Sample records for adding phase change

  1. Phases of global AdS black holes

    NASA Astrophysics Data System (ADS)

    Basu, Pallab; Krishnan, Chethan; Subramanian, P. N. Bala

    2016-06-01

    We study the phases of gravity coupled to a charged scalar and gauge field in an asymptotically Anti-de Sitter spacetime ( AdS 4) in the grand canonical ensemble. For the conformally coupled scalar, an intricate phase diagram is charted out between the four relevant solutions: global AdS, boson star, Reissner-Nordstrom black hole and the hairy black hole. The nature of the phase diagram undergoes qualitative changes as the charge of the scalar is changed, which we discuss. We also discuss the new features that arise in the extremal limit.

  2. Critical behavior and microscopic structure of charged AdS black holes via an alternative phase space

    NASA Astrophysics Data System (ADS)

    Dehyadegari, Amin; Sheykhi, Ahmad; Montakhab, Afshin

    2017-05-01

    It has been argued that charged Anti-de Sitter (AdS) black holes have similar thermodynamic behavior as the Van der Waals fluid system, provided one treats the cosmological constant as a thermodynamic variable (pressure) in an extended phase space. In this paper, we disclose the deep connection between charged AdS black holes and Van der Waals fluid system from an alternative point of view. We consider the mass of an AdS black hole as a function of square of the charge Q2 instead of the standard Q, i.e. M = M (S ,Q2 , P). We first justify such a change of view mathematically and then ask if a phase transition can occur as a function of Q2 for fixed P. Therefore, we write the equation of state as Q2 =Q2 (T , Ψ) where Ψ (conjugate of Q2) is the inverse of the specific volume, Ψ = 1 / v. This allows us to complete the analogy of charged AdS black holes with Van der Waals fluid system and derive the phase transition as well as critical exponents of the system. We identify a thermodynamic instability in this new picture with real analogy to Van der Waals fluid with physically relevant Maxwell construction. We therefore study the critical behavior of isotherms in Q2- Ψ diagram and deduce all the critical exponents of the system and determine that the system exhibits a small-large black hole phase transition at the critical point (Tc , Qc2 ,Ψc). This alternative view is important as one can imagine such a change for a given single black hole i.e. acquiring charge which induces the phase transition. Finally, we disclose the microscopic properties of charged AdS black holes by using thermodynamic geometry. Interestingly, we find that scalar curvature has a gap between small and large black holes, and this gap becomes exceedingly large as one moves away from the critical point along the transition line. Therefore, we are able to attribute the sudden enlargement of the black hole to the strong repulsive nature of the internal constituents at the phase transition.

  3. Photon orbits and thermodynamic phase transition of d -dimensional charged AdS black holes

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Liu, Yu-Xiao

    2018-05-01

    We study the relationship between the null geodesics and thermodynamic phase transition for the charged AdS black hole. In the reduced parameter space, we find that there exist nonmonotonic behaviors of the photon sphere radius and the minimum impact parameter for the pressure below its critical value. The study also shows that the changes of the photon sphere radius and the minimum impact parameter can serve as order parameters for the small-large black hole phase transition. In particular, these changes have an universal exponent of 1/2 near the critical point for any dimension d of spacetime. These results imply that there may exist universal critical behavior of gravity near the thermodynamic critical point of the black hole system.

  4. Predicting impact of multi-paths on phase change in map-based vehicular ad hoc networks

    NASA Astrophysics Data System (ADS)

    Rahmes, Mark; Lemieux, George; Sonnenberg, Jerome; Chester, David B.

    2014-05-01

    Dynamic Spectrum Access, which through its ability to adapt the operating frequency of a radio, is widely believed to be a solution to the limited spectrum problem. Mobile Ad Hoc Networks (MANETs) can extend high capacity mobile communications over large areas where fixed and tethered-mobile systems are not available. In one use case with high potential impact cognitive radio employs spectrum sensing to facilitate identification of allocated frequencies not currently accessed by their primary users. Primary users own the rights to radiate at a specific frequency and geographic location, secondary users opportunistically attempt to radiate at a specific frequency when the primary user is not using it. We quantify optimal signal detection in map based cognitive radio networks with multiple rapidly varying phase changes and multiple orthogonal signals. Doppler shift occurs due to reflection, scattering, and rapid vehicle movement. Path propagation as well as vehicle movement produces either constructive or destructive interference with the incident wave. Our signal detection algorithms can assist the Doppler spread compensation algorithm by deciding how many phase changes in signals are present in a selected band of interest. Additionally we can populate a spatial radio environment map (REM) database with known information that can be leveraged in an ad hoc network to facilitate Dynamic Spectrum Access. We show how topography can help predict the impact of multi-paths on phase change, as well as about the prediction from dense traffic areas. Utilization of high resolution geospatial data layers in RF propagation analysis is directly applicable.

  5. Thermodynamics and phase transition of charged AdS black holes with a global monopole

    NASA Astrophysics Data System (ADS)

    Deng, Gao-Ming; Fan, Jinbo; Li, Xinfei; Huang, Yong-Chang

    2018-01-01

    Thermodynamical properties of charged AdS black holes with a global monopole still remain obscure. In this paper, we investigate the thermodynamics and phase transition of the black holes in the extended phase space. It is shown that thermodynamical quantities of the black holes exhibit an interesting dependence on the internal global monopole, and they perfectly satisfy both the first law of thermodynamics and Smarr relation. Furthermore, analysis of the local and the global thermodynamical stability manifests that the charged AdS black hole undergoes an elegant phase transition at critical point. Of special interest, critical behaviors of the black holes resemble a Van der Waals liquid-gas system. Our results not only reveal the effect of a global monopole on thermodynamics of AdS black holes, but also further support that Van der Waals-like behavior of the black holes is a universal phenomenon.

  6. Inserting Phase Change Lines into Microsoft Excel® Graphs.

    PubMed

    Dubuque, Erick M

    2015-10-01

    Microsoft Excel® is a popular graphing tool used by behavior analysts to visually display data. However, this program is not always friendly to the graphing conventions used by behavior analysts. For example, adding phase change lines has typically been a cumbersome process involving the insertion of line objects that do not move when new data is added to a graph. The purpose of this article is to describe a novel way to add phase change lines that move when new data is added and when graphs are resized.

  7. Climatic change and contemporaneous land-use phases north and south of the Alps 2300 BC to 800 AD

    NASA Astrophysics Data System (ADS)

    Tinner, Willy; Lotter, André F.; Ammann, Brigitta; Conedera, Marco; Hubschmid, Priska; van Leeuwen, Jacqueline F. N.; Wehrli, Michael

    2003-06-01

    Fluctuations in the Δ 14C curve and subsequent gaps of archaeological findings at 800-650 and 400-100 BC in western and central Europe may indicate major climate-driven land-abandonment phases. To address this hypothesis radiocarbon-dated sediments from four lakes in Switzerland were studied palynologically. Pollen analysis indicates contemporaneous phases of forest clearances and of intensified land-use at 1450-1250 BC, 650-450 BC, 50 BC-100 AD and around 700 AD. These land-use expansions coincided with periods of warm climate as recorded by the Alpine dendroclimatic and Greenland oxygen isotope records. Our results suggest that harvest yields would have increased synchronously over wide areas of central and southern Europe during periods of warm and dry climate. Combined interpretation of palaeoecological and archaeological findings suggests that higher food production led to increased human populations. Positive long-term trends in pollen values of Cerealia and Plantago lanceolata indicate that technical innovations during the Bronze and Iron Age (e.g. metal ploughs, scythes, hay production, fertilising methods) gradually increased agricultural productivity. The successful adoption of yield-increasing advances cannot be explained by climatic determinism alone. Combined with archaeological evidence, our results suggest that despite considerable cycles of spatial and demographic reorganisation (repeated land abandonments and expansions, as well as large-scale migrations and population decreases), human societies were able to shift to lower subsistence levels without dramatic ruptures in material culture. However, our data imply that human societies were not able to compensate rapidly for harvest failures when climate deteriorated. Agriculture in marginal areas was abandoned, and spontaneous reforestations took place on abandoned land south and north of the Alps. Only when the climate changed again to drier and warmer conditions did a new wide-spread phase of

  8. Phase change material for temperature control and material storage

    NASA Technical Reports Server (NTRS)

    Wessling, Jr., Francis C. (Inventor); Blackwood, James M. (Inventor)

    2011-01-01

    A phase change material comprising a mixture of water and deuterium oxide is described, wherein the mole fraction of deuterium oxide is selected so that the mixture has a selected phase change temperature within a range between 0.degree. C. and 4.degree. C. The mixture is placed in a container and used for passive storage and transport of biomaterials and other temperature sensitive materials. Gels, nucleating agents, freezing point depression materials and colorants may be added to enhance the characteristics of the mixture.

  9. The generalization of charged AdS black hole specific volume and number density

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Liang; He, Miao; Fang, Chao; Sun, Dao-Quan; Deng, Jian-Bo

    2017-04-01

    In this paper, by proposing a generalized specific volume, we restudy the P- V criticality of charged AdS black holes in the extended phase space. The results show that most of the previous conclusions can be generalized without change, but the ratio {\\tilde{ρ }}_c should be 3 {\\tilde{α }}/16 in general case. Further research on the thermodynamical phase transition of black hole leads us to a natural interpretation of our assumption, and more black hole properties can be generalized. Finally, we study the number density for charged AdS black hole in higher dimensions, the results show the necessity of our assumption.

  10. Revisiting the phase transition of AdS-Maxwell-power-Yang-Mills black holes via AdS/CFT tools

    NASA Astrophysics Data System (ADS)

    El Moumni, H.

    2018-01-01

    In the present work we investigate the Van der Waals-like phase transition of AdS black hole solution in the Einstein-Maxwell-power-Yang-Mills gravity (EMPYM) via different approaches. After reconsidering this phase structure in the entropy-thermal plane, we recall the nonlocal observables such as holographic entanglement entropy and two point correlation function to show that the both observables exhibit a Van der Waals-like behavior as the case of the thermal entropy. By checking the Maxwell's equal area law and calculating the critical exponent for different values of charge C and nonlinearity parameter q we confirm that the first and the second order phases persist in the holographic framework. Also the validity of the Maxwell law is governed by the proximity to the critical point.

  11. Leading Change, Adding Value.

    PubMed

    Evans, Nick

    2016-07-01

    Essential facts Leading Change, Adding Value is NHS England's new nursing and midwifery framework. It builds on Compassion in Practice (CiP), which set out the 6Cs. While CiP established the values of nursing and midwifery, the new framework explains how staff can help transform the health and care sectors to meet the aims of NHS England's Five Year Forward View.

  12. Precortical phase of Alzheimer’s disease (AD)-related tau cytoskeletal pathology

    PubMed Central

    Stratmann, Katharina; Heinsen, Helmut; Korf, Horst-Werner; Del Turco, Domenico; Ghebremedhin, Estifanos; Seidel, Kay; Bouzrou, Mohamed; Grinberg, Lea T.; Bohl, Jürgen; Wharton, Stephen B; den Dunnen, Wilfred; Rüb, Udo

    2015-01-01

    coeruleus, and parabrachial nuclei) in the Braak and Braak AD stage 0 individuals and in all of these subcortical nuclei in the Braak and Braak AD stage I individuals. The widespread affection of the subcortical nuclei in our Braak and Braak AD stage I individuals shows that the extent of the subcortical tau cytoskeletal pathology in this AD stage has been considerably underestimated during the last decades. In addition, our novel findings in the Braak and Braak AD stage 0 individuals support the concept that subcortical nuclei become already affected during an early ‘pre-cortical’ evolutional phase before the first AD-related cytoskeletal changes occur in the well-known cortical predilection sites of the mediobasal temporal lobe (i.e. transentorhinal and entorhinal regions). In addition, our new findings indicate that the AD-related tau cytoskeletal pathology by no means is confined to single subcortical nuclei of Braak and Braak AD stage 0 individuals, but may develop in a large variety of their subcortical nuclei interconnected with the allocortical entorhinal and transentorhinal regions. Accordingly, these very early involved subcortical brain regions may represent the origin of the AD-related tau cytoskeletal pathology, from where the neuronal cytoskeletal pathology takes an ascending course towards the secondarily affected allocortex and spreads transneuronally along anatomical pathways and interconnectivities in predictable and stereotypical sequences PMID:26193084

  13. Leading Change, Adding Value.

    PubMed

    Evans, Nick

    2016-07-06

    Essential facts Leading Change, Adding Value is NHS England's new nursing and midwifery framework. It builds on Compassion in Practice (CiP), which set out the 6Cs. While CiP established the values of nursing and midwifery, the new framework explains how staff can help transform the health and care sectors to meet the aims of the NHS England's Five Year Forward View.

  14. Phase transition and thermodynamic geometry of f (R ) AdS black holes in the grand canonical ensemble

    NASA Astrophysics Data System (ADS)

    Li, Gu-Qiang; Mo, Jie-Xiong

    2016-06-01

    The phase transition of a four-dimensional charged AdS black hole solution in the R +f (R ) gravity with constant curvature is investigated in the grand canonical ensemble, where we find novel characteristics quite different from that in the canonical ensemble. There exists no critical point for T -S curve while in former research critical point was found for both the T -S curve and T -r+ curve when the electric charge of f (R ) black holes is kept fixed. Moreover, we derive the explicit expression for the specific heat, the analog of volume expansion coefficient and isothermal compressibility coefficient when the electric potential of f (R ) AdS black hole is fixed. The specific heat CΦ encounters a divergence when 0 <Φ b . This finding also differs from the result in the canonical ensemble, where there may be two, one or no divergence points for the specific heat CQ . To examine the phase structure newly found in the grand canonical ensemble, we appeal to the well-known thermodynamic geometry tools and derive the analytic expressions for both the Weinhold scalar curvature and Ruppeiner scalar curvature. It is shown that they diverge exactly where the specific heat CΦ diverges.

  15. Phase transition of charged-AdS black holes and quasinormal modes: A time domain analysis

    NASA Astrophysics Data System (ADS)

    Chabab, M.; El Moumni, H.; Iraoui, S.; Masmar, K.

    2017-10-01

    In this work, we investigate the time evolution of a massless scalar perturbation around small and large RN-AdS4 black holes for the purpose of probing the thermodynamic phase transition. We show that below the critical point the scalar perturbation decays faster with increasing of the black hole size, both for small and large black hole phases. Our analysis of the time profile of quasinormal mode reveals a sharp distinction between the behaviors of both phases, providing a reliable tool to probe the black hole phase transition. However at the critical point P=Pc, as the black hole size extends, we note that the damping time increases and the perturbation decays faster, the oscillation frequencies raise either in small and large black hole phase. In this case the time evolution approach fails to track the AdS4 black hole phase.

  16. Preparation and characterization of novel anion phase change heat storage materials.

    PubMed

    Hong, Wei; Lil, Qingshan; Sun, Jing; Di, Youbo; Zhao, Zhou; Yu, Wei'an; Qu, Yuan; Jiao, TiFeng; Wang, Guowei; Xing, Guangzhong

    2013-10-01

    In this paper, polyurethane phase change material was successfully prepared with TDI with BDO for hard segments and PEG for soft segments. Moreover, based on this the solid-solid phase change material, A-PCM1030 which can release anions was prepared with the successful addition of anion additives A1030 for the first time. Then the test of the above material was conducted utilizing FT-IR, DSC, TEM, WAXD and Air Ion Detector. The Results indicated that the polyurethane phase change material possesses excellent thermal stability since there was no appearance of liquid leakage and phase separation after 50 times warming-cooling thermal cycles. It also presented reversibility on absorbing and releasing heat. In addition, adding a little A1030 can increase the thermal stability and reduce phase transition temperatures, as well as reduce the undercooling of the polyurethane phase change material. In addition, the anion test results suggested that the supreme amount of anion released by A-PCM1030 could reach 2510 anions/cm3 under dynamic conditions, which is beneficial for human health.

  17. Leading Change, Adding Value.

    PubMed

    Evans, Nick

    2016-09-12

    Essential facts Leading Change, Adding Value is NHS England's new nursing and midwifery framework. It is designed to build on Compassion in Practice (CiP), which was published 3 years ago and set out the 6Cs: compassion, care, commitment, courage, competence and communication. CiP established the values at the heart of nursing and midwifery, while the new framework sets out how staff can help transform the health and care sectors to meet the aims of the NHS England's Five Year Forward View.

  18. Nonclassicality of Photon-Added Displaced Thermal State via Quantum Phase-Space Distributions

    NASA Astrophysics Data System (ADS)

    Zhang, Ran; Meng, Xiang-Guo; Du, Chuan-Xun; Wang, Ji-Suo

    2018-02-01

    We introduce a new kind of nonclassical mixed state generated by adding arbitrary photons to a displaced thermal state, i.e., the photon-added displaced thermal state (PADTS), and obtain the normalization factor, which is simply related to two-variable Hermite polynomials. We also discuss the nonclassicality of the PADTS by considering quantum phase-space distributions. The results indicate that the value of the photon count statistics is maximum when the number of detected photons is equal to the number of added photons, and that the photon-added operation has a similar modulation effect with increasing displacement. Moreover, the negative volume of the Wigner function for the PADTS takes a maximal value for a specific photon-added number.

  19. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer's disease (3xTgAD) mice.

    PubMed

    Knight, Elysse M; Brown, Timothy M; Gümüsgöz, Sarah; Smith, Jennifer C M; Waters, Elizabeth J; Allan, Stuart M; Lawrence, Catherine B

    2013-01-01

    Alzheimer's disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4-10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD.

  20. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer’s disease (3xTgAD) mice

    PubMed Central

    Knight, Elysse M.; Brown, Timothy M.; Gümüsgöz, Sarah; Smith, Jennifer C. M.; Waters, Elizabeth J.; Allan, Stuart M.; Lawrence, Catherine B.

    2013-01-01

    SUMMARY Alzheimer’s disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4–10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD. PMID:22864021

  1. Two Virasoro symmetries in stringy warped AdS 3

    DOE PAGES

    Compere, Geoffrey; Guica, Monica; Rodriguez, Maria J.

    2014-12-02

    We study three-dimensional consistent truncations of type IIB supergravity which admit warped AdS 3 solutions. These theories contain subsectors that have no bulk dynamics. We show that the symplectic form for these theories, when restricted to the non-dynamical subsectors, equals the symplectic form for pure Einstein gravity in AdS 3. Consequently, for each consistent choice of boundary conditions in AdS 3, we can define a consistent phase space in warped AdS 3 with identical conserved charges. This way, we easily obtain a Virasoro × Virasoro asymptotic symmetry algebra in warped AdS 3; two different types of Virasoro × Kač-Moody symmetriesmore » are also consistent alternatives. Next, we study the phase space of these theories when propagating modes are included. We show that, as long as one can define a conserved symplectic form without introducing instabilities, the Virasoro × Virasoro asymptotic symmetries can be extended to the entire (linearised) phase space. In conclusion, this implies that, at least at semi-classical level, consistent theories of gravity in warped AdS 3 are described by a two-dimensional conformal field theory, as long as stability is not an issue.« less

  2. Two Virasoro symmetries in stringy warped AdS 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Compere, Geoffrey; Guica, Monica; Rodriguez, Maria J.

    We study three-dimensional consistent truncations of type IIB supergravity which admit warped AdS 3 solutions. These theories contain subsectors that have no bulk dynamics. We show that the symplectic form for these theories, when restricted to the non-dynamical subsectors, equals the symplectic form for pure Einstein gravity in AdS 3. Consequently, for each consistent choice of boundary conditions in AdS 3, we can define a consistent phase space in warped AdS 3 with identical conserved charges. This way, we easily obtain a Virasoro × Virasoro asymptotic symmetry algebra in warped AdS 3; two different types of Virasoro × Kač-Moody symmetriesmore » are also consistent alternatives. Next, we study the phase space of these theories when propagating modes are included. We show that, as long as one can define a conserved symplectic form without introducing instabilities, the Virasoro × Virasoro asymptotic symmetries can be extended to the entire (linearised) phase space. In conclusion, this implies that, at least at semi-classical level, consistent theories of gravity in warped AdS 3 are described by a two-dimensional conformal field theory, as long as stability is not an issue.« less

  3. Phase-change materials handbook

    NASA Technical Reports Server (NTRS)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1972-01-01

    Handbook describes relationship between phase-change materials and more conventional thermal control techniques and discusses materials' space and terrestrial applications. Material properties of most promising phase-change materials and purposes and uses of metallic filler materials in phase-change material composites are provided.

  4. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1994-01-01

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

  5. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1995-01-01

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

  6. Thermodynamic nonequilibrium phase change behavior and thermal properties of biological solutions for cryobiology applications.

    PubMed

    Han, Bumsoo; Bischof, John C

    2004-04-01

    Understanding the phase change behavior of biomaterials during freezing/thawing including their thermal properties at low temperatures is essential to design and improve cryobiology applications such as cryopreservation and cryosurgery. However, knowledge of phase change behavior and thermal properties of various biomaterials is still incomplete, especially at cryogenic temperatures (< or = -40 degrees C). Moreover, in these applications, chemicals are often added to improve their outcome, which can result in significant variation in the phase change behavior and thermal properties from those of the original biomaterials. These chemical additives include cryoprotective agents (CPAs), antifreeze protein (AFP), or cryosurgical adjuvants like sodium chloride (NaCl). In the present study, phase change behavior and thermal properties of saline solutions--either water-NaCl or phosphate buffered saline (PBS)--with various chemical additives were investigated. The chemical additives studied are glycerol and raffinose as CPAs, an AFP (Type III, molecular weight = 6500), and NaCl as a cryosurgical adjuvant. The phase change behavior was investigated using a differential scanning calorimeter (DSC) and a cryomicroscope. The specific and latent heat of these solutions were also measured with the DSC. The saline solutions have two distinct phase changes--water/ice and eutectic phase changes. During freezing, eutectic solidification of both water-NaCl and PBS are significantly supercooled below their thermodynamic equilibrium eutectic temperatures. However, their melting temperatures are close to thermodynamic equilibrium during thawing. These eutectic phase changes disappear when even a small amount (0.1 M glycerol) of CPA was added, but they are still observed after the addition of an AFP. The specific heats of these solutions are close to that of ice at very low temperatures (< or = -100 degrees C) regardless of the additives, but they increase between -100 degrees C and -30

  7. Polyethylene Glycol Based Graphene Aerogel Confined Phase Change Materials with High Thermal Stability.

    PubMed

    Fu, Yang; Xiong, Weilai; Wang, Jianying; Li, Jinghua; Mei, Tao; Wang, Xianbao

    2018-05-01

    Polyethylene glycol (PEG) based graphene aerogel (GA) confined shaped-stabilized phase change materials (PCMs) are simply prepared by a one-step hydrothermal method. Three-dimensional GA inserted by PEG molecule chains, as a supporting material, obtained by reducing graphene oxide sheets, is used to keep their stabilized shape during a phase change process. The volume of GA is obviously expended after adding PEG, and only 9.8 wt% of GA make the composite achieve high energy efficiency without leakage during their phase change because of hydrogen bonding widely existing in the GA/PEG composites (GA-PCMs). The heat storage energy of GA-PCMs is 164.9 J/g, which is 90.2% of the phase change enthalpy of pure PEG. In addition, this composite inherits the natural thermal properties of graphene and thus shows enhanced thermal conductivity compared with pure PEG. This novel study provides an efficient way to fabricate shape-stabilized PCMs with a high content of PEG for thermal energy storage.

  8. Changes in Gait with Anteriorly Added Mass: A Pregnancy Simulation Study

    PubMed Central

    Ogamba, Maureen I.; Loverro, Kari L.; Laudicina, Natalie M.; Gill, Simone V.; Lewis, Cara L.

    2016-01-01

    During pregnancy, the female body experiences structural changes, such as weight gain. As pregnancy advances, most of the additional mass is concentrated anteriorly on the lower trunk. The purpose of this study is to analyze kinematic and kinetic changes when load is added anteriorly to the trunk, simulating a physical change experienced during pregnancy. Twenty healthy females walked on a treadmill while wearing a custom made pseudo-pregnancy sac (1 kg) under three load conditions: sac only, 10 pound condition (4.535 kg added anteriorly), and 20 pound condition (9.07 kg added anteriorly), used to simulate pregnancy, in the second trimester and at full term pregnancy, respectively. The increase in anterior mass resulted in kinematic changes at the knee, hip, pelvis, and trunk in the sagittal and frontal planes. Additionally, ankle, knee, and hip joint moments normalized to baseline mass increased with increased load; however, these moments decreased when normalized to total mass. These kinematic and kinetic changes may suggest that women modify gait biomechanics to reduce the effect of added load. Furthermore, the increase in joint moments increases stress on the musculoskeletal system and may contribute to musculoskeletal pain. PMID:26958743

  9. Demonstrating Phase Changes.

    ERIC Educational Resources Information Center

    Rohr, Walter

    1995-01-01

    Presents two experiments that demonstrate phase changes. The first experiment explores phase changes of carbon dioxide using powdered dry ice sealed in a piece of clear plastic tubing. The second experiment demonstrates an equilibrium process in which a crystal grows in equilibrium with its saturated solution. (PVD)

  10. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1995-12-26

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figs.

  11. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1994-12-06

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figures.

  12. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer.

    PubMed

    Hong, Yan; Ding, Shujiang; Wu, Wei; Hu, Jianjun; Voevodin, Andrey A; Gschwender, Lois; Snyder, Ed; Chow, Louis; Su, Ming

    2010-06-01

    This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid-liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.

  13. Effects of added polyacrylamide on changes in water states during the composting of kitchen waste.

    PubMed

    Yang, Yu-Qiang; Chen, Zhuo-Xian; Zhang, Xue-Qing; Hu, Li-Fang; Shen, Dong-Sheng; Long, Yu-Yang

    2015-02-01

    The effects of adding polyacrylamide (PAM), to attempt to delay the loss of capillary water and achieve a better level of organic matter humification, in the composting of kitchen waste were evaluated. Four treatments, with initial moisture content of 60 % were used: 0.1 % PAM added before the start of composting (R1), 0.1 % PAM added when the thermophilic phase of composting became stable (at >50 °C) (R2), 0.1 % PAM added when the moisture content significantly decreased (R3), and no PAM added (R4). The introduction of PAM in R1 and R2 significantly increased the capillary force and delayed the loss of moisture content and capillary water. The introduction of PAM in R2 and R3 improved the composting process, in terms of the degradation of biochemical fractions and the humification degree. These results show that the optimal time for adding PAM was the initial stage of the thermophilic phase.

  14. Study of the physical properties of a mesogenic mixture showing induced smectic A(d) phase by refractive index, density and x-ray diffraction measurements.

    PubMed

    Roy, P D; Prasad, A; Das, M K

    2009-02-18

    The binary mixture of 4-n-pentyl phenyl 4-n'-hexyloxy benzoate (ME6O.5) and p-cyanophenyl trans-4-pentyl cyclohexane carboxylate (CPPCC) shows the presence of an induced smectic A(d) phase in a certain concentration range 0.03change in birefringence is continuous at the smectic A(d) to nematic phase transition for mixtures with x>0.33, whereas there is a discontinuity in these values for mixtures with x<0.33, consistent with the density and transition entropy measurements done on this system. The orientational order parameter, measured from x-ray diffraction studies, are somewhat smaller than those obtained from refractive index measurement in the induced smectic phase for all the mixtures. In the smectic phase, the OOP values initially increases with molar concentration up to x = 0.24 and then decreases showing a broad minima around x = 0.4. The variation of layer thickness in the induced smectic phase with composition has been explained by assuming the formation of homo- and heterodimers. We conclude that the possible packing of molecules in the induced smectic A(d) phase stabilizes the layers but increases the orientational free volume, consistent with the lower orientational order parameter.

  15. Worldsheet scattering in AdS3/CFT2

    NASA Astrophysics Data System (ADS)

    Sundin, Per; Wulff, Linus

    2013-07-01

    We confront the recently proposed exact S-matrices for AdS 3/ CFT 2 with direct worldsheet calculations. Utilizing the BMN and Near Flat Space (NFS) expansions for strings on AdS 3 × S 3 × S 3 × S 1 and AdS 3 × S 3 × T 4 we compute both tree-level and one-loop scattering amplitudes. Up to some minor issues we find nice agreement in the tree-level sector. At the one-loop level however we find that certain non-zero tree-level processes, which are not visible in the exact solution, contribute, via the optical theorem, and give an apparent mismatch for certain amplitudes. Furthermore we find that a proposed one-loop modification of the dressing phase correctly reproduces the worldsheet calculation while the standard Hernandez-Lopez phase does not. We also compute several massless to massless processes.

  16. Projected asymmetric response of Adélie penguins to Antarctic climate change

    NASA Astrophysics Data System (ADS)

    Cimino, Megan A.; Lynch, Heather J.; Saba, Vincent S.; Oliver, Matthew J.

    2016-06-01

    The contribution of climate change to shifts in a species’ geographic distribution is a critical and often unresolved ecological question. Climate change in Antarctica is asymmetric, with cooling in parts of the continent and warming along the West Antarctic Peninsula (WAP). The Adélie penguin (Pygoscelis adeliae) is a circumpolar meso-predator exposed to the full range of Antarctic climate and is undergoing dramatic population shifts coincident with climate change. We used true presence-absence data on Adélie penguin breeding colonies to estimate past and future changes in habitat suitability during the chick-rearing period based on historic satellite observations and future climate model projections. During the contemporary period, declining Adélie penguin populations experienced more years with warm sea surface temperature compared to populations that are increasing. Based on this relationship, we project that one-third of current Adélie penguin colonies, representing ~20% of their current population, may be in decline by 2060. However, climate model projections suggest refugia may exist in continental Antarctica beyond 2099, buffering species-wide declines. Climate change impacts on penguins in the Antarctic will likely be highly site specific based on regional climate trends, and a southward contraction in the range of Adélie penguins is likely over the next century.

  17. Phase Properties of Photon-Added Coherent States for Nonharmonic Oscillators in a Nonlinear Kerr Medium

    NASA Astrophysics Data System (ADS)

    Jahanbakhsh, F.; Honarasa, G.

    2018-04-01

    The potential of nonharmonic systems has several applications in the field of quantum physics. The photon-added coherent states for annharmonic oscillators in a nonlinear Kerr medium can be used to describe some quantum systems. In this paper, the phase properties of these states including number-phase Wigner distribution function, Pegg-Barnett phase distribution function, number-phase squeezing and number-phase entropic uncertainty relations are investigated. It is found that these states can be considered as the nonclassical states.

  18. Active and separate secretion of fiber and penton base during the early phase of Ad2 or Ad5 infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yuhua; Zhang, Bo; Hou, Weihong

    Fiber and penton base overproduced in adenovirus (Ad) infected cells can be secreted prior to progeny release and thereby regulate progeny spread. We aimed to investigate the mechanisms of fiber and penton base secretion in Ad2- or Ad5-infected A549 cells. Our flow cytometry analyses detected abundant surface fiber molecules, but little penton base molecules at 12 h post infection. Immunogold staining combined with transmission electron microscopic analyses revealed separate, non-co-localized release of fiber and penton base in the proximity of the plasma membrane. Depolymerization of microtubule and actin cytoskeletons, and inhibition of Rock kinase and myosin II activity together demonstratedmore » cytoskeletal network-dependent fiber secretion. Inhibition of intracellular calcium [Ca{sup 2+}]{sub i} signaling caused diminished fiber secretion, which was associated with diminished progeny production. Thus, fiber and penton base are actively and separately secreted during the early stages of Ad2 or Ad5 infection, their secretion may play important role in Ad life cycle. - Highlights: •Excessive production of structural proteins is common to viral infection, which may regulate the host-virus equilibrium and the spreading of viruses. •The adenovirus (Ad) structural proteins, fiber and penton base, are respectively important for Ad binding to its receptor and subsequent internalization in host cells. In Ad infected cells, these two structural proteins are excessively produced. •The mechanisms underlying the release of fiber and penton base molecules at the early phase of Ad infection is yet poorly understood. •Our studies show that in Ad5 or Ad2 infected A549 cells, fiber and penton base molecules are actively and separately secreted. •Fiber secretion is dependent on cytoskeleton-mediated protein traffic. •Inhibition of myosin II motor and Ca{sup 2+} signaling activity significantly diminishes fiber secretion. •These findings could contribute to our

  19. interThermalPhaseChangeFoam-A framework for two-phase flow simulations with thermally driven phase change

    NASA Astrophysics Data System (ADS)

    Nabil, Mahdi; Rattner, Alexander S.

    The volume-of-fluid (VOF) approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam), which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A). By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.

  20. Energy-Efficient Phase-Change Memory with Graphene as a Thermal Barrier.

    PubMed

    Ahn, Chiyui; Fong, Scott W; Kim, Yongsung; Lee, Seunghyun; Sood, Aditya; Neumann, Christopher M; Asheghi, Mehdi; Goodson, Kenneth E; Pop, Eric; Wong, H-S Philip

    2015-10-14

    Phase-change memory (PCM) is an important class of data storage, yet lowering the programming current of individual devices is known to be a significant challenge. Here we improve the energy-efficiency of PCM by placing a graphene layer at the interface between the phase-change material, Ge2Sb2Te5 (GST), and the bottom electrode (W) heater. Graphene-PCM (G-PCM) devices have ∼40% lower RESET current compared to control devices without the graphene. This is attributed to the graphene as an added interfacial thermal resistance which helps confine the generated heat inside the active PCM volume. The G-PCM achieves programming up to 10(5) cycles, and the graphene could further enhance the PCM endurance by limiting atomic migration or material segregation at the bottom electrode interface.

  1. Clinical Symptom Responses to Atypical Antipsychotic Medications in Alzheimer’s Disease: Phase 1 Outcomes from the CATIE-AD Effectiveness Trial

    PubMed Central

    Sultzer, David L.; Davis, Sonia M.; Tariot, Pierre N.; Dagerman, Karen S.; Lebowitz, Barry D.; Lyketsos, Constantine G.; Rosenheck, Robert A.; Hsiao, John K.; Lieberman, Jeffrey A.; Schneider, Lon S.

    2009-01-01

    Objective To measure the effects of atypical antipsychotic medication on psychiatric and behavioral symptoms in patients with Alzheimer’s disease (AD) and psychosis or agitated behavior. Method The CATIE-AD effectiveness study included 421 outpatients with AD and psychosis or agitated/aggressive behavior. Patients were assigned randomly to masked flexible-dose treatment with olanzapine, quetiapine, risperidone, or placebo for up to 36 weeks. Patients could be re-randomized to a different medication treatment at the clinician’s discretion, which ended the Phase 1 period. Psychiatric and behavioral symptoms, functional abilities, cognition, care needs, and quality of life were measured at regular intervals. Results At the last observation in Phase 1 compared to placebo, there was greater improvement in patients treated with olanzapine or risperidone on the Neuropsychiatric Inventory total score, with risperidone on the Clinical Global Impression of Change, with olanzapine or risperidone on the Brief Psychiatric Rating Scale (BPRS) Hostile Suspiciousness factor, and with risperidone on the BPRS Psychosis factor. There was worsening with olanzapine on the BPRS Withdrawn Depression factor. Among patients continuing Phase 1 treatment at 12 weeks, there were no significant antipsychotic – placebo group differences on measures of cognition, functional skills, care needs, or quality of life, except for worsening of functional skills in the olanzapine treatment group compared to placebo. Conclusion In this descriptive analysis of clinical outcomes in AD outpatients in usual care settings, some clinical symptoms improved with atypical antipsychotic treatment. Antipsychotic medications may be more effective for particular symptoms, such as anger, aggression, and paranoid ideas. Functional abilities, care needs, or quality of life do not appear to improve with antipsychotic treatment. PMID:18519523

  2. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1994-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  3. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1994-02-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 2 figures.

  4. Ethylene-associated phase change from juvenile to mature phenotype of daylily (Hemerocallis) in vitro

    NASA Technical Reports Server (NTRS)

    Smith, D. L.; Kelly, K.; Krikorian, A. D.

    1989-01-01

    Hemerocallis plantlets maintained in vitro for extended periods of time in tightly closed culture vessels frequently show a phenotype, albeit on a miniaturized scale, typical of more mature, field-grown plants. The positive relationship of elevated ethylene in the headspace of such vessels to the phase shift from juvenile to mature form is established. Rigorous restriction in air exchange with the external environment by means of silicone grease seals hastens the phase change and improves uniformity of response. Although some plantlets may take longer to accumulate enough ethylene in sealed jars to undergo change, added ethylene and ethylene-releasing agents promote it. Ethylene adsorbants (e.g. mercuric perchlorate) block the shift of juvenile to mature form. Critical ambient ethylene level for the shift is ca 1 microliter l-1. Levels up to 1000 microliters l-1 do not hasten the response but are not toxic. The phase change is fully reversible when air exchange permits ethylene to drop below 1 microliter l-1. At least 1 microliter l-1 ethylene is required to sustain the mature phenotype. The ethylene synthesis inhibitor aminoethoxyvinylglycine (AVG) prevents the phase change, while the ethylene biosynthesis intermediate 1-aminocyclopropanecarboxylic acid (ACC) improves it. KOH, as a CO2 absorbent, does not prevent the phase change. Histology sections demonstrate subtle changes in the form of shoot tips of plantlets undergoing phase change.

  5. Two Phase Admission Control for QoS Mobile Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Sheng; Su, Yi-Wen; Liu, Wen-Hsiung; Chi, Ching-Lung

    In this paper a novel and effective two phase admission control (TPAC) for QoS mobile ad hoc networks is proposed that satisfies the real-time traffic requirements in mobile ad hoc networks. With a limited amount of extra overhead, TPAC can avoid network congestions by a simple and precise admission control which blocks most of the overloading flow-requests in the route discovery process. When compared with previous QoS routing schemes such as QoS-aware routing protocol and CACP protocols, it is shown from system simulations that the proposed scheme can increase the system throughput and reduce both the dropping rate and the end-to-end delay. Therefore, TPAC is surely an effective QoS-guarantee protocol to provide for real-time traffic.

  6. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    DOEpatents

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  7. Nanoscale phase change memory materials.

    PubMed

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  8. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1992-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  9. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1993-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  10. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1993-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garmets, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  11. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1993-10-19

    Free flowing, conformable powder-like mix of silica particles and a phase change material (pcm) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 10 figures.

  12. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1992-04-21

    A free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7 [times] 10[sup [minus]3] to about 7 [times] 10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 9 figs.

  13. The effect of phase change materials on the frontal polymerization of a triacrylate

    NASA Astrophysics Data System (ADS)

    Viner, Veronika G.; Pojman, John A.; Golovaty, Dmitry

    2010-06-01

    The production of smoke and fumes is a major obstacle to the practical use of thermal frontal polymerization. The front temperature and the amount of smoking can be reduced by adding inert fillers, such as clay and silica, to the reactive mixture. Here we investigate the possibility of incorporating inert materials that melt (so-called phase change materials) to the mixture. By performing both experiments and mathematical modeling, we demonstrate that, in addition to the standard parameters of frontal polymerization, the front temperature and velocity depend on the melting point and heat of fusion of the phase change material. We use the method of matched asymptotic expansions to develop an explicit expression for the velocity of the reaction front. The expression demonstrates that the behavior of the front is determined by the difference between the reaction temperature and the melting temperature, with the front being slower and cooler if melting occurs farther ahead of the reaction front. The theoretical trends are hard to confirm directly because different characteristics of the phase change material cannot be varied separately.

  14. A self-resetting spiking phase-change neuron

    NASA Astrophysics Data System (ADS)

    Cobley, R. A.; Hayat, H.; Wright, C. D.

    2018-05-01

    Neuromorphic, or brain-inspired, computing applications of phase-change devices have to date concentrated primarily on the implementation of phase-change synapses. However, the so-called accumulation mode of operation inherent in phase-change materials and devices can also be used to mimic the integrative properties of a biological neuron. Here we demonstrate, using physical modelling of nanoscale devices and SPICE modelling of associated circuits, that a single phase-change memory cell integrated into a comparator type circuit can deliver a basic hardware mimic of an integrate-and-fire spiking neuron with self-resetting capabilities. Such phase-change neurons, in combination with phase-change synapses, can potentially open a new route for the realisation of all-phase-change neuromorphic computing.

  15. A self-resetting spiking phase-change neuron.

    PubMed

    Cobley, R A; Hayat, H; Wright, C D

    2018-05-11

    Neuromorphic, or brain-inspired, computing applications of phase-change devices have to date concentrated primarily on the implementation of phase-change synapses. However, the so-called accumulation mode of operation inherent in phase-change materials and devices can also be used to mimic the integrative properties of a biological neuron. Here we demonstrate, using physical modelling of nanoscale devices and SPICE modelling of associated circuits, that a single phase-change memory cell integrated into a comparator type circuit can deliver a basic hardware mimic of an integrate-and-fire spiking neuron with self-resetting capabilities. Such phase-change neurons, in combination with phase-change synapses, can potentially open a new route for the realisation of all-phase-change neuromorphic computing.

  16. Beyond AdS Space-times, New Holographic Correspondences and Applications

    NASA Astrophysics Data System (ADS)

    Ghodrati, Mahdis

    The AdS/CFT correspondence conjectures a mathematical equivalence between string theories and gauge theories. In a particular limit it allows a description of strongly coupled conformal field theory via weakly coupled gravity. This feature has been used to gain insight into many condensed matter (CM) systems. However, to apply the duality in more physical scenarios, one needs to go beyond the usual AdS/CFT framework and extend the duality to non-AdS situations. To describe Lifshitz and hyperscaling violating (HSV) phenomena in CM one uses gauge fields on the gravity side which naturally realize the breaking of Lorentz invariance. These gravity constructions often contain naked singularities. In this thesis, we construct a resolution of the infra-red (IR) singularity of the HSV background. The idea is to add squared curvature terms to the Einstein-Maxwell dilaton action to build a flow from AdS4 in the ultra violate (UV) to an intermediating HSV region and then to an AdS2 x R 2 region in the IR. This general solution is free from the naked singularities and would be more appropriate for applications of HSV in physical systems. We also study the Schwinger effect by using the AdS/CFT duality. We present the phase diagrams of the Schwinger effect and also the "butterfly shaped-phase diagrams" of the entanglement entropy for four different confining supergravity backgrounds. Comparing different features of all of these diagrams could point out to a potential relation between the Schwinger effect and the entanglement entropy which could lead to a method of measuring entanglement entropy in the laboratory. Finally, we study the "new massive gravity" theory and the different black hole solutions it admits. We first present three different methods of calculating the conserved charges. Then, by calculating the on-shell Gibbs free energy we construct the Hawking-Page phase diagrams for different solutions in two thermodynamical ensembles. As the massive gravity models are

  17. Entanglement entropy of AdS5 × S5 with massless flavors at nonzero temperature

    NASA Astrophysics Data System (ADS)

    Hu, Sen; Wu, Guozhen

    2018-03-01

    We consider backreacted AdS5 × S5 coupled with Nf massless flavors introduced by D7-branes at nonzero temperature. The backreacted geometry is in the Veneziano limit. The temperature of this system is related to the event horizon at rh. Dividing one of the spatial directions into a line segment with length l, we will calculate the holographic entanglement entropy (HEE) between the two subspaces. We study the behavior near the event horizon, and finally find that there exists confinement/deconfinement phase transition phenomenon near the horizon since the difference between the entanglement entropy of the connected minimal surface and the disconnected one changes sign.

  18. Ocular changes in TgF344-AD rat model of Alzheimer's disease.

    PubMed

    Tsai, Yuchun; Lu, Bin; Ljubimov, Alexander V; Girman, Sergey; Ross-Cisneros, Fred N; Sadun, Alfredo A; Svendsen, Clive N; Cohen, Robert M; Wang, Shaomei

    2014-01-29

    Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by progressive decline in learning, memory, and executive functions. In addition to cognitive and behavioral deficits, vision disturbances have been reported in early stage of AD, well before the diagnosis is clearly established. To further investigate ocular abnormalities, a novel AD transgenic rat model was analyzed. Transgenic (Tg) rats (TgF344-AD) heterozygous for human mutant APPswe/PS1ΔE9 and age-matched wild type (WT) rats, as well as 20 human postmortem retinal samples from both AD and healthy donors were used. Visual function in the rodent was analyzed using the optokinetic response and luminance threshold recording from the superior colliculus. Immunohistochemistry on retinal and brain sections was used to detect various markers including amyloid-β (Aβ) plaques. As expected, Aβ plaques were detected in the hippocampus, cortex, and retina of Tg rats. Plaque-like structures were also found in two AD human whole-mount retinas. The choroidal thickness was significantly reduced in both Tg rat and in AD human eyes when compared with age-matched controls. Tg rat eyes also showed hypertrophic retinal pigment epithelial cells, inflammatory cells, and upregulation of complement factor C3. Although visual acuity was lower in Tg than in WT rats, there was no significant difference in the retinal ganglion cell number and retinal vasculature. In this study, we observed pathological changes in the choroid and in RPE cells in the TgF344-AD rat model; choroidal thinning was observed further in human AD retina. Along with Ab deposition, the inflammatory response was manifested by microglial recruitment and complement activation. Further studies are needed to elucidate the significance and mechanisms of these pathological changes [corrected].

  19. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1993-05-18

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the p.c.m. must be added to the silica in an amount of 80 wt. % or less p.c.m. per combined weight of silica and p.c.m. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a p.c.m. material. The silica-p.c.m. mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  20. Application of phase-change materials in memory taxonomy.

    PubMed

    Wang, Lei; Tu, Liang; Wen, Jing

    2017-01-01

    Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects.

  1. Application of phase-change materials in memory taxonomy

    PubMed Central

    Wang, Lei; Tu, Liang; Wen, Jing

    2017-01-01

    Abstract Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects. PMID:28740557

  2. Metallic phase change material thermal storage for Dish Stirling

    DOE PAGES

    Andraka, C. E.; Kruizenga, A. M.; Hernandez-Sanchez, B. A.; ...

    2015-06-05

    Dish-Stirling systems provide high-efficiency solar-only electrical generation and currently hold the world record at 31.25%. This high efficiency results in a system with a high possibility of meeting the DOE SunShot goal of $0.06/kWh. However, current dish-Stirling systems do not incorporate thermal storage. For the next generation of non-intermittent and cost-competitive solar power plants, we propose adding a thermal energy storage system that combines latent (phase-change) energy transport and latent energy storage in order to match the isothermal input requirements of Stirling engines while also maximizing the exergetic efficiency of the entire system. This paper reports current findings in themore » area of selection, synthesis and evaluation of a suitable high performance metallic phase change material (PCM) as well as potential interactions with containment alloy materials. The metallic PCM's, while more expensive than salts, have been identified as having substantial performance advantages primarily due to high thermal conductivity, leading to high exergetic efficiency. Systems modeling has indicated, based on high dish Stirling system performance, an allowable cost of the PCM storage system that is substantially higher than SunShot goals for storage cost on tower systems. Several PCM's are identified with suitable melting temperature, cost, and performance.« less

  3. Fermionic currents in AdS spacetime with compact dimensions

    NASA Astrophysics Data System (ADS)

    Bellucci, S.; Saharian, A. A.; Vardanyan, V.

    2017-09-01

    We derive a closed expression for the vacuum expectation value (VEV) of the fermionic current density in a (D +1 )-dimensional locally AdS spacetime with an arbitrary number of toroidally compactified Poincaré spatial dimensions and in the presence of a constant gauge field. The latter can be formally interpreted in terms of a magnetic flux treading the compact dimensions. In the compact subspace, the field operator obeys quasiperiodicity conditions with arbitrary phases. The VEV of the charge density is zero and the current density has nonzero components along the compact dimensions only. They are periodic functions of the magnetic flux with the period equal to the flux quantum and tend to zero on the AdS boundary. Near the horizon, the effect of the background gravitational field is small and the leading term in the corresponding asymptotic expansion coincides with the VEV for a massless field in the locally Minkowski bulk. Unlike the Minkowskian case, in the system consisting of an equal number of fermionic and scalar degrees of freedom, with same masses, charges and phases in the periodicity conditions, the total current density does not vanish. In these systems, the leading divergences in the scalar and fermionic contributions on the horizon are canceled and, as a consequence of that, the charge flux, integrated over the coordinate perpendicular to the AdS boundary, becomes finite. We show that in odd spacetime dimensions the fermionic fields realizing two inequivalent representations of the Clifford algebra and having equal phases in the periodicity conditions give the same contribution to the VEV of the current density. Combining the contributions from these fields, the current density in odd-dimensional C -,P - and T -symmetric models are obtained. As an application, we consider the ground state current density in curved carbon nanotubes described in terms of a (2 +1 )-dimensional effective Dirac model.

  4. Adélie penguins and temperature changes in Antarctica: a long-term view.

    PubMed

    Millar, Craig D; Subramanian, Sankar; Heupink, Tim H; Swaminathan, Siva; Baroni, Carlo; Lambert, David M

    2012-06-01

    During the summer months, Adélie penguins represent the dominant biomass of terrestrial Antarctica. Literally millions of individuals nest in ice-free areas around the coast of the continent. Hence, these modern populations of Adélie penguins have often been championed as an ideal biological indicator of ecological and environmental changes that we currently face. In addition, Adélie penguins show an extraordinary record of sub-fossil remains, dating back to the late Pleistocene. At this time, temperatures were much lower than now. Hence, this species offers unique long-term information, at both the genomic and ecological levels, about how a species has responded to climate change over more than 40 000 years. © 2012 ISZS, Blackwell Publishing and IOZ/CAS.

  5. Q ‑ Φ criticality and microstructure of charged AdS black holes in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Deng, Gao-Ming; Huang, Yong-Chang

    2017-12-01

    The phase transition and critical behaviors of charged AdS black holes in f(R) gravity with a conformally invariant Maxwell (CIM) source and constant curvature are further investigated. As a highlight, this research is carried out by employing new state parameters (T,Q, Φ) and contributes to deeper understanding of the thermodynamics and phase structure of black holes. Our analyses manifest that the charged f(R)-CIM AdS black hole undergoes a first-order small-large black hole phase transition, and the critical behaviors qualitatively behave like a Van der Waals liquid-vapor system. However, differing from the case in Einstein’s gravity, phase structures of the black holes in f(R) theory exhibit an interesting dependence on gravity modification parameters. Moreover, we adopt the thermodynamic geometry to probe the black hole microscopic properties. The results show that, on the one hand, both the Ruppeiner curvature and heat capacity diverge exactly at the critical point, on the other hand, the f(R)-CIM AdS black hole possesses the property as ideal Fermi gases. Of special interest, we discover a microscopic similarity between the black holes and a Van der Waals liquid-vapor system.

  6. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD

    NASA Astrophysics Data System (ADS)

    Büntgen, Ulf; Myglan, Vladimir S.; Ljungqvist, Fredrik Charpentier; McCormick, Michael; di Cosmo, Nicola; Sigl, Michael; Jungclaus, Johann; Wagner, Sebastian; Krusic, Paul J.; Esper, Jan; Kaplan, Jed O.; de Vaan, Michiel A. C.; Luterbacher, Jürg; Wacker, Lukas; Tegel, Willy; Kirdyanov, Alexander V.

    2016-03-01

    Climatic changes during the first half of the Common Era have been suggested to play a role in societal reorganizations in Europe and Asia. In particular, the sixth century coincides with rising and falling civilizations, pandemics, human migration and political turmoil. Our understanding of the magnitude and spatial extent as well as the possible causes and concurrences of climate change during this period is, however, still limited. Here we use tree-ring chronologies from the Russian Altai and European Alps to reconstruct summer temperatures over the past two millennia. We find an unprecedented, long-lasting and spatially synchronized cooling following a cluster of large volcanic eruptions in 536, 540 and 547 AD (ref. ), which was probably sustained by ocean and sea-ice feedbacks, as well as a solar minimum. We thus identify the interval from 536 to about 660 AD as the Late Antique Little Ice Age. Spanning most of the Northern Hemisphere, we suggest that this cold phase be considered as an additional environmental factor contributing to the establishment of the Justinian plague, transformation of the eastern Roman Empire and collapse of the Sasanian Empire, movements out of the Asian steppe and Arabian Peninsula, spread of Slavic-speaking peoples and political upheavals in China.

  7. Caerulin-induced pancreatitis in rats: Histological and genetic expression changes from acute phase to recuperation

    PubMed Central

    Magaña-Gómez, Javier; López-Cervantes, Guillermo; de la Barca, Ana María Calderón

    2006-01-01

    AIM: To study the histological and pancreatitis-associated protein mRNA accumulation changes of pancreas from acute phase of caerulin-induced pancreatitis to recuperation in rats. METHODS: Acute pancreatitis was induced by caerulein in male Wistar rats and followed up for 90 d by histological and mRNA analyses of pancreas. Pancreases were dissected at 0, 9, 24 h and 3, 5, 15, 30, 60, 90 d post-induction. Edema (E), polymorphonuclear neutrophil (PMN) infiltration, cytoplasmic vacuolization (V), zymogen granule depletion (ZD) and acinar disorganization (AD) were microscopically evaluated. Accumulation of pancreatitis-associated protein (PAP) and L13A mRNAs were quantified by real-time PCR. RESULTS: The main histological changes appeared at 9 h post-induction for PMN infiltration and cytoplasmic V, while at 24 h and 3 d for E and ZD, respectively. All the parameters were recovered after 5 d, except for ZD which delayed more than 30 d. The main AD was observed after 15 d and values returned to normal after 30 d. Similarly to histological changes, accumulation of the PAP mRNA was increased at 9 h with the highest accumulation at 24 h and differences disappeared after 5 d. CONCLUSION: From the acute phase to recuperation of pancreatitis, regeneration and re-differentiation of pancreas occur and PAP expression is exclusively an acute response of pancreatitis. PMID:16810747

  8. Modeling and impacts of the latent heat of phase change and specific heat for phase change materials

    NASA Astrophysics Data System (ADS)

    Scoggin, J.; Khan, R. S.; Silva, H.; Gokirmak, A.

    2018-05-01

    We model the latent heats of crystallization and fusion in phase change materials with a unified latent heat of phase change, ensuring energy conservation by coupling the heat of phase change with amorphous and crystalline specific heats. We demonstrate the model with 2-D finite element simulations of Ge2Sb2Te5 and find that the heat of phase change increases local temperature up to 180 K in 300 nm × 300 nm structures during crystallization, significantly impacting grain distributions. We also show in electrothermal simulations of 45 nm confined and 10 nm mushroom cells that the higher amorphous specific heat predicted by this model increases nucleation probability at the end of reset operations. These nuclei can decrease set time, leading to variability, as demonstrated for the mushroom cell.

  9. Characteristics of phase-change materials containing oxide nano-additives for thermal storage.

    PubMed

    Teng, Tun-Ping; Yu, Chao-Chieh

    2012-11-06

    In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin.

  10. Characteristics of phase-change materials containing oxide nano-additives for thermal storage

    PubMed Central

    2012-01-01

    In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin. PMID:23127224

  11. Cortical phase changes in Alzheimer's disease at 7T MRI: a novel imaging marker.

    PubMed

    van Rooden, Sanneke; Versluis, Maarten J; Liem, Michael K; Milles, Julien; Maier, Andrea B; Oleksik, Ania M; Webb, Andrew G; van Buchem, Mark A; van der Grond, Jeroen

    2014-01-01

    Postmortem studies have indicated the potential of high-field magnetic resonance imaging (MRI) to visualize amyloid depositions in the cerebral cortex. The aim of this study is to test this hypothesis in patients with Alzheimer's disease (AD). T2*-weighted MRI was performed in 16 AD patients and 15 control subjects. All magnetic resonance images were scored qualitatively by visual assessment, and quantitatively by measuring phase shifts in the cortical gray matter and hippocampus. Statistical analysis was performed to assess differences between groups. Patients with AD demonstrated an increased phase shift in the cortex in the temporoparietal, frontal, and parietal regions (P < .005), and this was associated with individual Mini-Mental State Examination scores (r = -0.54, P < .05). Increased cortical phase shift in AD patients demonstrated on 7-tesla T2*-weighted MRI is a potential new biomarker for AD, which may reflect amyloid pathology in the early stages. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  12. Organic Phase Change Nanoparticles for in-Product Labeling of Agrochemicals.

    PubMed

    Wang, Miao; Duong, Binh; Su, Ming

    2015-10-28

    There is an urgent need to develop in-product covert barcodes for anti-counterfeiting of agrochemicals. This paper reports a new organic nanoparticle-based in-product barcode system, in which a panel of organic phase change nanoparticles is added as a barcode into in a variety of chemicals (herein agrochemicals). The barcode is readout by detecting melting peaks of organic nanoparticles using differential scanning calorimetry. This method has high labeling capacity due to small sizes of nanoparticles, sharp melting peaks, and large scan range of thermal analysis. The in-product barcode can be effectively used to protect agrochemical products from being counterfeited due to its large coding capacity, technical readiness, covertness, and robustness.

  13. Atomic structure and pressure-induced phase transformations in a phase-change alloy

    NASA Astrophysics Data System (ADS)

    Xu, Ming

    Phase-change materials exist in at least two phases under the ambient condition. One is the amorphous state and another is crystalline phase. These two phases have vastly different physical properties, such as electrical conductivity, optical reflectivity, mass density, thermal conductivity, etc. The distinct physical properties and the fast transformation between amorphous and crystalline phases render these materials the ability to store information. For example, the DVD and the Blue-ray discs take advantage of the optical reflectivity contrast, and the newly developed solid-state memories make use of the large conductivity difference. In addition, both the amorphous and crystalline phases in phase-change memories (PCMs) are very stable at room temperature, and they are easy to be scaled up in the production of devices with large storage density. All these features make phase-change materials the ideal candidates for the next-generation memories. Despite of the fast development of these new memory materials in industry, many fundamental physics problems underlying these interesting materials are still not fully resolved. This thesis is aiming at solving some of the key issues in phase-change materials. Most of phase-change materials are composed of Ge-Sb-Te constituents. Among all these Ge-Sb-Te based materials, Ge2Sb2Te5 (GST) has the best performance and has been frequently studied as a prototypical phase-change material. The first and foremost issue is the structure of the two functioning phases. In this thesis, we investigate the unique atomic structure and bonding nature of amorphous GST (a-GST) and crystalline GST ( c-GST), using ab initio tools and X-ray diffraction (XRD) methods. Their local structures and bonding scenarios are then analyzed using electronic structure calculations. In order to gain insight into the fast phase transformation mechanism, we also carried out a series of high-pressure experiments on GST. Several new polymorphs and their

  14. Phase change compositions

    DOEpatents

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    Compositions containing crystalline, long chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  15. Phase change compositions

    DOEpatents

    Salyer, Ival O.

    1989-01-01

    Compositions containing crystalline, straight chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  16. Effect of Se substitution on the phase change properties of Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Shekhawat, Roopali; Rangappa, Ramanna; Gopal, E. S. R.; Ramesh, K.

    2018-05-01

    Ge2Sb2Te5 popularly known as GST is being explored for non-volatile phase change random access memory(PCRAM) applications. Under high electric field, thin films of amorphous GST undergo a phase change from amorphous to crystalline with a high contrast in electrical resistivity (about 103). The phase change is between amorphous and metastable NaCl structure occurs at about 150°C and not to the stable hexagonal phase which occurs at a high temperature (> 250 °C). In GST, about 50 % of Te substituted by Se (Ge2Sb2Te2.5Se2.5) is found to increase the contrast in electrical resistivity by 7 orders of magnitude (about 4 orders of magnitude higher than GST). The phase transition in Se added GST also found to be between amorphous and the stable hexagonal structure. The threshold voltage at which the Ge2Sb2Te2.5Se2.5 switches to the high conducting state increases to 9V as compared to 2V in GST. Interestingly, the threshold current decrease to 1mA as compared to 1.8mA in GST indicating the Se substitution reduces the power needed for switching between the low and high conducting states. The reduction in power needed for phase change, high contrast in electrical resistivity with high thermal stability makes Ge2Sb2Te2.5Se2.5 as a better candidate for PCRAM.

  17. Thermodynamic analysis of a thermal storage unit under the influence of nano-particles added to the phase change material and/or the working fluid

    NASA Astrophysics Data System (ADS)

    Abolghasemi, Mehran; Keshavarz, Ali; Mehrabian, Mozaffar Ali

    2012-11-01

    The thermal storage unit consists of two concentric cylinders where the working fluid flows through the internal cylinder and the annulus is filled with a phase change material. The system carries out a cyclic operation; each cycle consists of two processes. In the charging process the hot working fluid enters the internal cylinder and transfers heat to the phase change material. In the discharging process the cold working fluid enters the internal cylinder and absorbs heat from the phase change material. The differential equations governing the heat transfer between the two media are solved numerically. The numerical results are compared with the experimental results available in the literature. The performance of an energy storage unit is directly related to the thermal conductivity of nano-particles. The energy consumption of a residential unit whose energy is supplied by a thermal storage system can be reduced by 43 % when using nano-particles.

  18. Crystal growth within a phase change memory cell.

    PubMed

    Sebastian, Abu; Le Gallo, Manuel; Krebs, Daniel

    2014-07-07

    In spite of the prominent role played by phase change materials in information technology, a detailed understanding of the central property of such materials, namely the phase change mechanism, is still lacking mostly because of difficulties associated with experimental measurements. Here, we measure the crystal growth velocity of a phase change material at both the nanometre length and the nanosecond timescale using phase-change memory cells. The material is studied in the technologically relevant melt-quenched phase and directly in the environment in which the phase change material is going to be used in the application. We present a consistent description of the temperature dependence of the crystal growth velocity in the glass and the super-cooled liquid up to the melting temperature.

  19. Tailored nutritional guidance for home-dwelling AD families: the Feasibility of and Elements Promoting Positive Changes in Diet (NuAD-Trial).

    PubMed

    Puranen, T M; Pitkala, K H; Suominen, M H

    2015-04-01

    To describe the process and feasibility of our randomised, controlled intervention study (NuAD trial) that positively affected the nutrition and quality of life, and prevented falls of home-dwelling persons with Alzheimer disease (AD). This qualitative study comprised 40 persons with AD and spousal caregivers of our trial. Our intervention during one year involved tailored nutritional guidance for these couples. The nutritionist's field notes (about 100 pages) and the participant feedback questionnaires (N = 28) served to analyse the feasibility of intervention, factors promoting the application of intervention and challenges hindering it. Thematic content analysis served to analyse our data with the grounded theory approach. We identified several positive elements promoting better nutrition: positive attitudes on nutrition to participants including a participant-centred approach, positive feedback, findings of food diaries and practical suggestions. Home visits by the nutritionist were convenient and participants felt that someone cares. Group meetings which included protein-rich snacks strengthened the nutritional message by enabling discussions and socialising. The oral nutritional supplements (ONS) helped participants to regain their energy and to motivate them to exercise and make changes in their diets. Obstacles to making changes in diets included participants' false ideas about nutrition, especially with regard to weight gain. Health problems and functional limitations hampered food management, and some families had inveterate eating habits. The positive feedback from participants indicated the feasibility of our tailored nutritional guidance. Assessment-based, tailored nutritional guidance implemented with a personal and positive approach may inspire and empower AD families to make positive changes in their diets, leading them to improved nutrition and quality of life.

