Sample records for addition genetic diversity

  1. Evolution and genetic diversity of Theileria.

    PubMed

    Sivakumar, Thillaiampalam; Hayashida, Kyoko; Sugimoto, Chihiro; Yokoyama, Naoaki

    2014-10-01

    Theileria parasites infect a wide range of domestic and wild ruminants worldwide, causing diseases with varying degrees of severity. A broad classification, based on the parasite's ability to transform the leukocytes of host animals, divides Theileria into two groups, consisting of transforming and non-transforming species. The evolution of transforming Theileria has been accompanied by drastic changes in its genetic makeup, such as acquisition or expansion of gene families, which are thought to play critical roles in the transformation of host cells. Genetic variation among Theileria parasites is sometimes linked with host specificity and virulence in the parasites. Immunity against Theileria parasites primarily involves cell-mediated immune responses in the host. Immunodominance and major histocompatibility complex class I phenotype-specificity result in a host immunity that is tightly focused and strain-specific. Immune escape in Theileria is facilitated by genetic diversity in its antigenic determinants, which potentially results in a loss of T cell receptor recognition in its host. In the recent past, several reviews have focused on genetic diversity in the transforming species, Theileriaparva and Theileriaannulata. In contrast, genetic diversity in Theileriaorientalis, a benign non-transforming parasite, which occasionally causes disease outbreaks in cattle, has not been extensively examined. In this review, therefore, we provide an outline of the evolution of Theileria, which includes T. orientalis, and discuss the possible mechanisms generating genetic diversity among parasite populations. Additionally, we discuss the potential implications of a genetically diverse parasite population in the context of Theileria vaccine development. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. What factors shape genetic diversity in cetaceans?

    PubMed

    Vachon, Felicia; Whitehead, Hal; Frasier, Timothy R

    2018-02-01

    Understanding what factors drive patterns of genetic diversity is a central aspect of many biological questions, ranging from the inference of historical demography to assessing the evolutionary potential of a species. However, as a larger number of datasets have become available, it is becoming clear that the relationship between the characteristics of a species and its genetic diversity is more complex than previously assumed. This may be particularly true for cetaceans, due to their relatively long lifespans, long generation times, complex social structures, and extensive ranges. In this study, we used microsatellite and mitochondrial DNA data from a systematic literature review to produce estimates of diversity for both markers across 42 cetacean species. Factors relating to demography, distribution, classification, biology, and behavior were then tested using phylogenetic methods and linear models to assess their relative influence on the genetic diversity of both marker types. The results show that while relative nuclear diversity is correlated with population size, mitochondrial diversity is not. This is particularly relevant given the widespread use of mitochondrial DNA to infer historical demography. Instead, mitochondrial diversity was mostly influenced by the range and social structure of the species. In addition to population size, habitat type (neritic vs. oceanic) had a significant correlation with relative nuclear diversity. Combined, these results show that many often-unconsidered factors are likely influencing patterns of genetic diversity in cetaceans, with implications regarding how to interpret, and what can be inferred from, existing patterns of diversity.

  3. Genetic diversity, inbreeding and cancer.

    PubMed

    Ujvari, Beata; Klaassen, Marcel; Raven, Nynke; Russell, Tracey; Vittecoq, Marion; Hamede, Rodrigo; Thomas, Frédéric; Madsen, Thomas

    2018-03-28

    Genetic diversity is essential for adaptive capacities, providing organisms with the potential of successfully responding to intrinsic and extrinsic challenges. Although a clear reciprocal link between genetic diversity and resistance to parasites and pathogens has been established across taxa, the impact of loss of genetic diversity by inbreeding on the emergence and progression of non-communicable diseases, such as cancer, has been overlooked. Here we provide an overview of such associations and show that low genetic diversity and inbreeding associate with an increased risk of cancer in both humans and animals. Cancer being a multifaceted disease, loss of genetic diversity can directly (via accumulation of oncogenic homozygous mutations) and indirectly (via increased susceptibility to oncogenic pathogens) impact abnormal cell emergence and escape of immune surveillance. The observed link between reduced genetic diversity and cancer in wildlife may further imperil the long-term survival of numerous endangered species, highlighting the need to consider the impact of cancer in conservation biology. Finally, the somewhat incongruent data originating from human studies suggest that the association between genetic diversity and cancer development is multifactorial and may be tumour specific. Further studies are therefore crucial in order to elucidate the underpinnings of the interactions between genetic diversity, inbreeding and cancer. © 2018 The Author(s).

  4. Genetic diversity, inbreeding and cancer

    PubMed Central

    Klaassen, Marcel; Raven, Nynke; Russell, Tracey; Vittecoq, Marion; Hamede, Rodrigo; Thomas, Frédéric

    2018-01-01

    Genetic diversity is essential for adaptive capacities, providing organisms with the potential of successfully responding to intrinsic and extrinsic challenges. Although a clear reciprocal link between genetic diversity and resistance to parasites and pathogens has been established across taxa, the impact of loss of genetic diversity by inbreeding on the emergence and progression of non-communicable diseases, such as cancer, has been overlooked. Here we provide an overview of such associations and show that low genetic diversity and inbreeding associate with an increased risk of cancer in both humans and animals. Cancer being a multifaceted disease, loss of genetic diversity can directly (via accumulation of oncogenic homozygous mutations) and indirectly (via increased susceptibility to oncogenic pathogens) impact abnormal cell emergence and escape of immune surveillance. The observed link between reduced genetic diversity and cancer in wildlife may further imperil the long-term survival of numerous endangered species, highlighting the need to consider the impact of cancer in conservation biology. Finally, the somewhat incongruent data originating from human studies suggest that the association between genetic diversity and cancer development is multifactorial and may be tumour specific. Further studies are therefore crucial in order to elucidate the underpinnings of the interactions between genetic diversity, inbreeding and cancer. PMID:29563261

  5. Genetic Diversity and Societally Important Disparities

    PubMed Central

    Rosenberg, Noah A.; Kang, Jonathan T. L.

    2015-01-01

    The magnitude of genetic diversity within human populations varies in a way that reflects the sequence of migrations by which people spread throughout the world. Beyond its use in human evolutionary genetics, worldwide variation in genetic diversity sometimes can interact with social processes to produce differences among populations in their relationship to modern societal problems. We review the consequences of genetic diversity differences in the settings of familial identification in forensic genetic testing, match probabilities in bone marrow transplantation, and representation in genome-wide association studies of disease. In each of these three cases, the contribution of genetic diversity to social differences follows from population-genetic principles. For a fourth setting that is not similarly grounded, we reanalyze with expanded genetic data a report that genetic diversity differences influence global patterns of human economic development, finding no support for the claim. The four examples describe a limit to the importance of genetic diversity for explaining societal differences while illustrating a distinction that certain biologically based scenarios do require consideration of genetic diversity for solving problems to which populations have been differentially predisposed by the unique history of human migrations. PMID:26354973

  6. Inference of genetic diversity in popcorn S3 progenies.

    PubMed

    Pena, G F; do Amaral, A T; Ribeiro, R M; Ramos, H C C; Boechat, M S B; Santos, J S; Mafra, G S; Kamphorst, S H; de Lima, V J; Vivas, M; de Souza Filho, G A

    2016-05-09

    Molecular markers are a useful tool for identification of complementary heterotic groups in breeding programs aimed at the production of superior hybrids, particularly for crops such as popcorn in which heterotic groups are not well-defined. The objective of the present study was to analyze the genetic diversity of 47 genotypes of tropical popcorn to identify possible heterotic groups for the development of superior hybrids. Four genotypes of high genetic value were studied: hybrid IAC 125, strain P2, and varieties UENF 14 and BRS Angela. In addition, 43 endogamous S3 progenies obtained from variety UENF 14 were used. Twenty-five polymorphic SSR-EST markers were analyzed. A genetic distance matrix was obtained and the following molecular diversity parameters were estimated: number of alleles, number of effective alleles, polymorphism information content (PIC), observed and expected heterozygosities, Shannon diversity index, and coefficient of inbreeding. We found a moderate PIC and high diversity index, indicating that the studied population presents both good discriminatory ability and high informativeness for the utilized markers. The dendrogram built based on the dissimilarity matrix indicated six distinct groups. Our findings demonstrate the genetic diversity among the evaluated genotypes and provide evidence for heterotic groups in popcorn. Furthermore, the functional genetic diversity indicates that there are informative genetic markers for popcorn.

  7. A MULTI-LOCUS, MULTI-TAXA PHYLOGEOGRAPHICAL ANALYSIS OF GENETIC DIVERSITY

    EPA Science Inventory

    In addition to measuring spatial patterns of genetic diversity, population genetic measures of biological resources should include temporal data that indicate whether the observed patterns are the result of historical or contemporary processes. In general, genetic measures focus...

  8. Genetic diversity in Gossypium genus

    USDA-ARS?s Scientific Manuscript database

    The overall objectives of this paper are to report on cotton germplasm resources, morphobiological and agronomic diversity of Gossypium genus and review efforts on molecular genetic diversity of cotton gene pools as well as on the challenges and perspectives of exploiting genetic diversity in cotton...

  9. Genetic diversity among Angus, American Brahman, Senepol and Romosinuano cattle breeds.

    PubMed

    Brenneman, R A; Chase, C C; Olson, T A; Riley, D G; Coleman, S W

    2007-02-01

    The objective of this study was to quantify the genetic diversity among breeds under evaluation for tropical adaptability traits that affect the performance of beef cattle at the USDA/ARS SubTropical Agricultural Research Station (STARS) near Brooksville, FL, USA. Twenty-six microsatellite loci were used to estimate parameters of genetic diversity among the breeds American Brahman, Angus, Senepol and Romosinuano; the latter was comprised of two distinct bloodlines (Costa Rican and Venezuelan). Genotypes of 47 animals from each of these STARS herds were analysed for genetic diversity and genetic distance. Using two methods, the greatest genetic distance was detected between the Costa Rican line of Romosinuano and the Senepol. Gene diversity ranged between 0.64 (Costa Rican line of Romosinuano) and 0.75 (American Brahman). The breed relationship inferences, which are based on genetic distance, provide additional tools for consideration in future crossbreeding studies and for testing the relationship between quantified breed diversity and observed heterosis.

  10. Implications of recurrent disturbance for genetic diversity.

    PubMed

    Davies, Ian D; Cary, Geoffrey J; Landguth, Erin L; Lindenmayer, David B; Banks, Sam C

    2016-02-01

    Exploring interactions between ecological disturbance, species' abundances and community composition provides critical insights for ecological dynamics. While disturbance is also potentially an important driver of landscape genetic patterns, the mechanisms by which these patterns may arise by selective and neutral processes are not well-understood. We used simulation to evaluate the relative importance of disturbance regime components, and their interaction with demographic and dispersal processes, on the distribution of genetic diversity across landscapes. We investigated genetic impacts of variation in key components of disturbance regimes and spatial patterns that are likely to respond to climate change and land management, including disturbance size, frequency, and severity. The influence of disturbance was mediated by dispersal distance and, to a limited extent, by birth rate. Nevertheless, all three disturbance regime components strongly influenced spatial and temporal patterns of genetic diversity within subpopulations, and were associated with changes in genetic structure. Furthermore, disturbance-induced changes in temporal population dynamics and the spatial distribution of populations across the landscape resulted in disrupted isolation by distance patterns among populations. Our results show that forecast changes in disturbance regimes have the potential to cause major changes to the distribution of genetic diversity within and among populations. We highlight likely scenarios under which future changes to disturbance size, severity, or frequency will have the strongest impacts on population genetic patterns. In addition, our results have implications for the inference of biological processes from genetic data, because the effects of dispersal on genetic patterns were strongly mediated by disturbance regimes.

