASC. We observed that SVCT2 mRNA and protein were not affected by ASC depletion in brain cortex, but SVCT2 protein expression was increased by ASC depletion in the cerebellum and liver. The results suggest that expression of the SVCT2 is differentially regulated during embryonic development and in adulthood. PMID:22001929

  1. In silico analysis of Schmidtea mediterranea TIR domain-containing proteins.

    PubMed

    Tsoumtsa, Landry Laure; Sougoufora, Seynabou; Torre, Cedric; Lemichez, Emmanuel; Pontarotti, Pierre; Ghigo, Eric

    2018-09-01

    While genetic evidence points towards an absence of Toll-Like Receptors (TLRs) in Platyhelminthes, the Toll/IL-1 Receptor (TIR)-domains that drive the assembly of signalling complexes downstream TLR are present in these organisms. Here, we undertook the characterisation of the repertoire of TIR-domain containing proteins in Schmidtea mediterranea in order to gain valuable information on TLR evolution in metazoan. We report the presence of twenty proteins containing between one and two TIR domains. In addition, our phylogenetic-based reconstruction approach identified Smed-SARM and Smed-MyD88 as conserved TLR adaptors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Binding of the cSH3 domain of Grb2 adaptor to two distinct RXXK motifs within Gab1 docker employs differential mechanisms.

    PubMed

    McDonald, Caleb B; Seldeen, Kenneth L; Deegan, Brian J; Bhat, Vikas; Farooq, Amjad

    2011-01-01

    A ubiquitous component of cellular signaling machinery, Gab1 docker plays a pivotal role in routing extracellular information in the form of growth factors and cytokines to downstream targets such as transcription factors within the nucleus. Here, using isothermal titration calorimetry (ITC) in combination with macromolecular modeling (MM), we show that although Gab1 contains four distinct RXXK motifs, designated G1, G2, G3, and G4, only G1 and G2 motifs bind to the cSH3 domain of Grb2 adaptor and do so with distinct mechanisms. Thus, while the G1 motif strictly requires the PPRPPKP consensus sequence for high-affinity binding to the cSH3 domain, the G2 motif displays preference for the PXVXRXLKPXR consensus. Such sequential differences in the binding of G1 and G2 motifs arise from their ability to adopt distinct polyproline type II (PPII)- and 3(10) -helical conformations upon binding to the cSH3 domain, respectively. Collectively, our study provides detailed biophysical insights into a key protein-protein interaction involved in a diverse array of signaling cascades central to health and disease. Copyright © 2010 John Wiley & Sons, Ltd.

  3. Binding of the cSH3 Domain of Grb2 Adaptor to Two Distinct RXXK Motifs within Gab1 Docker Employs Differential Mechanisms

    PubMed Central

    McDonald, Caleb B.; Seldeen, Kenneth L.; Deegan, Brian J.; Bhat, Vikas; Farooq, Amjad

    2010-01-01

    A ubiquitous component of cellular signaling machinery, Gab1 docker plays a pivotal role in routing extracellular information in the form of growth factors and cytokines to downstream targets such as transcription factors within the nucleus. Here, using isothermal titration calorimetry (ITC) in combination with macromolecular modeling (MM), we show that although Gab1 contains four distinct RXXK motifs, designated G1, G2, G3 and G4, only G1 and G2 motifs bind to the cSH3 domain of Grb2 adaptor and do so with distinct mechanisms. Thus, while the G1 motif strictly requires the PPRPPKP consensus sequence for high-affinity binding to the cSH3 domain, the G2 motif displays preference for the PXVXRXLKPXR consensus. Such sequential differences in the binding of G1 and G2 motifs arise from their ability to adopt distinct polyproline type II (PPII)- and 310-helical conformations upon binding to the cSH3 domain, respectively. Collectively, our study provides detailed biophysical insights into a key protein-protein interaction involved in a diverse array of signaling cascades central to health and disease. PMID:21472810

  4. Programmable DNA scaffolds for spatially-ordered protein assembly.

    PubMed

    Chandrasekaran, Arun Richard

    2016-02-28

    Ever since the notion of using DNA as a material was realized, it has been employed in the construction of complex structures that facilitate the assembly of nanoparticles or macromolecules with nanometer-scale precision. Specifically, tiles fashioned from DNA strands and DNA origami sheets have been shown to be suitable as scaffolds for immobilizing proteins with excellent control over their spatial positioning. Supramolecular assembly of proteins into periodic arrays in one or more dimensions is one of the most challenging aspects in the design of scaffolds for biomolecular investigations and macromolecular crystallization. This review provides a brief overview of how various biomolecular interactions with high degree of specificity such as streptavidin-biotin, antigen-antibody, and aptamer-protein interactions have been used to fabricate linear and multidimensional assemblies of structurally intact and functional proteins. The use of DNA-binding proteins as adaptors, polyamide recognition on DNA scaffolds and oligonucleotide linkers for protein assembly are also discussed.

  5. A dual-band adaptor for infrared imaging.

    PubMed

    McLean, A G; Ahn, J-W; Maingi, R; Gray, T K; Roquemore, A L

    2012-05-01

    A novel imaging adaptor providing the capability to extend a standard single-band infrared (IR) camera into a two-color or dual-band device has been developed for application to high-speed IR thermography on the National Spherical Tokamak Experiment (NSTX). Temperature measurement with two-band infrared imaging has the advantage of being mostly independent of surface emissivity, which may vary significantly in the liquid lithium divertor installed on NSTX as compared to that of an all-carbon first wall. In order to take advantage of the high-speed capability of the existing IR camera at NSTX (1.6-6.2 kHz frame rate), a commercial visible-range optical splitter was extensively modified to operate in the medium wavelength and long wavelength IR. This two-band IR adapter utilizes a dichroic beamsplitter, which reflects 4-6 μm wavelengths and transmits 7-10 μm wavelength radiation, each with >95% efficiency and projects each IR channel image side-by-side on the camera's detector. Cutoff filters are used in each IR channel, and ZnSe imaging optics and mirrors optimized for broadband IR use are incorporated into the design. In-situ and ex-situ temperature calibration and preliminary data of the NSTX divertor during plasma discharges are presented, with contrasting results for dual-band vs. single-band IR operation.

  6. NLRP3 recruitment by NLRC4 during Salmonella infection

    PubMed Central

    Qu, Yan; Misaghi, Shahram; Newton, Kim; Maltzman, Allie; Izrael-Tomasevic, Anita; Arnott, David

    2016-01-01

    NLRC4 and NLRP3, of the NOD-like receptor (NLR) family of intracellular proteins, are expressed in innate immune cells and are thought to nucleate distinct inflammasome complexes that promote caspase-1 activation, secretion of the proinflammatory cytokines IL-1β and IL-18, and a form of cell death termed pyroptosis. We show that NLRP3 associates with NLRC4 in macrophages infected with Salmonella typhimurium or transfected with flagellin. The significance of the interaction between the NLRC4 NACHT domain and NLRP3 was revealed when Nlrc4S533A/S533A bone marrow–derived macrophages (BMDMs) expressing phosphorylation site mutant NLRC4 S533A had only a mild defect in caspase-1 activation when compared with NLRC4-deficient BMDMs. NLRC4 S533A activated caspase-1 by recruiting NLRP3 and its adaptor protein ASC. Thus, Nlrc4S533A/S533A Nlrp3−/− BMDMs more closely resembled Nlrc4−/− BMDMs in their response to S. typhimurium or flagellin. The interplay between NLRP3 and NLRC4 reveals an unexpected overlap between what had been considered distinct inflammasome scaffolds. PMID:27139490

  7. Fitting and Modeling in the ASC Data Analysis Environment

    NASA Astrophysics Data System (ADS)

    Doe, S.; Siemiginowska, A.; Joye, W.; McDowell, J.

    As part of the AXAF Science Center (ASC) Data Analysis Environment, we will provide to the astronomical community a Fitting Application. We present a design of the application in this paper. Our design goal is to give the user the flexibility to use a variety of optimization techniques (Levenberg-Marquardt, maximum entropy, Monte Carlo, Powell, downhill simplex, CERN-Minuit, and simulated annealing) and fit statistics (chi (2) , Cash, variance, and maximum likelihood); our modular design allows the user easily to add their own optimization techniques and/or fit statistics. We also present a comparison of the optimization techniques to be provided by the Application. The high spatial and spectral resolutions that will be obtained with AXAF instruments require a sophisticated data modeling capability. We will provide not only a suite of astronomical spatial and spectral source models, but also the capability of combining these models into source models of up to four data dimensions (i.e., into source functions f(E,x,y,t)). We will also provide tools to create instrument response models appropriate for each observation.

  8. Mechanisms of vasculogenesis in 3D fibrin matrices mediated by the interaction of adipose-derived stem cells and endothelial cells.

    PubMed

    Rohringer, Sabrina; Hofbauer, Pablo; Schneider, Karl H; Husa, Anna-Maria; Feichtinger, Georg; Peterbauer-Scherb, Anja; Redl, Heinz; Holnthoner, Wolfgang

    2014-10-01

    Vascularization of tissue-engineered constructs is essential to provide sufficient nutrient supply and hemostasis after implantation into target sites. Co-cultures of adipose-derived stem cells (ASC) with outgrowth endothelial cells (OEC) in fibrin gels were shown to provide an effective possibility to induce vasculogenesis in vitro. However, the mechanisms of the interaction between these two cell types remain unclear so far. The aim of this study was to evaluate differences of direct and indirect stimulation of ASC-induced vasculogenesis, the influence of ASC on network stabilization and molecular mechanisms involved in vascular structure formation. Endothelial cells (EC) were embedded in fibrin gels either containing non-coated or ASC-coated microcarrier beads as well as ASC alone. Moreover, EC-seeded constructs incubated with ASC-conditioned medium were used in addition to constructs with ASC seeded on top. Vascular network formation was visualized by green fluorescent protein expressing cells or immunostaining for CD31 and quantified. RT-qPCR of cells derived from co-cultures in fibrin was performed to evaluate changes in the expression of EC marker genes during the first week of culture. Moreover, angiogenesis-related protein levels were measured by performing angiogenesis proteome profiler arrays. The results demonstrate that proximity of endothelial cells and ASC is required for network formation and ASC stabilize EC networks by developing pericyte characteristics. We further showed that ASC induce controlled vessel growth by secreting pro-angiogenic and regulatory proteins. This study reveals angiogenic protein profiles involved in EC/ASC interactions in fibrin matrices and confirms the usability of OEC/ASC co-cultures for autologous vascular tissue engineering.