  20. Aging mechanisms in amorphous phase-change materials.

    PubMed

    Raty, Jean Yves; Zhang, Wei; Luckas, Jennifer; Chen, Chao; Mazzarello, Riccardo; Bichara, Christophe; Wuttig, Matthias

    2015-06-24

    Aging is a ubiquitous phenomenon in glasses. In the case of phase-change materials, it leads to a drift in the electrical resistance, which hinders the development of ultrahigh density storage devices. Here we elucidate the aging process in amorphous GeTe, a prototypical phase-change material, by advanced numerical simulations, photothermal deflection spectroscopy and impedance spectroscopy experiments. We show that aging is accompanied by a progressive change of the local chemical order towards the crystalline one. Yet, the glass evolves towards a covalent amorphous network with increasing Peierls distortion, whose structural and electronic properties drift away from those of the resonantly bonded crystal. This behaviour sets phase-change materials apart from conventional glass-forming systems, which display the same local structure and bonding in both phases.

  1. Thermodynamics of charged Lovelock: AdS black holes

    NASA Astrophysics Data System (ADS)

    Prasobh, C. B.; Suresh, Jishnu; Kuriakose, V. C.

    2016-04-01

    We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime.

  2. Preparation and thermal properties of Glauber’s salt-based phase-change materials for Qinghai-Tibet Plateau solar greenhouses

    NASA Astrophysics Data System (ADS)

    Jiang, Zipeng; Tie, Shengnian

    2017-07-01

    This paper reports the preparation and characterization of eutectic Glauber’s salt-based composite, phase-change materials (G-PCMs). PCMs were prepared using industrial-grade sodium sulfate decahydrate (Na2SO4 ṡ 10H2O) as the basic material. Other salts were added to obtain the eutectic Glauber’s salt-based PCMs with phase-change temperatures of 25∘C, 15∘C and 10∘C. The modification of the G-PCMs was designed using the same experimental method to select the efficient nucleating, thickening and thermal conductive agents. The results show that borax can be an effective nucleating agent, sodium carboxymethyl cellulose is an excellent thickener and carbon powder is a good thermal conductive agent. The phase-change temperature, latent heat and thermal conductivity of the three different PCMs are 23.9∘C, 15.4∘C and 9.5∘C; 179.6, 129 and 116.2 J/g; and 1.02, 1.10 and 1.23 W/(m K), respectively. These PCMs possess suitable phase-change temperature, high latent heat and good thermal conductivity, and can be used in Qinghai-Tibet Plateau agricultural solar greenhouses.

  3. Sembragiline in Moderate Alzheimer’s Disease: Results of a Randomized, Double-Blind, Placebo-Controlled Phase II Trial (MAyflOwer RoAD)

    PubMed Central

    Nave, Stephane; Doody, Rachelle S.; Boada, Mercè; Grimmer, Timo; Savola, Juha-Matti; Delmar, Paul; Pauly-Evers, Meike; Nikolcheva, Tania; Czech, Christian; Borroni, Edilio; Ricci, Benedicte; Dukart, Juergen; Mannino, Marie; Carey, Tracie; Moran, Emma; Gilaberte, Inma; Muelhardt, Nicoletta Milani; Gerlach, Irene; Santarelli, Luca; Ostrowitzki, Susanne; Fontoura, Paulo

    2017-01-01

    Background: Sembragiline is a potent, selective, long-acting, and reversible MAO-B inhibitor developed as a potential treatment for Alzheimer’s disease (AD). Objective: To evaluate the safety, tolerability, and efficacy of sembragiline in patients with moderate AD. Methods: In this Phase II study (NCT01677754), 542 patients with moderate dementia (MMSE 13–20) on background acetylcholinesterase inhibitors with/without memantine were randomized (1:1:1) to sembragiline 1 mg, 5 mg, or placebo once daily orally for 52 weeks. Results: No differences between treated groups and placebo in adverse events or in study completion. The primary endpoint, change from baseline in ADAS-Cog11, was not met. At Week 52, the difference between sembragiline and placebo in ADAS-Cog11 change from baseline was – 0.15 (p = 0.865) and 0.90 (p = 0.312) for 1 and 5 mg groups, respectively. Relative to placebo at Week 52 (but not at prior assessment times), the 1 mg and 5 mg sembragiline groups showed differences in ADCS-ADL of 2.64 (p = 0.051) and 1.89 (p = 0.160), respectively. A treatment effect in neuropsychiatric symptoms (as assessed by the difference between sembragiline and placebo on BEHAVE-AD-FW) was also seen at Week 52 only: – 2.80 (p = 0.014; 1 mg) and – 2.64 (p = 0.019; 5 mg), respectively. A post hoc subgroup analysis revealed greater treatment effects on behavior and functioning in patients with more severe baseline behavioral symptoms (above the median). Conclusions: This study showed that sembragiline was well-tolerated in patients with moderate AD. The study missed its primary and secondary endpoints. Post hoc analyses suggested potential effect on neuropsychiatric symptoms and functioning in more behaviorally impaired study population at baseline. PMID:28550255

  4. Localized AdS_{5}×S^{5} Black Holes.

    PubMed

    Dias, Óscar J C; Santos, Jorge E; Way, Benson

    2016-10-07

    According to heuristic arguments, global AdS_{5}×S^{5} black holes are expected to undergo a phase transition in the microcanonical ensemble. At high energies, one expects black holes that respect the symmetries of the S^{5}; at low energies, one expects "localized" black holes that appear pointlike on the S^{5}. According to anti-de Sitter/conformal field theory correspondence, N=4 supersymmetric Yang-Mills (SYM) theory on a 3-sphere should therefore exhibit spontaneous R-symmetry breaking at strong coupling. In this Letter, we numerically construct these localized black holes. We extrapolate the location of this phase transition, and compute the expectation value of the broken scalar operator with lowest conformal dimension. Via the correspondence, these results offer quantitative predictions for N=4 SYM theory.

  5. Ocular Changes in TgF344-AD Rat Model of Alzheimer's Disease

    PubMed Central

    Tsai, Yuchun; Lu, Bin; Ljubimov, Alexander V.; Girman, Sergey; Ross-Cisneros, Fred N.; Sadun, Alfredo A.; Svendsen, Clive N.; Cohen, Robert M.; Wang, Shaomei

    2014-01-01

    Purpose. Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by progressive decline in learning, memory, and executive functions. In addition to cognitive and behavioral deficits, vision disturbances have been reported in early stage of AD, well before the diagnosis is clearly established. To further investigate ocular abnormalities, a novel AD transgenic rat model was analyzed. Methods. Transgenic (Tg) rats (TgF344-AD) heterozygous for human mutant APPswe/PS1ΔE9 and age-matched wild type (WT) rats, as well as 20 human postmortem retinal samples from both AD and healthy donors were used. Visual function in the rodent was analyzed using the optokinetic response. Immunohistochemistry on retinal and brain sections was used to detect various markers including amyloid-β (Aβ) plaques. Results. As expected, Aβ plaques were detected in the hippocampus, cortex, and retina of Tg rats. Plaque-like structures were also found in two AD human whole-mount retinas. The choroidal thickness was significantly reduced in both Tg rat and in AD human eyes when compared with age-matched controls. Tg rat eyes also showed hypertrophic retinal pigment epithelial cells, inflammatory cells, and upregulation of complement factor C3. Although visual acuity was lower in Tg than in WT rats, there was no significant difference in the retinal ganglion cell number and retinal vasculature. Conclusions. Further studies are needed to elucidate the significance and mechanisms of this pathological change and luminance threshold recording from the superior colliculus. PMID:24398104

  6. Effect of adding powder on joint properties of laser penetration welding for dual phase steel and aluminum alloy

    NASA Astrophysics Data System (ADS)

    Zhou, D. W.; Liu, J. S.; Lu, Y. Z.; Xu, S. H.

    2017-09-01

    The experiments of laser penetration welding for dual phase steel and aluminum alloy were carried out, and the effect of adding Mn or Si powder on mechanical properties and microstructure of the weld was investigated. Some defects, such as spatter, inclusion, cracks and softening in heat affected zone (HAZ), can be avoided in welding joints, and the increased penetration depth is obtained by adding Mn or Si powder. The average tensile-shear strength of Si-added joint is 3.84% higher than that of Mn-added joint, and the strength of both joints exceeds that of no-added joint. In the case of adding Mn powder, small amount of liquid Al is mixed into steel molten pool, and the Al content increases in both sides of the weld, which leads to the increased weld width in aluminum molten pool. Thus, transverse area increases in jointing steel to aluminum, which is significant for the improved tensile-shear strength of joints. As far as adding Si powder is concerned, it is not the case, the enhancement of the joint properties benefits from improvement of metallurgical reaction.

  7. Elevated-Confined Phase-Change Random Access Memory Cells

    NASA Astrophysics Data System (ADS)

    Lee; Koon, Hock; Shi; Luping; Zhao; Rong; Yang; Hongxin; Lim; Guan, Kian; Li; Jianming; Chong; Chong, Tow

    2010-04-01

    A new elevated-confined phase-change random access memory (PCRAM) cell structure to reduce power consumption was proposed. In this proposed structure, the confined phase-change region is sitting on top of a small metal column enclosed by a dielectric at the sides. Hence, more heat can be effectively sustained underneath the phase-change region. As for the conventional structure, the confined phase-change region is sitting directly above a large planar bottom metal electrode, which can easily conduct most of the induced heat away. From simulations, a more uniform temperature profile around the active region and a higher peak temperature at the phase-change layer (PCL) in an elevated-confined structure were observed. Experimental results showed that the elevated-confined PCRAM cell requires a lower programming power and has a better scalability than a conventional confined PCRAM cell.

  8. Position space analysis of the AdS (in)stability problem

    NASA Astrophysics Data System (ADS)

    Dimitrakopoulos, Fotios V.; Freivogel, Ben; Lippert, Matthew; Yang, I.-Sheng

    2015-08-01

    We investigate whether arbitrarily small perturbations in global AdS space are generically unstable and collapse into black holes on the time scale set by gravitational interactions. We argue that current evidence, combined with our analysis, strongly suggests that a set of nonzero measure in the space of initial conditions does not collapse on this time scale. We perform an analysis in position space to study this puzzle, and our formalism allows us to directly study the vanishing-amplitude limit. We show that gravitational self-interaction leads to tidal deformations which are equally likely to focus or defocus energy, and we sketch the phase diagram accordingly. We also clarify the connection between gravitational evolution in global AdS and holographic thermalization.

  9. Phase Composition, Crystallite Size and Physical Properties of B2O3-added Forsterite Nano-ceramics

    NASA Astrophysics Data System (ADS)

    Pratapa, S.; Chairunnisa, A.; Nurbaiti, U.; Handoko, W. D.

    2018-05-01

    This study was aimed to know the effect of B2O3 addition on the phase composition, crystallite size and dielectric properties of forsterite (Mg2SiO4) nano-ceramics. It utilized a purified silica sand from Tanah Laut, South Kalimantan as the source of (amorphous) silica and a magnesium oxide (MgO) powder. They were thoroughly mixed and milled prior to calcination. The addition of 1, 2, 3, and 4 wt% B2O3 to the calcined powder was done before uniaxial pressing and then sintering at 950 °C for 4 h. The phase composition and forsterite crystallite size, the microstructure and the dielectric constant of the sintered samples were characterized using X-ray diffractometer (XRD), Scanning Electron Microscope (SEM) and Vector Network Analyzer (VNA), respectively. Results showed that all samples contained forsterite, periclase (MgO) and proto enstatite (MgSiO3) with different weight fractions and forsterite crystallite size. In general, the weight fraction and crystallite size of forsterite increased with increasing B2O3 addition. The weight fraction and crystallite size of forsterite in the 4%-added sample reached 99% wt and 164 nm. Furthermore, the SEM images showed that the average grain size became slightly larger and the ceramics also became slightly denser as more B2O3 was added. The results are in accordance with density measurements using the Archimedes method which showed that the 4% ceramic exhibited 1.845 g/cm3 apparent density, while the 1% ceramic 1.681 g/cm3. We also found that the higher the density, the higher the average dielectric constant, i.e. it was 4.6 for the 1%-added sample and 6.4 for the 4%-added sample.

  10. Innovative Phase Change Approach for Significant Energy Savings

    DTIC Science & Technology

    2016-09-01

    September 2016 Innovative Phase Change Approach For Significant Energy Savings September 2016 8 After conducting a market survey...FINAL REPORT Innovative Phase Change Approach for Significant Energy Savings ESTCP Project EW-201138 SEPTEMBER 2016 Dr. Aly H Shaaban Applied...5a. CONTRACT NUMBER W912HQ-11-C-0011 Innovative Phase Change Approach for Significant Energy Savings 5b. GRANT NUMBER 5c. PROGRAM

  11. Multilayer SnSb4-SbSe Thin Films for Phase Change Materials Possessing Ultrafast Phase Change Speed and Enhanced Stability.

    PubMed

    Liu, Ruirui; Zhou, Xiao; Zhai, Jiwei; Song, Jun; Wu, Pengzhi; Lai, Tianshu; Song, Sannian; Song, Zhitang

    2017-08-16

    A multilayer thin film, comprising two different phase change material (PCM) components alternatively deposited, provides an effective means to tune and leverage good properties of its components, promising a new route toward high-performance PCMs. The present study systematically investigated the SnSb 4 -SbSe multilayer thin film as a potential PCM, combining experiments and first-principles calculations, and demonstrated that these multilayer thin films exhibit good electrical resistivity, robust thermal stability, and superior phase change speed. In particular, the potential operating temperature for 10 years is shown to be 122.0 °C and the phase change speed reaches 5 ns in the device test. The good thermal stability of the multilayer thin film is shown to come from the formation of the Sb 2 Se 3 phase, whereas the fast phase change speed can be attributed to the formation of vacancies and a SbSe metastable phase. It is also demonstrated that the SbSe metastable phase contributes to further enhancing the electrical resistivity of the crystalline state and the thermal stability of the amorphous state, being vital to determining the properties of the multilayer SnSb 4 -SbSe thin film.

  12. New developments in optical phase-change memory

    NASA Astrophysics Data System (ADS)

    Ovshinsky, Stanford R.; Czubatyj, Wolodymyr

    2001-02-01

    Phase change technology has progressed from the original invention of Ovshinsky to become the leading choice for rewritable optical disks. ECD's early work in phase change materials and methods for operating in a direct overwrite fashion were crucial to the successes that have been achieved. Since the introduction of the first rewritable phase change products in 1991, the market has expanded from CD-RW into rewritable DVD with creative work going on worldwide. Phase change technology is ideally suited to address the continuous demand for increased storage capacity. First, laser beams can be focused to ever-smaller spot sizes using shorter wavelength lasers and higher performance optics. Blue lasers are now commercially viable and high numerical aperture and near field lenses have been demonstrated. Second, multilevel approaches can be used to increase capacity by a factor of three or more with concomitant increases in data transfer rate. In addition, ECD has decreased manufacturing costs through the use of innovative production technology. These factors combine to accelerate the widespread use of phase change technology. As in all our technologies, such as thin film photovoltaics, nickel metal hydride batteries, hydrogen storage systems, fuel cells, electrical memory, etc., we have invented the materials, the products, the production machines and the production processes for high rate, low-cost manufacture.

  13. Phase change material storage heater

    DOEpatents

    Goswami, D. Yogi; Hsieh, Chung K.; Jotshi, Chand K.; Klausner, James F.

    1997-01-01

    A storage heater for storing heat and for heating a fluid, such as water, has an enclosure defining a chamber therein. The chamber has a lower portion and an upper portion with a heating element being disposed within the enclosure. A tube through which the fluid flows has an inlet and an outlet, both being disposed outside of the enclosure, and has a portion interconnecting the inlet and the outlet that passes through the enclosure. A densely packed bed of phase change material pellets is disposed within the enclosure and is surrounded by a viscous liquid, such as propylene glycol. The viscous liquid is in thermal communication with the heating element, the phase change material pellets, and the tube and transfers heat from the heating element to the pellets and from the pellets to the tube. The viscous fluid has a viscosity so that the frictional pressure drop of the fluid in contact with the phase change material pellets substantially reduces vertical thermal convection in the fluid. As the fluid flows through the tube heat is transferred from the viscous liquid to the fluid flowing through the tube, thereby heating the fluid.

  14. Phase-change related epigenetic and physiological changes in Pinus radiata D. Don.

    PubMed

    Fraga, Mario F; Cañal, Maria Jesús; Rodríguez, Roberto

    2002-08-01

    DNA methylation and polyamine levels were analysed before and after Pinus radiata D. Don. phase change in order to identify possible molecular and physiological phase markers. Juvenile individuals (without reproductive ability) were characterised by a degree of DNA methylation of 30-35% and a ratio of free polyamines to perchloric acid-soluble polyamine conjugates greater than 1, while mature trees (with reproductive ability) had 60% 5-methylcytosine and a ratio of free polyamines to perchloric acid-soluble polyamine conjugates of less than 1. Results obtained with trees that attained reproductive capacity during the experimental period confirmed that changes in the degree of DNA methylation and polyamine concentrations found among juvenile and mature states come about immediately after the phase change. We suggest that both indicators may be associated with the loss of morphogenic ability during ageing, particularly after phase change, through a number of molecular interactions, which are subsequently discussed.

  15. Thermal Characterization of Lauric-Stearic Acid/Expanded Graphite Eutectic Mixture as Phase Change Materials.

    PubMed

    Zhu, Hua; Zhang, Peng; Meng, Zhaonan; Li, Ming

    2015-04-01

    The eutectic mixture of lauric acid (LA) and stearic acid (SA) is a desirable phase change material (PCM) due to the constant melting temperature and large latent heat. However, its poor thermal conductivity has hampered its broad utilization. In the present study, pure LA, SA and the mixtures with various mass fractions of LA-SA were used as the basic PCMs, and 10 wt% expanded graphite (EG) was added to enhance the thermal conductivities. The phase change behaviors, microstructural analysis, thermal conductivities and thermal stabilities of the mixtures of PCMs were investigated by differential scanning calorimetry (DSC), scanning electronic microscope (SEM), transient plane source (TPS) and thermogravimetric analysis (TGA), respectively. The results show that the LA-SA binary mixture of mixture ratio of 76.3 wt%: 23.7 wt% forms an eutectic mixture, which melts at 38.99 °C and has a latent heat of 159.94 J/g. The melted fatty acids are well absorbed by the porous network of EG and they have a good thermal stability. Furthermore, poor thermal conductivities can be well enhanced by the addition of EG.

  16. Chaos in charged AdS black hole extended phase space

    NASA Astrophysics Data System (ADS)

    Chabab, M.; El Moumni, H.; Iraoui, S.; Masmar, K.; Zhizeh, S.

    2018-06-01

    We present an analytical study of chaos in a charged black hole in the extended phase space in the context of the Poincare-Melnikov theory. Along with some background on dynamical systems, we compute the relevant Melnikov function and find its zeros. Then we analyse these zeros either to identify the temporal chaos in the spinodal region, or to observe spatial chaos in the small/large black hole equilibrium configuration. As a byproduct, we derive a constraint on the Black hole' charge required to produce chaotic behaviour. To the best of our knowledge, this is the first endeavour to understand the correlation between chaos and phase picture in black holes.

  17. Heat storage system utilizing phase change materials government rights

    DOEpatents

    Salyer, Ival O.

    2000-09-12

    A thermal energy transport and storage system is provided which includes an evaporator containing a mixture of a first phase change material and a silica powder, and a condenser containing a second phase change material. The silica powder/PCM mixture absorbs heat energy from a source such as a solar collector such that the phase change material forms a vapor which is transported from the evaporator to the condenser, where the second phase change material melts and stores the heat energy, then releases the energy to an environmental space via a heat exchanger. The vapor is condensed to a liquid which is transported back to the evaporator. The system allows the repeated transfer of thermal energy using the heat of vaporization and condensation of the phase change material.

  18. Value Added?

    ERIC Educational Resources Information Center

    UCLA IDEA, 2012

    2012-01-01

    Value added measures (VAM) uses changes in student test scores to determine how much "value" an individual teacher has "added" to student growth during the school year. Some policymakers, school districts, and educational advocates have applauded VAM as a straightforward measure of teacher effectiveness: the better a teacher,…

  19. Fundamental incorporation of the density change during melting of a confined phase change material

    NASA Astrophysics Data System (ADS)

    Hernández, Ernesto M.; Otero, José A.

    2018-02-01

    The modeling of thermal diffusion processes taking place in a phase change material presents a challenge when the dynamics of the phase transition is coupled to the mechanical properties of the container. Thermo-mechanical models have been developed by several authors, however, it will be shown that these models only explain the phase transition dynamics at low pressures when the density of each phase experiences negligible changes. In our proposal, a new energy-mass balance equation at the interface is derived and found to be a consequence of mass conservation. The density change experienced in each phase is predicted by the proposed formulation of the problem. Numerical and semi-analytical solutions to the proposed model are presented for an example on a high temperature phase change material. The solutions to the models presented by other authors are observed to be well-behaved close to the isobaric limit. However, compared to the results obtained from our model, the change in the fusion temperature, latent heat, and absolute pressure is found to be greatly overestimated by other proposals when the phase transition is studied close to the isochoric regime.

  20. Carbon-doped Ge2Sb2Te5 phase change material: A candidate for high-density phase change memory application

    NASA Astrophysics Data System (ADS)

    Zhou, Xilin; Wu, Liangcai; Song, Zhitang; Rao, Feng; Zhu, Min; Peng, Cheng; Yao, Dongning; Song, Sannian; Liu, Bo; Feng, Songlin

    2012-10-01

    Carbon-doped Ge2Sb2Te5 material is proposed for high-density phase-change memories. The carbon doping effects on electrical and structural properties of Ge2Sb2Te5 are studied by in situ resistance and x-ray diffraction measurements as well as optical spectroscopy. C atoms are found to significantly enhance the thermal stability of amorphous Ge2Sb2Te5 by increasing the degree of disorder of the amorphous phase. The reversible electrical switching capability of the phase-change memory cells is improved in terms of power consumption with carbon addition. The endurance of ˜2.1 × 104 cycles suggests that C-doped Ge2Sb2Te5 film will be a potential phase-change material for high-density storage application.

  1. Phase change thermal energy storage methods for combat vehicles, phase 1

    NASA Astrophysics Data System (ADS)

    Lynch, F. E.

    1986-06-01

    Three alternative cooling methods, based on latent heat absorption during phase changes, were studied for potential use in combat vehicle microclimate temperature control. Metal hydrides absorb heat as they release hydrogen gas. Plastic crystals change from one solid phase to another, absorbing heat in the process. Liquid air boils at cryogenic temperature and absorbs additional sensible heat as the cold gas mixes with the microclimate air flow. System designs were prepared for each of the three microclimate cooling concepts. These designs provide details about the three phase change materials, their containers and the auxiliary equipment needed to implement each option onboard a combat vehicle. The three concepts were compared on the basis of system mass, system volume and the energy required to regenerate them after use. Metal hydrides were found to be the lightest and smallest option by a large margin. The energy needed to regenerate a hydride thermal storage system can be extracted from the vehicle's exhaust gases.

  2. Entanglement entropy of AdS5 × S5 with massive flavors

    NASA Astrophysics Data System (ADS)

    Hu, Sen; Wu, Guozhen

    2018-01-01

    We consider backreacted AdS5 × S5 coupled with Nf massive flavors introduced by D7 branes. The backreacted geometry is in the Veneziano limit with fixed Nf/Nc. By dividing one of the directions into a line segment with length l, we get two subspaces. Then we calculate the entanglement entropy between them. With the method of [I. R. Klebanov, D. Kutasov and A. Murugan, Nucl. Phys. B 796, 274 (2008)], we are able to find the cut-off independent part of the entanglement entropy and finally find that this geometry shows no confinement/deconfinement phase transition at zero temperature from the holographic entanglement entropy point of view similar to the case in pure AdS5 × S5.

  3. A consistent and unified picture for critical phenomena of f(R) AdS black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Jie-Xiong; Li, Gu-Qiang; Wu, Yu-Cheng, E-mail: mojiexiong@gmail.com, E-mail: zsgqli@hotmail.com, E-mail: wuyucheng0827@163.com

    A consistent and unified picture for critical phenomena of charged AdS black holes in f ( R ) gravity is drawn in this paper. Firstly, we investigate the phase transition in canonical ensemble. We derive the explicit solutions corresponding to the divergence of C {sub Q} . The two solutions merge into one when the condition Q {sub c} =√(−1/3 R {sub 0}) is satisfied. The curve of specific heat for Q < Q {sub c} has two divergent points and can be divided into three regions. Both the large radius region and the small radius region are thermodynamically stablemore » with positive specific heat while the medium radius region is unstable with negative specific heat. However, when Q > Q {sub c} , the specific heat is always positive, implying the black holes are locally stable and no phase transition will take place. Secondly, both the T − r {sub +} curve and T − S curve f ( R ) AdS black holes are investigated and they exhibit Van der Vaals like behavior as the P − v curve in the former research. Critical physical quantities are obtained and they are consistent with those derived from the specific heat analysis. We carry out numerical check of Maxwell equal area law for the cases Q =0.2 Q {sub c} , 0.4 Q {sub c} , 0.6 Q {sub c} , 0.8 Q {sub c} . The relative errors are amazingly small and can be negligible. So the Maxwell equal area law holds for T − S curve of f ( R ) black holes. Thirdly, we establish geometrothermodynamics for f ( R ) AdS black hole to examine the phase structure. It is shown that the Legendre invariant scalar curvature R would diverge exactly where the specific heat diverges. To summarize, the above three perspectives are consistent with each other, thus providing a unified picture which deepens the understanding of critical phenomena of f ( R ) AdS black holes.« less

  4. Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition.

    PubMed

    Wei, Shao-Wen; Liu, Yu-Xiao

    2015-09-11

    Comparing with an ordinary thermodynamic system, we investigate the possible microscopic structure of a charged anti-de Sitter black hole completely from the thermodynamic viewpoint. The number density of the black hole molecules is introduced to measure the microscopic degrees of freedom of the black hole. We found that the number density suffers a sudden change accompanied by a latent heat when the black hole system crosses the small-large black hole coexistence curve, while when the system passes the critical point, it encounters a second-order phase transition with a vanishing latent heat due to the continuous change of the number density. Moreover, the thermodynamic scalar curvature suggests that there is a weak attractive interaction between two black hole molecules. These phenomena might cast new insight into the underlying microscopic structure of a charged anti-de Sitter black hole.

  5. Understanding Phase-Change Memory Alloys from a Chemical Perspective

    NASA Astrophysics Data System (ADS)

    Kolobov, A. V.; Fons, P.; Tominaga, J.

    2015-09-01

    Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials.

  6. Understanding Phase-Change Memory Alloys from a Chemical Perspective.

    PubMed

    Kolobov, A V; Fons, P; Tominaga, J

    2015-09-01

    Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials.

  7. Applications of graphite-enabled phase change material composites to improve thermal performance of cementitious materials

    NASA Astrophysics Data System (ADS)

    Li, Mingli; Lin, Zhibin; Wu, Lili; Wang, Jinhui; Gong, Na

    2017-11-01

    Enhancing the thermal efficiency to decrease the energy consumption of structures has been the topic of much research. In this study, a graphite-enabled microencapsulated phase change material (GE-MEPCM) was used in the production of a novel thermal energy storage engineered cementitious composite feathering high heat storage capacity and enhanced thermal conductivity. The surface morphology and particle size of the microencapsulated phase change material (MEPCM) were investigated by scanning electron microscopy (SEM). Thermal properties of MEPCM was determined using differential scanning calorimetry (DSC). In addition, thermal and mechanical properties of the cementitious mortar with different admixtures were explored and compared with those of a cementitious composite. It was shown that the latent heat of MEPCM was 162 J/g, offering much better thermal energy storage capacity to the cementitious composite. However, MEPCM was found to decrease the thermal conductivity of the composite, which can be effectively solved by adding natural graphite (NG). Moreover, the incorporation of MEPCM has a certain decrease in the compressive strength, mainly due to the weak interfaces between MEPCM and cement matrix.

  8. Two-bit multi-level phase change random access memory with a triple phase change material stack structure

    NASA Astrophysics Data System (ADS)

    Gyanathan, Ashvini; Yeo, Yee-Chia

    2012-11-01

    This work demonstrates a novel two-bit multi-level device structure comprising three phase change material (PCM) layers, separated by SiN thermal barrier layers. This triple PCM stack consisted of (from bottom to top), Ge2Sb2Te5 (GST), an ultrathin SiN barrier, nitrogen-doped GST, another ultrathin SiN barrier, and Ag0.5In0.5Sb3Te6. The PCM layers can selectively amorphize to form 4 different resistance levels ("00," "01," "10," and "11") using respective voltage pulses. Electrical characterization was extensively performed on these devices. Thermal analysis was also done to understand the physics behind the phase changing characteristics of the two-bit memory devices. The melting and crystallization temperatures of the PCMs play important roles in the power consumption of the multi-level devices. The electrical resistivities and thermal conductivities of the PCMs and the SiN thermal barrier are also crucial factors contributing to the phase changing behaviour of the PCMs in the two-bit multi-level PCRAM device.

  9. Phase field modeling of rapid crystallization in the phase-change material AIST

    NASA Astrophysics Data System (ADS)

    Tabatabaei, Fatemeh; Boussinot, Guillaume; Spatschek, Robert; Brener, Efim A.; Apel, Markus

    2017-07-01

    We carry out phase field modeling as a continuum simulation technique in order to study rapid crystallization processes in the phase-change material AIST (Ag4In3Sb67Te26). In particular, we simulate the spatio-temporal evolution of the crystallization of a molten area of the phase-change material embedded in a layer stack. The simulation model is adapted to the experimental conditions used for recent measurements of crystallization rates by a laser pulse technique. Simulations are performed for substrate temperatures close to the melting temperature of AIST down to low temperatures when an amorphous state is involved. The design of the phase field model using the thin interface limit allows us to retrieve the two limiting regimes of interface controlled (low temperatures) and thermal transport controlled (high temperatures) dynamics. Our simulations show that, generically, the crystallization velocity presents a maximum in the intermediate regime where both the interface mobility and the thermal transport, through the molten area as well as through the layer stack, are important. Simulations reveal the complex interplay of all different contributions. This suggests that the maximum switching velocity depends not only on material properties but also on the precise design of the thin film structure into which the phase-change material is embedded.

  10. Recent Advances on Neuromorphic Systems Using Phase-Change Materials

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Lu, Shu-Ren; Wen, Jing

    2017-05-01

    Realization of brain-like computer has always been human's ultimate dream. Today, the possibility of having this dream come true has been significantly boosted due to the advent of several emerging non-volatile memory devices. Within these innovative technologies, phase-change memory device has been commonly regarded as the most promising candidate to imitate the biological brain, owing to its excellent scalability, fast switching speed, and low energy consumption. In this context, a detailed review concerning the physical principles of the neuromorphic circuit using phase-change materials as well as a comprehensive introduction of the currently available phase-change neuromorphic prototypes becomes imperative for scientists to continuously progress the technology of artificial neural networks. In this paper, we first present the biological mechanism of human brain, followed by a brief discussion about physical properties of phase-change materials that recently receive a widespread application on non-volatile memory field. We then survey recent research on different types of neuromorphic circuits using phase-change materials in terms of their respective geometrical architecture and physical schemes to reproduce the biological events of human brain, in particular for spike-time-dependent plasticity. The relevant virtues and limitations of these devices are also evaluated. Finally, the future prospect of the neuromorphic circuit based on phase-change technologies is envisioned.

  11. Recent Advances on Neuromorphic Systems Using Phase-Change Materials.

    PubMed

    Wang, Lei; Lu, Shu-Ren; Wen, Jing

    2017-12-01

    Realization of brain-like computer has always been human's ultimate dream. Today, the possibility of having this dream come true has been significantly boosted due to the advent of several emerging non-volatile memory devices. Within these innovative technologies, phase-change memory device has been commonly regarded as the most promising candidate to imitate the biological brain, owing to its excellent scalability, fast switching speed, and low energy consumption. In this context, a detailed review concerning the physical principles of the neuromorphic circuit using phase-change materials as well as a comprehensive introduction of the currently available phase-change neuromorphic prototypes becomes imperative for scientists to continuously progress the technology of artificial neural networks. In this paper, we first present the biological mechanism of human brain, followed by a brief discussion about physical properties of phase-change materials that recently receive a widespread application on non-volatile memory field. We then survey recent research on different types of neuromorphic circuits using phase-change materials in terms of their respective geometrical architecture and physical schemes to reproduce the biological events of human brain, in particular for spike-time-dependent plasticity. The relevant virtues and limitations of these devices are also evaluated. Finally, the future prospect of the neuromorphic circuit based on phase-change technologies is envisioned.

  12. Fun with Phase Changes

    ERIC Educational Resources Information Center

    Purvis, David

    2006-01-01

    A lot of good elementary science involves studying solids, liquids, and gases, and some inquiry-based activities that are easy to set up and do. In this article, the author presents activities pertaining to simple phase change. Using water as the example, these activities introduce upper-grade students to the idea of the arrangement of molecules…

  13. Spike-adding in parabolic bursters: The role of folded-saddle canards

    NASA Astrophysics Data System (ADS)

    Desroches, Mathieu; Krupa, Martin; Rodrigues, Serafim

    2016-09-01

    The present work develops a new approach to studying parabolic bursting, and also proposes a novel four-dimensional canonical and polynomial-based parabolic burster. In addition to this new polynomial system, we also consider the conductance-based model of the Aplysia R15 neuron known as the Plant model, and a reduction of this prototypical biophysical parabolic burster to three variables, including one phase variable, namely the Baer-Rinzel-Carillo (BRC) phase model. Revisiting these models from the perspective of slow-fast dynamics reveals that the number of spikes per burst may vary upon parameter changes, however the spike-adding process occurs in an explosive fashion that involves special solutions called canards. This spike-adding canard explosion phenomenon is analysed by using tools from geometric singular perturbation theory in tandem with numerical bifurcation techniques. We find that the bifurcation structure persists across all considered systems, that is, spikes within the burst are incremented via the crossing of an excitability threshold given by a particular type of canard orbit, namely the true canard of a folded-saddle singularity. However there can be a difference in the spike-adding transitions in parameter space from one case to another, according to whether the process is continuous or discontinuous, which depends upon the geometry of the folded-saddle canard. Using these findings, we construct a new polynomial approximation of the Plant model, which retains all the key elements for parabolic bursting, including the spike-adding transitions mediated by folded-saddle canards. Finally, we briefly investigate the presence of spike-adding via canards in planar phase models of parabolic bursting, namely the theta model by Ermentrout and Kopell.

  14. Effects of nanoparticles on melting process with phase-change using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Ibrahem, Ahmed M.; El-Amin, Mohamed F.; Sun, Shuyu

    In this work, the problem of nanoparticles dispersion effects on coupled heat transfer and solid-liquid phase change has been studied. The lattice Boltzmann method (LBM) enthalpy-based is employed. The collision model of lattice Bhatnagar-Gross-Krook (LBGK) is used to solve the problem of 1D melting by conduction. On the other hand, we use the model of multi-distribution functions (MDF) to calculate the density, the velocity and the temperature for the problem of 2D melting by free convection, associated with different boundary conditions. In these simulations, the volume fractions of copper nanoparticles (0-2%) added to water-base fluid and Rayleigh numbers of 103-105. We use the Chapman-Enskog expansion to derive the governing macroscopic quantities from the mesoscopic lattice Boltzmann equation. The results obtained by these models have been compared to an analytical solution or other numerical methods. The effects of nanoparticles on conduction and natural convection during the melting process have been investigated. Moreover, the influences of nanoparticles on moving of the phase change front, the thermal conductivity and the latent heat of fusion are also studied.

  15. Phase-change composites TES for nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Knowles, Timothy R.; Meyer, Richard A.

    1993-01-01

    Viewgraphs of a discussion on phase-change composites thermal energy storage (TES) for nickel-hydrogen batteries are presented. Topics covered include Ni-H2 thermal control problems; passive thermal control with TES; phase-change composites (PCC); candidate materials; design options; fabrication and freeze-melt cycling; thermal modeling; system benefits; and applications.

  16. Development of form stable Poly(methyl methacrylate) (PMMA) coated thermal phase change material for solar water heater applications

    NASA Astrophysics Data System (ADS)

    Munusamy, Y.; Shanmugam, S.; Shi-Ying, Kee

    2018-04-01

    Phase change material (PCM) is one of the most popular and widely used thermal energy storage material in solar water heater because it able to absorb and release a large amount of latent heat during a phase change process over a narrow temperature range. However the practical application of PCM is limited by two major issues; 1) leakage which leads to material loss and corrosion of tank and 2) large volume change during phase change process which cause pressure build up in the tank. In this work, form-stable PCM was prepared by coating myristic acid with Poly(methyl methacrylate) (PMMA) to prevent leakage of PCM. PMMA was mixed with different weight percentage (0.1, 0.2, 0.3, 0.4 and 0.5 wt%) of dicumyl peroxide (DCP). The purpose of adding DCP to PMMA is to crosslink the polymer and to increase the mechanical strength of PMMA to hold the myristic acid content inside the coating during the phase change process. Leakage test results showed that PMMA mixed with 0.1% DCP exhibit 0% leakage. This result is further supported by Field Emission Scanning Electron Microscopy (FESEM) images and Fourier transform infrared spectroscopy (FTIR) analysis results, where a compact and uniform coating without cracks were formed for PCM coated with PMMA with 0.1% DCP. Differential scanning calorimetry (DSC) results shows that the melting point of form-stable PCM is 55°C, freezing point is 50°C, the latent heat of melting and freezing is 67.59 J/g.

  17. Lightweight Phase-Change Material For Solar Power

    NASA Technical Reports Server (NTRS)

    Stark, Philip

    1993-01-01

    Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.

  18. Thermodynamic Geometry of Charged AdS Black Hole Surrounded by Quintessence

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Man, Qing-Tao; Yu, Hao

    2018-02-01

    In this paper, we study the thermodynamic geometry for the charged AdS black hole surrounded by quintessence. Three different kinds of the geometries are constructed, and the corresponding curvatures are obtained. It is found that there are different divergence behaviors of these curvatures, which is general thought to closely link to the phase transition of the black hole. Supported by the National Natural Science Foundation of China under Grant Nos. 11675064, 11205074, and the Fundamental Research Funds for the Central Universities under Grant No. lzujbky-2016-121

  19. Self-assembled phase-change nanowire for nonvolatile electronic memory

    NASA Astrophysics Data System (ADS)

    Jung, Yeonwoong

    One of the most important subjects in nanosciences is to identify and exploit the relationship between size and structural/physical properties of materials and to explore novel material properties at a small-length scale. Scale-down of materials is not only advantageous in realizing miniaturized devices but nanometer-sized materials often exhibit intriguing physical/chemical properties that greatly differ from their bulk counterparts. This dissertation studies self-assembled phase-change nanowires for future nonvolatile electronic memories, mainly focusing on their size-dependent memory switching properties. Owing to the one-dimensional, unique geometry coupled with the small and tunable sizes, bottom-designed nanowires offer great opportunities in terms for both fundamental science and practical engineering perspectives, which would be difficult to realize in conventional top-down based approaches. We synthesized chalcogenide phase-change nanowires of different compositions and sizes, and studied their electronic memory switching owing to the structural change between crystalline and amorphous phases. In particular, we investigated nanowire size-dependent memory switching parameters, including writing current, power consumption, and data retention times, as well as studying composition-dependent electronic properties. The observed size and composition-dependent switching and recrystallization kinetics are explained based on the heat transport model and heterogeneous nucleation theories, which help to design phase-change materials with better properties. Moreover, we configured unconventional heterostructured phase-change nanowire memories and studied their multiple memory states in single nanowire devices. Finally, by combining in-situ/ex-situ electron microscopy techniques and electrical measurements, we characterized the structural states involved in electrically-driven phase-change in order to understand the atomistic mechanism that governs the electronic

  20. A latchable thermally activated phase change actuator for microfluidic systems

    NASA Astrophysics Data System (ADS)

    Richter, Christiane; Sachsenheimer, Kai; Rapp, Bastian E.

    2016-03-01

    Complex microfluidic systems often require a high number of individually controllable active components like valves and pumps. In this paper we present the development and optimization of a latchable thermally controlled phase change actuator which uses a solid/liquid phase transition of a phase change medium and the displacement of the liquid phase change medium to change and stabilize the two states of the actuator. Because the phase change is triggered by heat produced with ohmic resistors the used control signal is an electrical signal. In contrast to pneumatically activated membrane valves this concept allows the individual control of several dozen actuators with only two external pressure lines. Within this paper we show the general working principle of the actuator and demonstrate its general function and the scalability of the concept at an example of four actuators. Additionally we present the complete results of our studies to optimize the response behavior of the actuator - the influence of the heating power as well as the used phase change medium on melting and solidifying times.

  1. DNS study of speed of sound in two-phase flows with phase change

    NASA Astrophysics Data System (ADS)

    Fu, Kai; Deng, Xiaolong

    2017-11-01

    Heat transfer through pipe flow is important for the safety of thermal power plants. Normally it is considered incompressible. However, in some conditions compressibility effects could deteriorate the heat transfer efficiency and even result in pipe rupture, especially when there is obvious phase change, due to the much lower sound speed in liquid-gas mixture flows. Based on the stratified multiphase flow model (Chang and Liou, JCP 2007), we present a new approach to simulate the sound speed in 3-D compressible two-phase dispersed flows, in which each face is divided into gas-gas, gas-liquid, and liquid-liquid parts via reconstruction by volume fraction, and fluxes are calculated correspondingly. Applying it to well-distributed air-water bubbly flows, comparing with the experiment measurements in air water mixture (Karplus, JASA 1957), the effects of adiabaticity, viscosity, and isothermality are examined. Under viscous and isothermal condition, the simulation results match the experimental ones very well, showing the DNS study with current method is an effective way for the sound speed of complex two-phase dispersed flows. Including the two-phase Riemann solver with phase change (Fechter et al., JCP 2017), more complex problems can be numerically studied.

  2. Triple points and phase diagrams in the extended phase space of charged Gauss-Bonnet black holes in AdS space

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Liu, Yu-Xiao

    2014-08-01

    We study the triple points and phase diagrams in the extended phase space of the charged Gauss-Bonnet black holes in d-dimensional anti-de Sitter space, where the cosmological constant appears as a dynamical pressure of the system and its conjugate quantity is the thermodynamic volume of the black holes. Employing the equation of state T=T(v,P), we demonstrate that the information of the phase transition and behavior of the Gibbs free energy are potential encoded in the T-v (T-rh) line with fixed pressure P. We get the phase diagrams for the charged Gauss-Bonnet black holes with different values of the charge Q and dimension d. The result shows that the small/large black hole phase transitions appear for any d, which is reminiscent of the liquid/gas transition of a Van der Waals type. Moreover, the interesting thermodynamic phenomena, i.e., the triple points and the small/intermediate/large black hole phase transitions are observed for d=6 and Q ∈(0.1705,0.1946).

  3. Refraction-Assisted Solar Thermoelectric Generator based on Phase-Change Lens

    PubMed Central

    Kim, Myoung-Soo; Kim, Min-Ki; Jo, Sung-Eun; Joo, Chulmin; Kim, Yong-Jun

    2016-01-01

    Solar thermoelectric generators (STEGs), which are used for various applications, (particularly small size electronic devices), have optical concentration systems for high energy conversion efficiency. In this study, a refraction-assisted STEG (R-STEG) is designed based on phase-change materials. As the phase-change material (PCM) changes phase from solid to liquid, its refractive index and transmittance also change, resulting in changes in the refraction of the sunlight transmitted through it, and concentration of solar energy in the phase-change lens. This innovative design facilitates double focusing the solar energy through the optical lens and a phase-change lens. This mechanism resulted in the peak energy conversion efficiencies of the R-STEG being 60% and 86% higher than those of the typical STEG at solar intensities of 1 kW m−2 and 1.5 kW m−2, respectively. In addition, the energy stored in PCM can help to generate steady electrical energy when the solar energy was removed. This work presents significant progress regarding the optical characteristic of PCM and optical concentration systems of STEGs. PMID:27283350

  4. Refraction-Assisted Solar Thermoelectric Generator based on Phase-Change Lens.

    PubMed

    Kim, Myoung-Soo; Kim, Min-Ki; Jo, Sung-Eun; Joo, Chulmin; Kim, Yong-Jun

    2016-06-10

    Solar thermoelectric generators (STEGs), which are used for various applications, (particularly small size electronic devices), have optical concentration systems for high energy conversion efficiency. In this study, a refraction-assisted STEG (R-STEG) is designed based on phase-change materials. As the phase-change material (PCM) changes phase from solid to liquid, its refractive index and transmittance also change, resulting in changes in the refraction of the sunlight transmitted through it, and concentration of solar energy in the phase-change lens. This innovative design facilitates double focusing the solar energy through the optical lens and a phase-change lens. This mechanism resulted in the peak energy conversion efficiencies of the R-STEG being 60% and 86% higher than those of the typical STEG at solar intensities of 1 kW m(-2) and 1.5 kW m(-2), respectively. In addition, the energy stored in PCM can help to generate steady electrical energy when the solar energy was removed. This work presents significant progress regarding the optical characteristic of PCM and optical concentration systems of STEGs.

  5. Critical phenomena and chemical potential of a charged AdS black hole

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Liang, Bin; Liu, Yu-Xiao

    2017-12-01

    Inspired by the interpretation of the cosmological constant from the boundary gauge theory, we here treat it as the number of colors N and its conjugate quantity as the associated chemical potential μ in the black hole side. Then the thermodynamics and the chemical potential for a five-dimensional charged AdS black hole are studied. It is found that there exists a small-large black hole phase transition of van der Waals type. The critical phenomena are investigated in the N2-μ chart. The result implies that the phase transition can occur for large number of colors N , while is forbidden for small number. This to some extent implies that the interaction of the system increases with the number. In particular, in the reduced parameter space, all the thermodynamic quantities can be rescaled with the black hole charge such that these reduced quantities are charge-independent. Then we obtain the coexistence curve and the phase diagram. The latent heat is also numerically calculated. Moreover, the heat capacity and the thermodynamic scalar are studied. The result indicates that the information of the first-order black hole phase transition is encoded in the heat capacity and scalar. However, the phase transition point cannot be directly calculated with them. Nevertheless, the critical point linked to a second-order phase transition can be determined by either the heat capacity or the scalar. In addition, we calculate the critical exponents of the heat capacity and the scalar for the saturated small and large black holes near the critical point.

  6. Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits.

    PubMed

    Lu, Yegang; Stegmaier, Matthias; Nukala, Pavan; Giambra, Marco A; Ferrari, Simone; Busacca, Alessandro; Pernice, Wolfram H P; Agarwal, Ritesh

    2017-01-11

    Phase change materials (PCMs) are highly attractive for nonvolatile electrical and all-optical memory applications because of unique features such as ultrafast and reversible phase transitions, long-term endurance, and high scalability to nanoscale dimensions. Understanding their transient characteristics upon phase transition in both the electrical and the optical domains is essential for using PCMs in future multifunctional optoelectronic circuits. Here, we use a PCM nanowire embedded into a nanophotonic circuit to study switching dynamics in mixed-mode operation. Evanescent coupling between light traveling along waveguides and a phase-change nanowire enables reversible phase transition between amorphous and crystalline states. We perform time-resolved measurements of the transient change in both the optical transmission and resistance of the nanowire and show reversible switching operations in both the optical and the electrical domains. Our results pave the way toward on-chip multifunctional optoelectronic integrated devices, waveguide integrated memories, and hybrid processing applications.

  7. Sprayable Phase Change Coating Thermal Protection Material

    NASA Technical Reports Server (NTRS)

    Richardson, Rod W.; Hayes, Paul W.; Kaul, Raj

    2005-01-01

    NASA has expressed a need for reusable, environmentally friendly, phase change coating that is capable of withstanding the heat loads that have historically required an ablative thermal insulation. The Space Shuttle Program currently relies on ablative materials for thermal protection. The problem with an ablative insulation is that, by design, the material ablates away, in fulfilling its function of cooling the underlying substrate, thus preventing the insulation from being reused from flight to flight. The present generation of environmentally friendly, sprayable, ablative thermal insulation (MCC-l); currently use on the Space Shuttle SRBs, is very close to being a reusable insulation system. In actual flight conditions, as confirmed by the post-flight inspections of the SRBs, very little of the material ablates. Multi-flight thermal insulation use has not been qualified for the Space Shuttle. The gap that would have to be overcome in order to implement a reusable Phase Change Coating (PCC) is not unmanageable. PCC could be applied robotically with a spray process utilizing phase change material as filler to yield material of even higher strength and reliability as compared to MCC-1. The PCC filled coatings have also demonstrated potential as cryogenic thermal coatings. In experimental thermal tests, a thin application of PCC has provided the same thermal protection as a much thicker and heavier application of a traditional ablative thermal insulation. In addition, tests have shown that the structural integrity of the coating has been maintained and phase change performance after several aero-thermal cycles was not affected. Experimental tests have also shown that, unlike traditional ablative thermal insulations, PCC would not require an environmental seal coat, which has historically been required to prevent moisture absorption by the thermal insulation, prevent environmental degradation, and to improve the optical and aerodynamic properties. In order to reduce

  8. Vibration damping and heat transfer using material phase changes

    NASA Technical Reports Server (NTRS)

    Kloucek, Petr (Inventor); Reynolds, Daniel R. (Inventor)

    2009-01-01

    A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.

  9. Vibration damping and heat transfer using material phase changes

    DOEpatents

    Kloucek, Petr [Houston, TX; Reynolds, Daniel R [Oakland, CA

    2009-03-24

    A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.

  10. Chalcogenide phase-change thin films used as grayscale photolithography materials.

    PubMed

    Wang, Rui; Wei, Jingsong; Fan, Yongtao

    2014-03-10

    Chalcogenide phase-change thin films are used in many fields, such as optical information storage and solid-state memory. In this work, we present another application of chalcogenide phase-change thin films, i.e., as grayscale photolithgraphy materials. The grayscale patterns can be directly inscribed on the chalcogenide phase-change thin films by a single process through direct laser writing method. In grayscale photolithography, the laser pulse can induce the formation of bump structure, and the bump height and size can be precisely controlled by changing laser energy. Bumps with different height and size present different optical reflection and transmission spectra, leading to the different gray levels. For example, the continuous-tone grayscale images of lifelike bird and cat are successfully inscribed onto Sb(2)Te(3) chalcogenide phase-change thin films using a home-built laser direct writer, where the expression and appearance of the lifelike bird and cat are fully presented. This work provides a way to fabricate complicated grayscale patterns using laser-induced bump structures onto chalcogenide phase-change thin films, different from current techniques such as photolithography, electron beam lithography, and focused ion beam lithography. The ability to form grayscale patterns of chalcogenide phase-change thin films reveals many potential applications in high-resolution optical images for micro/nano image storage, microartworks, and grayscale photomasks.

  11. Disorder-induced localization in crystalline phase-change materials.

    PubMed

    Siegrist, T; Jost, P; Volker, H; Woda, M; Merkelbach, P; Schlockermann, C; Wuttig, M

    2011-03-01

    Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.

  12. Sex steroid levels and AD-like pathology in 3xTgAD mice

    PubMed Central

    Ma, Chunqi; Taves, Matthew D.; Soma, Kiran K.; Mufson, Elliott J.

    2014-01-01

    Decreases in testosterone (T) and 17β-oestradiol (E2) are associated with an increased risk for Alzheimer's disease (AD), which has been attributed to an increase in beta amyloid (Aβ) and tau pathologic lesions. While recent studies have used transgenic animal models to test the effects of sex steroid manipulations on AD-like pathology, virtually none have systematically characterised the associations between AD lesions and sex steroid levels in the blood or brain in any mutant model. The present study evaluated age-related changes in T and E2 concentrations, as well as androgen receptor (AR) and oestrogen receptor (ER) α and β expression, in brain regions displaying AD pathology in intact male and female 3xTgAD and non-transgenic (ntg) mice. We report for the first time that circulating and brain T levels significantly increase in male 3xTgAD mice with age, but without changes in AR-immunoreactive (ir) cell number in either the hippocampal CA1 or medial amygdala. The age-related increase in hippocampal T levels correlated positively with increases in the conformational tau isoform, Alz50. These data suggest that the over-expression of human tau may up regulate the hypothalamic-pituitary-gonadal axis in these mice. Although circulating and brain E2 levels remained stable with age in both male and female 3xTgAD and ntg mice, ER-ir cell number in the hippocampus and medial amygdala decreased with age in female transgenic mice. Further, E2 levels were significantly higher in the hippocampus than in serum, suggesting local production of E2. Although triple transgenic mice mimic AD-like pathology, they do not fully replicate changes in human sex steroid levels, and may not be the best model for studying the effects of sex steroids on AD lesions. PMID:22889357

  13. Thermally-actuated, phase change flow control for microfluidic systems.

    PubMed

    Chen, Zongyuan; Wang, Jing; Qian, Shizhi; Bau, Haim H

    2005-11-01

    An easy to implement, thermally-actuated, noninvasive method for flow control in microfluidic devices is described. This technique takes advantage of the phase change of the working liquid itself-the freezing and melting of a portion of a liquid slug-to noninvasively close and open flow passages (referred to as a phase change valve). The valve was designed for use in a miniature diagnostic system for detecting pathogens in oral fluids at the point of care. The paper describes the modeling, construction, and characteristics of the valve. The experimental results favorably agree with theoretical predictions. In addition, the paper demonstrates the use of the phase change valves for flow control, sample metering and distribution into multiple analysis paths, sealing of a polymerase chain reaction (PCR) chamber, and sample introduction into and withdrawal from a closed loop. The phase change valve is electronically addressable, does not require any moving parts, introduces only minimal dead volume, is leakage and contamination free, and is biocompatible.

  14. Massless spinning particle and null-string on AdS d : projective-space approach

    NASA Astrophysics Data System (ADS)

    Uvarov, D. V.

    2018-07-01

    The massless spinning particle and the tensionless string models on an AdS d background in the projective-space realization are proposed as constrained Hamiltonian systems. Various forms of particle and string Lagrangians are derived and classical mechanics is studied including the Lax-type representation of the equations of motion. After that, the transition to the quantum theory is discussed. The analysis of potential anomalies in the tensionless string model necessitates the introduction of ghosts and BRST charge. It is shown that a quantum BRST charge is nilpotent for any d if coordinate-momentum ordering for the phase-space bosonic variables, Weyl ordering for the fermions and cb () ordering for the ghosts is chosen, while conformal reparametrizations and space-time dilatations turn out to be anomalous for ordering in terms of positive and negative Fourier modes of the phase-space variables and ghosts.

  15. An optoelectronic framework enabled by low-dimensional phase-change films.

    PubMed

    Hosseini, Peiman; Wright, C David; Bhaskaran, Harish

    2014-07-10

    The development of materials whose refractive index can be optically transformed as desired, such as chalcogenide-based phase-change materials, has revolutionized the media and data storage industries by providing inexpensive, high-speed, portable and reliable platforms able to store vast quantities of data. Phase-change materials switch between two solid states--amorphous and crystalline--in response to a stimulus, such as heat, with an associated change in the physical properties of the material, including optical absorption, electrical conductance and Young's modulus. The initial applications of these materials (particularly the germanium antimony tellurium alloy Ge2Sb2Te5) exploited the reversible change in their optical properties in rewritable optical data storage technologies. More recently, the change in their electrical conductivity has also been extensively studied in the development of non-volatile phase-change memories. Here we show that by combining the optical and electronic property modulation of such materials, display and data visualization applications that go beyond data storage can be created. Using extremely thin phase-change materials and transparent conductors, we demonstrate electrically induced stable colour changes in both reflective and semi-transparent modes. Further, we show how a pixelated approach can be used in displays on both rigid and flexible films. This optoelectronic framework using low-dimensional phase-change materials has many likely applications, such as ultrafast, entirely solid-state displays with nanometre-scale pixels, semi-transparent 'smart' glasses, 'smart' contact lenses and artificial retina devices.

  16. Transition from AdS universe to DS universe in the BPP model

    NASA Astrophysics Data System (ADS)

    Kim, Wontae; Yoon, Myungseok

    2007-04-01

    It can be shown that in the BPP model the smooth phase transition from the asymptotically decelerated AdS universe to the asymptotically accelerated DS universe is possible by solving the modified semiclassical equations of motion. This transition comes from noncommutative Poisson algebra, which gives the constant curvature scalars asymptotically. The decelerated expansion of the early universe is due to the negative energy density with the negative pressure induced by quantum back reaction, and the accelerated late-time universe comes from the positive energy and the negative pressure which behave like dark energy source in recent cosmological models.

  17. On information loss in AdS 3/CFT 2

    DOE PAGES

    Fitzpatrick, A. Liam; Kaplan, Jared; Li, Daliang; ...

    2016-05-18

    We discuss information loss from black hole physics in AdS 3, focusing on two sharp signatures infecting CFT 2 correlators at large central charge c: ‘forbidden singularities’ arising from Euclidean-time periodicity due to the effective Hawking temperature, and late-time exponential decay in the Lorentzian region. We study an infinite class of examples where forbidden singularities can be resolved by non-perturbative effects at finite c, and we show that the resolution has certain universal features that also apply in the general case. Analytically continuing to the Lorentzian regime, we find that the non-perturbative effects that resolve forbidden singularities qualitatively change themore » behavior of correlators at times t ~S BH, the black hole entropy. This may resolve the exponential decay of correlators at late times in black hole backgrounds. By Borel resumming the 1/c expansion of exact examples, we explicitly identify ‘information-restoring’ effects from heavy states that should correspond to classical solutions in AdS 3. Lastly, our results suggest a line of inquiry towards a more precise formulation of the gravitational path integral in AdS 3.« less

  18. Program For Finite-Element Analyses Of Phase-Change Fluids

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1995-01-01

    PHASTRAN analyzes heat-transfer and flow behaviors of materials undergoing phase changes. Many phase changes operate over range of accelerations or effective gravitational fields. To analyze such thermal systems, it is necessary to obtain simultaneous solutions for equations of conservation of energy, momentum, and mass, and for equation of state. Written in APL2.

  19. Retention of ionisable compounds on high-performance liquid chromatography XVII. Estimation of the pH variation of aqueous buffers with the change of the methanol fraction of the mobile phase.

    PubMed

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2007-01-05

    The use of methanol-aqueous buffer mobile phases in HPLC is a common election when performing chromatographic separations of ionisable analytes. The addition of methanol to the aqueous buffer to prepare such a mobile phase changes the buffer capacity and the pH of the solution. In the present work, the variation of these buffer properties is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-hydrogencitrate-citrate, and ammonium-ammonia buffers. It is well established that the pH change of the buffers depends on the initial concentration and aqueous pH of the buffer, on the percentage of methanol added, and on the particular buffer used. The proposed equations allow the pH estimation of methanol-water buffered mobile phases up to 80% in volume of organic modifier from initial aqueous buffer pH and buffer concentration (before adding methanol) between 0.001 and 0.01 mol L(-1). From both the estimated pH values of the mobile phase and the estimated pKa of the ionisable analytes, it is possible to predict the degree of ionisation of the analytes and therefore, the interpretation of acid-base analytes behaviour in a particular methanol-water buffered mobile phase.

  20. Children's Views Concerning Phase Changes.

    ERIC Educational Resources Information Center

    Bar, Varda; Travis, Anthony S.

    1991-01-01

    This article reports on answers by children (grades 1-9, n=83) to oral and written questions concerning the phase change from liquid to gas. The development of concepts was followed, proceeding from concrete to abstract ideas. Many students were found to experience difficulties in problem solving even though they may have had the necessary level…

  1. Phase Change Characteristics of InxSb40-xTe60 Chalcogenide Alloy for Phase Change Random Access Memory

    NASA Astrophysics Data System (ADS)

    Yun, Jae-Jin; Lee, Won-Jong

    2011-07-01

    The InxSb40-xTe60 alloy was selected as a new alternative phase change material for Ge2Sb2Te5 (GST) for phase change random access memory (PRAM). The crystal structure of InxSb40-xTe60 was an α(Sb2Te3) rhombohedral (a=b=c, α=β=γ≠90°) single phase with identical lattice parameters in a wide composition range of In (0-28 at. %). The crystallization temperature and melting point of InxSb40-xTe60 were in the ranges of 149-219 °C and 608-614 °C, respectively, and similar to those of GST. The electric properties of InxSb40-xTe60 with a wide composition range of In contents showed the typical PRAM properties such as current-voltage (I-V), resistance-voltage (R-V), and switching behavior. The reset current of InxSb40-xTe60 decreased with increasing In content and the low power consumption and good retention can be realized by controlling In content. The ratio of the cell resistance and sheet resistance of amorphous InxSb40-xTe60 to those crystalline InxSb40-xTe60 were almost the same as or larger than those of GST. The cycling endurance test of InxSb40-xTe60 with a wide range of In contents showed the comparable results to GST. InxSb40-xTe60 was concluded to be a very promising phase change material for PRAM.

  2. Simulation studies of GST phase change alloys

    NASA Astrophysics Data System (ADS)

    Martyna, Glenn

    2008-03-01

    In order to help drive post-Moore's Law technology development, switching processes involving novel materials, in particular, GeSbTe (GST) alloys are being investigated for use in memory and eFuse applications. An anneal/quench thermal process crystallizes/amorphosizes a GST alloy which then has a low/high resistance and thereby forms a readable/writeable bit; for example, a ``one'' might be the low resistance, conducting crystalline state and a ``zero'' might be the high resistance, glassy state. There are many open questions about the precise nature of the structural transitions and the coupling to electronic structure changes. Computational and experimental studies of the effect of pressure on the GST materials were initiated in order to probe the physics behind the thermal switching process. A new pathway to reversible phase change involving pressure-induced structural metal insulator transitions was discovered. In a binary GS system, a room-temperature, direct, pressure-induced transformation from the high resistance amorphous phase to the low resistance crystalline phase was observed experimentally while the reverse process under tensile load was demonstrated via ab initio MD simulations performed on IBM's Blue Gene/L enabled by massively parallel software. Pressure induced transformations of the ternary material GST-225 (Ge2Sb2Te5) were, also, examined In the talk, the behavior of the two systems will be compared and insight into the nature of the phase change given.

  3. Closed strings and moduli in AdS3/CFT2

    NASA Astrophysics Data System (ADS)

    Sax, Olof Ohlsson; Stefański, Bogdan

    2018-05-01

    String theory on AdS3 × S3 × T4 has 20 moduli. We investigate how the perturbative closed string spectrum changes as we move around this moduli space in both the RR and NSNS flux backgrounds. We find that, at weak string coupling, only four of the moduli affect the energies. In the RR background the only effect of these moduli is to change the radius of curvature of the background. On the other hand, in the NSNS background, the moduli introduce worldsheet interactions which enable the use of integrability methods to solve the spectral problem. Our results show that the worldsheet theory is integrable across the 20 dimensional moduli space.

  4. Self-regulated transport in photonic crystals with phase-changing defects

    NASA Astrophysics Data System (ADS)

    Thomas, Roney; Ellis, Fred M.; Vitebskiy, Ilya; Kottos, Tsampikos

    2018-01-01

    Phase-changing materials (PCMs) are widely used for optical data recording, sensing, all-optical switching, and optical limiting. Our focus here is on the case when the change in transmission characteristics of the optical material is caused by the input light itself. Specifically, the light-induced heating triggers the phase transition in the PCM. In this paper, using a numerical example, we demonstrate that the incorporation of the PCM in a photonic structure can lead to a dramatic modification of the effects of light-induced phase transition, as compared to a stand-alone sample of the same PCM. Our focus is on short pulses. We discuss some possible applications of such phase-changing photonic structures for optical sensing and limiting.