  11. Chapter 14: Genetic diversity

    Treesearch

    C. I. Millar

    1999-01-01

    Genetic diversity rarely makes headline news. Whereas species extinctions, loss of old-growth forests, and catastrophic forest fires are readily grasped public issues, genetic diversity is often perceived as arcane and academic. Yet genes are the fundamental unit of biodiversity, the raw material for evolution, and the ultimate source of all variation among plants and...

  12. Neglect of genetic diversity in implementation of the Convention on Biological Diversity

    Treesearch

    Linda Laikre; Fred W. Allendorf; Laurel C. Aroner; C. Scott Baker; David P. Gregovich; Michael M. Hansen; Jennifer A. Jackson; Katherine C. Kendall; Kevin Mckelvey; Maile C. Neel; Isabelle Olivieri; Nils Ryman; Michael K. Schwartz; Ruth Short Bull; Jeffrey B. Stetz; David A. Tallmon; Barbara L. Taylor; Christina D. Vojta; Donald M. Waller; Robin S. Waples

    2009-01-01

    Genetic diversity is the foundation for all biological diversity; the persistence and evolutionary potential of species depend on it. World leaders have agreed on the conservation of genetic diversity as an explicit goal of the Convention on Biological Diversity (CBD). Nevertheless, actions to protect genetic diversity are largely lacking. With only months left to the...

  13. Genetic Diversity in Introduced Populations with an Allee Effect

    PubMed Central

    Wittmann, Meike J.; Gabriel, Wilfried; Metzler, Dirk

    2014-01-01

    A phenomenon that strongly influences the demography of small introduced populations and thereby potentially their genetic diversity is the demographic Allee effect, a reduction in population growth rates at small population sizes. We take a stochastic modeling approach to investigate levels of genetic diversity in populations that successfully overcame either a strong Allee effect, in which populations smaller than a certain critical size are expected to decline, or a weak Allee effect, in which the population growth rate is reduced at small sizes but not negative. Our results indicate that compared to successful populations without an Allee effect, successful populations with a strong Allee effect tend to (1) derive from larger founder population sizes and thus have a higher initial amount of genetic variation, (2) spend fewer generations at small population sizes where genetic drift is particularly strong, and (3) spend more time around the critical population size and thus experience more genetic drift there. In the case of multiple introduction events, there is an additional increase in diversity because Allee-effect populations tend to derive from a larger number of introduction events than other populations. Altogether, a strong Allee effect can either increase or decrease genetic diversity, depending on the average founder population size. By contrast, a weak Allee effect tends to decrease genetic diversity across the entire range of founder population sizes. Finally, we show that it is possible in principle to infer critical population sizes from genetic data, although this would require information from many independently introduced populations. PMID:25009147

  14. Positive relationships between genetic diversity and abundance in fishes.

    PubMed

    McCusker, Megan R; Bentzen, Paul

    2010-11-01

    Molecular markers, such as mitochondrial DNA and microsatellite loci, are widely studied to assess population genetics and phylogeography; however, the selective neutrality of these markers is increasingly being questioned. Given the importance of molecular markers in fisheries science and conservation, we evaluated the neutrality of both mtDNA and microsatellite loci through their associations with population size. We surveyed mtDNA and microsatellite data from the primary literature and determined whether genetic diversity increased with abundance across a total of 105 marine and freshwater fishes, with both global fisheries catch data and body size as proxies for abundance (with an additional 57 species for which only body size data were assessed). We found that microsatellite data generally yielded higher associations with abundance than mtDNA data, and within mtDNA analyses, number of haplotypes and haplotype diversity were more strongly associated with abundance than nucleotide diversity, particularly for freshwater fishes. We compared genetic diversity between freshwater and marine fishes and found that marine fishes had higher values of all measures of genetic diversity than freshwater fishes. Results for both mtDNA and microsatellites generally conformed to neutral expectations, although weaker relationships were often found between mtDNA nucleotide diversity and 'abundance' compared to any other genetic statistic. We speculate that this is because of historical events unrelated to natural selection, although a role for selection cannot be ruled out. © 2010 Blackwell Publishing Ltd.

  15. Genetic Diversity of Natural Crossing in Cotton

    USDA-ARS?s Scientific Manuscript database

    We have shown previously genetic diversity in mature cotton pollen sensitivity to low humidity. This study investigated the impact of pollen sensitivity to low humidity on the amount of outcrossing to neighboring plants. We utilized “red” and “green” pigmented cotton, in addition to gossypol glan...

  16. Genetic diversity and structure in the Endangered Allen Cays Rock Iguana, Cyclura cychlura inornata

    PubMed Central

    Aplasca, Andrea C.; Iverson, John B.; Welch, Mark E.; Colosimo, Giuliano

    2016-01-01

    The Endangered Allen Cays Rock Iguana (Cyclura cychlura inornata) is endemic to the Allen Cays, a tiny cluster of islands in the Bahamas. Naturally occurring populations exist on only two cays (<4 ha each). However, populations of unknown origin were recently discovered on four additional cays. To investigate patterns of genetic variation among these populations, we analyzed nuclear and mitochondrial markers for 268 individuals. Analysis of three mitochondrial gene regions (2,328 bp) and data for eight nuclear microsatellite loci indicated low genetic diversity overall. Estimates of effective population sizes based on multilocus genotypes were also extremely low. Despite low diversity, significant population structuring and variation in genetic diversity measures were detected among cays. Genetic data confirm the source population for an experimentally translocated population while raising concerns regarding other, unauthorized, translocations. Reduced heterozygosity is consistent with a documented historical population decline due to overharvest. This study provides the first range-wide genetic analysis of this subspecies. We suggest strategies to maximize genetic diversity during ongoing recovery including additional translocations to establish assurance populations and additional protective measures for the two remaining natural populations. PMID:26989628

  17. Genetic diversity of Syrian Arabian horses.

    PubMed

    Almarzook, S; Reissmann, M; Arends, D; Brockmann, G A

    2017-08-01

    Although Arabian horses have been bred in strains for centuries and pedigrees have been recorded in studbooks, to date, little is known about the genetic diversity within and between these strains. In this study, we tested if the three main strains of Syrian Arabian horses descend from three founders as suggested by the studbook. We examined 48 horses representing Saglawi (n = 18), Kahlawi (n = 16) and Hamdani (n = 14) strains using the Equine SNP70K BeadChip. For comparison, an additional 24 Arabian horses from the USA and three Przewalski's horses as an out group were added. Observed heterozygosis (H o ) ranged between 0.30 and 0.32, expected heterozygosity (H e ) between 0.30 and 0.31 and inbreeding coefficients (F is ) between -0.02 and -0.05, indicating high genetic diversity within Syrian strains. Likewise, the genetic differentiation between the three Syrian strains was very low (F st  < 0.05). Hierarchical clustering showed a clear distinction between Arabian and Przewalski's horses. Among Arabian horses, we found three clusters containing either horses from the USA or horses from Syria or horses from Syria and the USA together. Individuals from the same Syrian Arabian horse strain were spread across different sub-clusters. When analyzing Syrian Arabian horses alone, the best population differentiation was found with three distinct clusters. In contrast to expectations from the studbook, these clusters did not coincide with strain affiliation. Although this finding supports the hypothesis of three founders, the genetic information is not consistent with the currently used strain designation system. The information can be used to reconsider the current breeding practice. Beyond that, Syrian Arabian horses are an important reservoir for genetic diversity. © 2017 Stichting International Foundation for Animal Genetics.

  18. Intraspecific genetic diversity and composition modify species-level diversity-productivity relationships.

    PubMed

    Schöb, Christian; Kerle, Sarah; Karley, Alison J; Morcillo, Luna; Pakeman, Robin J; Newton, Adrian C; Brooker, Rob W

    2015-01-01

    Biodiversity regulates ecosystem functions such as productivity, and experimental studies of species mixtures have revealed selection and complementarity effects driving these responses. However, the impacts of intraspecific genotypic diversity in these studies are unknown, despite it forming a substantial part of the biodiversity. In a glasshouse experiment we constructed plant communities with different levels of barley (Hordeum vulgare) genotype and weed species diversity and assessed their relative biodiversity effects through additive partitioning into selection and complementarity effects. Barley genotype diversity had weak positive effects on aboveground biomass through complementarity effects, whereas weed species diversity increased biomass predominantly through selection effects. When combined, increasing genotype diversity of barley tended to dilute the selection effect of weeds. We interpret these different effects of barley genotype and weed species diversity as the consequence of small vs large trait variation associated with intraspecific barley diversity and interspecific weed diversity, respectively. The different effects of intra- vs interspecific diversity highlight the underestimated and overlooked role of genetic diversity for ecosystem functioning. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  19. Understanding crop genetic diversity under modern plant breeding.

    PubMed

    Fu, Yong-Bi

    2015-11-01

    Maximizing crop yield while at the same time minimizing crop failure for sustainable agriculture requires a better understanding of the impacts of plant breeding on crop genetic diversity. This review identifies knowledge gaps and shows the need for more research into genetic diversity changes under plant breeding. Modern plant breeding has made a profound impact on food production and will continue to play a vital role in world food security. For sustainable agriculture, a compromise should be sought between maximizing crop yield under changing climate and minimizing crop failure under unfavorable conditions. Such a compromise requires better understanding of the impacts of plant breeding on crop genetic diversity. Efforts have been made over the last three decades to assess crop genetic diversity using molecular marker technologies. However, these assessments have revealed some temporal diversity patterns that are largely inconsistent with our perception that modern plant breeding reduces crop genetic diversity. An attempt was made in this review to explain such discrepancies by examining empirical assessments of crop genetic diversity and theoretical investigations of genetic diversity changes over time under artificial selection. It was found that many crop genetic diversity assessments were not designed to assess diversity impacts from specific plant breeding programs, while others were experimentally inadequate and contained technical biases from the sampling of cultivars and genomes. Little attention has been paid to theoretical investigations on crop genetic diversity changes from plant breeding. A computer simulation of five simplified breeding schemes showed the substantial effects of plant breeding on the retention of heterozygosity over generations. It is clear that more efforts are needed to investigate crop genetic diversity in space and time under plant breeding to achieve sustainable crop production.