  9. Application of whey protein isolate in bone regeneration: Effects on growth and osteogenic differentiation of bone-forming cells.

    PubMed

    Douglas, Timothy E L; Vandrovcová, Marta; Kročilová, Nikola; Keppler, Julia K; Zárubová, Jana; Skirtach, Andre G; Bačáková, Lucie

    2018-01-01

    Recently, milk-derived proteins have attracted attention for applications in the biomedical field such as tissue regeneration. Whey protein isolate (WPI), especially its main component β-lactoglobulin, can modulate immunity and acts as an antioxidant, antitumor, antiviral, and antibacterial agent. There are very few reports of the application of WPI in tissue engineering, especially in bone tissue engineering. In this study, we tested the influence of different concentrations of WPI on behavior of human osteoblast-like Saos-2 cells, human adipose tissue-derived stem cells (ASC), and human neonatal dermal fibroblasts (FIB). The positive effect on growth was apparent for Saos-2 cells and FIB but not for ASC. However, the expression of markers characteristic for early osteogenic cell differentiation [type-I collagen (COL1) and alkaline phosphatase (ALP)] as well as ALP activity, increased dose-dependently in ASC. Importantly, Saos-2 cells were able to deposit calcium in the presence of WPI, even in a proliferation medium without other supplements that support osteogenic cell differentiation. The results indicate that, depending on the cell type, WPI can act as an enhancer of cell proliferation and osteogenic differentiation. Therefore, enrichment of biomaterials for bone regeneration with WPI seems a promising approach, especially due to the low cost of WPI. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Semi-quantitative HPV viral load in patients with ASC-US cytology: viral load correlates strongly with the presence of CIN but only weakly with its severity.

    PubMed

    Lee, S J; Kim, W Y; Shim, S-H; Cho, S-H; Oh, I K; Hwang, T S; Kim, S-N; Kang, S-B

    2015-02-01

    This study was performed to evaluate the prognostic significance of human papillomavirus (HPV) viral load, expressed in relative light units (RLUs), in patients with atypical squamous cells of undetermined significance (ASC-US) cytology. A total of 349 ASC-US cases with HPV infection, detected using Hybrid Capture 2, were diagnosed histologically. A colposcopically directed punch biopsy was performed on acetowhite areas. Endocervical curettage biopsy and random cervical punch biopsy in four quadrants were performed in unsatisfactory colposcopy cases. In negative colposcopy cases, random cervical punch biopsy in four quadrants was performed. Case with no cervical intraepithelial neoplasia (CIN), CIN1 and CIN2+ (CIN2/CIN3) accounted for 162, 135 and 52 cases, respectively. The mean age showed no difference among the three groups (P = 0.510). There was a significant correlation between RLU values and the presence of CIN (P < 0.001), but less so with its severity: the median RLU values for negative, CIN1 and CIN2+ cases were 42.68, 146.45 and 156.43, respectively, with widely overlapping confidence intervals. The cut-off values of RLU to detect CIN1+ and CIN2+ were 6.73 and 45.64, respectively. The HPV viral load in ASC-US cases showed a significant correlation with the presence of CIN and less so with its severity, and showed large overlap of viral loads between grades of CIN. In ASC-US cases, RLU was not an accurate predictor of immediate high-grade CIN. © 2014 John Wiley & Sons Ltd.

  11. Analysis of the Material Properties of Early Chondrogenic Differentiated Adipose-Derived Stromal Cells (ASC) Using an in vitro Three-dimensional Micromass Culture System

    PubMed Central

    Xu, Yue; Balooch, Guive; Chiou, Michael; Bekerman, Elena; Ritchie, Robert O.; Longaker, Michael T.

    2009-01-01

    Cartilage is an avascular tissue with only a limited potential to heal and chondrocytes in vitro have poor proliferative capacity. Recently, adipose-derived stromal cells (ASC) have demonstrated a great potential for application to tissue engineering due to their ability to differentiate into cartilage, bone, and fat. In this study, we have utilized a high density three-dimensional (3D) micromass model system of early chondrogenesis with ASC. The material properties of these micromasses showed a significant increase in dynamic and static elastic modulus during the early chondrogenic differentiation process. These data suggest that the 3D micromass culture system represents an in vitro model of early chondrogenesis with dynamic cell signaling interactions associated with the mechanical properties of chondrocyte differentiation. PMID:17543281

  12. Analysis of the material properties of early chondrogenic differentiated adipose-derived stromal cells (ASC) using an in vitro three-dimensional micromass culture system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yue; Balooch, Guive; Chiou, Michael

    2007-07-27

    Cartilage is an avascular tissue with only a limited potential to heal and chondrocytes in vitro have poor proliferative capacity. Recently, adipose-derived stromal cells (ASC) have demonstrated a great potential for application to tissue engineering due to their ability to differentiate into cartilage, bone, and fat. In this study, we have utilized a high density three-dimensional (3D) micromass model system of early chondrogenesis with ASC. The material properties of these micromasses showed a significant increase in dynamic and static elastic modulus during the early chondrogenic differentiation process. These data suggest that the 3D micromass culture system represents an in vitromore » model of early chondrogenesis with dynamic cell signaling interactions associated with the mechanical properties of chondrocyte differentiation.« less

  13. Evidence for the interaction of the regulatory protein Ki-1/57 with p53 and its interacting proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nery, Flavia C.; Departamento de Genetica e Evolucao, Universidade Estadual de Campinas, Campinas, SP; Rui, Edmilson

    Ki-1/57 is a cytoplasmic and nuclear phospho-protein of 57 kDa and interacts with the adaptor protein RACK1, the transcription factor MEF2C, and the chromatin remodeling factor CHD3, suggesting that it might be involved in the regulation of transcription. Here, we describe yeast two-hybrid studies that identified a total of 11 proteins interacting with Ki-1/57, all of which interact or are functionally associated with p53 or other members of the p53 family of proteins. We further found that Ki-1/57 is able to interact with p53 itself in the yeast two-hybrid system when the interaction was tested directly. This interaction could bemore » confirmed by pull down assays with purified proteins in vitro and by reciprocal co-immunoprecipitation assays from the human Hodgkin analogous lymphoma cell line L540. Furthermore, we found that the phosphorylation of p53 by PKC abolishes its interaction with Ki-1/57 in vitro.« less

  14. Small molecules targeting heterotrimeric G proteins.

    PubMed

    Ayoub, Mohammed Akli

    2018-05-05

    G protein-coupled receptors (GPCRs) represent the largest family of cell surface receptors regulating many human and animal physiological functions. Their implication in human pathophysiology is obvious with almost 30-40% medical drugs commercialized today directly targeting GPCRs as molecular entities. However, upon ligand binding GPCRs signal inside the cell through many key signaling, adaptor and regulatory proteins, including various classes of heterotrimeric G proteins. Therefore, G proteins are considered interesting targets for the development of pharmacological tools that are able to modulate their interaction with the receptors, as well as their activation/deactivation processes. In this review, old attempts and recent advances in the development of small molecules that directly target G proteins will be described with an emphasis on their utilization as pharmacological tools to dissect the mechanisms of activation of GPCR-G protein complexes. These molecules constitute a further asset for research in the "hot" areas of GPCR biology, areas such as multiple G protein coupling/signaling, GPCR-G protein preassembly, and GPCR functional selectivity or bias. Moreover, this review gives a particular focus on studies in vitro and in vivo supporting the potential applications of such small molecules in various GPCR/G protein-related diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Protein-protein interactions within late pre-40S ribosomes.

    PubMed

    Campbell, Melody G; Karbstein, Katrin

    2011-01-20

    Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps.

  16. Protein kinase A-dependent increase in WAVE2 expression induced by the focal adhesion protein vinexin.

    PubMed

    Mitsushima, Masaru; Sezaki, Takuhito; Akahane, Rie; Ueda, Kazumitsu; Suetsugu, Shiro; Takenawa, Tadaomi; Kioka, Noriyuki

    2006-03-01

    The focal adhesion protein vinexin is a member of a family of adaptor proteins that are thought to participate in the regulation of cell adhesion, cytoskeletal reorganization, and growth factor signaling. Here, we show that vinexin beta increases the amount of and reduces the mobility on SDS-PAGE of Wiskott-Aldrich syndrome protein family verprolin-homologous protein (WAVE) 2 protein, which is a key factor modulating actin polymerization in migrating cells. This mobility retardation disappeared after in vitro phosphatase treatment. Co-immunoprecipitation assays revealed the interaction of vinexin beta with WAVE2 as well as WAVE1 and N-WASP. Vinexin beta interacts with the proline-rich region of WAVE2 through the first and second SH3 domains of vinexin beta. Mutations disrupting the interaction impaired the ability of vinexin beta to increase the amount of WAVE2 protein. Treatments with proteasome inhibitors increased the amount of WAVE2, but did not have an additive effect with vinexin beta. Inhibition of protein kinase A (PKA) activity suppressed the vinexin-induced increase in WAVE2 protein, while activation of PKA increased WAVE2 expression without vinexin beta. These results suggest that vinexin beta regulates the proteasome-dependent degradation of WAVE2 in a PKA-dependent manner.