  5. Phase change thermal energy storage material

    DOEpatents

    Benson, David K.; Burrows, Richard W.

    1987-01-01

    A thermal energy storge composition is disclosed. The composition comprises a non-chloride hydrate having a phase change transition temperature in the range of 70.degree.-95.degree. F. and a latent heat of transformation of at least about 35 calories/gram.

  6. Evaporation of large black holes in AdS: coupling to the evaporon

    NASA Astrophysics Data System (ADS)

    Rocha, Jorge V.

    2008-08-01

    Large black holes in an asymptotically AdS spacetime have a dual description in terms of approximately thermal states in the boundary CFT. The reflecting boundary conditions of AdS prevent such black holes from evaporating completely. On the other hand, the formulation of the information paradox becomes more stringent when a black hole is allowed to evaporate. In order to address the information loss problem from the AdS/CFT perspective we then need the boundary to become partially absorptive. We present a simple model that produces the necessary changes on the boundary by coupling a bulk scalar field to the evaporon, an external field propagating in one extra spatial dimension. The interaction is localized at the boundary of AdS and leads to partial transmission into the additional space. The transmission coefficient is computed in the planar limit and perturbatively in the coupling constant. Evaporation of the large black hole corresponds to cooling down the CFT by transferring energy to an external sector.

  7. Simulations of Lithium-Magnetite Electrodes Incorporating Phase Change

    DOE PAGES

    Knehr, Kevin W.; Cama, Christina A.; Brady, Nicholas W.; ...

    2017-04-09

    In this work, the phase changes occurring in magnetite (Fe 3O 4) during lithiation and voltage recovery experiments are modeled using a model that simulates the electrochemical performance of a Fe 3O 4 electrode by coupling the lithium transport in the agglomerate and nano-crystal length-scales to thermodynamic and kinetic expressions. Phase changes are described using kinetic expressions based on the Avrami theory for nucleation and growth. Also, simulated results indicate that the slow, linear voltage change observed at long times during the voltage recovery experiments can be attributed to a slow phase change from α-Li xFe 3O 4 to β-Limore » 4Fe 3O 4. In addition, the long voltage plateau at ~1.2 V observed during lithiation of electrodes is attributed to conversion from α-Li xFe 3O 4 to γ-(4 Li 2O + 3 Fe). Simulations for the lithiation of 6 and 32 nm Fe 3O 4 suggest the rate of conversion to γ-(4 Li 2O + 3 Fe) decreases with decreasing crystal size.« less

  8. Phase change references for in-flight recalibration of orbital thermometry

    NASA Astrophysics Data System (ADS)

    Topham, T. S.; Latvakoski, H.; Watson, M.

    2013-09-01

    Several critical questions need to be answered to determine the potential utility of phase change materials as long-term orbital references: How accurate and repeatable will phase change reference implementations be after incorporating necessary design trade-offs to accommodate launch and the space environment? How can the temperature of phase transitions be transferred to something useful for calibration such as a black body. How, if at all, will the microgravity environment affect the phase transitions? To help answer some of these questions, three experiments will be conducted on the International Space Station (ISS). The experiments will test melts and freezes of three different phase change materials in various containment apparatus. This paper addresses the current status of the ISS experiments, as well as results from ground testing of several concepts for space application of PCM recalibration systems in the CORSAIR (Calibration Observations of Radiance Spectra in the far Infrared) black body.

  9. Phase Changes of Monosulfoaluminate in NaCl Aqueous Solution

    DOE PAGES

    Yoon, Seyoon; Ha, Juyoung; Chae, Sejung Rosie; ...

    2016-05-21

    Monosulfoaluminate (Ca 4Al 2(SO 4)(OH) 12∙6H 2O) plays an important role in anion binding in Portland cement by exchanging its original interlayer ions (SO 4 2- and OH -) with chloride ions. In this study, scanning transmission X-ray microscope (STXM), X-ray absorption near edge structure (XANES) spectroscopy, and X-ray diffraction (XRD) were used to investigate the phase change of monosulfoaluminate due to its interaction with chloride ions. Pure monosulfoaluminate was synthesized and its powder samples were suspended in 0, 0.1, 1, 3, and 5 M NaCl solutions for seven days. At low chloride concentrations, a partial dissolution of monosulfoaluminate formedmore » ettringite, while, with increasing chloride content, the dissolution process was suppressed. As the NaCl concentration increased, the dominant mechanism of the phase change became ion exchange, resulting in direct phase transformation from monosulfoaluminate to Kuzel’s salt or Friedel’s salt. The phase assemblages of the NaCl-reacted samples were explored using thermodynamic calculations and least-square linear combination (LC) fitting of measured XANES spectra. A comprehensive description of the phase change and its dominant mechanism are discussed.« less

  10. Adipose-derived mesenchymal stem cells (AdMSC) for the treatment of secondary-progressive multiple sclerosis: A triple blinded, placebo controlled, randomized phase I/II safety and feasibility study.

    PubMed

    Fernández, Oscar; Izquierdo, Guillermo; Fernández, Victoria; Leyva, Laura; Reyes, Virginia; Guerrero, Miguel; León, Antonio; Arnaiz, Carlos; Navarro, Guillermo; Páramo, Maria Dolores; Cuesta, Antonio De la; Soria, Bernat; Hmadcha, Abdelkrim; Pozo, David; Fernandez-Montesinos, Rafael; Leal, Maria; Ochotorena, Itziar; Gálvez, Patricia; Geniz, Maria Angeles; Barón, Francisco Javier; Mata, Rosario; Medina, Cristina; Caparrós-Escudero, Carlos; Cardesa, Ana; Cuende, Natividad

    2018-01-01

    Currently available treatments for secondary progressive multiple sclerosis(SPMS) have limited efficacy and/or safety concerns. Adipose-mesenchymal derived stem cells(AdMSCs) represent a promising option and can be readily obtained using minimally invasive procedures. In this triple-blind, placebo-controlled study, cell samples were obtained from consenting patients by lipectomy and subsequently expanded. Patients were randomized to a single infusion of placebo, low-dose(1x106cells/kg) or high-dose(4x106cells/kg) autologous AdMSC product and followed for 12 months. Safety was monitored recording adverse events, laboratory parameters, vital signs and spirometry. Expanded disability status score (EDSS), magnetic-resonance-imaging, and other measures of possible treatment effects were also recorded. Thirty-four patients underwent lipectomy for AdMSCs collection, were randomized and thirty were infused (11 placebo, 10 low-dose and 9 high-dose); 4 randomized patients were not infused because of karyotype abnormalities in the cell product. Only one serious adverse event was observed in the treatment arms (urinary infection, considered not related to study treatment). No other safety parameters showed changes. Measures of treatment effect showed an inconclusive trend of efficacy. Infusion of autologous AdMSCs is safe and feasible in patients with SPMS. Larger studies and probably treatment at earlier phases would be needed to investigate the potential therapeutic benefit of this technique.

  11. High Energy Scattering in the AdS/CFT Correspondence

    NASA Astrophysics Data System (ADS)

    Penedones, Joao

    2007-12-01

    This work explores the celebrated AdS/CFT correspondence in the regime of high energy scattering in Anti--de Sitter (AdS) spacetime. In particular, we develop the eikonal approximation to high energy scattering in AdS and explore its consequences for the dual Conformal Field Theory (CFT). Using position space Feynman rules, we rederive the eikonal approximation for high energy scattering in flat space. Following this intuitive position space perspective, we then generalize the eikonal approximation for high energy scattering in AdS and other spacetimes. Remarkably, we are able to resum, in terms of a generalized phase shift, ladder and cross ladder Witten diagrams associated to the exchange of an AdS spin j field, to all orders in the coupling constant. By the AdS/CFT correspondence, the eikonal amplitude in AdS is related to the four point function of CFT primary operators in the regime of large 't Hooft coupling, including all terms of the 1/N expansion. We then show that the eikonal amplitude determines the behavior of the CFT four point function for small values of the cross ratios in a Lorentzian regime and that this controls its high spin and dimension conformal partial wave decomposition. These results allow us to determine the anomalous dimension of high spin and dimension double trace primary operators, by relating it to the AdS eikonal phase shift. Finally we find that, at large energies and large impact parameters in AdS, the gravitational interaction dominates all other interactions, as in flat space. Therefore, the anomalous dimension of double trace operators, associated to graviton exchange in AdS, yields a universal prediction for CFT's with AdS gravitational duals.

  12. Using adversary text to detect adversary phase changes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speed, Ann Elizabeth; Doser, Adele Beatrice; Warrender, Christina E.

    2009-05-01

    The purpose of this work was to help develop a research roadmap and small proof ofconcept for addressing key problems and gaps from the perspective of using text analysis methods as a primary tool for detecting when a group is undergoing a phase change. Self- rganizing map (SOM) techniques were used to analyze text data obtained from the tworld-wide web. Statistical studies indicate that it may be possible to predict phase changes, as well as detect whether or not an example of writing can be attributed to a group of interest.

  13. Phase change in liquid face seals

    NASA Technical Reports Server (NTRS)

    Hughes, W. F.; Winowich, N. S.; Birchak, M. J.; Kennedy, W. C.

    1978-01-01

    A study is made of boiling (or phase change) in liquid face seals. An appropriate model is set up and approximate solutions obtained. Some practical illustrative examples are given. Major conclusions are that (1) boiling may occur more often than has been suspected particularly when the sealed liquid is near saturation conditions, (2) the temperature variation in a seal clearance region may not be very great and the main reason for boiling is the flashing which occurs as the pressure decreases through the seal clearance, and (3) there are two separate values of the parameter film-thickness/angular-velocity-squared (and associated radii where phase change takes place) which provide the same separating force under a given set of operating conditions. For a given speed seal face excursions about the larger spacing are stable, but excursions about the smaller spacing are unstable, leading to a growth to the larger spacing or a catastrophic collapse.

  14. A numerical analysis of phase-change problems including natural convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Y.; Faghri, A.

    1990-08-01

    Fixed grid solutions for phase-change problems remove the need to satisfy conditions at the phase-change front and can be easily extended to multidimensional problems. The two most important and widely used methods are enthalpy methods and temperature-based equivalent heat capacity methods. Both methods in this group have advantages and disadvantages. Enthalpy methods (Shamsundar and Sparrow, 1975; Voller and Prakash, 1987; Cao et al., 1989) are flexible and can handle phase-change problems occurring both at a single temperature and over a temperature range. The drawback of this method is that although the predicted temperature distributions and melting fronts are reasonable, themore » predicted time history of the temperature at a typical grid point may have some oscillations. The temperature-based fixed grid methods (Morgan, 1981; Hsiao and Chung, 1984) have no such time history problems and are more convenient with conjugate problems involving an adjacent wall, but have to deal with the severe nonlinearity of the governing equations when the phase-change temperature range is small. In this paper, a new temperature-based fixed-grid formulation is proposed, and the reason that the original equivalent heat capacity model is subject to such restrictions on the time step, mesh size, and the phase-change temperature range will also be discussed.« less

  15. Oxygen Tuned Local Structure and Phase-Change Performance of Germanium Telluride.

    PubMed

    Zhou, Xilin; Du, Yonghua; Behera, Jitendra K; Wu, Liangcai; Song, Zhitang; Simpson, Robert E

    2016-08-10

    The effect of oxygen on the local structure of Ge atoms in GeTe-O materials has been investigated. Oxygen leads to a significant modification to the vibrational modes of Ge octahedra, which results from a decrease in its coordination. We find that a defective octahedral Ge network is the crucial fingerprint for rapid and reversible structural transitions in GeTe-based phase change materials. The appearance of oxide Raman modes confirms phase separation into GeO and TeO at high level O doping. Counterintuitively, despite the increase in crystallization temperature of oxygen doped GeTe-O phase change materials, when GeTe-O materials are used in electrical phase change memory cells, the electrical switching energy is lower than the pure GeTe material. This switching energy reduction is ascribed to the smaller change in volume, and therefore smaller enthalpy change, for the oxygen doped GeTe materials.

  16. Changes in Intakes of Total and Added Sugar and their Contribution to Energy Intake in the U.S.

    PubMed Central

    Chun, Ock K.; Chung, Chin E.; Wang, Ying; Padgitt, Andrea; Song, Won O.

    2010-01-01

    This study was designed to document changes in total sugar intake and intake of added sugars, in the context of total energy intake and intake of nutrient categories, between the 1970s and the 1990s, and to identify major food sources contributing to those changes in intake. Data from the NHANES I and III were analyzed to obtain nationally representative information on food consumption for the civilian, non-institutionalized population of the U.S. from 1971 to 1994. In the past three decades, in addition to the increase in mean intakes of total energy, total sugar, added sugars, significant increases in the total intake of carbohydrates and the proportion of carbohydrates to the total energy intake were observed. The contribution of sugars to total carbohydrate intake decreased in both 1–18 y and 19+ y age subgroups, and the contribution of added sugars to the total energy intake did not change. Soft drinks/fluid milk/sugars and cakes, pastries, and pies remained the major food sources for intake of total sugar, total carbohydrates, and total energy during the past three decades. Carbonated soft drinks were the most significant sugar source across the entire three decades. Changes in sugar consumption over the past three decades may be a useful specific area of investigation in examining the effect of dietary patterns on chronic diseases. PMID:22254059

  17. Changes in intakes of total and added sugar and their contribution to energy intake in the U.S.

    PubMed

    Chun, Ock K; Chung, Chin E; Wang, Ying; Padgitt, Andrea; Song, Won O

    2010-08-01

    This study was designed to document changes in total sugar intake and intake of added sugars, in the context of total energy intake and intake of nutrient categories, between the 1970s and the 1990s, and to identify major food sources contributing to those changes in intake. Data from the NHANES I and III were analyzed to obtain nationally representative information on food consumption for the civilian, non-institutionalized population of the U.S. from 1971 to 1994. In the past three decades, in addition to the increase in mean intakes of total energy, total sugar, added sugars, significant increases in the total intake of carbohydrates and the proportion of carbohydrates to the total energy intake were observed. The contribution of sugars to total carbohydrate intake decreased in both 1-18 y and 19+ y age subgroups, and the contribution of added sugars to the total energy intake did not change. Soft drinks/fluid milk/sugars and cakes, pastries, and pies remained the major food sources for intake of total sugar, total carbohydrates, and total energy during the past three decades. Carbonated soft drinks were the most significant sugar source across the entire three decades. Changes in sugar consumption over the past three decades may be a useful specific area of investigation in examining the effect of dietary patterns on chronic diseases.

  18. Compensating temperature-induced ultrasonic phase and amplitude changes

    NASA Astrophysics Data System (ADS)

    Gong, Peng; Hay, Thomas R.; Greve, David W.; Junker, Warren R.; Oppenheim, Irving J.

    2016-04-01

    In ultrasonic structural health monitoring (SHM), environmental and operational conditions, especially temperature, can significantly affect the propagation of ultrasonic waves and thus degrade damage detection. Typically, temperature effects are compensated using optimal baseline selection (OBS) or optimal signal stretch (OSS). The OSS method achieves compensation by adjusting phase shifts caused by temperature, but it does not fully compensate phase shifts and it does not compensate for accompanying signal amplitude changes. In this paper, we develop a new temperature compensation strategy to address both phase shifts and amplitude changes. In this strategy, OSS is first used to compensate some of the phase shifts and to quantify the temperature effects by stretching factors. Based on stretching factors, empirical adjusting factors for a damage indicator are then applied to compensate for the temperature induced remaining phase shifts and amplitude changes. The empirical adjusting factors can be trained from baseline data with temperature variations in the absence of incremental damage. We applied this temperature compensation approach to detect volume loss in a thick wall aluminum tube with multiple damage levels and temperature variations. Our specimen is a thick-walled short tube, with dimensions closely comparable to the outlet region of a frac iron elbow where flow-induced erosion produces the volume loss that governs the service life of that component, and our experimental sequence simulates the erosion process by removing material in small damage steps. Our results show that damage detection is greatly improved when this new temperature compensation strategy, termed modified-OSS, is implemented.

  19. 40 shades of black: regional differences in vegetation response to a changing human influence in the Low Countries during the Dark Ages (AD 300-1000).

    NASA Astrophysics Data System (ADS)

    Gouw-Bouman, Marjolein T. I. J.; Donders, Timme H.; Hoek, Wim Z.

    2016-04-01

    During the Dark Ages, which includes the Late Roman Period (LRP, AD 300-500) and the Early Middle Ages (EMA, AD 500-1000), large scale vegetation development in Northwestern Europe is generally characterized by a forest regeneration. This forest redevelopment phase was not uniformous across the Netherlands. A comparison between existing pollen records shows that forest redevelopment started earlier and was more severe in the southern part of the Netherlands than in the northeastern Netherlands. The prevailing view advocates that the forest redevelopment is the result of a diminishing human influence on the landscape due to the collapse of the Roman Empire. Following this view, regional changes in forest regeneration are explained by varying population densities. However, existing climate-records indicate a colder and wetter climate during the Dark Ages and the geomorphological record points to a changing landscape. How and to what extent these climatic and environmental changes contributed to the changes in vegetation development or even to the decline of the Roman Empire is largely unknown. To understand the relative importance of the factors (climate, environment, economy and demography) influencing vegetation development it is important to accurately map regional differences in vegetation both on a regional and extra-regional scale. For an extra-regional overview all available pollen records in the Netherlands from this period are compiled to show differences in amplitude of the vegetation development during the Dark Ages. On a regional scale, vegetation reconstruction maps have been produced reflecting the influence of geological/geomorphological factors.

  20. Gradient Augmented Level Set Method for Two Phase Flow Simulations with Phase Change

    NASA Astrophysics Data System (ADS)

    Anumolu, C. R. Lakshman; Trujillo, Mario F.

    2016-11-01

    A sharp interface capturing approach is presented for two-phase flow simulations with phase change. The Gradient Augmented Levelset method is coupled with the two-phase momentum and energy equations to advect the liquid-gas interface and predict heat transfer with phase change. The Ghost Fluid Method (GFM) is adopted for velocity to discretize the advection and diffusion terms in the interfacial region. Furthermore, the GFM is employed to treat the discontinuity in the stress tensor, velocity, and temperature gradient yielding an accurate treatment in handling jump conditions. Thermal convection and diffusion terms are approximated by explicitly identifying the interface location, resulting in a sharp treatment for the energy solution. This sharp treatment is extended to estimate the interfacial mass transfer rate. At the computational cell, a d-cubic Hermite interpolating polynomial is employed to describe the interface location, which is locally fourth-order accurate. This extent of subgrid level description provides an accurate methodology for treating various interfacial processes with a high degree of sharpness. The ability to predict the interface and temperature evolutions accurately is illustrated by comparing numerical results with existing 1D to 3D analytical solutions.

  1. Investigation of phase-change coatings for variable thermal control of spacecraft

    NASA Technical Reports Server (NTRS)

    Kelliher, W. C.; Young, P. R.

    1972-01-01

    An investigation was conducted to determine the feasibility of producing a spacecraft coating system that could vary the ratio of its solar absorptance to thermal emittance to adjust automatically for changes in the thermal balance of a spacecraft. This study resulted in a new concept called the phase-change effect which uses the change that occurs in the optical properties of many materials during the phase transition from a crystalline solid to an amorphous material. A series of two-component model coatings was developed which, when placed on a highly reflecting substrate, exhibited a sharp decrease in solar absorptance within a narrow temperature range. A variable thermal control coating can have a significant amount of temperature regulation with the phase-change effect. Data are presented on several crystallite-polymer formulations, their physical and optical properties, and associated phase-change temperatures. Aspects pertaining to their use in a space environment and an example of the degree of thermal regulation attainable with these coatings is also given.

  2. Phase change wallboard for peak demand reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, K.L.; Shepard, M.

    1993-12-31

    After more than a decade of research in university and government laboratories, wallboard impregnated with a phase change material (PCM) appears to be close to commercialization, and could prove to be a powerful peak demand management tool for utilities, particularly in the residential sector. As a lightweight, easily installed thermal storage medium, PCM wallboard could be suitable for both new construction and retrofit applications. Computer simulations performed at Los Alamos National Laboratory (LANL) predicted that PCM wallboard could shift more than 90 percent of the sensible load of a residential air-conditioning system to off-peak periods, and could permit a 30more » percent reduction in equipment capacity. Residential winter peak loads could also be reduced. An Oak Ridge National Laboratory (ORNL) simulation showed that PCM wallboard could reduce peak heating demand by a third in a Tennessee climate. With more than 70 billion square feet of plasterboard produced annually in the US, widespread adoption of PCM wallboard could have a significant impact on peak load, while moderating temperature swings and enhancing comfort in homes and perhaps commercial spaces as well. Energy savings are also possible when PCM wallboard is used to take advantage of solar gain. LANL simulations predict 28 percent heating energy savings in a Boston passive solar house, and 54 percent savings in Denver. ORNL researchers support these findings -- they calculate that moving windows to the south and adding PCM wallboard could save from one-third to one-half of the heating energy needed in a Denver home.« less

  3. Experimental investigation of thermal characteristics of lithium ion battery using phase change materials combined with metallic foams and fins

    NASA Astrophysics Data System (ADS)

    Deng, Y. C.; Zhang, H. Y.; Xia, X.

    2016-08-01

    Phase change materials are of great interest in energy storage and energy management applications due to their high latent heat and excellent cycling stability. In this paper, the thermal characteristics of phase change materials (PCM) for thermal management of cylindrical 18650 lithium-ion battery (LIB) were experimentally investigated. A commercial paraffin wax with a melting temperaturerange between 47 - 53.8oC was used in this study. A metal cylinder with a heater was used to emulate the heat generation from a battery, which was surrounded with the paraffin PCM and containted in a metal housing. The experiment was conducted in an environmental test chamber with controlled ambient temperatures and power inputs. Both the battery temperature and the housing wall temperature were measured during steady-state heating and cyclic heating conditions. Since PCM has low thermal conductivity, thermal enhancement techniques were investigated by adding metal foams (MFs) or combining metallic foam and fins into the PCM to enhance the thermal conductivity. The battery temperatures were measured for all the cases and the results were analyzed and discussed.

  4. Solid–Liquid Phase Change Driven by Internal Heat Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Crepeau; Ali s. Siahpush

    2012-07-01

    This article presents results of solid-liquid phase change, the Stefan Problem, where melting is driven internal heat generation, in a cylindrical geometry. The comparison between a quasi-static analytical solution for Stefan numbers less than one and numerical solutions shows good agreement. The computational results of phase change with internal heat generation show how convection cells form in the liquid region. A scale analysis of the same problem shows four distinct regions of the melting process.

  5. Defense Acquisition and the Case of the Joint Capabilities Technology Demonstration Office: Ad Hoc Problem Solving as a Mechanism for Adaptive Change

    DTIC Science & Technology

    2013-04-01

    Capabilities Technology Demonstration Office: Ad Hoc Problem Solving as a Mechanism for Adaptive Change Kathryn Aten and John T. Dillard Naval...Defense Acquisition and the Case of the Joint Capabilities Technology Demonstration Office: Ad Hoc Problem Solving as a Mechanism for Adaptive Change...describes the preliminary analysis and findings of our study exploring what drives successful organizational adaptation in the context of technology

  6. Electron-beam-irradiation-induced crystallization of amorphous solid phase change materials

    NASA Astrophysics Data System (ADS)

    Zhou, Dong; Wu, Liangcai; Wen, Lin; Ma, Liya; Zhang, Xingyao; Li, Yudong; Guo, Qi; Song, Zhitang

    2018-04-01

    The electron-beam-irradiation-induced crystallization of phase change materials in a nano sized area was studied by in situ transmission electron microscopy and selected area electron diffraction. Amorphous phase change materials changed to a polycrystalline state after being irradiated with a 200 kV electron beam for a long time. The results indicate that the crystallization temperature strongly depends on the difference in the heteronuclear bond enthalpy of the phase change materials. The selected area electron diffraction patterns reveal that Ge2Sb2Te5 is a nucleation-dominated material, when Si2Sb2Te3 and Ti0.5Sb2Te3 are growth-dominated materials.

  7. Preservice Elementary Teachers' Knowledge of Observable Moon Phases and Pattern of Change in Phases

    ERIC Educational Resources Information Center

    Trundle, Kathy Cabe; Atwood, Ronald K.; Christopher, John E.

    2006-01-01

    The purpose of this study was to describe selected content knowledge held by 52 preservice elementary teachers about the observable phases of the moon and the monthly pattern of change in observable phases. Data were obtained from participants in a physics course before and after they received inquiry-based instruction designed to promote…

  8. Vacuum currents in braneworlds on AdS bulk with compact dimensions

    NASA Astrophysics Data System (ADS)

    Bellucci, S.; Saharian, A. A.; Vardanyan, V.

    2015-11-01

    The two-point function and the vacuum expectation value (VEV) of the current density are investigated for a massive charged scalar field with arbitrary curvature coupling in the geometry of a brane on the background of AdS spacetime with partial toroidal compactification. The presence of a gauge field flux, enclosed by compact dimensions, is assumed. On the brane the field obeys Robin boundary condition and along compact dimensions periodicity conditions with general phases are imposed. There is a range in the space of the values for the coefficient in the boundary condition where the Poincaré vacuum is unstable. This range depends on the location of the brane and is different for the regions between the brane and AdS boundary and between the brane and the horizon. In models with compact dimensions the stability condition is less restrictive than that for the AdS bulk with trivial topology. The vacuum charge density and the components of the current along non-compact dimensions vanish. The VEV of the current density along compact dimensions is a periodic function of the gauge field flux with the period equal to the flux quantum. It is decomposed into the boundary-free and brane-induced contributions. The asymptotic behavior of the latter is investigated near the brane, near the AdS boundary and near the horizon. It is shown that, in contrast to the VEVs of the field squared an denergy-momentum tensor, the current density is finite on the brane and vanishes for the special case of Dirichlet boundary condition. Both the boundary-free and brane-induced contributions vanish on the AdS boundary. The brane-induced contribution vanishes on the horizon and for points near the horizon the current is dominated by the boundary-free part. In the near-horizon limit, the latter is connected to the corresponding quantity for a massless field in the Minkowski bulk by a simple conformal relation. Depending on the value of the Robin coefficient, the presence of the brane can either

  9. The use of lipids as phase change materials for thermal energy storage

    USDA-ARS?s Scientific Manuscript database

    Phase change materials (PCMs) are substances capable of absorbing and releasing large 2 amounts of thermal energy (heat or cold) as latent heat over constant temperature as they 3 undergo a change in state of matter (phase transition), commonly, between solid and 4 liquid phases. Since the late 194...

  10. A Study on Phase Changes of Heterogeneous Composite Materials

    NASA Astrophysics Data System (ADS)

    Hirasawa, Yoshio; Saito, Akio; Takegoshi, Eisyun

    In this study, a phase change process in heterogeneous composite materials which consist of water and coiled copper wires as conductive solid is investigated by four kinds of typical calculation models : 1) model-1 in which the effective thermal conductivity of the composite material is used, 2) model-2 in which a fin metal acts for many conductive solids, 3) model-3 in which the effective thermal conductivities between nodes are estimated and three-dimensional calculation is performed, 4) model-4 proposed by authors in the previous paper in which effective thermal conductivity is not needed. Consequently, model-1 showed the phase change rate considerably lower than the experimental results. Model-2 gave the larger amount of the phase change rate. Model-3 agreed well with the experiment in the case of small coil diameter and relatively large Vd. Model-4 showed a very well agreement with the experiment in the range of this study.

  11. Speed Measurement and Motion Analysis of Chang'E-3 Rover Based on Differential Phase Delay

    NASA Astrophysics Data System (ADS)

    Pan, C.; Liu, Q. H.; Zheng, X.; He, Q. B.; Wu, Y. J.

    2015-07-01

    On 2013 December 14, the Chang'E-3 made a successful soft landing on the lunar surface, and then carried out the tasks of separating the lander and the rover, and taking the photos of each other. With the same beam VLBI (Very long baseline interferometry) technique to observe the signals transmitted by the lander and the rover simultaneously, the differential phase delay between them is calculated, which can reflect a minor change of the rover's position on a scale of a few centimeters. Based on the high sensitivity of differential phase delay, the rover's speeds during 5 movements are obtained with an average of 0.056 m/s. The relationship between the rover's shake in moving process, and lunar terrain is analyzed by using the spectrum of the residual of the differential phase delay after the first-order polynomial fitting.

  12. Speed Measurement and Motion Analysis of Chang'E-3 Rover Based on Differential Phase Delay

    NASA Astrophysics Data System (ADS)

    Chao, Pan; Qing-hui, Liu; Xin, Zheng; Qing-bao, He; Ya-jun, Wu

    2016-04-01

    On 14th December 2013, the Chang'E-3 made a successful soft landing on the lunar surface, and then carried out the tasks of separating the lander and the rover, and taking pictures of each other. With the same beam VLBI (Very Long Baseline Interferometry) technique to observe the signals transmitted by the lander and the rover simultaneously, the differential phase delay between them is calculated, which can reflect the minor changes of the rover's position on a scale of a few centimeters. Based on the high sensitivity of differential phase delay, the rover's speeds during 5 movements are obtained with an average of 0.056 m/s. The relationship between the rover's shake in the moving process and the lunar terrain is analyzed by using the spectrum of the residual of the differential phase delay after the first-order polynomial fitting.

  13. Beeswax as phase change material to improve solar panel’s performance

    NASA Astrophysics Data System (ADS)

    Thaib, R.; Rizal, S.; Riza, M.; Mahlia, T. M. I.; Rizal, T. A.

    2018-02-01

    One of the main obstacles faced during the operation of photovoltaic (PV) panels was overheating due to excessive solar radiation and high ambient temperatures. In this research, investigates the use of beeswax phase change materials (PCM) to maintain the temperature of the panels close to ambient. Solar panels used in this study has 839 mm length, 537 mm wide, and 50 mm thick, with maximum output power at 50 W. During the study, there were two solar panels was evaluated, one without phase change material while the other one was using beeswax phase change material. Solar panels were mounted at 15° slope. Variables observed was the temperature of solar panel’s surface, output voltage and current that produced by PV panels, wind speed around solar panels, and solar radiation. The observation was started at 07:00 am and ended at 06:00 pm. The research shows that maximum temperature of solar panels surface without phase change material is ranging between 46-49 °C, and electrical efficiency is about 7.2-8.8%. Meanwhile, for solar panels with beeswax phase change material, the maximum temperature solar panels surface is relatively low ranging between 33-34 °C, and its electrical efficiency seems to increase about 9.1-9.3%.

  14. Introducing ADS 2.0

    NASA Astrophysics Data System (ADS)

    Accomazzi, Alberto; Kurtz, M. J.; Henneken, E. A.; Grant, C. S.; Thompson, D.; Luker, J.; Chyla, R.; Murray, S. S.

    2014-01-01

    In the spring of 1993, the Smithsonian/NASA Astrophysics Data System (ADS) first launched its bibliographic search system. It was known then as the ADS Abstract Service, a component of the larger Astrophysics Data System effort which had developed an interoperable data system now seen as a precursor of the Virtual Observatory. As a result of the massive technological and sociological changes in the field of scholarly communication, the ADS is now completing the most ambitious technological upgrade in its twenty-year history. Code-named ADS 2.0, the new system features: an IT platform built on web and digital library standards; a new, extensible, industrial strength search engine; a public API with various access control capabilities; a set of applications supporting search, export, visualization, analysis; a collaborative, open source development model; and enhanced indexing of content which includes the full-text of astronomy and physics publications. The changes in the ADS platform affect all aspects of the system and its operations, including: the process through which data and metadata are harvested, curated and indexed; the interface and paradigm used for searching the database; and the follow-up analysis capabilities available to the users. This poster describes the choices behind the technical overhaul of the system, the technology stack used, and the opportunities which the upgrade is providing us with, namely gains in productivity and enhancements in our system capabilities.

  15. Silicate and Carbonatite Melts in the Mantle: Adding CO2 to the pMELTS Thermodynamic Model of Silicate Phase Equilibria

    NASA Astrophysics Data System (ADS)

    Antoshechkina, P. M.; Shorttle, O.

    2016-12-01

    The current rhyolite-MELTS algorithm includes a mixed H2O-CO2 vapor phase, and a self-consistent speciation model for CO2 and CaCO3 in the silicate liquid (Ghiorso & Gualda 2012; 2015). Although intended primarily to model crustal differentiation and degassing, GG15 captures much of the experimentally-observed melting behavior of CO2-rich mafic lithologies, including generation of small-degree carbonatite melts, a miscibility gap between carbonatite and silicate liquids at low P and a smooth transition to a single carbonated-silicate melt at high P (e.g. Dasgupta et al. 2007). However, solid and liquid carbonate phases were not used in calibration of GG15, and it is suitable only for P < 3 GPa. We present a preliminary model, based on pMELTS (Ghiorso et al. 2002), for melting of nominally-anhydrous carbonated peridotite and pyroxenite. In Antoshechkina et al. (2015; and references therein) we developed a scheme for calibration of molar volumes that directly interfaces with a MySQL database, adapted from LEPR (Hirschmann et al. 2008). Here, we further extend our database, e.g. to include multiple carbonate phases, and combine the calibration scheme with the libalphaMELTS interface to the rhyolite-MELTS, pMELTS, and H2O-CO2 fluid thermodynamic models (see magmasource.caltech.edu/alphamelts). We use a Monte-Carlo type calibration approach to fit the observed phases and compositions, though stop short of a fully Bayesian formulation. The CO2-fluid experimental database has been updated to include more recent and higher P studies, adding approximately 40 pure fluid plus liquid constraints that conform to the selection criteria used in GG15. To further expand the database, we plan to use some or all of: solid carbonate-bearing experiments; coexisting silicate and carbonatite liquids; phase-present, and phase-absent constraints. As a first approximation, we include four carbonate phases: pure calcite and aragonite, and binary solutions for dolomite-ankerite and magnesite

  16. Morphological analysis of GeTe in inline phase change switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Matthew R., E-mail: matthew.king2@ngc.com; Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695; El-Hinnawy, Nabil

    2015-09-07

    Crystallization and amorphization phenomena in indirectly heated phase change material-based devices were investigated. Scanning transmission electron microscopy was utilized to explore GeTe phase transition processes in the context of the unique inline phase change switch (IPCS) architecture. A monolithically integrated thin film heating element successfully converted GeTe to ON and OFF states. Device cycling prompted the formation of an active area which sustains the majority of structural changes during pulsing. A transition region on both sides of the active area consisting of polycrystalline GeTe and small nuclei (<15 nm) in an amorphous matrix was also observed. The switching mechanism, determined bymore » variations in pulsing parameters, was shown to be predominantly growth-driven. A preliminary model for crystallization and amorphization in IPCS devices is presented.« less

  17. Materials research for passive solar systems: Solid-state phase-change materials

    NASA Astrophysics Data System (ADS)

    Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.

  18. Design rules for phase-change materials in data storage applications.

    PubMed

    Lencer, Dominic; Salinga, Martin; Wuttig, Matthias

    2011-05-10

    Phase-change materials can rapidly and reversibly be switched between an amorphous and a crystalline phase. Since both phases are characterized by very different optical and electrical properties, these materials can be employed for rewritable optical and electrical data storage. Hence, there are considerable efforts to identify suitable materials, and to optimize them with respect to specific applications. Design rules that can explain why the materials identified so far enable phase-change based devices would hence be very beneficial. This article describes materials that have been successfully employed and dicusses common features regarding both typical structures and bonding mechanisms. It is shown that typical structural motifs and electronic properties can be found in the crystalline state that are indicative for resonant bonding, from which the employed contrast originates. The occurence of resonance is linked to the composition, thus providing a design rule for phase-change materials. This understanding helps to unravel characteristic properties such as electrical and thermal conductivity which are discussed in the subsequent section. Then, turning to the transition kinetics between the phases, the current understanding and modeling of the processes of amorphization and crystallization are discussed. Finally, present approaches for improved high-capacity optical discs and fast non-volatile electrical memories, that hold the potential to succeed present-day's Flash memory, are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Material Engineering for Phase Change Memory

    NASA Astrophysics Data System (ADS)

    Cabrera, David M.

    As semiconductor devices continue to scale downward, and portable consumer electronics become more prevalent there is a need to develop memory technology that will scale with devices and use less energy, while maintaining performance. One of the leading prototypical memories that is being investigated is phase change memory. Phase change memory (PCM) is a non-volatile memory composed of 1 transistor and 1 resistor. The resistive structure includes a memory material alloy which can change between amorphous and crystalline states repeatedly using current/voltage pulses of different lengths and magnitudes. The most widely studied PCM materials are chalcogenides - Germanium-Antimony-Tellerium (GST) with Ge2Sb2Te3 and Germanium-Tellerium (GeTe) being some of the most popular stochiometries. As these cells are scaled downward, the current/voltage needed to switch these materials becomes comparable to the voltage needed to sense the cell's state. The International Roadmap for Semiconductors aims to raise the threshold field of these devices from 66.6 V/mum to be at least 375 V/mum for the year 2024. These cells are also prone to resistance drift between states, leading to bit corruption and memory loss. Phase change material properties are known to influence PCM device performance such as crystallization temperature having an effect on data retention and litetime, while resistivity values in the amorphous and crystalline phases have an effect on the current/voltage needed to write/erase the cell. Addition of dopants is also known to modify the phase change material parameters. The materials G2S2T5, GeTe, with dopants - nitrogen, silicon, titanium, and aluminum oxide and undoped Gallium-Antimonide (GaSb) are studied for these desired characteristics. Thin films of these compositions are deposited via physical vapor deposition at IBM Watson Research Center. Crystallization temperatures are investigated using time resolved x-ray diffraction at Brookhaven National Laboratory

  20. Zooming in on AdS3/CFT2 near a BPS bound

    NASA Astrophysics Data System (ADS)

    Hartong, Jelle; Lei, Yang; Obers, Niels; Oling, Gerben

    2018-05-01

    Any ( d + 1)-dimensional CFT with a U(1) flavor symmetry, a BPS bound and an exactly marginal coupling admits a decoupling limit in which one zooms in on the spectrum close to the bound. This limit is an Inönü-Wigner contraction of so(2 , d+1)⊕ u(1) that leads to a relativistic algebra with a scaling generator but no conformal generators. In 2D CFTs, Lorentz boosts are abelian and by adding a second u(1) we find a contraction of two copies of sl(2, ℝ) ⊕ u(1) to two copies of P 2 c , the 2-dimensional centrally extended Poincaré algebra. We show that the bulk is described by a novel non-Lorentzian geometry that we refer to as pseudo-Newton-Cartan geometry. Both the Chern-Simons action on sl(2, ℝ) ⊕ u(1) and the entire phase space of asymptotically AdS3 spacetimes are well-behaved in the corresponding limit if we fix the radial component for the u(1) connection. With this choice, the resulting Newton-Cartan foliation structure is now associated not with time, but with the emerging holographic direction. Since the leaves of this foliation do not mix, the emergence of the holographic direction is much simpler than in AdS3 holography. Furthermore, we show that the asymptotic symmetry algebra of the limit theory consists of a left- and a right-moving warped Virasoro algebra.

  1. A design handbook for phase change thermal control and energy storage devices. [selected paraffins

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.; Griggs, E. I.

    1977-01-01

    Comprehensive survey is given of the thermal aspects of phase change material devices. Fundamental mechanisms of heat transfer within the phase change device are discussed. Performance in zero-g and one-g fields are examined as it relates to such a device. Computer models for phase change materials, with metal fillers, undergoing conductive and convective processes are detailed. Using these models, extensive parametric data are presented for a hypothetical configuration with a rectangular phase change housing, using straight fins as the filler, and paraffin as the phase change material. These data are generated over a range of realistic sizes, material properties, and thermal boundary conditions. A number of illustrative examples are given to demonstrate use of the parametric data. Also, a complete listing of phase change material property data are reproduced herein as an aid to the reader.

  2. Soda Consumption During Ad Libitum Food Intake Predicts Weight Change

    PubMed Central

    Bundrick, Sarah C.; Thearle, Marie S.; Venti, Colleen A.; Krakoff, Jonathan; Votruba, Susanne B.

    2013-01-01

    Soda consumption may contribute to weight gain over time. Objective data were used to determine whether soda consumption predicts weight gain or changes in glucose regulation over time. Subjects without diabetes (128 men, 75 women; mean age 34.3±8.9 years; mean body mass index [BMI] 32.5±7.4; mean percentage body fat 31.6%±8.6%) self-selected their food from an ad libitum vending machine system for 3 days. Mean daily energy intake was calculated from food weight. Energy consumed from soda was recorded as were food choices that were low in fat (<20%) or high in simple sugars (>30%). Food choices were expressed as percentage of daily energy intake. A subset of 85 subjects had measurement of follow-up weights and oral glucose tolerance (57 men, 28 women; mean follow-up time=2.5±2.1 years, range 6 months to 9.9 years). Energy consumed from soda was negatively related to age (r=–0.27, P=0.0001), and choosing low-fat foods (r=−0.35, P<0.0001), but positively associated with choosing solid foods high in simple sugars (r=0.45, P<0.0001) and overall average daily energy intake (r=0.46, P<0.0001). Energy intake from food alone did not differ between individuals who did and did not consume beverage calories (P=0.11). Total daily energy intake had no relationship with change in weight (P=0.29) or change in glucose regulation (P=0.38) over time. However, energy consumed from soda correlated with change in weight (r=0.21, P=0.04). This relationship was unchanged after adjusting for follow-up time and initial weight. Soda consumption is a marker for excess energy consumption and is associated with weight gain. PMID:24321742

  3. Total recovery of the waste of two-phase olive oil processing: isolation of added-value compounds.

    PubMed

    Fernández-Bolaños, Juan; Rodríguez, Guillermo; Gómez, Esther; Guillén, Rafael; Jiménez, Ana; Heredia, Antonia; Rodríguez, Rocío

    2004-09-22

    A process for the value addition of solid waste from two-phase olive oil extraction or "alperujo" that includes a hydrothermal treatment has been suggested. In this treatment an autohydrolysis process occurs and the solid olive byproduct is partially solubilized. From this water-soluble fraction can be obtained besides the antioxidant hydroxytyrosol several other compounds of high added value. In this paper three different samples of alperujo were characterized and subjected to a hydrothermal treatment with and without acid catalyst. The main soluble compounds after the hydrolysis were represented by monosaccharides xylose, arabinose, and glucose; oligosaccharides, mannitol and products of sugar destruction. Oligosaccharides were separated by size exclusion chromatography. It was possible to get highly purified mannitol by applying a simple purification method.

  4. Solid-solid phase change thermal storage application to space-suit battery pack

    NASA Astrophysics Data System (ADS)

    Son, Chang H.; Morehouse, Jeffrey H.

    1989-01-01

    High cell temperatures are seen as the primary safety problem in the Li-BCX space battery. The exothermic heat from the chemical reactions could raise the temperature of the lithium electrode above the melting temperature. Also, high temperature causes the cell efficiency to decrease. Solid-solid phase-change materials were used as a thermal storage medium to lower this battery cell temperature by utilizing their phase-change (latent heat storage) characteristics. Solid-solid phase-change materials focused on in this study are neopentyl glycol and pentaglycerine. Because of their favorable phase-change characteristics, these materials appear appropriate for space-suit battery pack use. The results of testing various materials are reported as thermophysical property values, and the space-suit battery operating temperature is discussed in terms of these property results.

  5. Distinction between added-energy and phase-resetting mechanisms in non-invasively detected somatosensory evoked responses.

    PubMed

    Fedele, T; Scheer, H-J; Burghoff, M; Waterstraat, G; Nikulin, V V; Curio, G

    2013-01-01

    Non-invasively recorded averaged event-related potentials (ERP) represent a convenient opportunity to investigate human brain perceptive and cognitive processes. Nevertheless, generative ERP mechanisms are still debated. Two previous approaches have been contested in the past: the added-energy model in which the response raises independently from the ongoing background activity, and the phase-reset model, based on stimulus-driven synchronization of oscillatory ongoing activity. Many criteria for the distinction of these two models have been proposed, but there is no definitive methodology to disentangle them, owing also to the limited information at the single trial level. Here, we propose a new approach combining low-noise EEG technology and multivariate decomposition techniques. We present theoretical analyses based on simulated data and identify in high-frequency somatosensory evoked responses an optimal target for the distinction between the two mechanisms.

  6. Nanoscale thermal cross-talk effect on phase-change probe memory.

    PubMed

    Wang, Lei; Wen, Jing; Xiong, Bangshu

    2018-05-14

    Phase-change probe memory is considered as one of the most promising means for next-generation mass storage devices. However, the achievable storage density of phase-change probe memory is drastically affected by the resulting thermal cross-talk effect while previously lacking of detailed study. Therefore, a three dimensional model that couples electrical, thermal, and phase-change processes of the Ge2Sb2Te5 media is developed, and subsequently deployed to assess the thermal cross-talk effect based on Si/TiN/ Ge2Sb2Te5/diamond-like carbon structure by appropriately tailoring the electro-thermal and geometrical properties of the storage media stack for a variety of external excitations. The modeling results show that the diamond-like carbon capping with a thin thickness, a high electrical conductivity, and a low thermal conductivity is desired to minimize the thermal cross-talk, while the TiN underlayer has a slight impact on the thermal cross-talk. Combining the modeling findings with the previous film deposition experience, an optimized phase-change probe memory architecture is presented, and its capability of providing ultra-high recording density simultaneously with a sufficiently low thermal cross-talk is demonstrated. . © 2018 IOP Publishing Ltd.

  7. Phase Change Fabrics Control Temperature

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Originally featured in Spinoff in 1997, Outlast Technologies Inc. (formerly Gateway Technologies Inc.) has built its entire product line on microencapsulated phase change materials, developed in Small Business Innovation Research (SBIR) contracts with Johnson Space Center after initial development for the U.S. Air Force. The Boulder, Colorado-based company acquired the exclusive patent rights and now integrates these materials into textiles or onto finished apparel, providing temperature regulation in bedding materials and a full line of apparel for both ordinary and extreme conditions.

  8. Phase-Change Heat-Storage Module

    NASA Technical Reports Server (NTRS)

    Mulligan, James C.

    1989-01-01

    Heat-storage module accommodates momentary heating or cooling overload in pumped-liquid heat-transfer system. Large heat-storage capacity of module provided by heat of fusion of material that freezes at or near temperature desired to maintain object to be heated or cooled. Module involves relatively small penalties in weight, cost, and size and more than compensates by enabling design of rest of system to handle only average load. Latent heat of fusion of phase-change material provides large heat-storage capacity in small volume.

  9. Forced Ion Migration for Chalcogenide Phase Change Memory Device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A (Inventor)

    2013-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge2Se3/SnTe, and Ge2Se3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.

  10. Constructing the AdS dual of a Fermi liquid: AdS black holes with Dirac hair

    NASA Astrophysics Data System (ADS)

    Čubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad

    2011-10-01

    We provide evidence that the holographic dual to a strongly coupled charged Fermi liquid has a non-zero fermion density in the bulk. We show that the pole-strength of the stable quasiparticle characterizing the Fermi surface is encoded in the AdS probability density of a single normalizable fermion wavefunction in AdS. Recalling Migdal's theorem which relates the pole strength to the Fermi-Dirac characteristic discontinuity in the number density at ω F , we conclude that the AdS dual of a Fermi liquid is described by occupied on-shell fermionic modes in AdS. Encoding the occupied levels in the total spatially averaged probability density of the fermion field directly, we show that an AdS Reissner-Nordström black holein a theory with charged fermions has a critical temperature, at which the system undergoes a first-order transition to a black hole with a non-vanishing profile for the bulk fermion field. Thermodynamics and spectral analysis support that the solution with non-zero AdS fermion-profile is the preferred ground state at low temperatures.

  11. Validity of Maxwell equal area law for black holes conformally coupled to scalar fields in {AdS}_5 spacetime

    NASA Astrophysics Data System (ADS)

    Miao, Yan-Gang; Xu, Zhen-Ming

    2017-06-01

    We investigate the P{-}V criticality and the Maxwell equal area law for a five-dimensional spherically symmetric AdS black hole with a scalar hair in the absence of and in the presence of a Maxwell field, respectively. Especially in the charged case, we give the exact P{-}V critical values. More importantly, we analyze the validity and invalidity of the Maxwell equal area law for the AdS hairy black hole in the scenarios without and with charges, respectively. Within the scope of validity of the Maxwell equal area law, we point out that there exists a representative van der Waals-type oscillation in the P{-}V diagram. This oscillating part, which indicates the phase transition from a small black hole to a large one, can be replaced by an isobar. The small and large black holes have the same Gibbs free energy. We also give the distribution of the critical points in the parameter space both without and with charges, and we obtain for the uncharged case the fitting formula of the co-existence curve. Meanwhile, the latent heat is calculated, which gives the energy released or absorbed between the small and large black hole phases in the isothermal-isobaric procedure.

  12. Visualising phase change in a brushite-based calcium phosphate ceramic

    PubMed Central

    Bannerman, A.; Williams, R. L.; Cox, S. C.; Grover, L. M.

    2016-01-01

    The resorption of brushite-based bone cements has been shown to be highly unpredictable, with strong dependence on a number of conditions. One of the major factors is phase transformation, with change to more stable phases such as hydroxyapatite affecting the rate of resorption. Despite its importance, the analysis of phase transformation has been largely undertaken using methods that only detect crystalline composition and give no information on the spatial distribution of the phases. In this study confocal Raman microscopy was used to map cross-sections of brushite cylinders aged in Phosphate Buffered Saline, Foetal Bovine Serum, Dulbecco’s – Minimum Essential Medium (with and without serum). Image maps showed the importance of ageing medium on the phase composition throughout the ceramic structure. When aged without serum, there was dissolution of the brushite phase concomitant to the deposition of octacalcium phosphate (OCP) around the periphery of the sample. The deposition of OCP was detectable within five days and reduced the rate of brushite dissolution from the material. The use of serum, even at a concentration of 10vol% prevented phase transformation. This paper demonstrates the value of confocal Raman microscopy in monitoring phase change in biocements; it also demonstrates the problems with assessing material degradation in non-serum containing media. PMID:27604149

  13. Visualising phase change in a brushite-based calcium phosphate ceramic

    NASA Astrophysics Data System (ADS)

    Bannerman, A.; Williams, R. L.; Cox, S. C.; Grover, L. M.

    2016-09-01

    The resorption of brushite-based bone cements has been shown to be highly unpredictable, with strong dependence on a number of conditions. One of the major factors is phase transformation, with change to more stable phases such as hydroxyapatite affecting the rate of resorption. Despite its importance, the analysis of phase transformation has been largely undertaken using methods that only detect crystalline composition and give no information on the spatial distribution of the phases. In this study confocal Raman microscopy was used to map cross-sections of brushite cylinders aged in Phosphate Buffered Saline, Foetal Bovine Serum, Dulbecco’s - Minimum Essential Medium (with and without serum). Image maps showed the importance of ageing medium on the phase composition throughout the ceramic structure. When aged without serum, there was dissolution of the brushite phase concomitant to the deposition of octacalcium phosphate (OCP) around the periphery of the sample. The deposition of OCP was detectable within five days and reduced the rate of brushite dissolution from the material. The use of serum, even at a concentration of 10vol% prevented phase transformation. This paper demonstrates the value of confocal Raman microscopy in monitoring phase change in biocements; it also demonstrates the problems with assessing material degradation in non-serum containing media.

  14. [Phase changes in energy metabolism during periodic hypoxia].

    PubMed

    Portnichenko, V I; Nosar', V I; Portnichenko, A G; Drevitskaia, T I; Sidorenko, A M; Man'kovskaia, I N

    2012-01-01

    Male Wistar rats were exposed to periodic hypobaric hypoxia (PHH), by "lifting" in barochamber at "altitude" 5600 m for 1 h every 3 days (6 séances). The dynamics of changes in oxygen consumption (VO2), and body temperature (Tm), as well as in HIF-1alpha and HIF-3alpha gene expression, and mitochondrial respiration in the ventricles of the heart was studied. On the basis of the data we identified four phases of the physiological changes. The first phase, hypometabolic (1-3 séances), is characterized by decrease in VO2 and Tm, induction of HIF-1alpha and HIF-3alpha with delayed transient stimulation of metabolism in response to each séance of hypoxia. In heart mitochondria, V3 and V4 are increased, but V3/V4 and ADP/O are reduced. During the second phase, transitional (3-4 séances), there is reorganization of metabolism and decrease its hypoxic reactivity. The third phase, hypermetabolic (4-5 séances), is characterized by intensification of metabolism and compensation of hypoxic disorders. The fourth phase (after 5 séance) - is a state of metabolic adaptation with normalization of VO2 and Tm, expression of HIF-1alpha and HIF-3alpha, mitochondrial respiration, increased NAD-dependent oxidation of carbohydrate and lipid substrates. Thus, during PHH consequent rebuilding of processes of oxygen transport, tissue respiration and thermogenesis occurs, mediated by induction of the HIF subunits.

  15. ADS Bumblebee comes of age

    NASA Astrophysics Data System (ADS)

    Accomazzi, Alberto; Kurtz, Michael J.; Henneken, Edwin; Grant, Carolyn S.; Thompson, Donna M.; Chyla, Roman; McDonald, Steven; Shaulis, Taylor J.; Blanco-Cuaresma, Sergi; Shapurian, Golnaz; Hostetler, Timothy W.; Templeton, Matthew R.; Lockhart, Kelly E.

    2018-01-01

    The ADS Team has been working on a new system architecture and user interface named “ADS Bumblebee” since 2015. The new system presents many advantages over the traditional ADS interface and search engine (“ADS Classic”). A new, state of the art search engine features a number of new capabilities such as full-text search, advanced citation queries, filtering of results and scalable analytics for any search results. Its services are built on a cloud computing platform which can be easily scaled to match user demand. The Bumblebee user interface is a rich javascript application which leverages the features of the search engine and integrates a number of additional visualizations such as co-author and co-citation networks which provide a hierarchical view of research groups and research topics, respectively. Displays of paper analytics provide views of the basic article metrics (citations, reads, and age). All visualizations are interactive and provide ways to further refine search results. This new search system, which has been in beta for the past three years, has now matured to the point that it provides feature and content parity with ADS Classic, and has become the recommended way to access ADS content and services. Following a successful transition to Bumblebee, the use of ADS Classic will be discouraged starting in 2018 and phased out in 2019. You can access our new interface at https://ui.adsabs.harvard.edu

  16. Comparison of the solid-phase fragment condensation and phase-change approaches in the synthesis of salmon I calcitonin.

    PubMed

    Gatos, D; Tzavara, C

    2001-02-01

    Salmon I calcitonin was synthesized using both phase-change and conventional solid-phase fragment condensation (SPFC) approaches, utilizing the Rink amide linker (Fmoc-amido-2,4-dimethoxybenzyl-4-phenoxyacetic acid) combined with 2-chlorotrityl resin and the Fmoc/tBu(Trt)-based protection scheme. Phase-change synthesis, performed by the selective detachment of the fully protected C-terminal 22-mer peptide-linker from the resin and subsequent condensation in solution with the N-terminal 1-10 fragment, gave a product of slightly less purity (85 vs. 92%) than the corresponding synthesis on the solid-phase. In both cases salmon I calcitonin was easily obtained in high purity.

  17. 3D Maps from Multiple MRI Illustrate Changing Atrophy Patterns as Subjects Progress from MCI to AD

    PubMed Central

    Whitwell, Jennifer L; Przybelski, Scott; Weigand, Stephen D; Knopman, David S; Boeve, Bradley F; Petersen, Ronald C; Jack, Clifford R

    2009-01-01

    and the temporoparietal association cortices and, for the first time, substantial involvement of the frontal lobes. This pattern of progression fits well with the Braak and Braak neurofibrillary pathological staging scheme in AD. It suggests that the earliest changes occur in the anterior medial temporal lobe and fusiform gyrus, and that these changes occur at least three years before conversion to AD. These results also suggest that 3-dimensional patterns of grey matter atrophy may help to predict the time to conversion in subjects with aMCI. PMID:17533169

  18. A multiproxy reconstruction of NAO evolution in the Azores archipelago since 1350 AD

    NASA Astrophysics Data System (ADS)

    Hernández, Armand; Doolittle, Sara; Bao, Roberto; Trigo, Ricardo M.; Rubio-Inglés, Maria J.; Sánchez-López, Guiomar; Vázquez-Loureiro, David; Gonçalves, Vitor; Raposeiro, Pedro M.; Marques, Helena S.; Sáez, Alberto; Giralt, Santiago

    2014-05-01

    four main climatic (and NAO) stages since 600 cal years BP have been established. The first stage (1350-1460 AD) correspond to dark-brown to black mud facies with high values in lake productivity and moderately shallow waters, which however represent the deepest condition during the studied interval. Mineralogical composition and high organic matter content also suggest a humid climate with abundant precipitations that might be related to a predominantly NAO- phase. The second stage, spanning between 1460 and 1800 AD, is represented by a similar facies presented by the previous phase. This stage is however characterized by a transitional period from a wet to more arid climate, probably related to a change in NAO conditions (from NAO- to NAO+), with lower values of lake productivity and lake level than the previous stage. From 1800 AD until 1930 AD (third stage) banded brown to pale-brown silty and muddy facies were deposited. During this stage the lowest lake water table and productivity in the whole sequence were reached suggesting a predominantly NAO+ phase in concordance with instrumental NAO records. However, heavy rainfall catastrophic events are recorded in the sequence as very coarse (gravely) alluvial intervals that may be related with intense NAO- negative winters or alternatively to autumn Tropical Storms that can reach the archipelago. Finally, the uppermost interval of the sequence is composed by brown to ochre massive mud. A lake level rise and a progressive increase in the productivity suggest a relatively humid fourth stage from AD 1930 until present, a period characterized with more NAO- values.

  19. Segmented strings in AdS 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callebaut, Nele; Gubser, Steven S.; Samberg, Andreas

    We study segmented strings in flat space and in AdS 3. In flat space, these well known classical motions describe strings which at any instant of time are piecewise linear. In AdS 3, the worldsheet is composed of faces each of which is a region bounded by null geodesics in an AdS 2 subspace of AdS 3. The time evolution can be described by specifying the null geodesic motion of kinks in the string at which two segments are joined. The outcome of collisions of kinks on the worldsheet can be worked out essentially using considerations of causality. We studymore » several examples of closed segmented strings in AdS 3 and find an unexpected quasi-periodic behavior. Here, we also work out a WKB analysis of quantum states of yo-yo strings in AdS 5 and find a logarithmic term reminiscent of the logarithmic twist of string states on the leading Regge trajectory.« less

  20. Segmented strings in AdS 3

    DOE PAGES

    Callebaut, Nele; Gubser, Steven S.; Samberg, Andreas; ...

    2015-11-17

    We study segmented strings in flat space and in AdS 3. In flat space, these well known classical motions describe strings which at any instant of time are piecewise linear. In AdS 3, the worldsheet is composed of faces each of which is a region bounded by null geodesics in an AdS 2 subspace of AdS 3. The time evolution can be described by specifying the null geodesic motion of kinks in the string at which two segments are joined. The outcome of collisions of kinks on the worldsheet can be worked out essentially using considerations of causality. We studymore » several examples of closed segmented strings in AdS 3 and find an unexpected quasi-periodic behavior. Here, we also work out a WKB analysis of quantum states of yo-yo strings in AdS 5 and find a logarithmic term reminiscent of the logarithmic twist of string states on the leading Regge trajectory.« less

  1. Reducing Pumping Power in Hydronic Heating and Cooling Systems with Microencapsulated Phase Change Material Slurries

    NASA Astrophysics Data System (ADS)

    Karas, Kristoffer Jason

    Phase change materials (PCMs) are being used increasingly in a variety of thermal transfer and thermal storage applications. This thesis presents the results of a laboratory study into the feasibility of improving the performance of hydronic heating and cooling systems by adding microcapsules filled with a PCM to the water used as heat transport media in these systems. Microencapsulated PCMs (MPCMs) increase the heat carrying capacity of heat transport liquids by absorbing or releasing heat at a constant temperature through a change of phase. Three sequences of tests and their results are presented: 1) Thermal cycling tests conducted to determine the melting temperatures and extent of supercooling associated with the MPCMs tested. 2) Hydronic performance tests in which MPCM slurries were pumped through a fin-and-tube, air-to-liquid heat exchanger and their thermal transfer performance compared against that of ordinary water. 3) Mechanical stability tests in which MPCM slurries were pumped in a continuous loop in order to gauge the extent of rupture due to pumping. It is shown that slurries consisting of water and MPCMs ˜ 14-24 mum in diameter improve thermal performance and offer the potential for power savings in the form of reduced pumping requirements. In addition, it is shown that while slurries of MPCMs 2-5 mum in diameter appear to exhibit better mechanical stability than slurries of larger diameter MPCMs, the smaller MPCMs appear to reduce the thermal performance of air-to-liquid heat exchangers.

  2. Spatial-frequency spectrum of patterns changes the visibility of spatial-phase differences

    NASA Technical Reports Server (NTRS)

    Lawton, T. B.

    1985-01-01

    It is shown that spatial-frequency components over a 4-octave range affected the visibility of spatial-phase differences. Contrast thresholds were measured for discrimination between two (+45- and -45-deg) spatial phases of a sinusoidal test grating added to a background grating. The background could contain one or several sinusoidal components, all in 0-deg phase. Phase differences between the test and the background were visible at lower contrasts when test and background frequencies were harmonically related than when they were not, when test and background frequencies were within 1 octave than when they were farther apart, when the fundamental frequency of the background was low than when it was high, and for some discriminations more than for others, after practice. The visibility of phase differences was not affected by additional components in the background if the fundamental and difference frequencies of the background remained unchanged. Observers' reports of their strategies gave information about the types of attentive processing that were used to discriminate phase differences. Attentive processing facilitated phase discrimination for multifrequency gratings spanning a much wider range of spatial frequencies than would be possible by using only local preattentive processing. These results were consistent with the visibility of phase differences being processed by some combination of even- and odd-symmetric simple cells tuned to a wide range of different spatial frequencies.

  3. Antarctic climate change: extreme events disrupt plastic phenotypic response in Adélie penguins.

    PubMed

    Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G

    2014-01-01

    In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A 'natural experiment' brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The 'natural experiment' uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise.

  4. Antarctic Climate Change: Extreme Events Disrupt Plastic Phenotypic Response in Adélie Penguins

    PubMed Central

    Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G.

    2014-01-01

    In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A ‘natural experiment’ brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The ‘natural experiment’ uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise. PMID:24489657

  5. Radiation Heat Transfer Modeling Improved for Phase-Change, Thermal Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Jacqmin, David A.

    1998-01-01

    Spacecraft solar dynamic power systems typically use high-temperature phase-change materials to efficiently store thermal energy for heat engine operation in orbital eclipse periods. Lithium fluoride salts are particularly well suited for this application because of their high heat of fusion, long-term stability, and appropriate melting point. Considerable attention has been focused on the development of thermal energy storage (TES) canisters that employ either pure lithium fluoride (LiF), with a melting point of 1121 K, or eutectic composition lithium-fluoride/calcium-difluoride (LiF-20CaF2), with a 1040 K melting point, as the phase-change material. Primary goals of TES canister development include maximizing the phase-change material melt fraction, minimizing the canister mass per unit of energy storage, and maximizing the phase-change material thermal charge/discharge rates within the limits posed by the container structure.