  20. Assessment of Genetic Diversity of Sweet Potato in Puerto Rico

    PubMed Central

    Rodriguez-Bonilla, Lorraine; Cuevas, Hugo E.; Montero-Rojas, Milly; Bird-Pico, Fernando; Luciano-Rosario, Dianiris; Siritunga, Dimuth

    2014-01-01

    Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand for food and the need for conservation of agricultural and genetic resources. In Puerto Rico (PR), the genetic diversity of sweet potato has been poorly understood, although it has been part of the diet since Pre-Columbus time. Thus, 137 landraces from different localities around PR were collected and subjected to a genetic diversity analysis using 23 SSR-markers. In addition, 8 accessions from a collection grown in Gurabo, PR at the Agricultural Experimental Station (GAES), 10 US commercial cultivars and 12 Puerto Rican accessions from the USDA repository collection were included in this assessment. The results of the analysis of the 23 loci showed 255 alleles in the 167 samples. Observed heterozygosity was high across populations (0.71) while measurements of total heterozygosity revealed a large genetic diversity throughout the population and within populations. UPGMA clustering method revealed two main clusters. Cluster 1 contained 12 PR accessions from the USDA repository collection, while cluster 2 consisted of PR landraces, US commercial cultivars and the PR accessions from GAES. Population structure analysis grouped PR landraces in five groups including four US commercial cultivars. Our study shows the presence of a high level of genetic diversity of sweet potato across PR which can be related to the genetic makeup of sweet potato, human intervention and out-crossing nature of the plant. The history of domestication and dispersal of sweet potato in the Caribbean and the high levels of genetic diversity found through this study makes sweet potato an invaluable resource that needs to be protected and further studied. PMID:25551388

  1. Rarity and genetic diversity in Indo–Pacific Acropora corals

    PubMed Central

    Richards, Zoe T; Oppen, Madeleine J H

    2012-01-01

    Among various potential consequences of rarity is genetic erosion. Neutral genetic theory predicts that rare species will have lower genetic diversity than common species. To examine the association between genetic diversity and rarity, variation at eight DNA microsatellite markers was documented for 14 Acropora species that display different patterns of distribution and abundance in the Indo–Pacific Ocean. Our results show that the relationship between rarity and genetic diversity is not a positive linear association because, contrary to expectations, some rare species are genetically diverse and some populations of common species are genetically depleted. Our data suggest that inbreeding is the most likely mechanism of genetic depletion in both rare and common corals, and that hybridization is the most likely explanation for higher than expected levels of genetic diversity in rare species. A significant hypothesis generated from our study with direct conservation implications is that as a group, Acropora corals have lower genetic diversity at neutral microsatellite loci than may be expected from their taxonomic diversity, and this may suggest a heightened susceptibility to environmental change. This hypothesis requires validation based on genetic diversity estimates derived from a large portion of the genome. PMID:22957189

  2. Genetic diversity and species diversity of stream fishes covary across a land-use gradient.

    PubMed

    Blum, Michael J; Bagley, Mark J; Walters, David M; Jackson, Suzanne A; Daniel, F Bernard; Chaloud, Deborah J; Cade, Brian S

    2012-01-01

    Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems.

  3. Genetic diversity and species diversity of stream fishes covary across a land-use gradient

    USGS Publications Warehouse

    Blum, M.J.; Bagley, M.J.; Walters, D.M.; Jackson, S.A.; Daniel, F.B.; Chaloud, D.J.; Cade, B.S.

    2012-01-01

    Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems. ?? 2011 Springer-Verlag.

  4. Genetic Diversity of Plasmodium falciparum in Haiti: Insights from Microsatellite Markers

    PubMed Central

    Carter, Tamar E.; Malloy, Halley; Existe, Alexandre; Memnon, Gladys; St. Victor, Yves; Okech, Bernard A.; Mulligan, Connie J.

    2015-01-01

    Hispaniola, comprising Haiti and the Dominican Republic, has been identified as a candidate for malaria elimination. However, incomplete surveillance data in Haiti hamper efforts to assess the impact of ongoing malaria control interventions. Characteristics of the genetic diversity of Plasmodium falciparum populations can be used to assess parasite transmission, which is information vital to evaluating malaria elimination efforts. Here we characterize the genetic diversity of P. falciparum samples collected from patients at seven sites in Haiti using 12 microsatellite markers previously employed in population genetic analyses of global P. falciparum populations. We measured multiplicity of infections, level of genetic diversity, degree of population geographic substructure, and linkage disequilibrium (defined as non-random association of alleles from different loci). For low transmission populations like Haiti, we expect to see few multiple infections, low levels of genetic diversity, high degree of population structure, and high linkage disequilibrium. In Haiti, we found low levels of multiple infections (12.9%), moderate to high levels of genetic diversity (mean number of alleles per locus = 4.9, heterozygosity = 0.61), low levels of population structure (highest pairwise Fst = 0.09 and no clustering in principal components analysis), and moderate linkage disequilibrium (ISA = 0.05, P<0.0001). In addition, population bottleneck analysis revealed no evidence for a reduction in the P. falciparum population size in Haiti. We conclude that the high level of genetic diversity and lack of evidence for a population bottleneck may suggest that Haiti’s P. falciparum population has been stable and discuss the implications of our results for understanding the impact of malaria control interventions. We also discuss the relevance of parasite population history and other host and vector factors when assessing transmission intensity from genetic diversity data. PMID:26462203

  5. Genetic diversity and structure of the threatened species Sinopodophyllum hexandrum (Royle) Ying.

    PubMed

    Liu, W; Wang, J; Yin, D X; Yang, M; Wang, P; Han, Q S; Ma, Q Q; Liu, J J; Wang, J X

    2016-06-10

    Sinopodophyllum hexandrum is an important medicinal plant that has been listed as an endangered species, making the conservation of its genetic diversity a priority. Therefore, the genetic diversity and population structure of S. hexandrum was investigated through inter-simple sequence repeat analysis of eight natural populations. Eleven selected primers generated 141 discernible fragments. The percentage of polymorphic bands was 37.59% at the species level, and 7.66-24.32% at the population level. Genetic diversity of S. hexandrum was low within populations (average HE = 0.0366), but higher at the species level (HE = 0.0963). Clear structure and high genetic differentiation were detected between populations using unweighted pair groups mean arithmetic and principle coordinate analysis. Clustering approaches clustered the eight sampled populations into three major groups, and AMOVA confirmed there to be significant variation between populations (63.27%). Genetic differentiation may have arisen through limited gene flow (Nm = 0.3317) in this species. Isolation by distance among populations was determined by comparing genetic distance versus geographical distance using the Mantel test. The results revealed no correlation between spatial pattern and geographic location. Given the low within-population genetic diversity, high differentiation among populations, and the increasing anthropogenic pressure on this species, in situ conservation measures, in addition to sampling and ex situ preservation, are recommended to preserve S. hexandrum populations and to retain their genetic diversity.

  6. Microbial diversity--insights from population genetics.

    PubMed

    Mes, Ted H M

    2008-01-01

    Although many environmental microbial populations are large and genetically diverse, both the level of diversity and the extent to which it is ecologically relevant remain enigmatic. Because the effective (or long-term) population size, N(e), is one of the parameters that determines population genetic diversity, tests and simulations that assume selectively neutral mutations may help to identify the processes that have shaped microbial diversity. Using ecologically important genes, tests of selective neutrality suggest that adaptive as well as non-adaptive types of selection act and that departure from neutrality may be widespread or restricted to small groups of genotypes. Population genetic simulations using population sizes between 10(3) and 10(7) suggest extremely high levels of microbial diversity in environments that sustain large populations. However, census and effective population sizes may differ considerably, and because we know nothing of the evolutionary history of environmental microbial populations, we also have no idea what N(e) of environmental populations is. On the one hand, this reflects our ignorance of the microbial world. On the other hand, the tests and simulations illustrate interactions between microbial diversity and microbial population genetics that should inform our thinking in microbial ecology. Because of the different views on microbial diversity across these disciplines, such interactions are crucial if we are to understand the role of genes in microbial communities.

  7. Genetic landscapes GIS Toolbox: tools to map patterns of genetic divergence and diversity.

    USGS Publications Warehouse

    Vandergast, Amy G.; Perry, William M.; Lugo, Roberto V.; Hathaway, Stacie A.

    2011-01-01

    The Landscape Genetics GIS Toolbox contains tools that run in the Geographic Information System software, ArcGIS, to map genetic landscapes and to summarize multiple genetic landscapes as average and variance surfaces. These tools can be used to visualize the distribution of genetic diversity across geographic space and to study associations between patterns of genetic diversity and geographic features or other geo-referenced environmental data sets. Together, these tools create genetic landscape surfaces directly from tables containing genetic distance or diversity data and sample location coordinates, greatly reducing the complexity of building and analyzing these raster surfaces in a Geographic Information System.

  8. Community and ecosystem effects of intraspecific genetic diversity in grassland microcosms of varying species diversity.

    PubMed

    Fridley, Jason D; Grime, J Philip

    2010-08-01

    Studies of whether plant community structure and ecosystem properties depend on the genetic diversity of component populations have been largely restricted to species monocultures and have involved levels of genetic differentiation that do not necessarily correspond to that exhibited by neighboring mature individuals in the field. We established experimental communities of varying intraspecific genetic diversity, using genotypes of eight species propagated from clonal material of individuals derived from a small (100-m2) limestone grassland community, and tested whether genetic diversity (one, four, and eight genotypes per species) influenced community composition and annual aboveground productivity across communities of one, four, and eight species. Eight-species communities were represented by common grass, sedge, and forb species, and four- and one-species communities were represented by four graminoids and the dominant grass Festuca ovina, respectively. After three years of community development, there was a marginal increase of species diversity with increased genetic diversity in four- and eight-species communities, and genetic diversity altered the performance of genotypes in monospecific communities of F. ovina. However, shifts in composition from genetic diversity were not sufficient to alter patterns of community productivity. Neighborhood models describing pairwise interactions between species indicated that genetic diversity decreased the intensity of competition between species in four-species mixtures, thereby promoting competitive equivalency and enhancing species equitability. In F. ovina monocultures, neighborhood models revealed both synergistic and antagonistic interactions between genotypes that were reduced in intensity on more stressful shallow soils. Although the dependence of F. ovina genotype performance on neighborhood genetic composition did not influence total productivity, such dependence was sufficient to uncouple genotype performance

  9. Microsatellite-based genetic diversity and population structure of domestic sheep in northern Eurasia.

    PubMed

    Tapio, Miika; Ozerov, Mikhail; Tapio, Ilma; Toro, Miguel A; Marzanov, Nurbiy; Cinkulov, Mirjana; Goncharenko, Galina; Kiselyova, Tatyana; Murawski, Maziek; Kantanen, Juha

    2010-08-10

    Identification of global livestock diversity hotspots and their importance in diversity maintenance is essential for making global conservation efforts. We screened 52 sheep breeds from the Eurasian subcontinent with 20 microsatellite markers. By estimating and weighting differently within- and between-breed genetic variation our aims were to identify genetic diversity hotspots and prioritize the importance of each breed for conservation, respectively. In addition we estimated how important within-species diversity hotspots are in livestock conservation. Bayesian clustering analysis revealed three genetic clusters, termed Nordic, Composite and Fat-tailed. Southern breeds from close to the region of sheep domestication were more variable, but less genetically differentiated compared with more northern populations. Decreasing weight for within-breed diversity component led to very high representation of genetic clusters or regions containing more diverged breeds, but did not increase phenotypic diversity among the high ranked breeds. Sampling populations throughout 14 regional groups was suggested for maximized total genetic diversity. During initial steps of establishing a livestock conservation program populations from the diversity hot-spot area are the most important ones, but for the full design our results suggested that approximately equal population presentation across environments should be considered. Even in this case, higher per population emphasis in areas of high diversity is appropriate. The analysis was based on neutral data, but we have no reason to think the general trend is limited to this type of data. However, a comprehensive valuation of populations should balance production systems, phenotypic traits and available genetic information, and include consideration of probability of success.