  17. Comparison of sum-of-hourly and daily time step standardized ASCE Penman-Monteith reference evapotranspiration

    NASA Astrophysics Data System (ADS)

    Djaman, Koffi; Irmak, Suat; Sall, Mamadou; Sow, Abdoulaye; Kabenge, Isa

    2017-10-01

    The objective of this study was to quantify differences associated with using 24-h time step reference evapotranspiration (ETo), as compared with the sum of hourly ETo computations with the standardized ASCE Penman-Monteith (ASCE-PM) model for semi-arid dry conditions at Fanaye and Ndiaye (Senegal) and semiarid humid conditions at Sapu (The Gambia) and Kankan (Guinea). The results showed that there was good agreement between the sum of hourly ETo and daily time step ETo at all four locations. The daily time step overestimated the daily ETo relative to the sum of hourly ETo by 1.3 to 8% for the whole study periods. However, there is location and monthly dependence of the magnitude of ETo values and the ratio of the ETo values estimated by both methods. Sum of hourly ETo tends to give higher ETo during winter time at Fanaye and Sapu, while the daily ETo was higher from March to November at the same weather stations. At Ndiaye and Kankan, daily time step estimates of ETo were high during the year. The simple linear regression slopes between the sum of 24-h ETo and the daily time step ETo at all weather stations varied from 1.02 to 1.08 with high coefficient of determination (R 2 ≥ 0.87). Application of the hourly ETo estimation method might help on accurate ETo estimation to meet irrigation requirement under precision agriculture.

  18. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component.

    PubMed

    Shi, Hexin; Wang, Ying; Li, Xiaohong; Zhan, Xiaoming; Tang, Miao; Fina, Maggy; Su, Lijing; Pratt, David; Bu, Chun Hui; Hildebrand, Sara; Lyon, Stephen; Scott, Lindsay; Quan, Jiexia; Sun, Qihua; Russell, Jamie; Arnett, Stephanie; Jurek, Peter; Chen, Ding; Kravchenko, Vladimir V; Mathison, John C; Moresco, Eva Marie Y; Monson, Nancy L; Ulevitch, Richard J; Beutler, Bruce

    2016-03-01

    The NLRP3 inflammasome responds to microbes and danger signals by processing and activating proinflammatory cytokines, including interleukin 1β (IL-1β) and IL-18. We found here that activation of the NLRP3 inflammasome was restricted to interphase of the cell cycle by NEK7, a serine-threonine kinase previously linked to mitosis. Activation of the NLRP3 inflammasome required NEK7, which bound to the leucine-rich repeat domain of NLRP3 in a kinase-independent manner downstream of the induction of mitochondrial reactive oxygen species (ROS). This interaction was necessary for the formation of a complex containing NLRP3 and the adaptor ASC, oligomerization of ASC and activation of caspase-1. NEK7 promoted the NLRP3-dependent cellular inflammatory response to intraperitoneal challenge with monosodium urate and the development of experimental autoimmune encephalitis in mice. Our findings suggest that NEK7 serves as a cellular switch that enforces mutual exclusivity of the inflammasome response and cell division.

  19. Biophysical Basis of the Binding of WWOX Tumor Suppressor to WBP1 and WBP2 Adaptors

    PubMed Central

    McDonald, Caleb B.; Buffa, Laura; Bar-Mag, Tomer; Salah, Zaidoun; Bhat, Vikas; Mikles, David C.; Deegan, Brian J.; Seldeen, Kenneth L.; Malhotra, Arun; Sudol, Marius; Aqeilan, Rami I.; Nawaz, Zafar; Farooq, Amjad

    2012-01-01

    The WWOX tumor suppressor participates in a diverse array of cellular activities by virtue of its ability to recognize WBP1 and WBP2 signaling adaptors among a wide variety of other ligands. Herein, using a multitude of biophysical techniques, we provide evidence that while the WW1 domain of WWOX binds to PPXY motifs within WBP1 and WBP2 in a physiologically-relevant manner, the WW2 domain exhibits no affinity toward any of these PPXY motifs. Importantly, our data suggest that while R25/W44 residues located within the binding pocket of triple-stranded β-fold of WW1 domain are critical for the recognition of PPXY ligands, they are replaced by the chemically-distinct E66/Y85 duo at structurally-equivalent positions within the WW2 domain, thereby accounting for its failure to bind PPXY ligands. Predictably, introduction of E66R/Y85W double-substitution within the WW2 domain not only results in gain-of-function but the resulting engineered domain, hereinafter referred to as WW2_RW, also appears to be a much stronger binding partner of WBP1 and WBP2 than the wild type WW1 domain. We also show that while the WW1 domain is structurally disordered and folds upon ligand binding, the WW2 domain not only adopts a fully structured conformation but also aids stabilization and ligand binding to WW1 domain. This salient observation implies that the WW2 domain likely serves as a chaperone to augment the physiological function of WW1 domain within WWOX. Collectively, our study lays the groundwork for understanding the molecular basis of a key protein-protein interaction pertinent to human health and disease. PMID:22634283

  20. A Distributed Set of Interactions Controls μ2 Functionality in the Role of AP-2 as a Sorting Adaptor in Synaptic Vesicle Endocytosis*♦

    PubMed Central

    Kim, Sung Hyun; Ryan, Timothy A.

    2009-01-01

    The mechanisms of how, following exocytosis, the approximately nine types of synaptic vesicle (SV) transmembrane proteins are accurately resorted to form SVs are poorly understood. The time course of SV endocytosis is very sensitive to perturbations in clathrin and dynamin, supporting the model that SV endocytosis occurs through a clathrin-mediated pathway. We recently demonstrated that removal of the clathrin adaptor protein AP-2, the key protein thought to coordinate cargo selection into clathrin-coated pits, results in a significant impairment in endocytosis kinetics. Endocytosis, however, still proceeds in the absence of AP-2, bringing into question the role of AP-2 in cargo sorting in this process. Using quantitative endocytosis assays at nerve terminals, we examined how endocytosis depends on the integrity of μ2 function. Our experiments indicate that no single perturbation in μ2 prevents restoration of endocytic function when mutated μ2 replaces native μ2, whereas introduction of multiple distributed mutations significantly impairs endocytosis. We also examined whether the presence of AP-2 is important for the functionality of the previously identified endocytic motif in an SV cargo protein, the dileucine motif in vGlut-1. These data show that while mutations in the dileucine motif slow the retrieval of vGlut-1, they only do so in the presence of AP-2. These data thus indicate that AP-2 plays a role in cargo selection but that no single aspect of μ2 function is critical, implying that a more distributed network of interactions supports AP-2 function in SV endocytosis. PMID:19762466

  1. The conservation pattern of short linear motifs is highly correlated with the function of interacting protein domains.

    PubMed

    Ren, Siyuan; Yang, Guang; He, Youyu; Wang, Yiguo; Li, Yixue; Chen, Zhengjun

    2008-10-01

    Many well-represented domains recognize primary sequences usually less than 10 amino acids in length, called Short Linear Motifs (SLiMs). Accurate prediction of SLiMs has been difficult because they are short (often < 10 amino acids) and highly degenerate. In this study, we combined scoring matrixes derived from peptide library and conservation analysis to identify protein classes enriched of functional SLiMs recognized by SH2, SH3, PDZ and S/T kinase domains. Our combined approach revealed that SLiMs are highly conserved in proteins from functional classes that are known to interact with a specific domain, but that they are not conserved in most other protein groups. We found that SLiMs recognized by SH2 domains were highly conserved in receptor kinases/phosphatases, adaptor molecules, and tyrosine kinases/phosphatases, that SLiMs recognized by SH3 domains were highly conserved in cytoskeletal and cytoskeletal-associated proteins, that SLiMs recognized by PDZ domains were highly conserved in membrane proteins such as channels and receptors, and that SLiMs recognized by S/T kinase domains were highly conserved in adaptor molecules, S/T kinases/phosphatases, and proteins involved in transcription or cell cycle control. We studied Tyr-SLiMs recognized by SH2 domains in more detail, and found that SH2-recognized Tyr-SLiMs on the cytoplasmic side of membrane proteins are more highly conserved than those on the extra-cellular side. Also, we found that SH2-recognized Tyr-SLiMs that are associated with SH3 motifs and a tyrosine kinase phosphorylation motif are more highly conserved. The interactome of protein domains is reflected by the evolutionary conservation of SLiMs recognized by these domains. Combining scoring matrixes derived from peptide libraries and conservation analysis, we would be able to find those protein groups that are more likely to interact with specific domains.

  2. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection

    PubMed Central

    Pérez-Núñez, Daniel; García-Urdiales, Eduardo; Martínez-Bonet, Marta; Nogal, María L.; Barroso, Susana; Revilla, Yolanda; Madrid, Ricardo

    2015-01-01

    African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity. PMID:25915900

  3. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection.

    PubMed

    Pérez-Núñez, Daniel; García-Urdiales, Eduardo; Martínez-Bonet, Marta; Nogal, María L; Barroso, Susana; Revilla, Yolanda; Madrid, Ricardo

    2015-01-01

    African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity.

  4. DoD Electronic Data Interchange (EDI) Convention: ASC X12 Transaction Set 832 Price Sales Catalog (Version 003030)

    DTIC Science & Technology

    1992-12-01

    DATA DES . ELEMENT NAME ATlNPUTES Conditional TD401 152 Special Handling Code C ID 2/3 Code specifying special transportation handling instructions. HAN...Executhre Age"t for Eketronic Conmnerce/Electmnlc Dots lnterchange/Protection of Logistica Undaasslfled/Serssltlve Systerr Executive Agent for EC/EDI...PRICEISALES CATALOG ANSI ASC X12 VERSIONIRELEASE 003030DOD_ 7 Communications Transport Protocol ISA /_Interchange Control Header GS/ Functional Group Header

  5. Role of the clathrin adaptor PICALM in normal hematopoiesis and polycythemia vera pathophysiology.

    PubMed

    Ishikawa, Yuichi; Maeda, Manami; Pasham, Mithun; Aguet, Francois; Tacheva-Grigorova, Silvia K; Masuda, Takeshi; Yi, Hai; Lee, Sung-Uk; Xu, Jian; Teruya-Feldstein, Julie; Ericsson, Maria; Mullally, Ann; Heuser, John; Kirchhausen, Tom; Maeda, Takahiro

    2015-04-01

    Clathrin-dependent endocytosis is an essential cellular process shared by all cell types. Despite this, precisely how endocytosis is regulated in a cell-type-specific manner and how this key pathway functions physiologically or pathophysiologically remain largely unknown. PICALM, which encodes the clathrin adaptor protein PICALM, was originally identified as a component of the CALM/AF10 leukemia oncogene. Here we show, by employing a series of conditional Picalm knockout mice, that PICALM critically regulates transferrin uptake in erythroid cells by functioning as a cell-type-specific regulator of transferrin receptor endocytosis. While transferrin receptor is essential for the development of all hematopoietic lineages, Picalm was dispensable for myeloid and B-lymphoid development. Furthermore, global Picalm inactivation in adult mice did not cause gross defects in mouse fitness, except for anemia and a coat color change. Freeze-etch electron microscopy of primary erythroblasts and live-cell imaging of murine embryonic fibroblasts revealed that Picalm function is required for efficient clathrin coat maturation. We showed that the PICALM PIP2 binding domain is necessary for transferrin receptor endocytosis in erythroblasts and absolutely essential for erythroid development from mouse hematopoietic stem/progenitor cells in an erythroid culture system. We further showed that Picalm deletion entirely abrogated the disease phenotype in a Jak2(V617F) knock-in murine model of polycythemia vera. Our findings provide new insights into the regulation of cell-type-specific transferrin receptor endocytosis in vivo. They also suggest a new strategy to block cellular uptake of transferrin-bound iron, with therapeutic potential for disorders characterized by inappropriate red blood cell production, such as polycythemia vera. Copyright© Ferrata Storti Foundation.