  6. Graphene Aerogel Templated Fabrication of Phase Change Microspheres as Thermal Buffers in Microelectronic Devices.

    PubMed

    Wang, Xuchun; Li, Guangyong; Hong, Guo; Guo, Qiang; Zhang, Xuetong

    2017-11-29

    Phase change materials, changing from solid to liquid and vice versa, are capable of storing and releasing a large amount of thermal energy during the phase change, and thus hold promise for numerous applications including thermal protection of electronic devices. Shaping these materials into microspheres for additional fascinating properties is efficient but challenging. In this regard, a novel phase change microsphere with the design for electrical-regulation and thermal storage/release properties was fabricated via the combination of monodispersed graphene aerogel microsphere (GAM) and phase change paraffin. A programmable method, i.e., coupling ink jetting-liquid marbling-supercritical drying (ILS) techniques, was demonstrated to produce monodispersed graphene aerogel microspheres (GAMs) with precise size-control. The resulting GAMs showed ultralow density, low electrical resistance, and high specific surface area with only ca. 5% diameter variation coefficient, and exhibited promising performance in smart switches. The phase change microspheres were obtained by capillary filling of phase change paraffin inside the GAMs and exhibited excellent properties, such as low electrical resistance, high latent heat, well sphericity, and thermal buffering. Assembling the phase change microsphere into the microcircuit, we found that this tiny device was quite sensitive and could respond to heat as low as 0.027 J.

  7. On entropy change measurements around first order phase transitions in caloric materials.

    PubMed

    Caron, Luana; Ba Doan, Nguyen; Ranno, Laurent

    2017-02-22

    In this work we discuss the measurement protocols for indirect determination of the isothermal entropy change associated with first order phase transitions in caloric materials. The magneto-structural phase transitions giving rise to giant magnetocaloric effects in Cu-doped MnAs and FeRh are used as case studies to exemplify how badly designed protocols may affect isothermal measurements and lead to incorrect entropy change estimations. Isothermal measurement protocols which allow correct assessment of the entropy change around first order phase transitions in both direct and inverse cases are presented.

  8. Using Pre-Melted Phase Change Material to Keep Payloads in Space Warm for Hours without Power

    NASA Technical Reports Server (NTRS)

    Choi, Michael

    2013-01-01

    Adding phase change material (PCM) to a mission payload can maintain its temperature above the cold survival limit, without power, for several hours in space. For the International Space Station, PCM is melted by heaters just prior to the payload translation to the worksite when power is available. When power is cut off during the six-hour translation, the PCM releases its latent heat to make up the heat loss from the radiator(s) to space. For the interplanetary Probe, PCM is melted by heaters just prior to separation from the orbiter when power is available from the orbiter power system. After the Probe separates from the orbiter, the PCM releases its latent heat to make up the heat loss from the Probe exterior to space. Paraffin wax is a good PCM candidate.

  9. Performance of a cylindrical phase-change thermal energy storage unit

    NASA Astrophysics Data System (ADS)

    Jacobson, D. L.; Ponnappan, R.

    1983-05-01

    The high-temperature performance of a eutectic salt Phase Change Material (PCM) in a cylindrical Thermal Energy Storage Container (TESC) sample is evaluated by means of an experimental apparatus with a water-circulated calorimeter. The phase change characteristics of the salt during melting and solidification were observed by monitoring the external axial temperature profile of the container, and the analysis of the phase change heat transfer in the cylindrical geometry was based on the modified heat balance integral method of Tien (1980), which provides the solidification rate and time. Melting point (983 K), freezing point (944 K), latent heat of fusion (782.26 J/gm) and thermal diffusivity (0.00799 sq cm/sec) results are in agreement with those found in the literature. The experimental and analytical results of the nondimensionalized heat transfer resistance as a function of the solidified or melted weight fraction are compared.

  10. Alteration of rhythmic unimanual tapping and anti-phase bimanual coordination in Alzheimer's disease: A sign of inter-hemispheric disconnection?

    PubMed

    Martin, Elodie; Blais, Mélody; Albaret, Jean-Michel; Pariente, Jérémie; Tallet, Jessica

    2017-10-01

    Little attention is paid to motor control in Alzheimer's disease (AD) although it is a relevant sign of central nervous system integrity and functioning. In particular, unimanual and bimanual tapping is a relevant paradigm because it requires intra- and inter-hemispheric transfer (IHT). Previous results indicate that both unimanual and anti-phase tapping requires more IHT than in-phase tapping, especially produced without external stimulation. The aim of the present study was to test the production of unimanual, bimanual in-phase and anti-phase tapping with a synchronization-continuation paradigm with and without visual stimulation in AD patients (N=9) and control participants (N=12). In accordance with our hypothesis, these results suggest that unimanual and anti-phase tapping is more altered in AD than in control participants. Moreover, performance is globally more variable in the AD group. These alterations are discussed in terms of possible IHT modulation, in line with functional and structural findings in AD, revealing changes in the connectivity of brain regions across hemispheres and white matter damage. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Automating Phase Change Lines and Their Labels Using Microsoft Excel(R).

    PubMed

    Deochand, Neil

    2017-09-01

    Many researchers have rallied against drawn in graphical elements and offered ways to avoid them, especially regarding the insertion of phase change lines (Deochand, Costello, & Fuqua, 2015; Dubuque, 2015; Vanselow & Bourret, 2012). However, few have offered a solution to automating the phase labels, which are often utilized in behavior analytic graphical displays (Deochand et al., 2015). Despite the fact that Microsoft Excel® is extensively utilized by behavior analysts, solutions to resolve issues in our graphing practices are not always apparent or user-friendly. Considering the insertion of phase change lines and their labels constitute a repetitious and laborious endeavor, any minimization in the steps to accomplish these graphical elements could offer substantial time-savings to the field. The purpose of this report is to provide an updated way (and templates in the supplemental materials) to add phase change lines with their respective labels, which stay embedded to the graph when they are moved or updated.

  12. Forced ion migration for chalcogenide phase change memory device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A. (Inventor)

    2011-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more that two data states.

  13. Forced ion migration for chalcogenide phase change memory device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A. (Inventor)

    2012-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.

  14. Warped AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Song, Wei; Anninos, Dionysios; Li, Wei; Padi, Megha; Strominger, Andrew

    2009-03-01

    Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -ell-2 and positive Newton constant G admits an AdS3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μell = 1. However we show herein that for every value of μell ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,Bbb R) × U(1)-invariant warped AdS3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μell = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μell > 3, there are known warped black hole solutions which are asymptotic to warped AdS3. We show that these black holes are discrete quotients of warped AdS3 just as BTZ black holes are discrete quotients of ordinary AdS3. Moreover new solutions of this type, relevant to any theory with warped AdS3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μell > 3, the warped AdS3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c_R-formula and c_L-formula.

  15. Warped AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; Li, Wei; Padi, Megha; Song, Wei; Strominger, Andrew

    2009-03-01

    Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -l-2 and positive Newton constant G admits an AdS3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μl = 1. However we show herein that for every value of μl ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,Bbb R) × U(1)-invariant warped AdS3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μl = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μl > 3, there are known warped black hole solutions which are asymptotic to warped AdS3. We show that these black holes are discrete quotients of warped AdS3 just as BTZ black holes are discrete quotients of ordinary AdS3. Moreover new solutions of this type, relevant to any theory with warped AdS3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μl > 3, the warped AdS3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c_R-formula and c_L-formula.

  16. Phase Change Material Thermal Power Generator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2013-01-01

    An innovative modification has been made to a previously patented design for the Phase Change Material (PCM) Thermal Generator, which works in water where ocean temperature alternatively melts wax in canisters, or allows the wax to re-solidify, causing high-pressure oil to flow through a hydraulic generator, thus creating electricity to charge a battery that powers the vehicle. In this modification, a similar thermal PCM device has been created that is heated and cooled by the air and solar radiation instead of using ocean temperature differences to change the PCM from solid to liquid. This innovation allows the device to use thermal energy to generate electricity on land, instead of just in the ocean.

  17. Thermal Conductivity of Eutectic Nitrates and Nitrates/Expanded Graphite Composite as Phase Change Materials.

    PubMed

    Xiao, Xin; Zhang, Peng; Meng, Zhao-Nan; Li, Ming

    2015-04-01

    Nitrates and eutectic nitrate mixtures are considered as potential phase change materials (PCMs) for the middle-temperature-range solar energy storage applications. But the extensive utilization is restricted by the poor thermal conductivity and thermal stability. In the present study, sodium nitrate-potassium nitrate eutectic mixture was used as the base PCM, and expanded graphite (EG) was added to the mixture so as to improve the thermal conductivities. The elaboration method consists of a physically mixing of salt powders with or without EG, and the composite PCMs were cold-compressed to form shape-stabilized PCMs at room temperature. The thermal conductivities of the composite PCMs fabricated by cold-compression were investigated at different temperatures by the steady state method. The results showed that the addition of EG significantly enhanced the thermal conductivities. The thermal conductivities of pure nitrates and nitrates/EG composite PCMs in solid state showed the behavior of temperature dependant, and they slightly decreased with the increase of the temperature.

  18. AD-LIBS: inferring ancestry across hybrid genomes using low-coverage sequence data.

    PubMed

    Schaefer, Nathan K; Shapiro, Beth; Green, Richard E

    2017-04-04

    Inferring the ancestry of each region of admixed individuals' genomes is useful in studies ranging from disease gene mapping to speciation genetics. Current methods require high-coverage genotype data and phased reference panels, and are therefore inappropriate for many data sets. We present a software application, AD-LIBS, that uses a hidden Markov model to infer ancestry across hybrid genomes without requiring variant calling or phasing. This approach is useful for non-model organisms and in cases of low-coverage data, such as ancient DNA. We demonstrate the utility of AD-LIBS with synthetic data. We then use AD-LIBS to infer ancestry in two published data sets: European human genomes with Neanderthal ancestry and brown bear genomes with polar bear ancestry. AD-LIBS correctly infers 87-91% of ancestry in simulations and produces ancestry maps that agree with published results and global ancestry estimates in humans. In brown bears, we find more polar bear ancestry than has been published previously, using both AD-LIBS and an existing software application for local ancestry inference, HAPMIX. We validate AD-LIBS polar bear ancestry maps by recovering a geographic signal within bears that mirrors what is seen in SNP data. Finally, we demonstrate that AD-LIBS is more effective than HAPMIX at inferring ancestry when preexisting phased reference data are unavailable and genomes are sequenced to low coverage. AD-LIBS is an effective tool for ancestry inference that can be used even when few individuals are available for comparison or when genomes are sequenced to low coverage. AD-LIBS is therefore likely to be useful in studies of non-model or ancient organisms that lack large amounts of genomic DNA. AD-LIBS can therefore expand the range of studies in which admixture mapping is a viable tool.

  19. Non-binary Colour Modulation for Display Device Based on Phase Change Materials.

    PubMed

    Ji, Hong-Kai; Tong, Hao; Qian, Hang; Hui, Ya-Juan; Liu, Nian; Yan, Peng; Miao, Xiang-Shui

    2016-12-19

    A reflective-type display device based on phase change materials is attractive because of its ultrafast response time and high resolution compared with a conventional display device. This paper proposes and demonstrates a unique display device in which multicolour changing can be achieved on a single device by the selective crystallization of double layer phase change materials. The optical contrast is optimized by the availability of a variety of film thicknesses of two phase change layers. The device exhibits a low sensitivity to the angle of incidence, which is important for display and colour consistency. The non-binary colour rendering on a single device is demonstrated for the first time using optical excitation. The device shows the potential for ultrafast display applications.

  20. Solid state phase change materials for thermal energy storage in passive solar heated buildings

    NASA Astrophysics Data System (ADS)

    Benson, D. K.; Christensen, C.

    1983-11-01

    A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.

  1. Logic computation in phase change materials by threshold and memory switching.

    PubMed

    Cassinerio, M; Ciocchini, N; Ielmini, D

    2013-11-06

    Memristors, namely hysteretic devices capable of changing their resistance in response to applied electrical stimuli, may provide new opportunities for future memory and computation, thanks to their scalable size, low switching energy and nonvolatile nature. We have developed a functionally complete set of logic functions including NOR, NAND and NOT gates, each utilizing a single phase-change memristor (PCM) where resistance switching is due to the phase transformation of an active chalcogenide material. The logic operations are enabled by the high functionality of nanoscale phase change, featuring voltage comparison, additive crystallization and pulse-induced amorphization. The nonvolatile nature of memristive states provides the basis for developing reconfigurable hybrid logic/memory circuits featuring low-power and high-speed switching. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Asymptotically locally AdS and flat black holes in Horndeski theory

    NASA Astrophysics Data System (ADS)

    Anabalon, Andres; Cisterna, Adolfo; Oliva, Julio

    2014-04-01

    In this paper we construct asymptotically locally AdS and flat black holes in the presence of a scalar field whose kinetic term is constructed out from a linear combination of the metric and the Einstein tensor. The field equations as well as the energy-momentum tensor are second order in the metric and the field, therefore the theory belongs to the ones defined by Horndeski. We show that in the presence of a cosmological term in the action, it is possible to have a real scalar field in the region outside the event horizon. The solutions are characterized by a single integration constant, the scalar field vanishes at the horizon and it contributes to the effective cosmological constant at infinity. We extend these results to the topological case. The solution is disconnected from the maximally symmetric AdS background, however, within this family there exists a gravitational soliton which is everywhere regular. This soliton is therefore used as a background to define a finite Euclidean action and to obtain the thermodynamics of the black holes. For a certain region in the space of parameters, the thermodynamic analysis reveals a critical temperature at which a Hawking-Page phase transition between the black hole and the soliton occurs. We extend the solution to arbitrary dimensions greater than 4 and show that the presence of a cosmological term in the action allows one to consider the case in which the standard kinetic term for the scalar it is not present. In such a scenario, the solution reduces to an asymptotically flat black hole.

  3. Polyolefin composites containing a phase change material

    DOEpatents

    Salyer, Ival O.

    1991-01-01

    A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein, said polyolefin being thermally form stable; the composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

  4. Passive temperature control based on a phase change metasurface.

    PubMed

    Wu, Sheng-Rui; Lai, Kuan-Lin; Wang, Chih-Ming

    2018-05-16

    In this paper, a tunable mid-infrared metasurface based on VO 2 phase change material is proposed for temperature control. The proposed structure consisting of a VO 2 /SiO 2 /VO 2 cavity supports a thermally switchable Fabry-Perot-like resonance mode at the transparency window of the atmosphere. Theoretically, the radiative cooling power density of the proposed metasurface can be switched to four-fold as the device temperature is below/above the phase change temperature of VO 2 . Besides radiative cooling, a passive temperature control application based on this huge cooling power switching ability is theoretically demonstrated. We believe the proposed device can be applied for small radiative cooling and temperature control applications.

  5. Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding.

    PubMed

    Zhu, Min; Cojocaru-Mirédin, Oana; Mio, Antonio M; Keutgen, Jens; Küpers, Michael; Yu, Yuan; Cho, Ju-Young; Dronskowski, Richard; Wuttig, Matthias

    2018-05-01

    Laser-assisted field evaporation is studied in a large number of compounds, including amorphous and crystalline phase change materials employing atom probe tomography. This study reveals significant differences in field evaporation between amorphous and crystalline phase change materials. High probabilities for multiple events with more than a single ion detected per laser pulse are only found for crystalline phase change materials. The specifics of this unusual field evaporation are unlike any other mechanism shown previously to lead to high probabilities of multiple events. On the contrary, amorphous phase change materials as well as other covalently bonded compounds and metals possess much lower probabilities for multiple events. Hence, laser-assisted field evaporation in amorphous and crystalline phase change materials reveals striking differences in bond rupture. This is indicative for pronounced differences in bonding. These findings imply that the bonding mechanism in crystalline phase change materials differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding. Instead, the data reported here confirm a recently developed conjecture, namely that metavalent bonding is a novel bonding mechanism besides those mentioned previously. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Changes in dive profiles as an indicator of feeding success in king and Adélie penguins

    NASA Astrophysics Data System (ADS)

    Bost, C. A.; Handrich, Y.; Butler, P. J.; Fahlman, A.; Halsey, L. G.; Woakes, A. J.; Ropert-Coudert, Y.

    2007-02-01

    Determining when and how deep avian divers feed remains a challenge despite technical advances. Systems that record oesophageal temperature are able to determine rate of prey ingestion with a high level of accuracy but technical problems still remain to be solved. Here we examine the validity of using changes in depth profiles to infer feeding activity in free-ranging penguins, as more accessible proxies of their feeding success. We used oesophageal temperature loggers with fast temperature sensors, deployed in tandem with time-depth recorders, on king and Adélie penguins. In the king penguin, a high correspondence was found between the number of ingestions recorded per dive and the number of wiggles during the bottom and the ascent part of the dives. In the Adélie penguins, which feed on smaller prey, the number of large temperature drops was linearly related to the number of undulations per dive. The analysis of change in depth profiles from high-resolution time-depth recorders can provide key information to enhance the study of feeding rate and foraging success of these predators. Such potential is especially relevant in the context of using Southern marine top predators to study change in availability of marine resources.

  7. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials.

    PubMed

    Mukhopadhyay, Saikat; Sun, Jifeng; Subedi, Alaska; Siegrist, Theo; Singh, David J

    2016-05-19

    Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strong competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO3, BiFeO3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. This different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.

  8. Thermal modeling with solid/liquid phase change of the thermal energy storage experiment

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee

    1991-01-01

    A thermal model which simulates combined conduction and phase change characteristics of thermal energy storage (TES) materials is presented. Both the model and results are presented for the purpose of benchmarking the conduction and phase change capabilities of recently developed and unvalidated microgravity TES computer programs. Specifically, operation of TES-1 is simulated. A two-dimensional SINDA85 model of the TES experiment in cylindrical coordinates was constructed. The phase change model accounts for latent heat stored in, or released from, a node undergoing melting and freezing.

  9. Relation between bandgap and resistance drift in amorphous phase change materials

    PubMed Central

    Rütten, Martin; Kaes, Matthias; Albert, Andreas; Wuttig, Matthias; Salinga, Martin

    2015-01-01

    Memory based on phase change materials is currently the most promising candidate for bridging the gap in access time between memory and storage in traditional memory hierarchy. However, multilevel storage is still hindered by the so-called resistance drift commonly related to structural relaxation of the amorphous phase. Here, we present the temporal evolution of infrared spectra measured on amorphous thin films of the three phase change materials Ag4In3Sb67Te26, GeTe and the most popular Ge2Sb2Te5. A widening of the bandgap upon annealing accompanied by a decrease of the optical dielectric constant ε∞ is observed for all three materials. Quantitative comparison with experimental data for the apparent activation energy of conduction reveals that the temporal evolution of bandgap and activation energy can be decoupled. The case of Ag4In3Sb67Te26, where the increase of activation energy is significantly smaller than the bandgap widening, demonstrates the possibility to identify new phase change materials with reduced resistance drift. PMID:26621533

  10. Relation between bandgap and resistance drift in amorphous phase change materials.

    PubMed

    Rütten, Martin; Kaes, Matthias; Albert, Andreas; Wuttig, Matthias; Salinga, Martin

    2015-12-01

    Memory based on phase change materials is currently the most promising candidate for bridging the gap in access time between memory and storage in traditional memory hierarchy. However, multilevel storage is still hindered by the so-called resistance drift commonly related to structural relaxation of the amorphous phase. Here, we present the temporal evolution of infrared spectra measured on amorphous thin films of the three phase change materials Ag4In3Sb67Te26, GeTe and the most popular Ge2Sb2Te5. A widening of the bandgap upon annealing accompanied by a decrease of the optical dielectric constant ε∞ is observed for all three materials. Quantitative comparison with experimental data for the apparent activation energy of conduction reveals that the temporal evolution of bandgap and activation energy can be decoupled. The case of Ag4In3Sb67Te26, where the increase of activation energy is significantly smaller than the bandgap widening, demonstrates the possibility to identify new phase change materials with reduced resistance drift.

  11. Fabrication and thermal properties of tetradecanol/graphene aerogel form-stable composite phase change materials.

    PubMed

    Mu, Boyuan; Li, Min

    2018-06-11

    In this study, tetradecanol/graphene aerogel form-stable composite phase change materials were prepared by physical absorption. Two kinds of graphene aerogels were prepared using vitamin C and ethylenediamine to enhance the thermal conductivity of tetradecanol and prevent its leakage during phase transition. The form-stable composite phase change material exhibited excellent thermal energy storage capacity. The latent heat of the tetradecanol/graphene aerogel composite phase change materials with 5 wt.% graphene aerogel was similar to the theoretical latent heat of pure tetradecanol. The thermal conductivity of the tetradecanol/graphene aerogel composite phase change material improved gradually as the graphene aerogel content increased. The prepared tetradecanol/graphene aerogel composite phase change materials exhibited good thermal reliability and thermal stability, and no chemical reaction occurred between tetradecanol and the graphene aerogel. In addition, the latent heat and thermal conductivity of the tetradecanol/ethylenediamine-graphene aerogel composites were higher than those of tetradecanol/vitamin C-graphene aerogel composites, and the flexible shape of the ethylenediamine-graphene aerogel is suitable for application of the tetradecanol/ethylenediamine-graphene aerogel composite.

  12. Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials.

    PubMed

    Matsubara, E; Okada, S; Ichitsubo, T; Kawaguchi, T; Hirata, A; Guan, P F; Tokuda, K; Tanimura, K; Matsunaga, T; Chen, M W; Yamada, N

    2016-09-23

    Despite the fact that phase-change materials are widely used for data storage, no consensus exists on the unique mechanism of their ultrafast phase change and its accompanied large and rapid optical change. By using the pump-probe observation method combining a femtosecond optical laser and an x-ray free-electron laser, we substantiate experimentally that, in both GeTe and Ge_{2}Sb_{2}Te_{5} crystals, rattling motion of mainly Ge atoms takes place with keeping the off-center position just after femtosecond-optical-laser irradiation, which eventually leads to a higher symmetry or disordered state. This very initial rattling motion in the undistorted lattice can be related to instantaneous optical change due to the loss of resonant bonding that characterizes GeTe-based phase change materials. Based on the amorphous structure derived by first-principles molecular dynamics simulation, we infer a plausible ultrafast amorphization mechanism via nonmelting.

  13. Enhanced thermoelectric performance driven by high-temperature phase transition in the phase change material Ge 4SbTe 5

    DOE PAGES

    Williams, Jared B.; Lara-Curzio, Edgar; Cakmak, Ercan; ...

    2015-05-15

    Phase change materials are identified for their ability to rapidly alternate between amorphous and crystalline phases and have large contrast in the optical/electrical properties of the respective phases. The materials are primarily used in memory storage applications, but recently they have also been identified as potential thermoelectric materials. Many of the phase change materials researched today can be found on the pseudo-binary (GeTe) 1-x(Sb 2Te 3) x tie-line. While many compounds on this tie-line have been recognized as thermoelectric materials, here we focus on Ge 4SbTe 5, a single phase compound just off of the (GeTe) 1-x(Sb 2Te 3) xmore » tie-line, that forms in a stable rocksalt crystal structure at room temperature. We find that stoichiometric and undoped Ge 4SbTe 5 exhibits a thermal conductivity of ~1.2 W/m-K at high temperature and a large Seebeck coefficient of ~250 μV/K. The resistivity decreases dramatically at 623 K due to a structural phase transition which lends to a large enhancement in both thermoelectric power factor and thermoelectric figure of merit at 823 K. In a more general sense the research presents evidence that phase change materials can potentially provide a new route to highly efficient thermoelectric materials for power generation at high temperature.« less

  14. Effect of Alcohols on the Phase Behavior and Emulsification of a Sucrose Fatty Acid Ester/Water/Edible Oil System.

    PubMed

    Matsuura, Tsutashi; Ogawa, Akihiro; Ohara, Yukari; Nishina, Shogo; Nakanishi, Maho; Gohtani, Shoichi

    2018-02-01

    The effect of alcohols (ethanol, 1-propanol, propylene glycol, glycerin, sucrose) on the phase behavior and emulsification of sucrose stearic acid ester (SSE)/water/edible vegetable oil (EVO) systems was investigated. Adding sucrose, propylene glycol, and glycerin narrowed the oil-separated two-phase region in the phase diagram of the SSE/water/EVO systems, whereas adding ethanol and 1-propanol expanded the oil-separated two-phase region. Changing the course of emulsification in the phase diagram showed that the size of the oil-droplet particle typically decreased in a system with a narrowed oil-separated region. The emulsification properties of the systems varied with respect to changes in the phase diagram. The microstructure of the systems was examined using small-angle X-ray scattering, and the ability to retain the oil in the lamellar structure of the SSEs was suggested as an important role in emulsification, because the mechanism of the systems was the same as that for the liquid crystal emulsification method.

  15. Kinetics-based phase change approach for VOF method applied to boiling flow

    NASA Astrophysics Data System (ADS)

    Cifani, Paolo; Geurts, Bernard; Kuerten, Hans

    2014-11-01

    Direct numerical simulations of boiling flows are performed to better understand the interaction of boiling phenomena with turbulence. The multiphase flow is simulated by solving a single set of equations for the whole flow field according to the one-fluid formulation, using a VOF interface capturing method. Interface terms, related to surface tension, interphase mass transfer and latent heat, are added at the phase boundary. The mass transfer rate across the interface is derived from kinetic theory and subsequently coupled with the continuum representation of the flow field. The numerical model was implemented in OpenFOAM and validated against 3 cases: evaporation of a spherical uniformly heated droplet, growth of a spherical bubble in a superheated liquid and two dimensional film boiling. The computational model will be used to investigate the change in turbulence intensity in a fully developed channel flow due to interaction with boiling heat and mass transfer. In particular, we will focus on the influence of the vapor bubble volume fraction on enhancing heat and mass transfer. Furthermore, we will investigate kinetic energy spectra in order to identify the dynamics associated with the wakes of vapor bubbles. Department of Applied Mathematics, 7500 AE Enschede, NL.

  16. Dynamically Reconfigurable Metadevice Employing Nanostructured Phase-Change Materials.

    PubMed

    Zhu, Zhihua; Evans, Philip G; Haglund, Richard F; Valentine, Jason G

    2017-08-09

    Mastering dynamic free-space spectral control and modulation in the near-infrared (NIR) and optical regimes remains a challenging task that is hindered by the available functional materials at high frequencies. In this work, we have realized an efficient metadevice capable of spectral control by minimizing the thermal mass of a vanadium dioxide phase-change material (PCM) and placing the PCM at the feed gap of a bow-tie field antenna. The device has an experimentally measured tuning range of up to 360 nm in the NIR and a modulation depth of 33% at the resonant wavelength. The metadevice is configured for integrated and local heating, leading to faster switching and more precise spatial control compared with devices based on phase-change thin films. We envisage that the combined advantages of this device will open new opportunities for signal processing, memory, security, and holography at optical frequencies.

  17. Analysis of thermal energy storage material with change-of-phase volumetric effects

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Ibrahim, Mounir B.

    1990-01-01

    NASA's Space Station Freedom proposed hybrid power system includes photovoltaic arrays with nickel hydrogen batteries for energy storage and solar dynamic collectors driving Brayton heat engines with change-of-phase Thermal Energy Storage (TES) devices. A TES device is comprised of multiple metallic, annular canisters which contain a eutectic composition LiF-CaF2 Phase Change Material (PCM) that melts at 1040 K. A moderately sophisticated LiF-CaF2 PCM computer model is being developed in three stages considering 1-D, 2-D, and 3-D canister geometries, respectively. The 1-D model results indicate that the void has a marked effect on the phase change process due to PCM displacement and dynamic void heat transfer resistance. Equally influential are the effects of different boundary conditions and liquid PCM natural convection. For the second stage, successful numerical techniques used in the 1-D phase change model are extended to a 2-D (r,z) PCM containment canister model. A prototypical PCM containment canister is analyzed and the results are discussed.

  18. Holographic research on phase transitions for a five dimensional AdS black hole with conformally coupled scalar hair

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ling; Yang, Shu-Zheng; Zu, Xiao-Tao

    2017-01-01

    In the framework of holography, we survey the phase structure for a higher dimensional hairy black hole including the effects of the scalar field hair. It is worth emphasizing that, not only black hole entropy, but also entanglement entropy and two point correlation function exhibit the Van der Waals-like phase transition in a fixed scalar charge ensemble. Furthermore, by making use of numerical computation, we show that the Maxwell's equal area law is valid for the first order phase transition. In addition, we also discuss how the hair parameter affects the black hole's phase transition.

  19. Enhancement of electrical conductivity by changing phase morphology for composites consisting of polylactide and poly(ε-caprolactone) filled with acid-oxidized multiwalled carbon nanotubes.

    PubMed

    Xu, Zhaohua; Zhang, Yaqiong; Wang, Zhigang; Sun, Ning; Li, Heng

    2011-12-01

    Composites consisting of polylactide (PLA) and poly(ε-caprolactone) (PCL) filled with acid-oxidized multiwalled carbon nanotubes (A-MWCNTs) were prepared through melt compounding. Phase morphologies of PLA/PCL/A-MWCNT composites with different contents of filled A-MWCNTs and PCL compositions were mainly observed by scanning electron microscope. The results show that A-MWCNTs are selectively dispersed in the PCL phase, regardingless of PCL phase domain sizes. For PLA/PCL/A-MWCNT composites with fixed PLA/PCL ratio of 95/5, the dispersed PCL phase domain sizes in the PLA matrix decrease even though a small content of A-MWCNTs is added, compared with PLA/PCL blend with the same composition, indicating that A-MWCNTs effectively prevent from coalescence of the dispersed PCL phase domains. With filling of 1.0 wt % A-MWCNTs, an interesting change of electrical conductivity for PLA/PCL/A-MWCNT composites is observed, in which the maximum conductivity is observed for PLA/PCL/A-MWCNT composite with PLA/PCL ratio of 60/40. The result is well-explained by the formed cocontinuous phase morphology and effective A-MWCNT content. © 2011 American Chemical Society

  20. Degenerate stars and gravitational collapse in AdS/CFT

    NASA Astrophysics Data System (ADS)

    Arsiwalla, Xerxes; de Boer, Jan; Papadodimas, Kyriakos; Verlinde, Erik

    2011-01-01

    We construct composite CFT operators from a large number of fermionic primary fields corresponding to states that are holographically dual to a zero temperature Fermi gas in AdS space. We identify a large N regime in which the fermions behave as free particles. In the hydrodynamic limit the Fermi gas forms a degenerate star with a radius determined by the Fermi level, and a mass and angular momentum that exactly matches the boundary calculations. Next we consider an interacting regime, and calculate the effect of the gravitational back-reaction on the radius and the mass of the star using the Tolman-Oppenheimer-Volkoff equations. Ignoring other interactions, we determine the "Chandrasekhar limit" beyond which the degenerate star (presumably) undergoes gravitational collapse towards a black hole. This is interpreted on the boundary as a high density phase transition from a cold baryonic phase to a hot deconfined phase.

  1. Auditory cortical neurons are sensitive to static and continuously changing interaural phase cues.

    PubMed

    Reale, R A; Brugge, J F

    1990-10-01

    1. The interaural-phase-difference (IPD) sensitivity of single neurons in the primary auditory (AI) cortex of the anesthetized cat was studied at stimulus frequencies ranging from 120 to 2,500 Hz. Best frequencies of the 43 AI cells sensitive to IPD ranged from 190 to 2,400 Hz. 2. A static IPD was produced when a pair of low-frequency tone bursts, differing from one another only in starting phase, were presented dichotically. The resulting IPD-sensitivity curves, which plot the number of discharges evoked by the binaural signal as a function of IPD, were deeply modulated circular functions. IPD functions were analyzed for their mean vector length (r) and mean interaural phase (phi). Phase sensitivity was relatively independent of best frequency (BF) but highly dependent on stimulus frequency. Regardless of BF or stimulus frequency within the excitatory response area the majority of cells fired maximally when the ipsilateral tone lagged the contralateral signal and fired least when this interaural-phase relationship was reversed. 3. Sensitivity to continuously changing IPD was studied by delivering to the two ears 3-s tones that differed slightly in frequency, resulting in a binaural beat. Approximately 26% of the cells that showed a sensitivity to static changes in IPD also showed a sensitivity to dynamically changing IPD created by this binaural tonal combination. The discharges were highly periodic and tightly synchronized to a particular phase of the binaural beat cycle. High synchrony can be attributed to the fact that cortical neurons typically respond to an excitatory stimulus with but a single spike that is often precisely timed to stimulus onset. A period histogram, binned on the binaural beat frequency (fb), produced an equivalent IPD-sensitivity function for dynamically changing interaural phase. For neurons sensitive to both static and continuously changing interaural phase there was good correspondence between their static (phi s) and dynamic (phi d

  2. Three-dimensional nanomechanical mapping of amorphous and crystalline phase transitions in phase-change materials.

    PubMed

    Grishin, Ilja; Huey, Bryan D; Kolosov, Oleg V

    2013-11-13

    The nanostructure of micrometer-sized domains (bits) in phase-change materials (PCM) that undergo switching between amorphous and crystalline phases plays a key role in the performance of optical PCM-based memories. Here, we explore the dynamics of such phase transitions by mapping PCM nanostructures in three dimensions with nanoscale resolution by combining precision Ar ion beam cross-sectional polishing and nanomechanical ultrasonic force microscopy (UFM) mapping. Surface and bulk phase changes of laser written submicrometer to micrometer sized amorphous-to-crystalline (SET) and crystalline-to-amorphous (RESET) bits in chalcogenide Ge2Sb2Te5 PCM are observed with 10-20 nm lateral and 4 nm depth resolution. UFM mapping shows that the Young's moduli of crystalline SET bits exceed the moduli of amorphous areas by 11 ± 2%, with crystalline content extending from a few nanometers to 50 nm in depth depending on the energy of the switching pulses. The RESET bits written with 50 ps pulses reveal shallower depth penetration and show 30-50 nm lateral and few nanometer vertical wavelike topography that is anticorrelated with the elastic modulus distribution. Reverse switching of amorphous RESET bits results in the full recovery of subsurface nanomechanical properties accompanied with only partial topography recovery, resulting in surface corrugations attributed to quenching. This precision sectioning and nanomechanical mapping approach could be applicable to a wide range of amorphous, nanocrystalline, and glass-forming materials for 3D nanomechanical mapping of amorphous-crystalline transitions.

  3. An experimental and theoretical evaluation of increased thermal diffusivity phase change devices

    NASA Technical Reports Server (NTRS)

    White, S. P.; Golden, J. O.; Stermole, F. J.

    1972-01-01

    This study was to experimentally evaluate and mathematically model the performance of phase change thermal control devices containing high thermal conductivity metal matrices. Three aluminum honeycomb filters were evaluated at five different heat flux levels using n-oct-adecane as the test material. The system was mathematically modeled by approximating the partial differential equations with a three-dimensional implicit alternating direction technique. The mathematical model predicts the system quite well. All of the phase change times are predicted. The heating of solid phase is predicted exactly while there is some variation between theoretical and experimental results in the liquid phase. This variation in the liquid phase could be accounted for by the fact that there are some heat losses in the cell and there could be some convection in the experimental system.

  4. Changes in Nutritional Status after Deep Brain Stimulation of the Nucleus Basalis of Meynert in Alzheimer's Disease--Results of a Phase I Study.

    PubMed

    Noreik, M; Kuhn, J; Hardenacke, K; Lenartz, D; Bauer, A; Bührle, C P; Häussermann, P; Hellmich, M; Klosterkötter, J; Wiltfang, J; Maarouf, M; Freund, H-J; Visser-Vandewalle, V; Sturm, V; Schulz, R-J

    2015-10-01

    The progression of Alzheimer's disease (AD) is associated with impaired nutritional status. New methods, such as deep brain stimulation (DBS), are currently being tested to decrease the progression of AD. DBS is an approved method in the treatment of Parkinson's disease, and its suitability for the treatment of AD patients is currently under experimental investigation. To evaluate the advantages and disadvantages of this new treatment, it is important to assess potential side effects of DBS regarding the nucleus basalis of Meynert; this new treatment is thought to positively affect cognition and might counteract the deterioration of nutritional status and progressive weight loss observed in AD. This study aims to assess the nutritional status of patients with AD before receiving DBS of the nucleus basalis of Meynert and after 1 year, and to analyze potential associations between changes in cognition and nutritional status. A 1-year phase I proof-of-concept study. The Department of Psychiatry and Psychotherapy at the University of Cologne. We assessed a consecutive sample of patients with mild to moderate AD (n=6) who fulfilled the inclusion criteria and provided written informed consent. Bilateral low-frequency DBS of the nucleus basalis of Meynert. Nutritional status was assessed using a modified Mini Nutritional Assessment, bioelectrical impedance analysis, a completed 3-day food diary, and analysis of serum levels of vitamin B12 and folate. With a normal body mass index (BMI) at baseline (mean 23.75 kg/m²) and after 1 year (mean 24.59 kg/m²), all but one patient gained body weight during the period of the pilot study (mean 2.38 kg, 3.81% of body weight). This was reflected in a mainly stable or improved body composition, assessed by bioelectrical impedance analysis, in five of the six patients. Mean energy intake increased from 1534 kcal/day (min 1037, max 2370) at baseline to 1736 kcal/day (min 1010, max 2663) after 1 year, leading to the improved fulfillment

  5. Theoretical potential for low energy consumption phase change memory utilizing electrostatically-induced structural phase transitions in 2D materials

    NASA Astrophysics Data System (ADS)

    Rehn, Daniel A.; Li, Yao; Pop, Eric; Reed, Evan J.

    2018-01-01

    Structural phase-change materials are of great importance for applications in information storage devices. Thermally driven structural phase transitions are employed in phase-change memory to achieve lower programming voltages and potentially lower energy consumption than mainstream nonvolatile memory technologies. However, the waste heat generated by such thermal mechanisms is often not optimized, and could present a limiting factor to widespread use. The potential for electrostatically driven structural phase transitions has recently been predicted and subsequently reported in some two-dimensional materials, providing an athermal mechanism to dynamically control properties of these materials in a nonvolatile fashion while achieving potentially lower energy consumption. In this work, we employ DFT-based calculations to make theoretical comparisons of the energy required to drive electrostatically-induced and thermally-induced phase transitions. Determining theoretical limits in monolayer MoTe2 and thin films of Ge2Sb2Te5, we find that the energy consumption per unit volume of the electrostatically driven phase transition in monolayer MoTe2 at room temperature is 9% of the adiabatic lower limit of the thermally driven phase transition in Ge2Sb2Te5. Furthermore, experimentally reported phase change energy consumption of Ge2Sb2Te5 is 100-10,000 times larger than the adiabatic lower limit due to waste heat flow out of the material, leaving the possibility for energy consumption in monolayer MoTe2-based devices to be orders of magnitude smaller than Ge2Sb2Te5-based devices.

  6. Dimension changing phase transitions in instanton crystals

    NASA Astrophysics Data System (ADS)

    Kaplunovsky, Vadim; Sonnenschein, Jacob

    2014-04-01

    We investigate lattices of instantons and the dimension-changing transitions between them. Our ultimate goal is the 3D → 4D transition, which is holographically dual to the phase transition between the baryonic and the quarkyonic phases of cold nuclear matter. However, in this paper (just as in [1]) we focus on lower dimensions — the 1D lattice of instantons in a harmonic potential V ∝ , and the zigzag-shaped lattice as a first stage of the 1D → 2D transition. We prove that in the low- and moderate-density regimes, interactions between the instantons are dominated by two-body forces. This drastically simplifies finding the ground state of the instantons' orientations, so we made a numeric scan of the whole orientation space instead of assuming any particular ansatz. We find that depending on the M 2 /M 3 /M 4 ratios, the ground state of instanton orientations can follow a wide variety of patterns. For the straight 1D lattices, we found orientations periodically running over elements of a , Klein, prismatic, or dihedral subgroup of the , as well as irrational but link-periodic patterns. For the zigzag-shaped lattices, we detected 4 distinct orientation phases — the anti-ferromagnet, another abelian phase, and two non-abelian phases. Allowing the zigzag amplitude to vary as a function of increasing compression force, we obtained the phase diagrams for the straight and zigzag-shaped lattices in the (force , M 3 /M 4), (chemical potential , M 3 /M 4), and (density , M 3 /M 4) planes. Some of the transitions between these phases are second-order while others are first-order. Our techniques can be applied to other types of non-abelian crystals.

  7. A 63 K phase change unit integrating with pulse tube cryocoolers

    NASA Astrophysics Data System (ADS)

    Chunhui, Kong; Liubiao, Chen; Sixue, Liu; Yuan, Zhou; Junjie, Wang

    2017-02-01

    This article presents the design and computer model results of an integrated cooler system which consists of a single stage pulse tube cryocooler integrated with a small amount of a phase change material. A cryogenic thermal switch was used to thermally connect the phase change unit to the cold end of the cryocooler. During heat load operation, the cryogenic thermal switch is turned off to avoid vibrations. The phase change unit absorbs heat loads by melting a substance in a constant pressure-temperature-volume process. Once the substance has been melted, the cryogenic thermal turned on, the cryocooler can then refreeze the material. Advantages of this type of cooler are no vibrations during sensor operations; the ability to absorb increased heat loads; potentially longer system lifetime; and a lower mass, volume and cost. A numerical model was constructed from derived thermodynamic relationships for the cooling/heating and freezing/melting processes.

  8. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subedi, Alaska; Siegrist, Theo; Singh, David J.

    Ge 2Sb 2Te 5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strongmore » competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO 3, BiFeO 3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. As a result, this different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.« less

  9. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials

    DOE PAGES

    Subedi, Alaska; Siegrist, Theo; Singh, David J.; ...

    2016-05-19

    Ge 2Sb 2Te 5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strongmore » competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO 3, BiFeO 3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. As a result, this different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.« less

  10. T-p phase diagrams and the barocaloric effect in materials with successive phase transitions

    NASA Astrophysics Data System (ADS)

    Gorev, M. V.; Bogdanov, E. V.; Flerov, I. N.

    2017-09-01

    An analysis of the extensive and intensive barocaloric effect (BCE) at successive structural phase transitions in some complex fluorides and oxyfluorides was performed. The high sensitivity of these compounds to a change in the chemical pressure allows one to vary the succession and parameters of the transformations (temperature, entropy, baric coefficient) over a wide range and obtain optimal values of the BCE. A comparison of different types of schematic T-p phase diagrams with the complicated T( p) dependences observed experimentally shows that in some ranges of temperature and pressure the BCE in compounds undergoing successive transformations can be increased due to a summation of caloric effects associated with distinct phase transitions. The maximum values of the extensive and intensive BCE in complex fluorides and oxyfluorides can be realized at rather low pressure (0.1-0.3 GPa). In a narrow temperature range around the triple points conversion from conventional BCE to inverse BCE is observed, which is followed by a gigantic change of both \\vertΔ S_BCE\\vert and \\vertΔ T_AD\\vert .

  11. Dynamically Reconfigurable Metadevice Employing Nanostructured Phase-Change Materials

    DOE PAGES

    Zhu, Zhihua; Evans, Philip G.; Haglund, Richard F.; ...

    2017-07-21

    Mastering dynamic free-space spectral control and modulation in the near-infrared (NIR) and optical regimes remains a challenging task that is hindered by the available functional materials at high frequencies. In this work, we have realized an efficient metadevice capable of spectral control by minimizing the thermal mass of a vanadium dioxide phase-change material (PCM) and placing the PCM at the feed gap of a bow-tie field antenna. The device has an experimentally measured tuning range of up to 360 nm in the NIR and a modulation depth of 33% at the resonant wavelength. The metadevice is configured for integrated andmore » local heating, leading to faster switching and more precise spatial control compared with devices based on phase-change thin films. We envisage that the combined advantages of this device will open new opportunities for signal processing, memory, security, and holography at optical frequencies.« less

  12. Irradiation induced structural change in Mo 2Zr intermetallic phase

    DOE PAGES

    Gan, J.; Keiser, Jr., D. D.; Miller, B. D.; ...

    2016-05-14

    The Mo 2Zr phase has been identified as a major interaction product at the interface of U-10Mo and Zr. Transmission electron microscopy in-situ irradiation with Kr ions at 200 °C with doses up to 2.0E+16 ions/cm 2 was carried out to investigate the radiation stability of the Mo 2Zr. The Mo 2Zr undergoes a radiation-induced structural change, from a large cubic (cF24) to a small cubic (cI2), along with an estimated 11.2% volume contraction without changing its composition. The structural change begins at irradiation dose below 1.0E+14 ions/cm 2. Furthermore, the transformed Mo 2Zr phase demonstrates exceptional radiation tolerance withmore » the development of dislocations without bubble formation.« less

  13. Nature of phase transitions in crystalline and amorphous GeTe-Sb2Te3 phase change materials.

    PubMed

    Kalkan, B; Sen, S; Clark, S M

    2011-09-28

    The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope. © 2011 American Institute of Physics

  14. Ga-doped indium oxide nanowire phase change random access memory cells

    NASA Astrophysics Data System (ADS)

    Jin, Bo; Lim, Taekyung; Ju, Sanghyun; Latypov, Marat I.; Kim, Hyoung Seop; Meyyappan, M.; Lee, Jeong-Soo

    2014-02-01

    Phase change random access memory (PCRAM) devices are usually constructed using tellurium based compounds, but efforts to seek other materials providing desirable memory characteristics have continued. We have fabricated PCRAM devices using Ga-doped In2O3 nanowires with three different Ga compositions (Ga/(In+Ga) atomic ratio: 2.1%, 11.5% and 13.0%), and investigated their phase switching properties. The nanowires (˜40 nm in diameter) can be repeatedly switched between crystalline and amorphous phases, and Ga concentration-dependent memory switching behavior in the nanowires was observed with ultra-fast set/reset rates of 80 ns/20 ns, which are faster than for other competitive phase change materials. The observations of fast set/reset rates and two distinct states with a difference in resistance of two to three orders of magnitude appear promising for nonvolatile information storage. Moreover, we found that increasing the Ga concentration can reduce the power consumption and resistance drift; however, too high a level of Ga doping may cause difficulty in achieving the phase transition.

  15. Preparation of CMC-modified melamine resin spherical nano-phase change energy storage materials.

    PubMed

    Hu, Xiaofeng; Huang, Zhanhua; Zhang, Yanhua

    2014-01-30

    A novel carboxymethyl cellulose (CMC)-modified melamine-formaldehyde (MF) phase change capsule with excellent encapsulation was prepared by in situ polymerization. Effects of CMC on the properties of the capsules were studied by Fourier transformation infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electronic microscopy (SEM), X-ray diffractometry (XRD), and thermogravimetric analysis (TGA). The results showed that the CMC-modified capsules had an average diameter of about 50nm and good uniformity. The phase change enthalpy of the capsules was increased and the cracking ratio decreased by incorporating a suitable amount of CMC. The optimum phase change enthalpy of the nanocapsules was 83.46J/g, and their paraffin content was 63.1%. The heat resistance of the capsule shells decreased after CMC modification. In addition, the nanocapsule cracking ratio of the nanocapsules was 11.0%, which is highly attractive for their application as nano phase change materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Numerical modelling of phase-change material used for PV panels cooling

    NASA Astrophysics Data System (ADS)

    Sellami, Assia; Elotmani, Rabie; Kandoussi, Khalid; Eljouad, Mohamed; Hajjaji, Abdelowahed; Boutaous, M'Hamed

    2017-12-01

    Passive cooling of a PV solar panel using phase-change material (PCM) may play an important role in increasing efficiency of PV cells. Because it does not need a maintenance and does not release greenhouses gases, PCM seems to be a good way to decrease the among of overheating of PV cell. The aims of this paper describes a detailed multiphysical issue in order to understand the effect of PCM (RT25) in keeping PV cell temperature close to ambient. The study is focused on modeling the heat and mass transfer in a PCM domain by modifying the buoyancy term in momentum equation. Due to a phase-change and free convection, transient incompressible flow is taken into account to explain the dynamic variations of the velocity profile and viscosity distribution. With standard condition of irradiation and heat flux on both sides of the PV panel, a melt front has been tracked by the energy equation, which gives a good argument for the temperature evolution during phase-change.

  17. Column temperature programming in enantioseparation of dihydropyrimidinone compounds using derivatized cellulose and amylose chiral stationary phases.

    PubMed

    Wang, Fang; Yeung, David; Han, Jun; Semin, David; McElvain, James S; Cheetham, Janet

    2008-03-01

    We report the application of column temperature programs as a tool to examine unusual temperature-induced behaviors of polysaccharide chiral stationary phases (CSPs). Using dihydropyrimidinone (DHP) compounds as probes we observed the heating (10-50 degrees C) and cooling (50-10 degrees C) van't Hoff plots of retention factors and/or selectivities of DHP compounds were not superimposable on AD, IA, and AS-H columns solvated with ethanol (EtOH)/n-hexane (n-Hex) mobile phases. The plots were not superimposable on AD, IB, and AS-H columns solvated with 2-propanol (2-PrOH)/n-Hex mobile phases. The thermally induced path-dependant behaviors were caused by slow equilibration as evidenced by the disappearance of the hysteresis in the second heating to cooling cycle and in a cooling to heating cycle. From the step-temperature program (10-50-10 degrees C), only EtOH solvated AD and AS-H phases showed the change of retention factors and/or selectivities with time while only 2-PrOH solvated AS-H phase showed similar behaviors.

  18. Climate change winners: receding ice fields facilitate colony expansion and altered dynamics in an Adélie penguin metapopulation

    USGS Publications Warehouse

    LaRue, Michelle A.; Ainley, David G.; Swanson, Matt; Dugger, Katie M.; Lyber, Phil O'B.; Barton, Kerry; Ballard, Grant

    2013-01-01

    There will be winners and losers as climate change alters the habitats of polar organisms. For an Adélie penguin (Pygoscelis adeliae) colony on Beaufort Island (Beaufort), part of a cluster of colonies in the southern Ross Sea, we report a recent population increase in response to increased nesting habitat as glaciers have receded. Emigration rates of birds banded as chicks on Beaufort to colonies on nearby Ross Island decreased after 2005 as available habitat on Beaufort increased, leading to altered dynamics of the metapopulation. Using aerial photography beginning in 1958 and modern satellite imagery, we measured change in area of available nesting habitat and population size of the Beaufort colony. Population size varied with available habitat, and both increased rapidly since the 1990s. In accord with glacial retreat, summer temperatures at nearby McMurdo Station increased by ~0.50°C per decade since the mid-1980s. Although the Ross Sea is likely to be the last ocean with an intact ecosystem, the recent retreat of ice fields at Beaufort that resulted in increased breeding habitat exemplifies a process that has been underway in the Ross Sea during the entire Holocene. Furthermore, our results are in line with predictions that major ice shelves and glaciers will retreat rapidly elsewhere in the Antarctic, potentially leading to increased breeding habitat for Adélie penguins. Results further indicated that satellite imagery may be used to estimate large changes in Adélie penguin populations, facilitating our understanding of metapopulation dynamics and environmental factors that influence regional populations.

  19. Climate change winners: receding ice fields facilitate colony expansion and altered dynamics in an Adélie penguin metapopulation.

    PubMed

    LaRue, Michelle A; Ainley, David G; Swanson, Matt; Dugger, Katie M; Lyver, Phil O'B; Barton, Kerry; Ballard, Grant

    2013-01-01

    There will be winners and losers as climate change alters the habitats of polar organisms. For an Adélie penguin (Pygoscelis adeliae) colony on Beaufort Island (Beaufort), part of a cluster of colonies in the southern Ross Sea, we report a recent population increase in response to increased nesting habitat as glaciers have receded. Emigration rates of birds banded as chicks on Beaufort to colonies on nearby Ross Island decreased after 2005 as available habitat on Beaufort increased, leading to altered dynamics of the metapopulation. Using aerial photography beginning in 1958 and modern satellite imagery, we measured change in area of available nesting habitat and population size of the Beaufort colony. Population size varied with available habitat, and both increased rapidly since the 1990s. In accord with glacial retreat, summer temperatures at nearby McMurdo Station increased by ~0.50 °C per decade since the mid-1980s. Although the Ross Sea is likely to be the last ocean with an intact ecosystem, the recent retreat of ice fields at Beaufort that resulted in increased breeding habitat exemplifies a process that has been underway in the Ross Sea during the entire Holocene. Furthermore, our results are in line with predictions that major ice shelves and glaciers will retreat rapidly elsewhere in the Antarctic, potentially leading to increased breeding habitat for Adélie penguins. Results further indicated that satellite imagery may be used to estimate large changes in Adélie penguin populations, facilitating our understanding of metapopulation dynamics and environmental factors that influence regional populations.

  20. Defense Acquisition and the Case of the Joint Capabilities Technology Demonstration Office: Ad Hoc Problem Solving as a Mechanism for Adaptive Change

    DTIC Science & Technology

    2013-10-01

    pmlkploba=obmloq=pbofbp= Defense Acquisition and the Case of the Joint Capabilities Technology Demonstration Office: Ad Hoc Problem Solving as a...of the Joint Capabilities Technology Demonstration Office: Ad Hoc Problem Solving as a Mechanism for Adaptive Change 5a. CONTRACT NUMBER 5b. GRANT...findings of our study exploring what drives successful organizational adaptation in the context of technology transition and acquisition within the

  1. Transient analysis of a thermal storage unit involving a phase change material

    NASA Technical Reports Server (NTRS)

    Griggs, E. I.; Pitts, D. R.; Humphries, W. R.

    1974-01-01

    The transient response of a single cell of a typical phase change material type thermal capacitor has been modeled using numerical conductive heat transfer techniques. The cell consists of a base plate, an insulated top, and two vertical walls (fins) forming a two-dimensional cavity filled with a phase change material. Both explicit and implicit numerical formulations are outlined. A mixed explicit-implicit scheme which treats the fin implicity while treating the phase change material explicitly is discussed. A band algorithmic scheme is used to reduce computer storage requirements for the implicit approach while retaining a relatively fine grid. All formulations are presented in dimensionless form thereby enabling application to geometrically similar problems. Typical parametric results are graphically presented for the case of melting with constant heat input to the base of the cell.

  2. Microstructure characterization of multi-phase composites and utilization of phase change materials and recycled rubbers in cementitious materials

    NASA Astrophysics Data System (ADS)

    Meshgin, Pania

    2011-12-01

    This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.

  3. Critical behaviors and phase transitions of black holes in higher order gravities and extended phase spaces

    NASA Astrophysics Data System (ADS)

    Sherkatghanad, Zeinab; Mirza, Behrouz; Mirzaiyan, Zahra; Mansoori, Seyed Ali Hosseini

    We consider the critical behaviors and phase transitions of Gauss-Bonnet-Born-Infeld-AdS black holes (GB-BI-AdS) for d = 5, 6 and the extended phase space. We assume the cosmological constant, Λ, the coupling coefficient α, and the BI parameter β to be thermodynamic pressures of the system. Having made these assumptions, the critical behaviors are then studied in the two canonical and grand canonical ensembles. We find “reentrant and triple point phase transitions” (RPT-TP) and “multiple reentrant phase transitions” (multiple RPT) with increasing pressure of the system for specific values of the coupling coefficient α in the canonical ensemble. Also, we observe a reentrant phase transition (RPT) of GB-BI-AdS black holes in the grand canonical ensemble and for d = 6. These calculations are then expanded to the critical behavior of Born-Infeld-AdS (BI-AdS) black holes in the third-order of Lovelock gravity and in the grand canonical ensemble to find a van der Waals (vdW) behavior for d = 7 and a RPT for d = 8 for specific values of potential ϕ in the grand canonical ensemble. Furthermore, we obtain a similar behavior for the limit of β →∞, i.e. charged-AdS black holes in the third-order of the Lovelock gravity. Thus, it is shown that the critical behaviors of these black holes are independent of the parameter β in the grand canonical ensemble.

  4. Energy saving opportunities in the refrigerated transport sector through Phase Change Materials (PCMs) application

    NASA Astrophysics Data System (ADS)

    Principi, P.; Fioretti, R.; Copertaro, B.

    2017-11-01

    Transportation of food products at controlled temperature is a critical task in the transport sector. In fact, whilst there is a need of ensuring both food quality and safety to the global population, its impact in terms of energy consumption and related CO2 emissions into the atmosphere is becoming increasingly evident. In this regard, Thermal Energy Storage (TES) using Phase Change Materials (PCMs) can be considered as a potential way of reducing the cooling load, energy consumption and related greenhouse gas emissions in refrigerated transport sector. In this paper two different PCM applications are investigated. Specifically, in the first study a PCM (35 °C melting temperature) layer was added to the external side of a refrigerated enclosure wall with the aim of managing the cooling peak (shifting and reducing) and reducing the daily energy rate. Outdoor experimental results showed that the added PCM layer helps to reduce (between 5.55% and 8.57%) and delay (between 4.30 h and 3.30 h) the peak load of incoming heat compared to the reference one. In the second study, the energy performance of a refrigerated chamber with an air heat exchanger containing PCM (5°C melting temperature) was investigated. The study purpose was to reduce the cooling energy consumption during steady state operating conditions and the rate of temperature increase throughout the course of a power failure event. Test results showed that using a PCM air heat exchanger addition, up to 16% of energy can be saved.

  5. Large N phase transitions and the fate of small Schwarzschild-AdS black holes

    NASA Astrophysics Data System (ADS)

    Yaffe, Laurence G.

    2018-01-01

    Sufficiently small Schwarzschild-AdS black holes in asymptotically global AdS5×S5 spacetime are known to become dynamically unstable toward deformation of the internal S5 geometry. The resulting evolution of such an unstable black hole is related, via holography, to the dynamics of supercooled plasma which has reached the limit of metastability in maximally supersymmetric large-N Yang-Mills theory on R ×S3. Puzzles related to the resulting dynamical evolution are discussed, with a key issue involving differences between the large-N limit in the dual field theory and typical large volume thermodynamic limits.

  6. Role of phase synchronisation in turbulence

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Teaca, Bogdan; Anderson, Johan

    2017-11-01

    The role of the phase dynamics in turbulence is investigated. As a demonstration of the importance of the phase dynamics, a simplified system is used, namely the one-dimensional Burgers equation, which is evolved numerically. The system is forced via a known external force, with two components that are added into the evolution equations of the amplitudes and the phase of the Fourier modes, separately. In this way, we are able to control the impact of the force on the dynamics of the phases. In the absence of the direct forcing in the phase equation, it is observed that the phases are not stochastic as assumed in the Random Phase Approximation (RPA) models, and in contrast, the non-linear couplings result in intermittent locking of the phases to ± π/2. The impact of the force, applied purely on the phases, is to increase the occurrence of the phase locking events in which the phases of the modes in a wide k range are now locked to ± π/2, leading to a change in the dynamics of both phases and amplitudes, with a significant localization of the real space flow structures.

  7. Double relaxation via AdS/CFT

    NASA Astrophysics Data System (ADS)

    Amiri-Sharifi, S.; Ali-Akbari, M.; Kishani-Farahani, A.; Shafie, N.

    2016-08-01

    We exploit the AdS/CFT correspondence to investigate thermalization in an N = 2 strongly coupled gauge theory including massless fundamental matter (quark). More precisely, we consider the response of a zero temperature state of the gauge theory under influence of an external electric field which leads to a time-dependent current. The holographic dual of the above set-up is given by introducing a time-dependent electric field on the probe D7-brane embedded in an AdS5 ×S5 background. In the dual gravity theory an apparent horizon forms on the brane which, according to AdS/CFT dictionary, is the counterpart of the thermalization process in the gauge theory side. We classify different functions for time-dependent electric field and study their effect on the apparent horizon formation. In the case of pulse functions, where the electric field varies from zero to zero, apart from non-equilibrium phase, we observe the formation of two separate apparent horizons on the brane. This means that the state of the gauge theory experiences two different temperature regimes during its time evolution.

  8. Kodak phase-change media for optical tape applications

    NASA Technical Reports Server (NTRS)

    Tyan, Yuan-Sheng; Preuss, Donald R.; Olin, George R.; Vazan, Fridrich; Pan, Kee-Chuan; Raychaudhuri, Pranab. K.

    1993-01-01

    The SbInSn phase-change write-once optical medium developed by Eastman Kodak Company is particularly suitable for development into the next generation optical tape media. Its performance for optical recording has already been demonstrated in some of the highest performance optical disk systems. Some of the key performance features are presented.

  9. Newly Enacted Intent Changes to ADS-B MASPS: Emphasis on Operations, Compatibility, and Integrity

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Warren, Anthony W.

    2002-01-01

    Significant changes to the intent reporting structure in the Minimum Aviation System Performance Standards (MASPS) for Automatic Dependent Surveillance Broadcast (ADS-B) have recently been approved by RTCA Special Committee 186. The re-structured intent formats incorporate two major changes to the current MASPS (DO-242): addition of a Target State (TS) report that provides information on the horizontal and vertical targets for the current flight segment and replacement of the current Trajectory Change Point (TCP) and TCP+1 reports with Trajectory Change (TC) reports. TC reports include expanded information about TCPs and their connecting flight segments, in addition to making provisions for trajectory conformance elements. New intent elements are designed to accommodate a greater range of intent information, better reflect operational use and capabilities of existing and future aircraft avionics, and aid trajectory synthesis and conformance monitoring systems. These elements are expected to benefit near-term and future Air Traffic Management (ATM) applications, including separation assurance, local traffic flow management, and conformance monitoring. The current MASPS revision (DO-242A) implements those intent elements that are supported by current avionics standards and data buses. Additional elements are provisioned for inclusion in future MASPS revisions (beyond DO-242A) as avionics systems are evolved.

  10. Near-field phase-change recording using a GaN laser diode

    NASA Astrophysics Data System (ADS)

    Kishima, Koichiro; Ichimura, Isao; Yamamoto, Kenji; Osato, Kiyoshi; Kuroda, Yuji; Iida, Atsushi; Saito, Kimihiro

    2000-09-01

    We developed a 1.5-Numerical-Aperture optical setup using a GaN blue-violet laser diode. We used a 1.0 mm-diameter super-hemispherical solid immersion lens, and optimized a phase-change disk structure including the cover layer by the method of MTF simulation. The disk surface was polished by tape burnishing technique. An eye-pattern of (1-7)-coded data at the linear density of 80 nm/bit was demonstrated on the phase-change disk below a 50 nm gap height, which was realized through our air-gap servo mechanism.

  11. Thermal modeling of phase change solidification in thermal control devices including natural convection effects

    NASA Technical Reports Server (NTRS)

    Ukanwa, A. O.; Stermole, F. J.; Golden, J. O.

    1972-01-01

    Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations.

  12. Analog geometry in an expanding fluid from AdS/CFT perspective

    NASA Astrophysics Data System (ADS)

    Bilić, Neven; Domazet, Silvije; Tolić, Dijana

    2015-04-01

    The dynamics of an expanding hadron fluid at temperatures below the chiral transition is studied in the framework of AdS/CFT correspondence. We establish a correspondence between the asymptotic AdS geometry in the 4 + 1 dimensional bulk with the analog spacetime geometry on its 3 + 1 dimensional boundary with the background fluid undergoing a spherical Bjorken type expansion. The analog metric tensor on the boundary depends locally on the soft pion dispersion relation and the four-velocity of the fluid. The AdS/CFT correspondence provides a relation between the pion velocity and the critical temperature of the chiral phase transition.