  10. Microsatellite-based genetic diversity and population structure of domestic sheep in northern Eurasia

    PubMed Central

    2010-01-01

    Background Identification of global livestock diversity hotspots and their importance in diversity maintenance is essential for making global conservation efforts. We screened 52 sheep breeds from the Eurasian subcontinent with 20 microsatellite markers. By estimating and weighting differently within- and between-breed genetic variation our aims were to identify genetic diversity hotspots and prioritize the importance of each breed for conservation, respectively. In addition we estimated how important within-species diversity hotspots are in livestock conservation. Results Bayesian clustering analysis revealed three genetic clusters, termed Nordic, Composite and Fat-tailed. Southern breeds from close to the region of sheep domestication were more variable, but less genetically differentiated compared with more northern populations. Decreasing weight for within-breed diversity component led to very high representation of genetic clusters or regions containing more diverged breeds, but did not increase phenotypic diversity among the high ranked breeds. Sampling populations throughout 14 regional groups was suggested for maximized total genetic diversity. Conclusions During initial steps of establishing a livestock conservation program populations from the diversity hot-spot area are the most important ones, but for the full design our results suggested that approximately equal population presentation across environments should be considered. Even in this case, higher per population emphasis in areas of high diversity is appropriate. The analysis was based on neutral data, but we have no reason to think the general trend is limited to this type of data. However, a comprehensive valuation of populations should balance production systems, phenotypic traits and available genetic information, and include consideration of probability of success. PMID:20698974

  11. Genetic diversity of the Arctic fox using SRAP markers.

    PubMed

    Zhang, M; Bai, X J

    2013-12-04

    Sequence-related amplified polymorphism (SRAP) is a recently developed molecular marker technique that is stable, simple, reliable, and achieves moderate to high numbers of codominant markers. This study is the first to apply SRAP markers in a mammal, namely the Arctic fox. In order to investigate the genetic diversity of the Arctic fox and to provide a reference for use of its germplasm, we analyzed 7 populations of Arctic fox by SRAP. The genetic similarity coefficient, genetic distance, proportion of polymorphic loci, total genetic diversity (Ht), genetic diversity within populations (Hs), and genetic differentiation (Gst) were calculated using the Popgene software package. The results indicated abundant genetic diversity among the different populations of Arctic fox studied in China. The genetic similarity coefficient ranged from 0.1694 to 0.0417, genetic distance ranged from 0.8442 to 0.9592, and the proportion of polymorphic loci was smallest in the TS group. Genetic diversity ranged from 0.2535 to 0.3791, Ht was 0.3770, Hs was 0.3158, Gst was 0.1624, and gene flow (Nm) was estimated at 2.5790. Thus, a high level of genetic diversity and many genetic relationships were found in the populations of Arctic fox evaluated in this study.

  12. Synthesis and assessment of date palm genetic diversity studies

    USDA-ARS?s Scientific Manuscript database

    A thorough assessment of genetic diversity and population differentiation of Phoenix dactylifera are critical for its dynamic conservation and sustainable utilization of its genetic diversity. Estimates of genetic diversity based on phenotypic, biochemical and molecular markers; and fruit quality tr...

  13. On the relative roles of background selection and genetic hitchhiking in shaping human cytomegalovirus genetic diversity.

    PubMed

    Renzette, Nicholas; Kowalik, Timothy F; Jensen, Jeffrey D

    2016-01-01

    A central focus of population genetics has been examining the contribution of selective and neutral processes in shaping patterns of intraspecies diversity. In terms of selection specifically, surveys of higher organisms have shown considerable variation in the relative contributions of background selection and genetic hitchhiking in shaping the distribution of polymorphisms, although these analyses have rarely been extended to bacteria and viruses. Here, we study the evolution of a ubiquitous, viral pathogen, human cytomegalovirus (HCMV), by analysing the relationship among intraspecies diversity, interspecies divergence and rates of recombination. We show that there is a strong correlation between diversity and divergence, consistent with expectations of neutral evolution. However, after correcting for divergence, there remains a significant correlation between intraspecies diversity and recombination rates, with additional analyses suggesting that this correlation is largely due to the effects of background selection. In addition, a small number of loci, centred on long noncoding RNAs, also show evidence of selective sweeps. These data suggest that HCMV evolution is dominated by neutral mechanisms as well as background selection, expanding our understanding of linked selection to a novel class of organisms. © 2015 John Wiley & Sons Ltd.

  14. The challenges of tumor genetic diversity.

    PubMed

    Mroz, Edmund A; Rocco, James W

    2017-05-15

    The authors review and discuss the implications of genomic analyses documenting the diversity of tumors, both among patients and within individual tumors. Genetic diversity among solid tumors limits targeted therapies, because few mutations that drive tumors are both targetable and at high prevalence. Many more driver mutations and how they affect cellular signaling pathways must be identified if targeted therapy is to become widely useful. Genetic diversity within a tumor-intratumor genetic heterogeneity-makes the tumor a collection of subclones: related yet distinct cancers. Selection for pre-existing, resistant subclones by conventional or targeted therapies may explain many treatment failures. Immune therapy faces the same fundamental challenges. Nevertheless, the processes that generate and maintain heterogeneity might provide novel therapeutic targets. Addressing both types of diversity requires genomic tumor analyses linked to detailed clinical data. The trend toward sequencing restricted cancer gene panels, however, limits the ability to discover new driver mutations and assess intratumor heterogeneity. Clinical data currently collected with genomic analyses often lack critical information, substantially limiting their use in understanding tumor diversity. Now that diversity among and within tumors can no longer be ignored, research and clinical practice must adapt to take diversity into account. Cancer 2017;123:917-27. © 2016 American Cancer Society. © 2016 American Cancer Society.

  15. Genetic diversity in aspen and its relation to arthropod abundance

    PubMed Central

    Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

    2015-01-01

    The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen. PMID:25674097

  16. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest

    PubMed Central

    Xu, Wumei; Liu, Lu; He, Tianhua; Cao, Min; Sha, Liqing; Hu, Yuehua; Li, Qiaoming; Li, Jie

    2016-01-01

    A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community. PMID:26860815

  17. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest.

    PubMed

    Xu, Wumei; Liu, Lu; He, Tianhua; Cao, Min; Sha, Liqing; Hu, Yuehua; Li, Qiaoming; Li, Jie

    2016-02-10

    A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community.

  18. Anthropogenic alterations of genetic diversity within tree populations: Implications for forest ecosystem resilience

    Treesearch

    Paul G. Schaberg; Donald H. DeHayes; Gary J. Hawley; Samuel E. Nijensohn

    2008-01-01

    Healthy forests provide many of the essential ecosystem services upon which all life depends. Genetic diversity is an essential component of long-term forest health because it provides a basis for adaptation and resilience to environmental stress and change. In addition to natural processes, numerous anthropogenic factors deplete forest genetic resources. Genetic...

  19. Species and genetic diversity in the genus Drosophila inhabiting the Indian subcontinent.

    PubMed

    Singh, Bashisth N

    2015-06-01

    Biodiversity is the sum total of all living things on the earth with particular reference to the profound variety in structure,function and genetic constitution. It includes both number and frequency of species or genes in a given assemblage and the variety of resulting ecosystems in a region. It is usually considered at three different levels: genetic, species and ecological diversities. Genus Drosophila belongs to the family Drosophilidae (class Insecta, order Diptera), characterized by rich species diversity at global level and also in India, which is a megadiverse country. At global level, more than 1500 species have been described and several thousands estimated. Hawaiian Islands are particularly rich in species diversity with more than 500 species which provides a unique opportunity to study evolution in genus Drosophila. About 150 species of Drosophila have been reported from India. Certain species of Drosophila found in India have been investigated for genetic diversity within the species. In this regard, Drosophila ananassae is noteworthy. It is a cosmopolitan and domestic species with common occurrence in India and is endowed with many genetic peculiarities. Population genetics and evolutionary studies in this species have revealed as to how genetic diversity within a species play an important role in adaptation of populations to varying environments. In addition, the work carried on D. melanogaster, D. nasuta, D. bipectinata and certain other species in India has shown that these species vary in degree and pattern of genetic diversity, and have evolved different mechanisms for adjusting to their environments. The ecological adaptations to various kinds of stress studied in certain species of Drosophila inhabiting the Indian subcontinent are also discussed.

  20. [Genetic diversity of DNA microsatellite for Tibetan Yak].

    PubMed

    Li, Duo; Chai, Zhi-Xin; Ji, Qiu-Mei; Zhang, Cheng-Fu; Xin, Jin-Wei; Zhong, Jin-Cheng

    2013-02-01

    To assess the genetic diversity and relationship of the Tibetan yak breeds. The genetic diversity and phylogenies of a total of 480 individual from 11 Tibetan yak groups were analyzed using PCR and multiplex gel electrophoresis of silver staining technology with eight pairs of microsatellite markers.The result showed that these markers were highly polymorphic loci with rich genetic diversity in the Tibetan yak populations.The average polymorphic information content (PIC) in 11 groups of yak were higher than 0.5. The highest HEL13 was 0.8496, and the lowest TGLA57 was 0.7349. Among them, the PICof Dingqing yak was minimum (0.7505), indicating that the group is relatively pure.Sangri Yak had the highest PIC value (0.7949) indicating greater genetic variationwithinthe groups. Among the 11 groups examined, the order of heterozygosity size wasSangri(0.8193)>Jiangda(0.8190)>Sangsang(0.8157)>Baqing(0.8150)>Kangbu(0.8123)> Jiali(0.8087)>Gongbujiangda(0.8054)>Sibu(0.8041)>Leiwuqi(0.8033)>Pali(0.8031)>Dingqing(0.7831). The groups from eastern Tibet had grater genetic diversity than those from Western Tibet, which indicate that Tibet may be one of the cradles of the yak.According to the genetic distance, the cluster relationship constructed with UPGMA and NJ methods showed that 11 yak groups in Tibet could be divided into three forms. In summary,Tibet yak has abundant genetic diversity and the selected microsatellite markers can be used to evaluategenetic diversity of Tibetan yak.

  1. High genetic diversity in the endangered and narrowly distributed amphibian species Leptobrachium leishanense.

    PubMed

    Zhang, Wei; Luo, Zhenhua; Zhao, Mian; Wu, Hua

    2015-09-01

    Threatened species typically have a small or declining population size, which make them highly susceptible to loss of genetic diversity through genetic drift and inbreeding. Genetic diversity determines the evolutionary potential of a species; therefore, maintaining the genetic diversity of threatened species is essential for their conservation. In this study, we assessed the genetic diversity of the adaptive major histocompatibility complex (MHC) genes in an endangered and narrowly distributed amphibian species, Leptobrachium leishanense in Southwest China. We compared the genetic variation of MHC class I genes with that observed in neutral markers (5 microsatellite loci and cytochrome b gene) to elucidate the relative roles of genetic drift and natural selection in shaping the current MHC polymorphism in this species. We found a high level of genetic diversity in this population at both MHC and neutral markers compared with other threatened amphibian species. Historical positive selection was evident in the MHC class I genes. The higher allelic richness in MHC markers compared with that of microsatellite loci suggests that selection rather than genetic drift plays a prominent role in shaping the MHC variation pattern, as drift can affect all the genome in a similar way but selection directly targets MHC genes. Although demographic analysis revealed no recent bottleneck events in L. leishanense, additional population decline will accelerate the dangerous status for this species. We suggest that the conservation management of L. leishanense should concentrate on maximizing the retention of genetic diversity through preventing their continuous population decline. Protecting their living habitats and forbidding illegal hunting are the most important measures for conservation of L. leishanense. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  2. Comparative riverscape genetics reveals reservoirs of genetic diversity for conservation and restoration of Great Plains fishes.