  6. Integrin-linked kinase: a Scaffold protein unique among its ilk.

    PubMed

    Dagnino, Lina

    2011-06-01

    Integrin-linked kinase (ILK) is a scaffolding protein with central roles in tissue development and homeostasis. Much debate has focused on whether ILK is a bona fide or a pseudo- kinase. This aspect of ILK function has been complicated by the large volumes of conflicting observations obtained from a wide variety of experimental approaches, from in vitro models, to analyses in invertebrates and in mammals. Key findings in support or against the notion that ILK is catalytically active are summarized. The importance of ILK as an adaptor protein is well established, and defining its role as a signaling hub will be the next key step to understand its distinct biological roles across tissues and species.

  7. The adaptor molecule RIAM integrates signaling events critical for integrin-mediated control of immune function and cancer progression.

    PubMed

    Patsoukis, Nikolaos; Bardhan, Kankana; Weaver, Jessica D; Sari, Duygu; Torres-Gomez, Alvaro; Li, Lequn; Strauss, Laura; Lafuente, Esther M; Boussiotis, Vassiliki A

    2017-08-22

    Lymphocyte activation requires adhesion to antigen-presenting cells. This is a critical event linking innate and adaptive immunity. Lymphocyte adhesion is accomplished through LFA-1, which must be activated by a process referred to as inside-out integrin signaling. Among the few signaling molecules that have been implicated in inside-out integrin activation in hematopoietic cells are the small guanosine triphosphatase (GTPase) Rap1 and its downstream effector Rap1-interacting molecule (RIAM), a multidomain protein that defined the Mig10-RIAM-lamellipodin (MRL) class of adaptor molecules. Through its various domains, RIAM is a critical node of signal integration for activation of T cells, recruits monomeric and polymerized actin to drive actin remodeling and cytoskeletal reorganization, and promotes inside-out integrin signaling in T cells. As a regulator of inside-out integrin activation, RIAM affects multiple functions of innate and adaptive immunity. The effects of RIAM on cytoskeletal reorganization and integrin activation have implications in cell migration and trafficking of cancer cells. We provide an overview of the structure and interactions of RIAM, and we discuss the implications of RIAM functions in innate and adaptive immunity and cancer. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Regulation of synaptic vesicle recycling by complex formation between intersectin 1 and the clathrin adaptor complex AP2

    PubMed Central

    Pechstein, Arndt; Bacetic, Jelena; Vahedi-Faridi, Ardeschir; Gromova, Kira; Sundborger, Anna; Tomlin, Nikolay; Krainer, Georg; Vorontsova, Olga; Schäfer, Johannes G.; Owe, Simen G.; Cousin, Michael A.; Saenger, Wolfram; Shupliakov, Oleg; Haucke, Volker

    2010-01-01

    Clathrin-mediated synaptic vesicle (SV) recycling involves the spatiotemporally controlled assembly of clathrin coat components at phosphatidylinositiol (4, 5)-bisphosphate [PI(4,5)P2]-enriched membrane sites within the periactive zone. Such spatiotemporal control is needed to coordinate SV cargo sorting with clathrin/AP2 recruitment and to restrain membrane fission and synaptojanin-mediated uncoating until membrane deformation and clathrin coat assembly are completed. The molecular events underlying these control mechanisms are unknown. Here we show that the endocytic SH3 domain-containing accessory protein intersectin 1 scaffolds the endocytic process by directly associating with the clathrin adaptor AP2. Acute perturbation of the intersectin 1-AP2 interaction in lamprey synapses in situ inhibits the onset of SV recycling. Structurally, complex formation can be attributed to the direct association of hydrophobic peptides within the intersectin 1 SH3A-B linker region with the “side sites” of the AP2 α- and β-appendage domains. AP2 appendage association of the SH3A-B linker region inhibits binding of the inositol phosphatase synaptojanin 1 to intersectin 1. These data identify the intersectin-AP2 complex as an important regulator of clathrin-mediated SV recycling in synapses. PMID:20160082

  9. Dengue Virus Subverts Host Innate Immunity by Targeting Adaptor Protein MAVS

    PubMed Central

    He, Zhenjian; Zhu, Xun; Wen, Weitao; Yuan, Jie; Hu, Yiwen; Chen, Jiahui; An, Shu; Dong, Xinhuai; Lin, Cuiji; Yu, Jianchen; Wu, Jueheng; Yang, Yi; Cai, Junchao; Li, Jun

    2016-01-01

    ABSTRACT Dengue virus (DENV) is the most common mosquito-borne virus infecting humans and is currently a serious global health challenge. To establish infection in its host cells, DENV must subvert the production and/or antiviral effects of interferon (IFN). The aim of this study was to understand the mechanisms by which DENV suppresses IFN production. We determined that DENV NS4A interacts with mitochondrial antiviral signaling protein (MAVS), which was previously found to activate NF-κB and IFN regulatory factor 3 (IRF3), thus inducing type I IFN in the mitochondrion-associated endoplasmic reticulum membranes (MAMs). We further demonstrated that NS4A is associated with the N-terminal CARD-like (CL) domain and the C-terminal transmembrane (TM) domain of MAVS. This association prevented the binding of MAVS to RIG-I, resulting in the repression of RIG-I-induced IRF3 activation and, consequently, the abrogation of IFN production. Collectively, our findings illustrate a new molecular mechanism by which DENV evades the host immune system and suggest new targets for anti-DENV strategies. IMPORTANCE Type I interferon (IFN) constitutes the first line of host defense against invading viruses. To successfully establish infection, dengue virus (DENV) must counteract either the production or the function of IFN. The mechanism by which DENV suppresses IFN production is poorly understood and characterized. In this study, we demonstrate that the DENV NS4A protein plays an important role in suppressing interferon production through binding MAVS and disrupting the RIG-I–MAVS interaction in mitochondrion-associated endoplasmic reticulum membranes (MAMs). Our study reveals that MAVS is a novel host target of NS4A and provides a molecular mechanism for DENV evasion of the host innate immune response. These findings have important implications for understanding the pathogenesis of DENV and may provide new insights into using NS4A as a therapeutic and/or prevention target. PMID

  10. Protein-Protein Interactions within Late Pre-40S Ribosomes

    PubMed Central

    Campbell, Melody G.; Karbstein, Katrin

    2011-01-01

    Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps. PMID:21283762

  11. DoD Electronic Data Interchange (EDI) Convention: ASC X12 Transaction Set 859 Generic Freight Invoice (Version 003020)

    DTIC Science & Technology

    1993-04-01

    FREIGHT INVOICE (VERSION 003020) FORMATTING INVOICE INFORMATION FOR THE DoD TRANSPORTATION PAYMENT SYSTEM USING THE X1 2.55 TRANSACTION SET 859 GENERIC...GBYERIC FREIGHT NIVOICE EDI CONVENTON 859.003020 * Contents FORMATTING INVOICE INFORMATION FOR THE DoD TRANSPORTATION PAYMENT SYSTEM USING THE Xl 2.55... transportation invoice using the ASC X12.55 Transaction Set 859 Generic Freight Invoice (003020). It contains information for the design of interface

  12. The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-κB.

    PubMed

    Schneider, Monika; Zimmermann, Albert G; Roberts, Reid A; Zhang, Lu; Swanson, Karen V; Wen, Haitao; Davis, Beckley K; Allen, Irving C; Holl, Eda K; Ye, Zhengmao; Rahman, Adeeb H; Conti, Brian J; Eitas, Timothy K; Koller, Beverly H; Ting, Jenny P-Y

    2012-09-01

    Several members of the NLR family of sensors activate innate immunity. In contrast, we found here that NLRC3 inhibited Toll-like receptor (TLR)-dependent activation of the transcription factor NF-κB by interacting with the TLR signaling adaptor TRAF6 to attenuate Lys63 (K63)-linked ubiquitination of TRAF6 and activation of NF-κB. We used bioinformatics to predict interactions between NLR and TRAF proteins, including interactions of TRAF with NLRC3. In vivo, macrophage expression of Nlrc3 mRNA was diminished by the administration of lipopolysaccharide (LPS) but was restored when cellular activation subsided. To assess biologic relevance, we generated Nlrc3(-/-) mice. LPS-treated Nlrc3(-/-) macrophages had more K63-ubiquitinated TRAF6, nuclear NF-κB and proinflammatory cytokines. Finally, LPS-treated Nlrc3(-/-) mice had more signs of inflammation. Thus, signaling via NLRC3 and TLR constitutes a negative feedback loop. Furthermore, prevalent NLR-TRAF interactions suggest the formation of a 'TRAFasome' complex.