  13. Examination of rapid phase change in copper wires to improve material models and understanding of burst

    NASA Astrophysics Data System (ADS)

    Olles, Joseph; Garasi, Christopher; Ball, J. Patrick

    2017-11-01

    Electrically-pulsed wires undergo multiple phase changes including a postulated metastable phase resulting in explosive wire growth. Simulations using the MHD approximation attempt to account for the governing physics, but lack the material properties (equations-of-state and electrical conductivity) to accurately predict the phase evolution of the exploding (bursting) wire. To explore the dynamics of an exploding copper wire (in water), we employ a digital micro-Schlieren streak photography technique. This imaging quantifies wire expansion and shock waves emitted from the wire during phase changes. Using differential voltage probes, a Rogowski coil, and timing fiducials, the phase change of the wire is aligned with electrical power and energy deposition. Time-correlated electrical diagnostics and imaging allow for detailed validation of MHD simulations, comparing observed phases with phase change details found in the material property descriptions. In addition to streak imaging, a long exposure image is taken to capture axial striations along the length of the wire. These images are used to compare with results from 3D MHD simulations which propose that these perturbations impact the rate of wire expansion and temporal change in phases. If successful, the experimental data will identify areas for improvement in the material property models, and modeling results will provide insight into the details of phase change in the wire with correlation to variations in the electrical signals.

  14. A simple method used to evaluate phase-change materials based on focused-ion beam technique

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Wu, Liangcai; Rao, Feng; Song, Zhitang; Lv, Shilong; Zhou, Xilin; Du, Xiaofeng; Cheng, Yan; Yang, Pingxiong; Chu, Junhao

    2013-05-01

    A nanoscale phase-change line cell based on focused-ion beam (FIB) technique has been proposed to evaluate the electrical property of the phase-change material. Thanks to the FIB-deposited SiO2 hardmask, only one etching step has been used during the fabrication process of the cell. Reversible phase-change behaviors are observed in the line cells based on Al-Sb-Te and Ge-Sb-Te films. The low power consumption of the Al-Sb-Te based cell has been explained by theoretical calculation accompanying with thermal simulation. This line cell is considered to be a simple and reliable method in evaluating the application prospect of a certain phase-change material.

  15. Contact resistance change memory using N-doped Cr2Ge2Te6 phase-change material showing non-bulk resistance change

    NASA Astrophysics Data System (ADS)

    Shuang, Y.; Sutou, Y.; Hatayama, S.; Shindo, S.; Song, Y. H.; Ando, D.; Koike, J.

    2018-04-01

    Phase-change random access memory (PCRAM) is enabled by a large resistance contrast between amorphous and crystalline phases upon reversible switching between the two states. Thus, great efforts have been devoted to identifying potential phase-change materials (PCMs) with large electrical contrast to realize a more accurate reading operation. In contrast, although the truly dominant resistance in a scaled PCRAM cell is contact resistance, less attention has been paid toward the investigation of the contact property between PCMs and electrode metals. This study aims to propose a non-bulk-resistance-dominant PCRAM whose resistance is modulated only by contact. The contact-resistance-dominated PCM exploited here is N-doped Cr2Ge2Te6 (NCrGT), which exhibits almost no electrical resistivity difference between the two phases but exhibits a typical switching behavior involving a three-order-of-magnitude SET/RESET resistance ratio owing to its large contact resistance contrast. The conduction mechanism was discussed on the basis of current-voltage characteristics of the interface between the NCrGT and the W electrode.

  16. Theoretical study of heat transfer with moving phase-change interface in thawing of frozen food

    NASA Astrophysics Data System (ADS)

    Leung, M.; Ching, W. H.; Leung, D. Y. C.; Lam, G. C. K.

    2005-02-01

    A theoretical solution was obtained for a transient phase-change heat transfer problem in thawing of frozen food. In the physical model, a sphere originally at a uniform temperature below the phase-change temperature is suddenly immersed in a fluid at a temperature above the phase-change temperature. As the body temperature increases, the phase-change interface will be first formed on the surface. Subsequently, the interface will absorb the latent heat and move towards the centre until the whole body undergoes complete phase change. In the mathematical formulation, the nonhomogeneous problem arises from the moving phase-change interface. The solution in terms of the time-dependent temperature field was obtained by use of Green's function. A one-step Newton-Raphson method was specially designed to solve for the position of the moving interface to satisfy the interface condition. The theoretical results were compared with numerical results generated by a finite difference model and experimental measurements collected from a cold water thawing process. As a good agreement was found, the theoretical solution developed in this study was verified numerically and experimentally. Besides thawing of frozen food, there are many other practical applications of the theoretical solution, such as food freezing, soil freezing/thawing, metal casting and bath quenching heat treatment, among others.

  17. Photo-induced optical activity in phase-change memory materials.

    PubMed

    Borisenko, Konstantin B; Shanmugam, Janaki; Williams, Benjamin A O; Ewart, Paul; Gholipour, Behrad; Hewak, Daniel W; Hussain, Rohanah; Jávorfi, Tamás; Siligardi, Giuliano; Kirkland, Angus I

    2015-03-05

    We demonstrate that optical activity in amorphous isotropic thin films of pure Ge2Sb2Te5 and N-doped Ge2Sb2Te5N phase-change memory materials can be induced using rapid photo crystallisation with circularly polarised laser light. The new anisotropic phase transition has been confirmed by circular dichroism measurements. This opens up the possibility of controlled induction of optical activity at the nanosecond time scale for exploitation in a new generation of high-density optical memory, fast chiroptical switches and chiral metamaterials.

  18. Synthesis and Screening of Phase Change Chalcogenide Thin Film Materials for Data Storage.

    PubMed

    Guerin, Samuel; Hayden, Brian; Hewak, Daniel W; Vian, Chris

    2017-07-10

    A combinatorial synthetic methodology based on evaporation sources under an ultrahigh vacuum has been used to directly synthesize compositional gradient thin film libraries of the amorphous phases of GeSbTe alloys at room temperature over a wide compositional range. An optical screen is described that allows rapid parallel mapping of the amorphous-to-crystalline phase transition temperature and optical contrast associated with the phase change on such libraries. The results are shown to be consistent with the literature for compositions where published data are available along the Sb 2 Te 3 -GeTe tie line. The results reveal a minimum in the crystallization temperature along the Sb 2 Te 3 -Ge 2 Te 3 tie line, and the method is able to resolve subsequent cubic-to-hexagonal phase transitions in the GST crystalline phase. HT-XRD has been used to map the phases at sequentially higher temperatures, and the results are reconciled with the literature and trends in crystallization temperatures. The results clearly delineate compositions that crystallize to pure GST phases and those that cocrystallize Te. High-throughput measurement of the resistivity of the amorphous and crystalline phases has allowed the compositional and structural correlation of the resistivity contrast associated with the amorphous-to-crystalline transition, which range from 5-to-8 orders of magnitude for the compositions investigated. The results are discussed in terms of the compromises in the selection of these materials for phase change memory applications and the potential for further exploration through more detailed secondary screening of doped GST or similar classes of phase change materials designed for the demands of future memory devices.

  19. Changes in extra-virgin olive oil added with Lycium barbarum L. carotenoids during frying: Chemical analyses and metabolomic approach.

    PubMed

    Blasi, F; Rocchetti, G; Montesano, D; Lucini, L; Chiodelli, G; Ghisoni, S; Baccolo, G; Simonetti, M S; Cossignani, L

    2018-03-01

    In this work, an Italian extra-virgin olive oil (EVOO) sample and the same sample added with a carotenoid-rich nutraceutical extract from Lycium barbarum L. (EVOOCar) were subjected to a frying process to comparatively assess chemical and physical changes and heat stability. Oxidation progress was monitored by measuring oil quality changes such as peroxide value, free acidity, K232, K268, and fatty acid composition as well as minor compound content, phenols, α-tocopherol, and carotenoids. An UHPLC/QTOF-MS metabolomics approach discriminated the two oil samples based on their chemical changes during frying, identifying also the phenolic classes most exposed to statistically significant variations. Partial least square discriminant analysis and volcano analysis were applied together to identify the most significant markers allowing group separation. The decrease in total phenolic content was lower in EVOOCar than in EVOO during frying. Monounsaturated and polyunsaturated fatty acids showed a significant percentage loss, 3.7% and 17.2%, respectively, in EVOO after 180min frying at 180°C, while they remained constant or slightly changed in EVOOCar. Zeaxanthin added to the oil rapidly decreased during the frying process. These findings showed that the addition of a carotenoid extract from L. barbarum can help to improve the oxidative stability of extra-virgin olive oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Parametric Analysis of Cyclic Phase Change and Energy Storage in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Hall, Carsie A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1997-01-01

    A parametric study on cyclic melting and freezing of an encapsulated phase change material (PCM), integrated into a solar heat receiver, has been performed. The cyclic nature of the present melt/freeze problem is relevant to latent heat thermal energy storage (LHTES) systems used to power solar Brayton engines in microgravity environments. Specifically, a physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) project was developed. Multi-conjugate effects such as the convective fluid flow of a low-Prandtl-number fluid, coupled with thermal conduction in the phase change material, containment tube and working fluid conduit were accounted for in the model. A single-band thermal radiation model was also included to quantify reradiative energy exchange inside the receiver and losses through the aperture. The eutectic LiF-CaF2 was used as the phase change material (PCM) and a mixture of He/Xe was used as the working fluid coolant. A modified version of the computer code HOTTube was used to generate results in the two-phase regime. Results indicate that parametric changes in receiver gas inlet temperature and receiver heat input effects higher sensitivity to changes in receiver gas exit temperatures.

  1. Change in Dense Shelf Water and Adélie Land Bottom Water Precipitated by Iceberg Calving

    NASA Astrophysics Data System (ADS)

    Snow, K.; Rintoul, S. R.; Sloyan, B. M.; Hogg, A. McC.

    2018-03-01

    Antarctic Bottom Water supplies the deep limb of the global overturning circulation and ventilates the abyssal ocean. Antarctic Bottom Water has warmed, freshened, and contracted in recent decades, but the causes remain poorly understood. We use unique multiyear observations from the continental shelf and deep ocean near the Mertz Polynya to examine the sensitivity of this bottom water formation region to changes on the continental shelf, including the calving of a large iceberg. Postcalving, the seasonal cycle of Dense Shelf Water (DSW) density almost halved in amplitude and the volume of DSW available for export reduced. In the deep ocean, the density and volume of Adélie Land Bottom Water decreased sharply after calving, while oxygen concentrations remained high, indicating continued ventilation by DSW. This natural experiment illustrates how local changes in forcing over the Antarctic continental shelf can drive large and rapid changes in the abyssal ocean.

  2. SAO/NASA ADS at SAO: ADS Browse Service

    Science.gov Websites

    Sign on [SAO/NASA ADS] ADS Browse Service ADS Home | HELP | Sitemap ADS Services Search Browse myADS Mirrors Feedback FAQ What's new Site Map Help Other NASA Centers CXC HEASARC IRSA MAST NED NSSDC -Smithsonian Center for Astrophysics [ Smithsonian logo ] The NASA Astrophysics Data System provides different

  3. Modeling Cyclic Phase Change and Energy Storage in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Hall, Carsie A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1997-01-01

    Numerical results pertaining to cyclic melting and freezing of an encapsulated phase change material (PCM), integrated into a solar heat receiver, have been reported. The cyclic nature of the present melt/freeze problem is relevant to latent heat thermal energy storage (LHTES) systems used to power solar Brayton engines in microgravity environments. Specifically, a physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) project was developed and results compared with available experimental data. Multi-conjugate effects such as the convective fluid flow of a low-Prandtl-number fluid, coupled with thermal conduction in the phase change material, containment tube and working fluid conduit were accounted for in the model. A single-band thermal radiation model was also included to quantify reradiative energy exchange inside the receiver and losses through the aperture. The eutectic LiF-CaF2 was used as the phase change material (PCM) and a mixture of He/Xe was used as the working fluid coolant. A modified version of the computer code HOTTube was used to generate results for comparisons with GTD data for both the subcooled and two-phase regimes. While qualitative trends were in close agreement for the balanced orbit modes, excellent quantitative agreement was observed for steady-state modes.

  4. Towards a drift-free multi-level Phase Change Memory

    NASA Astrophysics Data System (ADS)

    Cinar, Ibrahim; Ozdemir, Servet; Cogulu, Egecan; Gokce, Aisha; Stipe, Barry; Katine, Jordan; Aktas, Gulen; Ozatay, Ozhan

    For ultra-high density data storage applications, Phase Change Memory (PCM) is considered a potentially disruptive technology. Yet, the long-term reliability of the logic levels corresponding to the resistance states of a PCM device is an important issue for a stable device operation since the resistance levels drift uncontrollably in time. The underlying mechanism for the resistance drift is considered as the structural relaxation and spontaneous crystallization at elevated temperatures. We fabricated a nanoscale single active layer-phase change memory cell with three resistance levels corresponding to crystalline, amorphous and intermediate states by controlling the current injection site geometry. For the intermediate state and the reset state, the activation energies and the trap distances have been found to be 0.021 eV and 0.235 eV, 1.31 nm and 7.56 nm, respectively. We attribute the ultra-low and weakly temperature dependent drift coefficient of the intermediate state (ν = 0.0016) as opposed to that of the reset state (ν = 0.077) as being due to the dominant contribution of the interfacial defects in electrical transport in the case of the mixed phase. Our results indicate that the engineering of interfacial defects will enable a drift-free multi-level PCM device design.

  5. New markers of dietary added sugar intake.

    PubMed

    Davy, Brenda; Jahren, Hope

    2016-07-01

    Added sugar consumption is associated with adverse health outcomes, including weight gain and cardio-metabolic disease, yet the reliance on self-reported methods to determine added sugar intake continues to be a significant research limitation. The purpose of this review is to summarize recent advances in the development of two potential predictive biomarkers of added sugar intake: δC and urinary sugar excretion. The results of numerous cross-sectional investigations have indicated modest associations of the δC sugar biomarker measured in a variety of sample types (e.g., fingerstick blood, serum, red blood cells, and hair) with self-reported added sugar and sugar-sweetened beverage intake, and δC values have been reported to change over time with changes in reported sugar-sweetened beverage intake. Results from large-scale trials have suggested modest associations of urinary sugar excretion with reported sugar intake, and a dose-response relation has been demonstrated between urinary sugar excretion and actual sugar intake. Valid markers of sugar intake are urgently needed to more definitively determine the health consequences of added sugar intake. Adequately powered controlled feeding studies are needed to validate and compare these two biomarkers of sugar intake, and to determine what individual characteristics and conditions impact biomarker results.

  6. Optically-controlled long-term storage and release of thermal energy in phase-change materials.

    PubMed

    Han, Grace G D; Li, Huashan; Grossman, Jeffrey C

    2017-11-13

    Thermal energy storage offers enormous potential for a wide range of energy technologies. Phase-change materials offer state-of-the-art thermal storage due to high latent heat. However, spontaneous heat loss from thermally charged phase-change materials to cooler surroundings occurs due to the absence of a significant energy barrier for the liquid-solid transition. This prevents control over the thermal storage, and developing effective methods to address this problem has remained an elusive goal. Herein, we report a combination of photo-switching dopants and organic phase-change materials as a way to introduce an activation energy barrier for phase-change materials solidification and to conserve thermal energy in the materials, allowing them to be triggered optically to release their stored latent heat. This approach enables the retention of thermal energy (about 200 J g -1 ) in the materials for at least 10 h at temperatures lower than the original crystallization point, unlocking opportunities for portable thermal energy storage systems.

  7. Experimental data showing the thermal behavior of a flat roof with phase change material.

    PubMed

    Tokuç, Ayça; Başaran, Tahsin; Yesügey, S Cengiz

    2015-12-01

    The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM) layer. The temperature and energy given to and taken from the building element are reported. In addition the solid-liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91-104.

  8. Tensionless string spectra on AdS3

    NASA Astrophysics Data System (ADS)

    Gaberdiel, Matthias R.; Gopakumar, Rajesh

    2018-05-01

    The spectrum of superstrings on AdS3 × S3 × M 4 with pure NS-NS flux is analysed for the background where the radius of the AdS space takes the minimal value ( k = 1). Both for M 4 = S3 × S1 and M 4 = T 4 we show that there is a special set of physical states, coming from the bottom of the spectrally flowed continuous representations, which agree in precise detail with the single particle spectrum of a free symmetric product orbifold. For the case of AdS3 × S3 × T 4 this relies on making sense of the world-sheet theory at k = 1, for which we make a concrete proposal. We also comment on the implications of this striking result.

  9. Thermal modeling using enthalpy methods to aid in the study of microstructural changes of multilayered phase change optical memories

    NASA Astrophysics Data System (ADS)

    Nagpal, Swati; Aurora, Aradhna

    1999-11-01

    In DOW type of phase change optical memories the focus has been mainly on gestate based systems due to their good overwriting capability and very high order cyclability. To avoid the material deterioration problems such as material flow, high melting point, high viscosity or high-density components such as CrTe, (which have the same refractive index) can be added to the active layer. This has led to an improved performance of overwrite cycles from 105 to 106. Material flow occurs due to void formation. Voids and sinks are formed due to porosity of the active layer because the active layer has a density lower than that of the bulk material. One of the reasons for the formation and coalescence of voids is the way in which the film is deposited viz. Sputtering which makes Ar atoms accumulate in the films during deposition. Also the mechanical strength of the protective layer effects the repeatability of the active layer. All the above mentioned processes occur during melting and re- solidification of the nano-sized spots which are laser irradiated. Since the structure of the protective layers is very important in controlling the void formation, it is very important to study the thermal modeling of the full layer structure.

  10. Replacement of Ablators with Phase-Change Material for Thermal Protection of STS Elements

    NASA Technical Reports Server (NTRS)

    Kaul, Raj K.; Stuckey, Irvin; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    As part of the research and development program to develop new Thermal Protection System (TPS) materials for aerospace applications at NASA's Marshall Space Flight Center (MSFC), an experimental study was conducted on a new concept for a non-ablative TPS material. Potential loss of TPS material and ablation by-products from the External Tank (ET) or Solid Rocket Booster (SRB) during Shuttle flight with the related Orbiter tile damage necessitates development of a non-ablative thermal protection system. The new Thermal Management Coating (TMC) consists of phase-change material encapsulated in micro spheres and a two-part resin system to adhere the coating to the structure material. The TMC uses a phase-change material to dissipate the heat produced during supersonic flight rather than an ablative material. This new material absorbs energy as it goes through a phase change during the heating portion of the flight profile and then the energy is slowly released as the phase-change material cools and returns to its solid state inside the micro spheres. The coating was subjected to different test conditions simulating design flight environments at the NASA/MSFC Improved Hot Gas Facility (IHGF) to study its performance.

  11. Temperature-driven topological quantum phase transitions in a phase-change material Ge2Sb2Te5.

    PubMed

    Eremeev, S V; Rusinov, I P; Echenique, P M; Chulkov, E V

    2016-12-13

    The Ge 2 Sb 2 Te 5 is a phase-change material widely used in optical memory devices and is a leading candidate for next generation non-volatile random access memory devices which are key elements of various electronics and portable systems. Despite the compound is under intense investigation its electronic structure is currently not fully understood. The present work sheds new light on the electronic structure of the Ge 2 Sb 2 Te 5 crystalline phases. We demonstrate by predicting from first-principles calculations that stable crystal structures of Ge 2 Sb 2 Te 5 possess different topological quantum phases: a topological insulator phase is realized in low-temperature structure and Weyl semimetal phase is a characteristic of the high-temperature structure. Since the structural phase transitions are caused by the temperature the switching between different topologically non-trivial phases can be driven by variation of the temperature. The obtained results reveal the rich physics of the Ge 2 Sb 2 Te 5 compound and open previously unexplored possibility for spintronics applications of this material, substantially expanding its application potential.

  12. Enabling Universal Memory by Overcoming the Contradictory Speed and Stability Nature of Phase-Change Materials

    PubMed Central

    Wang, Weijie; Loke, Desmond; Shi, Luping; Zhao, Rong; Yang, Hongxin; Law, Leong-Tat; Ng, Lung-Tat; Lim, Kian-Guan; Yeo, Yee-Chia; Chong, Tow-Chong; Lacaita, Andrea L.

    2012-01-01

    The quest for universal memory is driving the rapid development of memories with superior all-round capabilities in non-volatility, high speed, high endurance and low power. Phase-change materials are highly promising in this respect. However, their contradictory speed and stability properties present a key challenge towards this ambition. We reveal that as the device size decreases, the phase-change mechanism changes from the material inherent crystallization mechanism (either nucleation- or growth-dominated), to the hetero-crystallization mechanism, which resulted in a significant increase in PCRAM speeds. Reducing the grain size can further increase the speed of phase-change. Such grain size effect on speed becomes increasingly significant at smaller device sizes. Together with the nano-thermal and electrical effects, fast phase-change, good stability and high endurance can be achieved. These findings lead to a feasible solution to achieve a universal memory. PMID:22496956

  13. Enabling universal memory by overcoming the contradictory speed and stability nature of phase-change materials.

    PubMed

    Wang, Weijie; Loke, Desmond; Shi, Luping; Zhao, Rong; Yang, Hongxin; Law, Leong-Tat; Ng, Lung-Tat; Lim, Kian-Guan; Yeo, Yee-Chia; Chong, Tow-Chong; Lacaita, Andrea L

    2012-01-01

    The quest for universal memory is driving the rapid development of memories with superior all-round capabilities in non-volatility, high speed, high endurance and low power. Phase-change materials are highly promising in this respect. However, their contradictory speed and stability properties present a key challenge towards this ambition. We reveal that as the device size decreases, the phase-change mechanism changes from the material inherent crystallization mechanism (either nucleation- or growth-dominated), to the hetero-crystallization mechanism, which resulted in a significant increase in PCRAM speeds. Reducing the grain size can further increase the speed of phase-change. Such grain size effect on speed becomes increasingly significant at smaller device sizes. Together with the nano-thermal and electrical effects, fast phase-change, good stability and high endurance can be achieved. These findings lead to a feasible solution to achieve a universal memory.

  14. Quality changes and shelf-life extension of ready-to-eat fish patties by adding encapsulated citric acid.

    PubMed

    Bou, Ricard; Claret, Anna; Stamatakis, Antonios; Martínez, Brigitte; Guerrero, Luis

    2017-12-01

    Citric acid is commonly used as a flavoring and preservative in food and beverages. The effect of adding citric acid directly or encapsulated (each at 1 and 2 g kg -1 ) on the quality and shelf-life of ready-to-eat sea bass patties was evaluated during storage at 4 °C in vacuum skin packaging. Microbial growth and total basic volatile nitrogen were maintained at relatively low levels up to 8 weeks of storage. With respect to oxidative stability, the addition of encapsulated citric acid minimized secondary oxidation values more efficiently than its direct addition, regardless of the concentration. This is in agreement with the decreased fishy odor observed in those patties containing encapsulated citric acid. Accordingly, sensory analysis showed that the addition of encapsulated citric acid at 1 g kg -1 resulted in lower scores in fish aroma compared to that of the control. Sourness is dependent on the amount of citric acid added, regardless of the form (direct or encapsulated). The form of citric acid addition, rather than the amount of citric acid added, caused changes in texture. Therefore, the use of encapsulated citric acid represents a suitable strategy that is of great interest in the seafood industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Signaling added response-independent reinforcement to assess Pavlovian processes in resistance to change and relapse.

    PubMed

    Podlesnik, Christopher A; Fleet, James D

    2014-09-01

    Behavioral momentum theory asserts Pavlovian stimulus-reinforcer relations govern the persistence of operant behavior. Specifically, resistance to conditions of disruption (e.g., extinction, satiation) reflects the relation between discriminative stimuli and the prevailing reinforcement conditions. The present study assessed whether Pavlovian stimulus-reinforcer relations govern resistance to disruption in pigeons by arranging both response-dependent and -independent food reinforcers in two components of a multiple schedule. In one component, discrete-stimulus changes preceded response-independent reinforcers, paralleling methods that reduce Pavlovian conditioned responding to contextual stimuli. Compared to the control component with no added stimuli preceding response-independent reinforcement, response rates increased as discrete-stimulus duration increased (0, 5, 10, and 15 s) across conditions. Although resistance to extinction decreased as stimulus duration increased in the component with the added discrete stimulus, further tests revealed no effect of discrete stimuli, including other disrupters (presession food, intercomponent food, modified extinction) and reinstatement designed to control for generalization decrement. These findings call into question a straightforward conception that the stimulus-reinforcer relations governing resistance to disruption reflect the same processes as Pavlovian conditioning, as asserted by behavioral momentum theory. © Society for the Experimental Analysis of Behavior.

  16. An Automatic Phase-Change Detection Technique for Colloidal Hard Sphere Suspensions

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth; Rogers, Richard B.

    2005-01-01

    Colloidal suspensions of monodisperse spheres are used as physical models of thermodynamic phase transitions and as precursors to photonic band gap materials. However, current image analysis techniques are not able to distinguish between densely packed phases within conventional microscope images, which are mainly characterized by degrees of randomness or order with similar grayscale value properties. Current techniques for identifying the phase boundaries involve manually identifying the phase transitions, which is very tedious and time consuming. We have developed an intelligent machine vision technique that automatically identifies colloidal phase boundaries. The algorithm utilizes intelligent image processing techniques that accurately identify and track phase changes vertically or horizontally for a sequence of colloidal hard sphere suspension images. This technique is readily adaptable to any imaging application where regions of interest are distinguished from the background by differing patterns of motion over time.

  17. Phase change materials handbook

    NASA Technical Reports Server (NTRS)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1971-01-01

    This handbook is intended to provide theory and data needed by the thermal design engineer to bridge the gap between research achievements and actual flight systems, within the limits of the current state of the art of phase change materials (PCM) technology. The relationship between PCM and more conventional thermal control techniques is described and numerous space and terrestrial applications of PCM are discussed. Material properties of the most promising PCMs are provided; the purposes and use of metallic filler materials in PCM composites are presented; and material compatibility considerations relevant to PCM design are included. The engineering considerations of PCM design are described, especially those pertaining to the thermodynamic and heat transfer phenomena peculiar to PCM design. Methods of obtaining data not currently available are presented. The special problems encountered in the space environment are described. Computational tools useful to the designer are discussed. In summary, each aspect of the PCM problem important to the design engineer is covered to the extent allowed by the scope of this effort and the state of the art.

  18. Environmental changes and the Migration Period in northern Germany as reflected in the sediments of Lake Dudinghausen

    NASA Astrophysics Data System (ADS)

    Dreßler, Mirko; Selig, Uwe; Dörfler, Walter; Adler, Sven; Schubert, Hendrik; Hübener, Thomas

    2006-07-01

    Paleolimnological techniques were used to identify environmental changes in and around Lake Dudinghausen (northern Germany) over the past 4800 yr. Diatom-inferred total phosphorus (DI-TP) changes identify four phases of high nutrient levels (2600-2200 BC, 1050-700 BC, 500 BC-AD 100 and AD 1850-1970). During these high DI-TP phases, fossil pollen, sediment geochemistry and archaeological records indicate human activities in the lake catchment. Although the same paleo-indicators suggest increased human settlement and agriculture activity during the late Slavonic Age, the Medieval Time and the Modern Time (AD 1000-1850), DI-TP levels were low during this period. In the sediments, iron and total phosphorus were high from ˜AD 100 to 1850, likely due to increased inflow of iron-rich groundwater into the lake. Increased iron input would have lead to a simultaneous binding and precipitation of phosphate in the upper sediment and overlying water column. As a result, anthropogenic impact on Lake Dudinghausen was masked by these phosphorus-controlling processes from AD 1000 to 1850 and was not evident by means of DI-TP. In accordance with fossil pollen, sediment geochemistry and limited archaeological records, DI-TP levels were low from AD 100-1000. Groundwater levels likely rose during this period as the climate gradually changed toward colder and/or moister conditions. Such climate change likely led to reduced settlement activities and forest regeneration in the catchment area. Our results are concordant with similar studies from central Europe which indicate rapid decreasing settlement activities from AD 100 to 1000.

  19. Analyzing the texture changes in the quantitative phase maps of adipocytes

    NASA Astrophysics Data System (ADS)

    Roitshtain, Darina; Sharabani-Yosef, Orna; Gefen, Amit; Shaked, Natan T.

    2016-03-01

    We present a new analysis tool for studying texture changes in the quantitative phase maps of live cells acquired by wide-field interferometry. The sensitivity of wide-field interferometry systems to small changes in refractive index enables visualizing cells and inner cell organelles without the using fluorescent dyes or other cell-invasive approaches, which may affect the measurement and require external labeling. Our label-free texture-analysis tool is based directly on the optical path delay profile of the sample and does not necessitate decoupling refractive index and thickness in the cell quantitative phase profile; thus, relevant parameters can be calculated using a single-frame acquisition. Our experimental system includes low-coherence wide-field interferometer, combined with simultaneous florescence microscopy system for validation. We used this system and analysis tool for studying lipid droplets formation in adipocytes. The latter demonstration is relevant for various cellular functions such as lipid metabolism, protein storage and degradation to viral replication. These processes are functionally linked to several physiological and pathological conditions, including obesity and metabolic diseases. Quantification of these biological phenomena based on the texture changes in the cell phase map has a potential as a new cellular diagnosis tool.

  20. COGNITIVELY NORMAL INDIVIDUALS WITH AD PARENTS MAY BE AT RISK FOR DEVELOPING AGING-RELATED CORTICAL THINNING PATTERNS CHARACTERISTIC OF AD

    PubMed Central

    Reiter, Katherine; Alpert, Kathryn I.; Cobia, Derin J.; Kwasny, Mary J.; Morris, John C.; Csernansky, John C.; Wang, Lei

    2012-01-01

    Children of Alzheimer's Disease (AD) patients are at heightened risk of developing AD due to genetic influences, including the apolipoprotein E4 (ApoE4) allele. In this study, we assessed the earliest cortical changes associated with AD in 71 cognitively healthy, adult children of AD patients (AD offspring) as compared with 69 with no family history of AD (non-AD offspring). Cortical thickness measures were obtained using FreeSurfer from 1.5T magnetic resonance (MR) scans. ApoE genotyping was obtained. Primary analyses examined family history and ApoeE4 effects on cortical thickness. Secondary analyses examined age effects within groups. All comparisons were adjusted using False Discovery Rate at a significance threshold of p < 0.05. There were no statistically significant differences between family history and ApoE4 groups. Within AD offspring, increasing age was related to reduced cortical thickness (atrophy) over large areas of the precuneus, superior frontal and superior temporal gyri, starting at around age 60. Further, these patterns existed within female and maternal AD offspring, but were absent in male and paternal AD offspring. Within non-AD offspring, negative correlations existed over small regions of the superior temporal, insula and lingual cortices. These results suggest that as AD offspring age, cortical atrophy is more prominent, particularly if the parent with AD is mother or if the AD offspring is female. PMID:22503937

  1. Novel Formulations of Phase Change Materials—Epoxy Composites for Thermal Energy Storage

    PubMed Central

    Alvarez Feijoo, Miguel Angel

    2018-01-01

    This research aimed to evaluate the thermal properties of new formulations of phase change materials (PCMs)-epoxy composites, containing a thickening agent and a thermally conductive phase. The composite specimens produced consisted of composites fabricated using (a) inorganic PCMs (hydrated salts), epoxy resins and aluminum particulates or (b) organic PCM (paraffin), epoxy resins, and copper particles. Differential Scanning Calorimetry (DSC) was used to analyze the thermal behavior of the samples, while hardness measurements were used to determine changes in mechanical properties at diverse PCM and conductive phase loading values. The results indicate that the epoxy matrix can act as a container for the PCM phase without hindering the heat-absorbing behavior of the PCMs employed. Organic PCMs presented reversible phase transformations over multiple cycles, an advantage that was lacking in their inorganic counterparts. The enthalpy of the organic PCM-epoxy specimens increased linearly with the PCM content in the matrix. The use of thickening agents prevented phase segregation issues and allowed the fabrication of specimens containing up to 40% PCM, a loading significantly higher than others reported. The conductive phase seemed to improve the heat transfer and the mechanical properties of the composites when present in low percentages (<10 wt %); however, given its mass, the enthalpy detected in the composites was reduced as their loading further increased. The conductive phase combination (PCM + epoxy resin + hardener + thickening agent) presents great potential as a heat-absorbing material at the temperatures employed. PMID:29373538

  2. Novel Formulations of Phase Change Materials-Epoxy Composites for Thermal Energy Storage.

    PubMed

    Arce, Maria Elena; Alvarez Feijoo, Miguel Angel; Suarez Garcia, Andres; Luhrs, Claudia C

    2018-01-26

    This research aimed to evaluate the thermal properties of new formulations of phase change materials (PCMs)-epoxy composites, containing a thickening agent and a thermally conductive phase. The composite specimens produced consisted of composites fabricated using (a) inorganic PCMs (hydrated salts), epoxy resins and aluminum particulates or (b) organic PCM (paraffin), epoxy resins, and copper particles. Differential Scanning Calorimetry (DSC) was used to analyze the thermal behavior of the samples, while hardness measurements were used to determine changes in mechanical properties at diverse PCM and conductive phase loading values. The results indicate that the epoxy matrix can act as a container for the PCM phase without hindering the heat-absorbing behavior of the PCMs employed. Organic PCMs presented reversible phase transformations over multiple cycles, an advantage that was lacking in their inorganic counterparts. The enthalpy of the organic PCM-epoxy specimens increased linearly with the PCM content in the matrix. The use of thickening agents prevented phase segregation issues and allowed the fabrication of specimens containing up to 40% PCM, a loading significantly higher than others reported. The conductive phase seemed to improve the heat transfer and the mechanical properties of the composites when present in low percentages (<10 wt %); however, given its mass, the enthalpy detected in the composites was reduced as their loading further increased. The conductive phase combination (PCM + epoxy resin + hardener + thickening agent) presents great potential as a heat-absorbing material at the temperatures employed.

  3. Projected phase-change memory devices.

    PubMed

    Koelmans, Wabe W; Sebastian, Abu; Jonnalagadda, Vara Prasad; Krebs, Daniel; Dellmann, Laurent; Eleftheriou, Evangelos

    2015-09-03

    Nanoscale memory devices, whose resistance depends on the history of the electric signals applied, could become critical building blocks in new computing paradigms, such as brain-inspired computing and memcomputing. However, there are key challenges to overcome, such as the high programming power required, noise and resistance drift. Here, to address these, we present the concept of a projected memory device, whose distinguishing feature is that the physical mechanism of resistance storage is decoupled from the information-retrieval process. We designed and fabricated projected memory devices based on the phase-change storage mechanism and convincingly demonstrate the concept through detailed experimentation, supported by extensive modelling and finite-element simulations. The projected memory devices exhibit remarkably low drift and excellent noise performance. We also demonstrate active control and customization of the programming characteristics of the device that reliably realize a multitude of resistance states.

  4. Serial MRI and CSF biomarkers in normal aging, MCI, and AD

    PubMed Central

    Vemuri, P.; Wiste, H.J.; Weigand, S.D.; Knopman, D.S.; Trojanowski, J.Q.; Shaw, L.M.; Bernstein, M.A.; Aisen, P.S.; Weiner, M.; Petersen, R.C; Jack, C.R

    2010-01-01

    Objective: To compare the annual change in MRI and CSF biomarkers in cognitively normal (CN), amnestic mild cognitive impairment (aMCI), and Alzheimer disease (AD). Comparisons were based on intergroup discrimination, correlation with concurrent cognitive/functional changes, relationships to APOE genotype, and sample sizes for clinical trials. Methods: We used data from the Alzheimer's Disease Neuroimaging Initiative study consisting of CN, aMCI, and AD cohorts with both baseline and 12-month follow-up CSF and MRI. The annual change in CSF (total-tau [t-tau], Aβ1-42) and MRI (change in ventricular volume) was obtained in 312 subjects (92 CN, 149 aMCI, 71 AD). Results: There was no significant average annual change in either CSF biomarker in any clinical group except t-tau in CN; moreover, the annual change did not differ by clinical group in pairwise comparisons. In contrast, annual increase in ventricular volume increased in the following order, AD > aMCI > CN, and differences were significant between all clinical groups in pairwise comparisons. Ventricular volume increase correlated with concurrent worsening on cognitive/functional indices in aMCI and AD whereas evidence of a similar correlation with change in CSF measures was unclear. The annual changes in MRI differed by APOE ε4 status overall and among aMCI while annual changes in CSF biomarkers did not. Estimated sample sizes for clinical trials are notably less for MRI than the CSF or clinical measures. Conclusions: Unlike the CSF biomarkers evaluated, changes in serial structural MRI are correlated with concurrent change on general cognitive and functional indices in impaired subjects, track with clinical disease stage, and are influenced by APOE genotype. GLOSSARY AD = Alzheimer disease; ADAS-Cog = Alzheimer's Disease Assessment Scale–cognitive subscale; ADNI = Alzheimer's Disease Neuroimaging Initiative; aMCI = amnestic mild cognitive impairment; AUROC = area under the receiver operator characteristic

  5. HOW GAS-DYNAMIC FLARE MODELS POWERED BY PETSCHEK RECONNECTION DIFFER FROM THOSE WITH AD HOC ENERGY SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longcope, D. W.; Klimchuk, J. A.

    Aspects of solar flare dynamics, such as chromospheric evaporation and flare light curves, have long been studied using one-dimensional models of plasma dynamics inside a static flare loop, subjected to some energy input. While extremely successful at explaining the observed characteristics of flares, all such models so far have specified energy input ad hoc, rather than deriving it self-consistently. There is broad consensus that flares are powered by magnetic energy released through reconnection. Recent work has generalized Petschek’s basic reconnection scenario, topological change followed by field line retraction and shock heating, to permit its inclusion in a one-dimensional flare loop model. Heremore » we compare the gas dynamics driven by retraction and shocking to those from more conventional static loop models energized by ad hoc source terms. We find significant differences during the first minute, when retraction leads to larger kinetic energies and produces higher densities at the loop top, while ad hoc heating tends to rarify the loop top. The loop-top density concentration is related to the slow magnetosonic shock, characteristic of Petschek’s model, but persists beyond the retraction phase occurring in the outflow jet. This offers an explanation for observed loop-top sources of X-ray and EUV emission, with advantages over that provided by ad hoc heating scenarios. The cooling phases of the two models are, however, notably similar to one another, suggesting that observations at that stage will yield little information on the nature of energy input.« less

  6. AdS7/CFT6 with orientifolds

    NASA Astrophysics Data System (ADS)

    Apruzzi, Fabio; Fazzi, Marco

    2018-01-01

    AdS7 solutions of massive type IIA have been classified, and are dual to a large class of six-dimensional (1, 0) SCFT's whose tensor branch deformations are described by linear quivers of SU groups. Quivers and AdS vacua depend solely on the group theory data of the NS5-D6-D8 brane configurations engineering the field theories. This has allowed for a direct holographic match of their a conformal anomaly. In this paper we extend the match to cases where O6 and O8-planes are present, thereby introducing SO and USp groups in the quivers. In all of them we show that the a anomaly computed in supergravity agrees with the holographic limit of the exact field theory result, which we extract from the anomaly polynomial. As a byproduct we construct special AdS7 vacua dual to nonperturbative F-theory configurations. Finally, we propose a holographic a-theorem for six-dimensional Higgs branch RG flows.

  7. Heat transfer characteristics of coconut oil as phase change material to room cooling application

    NASA Astrophysics Data System (ADS)

    Irsyad, M.; Harmen

    2017-03-01

    Thermal comfort in a room is one of human needs in the workplace and dwellings, so that the use of air conditioning system in tropical countries is inevitable. This equipment has an impact on the increase of energy consumption. One method of minimizing the energy use is by using the phase change material (PCM) as thermal energy storage. This material utilizes the temperature difference between day and night for the storage and release of thermal energy. PCM development on application as a material for air cooling inlet, partitioning and interior needs to be supported by the study of heat transfer characteristics when PCM absorbs heat from ambient temperature. This study was conducted to determine the heat transfer characteristics on coconut oil as a phase change material. There are three models of experiments performed in this research. Firstly, an experiment was conducted to analyze the time that was needed by material to phase change by varying the temperature. The second experiment analyzed the heat transfer characteristics of air to PCM naturally convection. The third experiment analyzed the forced convection heat transfer on the surface of the PCM container by varying the air velocity. The data of experimental showed that, increasing ambient air temperature resulted in shorter time for phase change. At temperatures of 30°C, the time for phase change of PCM with the thickness of 8 cm was 1700 min, and it was stable at temperatures of 27°C. Increasing air temperature accelerated the phase change in the material. While for the forced convection heat transfer, PCM could reduce the air temperature in the range of 30 to 35°C at about 1 to 2°C, with a velocity of 1-3 m/s.

  8. Conformal Coating of a Phase Change Material on Ordered Plasmonic Nanorod Arrays for Broadband All-Optical Switching.

    PubMed

    Guo, Peijun; Weimer, Matthew S; Emery, Jonathan D; Diroll, Benjamin T; Chen, Xinqi; Hock, Adam S; Chang, Robert P H; Martinson, Alex B F; Schaller, Richard D

    2017-01-24

    Actively tunable optical transmission through artificial metamaterials holds great promise for next-generation nanophotonic devices and metasurfaces. Plasmonic nanostructures and phase change materials have been extensively studied to this end due to their respective strong interactions with light and tunable dielectric constants under external stimuli. Seamlessly integrating plasmonic components with phase change materials, as demonstrated in the present work, can facilitate phase change by plasmonically enabled light confinement and meanwhile make use of the high sensitivity of plasmon resonances to the variation of dielectric constant associated with the phase change. The hybrid platform here is composed of plasmonic indium-tin-oxide nanorod arrays (ITO-NRAs) conformally coated with an ultrathin layer of a prototypical phase change material, vanadium dioxide (VO 2 ), which enables all-optical modulation of the infrared as well as the visible spectral ranges. The interplay between the intrinsic plasmonic nonlinearity of ITO-NRAs and the phase transition induced permittivity change of VO 2 gives rise to spectral and temporal responses that cannot be achieved with individual material components alone.

  9. NH4+ ad-/desorption in sequencing batch reactors: simulation, laboratory and full-scale studies.

    PubMed

    Schwitalla, P; Mennerich, A; Austermann-Haun, U; Müller, A; Dorninger, C; Daims, H; Holm, N C; Rönner-Holm, S G E

    2008-01-01

    Significant NH4-N balance deficits were found during the measurement campaigns for the data collection for dynamic simulation studies at five full-scale sequencing batch reactor (SBR) waste water treatment plants (WWTPs), as well as during subsequent calibrations at the investigated plants. Subsequent lab scale investigations showed high evidence for dynamic, cycle-specific NH4+ ad-/desorption to the activated flocs as one reason for this balance deficit. This specific dynamic was investigated at five full-scale SBR plants for the search of the general causing mechanisms. The general mechanism found was a NH4+ desorption from the activated flocs at the end of the nitrification phase with subsequent nitrification and a chemical NH4+ adsorption at the flocs in the course of the filling phases. This NH4+ ad-/desorption corresponds to an antiparallel K+ ad/-desorption.One reasonable full-scale application was investigated at three SBR plants, a controlled filling phase at the beginning of the sedimentation phase. The results indicate that this kind of filling event must be specifically hydraulic controlled and optimised in order to prevent too high waste water break through into the clear water phase, which will subsequently be discarded. IWA Publishing 2008.

  10. Review of Development Survey of Phase Change Material Models in Building Applications

    PubMed Central

    Akeiber, Hussein J.; Wahid, Mazlan A.; Hussen, Hasanen M.; Mohammad, Abdulrahman Th.

    2014-01-01

    The application of phase change materials (PCMs) in green buildings has been increasing rapidly. PCM applications in green buildings include several development models. This paper briefly surveys the recent research and development activities of PCM technology in building applications. Firstly, a basic description of phase change and their principles is provided; the classification and applications of PCMs are also included. Secondly, PCM models in buildings are reviewed and discussed according to the wall, roof, floor, and cooling systems. Finally, conclusions are presented based on the collected data. PMID:25313367

  11. Proliferation of East Antarctic Adélie penguins in response to historical deglaciation.

    PubMed

    Younger, Jane; Emmerson, Louise; Southwell, Colin; Lelliott, Patrick; Miller, Karen

    2015-11-18

    Major, long-term environmental changes are projected in the Southern Ocean and these are likely to have impacts for marine predators such as the Adélie penguin (Pygoscelis adeliae). Decadal monitoring studies have provided insight into the short-term environmental sensitivities of Adélie penguin populations, particularly to sea ice changes. However, given the long-term nature of projected climate change, it is also prudent to consider the responses of populations to environmental change over longer time scales. We investigated the population trajectory of Adélie penguins during the last glacial-interglacial transition to determine how the species was affected by climate warming over millennia. We focussed our study on East Antarctica, which is home to 30 % of the global population of Adélie penguins. Using mitochondrial DNA from extant colonies, we reconstructed the population trend of Adélie penguins in East Antarctica over the past 22,000 years using an extended Bayesian skyline plot method. To determine the relationship of East Antarctic Adélie penguins with populations elsewhere in Antarctica we constructed a phylogeny using mitochondrial DNA sequences. We found that the Adélie penguin population expanded 135-fold from approximately 14,000 years ago. The population growth was coincident with deglaciation in East Antarctica and, therefore, an increase in ice-free ground suitable for Adélie penguin nesting. Our phylogenetic analysis indicated that East Antarctic Adélie penguins share a common ancestor with Adélie penguins from the Antarctic Peninsula and Scotia Arc, with an estimated age of 29,000 years ago, in the midst of the last glacial period. This finding suggests that extant colonies in East Antarctica, the Scotia Arc and the Antarctic Peninsula were founded from a single glacial refuge. While changes in sea ice conditions are a critical driver of Adélie penguin population success over decadal and yearly timescales, deglaciation appears to have

  12. AdS charged black holes in Einstein-Yang-Mills gravity's rainbow: Thermal stability and P - V criticality

    NASA Astrophysics Data System (ADS)

    Hendi, Seyed Hossein; Momennia, Mehrab

    2018-02-01

    Motivated by the interesting non-abelian gauge field, in this paper, we look for the analytical solutions of Yang-Mills theory in the context of gravity's rainbow. Regarding the trace of quantum gravity in black hole thermodynamics, we examine the first law of thermodynamics and also thermal stability in the canonical ensemble. We show that although the rainbow functions and Yang-Mills charge modify the solutions, the first law of thermodynamics is still valid. Based on the phenomenological similarities between the adS black holes and van der Waals liquid/gas systems, we study the critical behavior of the Yang-Mills black holes in the extended phase space thermodynamics. We also investigate the effects of various parameters on thermal instability as well as critical properties by using appropriate figures.

  13. Upper Extremity Muscle Activity During In-Phase and Anti-Phase Continuous Pushing Tasks.

    PubMed

    Gruevski, Kristina M; Hodder, Joanne N; Keir, Peter J

    2017-11-01

    To determine the effect of anti-phase, in-phase bimanual and unimanual simulated industrial pushing tasks and frequency on upper extremity muscle activity. Research investigating symmetrical (in-phase) and asymmetrical (anti-phase) pushing exertions is limited despite a high prevalence in industry. Fifteen female participants completed five pushing tasks using a dual handle apparatus at three frequencies: 15 cycles per minute (cpm), 30 cpm, and self-selected. Tasks included two bimanual symmetrical pushes (constrained and unconstrained), two bimanual asymmetrical pushes (reciprocating and continuous), and one right unimanual push. Surface electromyography (EMG) from the right anterior, middle, and posterior deltoid (AD, MD, and PD); right and left trapezius (RT and LT); right pectoralis major (PM); and right and left external obliques (REO and LEO) was collected and normalized to maximum voluntary effort. There was a task by frequency interaction in the AD, MD, PD, and RT ( p < .005), where activity in AD, MD, and PD was highest in the continuous task at 15 cpm, but activity was similar across task in 30 cpm and self-selected. Muscle activity coefficient of variation was lowest during continuous task across all frequencies. Continuous, anti-phase pushes and constrained, in-phase pushes had the highest muscle activity demands and the least amount of variability in muscle activity and therefore may present the greatest risk of injury. Anti-phase pushing is known to have a greater cognitive demand, and this study demonstrated that it also has a greater physical demand when performed continuously.

  14. Investigation of Effect Additive Phase Change Materials on the Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Nakielska, Magdalena; Chalamoński, Mariusz; Pawłowski, Krzysztof

    2017-10-01

    The aim of worldwide policy is to reduce the amount of consumed energy and conventional fuels. An important branch of the economy that affects the energy balance of the country is construction industry. In Poland, since January 1st, 2017 new limit values have been valid regarding energy saving and thermal insulation of buildings. To meet the requirements of more and more stringent technical and environmental standards, new technological solutions are currently being looked for. When it comes to the use of new materials, phase-change materials are being widely introduced into construction industry. Thanks to phase-change materials, we can increase the amount of heat storage. Great thermal inertia of the building provides more stable conditions inside the rooms and allows the use of unconventional sources of energy such as solar energy. A way to reduce the energy consumption of the object is the use of modern solutions for ventilation systems. An example is the solar chimney, which supports natural ventilation in order to improve internal comfort of the rooms. Numerous studies are being carried out in order to determine the optimal construction of solar chimneys in terms of materials and construction parameters. One of the elements of solar chimneys is an absorption plate, which affects the amount of accumulated heat in the construction. In order to carry out the research on the thermal capacity of the absorption plate, the first research work has been already planned. The work presents the research results of a heat-transfer coefficient of the absorption plates samples made of cement, aggregate, water, and phase-change material in different volume percentage. The work also presents methodology and the research process of phase-change material samples.

  15. Cognitively normal individuals with AD parents may be at risk for developing aging-related cortical thinning patterns characteristic of AD.

    PubMed

    Reiter, Katherine; Alpert, Kathryn I; Cobia, Derin J; Kwasny, Mary J; Morris, John C; Csernansky, John C; Wang, Lei

    2012-07-02

    Children of Alzheimer's disease (AD) patients are at heightened risk of developing AD due to genetic influences, including the apolipoprotein E4 (ApoE4) allele. In this study, we assessed the earliest cortical changes associated with AD in 71 cognitively healthy, adult children of AD patients (AD offspring) as compared with 69 with no family history of AD (non-AD offspring). Cortical thickness measures were obtained using FreeSurfer from 1.5T magnetic resonance (MR) scans. ApoE genotyping was obtained. Primary analyses examined family history and ApoeE4 effects on cortical thickness. Secondary analyses examined age effects within groups. All comparisons were adjusted using False Discovery Rate at a significance threshold of p<0.05. There were no statistically significant differences between family history and ApoE4 groups. Within AD offspring, increasing age was related to reduced cortical thickness (atrophy) over large areas of the precuneus, superior frontal and superior temporal gyri, starting at around age 60. Further, these patterns existed within female and maternal AD offspring, but were absent in male and paternal AD offspring. Within non-AD offspring, negative correlations existed over small regions of the superior temporal, insula and lingual cortices. These results suggest that as AD offspring age, cortical atrophy is more prominent, particularly if the parent with AD is mother or if the AD offspring is female. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Understanding Rapid Changes in Phase Partitioning between Cloud Liquid and Ice in Stratiform Mixed-Phase Clouds: An Arctic Case Study

    DOE PAGES

    Kalesse, Heike; de Boer, Gijs; Solomon, Amy; ...

    2016-11-23

    Understanding phase transitions in mixed-phase clouds is of great importance because the hydrometeor phase controls the lifetime and radiative effects of clouds. These cloud radiative effects have a crucial impact on the surface energy budget and thus on the evolution of the ice cover, in high altitudes. For a springtime low-level mixed-phase stratiform cloud case from Barrow, Alaska, a unique combination of instruments and retrieval methods is combined with multiple modeling perspectives to determine key processes that control cloud phase partitioning. The interplay of local cloud-scale versus large-scale processes is considered. Rapid changes in phase partitioning were found to bemore » caused by several main factors. Some major influences were the large-scale advection of different air masses with different aerosol concentrations and humidity content, cloud-scale processes such as a change in the thermodynamical coupling state, and local-scale dynamics influencing the residence time of ice particles. Other factors such as radiative shielding by a cirrus and the influence of the solar cycle were found to only play a minor role for the specific case study (11–12 March 2013). Furthermore, for an even better understanding of cloud phase transitions, observations of key aerosol parameters such as profiles of cloud condensation nucleus and ice nucleus concentration are desirable.« less

  17. Understanding Rapid Changes in Phase Partitioning between Cloud Liquid and Ice in Stratiform Mixed-Phase Clouds: An Arctic Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalesse, Heike; de Boer, Gijs; Solomon, Amy

    Understanding phase transitions in mixed-phase clouds is of great importance because the hydrometeor phase controls the lifetime and radiative effects of clouds. These cloud radiative effects have a crucial impact on the surface energy budget and thus on the evolution of the ice cover, in high altitudes. For a springtime low-level mixed-phase stratiform cloud case from Barrow, Alaska, a unique combination of instruments and retrieval methods is combined with multiple modeling perspectives to determine key processes that control cloud phase partitioning. The interplay of local cloud-scale versus large-scale processes is considered. Rapid changes in phase partitioning were found to bemore » caused by several main factors. Some major influences were the large-scale advection of different air masses with different aerosol concentrations and humidity content, cloud-scale processes such as a change in the thermodynamical coupling state, and local-scale dynamics influencing the residence time of ice particles. Other factors such as radiative shielding by a cirrus and the influence of the solar cycle were found to only play a minor role for the specific case study (11–12 March 2013). Furthermore, for an even better understanding of cloud phase transitions, observations of key aerosol parameters such as profiles of cloud condensation nucleus and ice nucleus concentration are desirable.« less

  18. Octopus-inspired drag cancelation by added mass pumping

    NASA Astrophysics Data System (ADS)

    Weymouth, Gabriel; Giorgio-Serchi, Francesco

    2016-11-01

    Recent work has shown that when an immersed body suddenly changes its size, such as a deflating octopus during rapid escape jetting, the body experiences large forces due to the variation of added-mass energy. We extend this line of research by investigating a spring-mass oscillator submerged in quiescent fluid subject to periodic changes in its volume. This system isolates the ability of the added-mass thrust to cancel the bluff body resistance (having no jet flow to confuse the analysis) and moves closer to studying how these effects would work in a sustained propulsion case by studying periodic shape-change instead of a "one-shot" escape maneuver. With a combination of analytical, numerical, and experimental results, we show that the recovery of added-mass kinetic energy can be used to completely cancel the drag of the fluid, driving the onset of sustained oscillations with amplitudes as large as four times the average body radius. Moreover, these results are fairly independent of the details of the shape-change kinematics as long as the Stokes number and shape-change number are large. In addition, the effective pumping frequency range based on parametric oscillator analysis is shown to predict large amplitude response region observed in the numerics and experiments.

  19. New massive gravity and AdS(4) counterterms.

    PubMed

    Jatkar, Dileep P; Sinha, Aninda

    2011-04-29

    We show that the recently proposed Dirac-Born-Infeld extension of new massive gravity emerges naturally as a counterterm in four-dimensional anti-de Sitter space (AdS(4)). The resulting on-shell Euclidean action is independent of the cutoff at zero temperature. We also find that the same choice of counterterm gives the usual area law for the AdS(4) Schwarzschild black hole entropy in a cutoff-independent manner. The parameter values of the resulting counterterm action correspond to a c=0 theory in the context of the duality between AdS(3) gravity and two-dimensional conformal field theory. We rewrite this theory in terms of the gauge field that is used to recast 3D gravity as a Chern-Simons theory.

  20. Response of non-added solutes during nutrient addition experiments in streams

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cardona, B.; Wymore, A.; Koenig, L.; Coble, A. A.; McDowell, W. H.

    2015-12-01

    Nutrient addition experiments, such as Tracer Additions for Spiraling Curve Characterization (TASCC), have become widely popular as a means to study nutrient uptake dynamics in stream ecosystems. However, the impact of these additions on ambient concentrations of non-added solutes is often overlooked. TASCC addition experiments are ideal for assessing interactions among solutes because it allows for the characterization of multiple solute concentrations across a broad range of added nutrient concentrations. TASCC additions also require the addition of a conservative tracer (NaCl) to track changes in conductivity during the experimental manipulation. Despite its use as a conservative tracer, chloride (Cl) and its associated sodium (Na) might change the concentrations of other ions and non-added nutrients through ion exchange or other processes. Similarly, additions of biologically active solutes might change the concentrations of other non-added solutes. These methodological issues in nutrient addition experiments have been poorly addressed in the literature. Here we examine the response of non-added solutes to pulse additions (i.e. TASCC) of NaCl plus nitrate (NO3-), ammonium, and phosphate across biomes including temperate and tropical forests, and arctic taiga. Preliminary results demonstrate that non-added solutes respond to changes in the concentration of these added nutrients. For example, concentrations of dissolved organic nitrogen (DON) in suburban headwater streams of New Hampshire both increase and decrease in response to NO3- additions, apparently due to biotic processes. Similarly, cations such as potassium, magnesium, and calcium also increase during TASCC experiments, likely due to cation exchange processes associated with Na addition. The response of non-added solutes to short-term pulses of added nutrients and tracers needs to be carefully assessed to ensure that nutrient uptake metrics are accurate, and to detect biotic interactions that may

  1. Floquet scalar dynamics in global AdS

    NASA Astrophysics Data System (ADS)

    Biasi, Anxo; Carracedo, Pablo; Mas, Javier; Musso, Daniele; Serantes, Alexandre

    2018-04-01

    We study periodically driven scalar fields and the resulting geometries with global AdS asymptotics. These solutions describe the strongly coupled dynamics of dual finite-size quantum systems under a periodic driving which we interpret as Floquet condensates. They span a continuous two-parameter space that extends the linearized solutions on AdS. We map the regions of stability in the solution space. In a significant portion of the unstable subspace, two very different endpoints are reached depending upon the sign of the perturbation. Collapse into a black hole occurs for one sign. For the opposite sign instead one attains a regular solution with periodic modulation. We also construct quenches where the driving frequency and amplitude are continuously varied. Quasistatic quenches can interpolate between pure AdS and sourced solutions with time periodic vev. By suitably choosing the quasistatic path one can obtain boson stars dual to Floquet condensates at zero driving field. We characterize the adiabaticity of the quenching processes. Besides, we speculate on the possible connections of this framework with time crystals.

  2. Multiplexed highly sensitive detections of cancer biomarkers in thermal space using encapsulated phase change nanoparticles

    NASA Astrophysics Data System (ADS)

    Ma, Liyuan; Hong, Yan; Ma, Zeyu; Kaittanis, Charalambos; Perez, J. Manuel; Su, Ming

    2009-07-01

    We describe a multiplexed highly sensitive method to detect cancer biomarkers using silica encapsulated phase change nanoparticles as thermal barcodes. During phase changes, nanoparticles absorb heat energy without much temperature rise and show sharp melting peaks (0.6 °C). A series of phase change nanoparticles of metals or alloys can be synthesized in such a way that they melt between 100 and 700 °C, thus the multiplicity could reach 1000. The method has high sensitivity (8 nM) that can be enhanced using materials with large latent heat, nanoparticles with large diameter, or reducing the grafting density of biomolecules on nanoparticles.

  3. Preparation and energy-saving application of polyurethane/phase change composite materials for electrical water heaters

    NASA Astrophysics Data System (ADS)

    Hu, Yougen; Zhao, Tao; Wu, Xiaolin; Lai, Maobai; Jiang, Chengming; Sun, Rong

    2011-11-01

    Thermal energy storage plays an important role in heat management because of the demand for developed energy conservation, and has applications in diverse areas, from buildings to textiles and clothings. In this study, we aimed to improve thermal characteristics of polyurethane rigid foams that have been widely used for thermal insulation in electrical water heaters. Through this work, paraffin waxes with melting point of 55~65°C act as phase change materials. Then the phase change materials were incorporated into the polyurethane foams at certain ratio. The polyurethane/phase change composite materials used as insulation layers in electrical water heaters performed the enthalpy value of 5~15 J/g. Energy efficiency of the electrical water heaters was tested according to the National Standard of China GB 21519-2008. Results show that 24 h energy consumption of the electrical water heaters manufactured by traditional polyurethane rigid foams and polyurethane/phase change material composites was 1.0612 kWh and 0.9833 kWh, respectively. The results further show that the energy-saving rate is 7.36%. These proved that polyurethane/phase change composite materials can be designed as thermal insulators equipped with electrical water heaters and have a significant effect on energy conservation.

  4. Preparation and energy-saving application of polyurethane/phase change composite materials for electrical water heaters

    NASA Astrophysics Data System (ADS)

    Hu, Yougen; Zhao, Tao; Wu, Xiaolin; Lai, Maobai; Jiang, Chengming; Sun, Rong

    2012-04-01

    Thermal energy storage plays an important role in heat management because of the demand for developed energy conservation, and has applications in diverse areas, from buildings to textiles and clothings. In this study, we aimed to improve thermal characteristics of polyurethane rigid foams that have been widely used for thermal insulation in electrical water heaters. Through this work, paraffin waxes with melting point of 55~65°C act as phase change materials. Then the phase change materials were incorporated into the polyurethane foams at certain ratio. The polyurethane/phase change composite materials used as insulation layers in electrical water heaters performed the enthalpy value of 5~15 J/g. Energy efficiency of the electrical water heaters was tested according to the National Standard of China GB 21519-2008. Results show that 24 h energy consumption of the electrical water heaters manufactured by traditional polyurethane rigid foams and polyurethane/phase change material composites was 1.0612 kWh and 0.9833 kWh, respectively. The results further show that the energy-saving rate is 7.36%. These proved that polyurethane/phase change composite materials can be designed as thermal insulators equipped with electrical water heaters and have a significant effect on energy conservation.

  5. Antismoking Ads at the Point of Sale: The Influence of Ad Type and Context on Ad Reactions.

    PubMed

    Kim, Annice; Nonnemaker, James; Guillory, Jamie; Shafer, Paul; Parvanta, Sarah; Holloway, John; Farrelly, Matthew

    2017-06-01

    Efforts are underway to educate consumers about the dangers of smoking at the point of sale (POS). Research is limited about the efficacy of POS antismoking ads to guide campaign development. This study experimentally tests whether the type of antismoking ad and the context in which ads are viewed influence people's reactions to the ads. A national convenience sample of 7,812 adult current smokers and recent quitters was randomized to 1 of 39 conditions. Participants viewed one of the four types of antismoking ads (negative health consequences-graphic, negative social consequences-intended emotive, benefits of quitting-informational, benefits of quitting-graphic) in one of the three contexts (alone, next to a cigarette ad, POS tobacco display). We assessed participants' reactions to the ads, including perceived effectiveness, negative emotion, affective dissonance, and motivational reaction. Graphic ads elicited more negative emotion and affective dissonance than benefits of quitting ads. Graphic ads elicited higher perceived effectiveness and more affective dissonance than intended emotive ads. Antismoking ads fared best when viewed alone, and graphic ads were least influenced by the context in which they were viewed. These results suggest that in developing POS campaigns, it is important to consider the competitive pro-tobacco context in which antismoking ads will be viewed.