    PubMed

    Osborne, Megan J; Perkin, Joshuah S; Gido, Keith B; Turner, Thomas F

    2014-12-01

    We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch-based graphical model and then compared within and among three species that co-occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic-spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly higher at southern latitudes for Cyprinella lutrensis and Hybognathus placitus, consistent with northward expansion from southern Pleistocene refugia. Within the historical context, all species exhibited lowered occupancy and abundance in heavily fragmented and drier upstream reaches, particularly H. placitus; a pelagic-spawning species, suggesting rates of extirpation have outpaced losses of genetic diversity in this species. Within most tributary basins, genetically diverse populations of each species persisted. Hence, reconnecting genetically diverse populations with those characterized by reduced diversity (regardless of their position within the riverine network) would provide populations with greater genetic and demographic resilience. We discuss cases where cross-basin transfer may be appropriate to enhance genetic diversity and mitigate negative effects of climate change. Overall, striking similarities in genetic patterns and in response to fragmentation and dewatering suggest a common strategy for genetic resource management in this unique riverine fish assemblage. © 2014 John Wiley & Sons Ltd.

  3. Inbred or Outbred? Genetic Diversity in Laboratory Rodent Colonies

    PubMed Central

    Brekke, Thomas D.; Steele, Katherine A.; Mulley, John F.

    2017-01-01

    Nonmodel rodents are widely used as subjects for both basic and applied biological research, but the genetic diversity of the study individuals is rarely quantified. University-housed colonies tend to be small and subject to founder effects and genetic drift; so they may be highly inbred or show substantial genetic divergence from other colonies, even those derived from the same source. Disregard for the levels of genetic diversity in an animal colony may result in a failure to replicate results if a different colony is used to repeat an experiment, as different colonies may have fixed alternative variants. Here we use high throughput sequencing to demonstrate genetic divergence in three isolated colonies of Mongolian gerbil (Meriones unguiculatus) even though they were all established recently from the same source. We also show that genetic diversity in allegedly “outbred” colonies of nonmodel rodents (gerbils, hamsters, house mice, deer mice, and rats) varies considerably from nearly no segregating diversity to very high levels of polymorphism. We conclude that genetic divergence in isolated colonies may play an important role in the “replication crisis.” In a more positive light, divergent rodent colonies represent an opportunity to leverage genetically distinct individuals in genetic crossing experiments. In sum, awareness of the genetic diversity of an animal colony is paramount as it allows researchers to properly replicate experiments and also to capitalize on other genetically distinct individuals to explore the genetic basis of a trait. PMID:29242387

  4. Genetic Diversity in Nannotrigona testaceicornis (Hymenoptera: Apidae) Aggregations in Southeastern Brazil

    PubMed Central

    Fonseca, A. S.; Oliveira, E.J.F.; Freitas, G.S.; Assis, A.F.; Souza, C.C.M.; Contel, E.P.B.; Soares, A.E.E.

    2017-01-01

    The Meliponini, also known as stingless bees, are distributed in tropical and subtropical areas of the world and plays an essential role in pollinating many wild plants and crops These bees can build nests in cavities of trees or walls, underground or in associations with ants or termites; interestingly, these nests are sometimes found in aggregations. In order to assess the genetic diversity and structure in aggregates of Nannotrigona testaceicornis (Lepeletier), samples of this species were collected from six aggregations and genetically analyzed for eight specific microsatellite loci. We observed in this analysis that the mean genetic diversity value among aggregations was 0.354, and the mean expected and observed heterozygosity values was 0.414 and 0.283, respectively. The statistically significant Fis value indicated an observed heterozygosity lower than the expected heterozygosity in all loci studied resulting in high homozygosis level in these populations. In addition, the low number of private alleles observed reinforces the absence of structuring that is seen in the aggregates. These results can provide relevant information about genetic diversity in aggregations of N. testaceicornis and contribute to the management and conservation of these bees’ species that are critical for the pollination process. PMID:28130454

  5. Genetic diversity and structure in two species of Leavenworthia with self-incompatible and self-compatible populations

    PubMed Central

    Koelling, V A; Hamrick, J L; Mauricio, R

    2011-01-01

    Self-fertilization is a common mating system in plants and is known to reduce genetic diversity, increase genetic structure and potentially put populations at greater risk of extinction. In this study, we measured the genetic diversity and structure of two cedar glade endemic species, Leavenworthia alabamica and L. crassa. These species have self-incompatible (SI) and self-compatible (SC) populations and are therefore ideal for understanding how the mating system affects genetic diversity and structure. We found that L. alabamica and L. crassa had high species-level genetic diversity (He=0.229 and 0.183, respectively) and high genetic structure among their populations (FST=0.45 and 0.36, respectively), but that mean genetic diversity was significantly lower in SC compared with SI populations (SC vs SI, He for L. alabamica was 0.065 vs 0.206 and for L. crassa was 0.084 vs 0.189). We also found significant genetic structure using maximum-likelihood clustering methods. These data indicate that the loss of SI leads to the loss of genetic diversity within populations. In addition, we examined genetic distance relationships between SI and SC populations to analyze possible population history and origins of self-compatibility. We find there may have been multiple origins of self-compatibility in L. alabamica and L. crassa. However, further work is required to test this hypothesis. Finally, given their high genetic structure and that individual populations harbor unique alleles, conservation strategies seeking to maximize species-level genetic diversity for these or similar species should protect multiple populations. PMID:20485327

  6. Genetic Diversity and Human Equality.

    ERIC Educational Resources Information Center

    Dobzhansky, Theodosius

    The idea of equality often, if not frequently, bogs down in confusion and apparent contradictions; equality is confused with identity, and diversity with inequality. It would seem that the easiest way to discredit the idea of equality is to show that people are innately, genetically, and, therefore, irremediably diverse and unlike. The snare is,…

  7. Endemic insular and coastal Tunisian date palm genetic diversity.

    PubMed

    Zehdi-Azouzi, Salwa; Cherif, Emira; Guenni, Karim; Abdelkrim, Ahmed Ben; Bermil, Aymen; Rhouma, Soumaya; Salah, Mohamed Ben; Santoni, Sylvain; Pintaud, Jean Christophe; Aberlenc-Bertossi, Frédérique; Hannachi, Amel Salhi

    2016-04-01

    The breeding of crop species relies on the valorisation of ancestral or wild varieties to enrich the cultivated germplasm. The Tunisian date palm genetic patrimony is being threatened by diversity loss and global climate change. We have conducted a genetic study to evaluate the potential of spontaneous coastal resources to improve the currently exploited Tunisian date palm genetic pool. Eighteen microsatellite loci of Phoenix dactylifera L. were used to compare the genetic diversity of coastal accessions from Kerkennah, Djerba, Gabès and continental date palm accessions from Tozeur. A collection of 105 date palms from the four regions was analysed. This study has provided us with an extensive understanding of the local genetic diversity and its distribution. The coastal date palm genotypes exhibit a high and specific genetic diversity. These genotypes are certainly an untapped reservoir of agronomically important genes to improve cultivated germplasm in continental date palm.

  8. Surviving with low genetic diversity: the case of albatrosses

    PubMed Central

    Milot, Emmanuel; Weimerskirch, Henri; Duchesne, Pierre; Bernatchez, Louis

    2007-01-01

    Low genetic diversity is predicted to negatively impact species viability and has been a central concern for conservation. In contrast, the possibility that some species may thrive in spite of a relatively poor diversity has received little attention. The wandering and Amsterdam albatrosses (Diomedea exulans and Diomedea amsterdamensis) are long-lived seabirds standing at an extreme along the gradient of life strategies, having traits that may favour inbreeding and low genetic diversity. Divergence time of the two species is estimated at 0.84 Myr ago from cytochrome b data. We tested the hypothesis that both albatrosses inherited poor genetic diversity from their common ancestor. Within the wandering albatross, per cent polymorphic loci and expected heterozygosity at amplified fragment length polymorphisms were approximately one-third of the minimal values reported in other vertebrates. Genetic diversity in the Amsterdam albatross, which is recovering from a severe bottleneck, was about twice as low as in the wandering albatross. Simulations supported the hypothesis that genetic diversity in albatrosses was already depleted prior to their divergence. Given the generally high breeding success of these species, it is likely that they are not suffering much from their impoverished diversity. Whether albatrosses are unique in this regard is unknown, but they appear to challenge the classical view about the negative consequences of genetic depletion on species survival. PMID:17251114

  9. Genetic Diversity of Toscana Virus

    PubMed Central

    Collao, Ximena; Palacios, Gustavo; Sanbonmatsu-Gámez, Sara; Pérez-Ruiz, Mercedes; Negredo, Ana I.; Navarro-Marí, José-María; Grandadam, Marc; Aransay, Ana Maria; Lipkin, W. Ian; Tenorio, Antonio

    2009-01-01

    Distribution of Toscana virus (TOSV) is evolving with climate change, and pathogenicity may be higher in nonexposed populations outside areas of current prevalence (Mediterranean Basin). To characterize genetic diversity of TOSV, we determined the coding sequences of isolates from Spain and France. TOSV is more diverse than other well-studied phleboviruses (e.g.,Rift Valley fever virus). PMID:19331735

  10. Patterns of genetic diversity in the polymorphic ground snake (Sonora semiannulata).

    PubMed

    Cox, Christian L; Chippindale, Paul T

    2014-08-01

    We evaluated the genetic diversity of a snake species with color polymorphism to understand the evolutionary processes that drive genetic structure across a large geographic region. Specifically, we analyzed genetic structure of the highly polymorphic ground snake, Sonora semiannulata, (1) among populations, (2) among color morphs (3) at regional and local spatial scales, using an amplified fragment length polymorphism dataset and multiple population genetic analyses, including FST-based and clustering analytical techniques. Based upon these methods, we found that there was moderate to low genetic structure among populations. However, this diversity was not associated with geographic locality at either spatial scale. Similarly, we found no evidence for genetic divergence among color morphs at either spatial scale. These results suggest that despite dramatic color polymorphism, this phenotypic diversity is not a major driver of genetic diversity within or among populations of ground snakes. We suggest that there are two mechanisms that could explain existing genetic diversity in ground snakes: recent range expansion from a genetically diverse founder population and current or recent gene flow among populations. Our findings have further implications for the types of color polymorphism that may generate genetic diversity in snakes.

  11. Genetic diversity of calcareous grassland plant species depends on historical landscape configuration.

    PubMed

    Reisch, Christoph; Schmidkonz, Sonja; Meier, Katrin; Schöpplein, Quirin; Meyer, Carina; Hums, Christian; Putz, Christina; Schmid, Christoph

    2017-04-24

    Habitat fragmentation is considered to be a main reason for decreasing genetic diversity of plant species. However, the results of many fragmentation studies are inconsistent. This may be due to the influence of habitat conditions, having an indirect effect on genetic variation via reproduction. Consequently we took a comparative approach to analyse the impact of habitat fragmentation and habitat conditions on the genetic diversity of calcareous grassland species in this study. We selected five typical grassland species (Primula veris, Dianthus carthusianorum, Medicago falcata, Polygala comosa and Salvia pratensis) occurring in 18 fragments of calcareous grasslands in south eastern Germany. We sampled 1286 individuals in 87 populations and analysed genetic diversity using amplified fragment length polymorphisms. Additionally, we collected data concerning habitat fragmentation (historical and present landscape structure) and habitat conditions (vegetation structure, soil conditions) of the selected study sites. The whole data set was analysed using Bayesian multiple regressions. Our investigation indicated a habitat loss of nearly 80% and increasing isolation between grasslands since 1830. Bayesian analysis revealed a significant impact of the historical landscape structure, whereas habitat conditions played no important role for the present-day genetic variation of the studied plant species. Our study indicates that the historical landscape structure may be more important for genetic diversity than present habitat conditions. Populations persisting in abandoned grassland fragments may contribute significantly to the species' variability even under deteriorating habitat conditions. Therefore, these populations should be included in approaches to preserve the genetic variation of calcareous grassland species.