  13. Differential Association of the Na+/H+ Exchanger Regulatory Factor (NHERF) Family of Adaptor Proteins with the Raft-and the Non-Raft Brush Border Membrane Fractions of NHE3

    PubMed Central

    Sultan, Ayesha; Luo, Min; Yu, Qin; Riederer, Brigitte; Xia, Weiliang; Chen, Mingmin; Lissner, Simone; Gessner, Johannes E.; Donowitz, Mark; Yun, C. Chris; deJonge, Hugo; Lamprecht, Georg; Seidler, Ursula

    2014-01-01

    Background/Aims Trafficking, brush border membrane (BBM) retention, and signal-specific regulation of the Na+/H+ exchanger NHE3 is regulated by the Na+/H+ Exchanger Regulatory Factor (NHERF) family of PDZ-adaptor proteins, which enable the formation of multiprotein complexes. It is unclear, however, what determines signal specificity of these NHERFs. Thus, we studied the association of NHE3, NHERF1 (EBP50), NHERF2 (E3KARP), and NHERF3 (PDZK1) with lipid rafts in murine small intestinal BBM. Methods Detergent resistant membranes (“lipid rafts”) were isolated by floatation of Triton X-incubated small intestinal BBM from a variety of knockout mouse strains in an Optiprep step gradient. Acid-activated NHE3 activity was measured fluorometrically in BCECF-loaded microdissected villi, or by assessment of CO2/HCO3− mediated increase in fluid absorption in perfused jejunal loops of anethetized mice. Results NHE3 was found to partially associate with lipid rafts in the native BBM, and NHE3 raft association had an impact on NHE3 transport activity and regulation in vivo. NHERF1, 2 and 3 were differentially distributed to rafts and non-rafts, with NHERF2 being most raft-associated and NHERF3 entirely non-raft associated. NHERF2 expression enhanced the localization of NHE3 to membrane rafts. The use of acid sphingomyelinase-deficient mice, which have altered membrane lipid as well as lipid raft composition, allowed us to test the validity of the lipid raft concept in vivo. Conclusions The differential association of the NHERFs with the raft-associated and the non-raft fraction of NHE3 in the brush border membrane is one component of the differential and signal-specific NHE3 regulation by the different NHERFs. PMID:24297041

  14. Differential association of the Na+/H+ Exchanger Regulatory Factor (NHERF) family of adaptor proteins with the raft- and the non-raft brush border membrane fractions of NHE3.

    PubMed

    Sultan, Ayesha; Luo, Min; Yu, Qin; Riederer, Brigitte; Xia, Weiliang; Chen, Mingmin; Lissner, Simone; Gessner, Johannes E; Donowitz, Mark; Yun, C Chris; deJonge, Hugo; Lamprecht, Georg; Seidler, Ursula

    2013-01-01

    Trafficking, brush border membrane (BBM) retention, and signal-specific regulation of the Na+/H+ exchanger NHE3 is regulated by the Na+/H+ Exchanger Regulatory Factor (NHERF) family of PDZ-adaptor proteins, which enable the formation of multiprotein complexes. It is unclear, however, what determines signal specificity of these NHERFs. Thus, we studied the association of NHE3, NHERF1 (EBP50), NHERF2 (E3KARP), and NHERF3 (PDZK1) with lipid rafts in murine small intestinal BBM. Detergent resistant membranes ("lipid rafts") were isolated by floatation of Triton X-incubated small intestinal BBM from a variety of knockout mouse strains in an Optiprep step gradient. Acid-activated NHE3 activity was measured fluorometrically in BCECF-loaded microdissected villi, or by assessment of CO2/HCO3(-) mediated increase in fluid absorption in perfused jejunal loops of anethetized mice. NHE3 was found to partially associate with lipid rafts in the native BBM, and NHE3 raft association had an impact on NHE3 transport activity and regulation in vivo. NHERF1, 2 and 3 were differentially distributed to rafts and non-rafts, with NHERF2 being most raft-associated and NHERF3 entirely non-raft associated. NHERF2 expression enhanced the localization of NHE3 to membrane rafts. The use of acid sphingomyelinase-deficient mice, which have altered membrane lipid as well as lipid raft composition, allowed us to test the validity of the lipid raft concept in vivo. The differential association of the NHERFs with the raft-associated and the non-raft fraction of NHE3 in the brush border membrane is one component of the differential and signal-specific NHE3 regulation by the different NHERFs. © 2013 S. Karger AG, Basel.

  15. HIV-1 Vpr Induces the Degradation of ZIP and sZIP, Adaptors of the NuRD Chromatin Remodeling Complex, by Hijacking DCAF1/VprBP

    PubMed Central

    Maudet, Claire; Sourisce, Adèle; Dragin, Loïc; Lahouassa, Hichem; Rain, Jean-Christophe; Bouaziz, Serge; Ramirez, Bertha Cécilia; Margottin-Goguet, Florence

    2013-01-01

    The Vpr protein from type 1 and type 2 Human Immunodeficiency Viruses (HIV-1 and HIV-2) is thought to inactivate several host proteins through the hijacking of the DCAF1 adaptor of the Cul4A ubiquitin ligase. Here, we identified two transcriptional regulators, ZIP and sZIP, as Vpr-binding proteins degraded in the presence of Vpr. ZIP and sZIP have been shown to act through the recruitment of the NuRD chromatin remodeling complex. Strikingly, chromatin is the only cellular fraction where Vpr is present together with Cul4A ubiquitin ligase subunits. Components of the NuRD complex and exogenous ZIP and sZIP were also associated with this fraction. Several lines of evidence indicate that Vpr induces ZIP and sZIP degradation by hijacking DCAF1: (i) Vpr induced a drastic decrease of exogenously expressed ZIP and sZIP in a dose-dependent manner, (ii) this decrease relied on the proteasome activity, (iii) ZIP or sZIP degradation was impaired in the presence of a DCAF1-binding deficient Vpr mutant or when DCAF1 expression was silenced. Vpr-mediated ZIP and sZIP degradation did not correlate with the growth-related Vpr activities, namely G2 arrest and G2 arrest-independent cytotoxicity. Nonetheless, infection with HIV-1 viruses expressing Vpr led to the degradation of the two proteins. Altogether our results highlight the existence of two host transcription factors inactivated by Vpr. The role of Vpr-mediated ZIP and sZIP degradation in the HIV-1 replication cycle remains to be deciphered. PMID:24116224

  16. Serine Phosphorylation of HIV-1 Vpu and Its Binding to Tetherin Regulates Interaction with Clathrin Adaptors

    PubMed Central

    Sumner, Jonathan C.; Pickering, Suzanne; Neil, Stuart J. D.

    2015-01-01

    HIV-1 Vpu prevents incorporation of tetherin (BST2/ CD317) into budding virions and targets it for ESCRT-dependent endosomal degradation via a clathrin-dependent process. This requires a variant acidic dileucine-sorting motif (ExxxLV) in Vpu. Structural studies demonstrate that recombinant Vpu/tetherin fusions can form a ternary complex with the clathrin adaptor AP-1. However, open questions still exist about Vpu’s mechanism of action. Particularly, whether endosomal degradation and the recruitment of the E3 ubiquitin ligase SCFβTRCP1/2 to a conserved phosphorylated binding site, DSGNES, are required for antagonism. Re-evaluation of the phenotype of Vpu phosphorylation mutants and naturally occurring allelic variants reveals that the requirement for the Vpu phosphoserine motif in tetherin antagonism is dissociable from SCFβTRCP1/2 and ESCRT-dependent tetherin degradation. Vpu phospho-mutants phenocopy ExxxLV mutants, and can be rescued by direct clathrin interaction in the absence of SCFβTRCP1/2 recruitment. Moreover, we demonstrate physical interaction between Vpu and AP-1 or AP-2 in cells. This requires Vpu/tetherin transmembrane domain interactions as well as the ExxxLV motif. Importantly, it also requires the Vpu phosphoserine motif and adjacent acidic residues. Taken together these data explain the discordance between the role of SCFβTRCP1/2 and Vpu phosphorylation in tetherin antagonism, and indicate that phosphorylation of Vpu in Vpu/tetherin complexes regulates promiscuous recruitment of adaptors, implicating clathrin-dependent sorting as an essential first step in tetherin antagonism. PMID:26317613

  17. Dimerization of the docking/adaptor protein HEF1 via a carboxy-terminal helix-loop-helix domain.

    PubMed

    Law, S F; Zhang, Y Z; Fashena, S J; Toby, G; Estojak, J; Golemis, E A

    1999-10-10

    HEF1, p130(Cas), and Efs define a family of multidomain docking proteins which plays a central coordinating role for tyrosine-kinase-based signaling related to cell adhesion. HEF1 function has been specifically implicated in signaling pathways important for cell adhesion and differentiation in lymphoid and epithelial cells. While the SH3 domains and SH2-binding site domains (substrate domains) of HEF1 family proteins are well characterized and binding partners known, to date the highly conserved carboxy-terminal domains of the three proteins have lacked functional definition. In this study, we have determined that the carboxy-terminal domain of HEF1 contains a divergent helix-loop-helix (HLH) motif. This motif mediates HEF1 homodimerization and HEF1 heterodimerization with a recognition specificity similar to that of the transcriptional regulatory HLH proteins Id2, E12, and E47. We had previously demonstrated that the HEF1 carboxy-terminus expressed as a separate domain in yeast reprograms cell division patterns, inducing constitutive pseudohyphal growth. Here we show that pseudohyphal induction by HEF1 requires an intact HLH, further supporting the idea that this motif has an effector activity for HEF1, and implying that HEF1 pseudohyphal activity derives in part from interactions with yeast helix-loop-helix proteins. These combined results provide initial insight into the mode of function of the HEF1 carboxy-terminal domain and suggest that the HEF1 protein may interact with cellular proteins which control differentiation. Copyright 1999 Academic Press.

  18. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase.