  6. Picosecond electric-field-induced threshold switching in phase-change materials [THz-induced threshold switching and crystallization of phase-change materials

    DOE PAGES

    Zalden, Peter; Shu, Michael J.; Chen, Frank; ...

    2016-08-05

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag 4In 3Sb 67Te 26. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales—faster than crystals can nucleate. As a result, this supports purely electronic models of thresholdmore » switching and reveals potential applications as an ultrafast electronic switch.« less

  7. Thermodynamic properties and interactions of salt hydrates used as phase change materials

    NASA Astrophysics Data System (ADS)

    Braunstein, J.

    1982-12-01

    The state-of-the-art of salt hydrates as phase change materials for low temperature thermal energy storage is reviewed with the objective of recommending research that would result in more practicable use of these materials. Areas for review included phase equilibria, nucleation behavior and melting kinetics of the commonly used hydrates.

  8. Direct numerical simulations of fluid flow, heat transfer and phase changes

    NASA Technical Reports Server (NTRS)

    Juric, D.; Tryggvason, G.; Han, J.

    1997-01-01

    Direct numerical simulations of fluid flow, heat transfer, and phase changes are presented. The simulations are made possible by a recently developed finite difference/front tracking method based on the one-field formulation of the governing equations where a single set of conservation equations is written for all the phases involved. The conservation equations are solved on a fixed rectangular grid, but the phase boundaries are kept sharp by tracking them explicitly by a moving grid of lower dimension. The method is discussed and applications to boiling heat transfer and the solidification of drops colliding with a wall are shown.

  9. Dynamic functional-structural coupling within acute functional state change phases: Evidence from a depression recognition study.

    PubMed

    Bi, Kun; Hua, Lingling; Wei, Maobin; Qin, Jiaolong; Lu, Qing; Yao, Zhijian

    2016-02-01

    Dynamic functional-structural connectivity (FC-SC) coupling might reflect the flexibility by which SC relates to functional connectivity (FC). However, during the dynamic acute state change phases of FC, the relationship between FC and SC may be distinctive and embody the abnormality inherent in depression. This study investigated the depression-related inter-network FC-SC coupling within particular dynamic acute state change phases of FC. Magnetoencephalography (MEG) and diffusion tensor imaging (DTI) data were collected from 26 depressive patients (13 women) and 26 age-matched controls (13 women). We constructed functional brain networks based on MEG data and structural networks from DTI data. The dynamic connectivity regression algorithm was used to identify the state change points of a time series of inter-network FC. The time period of FC that contained change points were partitioned into types of dynamic phases (acute rising phase, acute falling phase,acute rising and falling phase and abrupt FC variation phase) to explore the inter-network FC-SC coupling. The selected FC-SC couplings were then fed into the support vector machine (SVM) for depression recognition. The best discrimination accuracy was 82.7% (P=0.0069) with FC-SC couplings, particularly in the acute rising phase of FC. Within the FC phases of interest, the significant discriminative network pair was related to the salience network vs ventral attention network (SN-VAN) (P=0.0126) during the early rising phase (70-170ms). This study suffers from a small sample size, and the individual acute length of the state change phases was not considered. The increased values of significant discriminative vectors of FC-SC coupling in depression suggested that the capacity to process negative emotion might be more directly related to the SC abnormally and be indicative of more stringent and less dynamic brain function in SN-VAN, especially in the acute rising phase of FC. We demonstrated that depressive brain

  10. Analysis of wallboard containing a phase change material

    NASA Astrophysics Data System (ADS)

    Tomlinson, J. J.; Heberle, D. P.

    Phase change materials (PCMs) used on the interior of buildings hold the promise for improved thermal performance by reducing the energy requirements for space conditioning and by improving thermal comfort by reducing temperature swings inside the building. Efforts are underway to develop a gypsum wallboard containing a hydrocarbon PCM. With a phase change temperature in the room temperature range, the PCM wallboard adds substantially to the thermal mass of the building while serving the same architectural function as conventional wallboard. To determine the thermal and economic performance of this PCM wallboard, the Transient Systems Simulation Program (TRNSYS) was modified to accommodate walls that are covered with PCM plasterboard, and to apportion the direct beam solar radiation to interior surfaces of a building. The modified code was used to simulate the performance of conventional and direct-gain passive solar residential-sized buildings with and without PCM wallboard. Space heating energy savings were determined as a function of PCM wallboard characteristics. Thermal comfort improvements in buildings containing the PCM were qualified in terms of energy savings. The report concludes with a present worth economic analysis of these energy savings and arrives at system costs and economic payback based on current costs of PCMs under study for the wallboard application.

  11. Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change

    NASA Astrophysics Data System (ADS)

    Li, Qing; Zhou, P.; Yan, H. J.

    2017-12-01

    In this paper, an improved thermal lattice Boltzmann (LB) model is proposed for simulating liquid-vapor phase change, which is aimed at improving an existing thermal LB model for liquid-vapor phase change [S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012), 10.1016/j.ijheatmasstransfer.2012.04.037]. First, we emphasize that the replacement of ∇ .(λ ∇ T ) /∇.(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) is an inappropriate treatment for diffuse interface modeling of liquid-vapor phase change. Furthermore, the error terms ∂t 0(T v ) +∇ .(T vv ) , which exist in the macroscopic temperature equation recovered from the previous model, are eliminated in the present model through a way that is consistent with the philosophy of the LB method. Moreover, the discrete effect of the source term is also eliminated in the present model. Numerical simulations are performed for droplet evaporation and bubble nucleation to validate the capability of the model for simulating liquid-vapor phase change. It is shown that the numerical results of the improved model agree well with those of a finite-difference scheme. Meanwhile, it is found that the replacement of ∇ .(λ ∇ T ) /∇ .(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) leads to significant numerical errors and the error terms in the recovered macroscopic temperature equation also result in considerable errors.

  12. Preparation of Paraffin@Poly(styrene-co-acrylic acid) Phase Change Nanocapsules via Combined Miniemulsion/Emulsion Polymerization.

    PubMed

    Zhang, Feng; Liu, Tian-Yu; Hou, Gui-Hua; Guan, Rong-Feng; Zhang, Jun-Hao

    2018-06-01

    The fast development of solid-liquid phase change materials calls for nanomaterials with large specific surface area for rapid heat transfer and encapsulation of phase change materials to prevent potential leakage. Here we report a combined miniemulsion/emulsion polymerization method to prepare poly(styrene-co-acrylic acid)-encapsulated paraffin (paraffin@P(St-co-AA)) nanocapsules. The method could suppress the shortcomings of common miniemulsion polymerization (such as evaporation of monomer and decomposition of initiator during ultrasonication). The paraffin@P(St-co-AA) nanocapsules are uniform in size and the polymer shell can be controlled by the weight ratio of St to paraffin. The phase change behavior of the nanocapsules is similar to that of pure paraffin. We believe our method can also be utilized to synthesize other core-shell phase change materials.

  13. Observation of polyamorphism in the phase change alloy Ge1Sb2Te4

    NASA Astrophysics Data System (ADS)

    Kalkan, B.; Sen, S.; Cho, J.-Y.; Joo, Y.-C.; Clark, S. M.

    2012-10-01

    A high-pressure synchrotron x-ray diffraction study of the phase change alloy Ge1Sb2Te4 demonstrates the existence of a polyamorphic phase transition between the "as deposited" low density amorphous (LDA) phase and a high density amorphous (HDA) phase at ˜10 GPa. The entropy of the HDA phase is expected to be higher than that of the LDA phase resulting in a negative Clapeyron slope for this transition. These phase relations may enable the polyamorphic transition to play a role in the memory and data storage applications.

  14. Progress of the Phase-Change Optical Disk Memory

    DTIC Science & Technology

    2001-04-01

    layer DVD for a DVD 8.5 GB ROM disk for a cinema title. Rewritable 8.5 GB phase-change dual-layer experimental results were announced in 1998". Figure...multi level recording. 1000 70 0 u p..".5 NA0.6 b uper-1l’ENS .... 60 -10 ,.00 nm _o-2o . ’-40 -30 -"a Dual C Supu]RE•S Ouat I) VR -Blue U30 -40 10 20

  15. Spectral changes induced by a phase modulator acting as a time lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plansinis, B. W.; Donaldson, W. R.; Agrawal, G. P.

    2015-07-06

    We show both numerically and experimentally that a phase modulator, acting as a time lens in the Fourier-lens configuration, can induce spectral broadening, narrowing, or shifts, depending on the phase of the modulator cycle. These spectral effects depend on the maximum phase shift that can be imposed by the modulator. In our numerical simulations, pulse spectrum could be compressed by a factor of 8 for a 30 rad phase shift. Experimentally, spectral shifts over a 1.35 nm range and spectral narrowing and broadening by a factor of 2 were demonstrated using a lithium niobate phase modulator with a maximum phasemore » shift of 16 rad at a 10 GHz modulation frequency. All spectral changes were accomplished without employing optical nonlinear effects such as self- or cross-phase modulation.« less

  16. Loops in AdS from conformal field theory

    DOE PAGES

    Aharony, Ofer; Alday, Luis F.; Bissi, Agnese; ...

    2017-07-10

    We propose and demonstrate a new use for conformal field theory (CFT) crossing equations in the context of AdS/CFT: the computation of loop amplitudes in AdS, dual to non-planar correlators in holographic CFTs. Loops in AdS are largely unexplored, mostly due to technical difficulties in direct calculations. We revisit this problem, and the dual 1=N expansion of CFTs, in two independent ways. The first is to show how to explicitly solve the crossing equations to the first subleading order in 1=N 2, given a leading order solution. This is done as a systematic expansion in inverse powers of the spin, to all orders. These expansions can be resummed, leading to the CFT data for nite values of the spin. Our second approach involves Mellin space. We show how the polar part of the four-point, loop-level Mellin amplitudes can be fully reconstructed from the leading-order data. The anomalous dimensions computed with both methods agree. In the case ofmore » $$\\phi$$ 4 theory in AdS, our crossing solution reproduces a previous computation of the one-loop bubble diagram. We can go further, deriving the four-point scalar triangle diagram in AdS, which had never been computed. In the process, we show how to analytically derive anomalous dimensions from Mellin amplitudes with an in nite series of poles, and discuss applications to more complicated cases such as the N = 4 super-Yang-Mills theory.« less

  17. Loops in AdS from conformal field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharony, Ofer; Alday, Luis F.; Bissi, Agnese

    We propose and demonstrate a new use for conformal field theory (CFT) crossing equations in the context of AdS/CFT: the computation of loop amplitudes in AdS, dual to non-planar correlators in holographic CFTs. Loops in AdS are largely unexplored, mostly due to technical difficulties in direct calculations. We revisit this problem, and the dual 1=N expansion of CFTs, in two independent ways. The first is to show how to explicitly solve the crossing equations to the first subleading order in 1=N 2, given a leading order solution. This is done as a systematic expansion in inverse powers of the spin, to all orders. These expansions can be resummed, leading to the CFT data for nite values of the spin. Our second approach involves Mellin space. We show how the polar part of the four-point, loop-level Mellin amplitudes can be fully reconstructed from the leading-order data. The anomalous dimensions computed with both methods agree. In the case ofmore » $$\\phi$$ 4 theory in AdS, our crossing solution reproduces a previous computation of the one-loop bubble diagram. We can go further, deriving the four-point scalar triangle diagram in AdS, which had never been computed. In the process, we show how to analytically derive anomalous dimensions from Mellin amplitudes with an in nite series of poles, and discuss applications to more complicated cases such as the N = 4 super-Yang-Mills theory.« less

  18. Loops in AdS from conformal field theory

    NASA Astrophysics Data System (ADS)

    Aharony, Ofer; Alday, Luis F.; Bissi, Agnese; Perlmutter, Eric

    2017-07-01

    We propose and demonstrate a new use for conformal field theory (CFT) crossing equations in the context of AdS/CFT: the computation of loop amplitudes in AdS, dual to non-planar correlators in holographic CFTs. Loops in AdS are largely unexplored, mostly due to technical difficulties in direct calculations. We revisit this problem, and the dual 1 /N expansion of CFTs, in two independent ways. The first is to show how to explicitly solve the crossing equations to the first subleading order in 1 /N 2, given a leading order solution. This is done as a systematic expansion in inverse powers of the spin, to all orders. These expansions can be resummed, leading to the CFT data for finite values of the spin. Our second approach involves Mellin space. We show how the polar part of the four-point, loop-level Mellin amplitudes can be fully reconstructed from the leading-order data. The anomalous dimensions computed with both methods agree. In the case of ϕ 4 theory in AdS, our crossing solution reproduces a previous computation of the one-loop bubble diagram. We can go further, deriving the four-point scalar triangle diagram in AdS, which had never been computed. In the process, we show how to analytically derive anomalous dimensions from Mellin amplitudes with an infinite series of poles, and discuss applications to more complicated cases such as the N = 4 super-Yang-Mills theory.

  19. Non-Toxic, Non-Flammable, -80 C Phase Change Materials

    NASA Technical Reports Server (NTRS)

    Cutbirth, J. Michael

    2013-01-01

    The objective of this effort was to develop a non-toxic, non-flammable, -80 C phase change material (PCM) to be used in NASA's ICEPAC capsules for biological sample preservation in flight to and from Earth orbit. A temperature of about -68 C or lower is a critical temperature for maintaining stable cell, tissue, and cell fragment storage.

  20. Phase Change Permeation Technology For Environmental Control Life Support Systems

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2014-01-01

    Use of a phase change permeation membrane (Dutyion [Trademark]) to passively and selectively mobilize water in microgravity to enable improved water recovery from urine/brine for Environment Control and Life Support Systems (ECLSS) and water delivery to plans for potential use in microgravity.

  1. Frequency discriminator/phase detector

    NASA Technical Reports Server (NTRS)

    Crow, R. B.

    1974-01-01

    Circuit provides dual function of frequency discriminator/phase detector which reduces frequency acquisition time without adding to circuit complexity. Both frequency discriminators, in evaluated frequency discriminator/phase detector circuits, are effective two decades above and below center frequency.

  2. Adolescents' attitudes toward antimarijuana ads, usage intentions, and actual marijuana usage.

    PubMed

    Alvaro, Eusebio M; Crano, William D; Siegel, Jason T; Hohman, Zachary; Johnson, Ian; Nakawaki, Brandon

    2013-12-01

    The association of adolescents' appraisals of the antimarijuana TV ads used in the National Youth Antidrug Media Campaign with future marijuana use was investigated. The 12- to 18-year-old respondents (N = 2,993) were first classified as users, resolute nonusers, or vulnerable nonusers (Crano, Siegel, Alvaro, Lac, & Hemovich, 2008). Usage status and the covariates of gender, age, and attitudes toward marijuana were used to predict attitudes toward the ads (Aad) in the first phase of a multilevel linear analysis. All covariates were significantly associated with Aad, as was usage status: Resolute nonusers evaluated the ads significantly more positively than vulnerable nonusers and users (all ps < .001), who did not differ. In the second phase, the covariates along with Aad and respondents' usage status predicted intentions and actual usage 1 year after initial measurement. The lagged analysis disclosed negative associations between Aad and usage intentions and between Aad and actual marijuana use (both ps < .05); however, this association held only for users (p < .01), not vulnerable or resolute nonusers. Users who reported more positive attitudes toward the ads were less likely to report intention to use marijuana and to continue marijuana use at 1-year follow-up. These findings may inform designers of persuasion-based prevention campaigns, guiding preimplementation efforts in the design of ads that targeted groups find appealing and thus, influential. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  3. Near-field thermal rectification devices using phase change periodic nanostructure.

    PubMed

    Ghanekar, Alok; Tian, Yanpei; Ricci, Matthew; Zhang, Sinong; Gregory, Otto; Zheng, Yi

    2018-01-22

    We theoretically analyze two near-field thermal rectification devices: a radiative thermal diode and a thermal transistor that utilize a phase change material to achieve dynamic control over heat flow by exploiting metal-insulator transition of VO 2 near 341 K. The thermal analogue of electronic diode allows high heat flow in one direction while it restricts the heat flow when the polarity of temperature gradient is reversed. We show that with the introduction of 1-D rectangular grating, thermal rectification is dramatically enhanced in the near-field due to reduced tunneling of surface waves across the interfaces for negative polarity. The radiative thermal transistor also works around phase transition temperature of VO 2 and controls heat flow. We demonstrate a transistor-like behavior wherein heat flow across the source and the drain can be greatly varied by making a small change in gate temperature.

  4. Computational Evaluation of Latent Heat Energy Storage Using a High Temperature Phase Change Material

    DTIC Science & Technology

    2012-05-01

    thermal energy storage system using molten silicon as a phase change material. A cylindrical receiver, absorber, converter system was evaluated using...temperature operation. This work computationally evaluates a thermal energy storage system using molten silicon as a phase change material. A cylindrical... salts ) offering a low power density and a low thermal conductivity, leading to a limited rate of charging and discharging (4). A focus on

  5. The fabrication of a programmable via using phase-change material in CMOS-compatible technology.

    PubMed

    Chen, Kuan-Neng; Krusin-Elbaum, Lia

    2010-04-02

    We demonstrate an energy-efficient programmable via concept using indirectly heated phase-change material. This via structure has maximum phase-change volume to achieve a minimum on resistance for high performance logic applications. Process development and material investigations for this device structure are reported. The device concept is successfully demonstrated in a standard CMOS-compatible technology capable of multiple cycles between on/off states for reconfigurable applications.

  6. Understanding rapid changes in phase partitioning between cloud liquid and ice in an Arctic stratiform mixed-phase cloud

    NASA Astrophysics Data System (ADS)

    Kalesse, Heike; de Boer, Gijs; Solomon, Amy; Oue, Mariko; Ahlgrimm, Maike; Zhang, Damao; Shupe, Matthew; Luke, Edward; Protat, Alain

    2016-04-01

    In the Arctic, a region particularly sensitive to climate change, mixed-phase clouds occur as persistent single or multiple stratiform layers. For many climate models, the correct partitioning of hydrometeor phase (liquid vs. ice) remains a challenge. However, this phase partitioning plays an important role for precipitation processes and the radiation budget. To better understand the partitioning of phase in Arctic clouds, observations using a combination of surface-based remote sensors are useful. In this study, the focus is on a persistent low-level single-layer stratiform Arctic mixed-phase cloud observed during March 11-12, 2013 at the US Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) permanent site in Barrow, Alaska. This case is of particular interest due to two significant shifts in observed precipitation intensity over a 36 hour period. For the first 12 hours of this case, the observed liquid portion of the cloud cover featured a stable cloud top height with a gradually descending liquid cloud base and continuous ice precipitation. Then the ice precipitation intensity significantly decreased. A second decrease in ice precipitation intensity was observed a few hours later coinciding with the advection of a cirrus over the site. Through analysis of the data collected by extensive ground-based remote-sensing and in-situ observing systems as well as Nested Weather Research and Forecasting (WRF) simulations and ECMWF radiation scheme simulations, we try to shed light on the processes responsible for these rapid changes in precipitation rates. A variety of parameters such as the evolution of the internal dynamics and microphysics of the low-level mixed-phase cloud and the influence of the cirrus cloud are evaluated.

  7. Optically reconfigurable metasurfaces and photonic devices based on phase change materials

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Rogers, Edward T. F.; Gholipour, Behrad; Wang, Chih-Ming; Yuan, Guanghui; Teng, Jinghua; Zheludev, Nikolay I.

    2016-01-01

    Photonic components with adjustable parameters, such as variable-focal-length lenses or spectral filters, which can change functionality upon optical stimulation, could offer numerous useful applications. Tuning of such components is conventionally achieved by either micro- or nanomechanical actuation of their constituent parts, by stretching or by heating. Here, we report a novel approach for making reconfigurable optical components that are created with light in a non-volatile and reversible fashion. Such components are written, erased and rewritten as two-dimensional binary or greyscale patterns into a nanoscale film of phase-change material by inducing a refractive-index-changing phase transition with tailored trains of femtosecond pulses. We combine germanium-antimony-tellurium-based films with a diffraction-limited resolution optical writing process to demonstrate a variety of devices: visible-range reconfigurable bichromatic and multi-focus Fresnel zone plates, a super-oscillatory lens with subwavelength focus, a greyscale hologram, and a dielectric metamaterial with on-demand reflection and transmission resonances.

  8. Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.

    2016-12-01

    Chalcogenide-based nanostructured phase-change materials (PCMs) are considered promising building blocks for non-volatile memory due to their high write and read speeds, high data-storage density, and low power consumption. Top-down fabrication of PCM nanoparticles (NPs), however, often results in damage and deterioration of their useful properties. Gas-phase condensation based on magnetron sputtering offers an attractive and straightforward solution to continuously down-scale the PCMs into sub-lithographic sizes. Here we unprecedentedly present the size dependence of crystallization for Ge2Sb2Te5 (GST) NPs, whose production is currently highly challenging for chemical synthesis or top-down fabrication. Both amorphous and crystalline NPs have been produced with excellent size and composition control with average diameters varying between 8 and 17 nm. The size-dependent crystallization of these NPs was carefully analyzed through in-situ heating in a transmission electron microscope, where the crystallization temperatures (Tc) decrease when the NPs become smaller. Moreover, methane incorporation has been observed as an effective method to enhance the amorphous phase stability of the NPs. This work therefore elucidates that GST NPs synthesized by gas-phase condensation with tailored properties are promising alternatives in designing phase-change memories constrained by optical lithography limitations.

  9. Passive thermal management using phase change materials

    NASA Astrophysics Data System (ADS)

    Ganatra, Yash Yogesh

    The trend of enhanced functionality and reducing thickness of mobile devices has. led to a rapid increase in power density and a potential thermal bottleneck since. thermal limits of components remain unchanged. Active cooling mechanisms are not. feasible due to size, weight and cost constraints. This work explores the feasibility. of a passive cooling system based on Phase Change Materials (PCMs) for thermal. management of mobile devices. PCMs stabilize temperatures due to the latent heat. of phase change thus increasing the operating time of the device before threshold. temperatures are exceeded. The primary contribution of this work is the identification. of key parameters which influence the design of a PCM based thermal management. system from both the experiments and the numerical models. This work first identifies strategies for integrating PCMs in an electronic device. A. detailed review of past research, including experimental techniques and computational. models, yields key material properties and metrics to evaluate the performance of. PCMs. Subsequently, a miniaturized version of a conventional thermal conductivity. measurement technique is developed to characterize thermal resistance of PCMs. Further, latent heat and transition temperatures are also characterized for a wide. range of PCMs. In-situ measurements with PCMs placed on the processor indicate that some. PCMs can extend the operating time of the device by as much as a factor of 2.48. relative to baseline tests (with no PCMs). This increase in operating time is investigated. by computational thermal models that explore various integration locations, both at the package and device level.

  10. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    NASA Astrophysics Data System (ADS)

    Putra, Edy Giri Rachman; Patriati, Arum

    2015-04-01

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2-10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30-50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  11. Sub-nanometre resolution of atomic motion during electronic excitation in phase-change materials.

    PubMed

    Mitrofanov, Kirill V; Fons, Paul; Makino, Kotaro; Terashima, Ryo; Shimada, Toru; Kolobov, Alexander V; Tominaga, Junji; Bragaglia, Valeria; Giussani, Alessandro; Calarco, Raffaella; Riechert, Henning; Sato, Takahiro; Katayama, Tetsuo; Ogawa, Kanade; Togashi, Tadashi; Yabashi, Makina; Wall, Simon; Brewe, Dale; Hase, Muneaki

    2016-02-12

    Phase-change materials based on Ge-Sb-Te alloys are widely used in industrial applications such as nonvolatile memories, but reaction pathways for crystalline-to-amorphous phase-change on picosecond timescales remain unknown. Femtosecond laser excitation and an ultrashort x-ray probe is used to show the temporal separation of electronic and thermal effects in a long-lived (>100 ps) transient metastable state of Ge2Sb2Te5 with muted interatomic interaction induced by a weakening of resonant bonding. Due to a specific electronic state, the lattice undergoes a reversible nondestructive modification over a nanoscale region, remaining cold for 4 ps. An independent time-resolved x-ray absorption fine structure experiment confirms the existence of an intermediate state with disordered bonds. This newly unveiled effect allows the utilization of non-thermal ultra-fast pathways enabling artificial manipulation of the switching process, ultimately leading to a redefined speed limit, and improved energy efficiency and reliability of phase-change memory technologies.

  12. Sub-nanometre resolution of atomic motion during electronic excitation in phase-change materials

    DOE PAGES

    Mitrofanov, Kirill V.; Fons, Paul; Makino, Kotaro; ...

    2016-02-12

    Phase-change materials based on Ge-Sb-Te alloys are widely used in industrial applications such as nonvolatile memories, but reaction pathways for crystalline-to-amorphous phase-change on picosecond timescales remain unknown. Femtosecond laser excitation and an ultrashort x-ray probe is used to show the temporal separation of electronic and thermal effects in a long-lived (>100 ps) transient metastable state of Ge 2Sb 2Te 5 with muted interatomic interaction induced by a weakening of resonant bonding. Due to a specific electronic state, the lattice undergoes a reversible nondestructive modification over a nanoscale region, remaining cold for 4 ps. An independent time-resolved x-ray absorption fine structuremore » experiment confirms the existence of an intermediate state with disordered bonds. Furthermore, this newly unveiled effect allows the utilization of non-thermal ultra-fast pathways enabling artificial manipulation of the switching process, ultimately leading to a redefined speed limit, and improved energy efficiency and reliability of phase-change memory technologies.« less

  13. Cyclic phase change in a cylindrical thermal energy storage capsule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, M.; Mujumdar, A.S.; Weber, M.E.

    1983-12-01

    This paper is concerned with a practical melting/freezing problem in conjunction with the more realistic case of a cyclic phase change thermal energy storage device. In this model the phase change medium is encapsulated in long cylindrical tubes, the surface temperature of which is allowed to vary sinusoidally with time about the discrete freezing temperature. Initial temperature of the medium is assumed to be constant at a temperature above or below the freezing/melting temperature. Natural convection in the melt is assumed to be negligible and the variations in the depth of freezing and/or melting in each half cycle is ignored.more » Depending on the half-cycle parameters the problem is simplified to either freezing or melting. The governing one-dimensional heat diffusion equations for both phases are solved by the Finite Integral Transform techniques. The kernels for the transformation are the time-dependent eigen functions separately defined for each phases. This extended transform method can accomodate any time-dependent surface temperature variation. The application of the transform generated a series of coupled, nonlinear first order differential equations, which are solved by Runge Kutta-Verner fifth and sixth order method. Dimensionless solutions of temperature variations in both phases, fusion front position and the fraction solidified (or melted) are displayed graphically to aid in practical calculations. For the special case of a constant surface temperature, comparisons are made between the present results and the existing integral and purely numerical results. The results are found to compare favourably. Results for fractional solidification (or melting and interface position are also compared with the simple Conduction Shape Factor method, after allowing for the time-dependent boundary conditions. Once again the results agree reasonably well.« less

  14. Quantum criticality and duality in the Sachdev-Ye-Kitaev/AdS2 chain

    NASA Astrophysics Data System (ADS)

    Jian, Shao-Kai; Xian, Zhuo-Yu; Yao, Hong

    2018-05-01

    We show that the quantum critical point (QCP) between a diffusive metal and ferromagnetic (or antiferromagnetic) phases in the SYK chain has a gravitational description corresponding to the double-trace deformation in an AdS2 chain. Specifically, by studying a double-trace deformation of a Z2 scalar in an AdS2 chain where the Z2 scalar is dual to the order parameter in the SYK chain, we find that the susceptibility and renormalization group equation describing the QCP in the SYK chain can be exactly reproduced in the holographic model. Our results suggest that the infrared geometry in the gravity theory dual to the diffusive metal of the SYK chain is also an AdS2 chain. We further show that the transition in SYK model captures universal information about double-trace deformation in generic black holes with near horizon AdS2 space-time.

  15. Phase transitions in 3D gravity and fractal dimension

    NASA Astrophysics Data System (ADS)

    Dong, Xi; Maguire, Shaun; Maloney, Alexander; Maxfield, Henry

    2018-05-01

    We show that for three dimensional gravity with higher genus boundary conditions, if the theory possesses a sufficiently light scalar, there is a second order phase transition where the scalar field condenses. This three dimensional version of the holographic superconducting phase transition occurs even though the pure gravity solutions are locally AdS3. This is in addition to the first order Hawking-Page-like phase transitions between different locally AdS3 handlebodies. This implies that the Rényi entropies of holographic CFTs will undergo phase transitions as the Rényi parameter is varied, as long as the theory possesses a scalar operator which is lighter than a certain critical dimension. We show that this critical dimension has an elegant mathematical interpretation as the Hausdorff dimension of the limit set of a quotient group of AdS3, and use this to compute it, analytically near the boundary of moduli space and numerically in the interior of moduli space. We compare this to a CFT computation generalizing recent work of Belin, Keller and Zadeh, bounding the critical dimension using higher genus conformal blocks, and find a surprisingly good match.

  16. A low jitter PLL clock used for phase change memory

    NASA Astrophysics Data System (ADS)

    Xiao, Hong; Houpeng, Chen; Zhitang, Song; Daolin, Cai; Xi, Li

    2013-02-01

    A fully integrated low-jitter, precise frequency CMOS phase-locked loop (PLL) clock for the phase change memory (PCM) drive circuit is presented. The design consists of a dynamic dual-reset phase frequency detector (PFD) with high frequency acquisition, a novel low jitter charge pump, a CMOS ring oscillator based voltage-controlled oscillator (VCO), a 2nd order passive loop filter, and a digital frequency divider. The design is fabricated in 0.35 μm CMOS technology and consumes 20 mW from a supply voltage of 5 V. In terms of the PCM's program operation requirement, the output frequency range is from 1 to 140 MHz. For the 140 MHz output frequency, the circuit features a cycle-to-cycle jitter of 28 ps RMS and 250 ps peak-to-peak.

  17. Reactivation of the Pleistocene trans-Arabian Wadi ad Dawasir fluvial system (Saudi Arabia) during the Holocene humid phase

    NASA Astrophysics Data System (ADS)

    Matter, Albert; Mahjoub, Ayman; Neubert, Eike; Preusser, Frank; Schwalb, Antje; Szidat, Sönke; Wulf, Gerwin

    2016-10-01

    The Wadi ad Dawasir fluvial system in central Saudi Arabia is investigated using remote sensing and sedimentology, in combination with bio-proxy analyses (molluscs and ostracods). Age control is provided by radiocarbon as well as luminescence dating, using both quartz and feldspar grains. It is shown that the fluvial system was active from the Asir Mountains across the partially sand-covered interior of the Arabian Peninsula to the Arabian Gulf during the Holocene humid period. Sedimentology and faunal analysis reveal the presence of perennial streams and a permanent freshwater lake in the distal reach of the Dawasir system that are synchronous with fluvial accumulation in the headwaters of its major tributary, Wadi Tathlith. The increased runoff during the Holocene led to a re-activation of streams that largely followed pre-existing Late Pleistocene courses and eroded into older sediments. The absence of Holocene lakes in most of the Rub' al-Khali implies that trans-Arabian rivers were mainly fed by precipitation in the Asir Mountains. Monsoonal rainfall was apparently stronger there as well as in the northern, south-eastern and southern part of the Arabian Peninsula (southern Yemen and Oman), but it apparently did not directly affect the interior during the Holocene. The palaeoenvironmental reconstruction shows a narrow trans-Arabian green freshwater corridor as the result of phases of sustained flow lasting up to several centuries. The permanent availability of water and subsistence for wildlife provided a favourable environment for human occupation as documented by Neolithic stone tools that are found all along Wadi ad Dawasir.

  18. Adolescents’ Attitudes toward Anti-marijuana Ads, Usage Intentions, and Actual Marijuana Usage

    PubMed Central

    Alvaro, Eusebio M.; Crano, William D.; Siegel, Jason T.; Hohman, Zachary; Johnson, Ian; Nakawaki, Brandon

    2015-01-01

    The association of adolescents’ appraisals of the anti-marijuana television ads used in the National Youth Anti-drug Media Campaign with future marijuana use was investigated. The 12 to 18 year old respondents (N = 2993) were first classified as users, resolute nonusers, or vulnerable nonusers (Crano, Siegel, Alvaro, Lac, & Hemovich, 2008). Usage status and the covariates of gender, age, and attitudes toward marijuana were used to predict attitudes toward the ads (Aad) in the first phase of a multi-level linear analysis. All covariates were significantly associated with Aad, as was usage status: resolute nonusers evaluated the ads significantly more positively than vulnerable nonusers and users (all p < .001), who did not differ. In the second phase, the covariates along with Aad and respondents’ usage status predicted intentions and actual usage one year after initial measurement. The lagged analysis disclosed negative associations between Aad and usage intentions, and between Aad and actual marijuana use (both p < .05); however, this association held only for users (p < .01), not vulnerable or resolute nonusers. Users reporting more positive attitudes towards the ads were less likely to report intention to use marijuana and to continue marijuana use at 1-year follow-up. These findings may inform designers of persuasion-based prevention campaigns, guiding pre-implementation efforts in the design of ads that targeted groups find appealing and thus, influential. PMID:23528197

  19. Microencapsulated Phase-Change Materials For Storage Of Heat

    NASA Technical Reports Server (NTRS)

    Colvin, David P.

    1989-01-01

    Report describes research on engineering issues related to storage and transport of heat in slurries containing phase-change materials in microscopic capsules. Specific goal of project to develop lightweight, compact, heat-management systems used safely in inhabited areas of spacecraft. Further development of obvious potential of technology expected to lead to commercialization and use in aircraft, electronic equipment, machinery, industrial processes, and other sytems in which requirements for management of heat compete with severe restrictions on weight or volume.

  20. Threshold-voltage modulated phase change heterojunction for application of high density memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Baihan; Tong, Hao, E-mail: tonghao@hust.edu.cn; Qian, Hang

    2015-09-28

    Phase change random access memory is one of the most important candidates for the next generation non-volatile memory technology. However, the ability to reduce its memory size is compromised by the fundamental limitations inherent in the CMOS technology. While 0T1R configuration without any additional access transistor shows great advantages in improving the storage density, the leakage current and small operation window limit its application in large-scale arrays. In this work, phase change heterojunction based on GeTe and n-Si is fabricated to address those problems. The relationship between threshold voltage and doping concentration is investigated, and energy band diagrams and X-raymore » photoelectron spectroscopy measurements are provided to explain the results. The threshold voltage is modulated to provide a large operational window based on this relationship. The switching performance of the heterojunction is also tested, showing a good reverse characteristic, which could effectively decrease the leakage current. Furthermore, a reliable read-write-erase function is achieved during the tests. Phase change heterojunction is proposed for high-density memory, showing some notable advantages, such as modulated threshold voltage, large operational window, and low leakage current.« less

  1. Co-adding techniques for image-based wavefront sensing for segmented-mirror telescopes

    NASA Astrophysics Data System (ADS)

    Smith, J. S.; Aronstein, David L.; Dean, Bruce H.; Acton, D. S.

    2007-09-01

    Image-based wavefront sensing algorithms are being used to characterize the optical performance for a variety of current and planned astronomical telescopes. Phase retrieval recovers the optical wavefront that correlates to a series of diversity-defocused point-spread functions (PSFs), where multiple frames can be acquired at each defocus setting. Multiple frames of data can be co-added in different ways; two extremes are in "image-plane space," to average the frames for each defocused PSF and use phase retrieval once on the averaged images, or in "pupil-plane space," to use phase retrieval on each PSF frame individually and average the resulting wavefronts. The choice of co-add methodology is particularly noteworthy for segmented-mirror telescopes that are subject to noise that causes uncorrelated motions between groups of segments. Using models and data from the James Webb Space Telescope (JWST) Testbed Telescope (TBT), we show how different sources of noise (uncorrelated segment jitter, turbulence, and common-mode noise) and different parts of the optical wavefront, segment and global aberrations, contribute to choosing the co-add method. Of particular interest, segment piston is more accurately recovered in "image-plane space" co-adding, while segment tip/tilt is recovered in "pupil-plane space" co-adding.

  2. Molecular simulation of excess isotherm and excess enthalpy change in gas-phase adsorption.

    PubMed

    Do, D D; Do, H D; Nicholson, D

    2009-01-29

    We present a new approach to calculating excess isotherm and differential enthalpy of adsorption on surfaces or in confined spaces by the Monte Carlo molecular simulation method. The approach is very general and, most importantly, is unambiguous in its application to any configuration of solid structure (crystalline, graphite layer or disordered porous glass), to any type of fluid (simple or complex molecule), and to any operating conditions (subcritical or supercritical). The behavior of the adsorbed phase is studied using the partial molar energy of the simulation box. However, to characterize adsorption for comparison with experimental data, the isotherm is best described by the excess amount, and the enthalpy of adsorption is defined as the change in the total enthalpy of the simulation box with the change in the excess amount, keeping the total number (gas + adsorbed phases) constant. The excess quantities (capacity and energy) require a choice of a reference gaseous phase, which is defined as the adsorptive gas phase occupying the accessible volume and having a density equal to the bulk gas density. The accessible volume is defined as the mean volume space accessible to the center of mass of the adsorbate under consideration. With this choice, the excess isotherm passes through a maximum but always remains positive. This is in stark contrast to the literature where helium void volume is used (which is always greater than the accessible volume) and the resulting excess can be negative. Our definition of enthalpy change is equivalent to the difference between the partial molar enthalpy of the gas phase and the partial molar enthalpy of the adsorbed phase. There is no need to assume ideal gas or negligible molar volume of the adsorbed phase as is traditionally done in the literature. We illustrate this new approach with adsorption of argon, nitrogen, and carbon dioxide under subcritical and supercritical conditions.

  3. Silicon waveguide optical switch with embedded phase change material.

    PubMed

    Miller, Kevin J; Hallman, Kent A; Haglund, Richard F; Weiss, Sharon M

    2017-10-30

    Phase-change materials (PCMs) have emerged as promising active elements in silicon (Si) photonic systems. In this work, we design, fabricate, and characterize a hybrid Si-PCM optical switch. By integrating vanadium dioxide (a PCM) within a Si photonic waveguide, in a non-resonant geometry, we achieve ~10 dB broadband optical contrast with a PCM length of 500 nm using thermal actuation.

  4. The Testing Phase for the Small Unit Decision Making (SUDM) Assessment Battery

    DTIC Science & Technology

    2014-07-28

    on findings from the testing phase, several changes are recommended for the battery. First, it is recommended that self -report measures be separated...of a decision-making assessment battery. The five cognitive competencies are sensemaking, problem solving, adaptability, metacognition , and...flexibility, ambiguity tolerance, resilience, self -regulation, and self - awareness. We added the overarching construct of decision making and developed

  5. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing.

    PubMed

    Kuzum, Duygu; Jeyasingh, Rakesh G D; Lee, Byoungil; Wong, H-S Philip

    2012-05-09

    Brain-inspired computing is an emerging field, which aims to extend the capabilities of information technology beyond digital logic. A compact nanoscale device, emulating biological synapses, is needed as the building block for brain-like computational systems. Here, we report a new nanoscale electronic synapse based on technologically mature phase change materials employed in optical data storage and nonvolatile memory applications. We utilize continuous resistance transitions in phase change materials to mimic the analog nature of biological synapses, enabling the implementation of a synaptic learning rule. We demonstrate different forms of spike-timing-dependent plasticity using the same nanoscale synapse with picojoule level energy consumption.

  6. Refractive index modulation of Sb70Te30 phase-change thin films by multiple femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lei, Kai; Wang, Yang; Jiang, Minghui; Wu, Yiqun

    2016-05-01

    In this study, the controllable effective refractive index modulation of Sb70Te30 phase-change thin films between amorphous and crystalline states was achieved experimentally by multiple femtosecond laser pulses. The modulation mechanism was analyzed comprehensively by a spectral ellipsometer measurement, surface morphology observation, and two-temperature model calculations. We numerically demonstrate the application of the optically modulated refractive index of the phase-change thin films in a precisely adjustable color display. These results may provide further insights into ultrafast phase-transition mechanics and are useful in the design of programmable photonic and opto-electrical devices based on phase-change memory materials.

  7. Fatigue damage evaluation of short fiber CFRP based on phase information of thermoelastic temperature change

    NASA Astrophysics Data System (ADS)

    Sakagami, Takahide; Shiozawa, Daiki; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi

    2017-05-01

    Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to the evaluation of fatigue damage in short carbon fiber composites. The distributions of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damages was detected from distributions of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was clearly detected than ever by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the nature that carbon fiber show opposite phase thermoelastic temperature change.

  8. Change in generally accepted regularity of phase transformations of quartzite

    NASA Astrophysics Data System (ADS)

    Kukartsev, V. A.; Kukartsev, V. V.; Chzhan, E. A.; Tynchenko, V. S.; Stupina, A. A.

    2018-05-01

    The subject of this research is phasic transformations of quartzites that are under temperature treatment to remove moisture. This technology is used in enterprises operating melting furnaces. The studies have shown that using a temperature regime consisting in heating to 800° C and holding for 2 hours, after cooling, quartzite changes its color and appears a shift in the angle of the interplanar distances of the crystal lattice by 6.6% in it. The use of a temperature treatment regime consisting in heating to 200° C and holding for 4 hours does not reveal such changes. With subsequent exposure to these samples of the temperature regime corresponding to the sintering process of the liner, the following is established. In a sample pretreated with a temperature of 800° C, at a temperature of 1550° C, a tridymite phase appears. In the sample of a 200° C pretreated with temperature, a phase of cristobalite appears without tridymite.

  9. Effect of Heat Treatment on Mechanical Properties and Phase Composition of Magnesium-Aluminum Composite Prepared by Explosive Welding

    NASA Astrophysics Data System (ADS)

    Arisova, V. N.; Trykov, Yu. P.; Slautin, O. V.; Ponomareva, I. A.; Kondakov, A. E.

    2015-09-01

    Results are given for a study of the effect of heat treatment regimes on the nature of change in micromechanical properties and phase composition of magnesium-aluminum composite material AD1-MA2-1 prepared by explosive welding.

  10. Adding intelligence to mobile asset management in hospitals: the true value of RFID.

    PubMed

    Castro, Linda; Lefebvre, Elisabeth; Lefebvre, Louis A

    2013-10-01

    RFID (Radio Frequency Identification) technology is expected to play a vital role in the healthcare arena, especially in times when cost containments are at the top of the priorities of healthcare management authorities. Medical equipment represents a significant share of yearly healthcare operational costs; hence, ensuring an effective and efficient management of such key assets is critical to promptly and reliably deliver a diversity of clinical services at the patient bedside. Empirical evidence from a phased-out RFID implementation in one European hospital demonstrates that RFID has the potential to transform asset management by improving inventory management, enhancing asset utilization, increasing staff productivity, improving care services, enhancing maintenance compliance, and increasing information visibility. Most importantly, RFID allows the emergence of intelligent asset management processes, which is, undoubtedly, the most important benefit that could be derived from the RFID system. Results show that the added intelligence can be rather basic (auto-status change) or a bit more advanced (personalized automatic triggers). More importantly, adding intelligence improves planning and decision-making processes.

  11. Integrating Phase-Change Materials into Automotive Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Klein Altstedde, Mirko; Rinderknecht, Frank; Friedrich, Horst

    2014-06-01

    Because the heat emitted by conventional combustion-engine vehicles during operation has highly transient properties, automotive thermoelectric generators (TEG) are intended for a particular operating state (design point). This, however, leads to two problems. First, whenever the combustion engine runs at low load, the maximum operating temperature cannot be properly utilised; second, a combustion engine at high load requires partial diversion of exhaust gas away from the TEG to protect the thermoelectric modules. An attractive means of stabilising dynamic exhaust behaviour (thereby keeping the TEG operating status at the design point for as long as possible) is use of latent heat storage, also known as phase-change materials (PCM). By positioning PCM between module and exhaust heat conduit, and choosing a material with a phase-change temperature matching the module's optimum operating temperature, it can be used as heat storage. This paper presents results obtained during examination of the effect of integration of latent heat storage on the potential of automotive TEG to convert exhaust heat. The research resulted in the development of a concept based on the initial integration idea, followed by proof of concept by use of a specially created prototype. In addition, the potential amount of energy obtained by use of a PCM-equipped TEG was calculated. The simulations indicated a significant increase in electrical energy was obtained in the selected test cycle.

  12. Analysis of wallboard containing a phase change material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomlinson, J.J.; Heberle, D.P.

    1990-01-01

    Phase change materials (PCMs) used on the interior of buildings hold the promise for improved thermal performance by reducing the energy requirements for space conditioning and by improving thermal comfort by reducing temperature swings inside the building. Efforts are underway to develop a gypsum wallboard containing a hydrocarbon PCM. With a phase change temperature in the room temperature range, the PCM wallboard adds substantially to the thermal mass of the building while serving the same architectural function as conventional wallboard. To determine the thermal and economic performance of this PCM wallboard, the Transient Systems Simulation Program (TRNSYS) was modified tomore » accommodate walls that are covered with PCM plasterboard, nd to apportion the direct beam solar radiation to interior surfaces of a building. The modified code was used to simulate the performance of conventional and direct-gain passive solar residential-sized buildings with and without PCM wallboard. Space heating energy savings were determined as a function of PCM wallboard characteristics. Thermal comfort improvements in buildings containing the PCM were qualified in terms of energy savings. The report concludes with a present worth economic analysis of these energy savings and arrives at system costs and economic payback based on current costs of PCMs under study for the wallboard application. 5 refs., 4 figs., 4 tabs.« less

  13. Ab Initio Molecular-Dynamics Simulation of Neuromorphic Computing in Phase-Change Memory Materials.

    PubMed

    Skelton, Jonathan M; Loke, Desmond; Lee, Taehoon; Elliott, Stephen R

    2015-07-08

    We present an in silico study of the neuromorphic-computing behavior of the prototypical phase-change material, Ge2Sb2Te5, using ab initio molecular-dynamics simulations. Stepwise changes in structural order in response to temperature pulses of varying length and duration are observed, and a good reproduction of the spike-timing-dependent plasticity observed in nanoelectronic synapses is demonstrated. Short above-melting pulses lead to instantaneous loss of structural and chemical order, followed by delayed partial recovery upon structural relaxation. We also investigate the link between structural order and electrical and optical properties. These results pave the way toward a first-principles understanding of phase-change physics beyond binary switching.

  14. Spinning AdS loop diagrams: two point functions

    NASA Astrophysics Data System (ADS)

    Giombi, Simone; Sleight, Charlotte; Taronna, Massimo

    2018-06-01

    We develop a systematic approach to evaluating AdS loop amplitudes with spinning legs based on the spectral (or "split") representation of bulk-to-bulk propagators, which re-expresses loop diagrams in terms of spectral integrals and higher-point tree diagrams. In this work we focus on 2pt one-loop Witten diagrams involving totally symmetric fields of arbitrary mass and integer spin. As an application of this framework, we study the contribution to the anomalous dimension of higher-spin currents generated by bubble diagrams in higher-spin gauge theories on AdS.

  15. Holography in Lovelock Chern-Simons AdS gravity

    NASA Astrophysics Data System (ADS)

    Cvetković, Branislav; Miskovic, Olivera; Simić, Dejan

    2017-08-01

    We analyze holographic field theory dual to Lovelock Chern-Simons anti-de Sitter (AdS) gravity in higher dimensions using first order formalism. We first find asymptotic symmetries in the AdS sector showing that they consist of local translations, local Lorentz rotations, dilatations and non-Abelian gauge transformations. Then, we compute 1-point functions of energy-momentum and spin currents in a dual conformal field theory and write Ward identities. We find that the holographic theory possesses Weyl anomaly and also breaks non-Abelian gauge symmetry at the quantum level.

  16. Handbook for Local Coordinators: Value-Added, Compact Disk, Union Catalog Test Phase.

    ERIC Educational Resources Information Center

    Townley, Charles

    In 1988, the Associated College Libraries of Central Pennsylvania received a grant to create a value-added, compact disk, union catalog from the U.S. Department of Education's College Library Technology and Cooperative Grants Program, Title II of the Higher Education Act. Designed to contain, in time, 2,000,830 records from 17 member library…

  17. Three-dimensional numerical study of laminar confined slot jet impingement cooling using slurry of nano-encapsulated phase change material

    NASA Astrophysics Data System (ADS)

    Mohib Ur Rehman, M.; Qu, Z. G.; Fu, R. P.

    2016-10-01

    This Article presents a three dimensional numerical model investigating thermal performance and hydrodynamics features of the confined slot jet impingement using slurry of Nano Encapsulated Phase Change Material (NEPCM) as a coolant. The slurry is composed of water as a base fluid and n-octadecane NEPCM particles with mean diameter of 100nm suspended in it. A single phase fluid approach is employed to model the NEPCM slurry.The thermo physical properties of the NEPCM slurry are computed using modern approaches being proposed recently and governing equations are solved with a commercial Finite Volume based code. The effects of jet Reynolds number varying from 100 to 600 and particle volume fraction ranging from 0% to 28% are considered. The computed results are validated by comparing Nusselt number values at stagnation point with the previously published results with water as working fluid. It was found that adding NEPCM to the base fluid results with considerable amount of heat transfer enhancement.The highest values of heat transfer coefficients are observed at H/W=4 and Cm=0.28. However, due to the higher viscosity of slurry compared with the base fluid, the slurry can produce drastic increase in pressure drop of the system that increases with NEPCM particle loading and jet Reynolds number.

  18. Gauge boson exchange in AdS d+1

    NASA Astrophysics Data System (ADS)

    D'Hoker, Eric; Freedman, Daniel Z.

    1999-04-01

    We study the amplitude for exchange of massless gauge bosons between pairs of massive scalar fields in anti-de Sitter space. In the AdS/CFT correspondence this amplitude describes the contribution of conserved flavor symmetry currents to 4-point functions of scalar operators in the boundary conformal theory. A concise, covariant, Y2K compatible derivation of the gauge boson propagator in AdS d + 1 is given. Techniques are developed to calculate the two bulk integrals over AdS space leading to explicit expressions or convenient, simple integral representations for the amplitude. The amplitude contains leading power and sub-leading logarithmic singularities in the gauge boson channel and leading logarithms in the crossed channel. The new methods of this paper are expected to have other applications in the study of the Maldacena conjecture.

  19. Surfactant effects on interfacial flow and thermal transport processes during phase change in film boiling

    NASA Astrophysics Data System (ADS)

    Premnath, Kannan N.; Hajabdollahi, Farzaneh; Welch, Samuel W. J.

    2018-04-01

    The presence of surfactants in two-phase flows results in the transport and adsorption of surfactants to the interface, and the resulting local interfacial concentration significantly influences the surface tension between the liquid and vapor phases in a fluid undergoing phase change. This computational study is aimed at understanding and elucidating the mechanisms of enhanced flows and thermal transport processes in film boiling due to the addition of surfactants. A change in surface tension results in a change in the critical Rayleigh-Taylor wavelength leading to different bubble release patterns and a change in the overall heat transfer rates. Due to the presence of surfactants, an additional transport mechanism of the Marangoni convection arises from the resulting tangential gradients in the surfactant concentration along the phase interface. Our computational approach to study such phenomena consists of representing the interfacial motion by means of the coupled level set-volume-of-fluid method, the fluid motion via the classical marker-and-cell approach, as well as representations for the bulk transport of energy and surfactants, in conjunction with a phase change model and an interfacial surfactant model. Using such an approach, we perform numerical simulations of surfactant-laden single mode as well as multiple mode film boiling and study the effect of surfactants on the transport processes in film boiling, including bubble release patterns, vapor generation rates, and heat transfer rates at different surfactant concentrations. The details of the underlying mechanisms will be investigated and interpreted.

  20. Effect of added weight on landing kinematics in jumping horses.

    PubMed

    Clayton, H M

    1997-05-01

    Six event horses jumped a 1.10 m high table fence 4 times under each of 2 conditions; the rider weight condition involved carrying the weight of the rider and saddle (61 kg), whereas the added weight condition included an additional 18 kg weight cloth. Sagittal view, 60 Hz video recordings were analysed using standard methods. Comparisons between the rider weight and added weight conditions using paired t tests (P<0.05) showed a number of significant differences. In the added weight condition the leading forelimb landed closer to the fence, and there were increases in the maximal extension of the fetlock and carpal joints in this limb during the landing phase. In the first departure stride, the stance durations of both hindlimbs increased, and the advanced placement between them was reduced for the added weight condition. The head was significantly further ahead of the vertical in the added weight condition at the instants of ground contact of the TrH, LdH and TrF in the first departure stride.

  1. Investigations of effect of phase change mass transfer rate on cavitation process with homogeneous relaxation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhixia; Zhang, Liang; Saha, Kaushik

    The super high fuel injection pressure and micro size of nozzle orifice has been an important development trend for the fuel injection system. Accordingly, cavitation transient process, fuel compressibility, amount of noncondensable gas in the fuel and cavitation erosion have attracted more attention. Based on the fact of cavitation in itself is a kind of thermodynamic phase change process, this paper takes the perspective of the cavitation phase change mass transfer process to analyze above mentioned phenomenon. The two-phase cavitating turbulent flow simulations with VOF approach coupled with HRM cavitation model and U-RANS of standard k-ε turbulence model were performedmore » for investigations of cavitation phase change mass transfer process. It is concluded the mass transfer time scale coefficient in the Homogenous Relaxation Model (HRM) representing mass transfer rate should tend to be as small as possible in a condition that ensured the solver stable. At very fast mass transfer rate, the phase change occurs at very thin interface between liquid and vapor phase and condensation occurs more focused and then will contribute predictably to a more serious cavitation erosion. Both the initial non-condensable gas in fuel and the fuel compressibility can accelerate the cavitation mass transfer process.« less

  2. Temporal Change of Seismic Earth's Inner Core Phases: Inner Core Differential Rotation Or Temporal Change of Inner Core Surface?

    NASA Astrophysics Data System (ADS)

    Yao, J.; Tian, D.; Sun, L.; Wen, L.

    2017-12-01

    Since Song and Richards [1996] first reported seismic evidence for temporal change of PKIKP wave (a compressional wave refracted in the inner core) and proposed inner core differential rotation as its explanation, it has generated enormous interests in the scientific community and the public, and has motivated many studies on the implications of the inner core differential rotation. However, since Wen [2006] reported seismic evidence for temporal change of PKiKP wave (a compressional wave reflected from the inner core boundary) that requires temporal change of inner core surface, both interpretations for the temporal change of inner core phases have existed, i.e., inner core rotation and temporal change of inner core surface. In this study, we discuss the issue of the interpretation of the observed temporal changes of those inner core phases and conclude that inner core differential rotation is not only not required but also in contradiction with three lines of seismic evidence from global repeating earthquakes. Firstly, inner core differential rotation provides an implausible explanation for a disappearing inner core scatterer between a doublet in South Sandwich Islands (SSI), which is located to be beneath northern Brazil based on PKIKP and PKiKP coda waves of the earlier event of the doublet. Secondly, temporal change of PKIKP and its coda waves among a cluster in SSI is inconsistent with the interpretation of inner core differential rotation, with one set of the data requiring inner core rotation and the other requiring non-rotation. Thirdly, it's not reasonable to invoke inner core differential rotation to explain travel time change of PKiKP waves in a very small time scale (several months), which is observed for repeating earthquakes in Middle America subduction zone. On the other hand, temporal change of inner core surface could provide a consistent explanation for all the observed temporal changes of PKIKP and PKiKP and their coda waves. We conclude that

  3. Non-alcoholic fatty liver disease induces signs of Alzheimer's disease (AD) in wild-type mice and accelerates pathological signs of AD in an AD model.

    PubMed

    Kim, Do-Geun; Krenz, Antje; Toussaint, Leon E; Maurer, Kirk J; Robinson, Sudie-Ann; Yan, Angela; Torres, Luisa; Bynoe, Margaret S

    2016-01-05

    Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease afflicting about one third of the world's population and 30 % of the US population. It is induced by consumption of high-lipid diets and is characterized by liver inflammation and subsequent liver pathology. Obesity and consumption of a high-fat diet are known to increase the risk of Alzheimer's disease (AD). Here, we investigated NAFLD-induced liver inflammation in the pathogenesis of AD. WT and APP-Tg mice were fed with a standard diet (SD) or a high-fat diet (HFD) for 2, 5 months, or 1 year to induce NAFLD. Another set of APP-Tg mice were removed from HFD after 2 months and put back on SD for 3 months. During acute phase NAFLD, WT and APP-Tg mice developed significant liver inflammation and pathology that coincided with increased numbers of activated microglial cells in the brain, increased inflammatory cytokine profile, and increased expression of toll-like receptors. Chronic NAFLD induced advanced pathological signs of AD in both WT and APP-Tg mice, and also induced neuronal apoptosis. We observed decreased brain expression of low-density lipoprotein receptor-related protein-1 (LRP-1) which is involved in β-amyloid clearance, in both WT and APP-Tg mice after ongoing administration of the HFD. LRP-1 expression correlated with advanced signs of AD over the course of chronic NAFLD. Removal of mice from HFD during acute NAFLD reversed liver pathology, decreased signs of activated microglial cells and neuro-inflammation, and decreased β-amyloid plaque load. Our findings indicate that chronic inflammation induced outside the brain is sufficient to induce neurodegeneration in the absence of genetic predisposition.

  4. Study of large nonlinear change phase in Hibiscus Sabdariffa

    NASA Astrophysics Data System (ADS)

    Trejo-Durán, M.; Alvarado-Méndez, E.; Andrade-Lucio, J. A.; Rojas-Laguna, R.; Vázquez-Guevara, M. A.

    2015-09-01

    High intensities electromagnetic energy interacting with organic media gives rise to nonlinear optical effects. Hibiscus Sabdariffa is a flower whose concentrated solution presents interesting nonlinear optical properties. This organic material shows an important self-phase modulation with changes bigger than 2π. We present a diffraction ring patterns study of the Hibiscus Sabdariffa solution. Numerical results of transmittance, with refraction and simultaneous absorption, are shown.

  5. The Mechanics of Deep Earthquakes: An Experimental Investigation of Slab Phase Changes

    NASA Astrophysics Data System (ADS)

    Santangeli, J. R.; Dobson, D. P.; Hunt, S. A.; Meredith, P. G.

    2014-12-01

    The mechanics of deep earthquakes have remained a puzzle for researchers since 1928 when they were first accurately identified by Kiyoo Wadati1 in Japan. Deep earthquakes show a split distribution, with peaks centered around ~370-420km and ~520-550km. As these events are limited to subducting slabs, it is accepted that they may be due to phase changes in metastable slab material. Indeed, conditions at ~350km depth are nominally appropriate for the olivine - wadsleyite transition, consistent with the anticrack mechanism previously observed in (Mg,Fe)2SiO42. The additional peak around 520km suggests that there is another siesmogenic phase change; candidates include Ca-garnet -> Ca-perovskite, wadsleyite -> ringwoodite and enstatite -> majorite or ilmenite. Importantly, for large scale seismogenesis to occur candidate phase changes must be susceptible to a runaway mechanism. Typically this involves the release of heat during exothermic reactions, which acts to increase reaction and nucleation rates. It is worth noting that the post-spinel reaction (sp -> pv + fp) marks the cessation of deep earthquakes; possibly as a result of being endothermic. This research aims to identify which of these candidates could be responsible for seismogenesis. We use high-pressure split cylinder multi-anvil experiments with acoustic emission detection. Low-pressure analogue materials have been used to allow greater cell sizes and thus sample volumes to enable accurate location of AE to within the sample. The candidate phase is annealed below its phase boundary, and then taken through the boundary by further compression. Acoustic emissions, if generated, are observed in real time and later processed to ensure they emanate from within the sample volume. Initial results indicate that the pryroxene -> ilmenite transition in MgGeO3 is seismogenic, with several orders of magnitude increase in the energy of AE concurrent with the phase boundary. References:1) Wadati, K. (1928) Shallow and deep

  6. Next-Generation A/D Sampler ADS3000+ for VLBI2010

    NASA Technical Reports Server (NTRS)

    Takefuji, Kazuhiro; Takeuchi, Hiroshi; Tsutsumi, Masanori; Koyama, Yasuhiro

    2010-01-01

    A high-speed A/D sampler, called ADS3000+, has been developed in 2008, which can sample one analog signal up to 4 Gbps to versatile Linux PC. After A/D conversion, the ADS3000+ can perform digital signal processing such as real-time DBBC (Digital Base Band Conversion) and FIR filtering such as simple CW RFI filtering using the installed FPGAs. A 4 Gsps fringe test with the ADS3000+ has been successfully performed. The ADS3000+ will not exclusively be used for VLBI but will also be employed in other applications.

  7. Estuary 2100 Project, Phase 1: Resilient Watersheds for a Changing Climate

    EPA Pesticide Factsheets

    Information about the SFBWQP Estuary 2100 Project, Phase 1: Resilient Watersheds for a Changing Climate , part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  8. Enhancing robustness of interdependent network by adding connectivity and dependence links

    NASA Astrophysics Data System (ADS)

    Cui, Pengshuai; Zhu, Peidong; Wang, Ke; Xun, Peng; Xia, Zhuoqun

    2018-05-01

    Enhancing robustness of interdependent networks by adding connectivity links has been researched extensively, however, few of them are focusing on adding both connectivity and dependence links to enhance robustness. In this paper, we aim to study how to allocate the limited costs reasonably to add both connectivity and dependence links. Firstly, we divide the attackers into stubborn attackers and smart attackers according to whether would they change their attack modes with the changing of network structure; Then by simulations, link addition strategies are given separately according to different attackers, with which we can allocate the limited costs to add connectivity links and dependence links reasonably and achieve more robustness than only adding connectivity links or dependence links. The results show that compared to only adding connectivity links or dependence links, allocating the limited resources reasonably and adding both connectivity links and dependence links could bring more robustness to the interdependent networks.

  9. A Liquid-Liquid Thermoelectric Heat Exchanger as a Heat Pump for Testing Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik B.; Makinen, Janice; Le, Hung V.

    2016-01-01

    The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.

  10. Method for preparing polyolefin composites containing a phase change material

    DOEpatents

    Salyer, Ival O.