  12. Genetic diversity in wild populations of Paulownia fortune.

    PubMed

    Li, H Y; Ru, G X; Zhang, J; Lu, Y Y

    2014-11-01

    The genetic diversities of 16 Paulownia fortunei populations involving 143 individuals collected from 6 provinces in China were analyzed using amplified fragment length polymorphism (AFLP). A total of 9 primer pairs with 1169 polymorphic loci were screened out, and each pair possessed 132 bands on average. The percentage of polymorphic bands (98.57%), the effective number of alleles (1.2138-1.2726), Nei's genetic diversity (0.1566-0.1887), and Shannon's information index (0.2692-0.3117) indicated a plentiful genetic diversity and different among Paulownia fortunei populations. The genetic differentiation coefficient between populations was 0.2386, while the gene flow was 1.0954, and the low gene exchange promoted genetic differentiation. Analysis of variance indicated that genetic variation mainly occurred within populations (81.62% of total variation) rather than among populations (18.38%). The 16 populations were divided by unweighted pair-group method with arithmetic means (UPGMA) into 4 groups with obvious regionalism, in which the populations with close geographical locations (latitude) were clustered together.

  13. Genetic diversity of Ovis aries populations near domestication centers and in the new world

    USDA-ARS?s Scientific Manuscript database

    Domestic sheep in Kazakhstan may provide an interesting source of genetic variability due to their proximately to the center of domestication and the Silk Route. Additionally, those breeds have never been compared to new world sheep populations. This report compares genetic diversity among five Kaza...

  14. Genetic diversity in the germplasm of black pepper determined by EST-SSR markers.

    PubMed

    Wu, B D; Fan, R; Hu, L S; Wu, H S; Hao, C Y

    2016-03-18

    This study aimed to assess genetic diversity in the germplasm of black pepper from around the world using SSR markers from EST. In total, 13 markers were selected and successfully amplified the target loci across the black pepper germplasm. All the EST-SSR markers showed high levels of polymorphisms with an average polymorphism information content of 0.93. The genetic similarity coefficients among all accessions ranged from 0.724 to 1.000, with an average of 0.867. These results indicated that black pepper germplasms possess a complex genetic background and high genetic diversity. Based on a cluster analysis, 148 black pepper germplasms were grouped in two major clades: the Neotropics and the Asian tropics. Peperomia pellucida was grouped separately and distantly from all other accessions. These results generally agreed with the genetic and geographic distances. However, the Asian tropics clade did not cluster according to their geographic origins. In addition, compared with the American accessions, the Asian wild accessions and cultivated accessions grouped together, indicating a close genetic relationship. This verified the origin of black pepper. The newly developed EST-SSRs are highly valuable resources for the conservation of black pepper germplasm diversity and for black pepper breeding.

  15. Sexual selection and individual genetic diversity in a songbird.

    PubMed

    Marshall, Rupert C; Buchanan, Katherine L; Catchpole, Clive K

    2003-11-07

    Here, we report for the first time, to our knowledge, a strong correlation between a measure of individual genetic diversity and song complexity, a sexually selected male trait in sedge warblers, Acrocephalus schoenobaenus. We also find that females prefer to mate with males who will maximize this diversity in individual progeny. The genetic diversity of each offspring is further increased by means of nonrandom fertilization, as we also show that the fertilizing sperm contains a haplotype more genetically distant to that of the egg than expected by chance. These findings suggest that species' mating preferences may be subject to fine tuning aimed at increasing offspring viability through increased genetic diversity. This includes external and internal mechanisms of selection, even within the ejaculate of a single male.

  16. Genetic diversity of Cosmos species revealed by RAPD and ISSR markers.

    PubMed

    Rodríguez-Bernal, A; Piña-Escutia, J L; Vázquez-García, L M; Arzate-Fernández, A M

    2013-12-04

    The genus Cosmos is native of America and is constituted by 34 species; 28 of them are endemic of Mexico. The cosmos are used as a nematicide, antimalarial, and antioxidative agent. The aim of this study was to estimate the genetic diversity among 7 cosmos species based on random amplified polymorphic DNA (RAPD) and inter-simple sequences repeats (ISSR) markers. With RAPD markers, the obtained polymorphism was 91.7 % and the genetic diversity was 0.33, whereas these values were 65.6%, and 0.22 from ISSR markers, respectively, indicating the presence of high genetic diversity among the Cosmos species that were analyzed. The unweighted pair group method with arithmetic mean dendrograms that were obtained with both markers were notably similar, revealing 2 clusters and indicating a clear genetic differentiation among the Cosmos species that were assessed. The first cluster comprised the species Cosmos sulphureus, Cosmos pacificus, and Cosmos diversifolius, while the second cluster included the species Cosmos purpureus, Cosmos crithmifolius, Cosmos bipinnatus, and Cosmos parviflorus. Besides this, the Cosmos species were clustered according to their collection sites. The Mantel test corroborates the correlation between the genetic distance and the geographic altitude of each Cosmos species. The results suggest that it is necessary to preserve the Cosmos species in their natural habitat in addition to the germoplasm collection for ex situ conservation.

  17. Environmental isolation explains Iberian genetic diversity in the highly homozygous model grass Brachypodium distachyon.

    PubMed

    Marques, Isabel; Shiposha, Valeriia; López-Alvarez, Diana; Manzaneda, Antonio J; Hernandez, Pilar; Olonova, Marina; Catalán, Pilar

    2017-06-15

    Brachypodium distachyon (Poaceae), an annual Mediterranean Aluminum (Al)-sensitive grass, is currently being used as a model species to provide new information on cereals and biofuel crops. The plant has a short life cycle and one of the smallest genomes in the grasses being well suited to experimental manipulation. Its genome has been fully sequenced and several genomic resources are being developed to elucidate key traits and gene functions. A reliable germplasm collection that reflects the natural diversity of this species is therefore needed for all these genomic resources. However, despite being a model plant, we still know very little about its genetic diversity. As a first step to overcome this gap, we used nuclear Simple Sequence Repeats (nSSR) to study the patterns of genetic diversity and population structure of B. distachyon in 14 populations sampled across the Iberian Peninsula (Spain), one of its best known areas. We found very low levels of genetic diversity, allelic number and heterozygosity in B. distachyon, congruent with a highly selfing system. Our results indicate the existence of at least three genetic clusters providing additional evidence for the existence of a significant genetic structure in the Iberian Peninsula and supporting this geographical area as an important genetic reservoir. Several hotspots of genetic diversity were detected and populations growing on basic soils were significantly more diverse than those growing in acidic soils. A partial Mantel test confirmed a statistically significant Isolation-By-Distance (IBD) among all studied populations, as well as a statistically significant Isolation-By-Environment (IBE) revealing the presence of environmental-driven isolation as one explanation for the genetic patterns found in the Iberian Peninsula. The finding of higher genetic diversity in eastern Iberian populations occurring in basic soils suggests that these populations can be better adapted than those occurring in western areas

  18. Genetic Diversity and Genetic Relationships of Purple Willow (Salix purpurea L.) from Natural Locations

    PubMed Central

    Prinz, Kathleen; Przyborowski, Jerzy A.

    2017-01-01

    In this study, the genetic diversity and structure of 13 natural locations of Salix purpurea were determined with the use of AFLP (amplified length polymorphism), RAPD (randomly amplified polymorphic DNA) and ISSR (inter-simple sequence repeats). The genetic relationships between 91 examined S. purpurea genotypes were evaluated by analyses of molecular variance (AMOVA), principal coordinates analyses (PCoA) and UPGMA (unweighted pair group method with arithmetic mean) dendrograms for both single marker types and a combination of all marker systems. The locations were assigned to distinct regions and the analysis of AMOVA (analysis of molecular variance) revealed a high genetic diversity within locations. The genetic diversity between both regions and locations was relatively low, but typical for many woody plant species. The results noted for the analyzed marker types were generally comparable with few differences in the genetic relationships among S. purpurea locations. A combination of several marker systems could thus be ideally suited to understand genetic diversity patterns of the species. This study makes the first attempt to broaden our knowledge of the genetic parameters of the purple willow (S. purpurea) from natural location for research and several applications, inter alia breeding purposes. PMID:29301207

  19. Microsatellite Analysis of Museum Specimens Reveals Historical Differences in Genetic Diversity between Declining and More Stable Bombus Species.

    PubMed

    Maebe, Kevin; Meeus, Ivan; Ganne, Maarten; De Meulemeester, Thibaut; Biesmeijer, Koos; Smagghe, Guy

    2015-01-01

    Worldwide most pollinators, e.g. bumblebees, are undergoing global declines. Loss of genetic diversity can play an essential role in these observed declines. In this paper, we investigated the level of genetic diversity of seven declining Bombus species and four more stable species with the use of microsatellite loci. Hereto we genotyped a unique collection of museum specimens. Specimens were collected between 1918 and 1926, in 6 provinces of the Netherlands which allowed us to make interspecific comparisons of genetic diversity. For the stable species B. pascuorum, we also selected populations from two additional time periods: 1949-1955 and 1975-1990. The genetic diversity and population structure in B. pascuorum remained constant over the three time periods. However, populations of declining bumblebee species showed a significantly lower genetic diversity than co-occurring stable species before their major declines. This historical difference indicates that the repeatedly observed reduced genetic diversity in recent populations of declining bumblebee species is not caused solely by the decline itself. The historically low genetic diversity in the declined species may be due to the fact that these species were already rare, making them more vulnerable to the major drivers of bumblebee decline.

  20. Genetic Diversity on the Sex Chromosomes

    PubMed Central

    Wilson Sayres, Melissa A

    2018-01-01

    Abstract Levels and patterns of genetic diversity can provide insights into a population’s history. In species with sex chromosomes, differences between genomic regions with unique inheritance patterns can be used to distinguish between different sets of possible demographic and selective events. This review introduces the differences in population history for sex chromosomes and autosomes, provides the expectations for genetic diversity across the genome under different evolutionary scenarios, and gives an introductory description for how deviations in these expectations are calculated and can be interpreted. Predominantly, diversity on the sex chromosomes has been used to explore and address three research areas: 1) Mating patterns and sex-biased variance in reproductive success, 2) signatures of selection, and 3) evidence for modes of speciation and introgression. After introducing the theory, this review catalogs recent studies of genetic diversity on the sex chromosomes across species within the major research areas that sex chromosomes are typically applied to, arguing that there are broad similarities not only between male-heterogametic (XX/XY) and female-heterogametic (ZZ/ZW) sex determination systems but also any mating system with reduced recombination in a sex-determining region. Further, general patterns of reduced diversity in nonrecombining regions are shared across plants and animals. There are unique patterns across populations with vastly different patterns of mating and speciation, but these do not tend to cluster by taxa or sex determination system. PMID:29635328

  1. Accessing genetic diversity for crop improvement.

    PubMed

    Glaszmann, J C; Kilian, B; Upadhyaya, H D; Varshney, R K

    2010-04-01

    Vast germplasm collections are accessible but their use for crop improvement is limited-efficiently accessing genetic diversity is still a challenge. Molecular markers have clarified the structure of genetic diversity in a broad range of crops. Recent developments have made whole-genome surveys and gene-targeted surveys possible, shedding light on population dynamics and on the impact of selection during domestication. Thanks to this new precision, germplasm description has gained analytical power for resolving the genetic basis of trait variation and adaptation in crops such as major cereals, chickpea, grapevine, cacao, or banana. The challenge now is to finely characterize all the facets of plant behavior in carefully chosen materials. We suggest broadening the use of 'core reference sets' so as to facilitate material sharing within the scientific community.