    PubMed

    Stoyanov, B; Volinia, S; Hanck, T; Rubio, I; Loubtchenkov, M; Malek, D; Stoyanova, S; Vanhaesebroeck, B; Dhand, R; Nürnberg, B

    1995-08-04

    Phosphoinositide-3 kinase activity is implicated in diverse cellular responses triggered by mammalian cell surface receptors and in the regulation of protein sorting in yeast. Receptors with intrinsic and associated tyrosine kinase activity recruit heterodimeric phosphoinositide-3 kinases that consist of p110 catalytic subunits and p85 adaptor molecules containing Src homology 2 (SH2) domains. A phosphoinositide-3 kinase isotype, p110 gamma, was cloned and characterized. The p110 gamma enzyme was activated in vitro by both the alpha and beta gamma subunits of heterotrimeric guanosine triphosphate (GTP)-binding proteins (G proteins) and did not interact with p85. A potential pleckstrin homology domain is located near its amino terminus. The p110 gamma isotype may link signaling through G protein-coupled receptors to the generation of phosphoinositide second messengers phosphorylated in the D-3 position.

  19. Vented Launch Vehicle Adaptor for a Manned Spacecraft with "Pusher" Launch Abort System

    NASA Technical Reports Server (NTRS)

    Vandervort, Robert E. (Inventor)

    2017-01-01

    A system, method, and apparatus for a vented launch vehicle adaptor (LVA) for a manned spacecraft with a "pusher" launch abort system are disclosed. The disclosed LVA provides a structural interface between a commercial crew vehicle (CCV) crew module/service module (CM/SM) spacecraft and an expendable launch vehicle. The LVA provides structural attachment of the module to the launch vehicle. It also provides a means to control the exhaust plume from a pusher-type launch abort system that is integrated into the module. In case of an on-pad or ascent abort, which requires the module to jettison away from the launch vehicle, the launch abort system exhaust plume must be safely directed away from critical and dangerous portions of the launch vehicle in order to achieve a safe and successful jettison.

  20. Code Verification Results of an LLNL ASC Code on Some Tri-Lab Verification Test Suite Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S R; Bihari, B L; Salari, K

    As scientific codes become more complex and involve larger numbers of developers and algorithms, chances for algorithmic implementation mistakes increase. In this environment, code verification becomes essential to building confidence in the code implementation. This paper will present first results of a new code verification effort within LLNL's B Division. In particular, we will show results of code verification of the LLNL ASC ARES code on the test problems: Su Olson non-equilibrium radiation diffusion, Sod shock tube, Sedov point blast modeled with shock hydrodynamics, and Noh implosion.

  1. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis.

    PubMed

    Okondo, Marian C; Johnson, Darren C; Sridharan, Ramya; Go, Eun Bin; Chui, Ashley J; Wang, Mitchell S; Poplawski, Sarah E; Wu, Wengen; Liu, Yuxin; Lai, Jack H; Sanford, David G; Arciprete, Michael O; Golub, Todd R; Bachovchin, William W; Bachovchin, Daniel A

    2017-01-01

    Val-boroPro (Talabostat, PT-100), a nonselective inhibitor of post-proline cleaving serine proteases, stimulates mammalian immune systems through an unknown mechanism of action. Despite this lack of mechanistic understanding, Val-boroPro has attracted substantial interest as a potential anticancer agent, reaching phase 3 trials in humans. Here we show that Val-boroPro stimulates the immune system by triggering a proinflammatory form of cell death in monocytes and macrophages known as pyroptosis. We demonstrate that the inhibition of two serine proteases, DPP8 and DPP9, activates the pro-protein form of caspase-1 independent of the inflammasome adaptor ASC. Activated pro-caspase-1 does not efficiently process itself or IL-1β but does cleave and activate gasdermin D to induce pyroptosis. Mice lacking caspase-1 do not show immune stimulation after treatment with Val-boroPro. Our data identify what is to our knowledge the first small molecule that induces pyroptosis and reveals a new checkpoint that controls the activation of the innate immune system.

  2. Stress Conditions Promote Yeast Gap1 Permease Ubiquitylation and Down-regulation via the Arrestin-like Bul and Aly Proteins*

    PubMed Central

    Crapeau, Myriam; Merhi, Ahmad; André, Bruno

    2014-01-01

    Gap1, the yeast general amino acid permease, is a convenient model for studying how the intracellular traffic of membrane transporters is regulated. Present at the plasma membrane under poor nitrogen supply conditions, it undergoes ubiquitylation, endocytosis, and degradation upon activation of the TORC1 kinase complex in response to an increase in internal amino acids. This down-regulation is stimulated by TORC1-dependent phosphoinhibition of the Npr1 kinase, resulting in activation by dephosphorylation of the arrestin-like Bul1 and Bul2 adaptors recruiting the Rsp5 ubiquitin ligase to Gap1. We report here that Gap1 is also down-regulated when cells are treated with the TORC1 inhibitor rapamycin or subjected to various stresses and that a lack of the Tco89 subunit of TORC1 causes constitutive Gap1 down-regulation. Both the Bul1 and Bul2 and the Aly1 and Aly2 arrestin-like adaptors of Rsp5 promote this down-regulation without undergoing dephosphorylation. Furthermore, they act via the C-terminal regions of Gap1 not involved in ubiquitylation in response to internal amino acids, whereas a Gap1 mutant altered in the N-terminal tail and resistant to ubiquitylation by internal amino acids is efficiently down-regulated under stress via the Bul and Aly adaptors. Although the Bul proteins mediate Gap1 ubiquitylation of two possible lysines, Lys-9 and Lys-16, the Aly proteins promote ubiquitylation of the Lys-16 residue only. This stress-induced pathway of Gap1 down-regulation targets other permeases as well, and it likely allows cells facing adverse conditions to retrieve amino acids from permease degradation. PMID:24942738

  3. DoD Electronic Data Interchange (EDI) Convention: ASC X12 Transaction Set 856 Ship Notice/Manifest (Version 003030)

    DTIC Science & Technology

    1993-01-01

    from the Department of Defense Ecutive Agent for Elctronic Com••rce/Electronic Data interrrhange/Ped~on of Logisti Unc.iaassfed/fen-une Systers...Convention: Electronic Commerce ; ANSI X12, X12; 62 electronic standards, electronic business standards; computer-to-computer exchange of data...Ship Notice Manifest Information From Invoicng Party to DFAS Using ASC X12 856A 10.1) Reserved 10. E Reserved CV QUAMY Tr7 4 10O.F Reserved__

  4. Drosophila Ack targets its substrate, the sorting nexin DSH3PX1, to a protein complex involved in axonal guidance.

    PubMed

    Worby, Carolyn A; Simonson-Leff, Nancy; Clemens, James C; Huddler, Donald; Muda, Marco; Dixon, Jack E

    2002-03-15

    Dock, the Drosophila orthologue of Nck, is an adaptor protein that is known to function in axonal guidance paradigms in the fly including proper development of neuronal connections in photoreceptor cells and axonal tracking in Bolwig's organ. To develop a better understanding of axonal guidance at the molecular level, we purified proteins in a complex with the SH2 domain of Dock from fly Schneider 2 cells. A protein designated p145 was identified and shown to be a tyrosine kinase with sequence similarity to mammalian Cdc-42-associated tyrosine kinases. We demonstrate that Drosophila Ack (DAck) can be co-immunoprecipitated with Dock and DSH3PX1 from fly cell extracts. The domains responsible for the in vitro interaction between Drosophila Ack and Dock were identified, and direct protein-protein interactions between complex members were established. We conclude that DSH3PX1 is a substrate for DAck in vivo and in vitro and define one of the major in vitro sites of DSH3PX1 phosphorylation to be Tyr-56. Tyr-56 is located within the SH3 domain of DSH3PX1, placing it in an important position for regulating the binding of proline-rich targets. We demonstrate that Tyr-56 phosphorylation by DAck diminishes the DSH3PX1 SH3 domain interaction with the Wiskott-Aldrich Syndrome protein while enabling DSH3PX1 to associate with Dock. Furthermore, when Tyr-56 is mutated to aspartate or glutamate, the binding to Wiskott-Aldrich Syndrome protein is abrogated. These results suggest that the phosphorylation of DSH3PX1 by DAck targets this sorting nexin to a protein complex that includes Dock, an adaptor protein important for axonal guidance.

  5. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zawawi, M.S.F.; Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005; Dharmapatni, A.A.S.S.K.

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Calcineurin/NFAT inhibitors FK506 and VIVIT treated human PBMC derived osteoclasts in vitro. Black-Right-Pointing-Pointer Differential regulation of ITAM receptors and adaptor molecules by calcineurin/NFAT inhibitors. Black-Right-Pointing-Pointer FK506 and VIVIT suppress ITAM factors during late phase osteoclast differentiation. -- Abstract: Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway inmore » osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcR{gamma}) and DNAX-activating protein 12 kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin ({beta}3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10 days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative

  6. Ascorbate/menadione-induced oxidative stress kills cancer cells that express normal or mutated forms of the oncogenic protein Bcr-Abl. An in vitro and in vivo mechanistic study.

    PubMed

    Beck, Raphaël; Pedrosa, Rozangela Curi; Dejeans, Nicolas; Glorieux, Christophe; Levêque, Philippe; Gallez, Bernard; Taper, Henryk; Eeckhoudt, Stéphane; Knoops, Laurent; Calderon, Pedro Buc; Verrax, Julien

    2011-10-01

    Numerous studies suggest that generation of oxidative stress could be useful in cancer treatment. In this study, we evaluated, in vitro and in vivo, the antitumor potential of oxidative stress induced by ascorbate/menadione (asc/men). This combination of a reducing agent (ascorbate) and a redox active quinone (menadione) generates redox cycling leading to formation of reactive oxygen species (ROS). Asc/men was tested in several cell types including K562 cells (a stable human-derived leukemia cell line), freshly isolated leukocytes from patients with chronic myeloid leukemia, BaF3 cells (a murine pro-B cell line) transfected with Bcr-Abl and peripheral blood leukocytes derived from healthy donors. Although these latter cells were resistant to asc/men, survival of all the other cell lines was markedly reduced, including the BaF3 cells expressing either wild-type or mutated Bcr-Abl. In a standard in vivo model of subcutaneous tumor transplantation, asc/men provoked a significant delay in the proliferation of K562 and BaF3 cells expressing the T315I mutated form of Bcr-Abl. No effect of asc/men was observed when these latter cells were injected into blood of mice most probably because of the high antioxidant potential of red blood cells, as shown by in vitro experiments. We postulate that cancer cells are more sensitive to asc/men than healthy cells because of their lack of antioxidant enzymes, mainly catalase. The mechanism underlying this cytotoxicity involves the oxidative cleavage of Hsp90 with a subsequent loss of its chaperone function thus leading to degradation of wild-type and mutated Bcr-Abl protein.