    1990-01-01

    A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein. The composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

  11. Multiresponsive Graphene-Aerogel-Directed Phase-Change Smart Fibers.

    PubMed

    Li, Guangyong; Hong, Guo; Dong, Dapeng; Song, Wenhui; Zhang, Xuetong

    2018-06-14

    Wearable devices and systems demand multifunctional units with intelligent and integrative functions. Smart fibers with response to external stimuli, such as electrical, thermal, and photonic signals, etc., as well as offering energy storage/conversion are essential units for wearable electronics, but still remain great challenges. Herein, flexible, strong, and self-cleaning graphene-aerogel composite fibers, with tunable functions of thermal conversion and storage under multistimuli, are fabricated. The fibers made from porous graphene aerogel/organic phase-change materials coated with hydrophobic fluorocarbon resin render a wide range of phase transition temperature and enthalpy (0-186 J g -1 ). The strong and compliant fibers are twisted into yarn and woven into fabrics, showing a self-clean superhydrophobic surface and excellent multiple responsive properties to external stimuli (electron/photon/thermal) together with reversible energy storage and conversion. Such aerogel-directed smart fibers promise for broad applications in the next-generation of wearable systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. An ultra-fast optical shutter exploiting total light absorption in a phase change material

    NASA Astrophysics Data System (ADS)

    Jafari, Mohsen; Guo, L. Jay; Rais-Zadeh, Mina

    2017-02-01

    In this paper, we present an ultra-fast and high-contrast optical shutter with applications in atomic clock assemblies, integrated photonic systems, communication hardware, etc. The shutter design exploits the total light absorption phenomenon in a thin phase change (PC) material placed over a metal layer. The shutter switches between ON and OFF states by changing PC material phase and thus its refractive index. The PC material used in this work is Germanium Telluride (GeTe), a group IV-VI chalcogenide compound, which exhibits good optical contrast when switching from amorphous to crystalline state and vice versa. The stable phase changing behavior and reliability of GeTe and GeSbTe (GST) have been verified in optical memories and RF switches. Here, GeTe is used as it has a lower extinction coefficient in near-IR regions compared to GST. GeTe can be thermally transitioned between two phases by applying electrical pulses to an integrated heater. The memory behavior of GeTe results in zero static power consumption which is useful in applications requiring long time periods between switching activities. We previously demonstrated a meta-surface employing GeTe in sub-wavelength slits with >14 dB isolation at 1.5 μm by exciting the surface plasmon polariton and localized slit resonances. In this work, strong interference effects in a thin layer of GeTe over a gold mirror result in near total light absorption of up to 40 dB (21 dB measured) in the amorphous phase of the shutter at 780 nm with much less fabrication complexity. The optical loss at the shutter ON state is less than 1.5 dB. A nickel chrome (NiCr) heater provides the Joule heating energy required to achieve the crystallographic phase change. The measured switching speed is 2 μs.

  13. Early-Phase 11C-PiB PET in Amyloid Angiopathy-Related Symptomatic Cerebral Hemorrhage: Potential Diagnostic Value?

    PubMed Central

    Aigbirhio, Franklin I.; Fryer, Tim D.; Menon, David K.; Warburton, Elizabeth A.; Baron, Jean-Claude

    2015-01-01

    Although late-phase (>35min post-administration) 11C-PiB-PET has good sensitivity in cerebral amyloid angiopathy (CAA), its specificity is poor due to frequently high uptake in healthy aged subjects. By detecting perfusion-like abnormalities, early-phase 11C-PiB-PET might add diagnostic value. Early-frame (1–6min) 11C-PiB-PET was obtained in 11 non-demented patients with probable CAA-related symptomatic lobar intracerebral haemorrhage (70±7yrs), 9 age-matched healthy controls (HCs) and 10 HCs <55yrs. There was a significant decrease in early-phase atrophy-corrected whole-cortex SUV relative to cerebellar vermis (SUVR) in the CAA vs age-matched HC group. None of the age-matched controls fell below the lower 95% confidence limit derived from the young HCs, while 6/11 CAA patients did (sensitivity = 55%, specificity = 100%). Combining both early- and late-phase 11C-PiB data did not change the sensitivity and specificity of late-phase PiB, but combined early- and late-phase positivity entails a very high suspicion of underlying Aβ-related clinical disorder, i.e., CAA or Alzheimer disease (AD). In order to clarify this ambiguity, we then show that the occipital/posterior cingulate ratio is markedly lower in CAA than in AD (N = 7). These pilot data suggest that early-phase 11C-PiB-PET may not only add to late-phase PiB-PET with respect to the unclear situation of late-phase positivity, but also help differentiate CAA from AD. PMID:26439113

  14. Influence of the local structure in phase-change materials on their dielectric permittivity.

    PubMed

    Shportko, Kostiantyn V; Venger, Eugen F

    2015-01-01

    Ge-Sb-Te alloys, which belong to the phase-change materials, are promising materials for data storage and display and data visualization applications due to their unique properties. This includes a remarkable difference of their electrical and optical properties in the amorphous and crystalline state. Pronounced change of optical properties for Ge-Sb-Te alloys is linked to the different bonding types and different atomic arrangements in amorphous and crystalline states. The dielectric function of phase-change materials has been investigated in the far infrared (FIR) range. Phonons have been detected by FTIR spectroscopy. Difference of the dispersion of the dielectric permittivity of amorphous and crystalline samples is caused by different structures in different states which contribute to the dielectric permittivity.

  15. Ti-Sb-Te alloy: a candidate for fast and long-life phase-change memory.

    PubMed

    Xia, Mengjiao; Zhu, Min; Wang, Yuchan; Song, Zhitang; Rao, Feng; Wu, Liangcai; Cheng, Yan; Song, Sannian

    2015-04-15

    Phase-change memory (PCM) has great potential for numerous attractive applications on the premise of its high-device performances, which still need to be improved by employing a material with good overall phase-change properties. In respect to fast speed and high endurance, the Ti-Sb-Te alloy seems to be a promising candidate. Here, Ti-doped Sb2Te3 (TST) materials with different Ti concentrations have been systematically studied with the goal of finding the most suitable composition for PCM applications. The thermal stability of TST is improved dramatically with increasing Ti content. The small density change of T0.32Sb2Te3 (2.24%), further reduced to 1.37% for T0.56Sb2Te3, would greatly avoid the voids generated at phase-change layer/electrode interface in a PCM device. Meanwhile, the exponentially diminished grain size (from ∼200 nm to ∼12 nm), resulting from doping more and more Ti, enhances the adhesion between phase-change film and substrate. Tests of TST-based PCM cells have demonstrated a fast switching rate of ∼10 ns. Furthermore, because of the lower thermal conductivities of TST materials, compared with Sb2Te3-based PCM cells, T0.32Sb2Te3-based ones exhibit lower required pulse voltages for Reset operation, which largely decreases by ∼50% for T0.43Sb2Te3-based ones. Nevertheless, the operation voltages for T0.56Sb2Te3-based cells dramatically increase, which may be due to the phase separation after doping excessive Ti. Finally, considering the decreased resistance ratio, TixSb2Te3 alloy with x around 0.43 is proved to be a highly promising candidate for fast and long-life PCM applications.

  16. Phase change in CoTi2 induced by MeV electron irradiation

    NASA Astrophysics Data System (ADS)

    Zensho, Akihiro; Sato, Kazuhisa; Yasuda, Hidehiro; Mori, Hirotaro

    2018-07-01

    The phase change induced by MeV electron irradiation in the intermetallic compound E93-CoTi2 was investigated using high-voltage electron microscopy. Under MeV electron irradiation, CoTi2 was first transformed into an amorphous phase and, with continued irradiation, crystallite formation in the amorphous phase (i.e. formation of crystallites of a solid-solution phase within the amorphous phase) was induced. The critical temperature for amorphisation was around 250 K. The total dose (dpa) required for crystallite formation (i.e. that required for partial crystallisation) was high (i.e. 27-80 dpa) and, even after prolonged irradiation, the amorphous phase was retained in the irradiated sample. Such partial crystallisation behaviour of amorphous Co33Ti67 was clearly different from the crystallisation behaviour (i.e. amorphous-to-solid solution, polymorphous transformation) of amorphous Cr67Ti33 reported in the literature. A possible cause of the difference is discussed.

  17. Changes in apple liquid phase concentration throughout equilibrium in osmotic dehydration.

    PubMed

    Barat, J M; Barrera, C; Frías, J M; Fito, P

    2007-03-01

    Previous results on apple tissue equilibration during osmotic dehydration showed that, at very long processing times, the solute concentrations of the fruit liquid phase and the osmotic solution were the same. In the present study, changes in apple liquid phase composition throughout equilibrium in osmotic dehydration were analyzed and modeled. Results showed that, by the time osmosed samples reached the maximum weight and volume loss, solute concentration of the fruit liquid phase was higher than that of the osmotic solution. The reported overconcentration could be explained in terms of the apple structure shrinkage that occurred during the osmotic dehydration with highly concentrated osmotic solutions due to the elastic response of the food structure to the loss of water and intake of solutes. The fruit liquid phase overconcentration rate was observed to depend on the concentration of the osmotic solution, the processing temperature, the sample size, and shape of the cellular tissue.

  18. Simultaneous thermal stability and phase change speed improvement of Sn15Sb85 thin film through erbium doping

    NASA Astrophysics Data System (ADS)

    Zou, Hua; Zhu, Xiaoqin; Hu, Yifeng; Sui, Yongxing; Sun, Yuemei; Zhang, Jianhao; Zheng, Long; Song, Zhitang

    2016-12-01

    In general, there is a trade off between the phase change speed and thermal stability in chalcogenide phase change materials, which leads to sacrifice the one in order to ensure the other. For improving the performance, doping is a widely applied technological process. Here, we fabricated Er doped Sn15Sb85 thin films by magnetron sputtering. Compared with the pure Sn15Sb85, we show that Er doped Sn15Sb85 thin films exhibit simultaneous improvement over the thermal stability and the phase change speed. Thus, our results suggest that Er doping provides the opportunity to solve the contradiction. The main reason for improvement of both thermal stability and crystallization speed is due to the existence of Er-Sb and Er-Sn bonds in Er doped Sn15Sb85 films. Hence, Er doped Sn15Sb85 thin films are promising candidates for the phase change memory application, and this method could be extended to other lanthanide-doped phase change materials.

  19. Thermal properties of lauric acid filled in carbon nanotubes as shape-stabilized phase change materials.

    PubMed

    Feng, Yanhui; Wei, Runzhi; Huang, Zhi; Zhang, Xinxin; Wang, Ge

    2018-03-14

    Carbon nanotubes (CNTs) filled with lauric acid (LA) as a kind of shape-stabilized phase change material were prepared and their structures and phase change properties were characterized. The results showed that the melting point and latent heat of LA confined in carbon nanotubes were lower than those of the bulk material, and both decrease as the diameters of CNTs and the filling ratios of LA decrease. Molecular dynamics (MD) simulations indicated that LA molecules form a liquid layer near pore walls and crystallize at the pore center. When the LA filling ratio was reduced to a certain value, all LA molecules were attached to the inner walls of CNTs, hindering their crystallization. A linear relationship between the melting temperature shift and structural properties was obtained based on the modified Gibbs-Thomson equation, which gives a reliable interpretation of the size effect of nanochannels in phase change materials. We also found that the thermal conductivity of the composite CNTs/LA was four times larger than that of pure LA. This study will provide insights into the design of novel composite phase change materials with better thermal properties by the selection of suitable porous materials and tailoring their pore structures.

  20. Silica phase changes: Diagenetic agent for oil entrapment, Lost Hills field, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julander, D.R.; Szymanski, D.L.

    1991-02-01

    The siliceous shales of the Monterey Group are the primary development target at Lost Hills. Silica phase changes have influenced the distribution and entrapment of hydrocarbons. With increasing temperature, opal A phase diatomite is converted to opal CT and finally quartz phase rock. All phases are low in permeability. The opal A diatomite is characteristically high in oil saturation and productive saturation. Productivity from this phase is dependent on structural position and fieldwide variations in oil viscosity and biodegradation. The deeper chert reservoir coincides with the opal CT to quartz phase transition. Porosity is again reduced in this transition, butmore » saturations in the quartz phase rocks increase. Tests in the chert reservoir indicate a single, low-permeability system, suggesting the importance of matric contribution. resistivity and porosity in the diatomite, and resistivity and velocity in the chert, are the physical properties which best reflect saturation. Methods exploiting these properties (FMS, BHTV, borehole, and surface shear wave studies) should be helpful in further characterizing the reservoirs and identifying future pay.« less

  1. Numerical Modeling of Three-Dimensional Fluid Flow with Phase Change

    NASA Technical Reports Server (NTRS)

    Esmaeeli, Asghar; Arpaci, Vedat

    1999-01-01

    We present a numerical method to compute phase change dynamics of three-dimensional deformable bubbles. The full Navier-Stokes and energy equations are solved for both phases by a front tracking/finite difference technique. The fluid boundary is explicitly tracked by discrete points that are connected by triangular elements to form a front that is used to keep the stratification of material properties sharp and to calculate the interfacial source terms. Two simulations are presented to show robustness of the method in handling complex phase boundaries. In the first case, growth of a vapor bubble in zero gravity is studied where large volume increase of the bubble is managed by adaptively increasing the front resolution. In the second case, growth of a bubble under high gravity is studied where indentation at the rear of the bubble results in a region of large curvature which challenges the front tracking in three dimensions.

  2. Observational study: microgravity testing of a phase-change reference on the International Space Station

    PubMed Central

    Topham, T Shane; Bingham, Gail E; Latvakoski, Harri; Podolski, Igor; Sychev, Vladimir S; Burdakin, Andre

    2015-01-01

    Background: Orbital sensors to monitor global climate change during the next decade require low-drift rates for onboard thermometry, which is currently unattainable without on-orbit recalibration. Phase-change materials (PCMs), such as those that make up the ITS-90 standard, are seen as the most reliable references on the ground and could be good candidates for orbital recalibration. Space Dynamics Lab (SDL) has been developing miniaturized phase-change references capable of deployment on an orbital blackbody for nearly a decade. Aims: Improvement of orbital temperature measurements for long duration earth observing and remote sensing. Methods: To determine whether and how microgravity will affect the phase transitions, SDL conducted experiments with ITS-90 standard material (gallium, Ga) on the International Space Station (ISS) and compared the phase-change temperature with earth-based measurements. The miniature on-orbit thermal reference (MOTR) experiment launched to the ISS in November 2013 on Soyuz TMA-11M with the Expedition 38 crew and returned to Kazakhstan in March 2014 on the Soyuz TMA-10 spacecraft. Results: MOTR tested melts and freezes of Ga using repeated 6-h cycles. Melt cycles obtained on the ground before and after launch were compared with those obtained on the ISS. Conclusions: To within a few mK uncertainty, no significant difference between the melt temperature of Ga at 1 g and in microgravity was observed. PMID:28725713

  3. Observational study: microgravity testing of a phase-change reference on the International Space Station.

    PubMed

    Topham, T Shane; Bingham, Gail E; Latvakoski, Harri; Podolski, Igor; Sychev, Vladimir S; Burdakin, Andre

    2015-01-01

    Orbital sensors to monitor global climate change during the next decade require low-drift rates for onboard thermometry, which is currently unattainable without on-orbit recalibration. Phase-change materials (PCMs), such as those that make up the ITS-90 standard, are seen as the most reliable references on the ground and could be good candidates for orbital recalibration. Space Dynamics Lab (SDL) has been developing miniaturized phase-change references capable of deployment on an orbital blackbody for nearly a decade. Improvement of orbital temperature measurements for long duration earth observing and remote sensing. To determine whether and how microgravity will affect the phase transitions, SDL conducted experiments with ITS-90 standard material (gallium, Ga) on the International Space Station (ISS) and compared the phase-change temperature with earth-based measurements. The miniature on-orbit thermal reference (MOTR) experiment launched to the ISS in November 2013 on Soyuz TMA-11M with the Expedition 38 crew and returned to Kazakhstan in March 2014 on the Soyuz TMA-10 spacecraft. MOTR tested melts and freezes of Ga using repeated 6-h cycles. Melt cycles obtained on the ground before and after launch were compared with those obtained on the ISS. To within a few mK uncertainty, no significant difference between the melt temperature of Ga at 1 g and in microgravity was observed.

  4. Terahertz characterization of Y2O3-added AlN ceramics

    NASA Astrophysics Data System (ADS)

    Kang, Seung Beom; Chung, Dong Chul; Kim, Sung-Jin; Chung, Jun-Ki; Park, Sang-Yeup; Kim, Ki-Chul; Kwak, Min Hwan

    2016-12-01

    Terahertz optical and dielectric properties of AlN ceramics fabricated by hot pressed sintering are investigated by THz time-domain spectroscopy in the frequency range of 0.2-3.5 THz. The measured properties of the pure AlN ceramic are compared with those of Y2O3-added AlN ceramic. Two prominent resonance modes, which are essentially responsible for the dielectric properties of the Y2O3-added AlN in terahertz regime, are characterized at ωTO1/(2π) = 2.76 THz (92 cm-1) and ωTO2/(2π) = 18.2 THz (605 cm-1) and are well described by the pseudo-harmonic oscillator model through theoretical fitting. The resonance ωTO1 at 2.76 THz is proposed to be due to the formation of a YAG (Y3Al5O12) secondary phase in Y2O3-added AlN ceramic. From the experimental results, good correlation is observed between the prominent peak of YAG secondary phase at 2.76 THz and thermal conductivity. Additionally, there is a high correlation between densification and refractive index of AlN ceramics fabricated by hot pressed sintering.

  5. Climate variability in SE Europe since 1450 AD based on a varved sediment record from Etoliko Lagoon (Western Greece)

    NASA Astrophysics Data System (ADS)

    Koutsodendris, Andreas; Brauer, Achim; Reed, Jane M.; Plessen, Birgit; Friedrich, Oliver; Hennrich, Barbara; Zacharias, Ierotheos; Pross, Jörg

    2017-03-01

    To achieve deeper understanding of climate variability during the last millennium in SE Europe, we report new sedimentological and paleoecological data from Etoliko Lagoon, Western Greece. The record represents the southernmost annually laminated (i.e., varved) archive from the Balkan Peninsula spanning the Little Ice Age, allowing insights into critical time intervals of climate instability such as during the Maunder and Dalton solar minima. After developing a continuous, ca. 500-year-long varve chronology, high-resolution μ-XRF counts, stable-isotope data measured on ostracod shells, palynological (including pollen and dinoflagellate cysts), and diatom data are used to decipher the season-specific climate and ecosystem evolution at Etoliko Lagoon since 1450 AD. Our results show that the Etoliko varve record became more sensitive to climate change from 1740 AD onwards. We attribute this shift to the enhancement of primary productivity within the lagoon, which is documented by an up to threefold increase in varve thickness. This marked change in the lagoon's ecosystem was caused by: (i) increased terrestrial input of nutrients, (ii) a closer connection to the sea and human eutrophication particularly from 1850 AD onwards, and (iii) increasing summer temperatures. Integration of our data with those of previously published paleolake sediment records, tree-ring-based precipitation reconstructions, simulations of atmospheric circulation and instrumental precipitation data suggests that wet conditions in winter prevailed during 1740-1790 AD, whereas dry winters marked the periods 1790-1830 AD (Dalton Minimum) and 1830-1930 AD, the latter being sporadically interrupted by wet winters. This variability in precipitation can be explained by shifts in the large-scale atmospheric circulation patterns over the European continent that affected the Balkan Peninsula (e.g., North Atlantic Oscillation). The transition between dry and wet phases at Etoliko points to longitudinal

  6. Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Songgang

    2013-05-15

    The primary purpose of this project is to develop and validate an innovative, scalable phase change salt thermal energy storage (TES) system that can interface with Infinia’s family of free-piston Stirling engines (FPSE). This TES technology is also appropriate for Rankine and Brayton power converters. Solar TES systems based on latent heat of fusion rather than molten salt temperature differences, have many advantages that include up to an order of magnitude higher energy storage density, much higher temperature operation, and elimination of pumped loops for most of Infinia’s design options. DOE has funded four different concepts for solar phase changemore » TES, including one other Infinia awarded project using heat pipes to transfer heat to and from the salt. The unique innovation in this project is an integrated TES/pool boiler heat transfer system that is the simplest approach identified to date and arguably has the best potential for minimizing the levelized cost of energy (LCOE). The Phase 1 objectives are to design, build and test a 1-hour TES proof-of-concept lab demonstrator integrated with an Infinia 3 kW Stirling engine, and to conduct a preliminary design of a 12-hour TES on-sun prototype.« less

  7. On-chip photonic memory elements employing phase-change materials.

    PubMed

    Rios, Carlos; Hosseini, Peiman; Wright, C David; Bhaskaran, Harish; Pernice, Wolfram H P

    2014-03-05

    Phase-change materials integrated into nanophotonic circuits provide a flexible way to realize tunable optical components. Relying on the enormous refractive-index contrast between the amorphous and crystalline states, such materials are promising candidates for on-chip photonic memories. Nonvolatile memory operation employing arrays of microring resonators is demonstrated as a route toward all-photonic chipscale information processing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Microstructure and electrical properties of Sb2Te phase-change material

    NASA Astrophysics Data System (ADS)

    Liu, Guangyu; Wu, Liangcai; Li, Tao; Rao, Feng; Song, Sannian; Liu, Bo; Song, Zhitang

    2016-10-01

    Phase Change Memory (PCM) has great potential for commercial applications of next generation non-volatile memory (NVM) due to its high operation speed, high endurance and low power consumption. Sb2Te (ST) is a common phase-change material and has fast crystallization speed, while thermal stability is relatively poor and its crystallization temperature is about 142°C. According to the Arrhenius law, the extrapolated failure temperature is about 55°C for ten years. When heated above the crystallization temperature while below the melting point, its structure can be transformed from amorphous phase to hexagonal phase. Due to the growth-dominated crystallization mechanism, the grain size of ST film is large and the diameter of about 300 nm is too large compared with Ge2Sb2Te5 (GST), which may deteriorate the device performance. High resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) were employed to study the microstructures and the results indicate that the crystal plane is {110}. In addition, device cells were manufactured and their current-voltage (I-V) and resistance-voltage characteristics were tested, and the results reveal that the threshold voltage (Vth) of ST film is 0.87 V. By researching the basic properties of ST, we can understand its disadvantages and manage to improve its performance by doping or other proper methods. Finally, the improved ST can be a candidate for optical discs and PCM.

  9. Broad-line Type Ic supernova SN 2014ad

    NASA Astrophysics Data System (ADS)

    Sahu, D. K.; Anupama, G. C.; Chakradhari, N. K.; Srivastav, S.; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken'ichi

    2018-04-01

    We present optical and ultraviolet photometry and low-resolution optical spectroscopy of the broad-line Type Ic supernova SN 2014ad in the galaxy PGC 37625 (Mrk 1309), covering the evolution of the supernova during -5 to +87 d with respect to the date of maximum in the B band. A late-phase spectrum obtained at +340 d is also presented. With an absolute V-band magnitude at peak of MV = -18.86 ± 0.23 mag, SN 2014ad is fainter than supernovae associated with gamma ray bursts (GRBs), and brighter than most of the normal and broad-line Type Ic supernovae without an associated GRB. The spectral evolution indicates that the expansion velocity of the ejecta, as measured using the Si II line, is as high as ˜33 500 km s-1 around maximum, while during the post-maximum phase it settles at ˜15 000 km s-1. The expansion velocity of SN 2014ad is higher than that of all other well-observed broad-line Type Ic supernovae except for the GRB-associated SN 2010bh. The explosion parameters, determined by applying Arnett's analytical light-curve model to the observed bolometric light-curve, indicate that it was an energetic explosion with a kinetic energy of ˜(1 ± 0.3) × 1052 erg and a total ejected mass of ˜(3.3 ± 0.8) M⊙, and that ˜0.24 M⊙ of 56Ni was synthesized in the explosion. The metallicity of the host galaxy near the supernova region is estimated to be ˜0.5 Z⊙.

  10. Vacuum degeneracy and Conformal Mass in Lovelock AdS gravity

    NASA Astrophysics Data System (ADS)

    Arenas-Henriquez, Gabriel; Miskovic, Olivera; Olea, Rodrigo

    2017-11-01

    It is shown that the notion of Conformal Mass can be defined within a given anti-de Sitter (AdS) branch of a Lovelock gravity theory as long as the corresponding vacuum is not degenerate. Indeed, conserved charges obtained by the addition of Kounterterms to the bulk action turn out to be proportional to the electric part of the Weyl tensor, when the fall-off of a generic solution in that AdS branch is considered. The factor of proportionality is the degeneracy condition for the vacua in the particular Lovelock AdS theory under study. This last feature explains the obstruction to define Conformal Mass in the degenerate case.

  11. Late Holocene anti-phase change in the East Asian summer and winter monsoons

    NASA Astrophysics Data System (ADS)

    Kang, Shugang; Wang, Xulong; Roberts, Helen M.; Duller, Geoff A. T.; Cheng, Peng; Lu, Yanchou; An, Zhisheng

    2018-05-01

    Changes in East Asian summer and winter monsoon intensity have played a pivotal role in the prosperity and decline of society in the past, and will be important for future climate scenarios. However, the phasing of changes in the intensity of East Asian summer and winter monsoons on millennial and centennial timescales during the Holocene is unclear, limiting our ability to understand the factors driving past and future changes in the monsoon system. Here, we present a high resolution (up to multidecadal) loess record for the last 3.3 ka from the southern Chinese Loess Plateau that clearly demonstrates the relationship between changes in the intensity of the East Asian summer and winter monsoons, particularly at multicentennial scales. At multimillennial scales, the East Asian summer monsoon shows a steady weakening, while the East Asian winter monsoon intensifies continuously. At multicentennial scales, a prominent ∼700-800 yr cycle in the East Asian summer and winter monsoon intensity is observed, and here too the two monsoons are anti-phase. We conclude that multimillennial changes are driven by Northern Hemisphere summer insolation, while multicentennial changes can be correlated with solar activity and changing strength of the Atlantic meridional overturning circulation.

  12. Lithium Treatment for Agitation in Alzheimer's disease (Lit-AD): Clinical rationale and study design.

    PubMed

    Devanand, D P; Strickler, Jesse G; Huey, Edward D; Crocco, Elizabeth; Forester, Brent P; Husain, Mustafa M; Vahia, Ipsit V; Andrews, Howard; Wall, Melanie M; Pelton, Gregory H

    2018-05-31

    Symptoms of agitation, aggression, and psychosis frequently occur in patients with Alzheimer's disease (AD). These symptoms are distressing to patients and caregivers, often lead to institutionalization, are associated with increased mortality, and are very difficult to treat. Lithium is an established treatment for bipolar and other psychotic disorders in which agitation can occur. The Lit-AD study is the first randomized, double-blind, placebo-controlled trial to assess the efficacy of lithium treatment for symptoms of agitation or aggression, with or without psychosis, in older adults diagnosed with AD. Patients are randomly assigned to low dose (150-600 mg) lithium or placebo, targeting a blood level of 0.2-0.6 mmol/L, stratified by the presence/absence of psychotic symptoms. The study duration for each patient is 12 weeks. The primary study outcome is change in the agitation/aggression domain score on the Neuropsychiatric Inventory (NPI) over the study period. The secondary outcome is improvement in neuropsychiatric symptoms defined as a 30% decrease in a NPI core score that combines agitation/aggression and psychosis domain scores. The Treatment Emergent Symptom Scale (TESS) is used to assess somatic side effects. Other exploratory analyses examine the associations between improvement on lithium and indices shown to be associated with response to lithium in bipolar disorder: serum brain-derived neurotrophic factor (BDNF) levels, a SNP in intron 1 of the ACCN1 gene, and variation at the 7q11.2 gene locus. If lithium demonstrates efficacy in this Phase II pilot trial, a Phase III study will be developed to establish its clinical utility in these patients. ClinicalTrials.gov Identifier NCT02129348. Copyright © 2018. Published by Elsevier Inc.

  13. Reconstructing the role of landuse change on water yield at the Maya urban center Tikal, Guatemala [700-800 AD

    NASA Astrophysics Data System (ADS)

    Shu, L.; Duffy, C.; French, K. D.; Murtha, T., Jr.; Garcia-Gonzalez, S. E.

    2014-12-01

    In recent years scientists have been debating the role of climate on the trajectory of Maya culture in the Late Classic period, 600-900 AD. Paleo-climatologists have reconstructed realizations of climate [Haug 2003; Medina-Elizalde 2012; Hodell 1995] that offer evidence for reduced precipitation in the Late Classic period. Recently French et al [2014] proposed that landuse change may also play an important role in the available water supply at Tikal, with the removal of tropical forest and conversion to maize-agriculture and urban landuse leading to extensive development of sophisticated water storage systems and rainfall harvesting for water supply and irrigation. Rapid population growth is a concurrent and compounding factor [Scarborough 2012; Shaw 2003] where landuse impacts the distribution and availability of water storage in the surrounding watershed. Although proposed climate scenarios for the Late Classic offer a quantitative scenario for possible atmospheric conditions at Tikal, the impact of land use change on the distribution and availability of water supply has not been evaluated. In this research we reconstruct the plausible vulnerability of the water supply at Tikal under the combined forces of climatic and land use change. The Penn State Integrated Hydrologic Model (PIHM) [Qu and Duffy 2007] is used to simulate the daily-to-seasonal space and time distribution of soil moisture, groundwater and surface water storage for the period 700-800 AD, the peak of Tikal's population history. The analysis includes a quantitative assessment of the likely changes in available water storage as tropical forest is converted to maize agriculture and urban land. In particular we examine the important control that reduced canopy interception plays in the seasonal availability of water. Preliminary simulations suggest that removing tropical forest increases runoff and available water storage, which may serve to moderate seasonal and long-term drought conditions.

  14. Change in Photosystem II Photochemistry During Algal Growth Phases of Chlorella vulgaris and Scenedesmus obliquus.

    PubMed

    Oukarroum, Abdallah

    2016-06-01

    Sensitivity of photosynthetic processes towards environmental stress is used as a bioanalytical tool to evaluate the responses of aquatic plants to a changing environment. In this paper, change of biomass density, chlorophyll a fluorescence and photosynthetic parameters during growth phases of two microalgae Chlorella vulgaris and Scenedesmus obliquus were studied. The photosynthetic growth behaviour changed significantly with cell age and algae species. During the exponential phase of growth, the photosynthesis capacity reached its maximum and decreased in ageing algal culture during stationary phase. In conclusion, the chlorophyll a fluorescence OJIP method and the derived fluorescence parameters would be an accurate method for obtaining information on maximum photosynthetic capacities and monitoring algal cell growth. This will contribute to more understanding, for example, of toxic actions of pollutants in microalgae test.

  15. Shifting the Phase Boundary with Electric Fields to Jump In and Out of the Phase Diagram at Constant Temperature

    NASA Astrophysics Data System (ADS)

    Roth, Connie B.; Kriisa, Annika

    Understanding the phase behavior of polymer blends and block copolymers under the presence of electric fields is important for advanced applications containing electrodes such as organic photovoltaics and batteries, as well as for field-directed assembly and alignment of domains. We have recently demonstrated that electric fields enhance the miscibility of polystyrene (PS) / poly(vinyl methyl ether blends) (PVME) blends, shifting the phase separation temperature Ts(E) up by 13.5 +/- 1.4 K for electric field strengths of E = 1.7 MV/m. Experimentally this effect is much larger than the traditional predictions from adding the standard electrostatic energy term for mixtures to the free energy of mixing. However, accounting for the energy penalty of dielectric interfaces between domains created during phase separation, the primary factor that drives alignment of domains, may also be responsible for the change in miscibility. Here we investigate the dynamics of repeatedly jumping the system from the one-phase to the two-phase region and demonstrate that this can be done at a constant temperature simply by turning the electric field on and off, illustrating electric-field-induced remixing in the two-phase region.

  16. Rewriting magnetic phase change memory by laser heating

    NASA Astrophysics Data System (ADS)

    Timmerwilke, John; Liou, Sy-Hwang; Cheng, Shu Fan; Edelstein, Alan S.

    2016-04-01

    Magnetic phase change memory (MAG PCM) consists of bits with different magnetic permeability values. The bits are read by measuring their effect on a magnetic probe field. Previously low permeability crystalline bits had been written in high permeability amorphous films of Metglas via laser heating. Here data is presented showing that by applying short laser pulses with the appropriate power to previously crystallized regions they can first be vitrified and then again crystallized. Thus, MAG PCM is rewriteable. Technical issues in processing the bits are discussed and results on thermal modeling are presented.

  17. Direct numerical simulation of incompressible multiphase flow with phase change

    NASA Astrophysics Data System (ADS)

    Lee, Moon Soo; Riaz, Amir; Aute, Vikrant

    2017-09-01

    Simulation of multiphase flow with phase change is challenging because of the potential for unphysical pressure oscillations, spurious velocity fields and mass flux errors across the interface. The resulting numerical errors may become critical when large density contrasts are present. To address these issues, we present a new approach for multiphase flow with phase change that features, (i) a smooth distribution of sharp velocity jumps and mass flux within a narrow region surrounding the interface, (ii) improved mass flux projection from the implicit interface onto the uniform Cartesian grid and (iii) post-advection velocity correction step to ensure accurate velocity divergence in interfacial cells. These new features are implemented in combination with a sharp treatment of the jumps in pressure and temperature gradient. A series of 1-D, 2-D, axisymmetric and 3-D problems are solved to verify the improvements afforded by the new approach. Axisymmetric film boiling results are also presented, which show good qualitative agreement with heat transfer correlations as well as experimental observations of bubble shapes.

  18. A study of the liquid-vapor phase change of mercury based on irreversible thermodynamics.

    NASA Technical Reports Server (NTRS)

    Adt, R. R., Jr.; Hatsopoulos, G. N.; Bornhorst, W. J.

    1972-01-01

    The object of this work is to determine the transport coefficients which appear in linear irreversible-thermodynamic rate equations of a phase change. An experiment which involves the steady-state evaporation of mercury was performed to measure the principal transport coefficient appearing in the mass-rate equation and the coupling transport coefficient appearing in both the mass-rate equation and the energy-rate equation. The principal transport coefficient sigma, usually termed the 'condensation' or 'evaporation' coefficient, is found to be approximately 0.9, which is higher than that measured previously in condensation-of-mercury experiments. The experimental value of the coupling coefficient K does not agree with the value predicted from Schrage's kinetic analysis of the phase change. A modified kinetic analysis in which the Onsager reciprocal law and the conservation laws are invoked is presented which removes this discrepancy but which shows that the use of Schrage's equation for predicting mass rates of phase change is a good approximation.

  19. Thermal buffering performance of composite phase change materials applied in low-temperature protective garments

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Jiao, Mingli; Yu, Yuanyuan; Zhu, Xueying; Liu, Rangtong; Cao, Jian

    2017-07-01

    Phase change material (PCM) is increasingly being applied in the manufacturing of functional thermo-regulated textiles and garments. This paper investigated the thermal buffering performance of different composite PCMs which are suitable for the application in functional low-temperature protective garments. First, according to the criteria selecting PCM for functional textiles/garments, three kinds of pure PCM were selected as samples, which were n-hexadecane, n-octadecane and n-eicosane. To get the adjustable phase change temperature range and higher phase change enthalpy, three kinds of composite PCM were prepared using the above pure PCM. To evaluate the thermal buffering performance of different composite PCM samples, the simulated low-temperature experiments were performed in the climate chamber, and the skin temperature variation curves in three different low temperature conditions were obtained. Finally composite PCM samples’ thermal buffering time, thermal buffering capacity and thermal buffering efficiency were calculated. Results show that the comprehensive thermal buffering performance of n-octadecane and n-eicosane composite PCM is the best.

  20. Phase change energy storage for solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Chiaramonte, F. P.; Taylor, J. D.

    1992-01-01

    This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.

  1. Phase change energy storage for solar dynamic power systems

    NASA Astrophysics Data System (ADS)

    Chiaramonte, F. P.; Taylor, J. D.

    This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.

  2. Mark-forming simulations of phase-change land/groove disks

    NASA Astrophysics Data System (ADS)

    Nishi, Yoshiko; Shimano, Takeshi; Kando, Hidehiko

    2000-09-01

    The track pitches of optical discs have become so narrow that it is comparable to the wavelength of laser beam. Finite-difference time-domain (FDTD) simulation, based on vector diffraction analysis, can predict the propagation of light more accurately than scalar analysis, when the size of media texture becomes sub-micron order. The authors applied FDTD simulation to land-and-groove optical disc models, and found out that the effects of 3D geometry is not negligible in analyzing the energy absorption of light inside the land- and-groove multi-layered media. The electromagnetic field in the media does not have the same intensity distribution as the incident beam. Furthermore, the heat conduction inside the media depends on the disc geometry, so the beam spots centered on land and groove makes different effects in heating the recording layers. That is, the spatial and historical profile of temperature requires 3D analysis for both incident light absorption and heat conduction. The difference in temperature profiles is applied to the phase change simulator to see the writing process of the marks in land and groove. We have integrated three simulators: FDTD analysis, heat conduction and phase change simulation. These simulators enabled to evaluate the differences in mark forming process between land and groove.

  3. Review of Phase Change Materials Based on Energy Storage System with Applications

    NASA Astrophysics Data System (ADS)

    Thamaraikannn, R.; Kanimozhi, B.; Anish, M.; Jayaprabakar, J.; Saravanan, P.; Rohan Nicholas, A.

    2017-05-01

    The use of Different types of storage system using phase change materials (PCMs) is an effective way of storing energy and also to make advantages of heating and cooling systems are installed to maintain temperatures within the well-being zone. PCMs have been extensively used in various storage systems for heat pumps, solar engineering, and thermal control applications. The use of PCM’s for heating and cooling applications have been investigated during the past decade. There are large numbers of PCM’s, which melt and solidify at a wide range of temperatures, making them attractive in a number of applications. This paper also outline the investigation and analysis of Phase Change materials used in Different Types of storage systems with different applications.

  4. Sb-Te Phase-change Materials under Nanoscale Confinement

    NASA Astrophysics Data System (ADS)

    Ihalawela, Chandrasiri A.

    Size, speed and efficiency are the major challenges of next generation nonvolatile memory (NVM), and phase-change memory (PCM) has captured a great attention due to its promising features. The key for PCM is rapid and reversible switching between amorphous and crystalline phases with optical or electrical excitation. The structural transition is associated with significant contrast in material properties which can be utilized in optical (CD, DVD, BD) and electronic (PCRAM) memory applications. Importantly, both the functionality and the success of PCM technology significantly depend on the core material and its properties. So investigating PC materials is crucial for the development of PCM technology to realized enhanced solutions. In regards to PC materials, Sb-Te binary plays a significant role as a basis to the well-known Ge-Sb-Te system. Unlike the conventional deposition methods (sputtering, evaporation), electrochemical deposition method is used due to its multiple advantages, such as conformality, via filling capability, etc. First, the controllable synthesis of Sb-Te thin films was studied for a wide range of compositions using this novel deposition method. Secondly, the solid electrolytic nature of stoichiometric Sb2Te3 was studied with respect to precious metals. With the understanding of 2D thin film synthesis, Sb-Te 1D nanowires (18 - 220 nm) were synthesized using templated electrodeposition, where nanoporous anodic aluminum oxide (AAO) was used as a template for the growth of nanowires. In order to gain the controllability over the deposition in high aspect ratio structures, growth mechanisms of both the thin films and nanowires were investigated. Systematic understanding gained thorough previous studies helped to formulate the ultimate goal of this dissertation. In this dissertation, the main objective is to understand the size effect of PC materials on their phase transition properties. The reduction of effective memory cell size in conjunction with

  5. Safety and Immunogenicity of a rAd35-EnvA Prototype HIV-1 Vaccine in Combination with rAd5-EnvA in Healthy Adults (VRC 012).

    PubMed

    Crank, Michelle C; Wilson, Eleanor M P; Novik, Laura; Enama, Mary E; Hendel, Cynthia S; Gu, Wenjuan; Nason, Martha C; Bailer, Robert T; Nabel, Gary J; McDermott, Adrian B; Mascola, John R; Koup, Richard A; Ledgerwood, Julie E; Graham, Barney S

    2016-01-01

    VRC 012 was a Phase I study of a prototype recombinant adenoviral-vector serotype-35 (rAd35) HIV vaccine, the precursor to two recently published clinical trials, HVTN 077 and 083. On the basis of prior evaluation of multiclade rAd5 HIV vaccines, Envelope A (EnvA) was selected as the standard antigen for a series of prototype HIV vaccines to compare various vaccine platforms. In addition, prior studies of rAd5-vectored vaccines suggested pre-existing human immunity may be a confounding factor in vaccine efficacy. rAd35 is less seroprevalent across human populations and was chosen for testing alone and in combination with a rAd5-EnvA vaccine in the present two-part phase I study. First, five subjects each received a single injection of 109, 1010, or 1011 particle units (PU) of rAd35-EnvA in an open-label, dose-escalation study. Next, 20 Ad5/Ad35-seronegative subjects were randomized to blinded, heterologous prime-boost schedules combining rAd5-EnvA and rAd35-EnvA with a three month interval. rAd35-EnvA was given at 1010 or 1011 PU to ten subjects each; all rAd5-EnvA injections were 1010 PU. EnvA-specific immunogenicity was assessed four weeks post-injection. Solicited reactogenicity and clinical safety were followed after each injection. Vaccinations were well tolerated at all dosages. Antibody responses measured by ELISA were detected at 4 weeks in 30% and 50% of subjects after single doses of 1010 or 1011 PU rAd35, respectively, and in 89% after a single rAd5-EnvA 1010 PU injection. EnvA-specific IFN-γ ELISpot responses were detected at four weeks in 0%, 70%, and 50% of subjects after the respective rAd35-EnvA dosages compared to 89% of subjects after rAd5. T cell responses were higher after a single rAd5-EnvA 1010 PU injection than after a single rAd35-EnvA 1010 PU injection, and humoral responses were low after a single dose of either vector. Of those completing the vaccine schedule, 100% of rAd5-EnvA recipients and 90% of rAd35-EnvA recipients had both T cell

  6. CARBON DIOXIDE SEPARATION BY PHASE ENHANCED GAS-LIQUID ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Hu

    A new process called phase enhanced gas-liquid absorption has been developed in its early stage. It was found that adding another phase into the absorption system of gas/aqueous phase could enhance the absorption rate. A system with three phases was studied. In the system, gas phase was carbon dioxide. Two liquid phases were used. One was organic phase. Another was aqueous phase. By addition of organic phase into the absorption system of CO{sub 2}-aqueous phase, the absorption rate of CO{sub 2} was increased significantly. CO{sub 2} finally accumulated into aqueous phase. The experimental results proved that (1) Absorption rate ofmore » carbon dioxide was enhanced by adding organic phase into gas aqueous phase system; (2) Organic phase played the role of transportation of gas solute (CO{sub 2}). Carbon dioxide finally accumulated into aqueous phase.« less

  7. "Electrostructural Phase Changes" In Charged Particulate Clouds: Planetary and Astrophysical Implications

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.

    1999-01-01

    charge sign over another. The random charges of both sign derive from natural grain-to-grain interactions that produce triboelectrification via charge exchange every time grain surfaces make contact with one another. The conversion from a random distribution of grains (upon which there are randomly distributed charges) into an organization of electrostatically-ordered aggregates, can be regarded (within the framework of granular-material science) as an "electrical or Coulombic phase change" of the particulate cloud. It is not totally dissimilar from the more normal phase-change concept in which, for example, a gas with long free-path-molecules suddenly becomes a solid as a result of structural ordering of the molecules (notably, also the result of electronic forces, albeit at a different scale). In both the gas-to-solid case, and the aerosol-to-aggregate case, the same materials and charges are present before and after the phase change, but their arrangement now has a higher degree of order and a lower-energy configuration. An input of energy into the system is required to reverse the situation. The aggregates in the USML experiments were observed to undergo at least two phase changes as noted above. The point about phase changes, and by implication, the "electrostructural" reorganizations in particulate clouds, is the following: (a) they can occur very rapidly, almost spontaneously, above a critical cloud density, (b) in going from a higher energy state to a lower energy state, they convert to a denser system, (c) energy must be required to reverse the situation, implying that energy is released during the high-to-low energy phase change. In applying this information to natural particulate clouds, some inferences can be made (it is stressed that reference is still to dielectric materials attracted by dipole forces). There are several natural settings to which the USML observations apply, and to which the phase-change implications likewise apply. Dense clouds of

  8. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putra, Edy Giri Rachman; Patriati, Arum; Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia giri@batan.go.id

    2015-04-16

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol,more » octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.« less

  9. Small RNAs of Sequoia sempervirens during rejuvenation and phase change.

    PubMed

    Chen, Y-T; Shen, C-H; Lin, W-D; Chu, H-A; Huang, B-L; Kuo, C-I; Yeh, K-W; Huang, L-C; Chang, I-F

    2013-01-01

    In this work, the population of small RNAs (sRNAs) was studied in the gymnosperm Sequoia sempervirens during phase changes, specifically in the juvenile, adult and rejuvenated plants obtained in vitro. The potential target genes of Sequoia sRNAs were predicted through bioinformatics. Rejuvenation is a pivotal process in woody plants that enables them to regain their growth potential, which results in the recovery of physiologic and molecular characteristics that were lost when the juveniles mature into adult plants. The results from the five repeated graftings of juvenile, adult and rejuvenated plants in vitro showed that sRNAs could be classified into structural RNAs (Group I), small interfering RNAs (Group II), annotated microRNAs (Group III, and unannotated sRNAs (Group IV). The results indicate that only 573 among 15,485,415 sRNAs (Groups III and IV) had significantly different expression patterns associated with rejuvenation and phase change. A total of 215 sRNAs exhibited up-regulated expression patterns in adult shoots, and 358 sRNAs were down-regulated. Expression profiling and prediction of possible target genes of these unique small RNAs indicate possible functions in the control of photosynthetic efficiency and rooting competence abundance during plant rejuvenation. Moreover, the increase in SsmiR156 and decrease in SsmiR172 during plant rejuvenation suggested that these two microRNAs extensively affect phase transition. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Quantification of susceptibility change at high-concentrated SPIO-labeled target by characteristic phase gradient recognition.

    PubMed

    Zhu, Haitao; Nie, Binbin; Liu, Hua; Guo, Hua; Demachi, Kazuyuki; Sekino, Masaki; Shan, Baoci

    2016-05-01

    Phase map cross-correlation detection and quantification may produce highlighted signal at superparamagnetic iron oxide nanoparticles, and distinguish them from other hypointensities. The method may quantify susceptibility change by performing least squares analysis between a theoretically generated magnetic field template and an experimentally scanned phase image. Because characteristic phase recognition requires the removal of phase wrap and phase background, additional steps of phase unwrapping and filtering may increase the chance of computing error and enlarge the inconsistence among algorithms. To solve problem, phase gradient cross-correlation and quantification method is developed by recognizing characteristic phase gradient pattern instead of phase image because phase gradient operation inherently includes unwrapping and filtering functions. However, few studies have mentioned the detectable limit of currently used phase gradient calculation algorithms. The limit may lead to an underestimation of large magnetic susceptibility change caused by high-concentrated iron accumulation. In this study, mathematical derivation points out the value of maximum detectable phase gradient calculated by differential chain algorithm in both spatial and Fourier domain. To break through the limit, a modified quantification method is proposed by using unwrapped forward differentiation for phase gradient generation. The method enlarges the detectable range of phase gradient measurement and avoids the underestimation of magnetic susceptibility. Simulation and phantom experiments were used to quantitatively compare different methods. In vivo application performs MRI scanning on nude mice implanted by iron-labeled human cancer cells. Results validate the limit of detectable phase gradient and the consequent susceptibility underestimation. Results also demonstrate the advantage of unwrapped forward differentiation compared with differential chain algorithms for susceptibility

  11. Analyses of phase change materials’ efficiency in warm-summer humid continental climate conditions

    NASA Astrophysics Data System (ADS)

    Ratnieks, J.; Gendelis, S.; Jakovics, A.; Bajare, D.

    2017-10-01

    The usage of phase change materials (PCMs) is a way to store excess energy produced during the hot time of the day and release it during the night thereby reducing the overheating problem. While, in Latvian climate conditions overheating is not a big issue in traditional buildings since it happens only a couple of weeks per year air conditioners must still be installed to maintain thermal comfort. The need for cooling in recently built office buildings with large window area can increase significantly. It is therefore of great interest if the thermal comfort conditions can be maintained by PCMs alone or with reduced maximum power of installed cooling systems. Our initial studies show that if the test building is well-insulated (necessary to reduce heat loss in winter), phase change material is not able to solidify fast enough during the relatively short night time. To further investigate the problem various experimental setups with two different phase change materials were installed in test buildings. Experimental results are compared with numerical modelling made in software COMSOL Multiphysics. The effectiveness of PCM using different situations is widely analysed.

  12. Diffusion and chaos from near AdS 2 horizons

    DOE PAGES

    Blake, Mike; Donos, Aristomenis

    2017-02-03

    We calculate the thermal diffusivity D =more » $$\\kappa/c_\\rho$$ and butterfy velocity $$\\upsilon_\\beta$$ in holographic models that flow to $$AdS_2$$ x $R^d$ fixed points in the infra-red. We show that both these quantities are governed by the same irrelevant deformation of $$AdS_2$$ and hence establish a simple relationship between them. When this deformation corresponds to a universal dilaton mode of dimension $$\\Delta$$ = 2 then this relationship is always given by D = $$\\upsilon_B^2$$/(2$$\\pi$$T).« less

  13. AdS6 solutions of type II supergravity

    NASA Astrophysics Data System (ADS)

    Apruzzi, Fabio; Fazzi, Marco; Passias, Achilleas; Rosa, Dario; Tomasiello, Alessandro

    2014-11-01

    Very few AdS6 × M 4 supersymmetric solutions are known: one in massive IIA, and two IIB solutions dual to it. The IIA solution is known to be unique; in this paper, we use the pure spinor approach to give a classification for IIB supergravity. We reduce the problem to two PDEs on a two-dimensional space Σ. M 4 is then a fibration of S 2 over Σ; the metric and fluxes are completely determined in terms of the solution to the PDEs. The results seem likely to accommodate near-horizon limits of ( p, q)-fivebrane webs studied in the literature as a source of CFT5's. We also show that there are no AdS6 solutions in eleven-dimensional supergravity.

  14. Changes Caused by Fruit Extracts in the Lipid Phase of Biological and Model Membranes

    PubMed Central

    Pruchnik, Hanna; Oszmiański, Jan; Sarapuk, Janusz; Kleszczyńska, Halina

    2010-01-01

    The aim of the study was to determine changes incurred by polyphenolic compounds from selected fruits in the lipid phase of the erythrocyte membrane, in liposomes formed of erythrocyte lipids and phosphatidylcholine liposomes. In particular, the effect of extracts from apple, chokeberry, and strawberry on the red blood cell morphology, on packing order in the lipid hydrophilic phase, on fluidity of the hydrophobic phase, as well as on the temperature of phase transition in DPPC liposomes was studied. In the erythrocyte population, the proportions of echinocytes increased due to incorporation of polyphenolic compounds. Fluorimetry with a laurdan probe indicated increased packing density in the hydrophilic phase of the membrane in presence of polyphenolic extracts, the highest effect being observed for the apple extract. Using the fluorescence probes DPH and TMA-DPH, no effect was noted inside the hydrophobic phase of the membrane, as the lipid bilayer fluidity was not modified. The polyphenolic extracts slightly lowered the phase transition temperature of phosphatidylcholine liposomes. The studies have shown that the phenolic compounds contained in the extracts incorporate into the outer region of the erythrocyte membrane, affecting its shape and lipid packing order, which is reflected in the increasing number of echinocytes. The compounds also penetrate the outer part of the external lipid layer of liposomes formed of natural and DPPC lipids, changing its packing order. PMID:21423329

  15. Modeling of a Two-Phase Jet Pump with Phase Change, Shocks and Temperature-Dependent Properties

    NASA Technical Reports Server (NTRS)

    Sherif, S. A.

    1998-01-01

    One of the primary motivations behind this work is the attempt to understand the physics of a two-phase jet pump which constitutes part of a flow boiling test facility at NASA-Marshall. The flow boiling apparatus is intended to provide data necessary to design highly efficient two-phase thermal control systems for aerospace applications. The facility will also be capable of testing alternative refrigerants and evaluate their performance using various heat exchangers with enhanced surfaces. The test facility is also intended for use in evaluating single-phase performance of systems currently using CFC refrigerants. Literature dealing with jet pumps is abundant and covers a very wide array of application areas. Example application areas include vacuum pumps which are used in the food industry, power station work, and the chemical industry; ejector systems which have applications in the aircraft industry as cabin ventilators and for purposes of jet thrust augmentation; jet pumps which are used in the oil industry for oil well pumping; and steam-jet ejector refrigeration, to just name a few. Examples of work relevant to this investigation includes those of Fairuzov and Bredikhin (1995). While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the author apart from that of Anand (1992) who was able to account for condensation shocks. Thus, one of the objectives of this work is to model the dynamics of fluid interaction between a two-phase primary fluid and a subcooled liquid secondary fluid which is being injected employing atomizing spray injectors. The model developed accounts for phase transformations due to expansion, compression, and mixing. It also accounts for shock waves developing in the different parts of the jet pump as well as temperature and pressure dependencies of the fluid properties for both the primary two-phase mixture and the

  16. Capillary hydrodynamics and transport processes during phase change in microscale systems

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. V.

    2017-09-01

    The characteristics of two-phase gas-liquid flow and heat transfer during flow boiling and condensing in micro-scale heat exchangers are discussed in this paper. The results of numerical simulation of the evaporating liquid film flowing downward in rectangular minichannel of the two-phase compact heat exchanger are presented and the peculiarities of microscale heat transport in annular flow with phase changes are discussed. Presented model accounts the capillarity induced transverse flow of liquid and predicts the microscale heat transport processes when the nucleate boiling becomes suppressed. The simultaneous influence of the forced convection, nucleate boiling and liquid film evaporation during flow boiling in plate-fin heat exchangers is considered. The equation for prediction of the flow boiling heat transfer at low flux conditions is presented and verified using experimental data.

  17. Geometry and supersymmetry of heterotic warped flux AdS backgrounds

    NASA Astrophysics Data System (ADS)

    Beck, S.; Gutowski, J.; Papadopoulos, G.

    2015-07-01

    We classify the geometries of the most general warped, flux AdS backgrounds of heterotic supergravity up to two loop order in sigma model perturbation theory. We show under some mild assumptions that there are no AdS n backgrounds with n ≠ 3. Moreover the warp factor of AdS3 backgrounds is constant, the geometry is a product AdS 3 × M 7 and such solutions preserve, 2, 4, 6 and 8 supersymmetries. The geometry of M 7 has been specified in all cases. For 2 supersymmetries, it has been found that M 7 admits a suitably restricted G 2 structure. For 4 supersymmetries, M 7 has an SU(3) structure and can be described locally as a circle fibration over a 6-dimensional KT manifold. For 6 and 8 supersymmetries, M 7 has an SU(2) structure and can be described locally as a S 3 fibration over a 4-dimensional manifold which either has an anti-self dual Weyl tensor or a hyper-Kähler structure, respectively. We also demonstrate a new Lichnerowicz type theorem in the presence of α' corrections.

  18. Discharge, Relaxation, and Charge Model for the Lithium Trivanadate Electrode: Reactions, Phase Change, and Transport

    DOE PAGES

    Brady, Nicholas W.; Zhang, Qing; Knehr, K. W.; ...

    2016-10-26

    The electrochemical behavior of lithium trivanadate (LiV 3O 8) during lithiation, delithiation, and voltage recovery experiments is simulated using a crystal-scale model that accounts for solid-state diffusion, charge-transfer kinetics, and phase transformations. The kinetic expression for phase change was modeled using an approach inspired by the Avrami formulation for nucleation and growth. Numerical results indicate that the solid-state diffusion coefficient of lithium in LiV 3O 8 is ~ 10 -13 cm 2 s -1 and the equilibrium compositions in the two phase region (~2.5 V) are Li 2.5V 3O 8:Li 4V 3O 8. Agreement between the simulated and experimental resultsmore » is excellent. Relative to the lithiation curves, the experimental delithiation curves show significantly less overpotential and at low levels of lithiation (end of charge). Simulations are only able to capture this result by assuming that the solid-state mass-transfer resistance is less during delithiation. The proposed rationale for this difference is that the (100) face is inactive during lithiation, but active during delithiation. Finally, by assuming non-instantaneous phase-change kinetics, estimates are made for the overpotential due to imperfect phase change (supersaturation).« less

  19. [Value-Added--Adding Economic Value in the Food Industry].

    ERIC Educational Resources Information Center

    Welch, Mary A., Ed.

    1989-01-01

    This booklet focuses on the economic concept of "value added" to goods and services. A student activity worksheet illustrates how the steps involved in processing food are examples of the concept of value added. The booklet further links food processing to the idea of value added to the Gross National Product (GNP). Discussion questions,…

  20. Evidence of human-induced morphodynamic changes along the Campania coastal areas (southern Italy) since the 3rd-4th cent. AD

    NASA Astrophysics Data System (ADS)

    Russo Ermolli, Elda; Romano, Paola; Liuzza, Viviana; Amato, Vincenzo; Ruello, Maria Rosaria; Di Donato, Valentino

    2014-05-01

    Campania has always offered suitable climatic and physiographic conditions for human settlements since prehistoric times. In particular, many Graeco-Roman towns developed along its coasts starting from the 7th-6th cent. BC. In the last decade, geoarchaelogical surveys have been carried out in the archaeological excavations of Neapolis, Paestum and Elea-Velia allowing the main steps of the landscape evolution around these towns to be defined in detail. The greek town of Neapolis rose in the late 6th cent. BC [1] on a terrace overlooking a low-relief rocky coast surrounded by volcanic hills. Port activities developed in a protected bay facing the town from the 4th-2nd cent. BC up to the 4th cent. AD, as testified by the discovery of structures and shipwrecks [2, 3, 4]. Starting from the 3rd cent. AD a spit bar formed at the bay entrance causing the progressive establishment of a lagoon which was gradually filled up by alluvial inputs and completely closed in the 5th cent. AD. During the same period, episodes of increased alluvial inputs were also recorded further west along the coast, where a narrow sandy beach formed at the cliff toe. The greek town of Poseidonia, renamed Paestum by the Romans, was founded in the 540 BC on a travertine terrace facing the sandy littoral of a prograding coastal plain [5]. In front of the main town door, a coastal lagoon developed thanks to the growth of a dune ridge and was probably used for harbor activities [5]. After this period the shoreline shifted seawards, another dune ridge formed and the back-ridge depression was filled with fluvial-marshy deposits, slowly drying up. Phases of travertine deposition, which characterized the SE sector of the plain all along the Holocene, were recorded in the northern and southern quarters of the town in historical times and were connected to the abandonment of the town in the early Medieval times. The greek colony of Elea-Velia was located on top of a siliciclastic promontory where the ruins of

  1. Powder metallurgy: Solid and liquid phase sintering of copper

    NASA Technical Reports Server (NTRS)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  2. In situ investigations of the phase change behaviour of tungsten oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Thummavichai, Kunyapat; Wang, Nannan; Xu, Fang; Rance, Graham; Xia, Yongda; Zhu, Yanqiu

    2018-04-01

    This study uses two in situ techniques to investigate the geometry and phase change behaviour of bundled ultrathin W18O49 nanowires and WO3 nanoparticles. The in situ X-ray diffraction (XRD) results have shown that the phase transition of WO3 nanoparticles occurs in sequence from monoclinic (room temperature) → orthorhombic (350°C) → tetragonal (800°C), akin to bulk WO3; however, W18O49 nanowires remain stable as the monoclinic phase up to 500°C, after which a complete oxidation to WO3 and transformation to the orthorhombic β-phase at 550°C is observed. The in situ Raman spectroscopy investigations have revealed the Raman peak downshifts as the temperature increases, and have identified the 187.6 cm-1 as the fingerprint band for the phase transition from γ- to β-phase of the WO3 nanoparticle. Furthermore, WO3 nanoparticles exhibit the γ- to β-phase conversion at 275°C, which is about 75°C lower than the relaxation temperature of 350°C for the monoclinic γ-W18O49 nanowires. These new fundamental understandings on the phase transition behaviour offer important guidance for the design and development of tungsten oxide-based nanodevices by defining their allowed operating conditions.

  3. Diffusion and phase change characterization by mass spectrometry

    NASA Technical Reports Server (NTRS)

    Koslin, M. E.; White, F. A.

    1979-01-01

    The high temperature diffusion of trace elements in metals and alloys was investigated. Measurements were made by high sensitivity mass spectrometry in which individual atoms were detected, and quantitative data was obtained for zircaloy-2, 304 stainless steel, and tantalum. Additionally, a mass spectrometer was also an analytical tool for determining an allotropic phase change for stainless steel at 955 C, and a phase transition region between 772 C and 1072 C existing for zircaloy-2. Diffusion rates were measured in thin (0.001" (0.0025 cm) and 0.0005" (0.0013 cm)) ribbons which were designed as high temperature thermal ion sources, with the alkali metals as naturally occurring impurities. In the temperature and pressure regime where diffusion measurements were made, the solute atoms evaporated from the ribbon filaments when the impurities diffused to the surface, with a fraction of these impurity atoms ionized according to the Langmuir-Saha relation. The techniques developed can be applied to many other alloys important to space vehicles and supersonic transports; and, with appropriate modifications, to the diffusion of impurities in composites.

  4. Changes in consumption of added sugars from age 13 to 30 years: a systematic review and meta‐analysis of longitudinal studies

    PubMed Central

    Penney, T. L.; Corder, K.; White, M.; van Sluijs, E. M. F.

    2017-01-01

    Summary Added sugar intake during adolescence has been associated with weight gain and cardiometabolic risk factors. Moreover, dietary habits may persist into adulthood, increasing chronic disease risk in later life. This systematic review investigated changes in intake of added sugars between the ages of 13 and 30 years. Literature databases were searched for longitudinal studies of diet during adolescence or early adulthood. Retrieved articles were screened for studies including multiple measures of intake of sugars or sugary foods from cohort participants between the ages of 13 and 30. Data were analysed using random‐effects meta‐analysis, by the three main nutrient and food group categories identified (PROSPERO: CRD42015030126). Twenty‐four papers reported longitudinal data on intake of added sugar or sucrose (n = 6), sugar‐sweetened beverages (SSBs) (n = 20) and/or confectionery (n = 9). Meta‐analysis showed a non‐significant per year of age decrease in added sugar or sucrose intake (−0.15% total energy intake (95%CI −0.41; 0.12)), a decrease in confectionery consumption (−0.20 servings/week (95%CI −0.41; −0.001)) and a non‐significant decrease in SSB consumption (−0.15 servings/week (95%CI −0.32; 0.02)). Taken together, the overall decrease in added sugar intake observed from adolescence to early adulthood may suggest opportunities for intervention to further improve dietary choices within this age range. PMID:28869998

  5. Tuning the Adsorption-Induced Phase Change in the Flexible Metal–Organic Framework Co(bdp)

    DOE PAGES

    Taylor, Mercedes K.; Runčevski, Tomče; Oktawiec, Julia; ...

    2016-11-02

    Metal–organic frameworks that flex to undergo structural phase changes upon gas adsorption are promising materials for gas storage and separations, and achieving synthetic control over the pressure at which these changes occur is crucial to the design of such materials for specific applications. To this end, a new family of materials based on the flexible metal–organic framework Co(bdp) (bdp 2– = 1,4-benzenedipyrazolate) has been prepared via the introduction of fluorine, deuterium, and methyl functional groups on the bdp 2– ligand, namely, Co(F-bdp), Co(p-F 2-bdp), Co(o-F 2-bdp), Co(D 4-bdp), and Co(p-Me 2-bdp). These frameworks are isoreticular to the parent framework andmore » exhibit similar structural flexibility, transitioning from a low-porosity, collapsed phase to high-porosity, expanded phases with increasing gas pressure. Powder X-ray diffraction studies reveal that fluorination of the aryl ring disrupts edge-to-face π–π interactions, which work to stabilize the collapsed phase at low gas pressures, while deuteration preserves these interactions and methylation strengthens them. In agreement with these observations, high-pressure CH 4 adsorption isotherms show that the pressure of the CH 4-induced framework expansion can be systematically controlled by ligand functionalization, as materials without edge-to-face interactions in the collapsed phase expand at lower CH 4 pressures, while frameworks with strengthened edge-to-face interactions expand at higher pressures. This work puts forth a general design strategy relevant to many other families of flexible metal–organic frameworks, which will be a powerful tool in optimizing these phase-change materials for industrial applications.« less

  6. Thermodynamic and classical instability of AdS black holes in fourth-order gravity

    NASA Astrophysics Data System (ADS)

    Myung, Yun Soo; Moon, Taeyoon

    2014-04-01

    We study thermodynamic and classical instability of AdS black holes in fourth-order gravity. These include the BTZ black hole in new massive gravity, Schwarzschild-AdS black hole, and higher-dimensional AdS black holes in fourth-order gravity. All thermo-dynamic quantities which are computed using the Abbot-Deser-Tekin method are used to study thermodynamic instability of AdS black holes. On the other hand, we investigate the s-mode Gregory-Laflamme instability of the massive graviton propagating around the AdS black holes. We establish the connection between the thermodynamic instability and the GL instability of AdS black holes in fourth-order gravity. This shows that the Gubser-Mitra conjecture holds for AdS black holes found from fourth-order gravity.