  2. sGD: software for estimating spatially explicit indices of genetic diversity.

    PubMed

    Shirk, A J; Cushman, S A

    2011-09-01

    Anthropogenic landscape changes have greatly reduced the population size, range and migration rates of many terrestrial species. The small local effective population size of remnant populations favours loss of genetic diversity leading to reduced fitness and adaptive potential, and thus ultimately greater extinction risk. Accurately quantifying genetic diversity is therefore crucial to assessing the viability of small populations. Diversity indices are typically calculated from the multilocus genotypes of all individuals sampled within discretely defined habitat patches or larger regional extents. Importantly, discrete population approaches do not capture the clinal nature of populations genetically isolated by distance or landscape resistance. Here, we introduce spatial Genetic Diversity (sGD), a new spatially explicit tool to estimate genetic diversity based on grouping individuals into potentially overlapping genetic neighbourhoods that match the population structure, whether discrete or clinal. We compared the estimates and patterns of genetic diversity using patch or regional sampling and sGD on both simulated and empirical populations. When the population did not meet the assumptions of an island model, we found that patch and regional sampling generally overestimated local heterozygosity, inbreeding and allelic diversity. Moreover, sGD revealed fine-scale spatial heterogeneity in genetic diversity that was not evident with patch or regional sampling. These advantages should provide a more robust means to evaluate the potential for genetic factors to influence the viability of clinal populations and guide appropriate conservation plans. © 2011 Blackwell Publishing Ltd.

  3. Genetic Structure and Potential Environmental Determinants of Local Genetic Diversity in Japanese Honeybees (Apis cerana japonica)

    PubMed Central

    Nagamitsu, Teruyoshi; Yasuda, Mika; Saito-Morooka, Fuki; Inoue, Maki N.; Nishiyama, Mio; Goka, Koichi; Sugiura, Shinji; Maeto, Kaoru; Okabe, Kimiko; Taki, Hisatomo

    2016-01-01

    Declines in honeybee populations have been a recent concern. Although causes of the declines remain unclear, environmental factors may be responsible. We focused on the potential environmental determinants of local populations of wild honeybees, Apis cerana japonica, in Japan. This subspecies has little genetic variation in terms of its mitochondrial DNA sequences, and genetic variations at nuclear loci are as yet unknown. We estimated the genetic structure and environmental determinants of local genetic diversity in nuclear microsatellite genotypes of fathers and mothers, inferred from workers collected at 139 sites. The genotypes of fathers and mothers showed weak isolation by distance and negligible genetic structure. The local genetic diversity was high in central Japan, decreasing toward the peripheries, and depended on the climate and land use characteristics of the sites. The local genetic diversity decreased as the annual precipitation increased, and increased as the proportion of urban and paddy field areas increased. Positive effects of natural forest area, which have also been observed in terms of forager abundance in farms, were not detected with respect to the local genetic diversity. The findings suggest that A. cerana japonica forms a single population connected by gene flow in its main distributional range, and that climate and landscape properties potentially affect its local genetic diversity. PMID:27898704

  4. Demographic Events and Evolutionary Forces Shaping European Genetic Diversity

    PubMed Central

    Veeramah, Krishna R.; Novembre, John

    2014-01-01

    Europeans have been the focus of some of the largest studies of genetic diversity in any species to date. Recent genome-wide data have reinforced the hypothesis that present-day European genetic diversity is strongly correlated with geography. The remaining challenge now is to understand more precisely how patterns of diversity in Europe reflect ancient demographic events such as postglacial expansions or the spread of farming. It is likely that recent advances in paleogenetics will give us some of these answers. There has also been progress in identifying specific segments of European genomes that reflect adaptations to selective pressures from the physical environment, disease, and dietary shifts. A growing understanding of how modern European genetic diversity has been shaped by demographic and evolutionary forces is not only of basic historical and anthropological interest but also aids genetic studies of disease. PMID:25059709

  5. Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers

    PubMed Central

    Su, Guosheng; Christensen, Ole F.; Ostersen, Tage; Henryon, Mark; Lund, Mogens S.

    2012-01-01

    Non-additive genetic variation is usually ignored when genome-wide markers are used to study the genetic architecture and genomic prediction of complex traits in human, wild life, model organisms or farm animals. However, non-additive genetic effects may have an important contribution to total genetic variation of complex traits. This study presented a genomic BLUP model including additive and non-additive genetic effects, in which additive and non-additive genetic relation matrices were constructed from information of genome-wide dense single nucleotide polymorphism (SNP) markers. In addition, this study for the first time proposed a method to construct dominance relationship matrix using SNP markers and demonstrated it in detail. The proposed model was implemented to investigate the amounts of additive genetic, dominance and epistatic variations, and assessed the accuracy and unbiasedness of genomic predictions for daily gain in pigs. In the analysis of daily gain, four linear models were used: 1) a simple additive genetic model (MA), 2) a model including both additive and additive by additive epistatic genetic effects (MAE), 3) a model including both additive and dominance genetic effects (MAD), and 4) a full model including all three genetic components (MAED). Estimates of narrow-sense heritability were 0.397, 0.373, 0.379 and 0.357 for models MA, MAE, MAD and MAED, respectively. Estimated dominance variance and additive by additive epistatic variance accounted for 5.6% and 9.5% of the total phenotypic variance, respectively. Based on model MAED, the estimate of broad-sense heritability was 0.506. Reliabilities of genomic predicted breeding values for the animals without performance records were 28.5%, 28.8%, 29.2% and 29.5% for models MA, MAE, MAD and MAED, respectively. In addition, models including non-additive genetic effects improved unbiasedness of genomic predictions. PMID:23028912

  6. Broad-Scale Genetic Diversity of Cannabis for Forensic Applications.

    PubMed

    Dufresnes, Christophe; Jan, Catherine; Bienert, Friederike; Goudet, Jérôme; Fumagalli, Luca

    2017-01-01

    Cannabis (hemp and marijuana) is an iconic yet controversial crop. On the one hand, it represents a growing market for pharmaceutical and agricultural sectors. On the other hand, plants synthesizing the psychoactive THC produce the most widespread illicit drug in the world. Yet, the difficulty to reliably distinguish between Cannabis varieties based on morphological or biochemical criteria impedes the development of promising industrial programs and hinders the fight against narcotrafficking. Genetics offers an appropriate alternative to characterize drug vs. non-drug Cannabis. However, forensic applications require rapid and affordable genotyping of informative and reliable molecular markers for which a broad-scale reference database, representing both intra- and inter-variety variation, is available. Here we provide such a resource for Cannabis, by genotyping 13 microsatellite loci (STRs) in 1 324 samples selected specifically for fibre (24 hemp varieties) and drug (15 marijuana varieties) production. We showed that these loci are sufficient to capture most of the genome-wide diversity patterns recently revealed by NGS data. We recovered strong genetic structure between marijuana and hemp and demonstrated that anonymous samples can be confidently assigned to either plant types. Fibres appear genetically homogeneous whereas drugs show low (often clonal) diversity within varieties, but very high genetic differentiation between them, likely resulting from breeding practices. Based on an additional test dataset including samples from 41 local police seizures, we showed that the genetic signature of marijuana cultivars could be used to trace crime scene evidence. To date, our study provides the most comprehensive genetic resource for Cannabis forensics worldwide.

  7. Broad-Scale Genetic Diversity of Cannabis for Forensic Applications

    PubMed Central

    Dufresnes, Christophe; Jan, Catherine; Bienert, Friederike; Goudet, Jérôme; Fumagalli, Luca

    2017-01-01

    Cannabis (hemp and marijuana) is an iconic yet controversial crop. On the one hand, it represents a growing market for pharmaceutical and agricultural sectors. On the other hand, plants synthesizing the psychoactive THC produce the most widespread illicit drug in the world. Yet, the difficulty to reliably distinguish between Cannabis varieties based on morphological or biochemical criteria impedes the development of promising industrial programs and hinders the fight against narcotrafficking. Genetics offers an appropriate alternative to characterize drug vs. non-drug Cannabis. However, forensic applications require rapid and affordable genotyping of informative and reliable molecular markers for which a broad-scale reference database, representing both intra- and inter-variety variation, is available. Here we provide such a resource for Cannabis, by genotyping 13 microsatellite loci (STRs) in 1 324 samples selected specifically for fibre (24 hemp varieties) and drug (15 marijuana varieties) production. We showed that these loci are sufficient to capture most of the genome-wide diversity patterns recently revealed by NGS data. We recovered strong genetic structure between marijuana and hemp and demonstrated that anonymous samples can be confidently assigned to either plant types. Fibres appear genetically homogeneous whereas drugs show low (often clonal) diversity within varieties, but very high genetic differentiation between them, likely resulting from breeding practices. Based on an additional test dataset including samples from 41 local police seizures, we showed that the genetic signature of marijuana cultivars could be used to trace crime scene evidence. To date, our study provides the most comprehensive genetic resource for Cannabis forensics worldwide. PMID:28107530

  8. Microsatellite Analysis of Museum Specimens Reveals Historical Differences in Genetic Diversity between Declining and More Stable Bombus Species

    PubMed Central

    Maebe, Kevin; Meeus, Ivan; Ganne, Maarten; De Meulemeester, Thibaut; Biesmeijer, Koos; Smagghe, Guy

    2015-01-01

    Worldwide most pollinators, e.g. bumblebees, are undergoing global declines. Loss of genetic diversity can play an essential role in these observed declines. In this paper, we investigated the level of genetic diversity of seven declining Bombus species and four more stable species with the use of microsatellite loci. Hereto we genotyped a unique collection of museum specimens. Specimens were collected between 1918 and 1926, in 6 provinces of the Netherlands which allowed us to make interspecific comparisons of genetic diversity. For the stable species B. pascuorum, we also selected populations from two additional time periods: 1949–1955 and 1975–1990. The genetic diversity and population structure in B. pascuorum remained constant over the three time periods. However, populations of declining bumblebee species showed a significantly lower genetic diversity than co-occurring stable species before their major declines. This historical difference indicates that the repeatedly observed reduced genetic diversity in recent populations of declining bumblebee species is not caused solely by the decline itself. The historically low genetic diversity in the declined species may be due to the fact that these species were already rare, making them more vulnerable to the major drivers of bumblebee decline. PMID:26061732

  9. Genetic diversity, population structure, and traditional culture of Camellia reticulata.

    PubMed

    Xin, Tong; Huang, Weijuan; De Riek, Jan; Zhang, Shuang; Ahmed, Selena; Van Huylenbroeck, Johan; Long, Chunlin

    2017-11-01

    Camellia reticulata is an arbor tree that has been cultivated in southwestern China by various sociolinguistic groups for esthetic purposes as well as to derive an edible seed oil. This study examined the influence of management, socio-economic factors, and religion on the genetic diversity patterns of Camellia reticulata utilizing a combination of ethnobotanical and molecular genetic approaches. Semi-structured interviews and key informant interviews were carried out with local communities in China's Yunnan Province. We collected plant material ( n  = 190 individuals) from five populations at study sites using single-dose AFLP markers in order to access the genetic diversity within and between populations. A total of 387 DNA fragments were produced by four AFLP primer sets. All DNA fragments were found to be polymorphic (100%). A relatively high level of genetic diversity was revealed in C. reticulata samples at both the species ( H sp  = 0.3397, I sp  = 0.5236) and population (percentage of polymorphic loci = 85.63%, H pop  = 0.2937, I pop  = 0.4421) levels. Findings further revealed a relatively high degree of genetic diversity within C. reticulata populations (Analysis of Molecular Variance = 96.31%). The higher genetic diversity within populations than among populations of C. reticulata from different geographies is likely due to the cultural and social influences associated with its long cultivation history for esthetic and culinary purposes by diverse sociolinguistic groups. This study highlights the influence of human management, socio-economic factors, and other cultural variables on the genetic and morphological diversity of C. reticulata at a regional level. Findings emphasize the important role of traditional culture on the conservation and utilization of plant genetic diversity.