  7. Effectiveness of Needles Vial Adaptors and Blunt Cannulas for Drug Administration in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Hailey, Melinda; Bayuse, Tina

    2009-01-01

    The need for a new system of injectable medications aboard the International Space Station (ISS) was identified. It is desired that this system fly medications in their original manufacturer's packaging, allowing the system to comply with United States Pharmacopeia (USP) guidelines while minimizing the resupply frequency due to medication expiration. Pre-filled syringes are desired, however, the evolving nature of the healthcare marketplace requires flexibility in the redesign. If medications must be supplied in a vial, a system is required that allows for the safe withdrawal of medication from the vial into a syringe for administration in microgravity. During two reduced gravity flights, the effectiveness of two versions of a blunt cannula and needleless vial adaptors was evaluated to facilitate the withdrawal of liquid medication from a vial into a syringe for injection. Other parameters assessed included the ability to withdraw the required amount of medication and whether this is dependent on vial size, liquid, or the total volume of fluid within the vial. Injectable medications proposed for flight on ISS were used for this evaluation. Due to differing sizes of vials and the fluid properties of the medications, the needleless vial adaptors proved to be too cumbersome to recommend for use on the ISS. The blunt cannula, specifically the plastic version, proved to be more effective at removing medication from the various sizes of vials and are the recommended hardware for ISS. Fluid isolation within the vials and syringes is an important step in preparing medication for injection regardless of the hardware used. Although isolation is a challenge in the relatively short parabolas during flight, it is not an obstacle for sustained microgravity. This presentation will provide an overview of the products tested as well as the challenges identified during the microgravity flights.

  8. Expression and Production of SH2 Domain Proteins.

    PubMed

    Liu, Bernard A; Ogiue-Ikeda, Mari; Machida, Kazuya

    2017-01-01

    The Src Homology 2 (SH2) domain lies at the heart of phosphotyrosine signaling, coordinating signaling events downstream of receptor tyrosine kinases (RTKs), adaptors, and scaffolds. Over a hundred SH2 domains are present in mammals, each having a unique specificity which determines its interactions with multiple binding partners. One of the essential tools necessary for studying and determining the role of SH2 domains in phosphotyrosine signaling is a set of soluble recombinant SH2 proteins. Here we describe methods, based on a broad experience with purification of all SH2 domains, for the production of SH2 domain proteins needed for proteomic and biochemical-based studies such as peptide arrays, mass-spectrometry, protein microarrays, reverse-phase microarrays, and high-throughput fluorescence polarization (HTP-FP). We describe stepwise protocols for expression and purification of SH2 domains using GST or poly His-tags, two widely adopted affinity tags. In addition, we address alternative approaches, challenges, and validation studies for assessing protein quality and provide general characteristics of purified human SH2 domains.

  9. Development of STEP-NC Adaptor for Advanced Web Manufacturing System

    NASA Astrophysics Data System (ADS)

    Ajay Konapala, Mr.; Koona, Ramji, Dr.

    2017-08-01

    Information systems play a key role in the modern era of Information Technology. Rapid developments in IT & global competition calls for many changes in basic CAD/CAM/CAPP/CNC manufacturing chain of operations. ‘STEP-NC’ an enhancement to STEP for operating CNC machines, creating new opportunities for collaborative, concurrent, adaptive works across the manufacturing chain of operations. Schemas and data models defined by ISO14649 in liaison with ISO10303 standards made STEP-NC file rich with feature based, rather than mere point to point information of G/M Code format. But one needs to have a suitable information system to understand and modify these files. Various STEP-NC information systems are reviewed to understand the suitability of STEP-NC for web manufacturing. Present work also deals with the development of an adaptor which imports STEP-NC file, organizes its information, allowing modifications to entity values and finally generates a new STEP-NC file to export. The system is designed and developed to work on web to avail additional benefits through the web and also to be part of a proposed ‘Web based STEP-NC manufacturing platform’ which is under development and explained as future scope.

  10. Evaluation and Validation of Organic Materials for Advanced Stirling Convertors (ASCs): Overview

    NASA Technical Reports Server (NTRS)

    Shin, Euy-Sik Eugene

    2015-01-01

    Various organic materials are used as essential parts in Stirling Convertors for their unique properties and functionalities such as bonding, potting, sealing, thread locking, insulation, and lubrication. More efficient Advanced Stirling Convertors (ASC) are being developed for future space applications especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration or lunar surface power or Mars rovers, and others. Thus, performance, durability, and reliability of those organics should be critically evaluated in every possible material-process-fabrication-service environment relations based on their mission specifications. In general, thermal stability, radiation hardness, outgassing, and material compatibility of the selected organics have been systematically evaluated while their process and fabrication conditions and procedures were being optimized. Service environment-simulated long term aging tests up to 4 years were performed as a function of temperature for durability assessment of the most critical organic material systems.

  11. Upregulation of CC Chemokine Receptor 7 (CCR7) Enables Migration of Xenogeneic Human Adipose-Derived Mesenchymal Stem Cells to Rat Secondary Lymphoid Organs.

    PubMed

    Ma, Tian; Luan, Shao-Liang; Huang, Hong; Sun, Xing-Kun; Yang, Yan-Mei; Zhang, Hui; Han, Wei-Dong; Li, Hong; Han, Yan

    2016-12-30

    BACKGROUND CC chemokine receptor 7 (CCR7) expression is vital for cell migration to secondary lymphoid organs (SLOs). Our previous work showed that inducing CCR7 expression enabled syngeneic mesenchymal stem cells (MSCs) to migrate into SLOs, resulting in enhanced immunosuppressive performance in mice. Given that human adipose-derived stem cells (hASCs) are widely used in clinical therapy, we further investigated whether upregulation of CCR7 enables xenogeneic hASCs to migrate to rat SLOs. MATERIAL AND METHODS hASCs rarely express CCR7; therefore, hASCs were transfected with lentivirus encoding rat CCR7 (rCCR7) plus green fluorescence protein (GFP) or GFP alone. CCR7 mRNA and cell surface expression of rCCR7-hASCs and GFP-hASCs were examined by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry (FCM), respectively. The phenotype, differentiation, and proliferation capacity of each cell type was also determined. To examine migration, rCCR7-hASCs and GFP-hASCs were injected intravenously into Lewis rats, and the proportion of GFP-positive cells in the spleen and lymph nodes was determined with FCM. RESULTS mRNA and cell surface protein expression of CCR7 was essentially undetectable in hASCs and GFP-ASCs; however, CCR7 was highly expressed in rCCR7-ASCs. rCCR7-hASCs, GFP-hASCs, and hASCs shared a similar immunophenotype, and maintained the ability of multilineage differentiation and proliferation. In addition, the average proportion of GFP-positive cells was significantly higher following transplantation of rCCR7-hASCs compared with GFP-hASCs (p<0.01). CONCLUSIONS These results suggest that upregulation of rat CCR7 expression does not change the phenotype, differentiation, or proliferation capacity of hASCs, but does enable efficient migration of hASCs to rat SLOs.

  12. A toolkit for GFP-mediated tissue-specific protein degradation in C. elegans.

    PubMed

    Wang, Shaohe; Tang, Ngang Heok; Lara-Gonzalez, Pablo; Zhao, Zhiling; Cheerambathur, Dhanya K; Prevo, Bram; Chisholm, Andrew D; Desai, Arshad; Oegema, Karen

    2017-07-15

    Proteins that are essential for embryo production, cell division and early embryonic events are frequently reused later in embryogenesis, during organismal development or in the adult. Examining protein function across these different biological contexts requires tissue-specific perturbation. Here, we describe a method that uses expression of a fusion between a GFP-targeting nanobody and a SOCS-box containing ubiquitin ligase adaptor to target GFP-tagged proteins for degradation. When combined with endogenous locus GFP tagging by CRISPR-Cas9 or with rescue of a null mutant with a GFP fusion, this approach enables routine and efficient tissue-specific protein ablation. We show that this approach works in multiple tissues - the epidermis, intestine, body wall muscle, ciliated sensory neurons and touch receptor neurons - where it recapitulates expected loss-of-function mutant phenotypes. The transgene toolkit and the strain set described here will complement existing approaches to enable routine analysis of the tissue-specific roles of C. elegans proteins. © 2017. Published by The Company of Biologists Ltd.

  13. Regulation of lipopolysaccharide-inducible genes by MyD88 and Toll/IL-1 domain containing adaptor inducing IFN-beta.

    PubMed

    Hirotani, Tomonori; Yamamoto, Masahiro; Kumagai, Yutaro; Uematsu, Satoshi; Kawase, Ichiro; Takeuchi, Osamu; Akira, Shizuo

    2005-03-11

    Macrophages recognize lipopolysaccharide (LPS) by Toll-like receptor 4 and activate inflammatory responses by inducing expression of various genes. TLR4 activates intracellular signaling pathways via TIR domain containing adaptor molecules, MyD88, and Toll/IL-1 domain containing adaptor inducing IFN-beta (TRIF). Although macrophages lacking MyD88 or TRIF showed impaired cytokine production, activation of intracellular signaling molecules still occurred in response to LPS in these cells. In the present study, we implemented cDNA microarrays to investigate the contribution of MyD88 and TRIF in gene expression induced by LPS stimulation. Whereas wild-type macrophages induced 148 genes in response to LPS, macrophages lacking both MyD88 and TRIF did not upregulate any genes in response to LPS. Surprisingly, 80 LPS-inducible genes were redundantly regulated by either MyD88 or TRIF. In contrast, proinflammatory cytokines and chemokines were critically regulated by MyD88 or TRIF alone. Genes critically regulated by MyD88 alone tend to be induced quickly after LPS stimulation and regulated by mRNA stability as well as transcription. Genes known to be induced by type I interferons were simply dependent on TRIF for their expression. Taken together, MyD88 and TRIF play both redundant and distinct roles in LPS-induced gene expression.