  7. Preliminary Trade Study of Phase Change Heat Sinks

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Leimkeuhler, Thomas; Quinn, Gregory; Golliher, Eric

    2006-01-01

    For short durations, phase change based heat rejection systems are a very effective way of removing heat from spacecraft. Future NASA vehicles, such as the Crew Exploration Vehicle (CEV), will require non-radiative heat rejection systems during at least a portion of the planned mission, just as their predecessors have. While existing technologies are available to modify, such as Apollo era sublimators, or the Space Shuttle Flash Evaporator System (FES), several new technologies are under development or investigation to progress beyond these existing heat rejection systems. Examples include the Multi-Fluid Evaporator developed by Hamilton Sundstrand, improvements upon the Contaminant Insensitive Sublimator originally developed for the X-38 program, and a Compact Flash Evaporator System (CFES). Other possibilities evaluate new ways of operating existing designs. The new developments are targeted at increasing operating life, expanding the environments in which the system can operate, improving the mass and volume characteristics, or some combination of these or other improvements. This paper captures the process and results of a preliminary trade study performed at Johnson Space Center to compare the various existing and proposed phase change based heat rejection systems for the CEV. Because the new systems are still in development, and the information on existing systems is extrapolation, this trade study is not meant to suggest a final decision for future vehicles. The results of this early trade study are targeted to aid the development efforts for the new technologies by identifying issues that could reduce the chances of selection for the CEV.

  8. Phase transformation changes in thermocycled nickel-titanium orthodontic wires.

    PubMed

    Berzins, David W; Roberts, Howard W

    2010-07-01

    In the oral environment, orthodontic wires will be subject to thermal fluctuations. The purpose of this study was to investigate the effect of thermocycling on nickel-titanium (NiTi) wire phase transformations. Straight segments from single 27 and 35 degrees C copper NiTi (Ormco), Sentalloy (GAC), and Nitinol Heat Activated (3M Unitek) archwires were sectioned into 5mm segments (n=20). A control group consisted of five randomly selected non-thermocycled segments. The remaining segments were thermocycled between 5 and 55 degrees C with five randomly selected segments analyzed with differential scanning calorimetry (DSC; -100<-->150 degrees C at 10 degrees C/min) after 1000, 5000, and 10,000 cycles. Thermal peaks were evaluated with results analyzed via ANOVA (alpha=0.05). Nitinol HA and Sentalloy did not demonstrate qualitative or quantitative phase transformation behavior differences. Significant differences were observed in some of the copper NiTi transformation temperatures, as well as the heating enthalpy with the 27 degrees C copper NiTi wires (p<0.05). Qualitatively, with increased thermocycling the extent of R-phase in the heating peaks decreased in the 35 degrees C copper NiTi, and an austenite to martensite peak shoulder developed during cooling in the 27 degrees C copper NiTi. Repeated temperature fluctuations may contribute to qualitative and quantitative phase transformation changes in some NiTi wires. Copyright 2010 Academy of Dental Materials. All rights reserved.

  9. The National Geographic Names Data Base: Phase II instructions

    USGS Publications Warehouse

    Orth, Donald J.; Payne, Roger L.

    1987-01-01

    not recorded on topographic maps be added. The systematic collection of names from other sources, including maps, charts, and texts, is termed Phase II. In addition, specific types of features not compiled during Phase I are encoded and added to the data base. Other names of importance to researchers and users, such as historical and variant names, are also included. The rules and procedures for Phase II research, compilation, and encoding are contained in this publication.

  10. Thin wing corrections for phase-change heat-transfer data.

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Pitts, J. I.

    1971-01-01

    Since no methods are available for determining the magnitude of the errors incurred when the semiinfinite slab assumption is violated, a computer program was developed to calculate the heat-transfer coefficients to both sides of a finite, one-dimensional slab subject to the boundary conditions ascribed to the phase-change coating technique. The results have been correlated in the form of correction factors to the semiinfinite slab solutions in terms of parameters normally used with the technique.

  11. Numerical analysis of natural convection in liquid droplets by phase change

    NASA Astrophysics Data System (ADS)

    Duh, J. C.; Yang, Wen-Jei

    1989-09-01

    A numerical analysis is performed on thermocapillary buoyancy convection induced by phase change in a liquid droplet. A finite-difference code is developed using an alternating-direction implicit (ADI) scheme. The intercoupling relation between thermocapillary force, buoyancy force, fluid property, heat transfer, and phase change, along with their effects on the induced flow patterns, are disclosed. The flow is classified into three types: thermocapillary, buoyancy, and combined convection. Among the three mechanisms, the combined convection simulates the experimental observations quite well, and the basic mechanism of the observed convection inside evaporating sessile drops is thus identified. It is disclosed that evaporation initiates unstable convection, while condensation always brings about a stable density distribution which eventually damps out all fluid disturbances. Another numerical model is presented to study the effect of boundary recession due to evaporation, and the 'peeling-off' effect (the removal of the surface layer of fluid by evaporation) is shown to be relevant.

  12. Numerical analysis of natural convection in liquid droplets by phase change

    NASA Technical Reports Server (NTRS)

    Duh, J. C.; Yang, Wen-Jei

    1989-01-01

    A numerical analysis is performed on thermocapillary buoyancy convection induced by phase change in a liquid droplet. A finite-difference code is developed using an alternating-direction implicit (ADI) scheme. The intercoupling relation between thermocapillary force, buoyancy force, fluid property, heat transfer, and phase change, along with their effects on the induced flow patterns, are disclosed. The flow is classified into three types: thermocapillary, buoyancy, and combined convection. Among the three mechanisms, the combined convection simulates the experimental observations quite well, and the basic mechanism of the observed convection inside evaporating sessile drops is thus identified. It is disclosed that evaporation initiates unstable convection, while condensation always brings about a stable density distribution which eventually damps out all fluid disturbances. Another numerical model is presented to study the effect of boundary recession due to evaporation, and the 'peeling-off' effect (the removal of the surface layer of fluid by evaporation) is shown to be relevant.

  13. Plastic Deformation and Failure Analysis of Phase Change Random Access Memory

    NASA Astrophysics Data System (ADS)

    Yang; Hongxin; Shi; Luping; Lee; Koon, Hock; Zhao; Rong; Li; Jianming; Lim; Guan, Kian; Chong; Chong, Tow

    2009-04-01

    Although lateral phase change random access memory (PCRAM) has attracted a lot of interest due to its simpler fabrication process and lower current compared to ovonic unified memory (OUM), it faces a problem of poor lifetime. This paper studied relation between plastic deformation and the failure of PCRAM through both experiment and simulation. OUM and lateral PCRAM incorporating Ge2Sb2Te5 were fabricated and tested. The overwriting test showed that lifetime of OUM exceeded 106 while that of lateral PCRAM was only about 100. Using atomic force microscopy (AFM), it was found that the plastic deformation after 106 overwriting reached several tens of nm for lateral PCRAM while it was negligible for OUM. The thermo-mechanical simulation results confirmed the similar results on larger plastic deformation of lateral PCRAM than that of OUM during overwriting. As plastic deformation involves of atomic bonds breaking and reforming in phase change material, the plastic deformation may be one main reason for the failure of lateral PCRAM.

  14. Resistive switching characteristics of interfacial phase-change memory at elevated temperature

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Kirill V.; Saito, Yuta; Miyata, Noriyuki; Fons, Paul; Kolobov, Alexander V.; Tominaga, Junji

    2018-04-01

    Interfacial phase-change memory (iPCM) devices were fabricated using W and TiN for the bottom and top contacts, respectively, and the effect of operation temperature on the resistive switching was examined over the range between room temperature and 200 °C. It was found that the high-resistance (RESET) state in an iPCM device drops sharply at around 150 °C to a low-resistance (SET) state, which differs by ˜400 Ω from the SET state obtained by electric-field-induced switching. The iPCM device SET state resistance recovered during the cooling process and remained at nearly the same value for the RESET state. These resistance characteristics greatly differ from those of the conventional Ge-Sb-Te (GST) alloy phase-change memory device, underscoring the fundamentally different switching nature of iPCM devices. From the thermal stability measurements of iPCM devices, their optimal temperature operation was concluded to be less than 100 °C.

  15. Nurse Value-Added and Patient Outcomes in Acute Care

    PubMed Central

    Yakusheva, Olga; Lindrooth, Richard; Weiss, Marianne

    2014-01-01

    Objective The aims of the study were to (1) estimate the relative nurse effectiveness, or individual nurse value-added (NVA), to patients’ clinical condition change during hospitalization; (2) examine nurse characteristics contributing to NVA; and (3) estimate the contribution of value-added nursing care to patient outcomes. Data Sources/Study Setting Electronic data on 1,203 staff nurses matched with 7,318 adult medical–surgical patients discharged between July 1, 2011 and December 31, 2011 from an urban Magnet-designated, 854-bed teaching hospital. Study Design Retrospective observational longitudinal analysis using a covariate-adjustment value-added model with nurse fixed effects. Data Collection/Extraction Methods Data were extracted from the study hospital's electronic patient records and human resources databases. Principal Findings Nurse effects were jointly significant and explained 7.9 percent of variance in patient clinical condition change during hospitalization. NVA was positively associated with having a baccalaureate degree or higher (0.55, p = .04) and expertise level (0.66, p = .03). NVA contributed to patient outcomes of shorter length of stay and lower costs. Conclusions Nurses differ in their value-added to patient outcomes. The ability to measure individual nurse relative value-added opens the possibility for development of performance metrics, performance-based rankings, and merit-based salary schemes to improve patient outcomes and reduce costs. PMID:25256089

  16. Phase change material thermal capacitor clothing

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2005-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  17. Density functional simulations of Sb-rich GeSbTe phase change alloys.

    PubMed

    Gabardi, S; Caravati, S; Bernasconi, M; Parrinello, M

    2012-09-26

    We generated models of the amorphous phase of Sb-rich GeSbTe phase change alloys by quenching from the melt within density functional molecular dynamics. We considered the two compositions Ge(1)Sb(1)Te(1) and Ge(2)Sb(4)Te(5). Comparison with previous results on the most studied Ge(2)Sb(2)Te(5) allowed us to draw some conclusions on the dependence of the structural properties of the amorphous phase on the alloy composition. Vibrational and electronic properties were also scrutinized. Phonons at high frequencies above 200 cm(-1) are localized in tetrahedra around Ge atoms in Sb-rich compounds as well as in Ge(2)Sb(2)Te(5). All compounds are semiconducting in the amorphous phase, with a band gap in the range 0.7-1.0 eV.

  18. Density functional simulations of Sb-rich GeSbTe phase change alloys

    NASA Astrophysics Data System (ADS)

    Gabardi, S.; Caravati, S.; Bernasconi, M.; Parrinello, M.

    2012-09-01

    We generated models of the amorphous phase of Sb-rich GeSbTe phase change alloys by quenching from the melt within density functional molecular dynamics. We considered the two compositions Ge1Sb1Te1 and Ge2Sb4Te5. Comparison with previous results on the most studied Ge2Sb2Te5 allowed us to draw some conclusions on the dependence of the structural properties of the amorphous phase on the alloy composition. Vibrational and electronic properties were also scrutinized. Phonons at high frequencies above 200 cm-1 are localized in tetrahedra around Ge atoms in Sb-rich compounds as well as in Ge2Sb2Te5. All compounds are semiconducting in the amorphous phase, with a band gap in the range 0.7-1.0 eV.

  19. Adapted head- and eye-movement responses to added-head inertia

    NASA Technical Reports Server (NTRS)

    Gauthier, G. M.; Martin, B. J.; Stark, L. W.

    1986-01-01

    Adaptation to inertia added to the head was studied in men by mounting masses on a rigidly attached helmet until two- to ten-fold increases of inertia were produced, while an overhead suspension compensated for the weights. The observed changes in the eye and head movement coordination included increased head movement latencies, as well as changes in the eye movement amplitude, and later stabilizing alternate contractions of the neck muscles. Oscillopsia, or continual displacement or instability of the visual world, which is a symptom of a breakdown of space constancy, was prominent and consistent in the perceptual reports of the subjects. Although adaptation resulting from adding inertia to the head occurred much faster than that induced by adding prisms or lenses, it has similar perceptual and motor components that may be objectively studied in detail.

  20. What is the Value Added to Adaptation Planning by Probabilistic Projections of Climate Change?

    NASA Astrophysics Data System (ADS)

    Wilby, R. L.

    2008-12-01

    Probabilistic projections of climate change offer new sources of risk information to support regional impacts assessment and adaptation options appraisal. However, questions continue to surround how best to apply these scenarios in a practical context, and whether the added complexity and computational burden leads to more robust decision-making. This paper provides an overview of recent efforts in the UK to 'bench-test' frameworks for employing probabilistic projections ahead of the release of the next generation, UKCIP08 projections (in November 2008). This is involving close collaboration between government agencies, research and stakeholder communities. Three examples will be cited to illustrate how probabilistic projections are already informing decisions about future flood risk management in London, water resource planning in trial river basins, and assessments of risks from rising water temperatures to Atlantic salmon stocks in southern England. When compared with conventional deterministic scenarios, ensemble projections allow exploration of a wider range of management options and highlight timescales for implementing adaptation measures. Users of probabilistic scenarios must keep in mind that other uncertainties (e.g., due to impacts model structure and parameterisation) should be handled in an equally rigorous way to those arising from climate models and emission scenarios. Finally, it is noted that a commitment to long-term monitoring is also critical for tracking environmental change, testing model projections, and for evaluating the success (or not) of any scenario-led interventions.

  1. Collapse and Nonlinear Instability of AdS Space with Angular Momentum

    NASA Astrophysics Data System (ADS)

    Choptuik, Matthew W.; Dias, Óscar J. C.; Santos, Jorge E.; Way, Benson

    2017-11-01

    We present a numerical study of rotational dynamics in AdS5 with equal angular momenta in the presence of a complex doublet scalar field. We determine that the endpoint of gravitational collapse is a Myers-Perry black hole for high energies and a hairy black hole for low energies. We investigate the time scale for collapse at low energies E , keeping the angular momenta J ∝E in anti-de Sitter (AdS) length units. We find that the inclusion of angular momenta delays the collapse time, but retains a t ˜1 /E scaling. We perturb and evolve rotating boson stars, and find that boson stars near AdS space appear stable, but those sufficiently far from AdS space are unstable. We find that the dynamics of the boson star instability depend on the perturbation, resulting either in collapse to a Myers-Perry black hole, or development towards a stable oscillating solution.

  2. Nuclear events of apoptosis in vitro in cell-free mitotic extracts: a model system for analysis of the active phase of apoptosis

    PubMed Central

    1993-01-01

    We have developed a cell-free system that induces the morphological transformations characteristic of apoptosis in isolated nuclei. The system uses extracts prepared from mitotic chicken hepatoma cells following a sequential S phase/M phase synchronization. When nuclei are added to these extracts, the chromatin becomes highly condensed into spherical domains that ultimately extrude through the nuclear envelope, forming apoptotic bodies. The process is highly synchronous, and the structural changes are completed within 60 min. Coincident with these morphological changes, the nuclear DNA is cleaved into a nucleosomal ladder. Both processes are inhibited by Zn2+, an inhibitor of apoptosis in intact cells. Nuclear lamina disassembly accompanies these structural changes in added nuclei, and we show that lamina disassembly is a characteristic feature of apoptosis in intact cells of mouse, human and chicken. This system may provide a powerful means of dissecting the biochemical mechanisms underlying the final stages of apoptosis. PMID:8408207

  3. Semiclassical Virasoro blocks from AdS 3 gravity

    DOE PAGES

    Hijano, Eliot; Kraus, Per; Perlmutter, Eric; ...

    2015-12-14

    We present a unified framework for the holographic computation of Virasoro conformal blocks at large central charge. In particular, we provide bulk constructions that correctly reproduce all semiclassical Virasoro blocks that are known explicitly from conformal field theory computations. The results revolve around the use of geodesic Witten diagrams, recently introduced in [1], evaluated in locally AdS 3 geometries generated by backreaction of heavy operators. We also provide an alternative computation of the heavy-light semiclassical block — in which two external operators become parametrically heavy — as a certain scattering process involving higher spin gauge fields in AdS 3; thismore » approach highlights the chiral nature of Virasoro blocks. Finally, these techniques may be systematically extended to compute corrections to these blocks and to interpolate amongst the different semiclassical regimes.« less

  4. EXACT S-MATRICES FOR AdS3/CFT2

    NASA Astrophysics Data System (ADS)

    Ahn, Changrim; Bombardelli, Diego

    2013-12-01

    We propose exact S-matrices for the AdS3/CFT2 duality between type IIB strings on AdS3×S3×M4 with M4 = S3×S1 or T4 and the corresponding two-dimensional conformal field theories. We fix the two-particle S-matrices on the basis of the symmetries su(1|1) and su(1|1)×su(1|1). A crucial justification comes from the derivation of the all-loop Bethe ansatz matching exactly the recent conjecture proposed by Babichenko et al. [J. High Energy Phys.1003, 058 (2010), arXiv:0912.1723 [hep-th

  5. Minimal surfaces in AdS space and integrable systems

    NASA Astrophysics Data System (ADS)

    Burrington, Benjamin A.; Gao, Peng

    2010-04-01

    We consider the Pohlmeyer reduction for spacelike minimal area worldsheets in AdS5. The Lax pair for the reduced theory is found, and written entirely in terms of the A3 = D3 root system, generalizing the B2 affine Toda system which appears for the AdS4 string. For the B2 affine Toda system, we show that the area of the worlsheet is obtainable from the moduli space Kähler potential of a related Hitchin system. We also explore the Saveliev-Leznov construction for solutions of the B2 affine Toda system, and recover the rotationally symmetric solution associated to Painleve transcendent.

  6. Financial and health literacy predict incident AD dementia and AD pathology

    PubMed Central

    Yu, Lei; Wilson, Robert S.; Schneider, Julie A.; Bennett, David A.; Boyle, Patricia A.

    2017-01-01

    Background Domain specific literacy is a multidimensional construct that requires multiple resources including cognitive and non-cognitive factors. Objective We test the hypothesis that domain specific literacy is associated with AD dementia and AD pathology after controlling for cognition. Methods Participants were community based older persons who completed a baseline literacy assessment, underwent annual clinical evaluations for up to 8 years and agreed to organ donation after death. Financial and health literacy was measured using 32 questions and cognition was measured using 19 tests. Annual diagnosis of AD dementia followed standard criteria. AD pathology was examined post-mortem by quantifying plaques and tangles. Cox models examined the association of literacy with incident AD dementia. Performance of model prediction for incident AD dementia was assessed using indices for integrated discrimination improvement and continuous net reclassification improvement. Linear regression models examined the independent association of literacy with AD pathology in autopsied participants. Results All 805 participants were free of dementia at baseline and 102 (12.7%) developed AD dementia during the follow-up. Lower literacy was associated with higher risk for incident AD dementia (p<0.001), and the association persisted after controlling for cognition (Hazard Ratio=1.50, p=0.004). The model including the literacy measure had better predictive performance than the one with demographics and cognition only. Lower literacy also was associated with higher burden of AD pathology after controlling for cognition (β=0.07, p=0.035). Conclusion Literacy predicts incident AD dementia and AD pathology in community-dwelling older persons, and the association is independent of traditional measures of cognition. PMID:28157101

  7. A 2-phase labeling and choice architecture intervention to improve healthy food and beverage choices.

    PubMed

    Thorndike, Anne N; Sonnenberg, Lillian; Riis, Jason; Barraclough, Susan; Levy, Douglas E

    2012-03-01

    We assessed whether a 2-phase labeling and choice architecture intervention would increase sales of healthy food and beverages in a large hospital cafeteria. Phase 1 was a 3-month color-coded labeling intervention (red = unhealthy, yellow = less healthy, green = healthy). Phase 2 added a 3-month choice architecture intervention that increased the visibility and convenience of some green items. We compared relative changes in 3-month sales from baseline to phase 1 and from phase 1 to phase 2. At baseline (977,793 items, including 199,513 beverages), 24.9% of sales were red and 42.2% were green. Sales of red items decreased in both phases (P < .001), and green items increased in phase 1 (P < .001). The largest changes occurred among beverages. Red beverages decreased 16.5% during phase 1 (P < .001) and further decreased 11.4% in phase 2 (P < .001). Green beverages increased 9.6% in phase 1 (P < .001) and further increased 4.0% in phase 2 (P < .001). Bottled water increased 25.8% during phase 2 (P < .001) but did not increase at 2 on-site comparison cafeterias (P < .001). A color-coded labeling intervention improved sales of healthy items and was enhanced by a choice architecture intervention.

  8. Ultrathin phase-change coatings on metals for electrothermally tunable colors

    NASA Astrophysics Data System (ADS)

    Bakan, Gokhan; Ayas, Sencer; Saidzoda, Tohir; Celebi, Kemal; Dana, Aykutlu

    2016-08-01

    Metal surfaces coated with ultrathin lossy dielectrics enable color generation through strong interferences in the visible spectrum. Using a phase-change thin film as the coating layer offers tuning the generated color by crystallization or re-amorphization. Here, we study the optical response of surfaces consisting of thin (5-40 nm) phase-changing Ge2Sb2Te5 (GST) films on metal, primarily Al, layers. A color scale ranging from yellow to red to blue that is obtained using different thicknesses of as-deposited amorphous GST layers turns dim gray upon annealing-induced crystallization of the GST. Moreover, when a relatively thick (>100 nm) and lossless dielectric film is introduced between the GST and Al layers, optical cavity modes are observed, offering a rich color gamut at the expense of the angle independent optical response. Finally, a color pixel structure is proposed for ultrahigh resolution (pixel size: 5 × 5 μm2), non-volatile displays, where the metal layer acting like a mirror is used as a heater element. The electrothermal simulations of such a pixel structure suggest that crystallization and re-amorphization of the GST layer using electrical pulses are possible for electrothermal color tuning.

  9. What's the point? Hole-ography in Poincaré AdS

    NASA Astrophysics Data System (ADS)

    Espíndola, Ricardo; Güijosa, Alberto; Landetta, Alberto; Pedraza, Juan F.

    2018-01-01

    In the context of the AdS/CFT correspondence, we study bulk reconstruction of the Poincaré wedge of AdS_3 via hole-ography, i.e., in terms of differential entropy of the dual CFT_2. Previous work had considered the reconstruction of closed or open spacelike curves in global AdS, and of infinitely extended spacelike curves in Poincaré AdS that are subject to a periodicity condition at infinity. Working first at constant time, we find that a closed curve in Poincaré is described in the CFT by a family of intervals that covers the spatial axis at least twice. We also show how to reconstruct open curves, points and distances, and obtain a CFT action whose extremization leads to bulk points. We then generalize all of these results to the case of curves that vary in time, and discover that generic curves have segments that cannot be reconstructed using the standard hole-ographic construction. This happens because, for the nonreconstructible segments, the tangent geodesics fail to be fully contained within the Poincaré wedge. We show that a previously discovered variant of the hole-ographic method allows us to overcome this challenge, by reorienting the geodesics touching the bulk curve to ensure that they all remain within the wedge. Our conclusion is that all spacelike curves in Poincaré AdS can be completely reconstructed with CFT data, and each curve has in fact an infinite number of representations within the CFT.

  10. Adélie Penguin Population Diet Monitoring by Analysis of Food DNA in Scats

    PubMed Central

    Jarman, Simon N.; McInnes, Julie C.; Faux, Cassandra; Polanowski, Andrea M.; Marthick, James; Deagle, Bruce E.; Southwell, Colin; Emmerson, Louise

    2013-01-01

    The Adélie penguin is the most important animal currently used for ecosystem monitoring in the Southern Ocean. The diet of this species is generally studied by visual analysis of stomach contents; or ratios of isotopes of carbon and nitrogen incorporated into the penguin from its food. There are significant limitations to the information that can be gained from these methods. We evaluated population diet assessment by analysis of food DNA in scats as an alternative method for ecosystem monitoring with Adélie penguins as an indicator species. Scats were collected at four locations, three phases of the breeding cycle, and in four different years. A novel molecular diet assay and bioinformatics pipeline based on nuclear small subunit ribosomal RNA gene (SSU rDNA) sequencing was used to identify prey DNA in 389 scats. Analysis of the twelve population sample sets identified spatial and temporal dietary change in Adélie penguin population diet. Prey diversity was found to be greater than previously thought. Krill, fish, copepods and amphipods were the most important food groups, in general agreement with other Adélie penguin dietary studies based on hard part or stable isotope analysis. However, our DNA analysis estimated that a substantial portion of the diet was gelatinous groups such as jellyfish and comb jellies. A range of other prey not previously identified in the diet of this species were also discovered. The diverse prey identified by this DNA-based scat analysis confirms that the generalist feeding of Adélie penguins makes them a useful indicator species for prey community composition in the coastal zone of the Southern Ocean. Scat collection is a simple and non-invasive field sampling method that allows DNA-based estimation of prey community differences at many temporal and spatial scales and provides significant advantages over alternative diet analysis approaches. PMID:24358158

  11. Adélie penguin population diet monitoring by analysis of food DNA in scats.

    PubMed

    Jarman, Simon N; McInnes, Julie C; Faux, Cassandra; Polanowski, Andrea M; Marthick, James; Deagle, Bruce E; Southwell, Colin; Emmerson, Louise

    2013-01-01

    The Adélie penguin is the most important animal currently used for ecosystem monitoring in the Southern Ocean. The diet of this species is generally studied by visual analysis of stomach contents; or ratios of isotopes of carbon and nitrogen incorporated into the penguin from its food. There are significant limitations to the information that can be gained from these methods. We evaluated population diet assessment by analysis of food DNA in scats as an alternative method for ecosystem monitoring with Adélie penguins as an indicator species. Scats were collected at four locations, three phases of the breeding cycle, and in four different years. A novel molecular diet assay and bioinformatics pipeline based on nuclear small subunit ribosomal RNA gene (SSU rDNA) sequencing was used to identify prey DNA in 389 scats. Analysis of the twelve population sample sets identified spatial and temporal dietary change in Adélie penguin population diet. Prey diversity was found to be greater than previously thought. Krill, fish, copepods and amphipods were the most important food groups, in general agreement with other Adélie penguin dietary studies based on hard part or stable isotope analysis. However, our DNA analysis estimated that a substantial portion of the diet was gelatinous groups such as jellyfish and comb jellies. A range of other prey not previously identified in the diet of this species were also discovered. The diverse prey identified by this DNA-based scat analysis confirms that the generalist feeding of Adélie penguins makes them a useful indicator species for prey community composition in the coastal zone of the Southern Ocean. Scat collection is a simple and non-invasive field sampling method that allows DNA-based estimation of prey community differences at many temporal and spatial scales and provides significant advantages over alternative diet analysis approaches.

  12. Numerical and Experimental Analysis on Inorganic Phase Change Material Usage in Construction

    NASA Astrophysics Data System (ADS)

    Muthuvel, S.; Saravanasankar, S.; Sudhakarapandian, R.; Muthukannan, M.

    2014-12-01

    This work demonstrates the significance of Phase Change Material (PCM) in the construction of working sheds and product storage magazines in fireworks industries to maintain less temperature variation by passive cooling. The inorganic PCM, namely Calcium Chloride Hexahydrate (CCH) is selected in this study. First, the performance of two models with inbuilt CCH was analysed, using computational fluid dynamics. A significant change in the variation of inner wall temperature was observed, particularly during the working hours. This is mainly due to passive cooling, where the heat transfer from the surroundings to the room is partially used for the phase change from solid to liquid. The experiment was carried out by constructing two models, one with PCM packed in hollow brick walls and roof, and the other one as a conventional construction. The experimental results show that the temperature of the room got significantly reduced up to 7 °C. The experimental analysis results had good agreement with the numerical analysis results, and this reveals the advantage of the PCM in the fireworks industry construction.

  13. Optimal design variable considerations in the use of phase change materials in indirect evaporative cooling

    NASA Astrophysics Data System (ADS)

    Chilakapaty, Ankit Paul

    The demand for sustainable, energy efficient and cost effective heating and cooling solutions is exponentially increasing with the rapid advancement of computation and information technology. Use of latent heat storage materials also known as phase change materials (PCMs) for load leveling is an innovative solution to the data center cooling demands. These materials are commercially available in the form of microcapsules dispersed in water, referred to as the microencapsulated phase change slurries and have higher heat capacity than water. The composition and physical properties of phase change slurries play significant role in energy efficiency of the cooling systems designed implementing these PCM slurries. Objective of this project is to study the effect of PCM particle size, shape and volumetric concentration on overall heat transfer potential of the cooling systems designed with PCM slurries as the heat transfer fluid (HTF). In this study uniform volume heat source model is developed for the simulation of heat transfer potential using phase change materials in the form of bulk temperature difference in a fully developed flow through a circular duct. Results indicate the heat transfer potential increases with PCM volumetric concentration with gradually diminishing returns. Also, spherical PCM particles offer greater heat transfer potential when compared to cylindrical particles. Results of this project will aid in efficient design of cooling systems based on PCM slurries.

  14. Teaching Search Engine Marketing through the Google Ad Grants Program

    ERIC Educational Resources Information Center

    Clarke, Theresa B.; Murphy, Jamie; Wetsch, Lyle R.; Boeck, Harold

    2018-01-01

    Instructors may find it difficult to stay abreast of the rapidly changing nature of search engine marketing (SEM) and to incorporate hands-on, practical classroom experiences. One solution is Google Ad Grants, a nonprofit edition of Google AdWords that provides up to $10,000 monthly in free advertising. A quasi-experiment revealed no differences…

  15. Compressive and flexural strength of high strength phase change mortar

    NASA Astrophysics Data System (ADS)

    Qiao, Qingyao; Fang, Changle

    2018-04-01

    High-strength cement produces a lot of hydration heat when hydrated, it will usually lead to thermal cracks. Phase change materials (PCM) are very potential thermal storage materials. Utilize PCM can help reduce the hydration heat. Research shows that apply suitable amount of PCM has a significant effect on improving the compressive strength of cement mortar, and can also improve the flexural strength to some extent.

  16. In situ investigations of the phase change behaviour of tungsten oxide nanostructures.

    PubMed

    Thummavichai, Kunyapat; Wang, Nannan; Xu, Fang; Rance, Graham; Xia, Yongda; Zhu, Yanqiu

    2018-04-01

    This study uses two in situ techniques to investigate the geometry and phase change behaviour of bundled ultrathin W 18 O 49 nanowires and WO 3 nanoparticles. The in situ X-ray diffraction (XRD) results have shown that the phase transition of WO 3 nanoparticles occurs in sequence from monoclinic (room temperature) → orthorhombic (350°C) → tetragonal (800°C), akin to bulk WO 3 ; however, W 18 O 49 nanowires remain stable as the monoclinic phase up to 500°C, after which a complete oxidation to WO 3 and transformation to the orthorhombic β-phase at 550°C is observed. The in situ Raman spectroscopy investigations have revealed the Raman peak downshifts as the temperature increases, and have identified the 187.6 cm -1 as the fingerprint band for the phase transition from γ- to β-phase of the WO 3 nanoparticle. Furthermore, WO 3 nanoparticles exhibit the γ- to β-phase conversion at 275°C, which is about 75°C lower than the relaxation temperature of 350°C for the monoclinic γ-W 18 O 49 nanowires. These new fundamental understandings on the phase transition behaviour offer important guidance for the design and development of tungsten oxide-based nanodevices by defining their allowed operating conditions.

  17. Controllable Thermal Rectification Realized in Binary Phase Change Composites

    PubMed Central

    Chen, Renjie; Cui, Yalong; Tian, He; Yao, Ruimin; Liu, Zhenpu; Shu, Yi; Li, Cheng; Yang, Yi; Ren, Tianling; Zhang, Gang; Zou, Ruqiang

    2015-01-01

    Phase transition is a natural phenomenon happened around our daily life, represented by the process from ice to water. While melting and solidifying at a certain temperature, a high heat of fusion is accompanied, classified as the latent heat. Phase change material (PCM) has been widely applied to store and release large amount of energy attributed to the distinctive thermal behavior. Here, with the help of nanoporous materials, we introduce a general strategy to achieve the binary eicosane/PEG4000 stuffed reduced graphene oxide aerogels, which has two ends with different melting points. It's successfully demonstrated this binary PCM composites exhibits thermal rectification characteristic. Partial phase transitions within porous networks instantaneously result in one end of the thermal conductivity saltation at a critical temperature, and therefore switch on or off the thermal rectification with the coefficient up to 1.23. This value can be further raised by adjusting the loading content of PCM. The uniqueness of this device lies in its performance as a normal thermal conductor at low temperature, only exhibiting rectification phenomenon when temperature is higher than a critical value. The stated technology has broad applications for thermal energy control in macroscopic scale such as energy-efficiency building or nanodevice thermal management. PMID:25748640

  18. Controllable Thermal Rectification Realized in Binary Phase Change Composites

    NASA Astrophysics Data System (ADS)

    Chen, Renjie; Cui, Yalong; Tian, He; Yao, Ruimin; Liu, Zhenpu; Shu, Yi; Li, Cheng; Yang, Yi; Ren, Tianling; Zhang, Gang; Zou, Ruqiang

    2015-03-01

    Phase transition is a natural phenomenon happened around our daily life, represented by the process from ice to water. While melting and solidifying at a certain temperature, a high heat of fusion is accompanied, classified as the latent heat. Phase change material (PCM) has been widely applied to store and release large amount of energy attributed to the distinctive thermal behavior. Here, with the help of nanoporous materials, we introduce a general strategy to achieve the binary eicosane/PEG4000 stuffed reduced graphene oxide aerogels, which has two ends with different melting points. It's successfully demonstrated this binary PCM composites exhibits thermal rectification characteristic. Partial phase transitions within porous networks instantaneously result in one end of the thermal conductivity saltation at a critical temperature, and therefore switch on or off the thermal rectification with the coefficient up to 1.23. This value can be further raised by adjusting the loading content of PCM. The uniqueness of this device lies in its performance as a normal thermal conductor at low temperature, only exhibiting rectification phenomenon when temperature is higher than a critical value. The stated technology has broad applications for thermal energy control in macroscopic scale such as energy-efficiency building or nanodevice thermal management.

  19. Size-dependent surface phase change of lithium iron phosphate during carbon coating

    NASA Astrophysics Data System (ADS)

    Wang, Jiajun; Yang, Jinli; Tang, Yongji; Liu, Jian; Zhang, Yong; Liang, Guoxian; Gauthier, Michel; Karen Chen-Wiegart, Yu-Chen; Norouzi Banis, Mohammad; Li, Xifei; Li, Ruying; Wang, Jun; Sham, T. K.; Sun, Xueliang

    2014-03-01

    Carbon coating is a simple, effective and common technique for improving the conductivity of active materials in lithium ion batteries. However, carbon coating provides a strong reducing atmosphere and many factors remain unclear concerning the interface nature and underlying interaction mechanism that occurs between carbon and the active materials. Here, we present a size-dependent surface phase change occurring in lithium iron phosphate during the carbon coating process. Intriguingly, nanoscale particles exhibit an extremely high stability during the carbon coating process, whereas microscale particles display a direct visualization of surface phase changes occurring at the interface at elevated temperatures. Our findings provide a comprehensive understanding of the effect of particle size during carbon coating and the interface interaction that occurs on carbon-coated battery material—allowing for further improvement in materials synthesis and manufacturing processes for advanced battery materials.

  20. Rheological and thermal properties of suspensions of microcapsules containing phase change materials.

    PubMed

    Cao, Vinh Duy; Salas-Bringas, Carlos; Schüller, Reidar Barfod; Szczotok, Anna M; Hiorth, Marianne; Carmona, Manuel; Rodriguez, Juan F; Kjøniksen, Anna-Lena

    2018-01-01

    The thermal and rheological properties of suspensions of microencapsulated phase change materials (MPCM) in glycerol were investigated. When the microcapsule concentration is raised, the heat storage capacity of the suspensions becomes higher and a slight decline in the thermal conductivity of the suspensions is observed. The temperature-dependent shear-thinning behaviour of the suspensions was found to be strongly affected by non-encapsulated phase change materials (PCM). Accordingly, the rheological properties of the MPCM suspensions could be described by the Cross model below the PCM melting point while a power law model best described the data above the PCM melting point. The MPCM suspensions are interesting for energy storage and heat transfer applications. However, the non-encapsulated PCM contributes to the agglomeration of the microcapsules, which can lead to higher pumping consumption and clogging of piping systems.

  1. String in AdS black hole: A thermo field dynamic approach

    NASA Astrophysics Data System (ADS)

    Cantcheff, M. Botta; Gadelha, Alexandre L.; Marchioro, Dáfni F. Z.; Nedel, Daniel Luiz

    2012-10-01

    Based on Maldacena’s description of an eternal anti-de Sitter (AdS) black hole, we reassess the thermo field dynamics (TFD) formalism in the context of the AdS/CFT correspondence. The model studied here involves the maximally extended AdS-Schwarschild solution and two (noninteracting) copies of the conformal field theory (CFT) associated to the global AdS spacetime, along with an extension of the string by imposing natural gluing conditions in the horizon. We show that the gluing conditions in the horizon define a string boundary state which is identified with the TFD thermal vacuum, globally defined in the Kruskal extension of the AdS black hole. We emphasize the connection of this picture with unitary SU(1,1) TFD formulation, and we show that information about the bulk and the conformal boundary is present in the SU(1,1) parameters. Using the unitary SU(1,1) TFD formulation, a canonical prescription for calculating the world sheet real time thermal Green’s function is made, and the entropy associated with the entanglement of the two CFT’s is calculated.

  2. Tweaking one-loop determinants in AdS3

    NASA Astrophysics Data System (ADS)

    Castro, Alejandra; Keeler, Cynthia; Szepietowski, Phillip

    2017-10-01

    We revisit the subject of one-loop determinants in AdS3 gravity via the quasi-normal mode method. Our goal is to evaluate a one-loop determinant with chiral boundary conditions for the metric field; chirality is achieved by imposing Dirichlet boundary conditions on certain components while others satisfy Neumann. Along the way, we give a generalization of the quasinormal mode method for stationary (non-static) thermal backgrounds, and propose a treatment for Neumann boundary conditions in this framework. We evaluate the graviton one-loop determinant on the Euclidean BTZ background with parity-violating boundary conditions (CSS), and find excellent agreement with the dual warped CFT. We also discuss a more general falloff in AdS3 that is related to two dimensional quantum gravity in lightcone gauge. The behavior of the ghost fields under both sets of boundary conditions is novel and we discuss potential interpretations.

  3. Heat transfer characteristics of building walls using phase change material

    NASA Astrophysics Data System (ADS)

    Irsyad, M.; Pasek, A. D.; Indartono, Y. S.; Pratomo, A. W.

    2017-03-01

    Minimizing energy consumption in air conditioning system can be done with reducing the cooling load in a room. Heat from solar radiation which passes through the wall increases the cooling load. Utilization of phase change material on walls is expected to decrease the heat rate by storing energy when the phase change process takes place. The stored energy is released when the ambient temperature is low. Temperature differences at noon and evening can be utilized as discharging and charging cycles. This study examines the characteristics of heat transfer in walls using phase change material (PCM) in the form of encapsulation and using the sleeve as well. Heat transfer of bricks containing encapsulated PCM, tested the storage and released the heat on the walls of the building models were evaluated in this study. Experiments of heat transfer on brick consist of time that is needed for heat transfer and thermal conductivity test as well. Experiments were conducted on a wall coated by PCM which was exposed on a day and night cycle to analyze the heat storage and heat release. PCM used in these experiments was coconut oil. The measured parameter is the temperature at some points in the brick, walls and ambient temperature as well. The results showed that the use of encapsulation on an empty brick can increase the time for thermal heat transfer. Thermal conductivity values of a brick containing encapsulated PCM was lower than hollow bricks, where each value was 1.3 W/m.K and 1.6 W/m.K. While the process of heat absorption takes place from 7:00 am to 06:00 pm, and the release of heat runs from 10:00 pm to 7:00 am. The use of this PCM layer can reduce the surface temperature of the walls of an average of 2°C and slows the heat into the room.

  4. Continuous-spin mixed-symmetry fields in AdS(5)

    NASA Astrophysics Data System (ADS)

    Metsaev, R. R.

    2018-05-01

    Free mixed-symmetry continuous-spin fields propagating in AdS(5) space and flat R(4,1) space are studied. In the framework of a light-cone gauge formulation of relativistic dynamics, we build simple actions for such fields. The realization of relativistic symmetries on the space of light-cone gauge mixed-symmetry continuous-spin fields is also found. Interrelations between constant parameters entering the light-cone gauge actions and eigenvalues of the Casimir operators of space-time symmetry algebras are obtained. Using these interrelations and requiring that the field dynamics in AdS(5) be irreducible and classically unitary, we derive restrictions on the constant parameters and eigenvalues of the second-order Casimir operator of the algebra.

  5. Changes in consumption of added sugars from age 13 to 30 years: a systematic review and meta-analysis of longitudinal studies.

    PubMed

    Winpenny, E M; Penney, T L; Corder, K; White, M; van Sluijs, E M F

    2017-11-01

    Added sugar intake during adolescence has been associated with weight gain and cardiometabolic risk factors. Moreover, dietary habits may persist into adulthood, increasing chronic disease risk in later life. This systematic review investigated changes in intake of added sugars between the ages of 13 and 30 years. Literature databases were searched for longitudinal studies of diet during adolescence or early adulthood. Retrieved articles were screened for studies including multiple measures of intake of sugars or sugary foods from cohort participants between the ages of 13 and 30. Data were analysed using random-effects meta-analysis, by the three main nutrient and food group categories identified (PROSPERO: CRD42015030126). Twenty-four papers reported longitudinal data on intake of added sugar or sucrose (n = 6), sugar-sweetened beverages (SSBs) (n = 20) and/or confectionery (n = 9). Meta-analysis showed a non-significant per year of age decrease in added sugar or sucrose intake (-0.15% total energy intake (95%CI -0.41; 0.12)), a decrease in confectionery consumption (-0.20 servings/week (95%CI -0.41; -0.001)) and a non-significant decrease in SSB consumption (-0.15 servings/week (95%CI -0.32; 0.02)). Taken together, the overall decrease in added sugar intake observed from adolescence to early adulthood may suggest opportunities for intervention to further improve dietary choices within this age range. © 2017 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of World Obesity Federation.

  6. Anomalous Phase Change in [(GeTe)2/(Sb2Te3)]20 Superlattice Observed by Coherent Phonon Spectroscopy

    NASA Astrophysics Data System (ADS)

    Makino, K.; Saito, Y.; Mitrofanov, K.; Tominaga, J.; Kolobov, A. V.; Nakano, T.; Fons, P.; Hase, M.

    The temperature-dependent ultrafast coherent phonon dynamics of topological (GeTe)2/(Sb2Te3) super lattice phase change memory material was investigated. By comparing with Ge-Sb-Te alloy, a clear contrast suggesting the unique phase change behavior was found.

  7. Changes in gene expression of DOR and other thyroid hormone receptors in rat liver during acute-phase response

    PubMed Central

    Baumgartner, Bernhard G.; Naz, Naila; Sheikh, Nadeem; Moriconi, Federico; Ramadori, Giuliano

    2010-01-01

    Non-thyroidal illness is characterized by low tri-iodothyronine (T3) serum level under acute-phase conditions. We studied hepatic gene expression of the newly identified thyroid hormone receptor (TR) cofactor DOR/TP53INP2 together with TRs in a rat model of aseptic abscesses induced by injecting intramuscular turpentine-oil into each hind limb. A fast (4-6 h) decrease in the serum level of free thyroxine and free T3 was observed. By immunohistology, abundant DOR protein expression was detected in the nuclei of hepatocytes and ED-1+ (mononuclear phagocytes), CK-19+ (biliary cells), and SMA+ (mesenchymal cells of the portal tract) cells. DOR signal was reduced with a minimum at 6-12 h after the acute-phase reaction (APR). Immunohistology also showed a similar pattern of protein expression in TRα1 but without a significant change during APR. Transcripts specific for DOR, nuclear receptor co-repressor 1 (NCoR-1), and TRβ1 were down-regulated with a minimum at 6-12 h, whereas expression for TRα1 and TRα2 was slightly and significantly up-regulated, respectively, with a maximum at 24 h after APR was initiated. In cultured hepatocytes, acute-phase cytokines interleukin-1β (IL-1β) and IL-6 down-regulated DOR and TRβ1 at the mRNA level. Moreover, gene expression of DOR and TRs (TRα1, TRα2, and TRβ1) was up-regulated in hepatocytes by adding T3 to the culture medium; this up-regulation was almost completely blocked by treating the cells with IL-6. Thus, TRβ1, NCoR-1, and the recently identified DOR/TP53INP2 are abundantly expressed and down-regulated in liver cells during APR. Their down-regulation is attributable to the decreased serum level of thyroid hormones and most probably also to the direct action of the main acute-phase cytokines. PMID:20949361

  8. Changes in gene expression of DOR and other thyroid hormone receptors in rat liver during acute-phase response.

    PubMed

    Malik, Ihtzaz Ahmed; Baumgartner, Bernhard G; Naz, Naila; Sheikh, Nadeem; Moriconi, Federico; Ramadori, Giuliano

    2010-11-01

    Non-thyroidal illness is characterized by low tri-iodothyronine (T3) serum level under acute-phase conditions. We studied hepatic gene expression of the newly identified thyroid hormone receptor (TR) cofactor DOR/TP53INP2 together with TRs in a rat model of aseptic abscesses induced by injecting intramuscular turpentine-oil into each hind limb. A fast (4-6 h) decrease in the serum level of free thyroxine and free T3 was observed. By immunohistology, abundant DOR protein expression was detected in the nuclei of hepatocytes and ED-1(+) (mononuclear phagocytes), CK-19(+) (biliary cells), and SMA(+) (mesenchymal cells of the portal tract) cells. DOR signal was reduced with a minimum at 6-12 h after the acute-phase reaction (APR). Immunohistology also showed a similar pattern of protein expression in TRα1 but without a significant change during APR. Transcripts specific for DOR, nuclear receptor co-repressor 1 (NCoR-1), and TRβ1 were down-regulated with a minimum at 6-12 h, whereas expression for TRα1 and TRα2 was slightly and significantly up-regulated, respectively, with a maximum at 24 h after APR was initiated. In cultured hepatocytes, acute-phase cytokines interleukin-1β (IL-1β) and IL-6 down-regulated DOR and TRβ1 at the mRNA level. Moreover, gene expression of DOR and TRs (TRα1, TRα2, and TRβ1) was up-regulated in hepatocytes by adding T3 to the culture medium; this up-regulation was almost completely blocked by treating the cells with IL-6. Thus, TRβ1, NCoR-1, and the recently identified DOR/TP53INP2 are abundantly expressed and down-regulated in liver cells during APR. Their down-regulation is attributable to the decreased serum level of thyroid hormones and most probably also to the direct action of the main acute-phase cytokines.

  9. Binaural interaction in low-frequency neurons in inferior colliculus of the cat. II. Effects of changing rate and direction of interaural phase.

    PubMed

    Yin, T C; Kuwada, S

    1983-10-01

    We used the binaural beat stimulus to study the interaural phase sensitivity of inferior colliculus (IC) neurons in the cat. The binaural beat, produced by delivering tones of slightly different frequencies to the two ears, generates continuous and graded changes in interaural phase. Over 90% of the cells that exhibit a sensitivity to changes in the interaural delay also show a sensitivity to interaural phase disparities with the binaural beat. Cells respond with a burst of impulses with each complete cycle of the beat frequency. The period histogram obtained by binning the poststimulus time histogram on the beat frequency gives a measure of the interaural phase sensitivity of the cell. In general, there is good correspondence in the shapes of the period histograms generated from binaural beats and the interaural phase curves derived from interaural delays and in the mean interaural phase angle calculated from them. The magnitude of the beat frequency determines the rate of change of interaural phase and the sign determines the direction of phase change. While most cells respond in a phase-locked manner up to beat frequencies of 10 Hz, there are some cells tht will phase lock up to 80 Hz. Beat frequency and mean interaural phase angle are linearly related for most cells. Most cells respond equally in the two directions of phase change and with different rates of change, at least up to 10 Hz. However, some IC cells exhibit marked sensitivity to the speed of phase change, either responding more vigorously at low beat frequencies or at high beat frequencies. In addition, other cells demonstrate a clear directional sensitivity. The cells that show sensitivity to the direction and speed of phase changes would be expected to demonstrate a sensitivity to moving sound sources in the free field. Changes in the mean interaural phase of the binaural beat period histograms are used to determine the effects of changes in average and interaural intensity on the phase sensitivity

  10. Fatigue Damage Evaluation of Short Carbon Fiber Reinforced Plastics Based on Phase Information of Thermoelastic Temperature Change.

    PubMed

    Shiozawa, Daiki; Sakagami, Takahide; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi

    2017-12-06

    Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft, or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to evaluate fatigue damage in short carbon fiber composites. The distribution of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damage was detected from the distribution of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was more clearly detected than before by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the property that carbon fiber shows opposite phase thermoelastic temperature change.

  11. Familiarity-based memory as an early cognitive marker of preclinical and prodromal AD

    PubMed Central

    Wolk, David A.; Mancuso, Lauren; Kliot, Daria; Arnold, Steven E.; Dickerson, Bradford C.

    2013-01-01

    There is great interest in the development of cognitive markers that differentiate “normal” age-associated cognitive change from that of Alzheimer's disease (AD) in its prodromal (i.e., mild cognitive impairment; MCI) or even preclinical stages. Dual process models posit that recognition memory is supported by the dissociable processes of recollection and familiarity. Familiarity-based memory has generally been considered to be spared during normal aging, but it remains controversial whether this type of memory is impaired in early AD. Here, we describe findings of estimates of recollection and familiarity in young adults (YA), cognitively normal older adults (CN), and patients with amnestic-MCI (a-MCI). These measures in the CN and a-MCI patients were then related to a structural imaging biomarker of AD that has previously been demonstrated to be sensitive to preclinical and prodromal AD, the Cortical Signature of AD (ADsig). Consistent with much work in the literature, recollection, but not familiarity, was impaired in CN versus YA. Replicating our prior findings, a-MCI patients displayed impairment in both familiarity and recollection. Finally, the familiarity measure was correlated with the ADsig biomarker across the CN and a-MCI group, as well as within the CN adults alone. No other standard psychometric measure was as highly associated with the ADsig, suggesting that familiarity may be a sensitive biomarker of AD-specific brain changes in preclinical and prodromal AD and that it may offer a qualitatively distinct measure of early AD memory impairment relative to normal age-associated change. PMID:23474075

  12. Influence of Surrounding Dielectrics on the Data Retention Time of Doped Sb2Te Phase Change Material

    NASA Astrophysics Data System (ADS)

    Jedema, Friso; in `t Zandt, Micha; Wolters, Rob; Gravesteijn, Dirk

    2011-02-01

    The crystallization properties of as-deposited and laser written amorphous marks of doped Sb2Te phase change material are found to be only dependent on the top dielectric layer. A ZnS:SiO2 top dielectric layer yields a higher crystallization temperature and a larger crystal growth activation energy as compared to a SiO2 top dielectric layer, leading to superior data retention times at ambient temperatures. The observed correlation between the larger crystallization temperatures and larger crystal growth activation energies indicates that the viscosity of the phase change material in the amorphous state is dependent on the interfacial energy between the phase change material and the top dielectric layer.

  13. The Prenylflavonoid Xanthohumol Reduces Alzheimer-Like Changes and Modulates Multiple Pathogenic Molecular Pathways in the Neuro2a/APPswe Cell Model of AD.

    PubMed

    Huang, Xianfeng; Wang, Jing; Chen, Xiao; Liu, Pan; Wang, Shujin; Song, Fangchen; Zhang, Zaijun; Zhu, Feiqi; Huang, Xinfeng; Liu, Jianjun; Song, Guoqiang; Spencer, Peter S; Yang, Xifei

    2018-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that has proved refractory to drug treatment. Given evidence of neuroprotection in animal models of ischemic stroke, we assessed the prenylflavonoid xanthohumol from the Common Hop ( Humulus lupulus L.) for therapeutic potential in murine neuroblastoma N2a cells stably expressing human Swedish mutant amyloid precursor protein (N2a/APP), a well-characterized cellular model of AD. The ELISA and Western-blot analysis revealed that xanthohumol (Xn) inhibited Aβ accumulation and APP processing, and that Xn ameliorated tau hyperphosphorylation via PP2A, GSK3β pathways in N2a/APP cells. The amelioration of tau hyperphosphorylation by Xn was also validated on HEK293/Tau cells, another cell line with tau hyperphosphorylation. Proteomic analysis (2D-DIGE-coupled MS) revealed a total of 30 differentially expressed lysate proteins in N2a/APP vs. wild-type (WT) N2a cells (N2a/WT), and a total of 21 differentially expressed proteins in lysates of N2a/APP cells in the presence or absence of Xn. Generally, these 51 differential proteins could be classified into seven main categories according to their functions, including: endoplasmic reticulum (ER) stress-associated proteins; oxidative stress-associated proteins; proteasome-associated proteins; ATPase and metabolism-associated proteins; cytoskeleton-associated proteins; molecular chaperones-associated proteins, and others. We used Western-blot analysis to validate Xn-associated changes of some key proteins in several biological/pathogenic processes. Taken together, we show that Xn reduces AD-related changes in stably transfected N2a/APP cells. The underlying mechanisms involve modulation of multiple pathogenic pathways, including those involved in ER stress, oxidative stress, proteasome molecular systems, and the neuronal cytoskeleton. These results suggest Xn may have potential for the treatment of AD and/or neuropathologically related neurodegenerative

  14. Structural and spectroscopic characterization of irreversible phase changes in rapidly heated precursors of europium-doped titania nanoparticles

    NASA Astrophysics Data System (ADS)

    Gunawidjaja, Ray; Anderson, Benjamin R.; Eilers, Hergen

    2018-02-01

    We observe temperature-dependent phase changes in a precursor of europium-doped titania (p-Eu:TiO2) that is prepared via precipitation and is laser-heated to temperatures between 473 K and 1246 K within sub-second heating durations. The phase changes are characterized using X-ray diffraction and site-selective photoluminescence spectroscopy. We find that upon heating, the initially amorphous p-Eu:TiO2 first transforms into the anatase phase and then into a mixed anatase/rutile phase. These phase transformations change the local environment of the dopant Eu3+ ions resulting in modifications to the Eu3+ ions spectroscopic properties, with the modifications occurring for calcination temperatures above approximately 573 K following sub-second durations. These results demonstrate the temperature sensing ability of p-Eu:TiO2 nanoparticles for use in sub-second heating events. Moreover, at 573 K this temperature is lower than other host materials that we have evaluated (i.e., La2O3, ZrO2 and Y2O3).

  15. Physical exercise protects against Alzheimer's disease in 3xTg-AD mice.

    PubMed

    García-Mesa, Yoelvis; López-Ramos, Juan Carlos; Giménez-Llort, Lydia; Revilla, Susana; Guerra, Rafael; Gruart, Agnès; Laferla, Frank M; Cristòfol, Rosa; Delgado-García, José M; Sanfeliu, Coral

    2011-01-01

    Physical exercise is considered to exert a positive neurophysiological effect that helps to maintain normal brain activity in the elderly. Expectations that it could help to fight Alzheimer's disease (AD) were recently raised. This study analyzed the effects of different patterns of physical exercise on the 3xTg-AD mouse. Male and female 3xTg-AD mice at an early pathological stage (4-month-old) have had free access to a running wheel for 1 month, whereas mice at a moderate pathological stage(7-month-old) have had access either during 1 or 6 months. The non-transgenic mouse strain was used as a control. Parallel animal groups were housed in conventional conditions. Cognitive loss and behavioral and psychological symptoms of dementia (BPSD)-like behaviors were present in the 3xTg-AD mice along with alteration in synaptic function and ong-term potentiation impairment in vivo. Brain tissue showed AD-pathology and oxidative-related changes. Disturbances were more severe at the older age tested. Oxidative stress was higher in males but other changes were similar or higher in females. Exercise treatment ameliorated cognitive deterioration and BPSD-like behaviors such as anxiety and the startle response. Synaptic changes were partially protected by exercise. Oxidative stress was reduced. The best neuroprotection was generally obtained after 6 months of exercise in 7-month-old 3xTg-AD mice. Improved sensorimotor function and brain tissue antioxidant defence were induced in both 3xTg-AD and NonTg mice. Therefore, the benefits of aerobic physical exercise on synapse, redox homeostasis, and general brain function demonstrated in the 3xTg-AD mouse further support the value of this healthy life-style against neurodegeneration.

  16. Phase change water processing for Space Station

    NASA Technical Reports Server (NTRS)

    Zdankiewicz, E. M.; Price, D. F.

    1985-01-01

    The use of a vapor compression distillation subsystem (VCDS) for water recovery on the Space Station is analyzed. The self-contained automated system can process waste water at a rate of 32.6 kg/day and requires only 115 W of electric power. The improvements in the mechanical components of VCDS are studied. The operation of VCDS in the normal mode is examined. The VCDS preprototype is evaluated based on water quality, water production rate, and specific energy. The relation between water production rate and fluids pump speed is investigated; it is concluded that a variable speed fluids pump will optimize water production. Components development and testing currently being conducted are described. The properties and operation of the proposed phase change water processing system for the Space Station, based on vapor compression distillation, are examined.

  17. F-theory and AdS3/CFT2 (2, 0)

    NASA Astrophysics Data System (ADS)

    Couzens, Christopher; Martelli, Dario; Schäfer-Nameki, Sakura

    2018-06-01

    We continue to develop the program initiated in [1] of studying supersymmetric AdS3 backgrounds of F-theory and their holographic dual 2d superconformal field theories, which are dimensional reductions of theories with varying coupling. Imposing 2d N=(0,2) supersymmetry,wederivethegeneralconditionsonthegeometryforTypeIIB AdS3 solutions with varying axio-dilaton and five-form flux. Locally the compact part of spacetime takes the form of a circle fibration over an eight-fold Y_8^{τ } , which is elliptically fibered over a base \\tilde{M}_6 . We construct two classes of solutions given in terms of a product ansatz \\tilde{M}_6}=Σ × {M}_4 , where Σ is a complex curve and \\tilde{M}_4 is locally a Kähler surface. In the first class \\tilde{M}_4 is globally a Kähler surface and we take the elliptic fibration to vary non-trivially over either of these two factors, where in both cases the metrics on the total space of the elliptic fibrations are not Ricci-flat. In the second class the metric on the total space of the elliptic fibration over either curve or surface are Ricci-flat. This results in solutions of the type AdS3 × K3 × ℳ 5 τ , dual to 2d (0, 2) SCFTs, and AdS3 × S 3/Γ × CY 3, dual to 2d (0, 4) SCFTs, respectively. In all cases we compute the charges for the dual field theories with varying coupling and find agreement with the holographic results. We also show that solutions with enhanced 2d N=(2,2) supersymmetry must have constant axio-dilaton. Allowing the internal geometry to be non-compact leads to the most general class of Type IIB AdS5 solutions with varying axio-dilaton, i.e. F-theoretic solutions, that are dual to 4d N=1 SCFTs.

  18. Added sugars and ultra-processed foods in Spanish households (1990-2010).

    PubMed

    Latasa, P; Louzada, M L D C; Martinez Steele, E; Monteiro, C A

    2017-12-26

    To study the association between ultra-processed foods acquisitions and added sugar content of total food purchases in Spanish households in 2010. Changes over time (1990-2000-2010) in ultra-processed food purchases and added sugars content of total food purchases are also compared. We used data from three nationally representative Household Budget Surveys (HBS) conducted in 1990, 2000 and 2010. Number of studied households was 21,012, 33,730 and 22,116, respectively. Purchased foods and drinks were classified according to NOVA food groups as ultra-processed foods, processed foods, unprocessed or minimally processed foods, or processed culinary ingredients. Linear and Poisson regressions were used to estimate the association between quintiles of energy contribution of ultra-processed foods and added sugars contents of total food purchases in 2010. Changes over time were assessed using tests of linear trend and Student's t test. In 2010, ultra-processed foods represented 31.7% of daily energy acquisitions and 80.4% of all added sugars. Added sugars content of food purchases raised from 7.3% in the lowest to 18.2% in the highest quintiles of energy contribution of ultra-processed foods. The risk of exceeding 10% energy from added sugars quadrupled between the lowest and highest quintiles. The percentage of ultra-processed foods on all food purchases almost tripled between 1990 and 2010 (from 11.0 to 31.7%), paralleling the increase of added sugars content (from 8.4 to 13.0%). Cutting down exceeding added sugars availability in Spain may require a reduction in ultra-processed food purchasing.

  19. Charging and Discharging Processes of Thermal Energy Storage System Using Phase change materials

    NASA Astrophysics Data System (ADS)

    Kanimozhi, B., Dr.; Harish, Kasilanka; Sai Tarun, Bellamkonda; Saty Sainath Reddy, Pogaku; Sai Sujeeth, Padakandla

    2017-05-01

    The objective of the study is to investigate the thermal characteristics of charging and discharge processes of fabricated thermal energy storage system using Phase change materials. Experiments were performed with phase change materials in which a storage tank have designed and developed to enhance the heat transfer rate from the solar tank to the PCM storage tank. The enhancement of heat transfer can be done by using a number of copper tubes in the fabricated storage tank. This storage tank can hold or conserve heat energy for a much longer time than the conventional water storage system. Performance evaluations of experimental results during charging and discharging processes of paraffin wax have discussed. In which heat absorption and heat rejection have been calculated with various flow rate.

  20. Refractive index modulation of Sb{sub 70}Te{sub 30} phase-change thin films by multiple femtosecond laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Kai; Wang, Yang, E-mail: ywang@siom.ac.cn; Jiang, Minghui

    2016-05-07

    In this study, the controllable effective refractive index modulation of Sb{sub 70}Te{sub 30} phase-change thin films between amorphous and crystalline states was achieved experimentally by multiple femtosecond laser pulses. The modulation mechanism was analyzed comprehensively by a spectral ellipsometer measurement, surface morphology observation, and two-temperature model calculations. We numerically demonstrate the application of the optically modulated refractive index of the phase-change thin films in a precisely adjustable color display. These results may provide further insights into ultrafast phase-transition mechanics and are useful in the design of programmable photonic and opto-electrical devices based on phase-change memory materials.