  14. Antibody-based detection of protein phosphorylation status to track the efficacy of novel therapies using nanogram protein quantities from stem cells and cell lines.

    PubMed

    Aspinall-O'Dea, Mark; Pierce, Andrew; Pellicano, Francesca; Williamson, Andrew J; Scott, Mary T; Walker, Michael J; Holyoake, Tessa L; Whetton, Anthony D

    2015-01-01

    This protocol describes a highly reproducible antibody-based method that provides protein level and phosphorylation status information from nanogram quantities of protein cell lysate. Nanocapillary isoelectric focusing (cIEF) combines with UV-activated linking chemistry to detect changes in phosphorylation status. As an example application, we describe how to detect changes in response to tyrosine kinase inhibitors (TKIs) in the phosphorylation status of the adaptor protein CrkL, a major substrate of the oncogenic tyrosine kinase BCR-ABL in chronic myeloid leukemia (CML), using highly enriched CML stem cells and mature cell populations in vitro. This protocol provides a 2.5 pg/nl limit of protein detection (<0.2% of a stem cell sample containing <10(4) cells). Additional assays are described for phosphorylated tyrosine 207 (pTyr207)-CrkL and the protein tyrosine phosphatase PTPRC/CD45; these assays were developed using this protocol and applied to CML patient samples. This method is of high throughput, and it can act as a screen for in vitro cancer stem cell response to drugs and novel agents.

  15. Ethanol and Other Short-Chain Alcohols Inhibit NLRP3 Inflammasome Activation through Protein Tyrosine Phosphatase Stimulation

    PubMed Central

    Hoyt, Laura R.; Ather, Jennifer L.; Randall, Matthew J.; DePuccio, Daniel P.; Landry, Christopher C.; Wewers, Mark D.; Gavrilin, Mikhail A.; Poynter, Matthew E.

    2016-01-01

    Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the pro-inflammatory cytokines IL-1β and IL-18, can be inhibited by ethanol and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1β and caspase-1 cleavage and secretion, as well as diminished ASC speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of GABAA receptor activation or NMDA receptor inhibition, but was associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, while administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1β secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC, were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other short-chain alcohols. PMID:27421477

  16. Intracellular Transport and Kinesin Superfamily Proteins: Structure, Function and Dynamics

    NASA Astrophysics Data System (ADS)

    Hirokawa, N.; Takemura, R.

    Using various molecular cell biological and molecular genetic approaches, we identified kinesin superfamily proteins (KIFs) and characterized their significant functions in intracellular transport, which is fundamental for cellular morphogenesis, functioning, and survival. We showed that KIFs not only transport various membranous organelles, proteins complexes and mRNAs fundamental for cellular functions but also play significant roles in higher brain functions such as memory and learning, determination of important developmental processes such as left-right asymmetry formation and brain wiring. We also elucidated that KIFs recognize and bind to their specific cargoes using scaffolding or adaptor protein complexes. Concerning the mechanism of motility, we discovered the simplest unique monomeric motor KIF1A and determined by molecular biophysics, cryoelectron microscopy and X-ray crystallography that KIF1A can move on a microtubule processively as a monomer by biased Brownian motion and by hydolyzing ATP.

  17. A conserved serine residue regulates the stability of Drosophila Salvador and human WW domain-containing adaptor 45 through proteasomal degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di, E-mail: DiWu@mail.nankai.edu.cn; Wu, Shian

    2013-04-19

    Highlights: •Ser-17 is key for the stability of Drosophila Sav. •Ala mutation of Ser-17 promotes the proteasomal degradation of Sav. •Ser-17 residue is not the main target of Hpo-induced Sav stabilization. •Hpo-dependent and -independent mechanisms regulate Sav stability. •This mechanism is conserved in the homologue of Sav, human WW45. -- Abstract: The Hippo (Hpo) pathway is a conserved tumor suppressor pathway that controls organ size through the coordinated regulation of apoptosis and proliferation. Drosophila Salvador (Sav), which limits organ size, is a core component of the Hpo pathway. In this study, Ser-17 was shown to be important for the stabilitymore » of Sav. Alanine mutation of Ser-17 promoted the proteasomal degradation of Sav. Destabilization and stabilization of the Sav protein mediated by alanine mutation of Ser-17 and by Hpo, respectively, were independent of each other. This implies that the stability of Sav is controlled by two mechanisms, one that is Ser-17-dependent and Hpo-independent, and another that is Ser-17-independent and Hpo-dependent. These dual mechanisms also regulated the human counterpart of Drosophila Sav, WW domain-containing adaptor 45 (WW45). The conservation of this regulation adds to its significance in normal physiology and tumorigenesis.« less

  18. The conservation pattern of short linear motifs is highly correlated with the function of interacting protein domains

    PubMed Central

    Ren, Siyuan; Yang, Guang; He, Youyu; Wang, Yiguo; Li, Yixue; Chen, Zhengjun

    2008-01-01

    Background Many well-represented domains recognize primary sequences usually less than 10 amino acids in length, called Short Linear Motifs (SLiMs). Accurate prediction of SLiMs has been difficult because they are short (often < 10 amino acids) and highly degenerate. In this study, we combined scoring matrixes derived from peptide library and conservation analysis to identify protein classes enriched of functional SLiMs recognized by SH2, SH3, PDZ and S/T kinase domains. Results Our combined approach revealed that SLiMs are highly conserved in proteins from functional classes that are known to interact with a specific domain, but that they are not conserved in most other protein groups. We found that SLiMs recognized by SH2 domains were highly conserved in receptor kinases/phosphatases, adaptor molecules, and tyrosine kinases/phosphatases, that SLiMs recognized by SH3 domains were highly conserved in cytoskeletal and cytoskeletal-associated proteins, that SLiMs recognized by PDZ domains were highly conserved in membrane proteins such as channels and receptors, and that SLiMs recognized by S/T kinase domains were highly conserved in adaptor molecules, S/T kinases/phosphatases, and proteins involved in transcription or cell cycle control. We studied Tyr-SLiMs recognized by SH2 domains in more detail, and found that SH2-recognized Tyr-SLiMs on the cytoplasmic side of membrane proteins are more highly conserved than those on the extra-cellular side. Also, we found that SH2-recognized Tyr-SLiMs that are associated with SH3 motifs and a tyrosine kinase phosphorylation motif are more highly conserved. Conclusion The interactome of protein domains is reflected by the evolutionary conservation of SLiMs recognized by these domains. Combining scoring matrixes derived from peptide libraries and conservation analysis, we would be able to find those protein groups that are more likely to interact with specific domains. PMID:18828911

  19. Hormone-induced 14-3-3γ Adaptor Protein Regulates Steroidogenic Acute Regulatory Protein Activity and Steroid Biosynthesis in MA-10 Leydig Cells*

    PubMed Central

    Aghazadeh, Yasaman; Rone, Malena B.; Blonder, Josip; Ye, Xiaoying; Veenstra, Timothy D.; Hales, D. Buck; Culty, Martine; Papadopoulos, Vassilios

    2012-01-01

    Cholesterol is the sole precursor of steroid hormones in the body. The import of cholesterol to the inner mitochondrial membrane, the rate-limiting step in steroid biosynthesis, relies on the formation of a protein complex that assembles at the outer mitochondrial membrane called the transduceosome. The transduceosome contains several mitochondrial and cytosolic components, including the steroidogenic acute regulatory protein (STAR). Human chorionic gonadotropin (hCG) induces de novo synthesis of STAR, a process shown to parallel maximal steroid production. In the hCG-dependent steroidogenic MA-10 mouse Leydig cell line, the 14-3-3γ protein was identified in native mitochondrial complexes by mass spectrometry and immunoblotting, and its levels increased in response to hCG treatment. The 14-3-3 proteins bind and regulate the activity of many proteins, acting via target protein activation, modification and localization. In MA-10 cells, cAMP induces 14-3-3γ expression parallel to STAR expression. Silencing of 14-3-3γ expression potentiates hormone-induced steroidogenesis. Binding motifs of 14-3-3γ were identified in components of the transduceosome, including STAR. Immunoprecipitation studies demonstrate a hormone-dependent interaction between 14-3-3γ and STAR that coincides with reduced 14-3-3γ homodimerization. The binding site of 14-3-3γ on STAR was identified to be Ser-194 in the STAR-related sterol binding lipid transfer (START) domain, the site phosphorylated in response to hCG. Taken together, these results demonstrate that 14-3-3γ negatively regulates steroidogenesis by binding to Ser-194 of STAR, thus keeping STAR in an unfolded state, unable to induce maximal steroidogenesis. Over time 14-3-3γ homodimerizes and dissociates from STAR, allowing this protein to induce maximal mitochondrial steroid formation. PMID:22427666

  20. ASC-J9(®) suppresses castration resistant prostate cancer progression via degrading the enzalutamide-induced androgen receptor mutant AR-F876L.

    PubMed

    Wang, Ronghao; Lin, Wanying; Lin, Changyi; Li, Lei; Sun, Yin; Chang, Chawnshang

    2016-08-28

    Androgen deprivation therapy (ADT) with the newly developed powerful anti-androgen enzalutamide (Enz, also known as MDV3100) has promising therapeutic effects to suppress castration resistant prostate cancer (CRPC) and extending patients' lives an extra 4.8 months. However, most Enz therapy eventually fails with the development of Enz resistance. The detailed mechanisms how CRPC develops Enz resistance remain unclear and may involve multiple mechanisms. Among them, the induction of the androgen receptor (AR) mutant AR-F876L in some CRPC patients may represent one driving force that confers Enz resistance. Here, we demonstrate that the AR degradation enhancer, ASC-J9(®), not only degrades wild-type AR, but also has the ability to target AR-F876L. The consequence of suppressing AR-F876L may then abrogate AR-F876L mediated CRPC cell proliferation and metastasis. Thus, developing ASC-J9(®) as a new therapeutic approach may represent a novel therapy to better suppress CRPC that has already developed Enz resistance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.