  10. Genetic variation of loci potentially under selection confounds species-genetic diversity correlations in a fragmented habitat.

    PubMed

    Bertin, Angeline; Gouin, Nicolas; Baumel, Alex; Gianoli, Ernesto; Serratosa, Juan; Osorio, Rodomiro; Manel, Stephanie

    2017-01-01

    Positive species-genetic diversity correlations (SGDCs) are often thought to result from the parallel influence of neutral processes on genetic and species diversity. Yet, confounding effects of non-neutral mechanisms have not been explored. Here, we investigate the impact of non-neutral genetic diversity on SGDCs in high Andean wetlands. We compare correlations between plant species diversity and genetic diversity (GD) calculated with and without loci potentially under selection (outlier loci). The study system includes 2188 specimens from five species (three common aquatic macroinvertebrate and two dominant plant species) that were genotyped for 396 amplified fragment length polymorphism loci. We also appraise the importance of neutral processes on SGDCs by investigating the influence of habitat fragmentation features. Significant positive SGDCs were detected for all five species (mean SGDC = 0.52 ± 0.05). While only a few outlier loci were detected in each species, they resulted in significant decreases in GD and in SGDCs. This supports the hypothesis that neutral processes drive species-genetic diversity relationships in high Andean wetlands. Unexpectedly, the effects on genetic diversity GD of the habitat fragmentation characteristics in this study increased with the presence of outlier loci in two species. Overall, our results reveal pitfalls in using habitat features to infer processes driving SGDCs and show that a few loci potentially under selection are enough to cause a significant downward bias in SGDC. Investigating confounding effects of outlier loci thus represents a useful approach to evidence the contribution of neutral processes on species-genetic diversity relationships. © 2016 John Wiley & Sons Ltd.

  11. Sex ratio rather than population size affects genetic diversity in Antennaria dioica.

    PubMed

    Rosche, C; Schrieber, K; Lachmuth, S; Durka, W; Hirsch, H; Wagner, V; Schleuning, M; Hensen, I

    2018-03-09

    Habitat fragmentation and small population size can lead to genetic erosion in threatened plant populations. Classical theory implies that dioecy can counteract genetic erosion as it decreases the magnitude of inbreeding and genetic drift due to obligate outcrossing. However, in small populations, sex ratios may be strongly male- or female-biased, leading to substantial reductions in effective population size. This may theoretically result in a unimodal relationship between sex ratios and genetic diversity; yet, empirical studies on this relationship are scarce. Using AFLP markers, we studied genetic diversity, structure and differentiation in 14 highly fragmented Antennaria dioica populations from the Central European lowlands. Our analyses focused on the relationship between sex ratio, population size and genetic diversity. Although most populations were small (mean: 35.5 patches), genetic diversity was moderately high. We found evidence for isolation-by-distance, but overall differentiation of the populations was rather weak. Females dominated 11 populations, which overall resulted in a slightly female-biased sex ratio (61.5%). There was no significant relationship between population size and genetic diversity. The proportion of females was not unimodally but positively linearly related to genetic diversity. The high genetic diversity and low genetic differentiation suggest that A. dioica has been widely distributed in the Central European lowlands in the past, while fragmentation occurred only in the last decades. Sex ratio has more immediate consequences on genetic diversity than population size. An increasing proportion of females can increase genetic diversity in dioecious plants, probably due to a higher amount of sexual reproduction. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  12. A call for tiger management using "reserves" of genetic diversity.

    PubMed

    Bay, Rachael A; Ramakrishnan, Uma; Hadly, Elizabeth A

    2014-01-01

    Tigers (Panthera tigris), like many large carnivores, are threatened by anthropogenic impacts, primarily habitat loss and poaching. Current conservation plans for tigers focus on population expansion, with the goal of doubling census size in the next 10 years. Previous studies have shown that because the demographic decline was recent, tiger populations still retain a large amount of genetic diversity. Although maintaining this diversity is extremely important to avoid deleterious effects of inbreeding, management plans have yet to consider predictive genetic models. We used coalescent simulations based on previously sequenced mitochondrial fragments (n = 125) from 5 of 6 extant subspecies to predict the population growth needed to maintain current genetic diversity over the next 150 years. We found that the level of gene flow between populations has a large effect on the local population growth necessary to maintain genetic diversity, without which tigers may face decreases in fitness. In the absence of gene flow, we demonstrate that maintaining genetic diversity is impossible based on known demographic parameters for the species. Thus, managing for the genetic diversity of the species should be prioritized over the riskier preservation of distinct subspecies. These predictive simulations provide unique management insights, hitherto not possible using existing analytical methods.

  13. Genetic diversity and genetic structure of consecutive breeding generations of golden mandarin fish (Siniperca scherzeri Steindachner) using microsatellite markers.

    PubMed

    Luo, X N; Yang, M; Liang, X F; Jin, K; Lv, L Y; Tian, C X; Yuan, Y C; Sun, J

    2015-09-25

    In this study, 12 polymorphic microsatellites were inves-tigated to determine the genetic diversity and structure of 5 consecu-tive selected populations of golden mandarin fish (Siniperca scherzeri Steindachner). The total numbers of alleles, average heterozyosity, and average polymorphism information content showed that the genetic diversity of these breeding populations was decreasing. Additionally, pairwise fixation index FST values among populations and Da values in-creased from F1 generation to subsequent generations (FST values from 0.0221-0.1408; Da values from 0.0608-0.1951). Analysis of molecular variance indicated that most genetic variations arise from individuals within populations (about 92.05%), while variation among populations accounted for only 7.95%. The allele frequency of the loci SC75-220 and SC101-222 bp changed regularly in the 5 breeding generations. Their frequencies were gradually increased and showed an enrichment trend, indicating that there may be genetic correlations between these 2 loci and breeding traits. Our study indicated that microsatellite markers are effective for assessing the genetic variability in the golden mandarin fish breeding program.

  14. Extensive Genetic Diversity, Unique Population Structure and Evidence of Genetic Exchange in the Sexually Transmitted Parasite Trichomonas vaginalis

    PubMed Central

    Conrad, Melissa D.; Gorman, Andrew W.; Schillinger, Julia A.; Fiori, Pier Luigi; Arroyo, Rossana; Malla, Nancy; Dubey, Mohan Lal; Gonzalez, Jorge; Blank, Susan; Secor, William E.; Carlton, Jane M.

    2012-01-01

    Background Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes. Methodology/Principal Findings Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2) differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages. Conclusions/Significance Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease. PMID:22479659

  15. Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite Trichomonas vaginalis.

    PubMed

    Conrad, Melissa D; Gorman, Andrew W; Schillinger, Julia A; Fiori, Pier Luigi; Arroyo, Rossana; Malla, Nancy; Dubey, Mohan Lal; Gonzalez, Jorge; Blank, Susan; Secor, William E; Carlton, Jane M

    2012-01-01

    Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes. Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2) differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages. Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease.

  16. Cryptosporidium within-host genetic diversity: systematic bibliographical search and narrative overview.

    PubMed

    Grinberg, Alex; Widmer, Giovanni

    2016-07-01

    Knowledge of the within-host genetic diversity of a pathogen often has broad implications for disease management. Cryptosporidium protozoan parasites are among the most common causative agents of infectious diarrhoea. Current limitations of in vitro culture impose the use of uncultured isolates obtained directly from the hosts as operational units of Cryptosporidium genotyping. The validity of this practice is centred on the assumption of genetic homogeneity of the parasite within the host, and genetic studies often take little account of the within-host genetic diversity of Cryptosporidium. Yet, theory and experimental evidence contemplate genetic diversity of Cryptosporidium at the within-host scale, but this diversity is not easily identified by genotyping methods ill-suited for the resolution of DNA mixtures. We performed a systematic bibliographical search of the occurrence of within-host genetic diversity of Cryptosporidium parasites in epidemiological samples, between 2005 and 2015. Our results indicate that genetic diversity at the within-host scale, in the form of mixed species or intra-species diversity, has been identified in a large number (n=55) of epidemiological surveys of cryptosporidiosis in variable proportions, but has often been treated as a secondary finding and not analysed. As in malaria, there are indications that the scale of this diversity varies between geographical regions, perhaps depending on the prevailing transmission pathways. These results provide a significant knowledge base from which to draw alternative population genetic structure models, some of which are discussed in this paper. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  17. Global issues of genetic diversity.

    PubMed

    Vida, G

    1994-01-01

    Genetic diversity within species is highly significant during their adaptation to environmental changes and, consequently, for their long-term survival. The genetic variability of species is also the basis for the evolution of higher levels of biodiversity, the evolution of species, and it might be an indispensible prerequisite for the functioning of our biosphere. Studies which promote understanding of the maintenance and the functional aspects of biodiversity at any level are therefore essential for the future welfare of mankind.

  18. Residence rule flexibility and descent groups dynamics shape uniparental genetic diversities in South East Asia.

    PubMed

    Ly, Goki; Alard, Bérénice; Laurent, Romain; Lafosse, Sophie; Toupance, Bruno; Monidarin, Chou; Diffloth, Gérard; Bourdier, Frédéric; Evrard, Olivier; Pavard, Samuel; Chaix, Raphaëlle

    2018-03-01

    Social organization plays a major role in shaping human population genetic diversity. In particular, matrilocal populations tend to exhibit less mitochondrial diversity than patrilocal populations, and the other way around for Y chromosome diversity. However, several studies have not replicated such findings. The objective of this study is to understand the reasons for such inconsistencies and further evaluate the influence of social organization on genetic diversity. We explored uniparental diversity patterns using mitochondrial HV1 sequences and 17 Y-linked short tandem repeats (STRs) in 12 populations (n = 619) from mainland South-East Asia exhibiting a wide range of social organizations, along with quantitative ethno-demographic information sampled at the individual level. MtDNA diversity was lower in matrilocal than in multilocal and patrilocal populations while Y chromosome diversity was similar among these social organizations. The reasons for such asymmetry at the genetic level were understood by quantifying sex-specific migration rates from our ethno-demographic data: while female migration rates varied between social organizations, male migration rates did not. This unexpected lack of difference in male migrations resulted from a higher flexibility in residence rule in patrilocal than in matrilocal populations. In addition, our data suggested an impact of clan fission process on uniparental genetic patterns. The observed lack of signature of patrilocality on Y chromosome patterns might be attributed to the higher residence flexibility in the studied patrilocal populations, thus providing a potential explanation for the apparent discrepancies between social and genetic structures. Altogether, this study highlights the need to quantify the actual residence and descent patterns to fit social to genetic structures. © 2018 Wiley Periodicals, Inc.

  19. Genetic selection and conservation of genetic diversity*.

    PubMed

    Blackburn, H D

    2012-08-01

    For 100s of years, livestock producers have employed various types of selection to alter livestock populations. Current selection strategies are little different, except our technologies for selection have become more powerful. Genetic resources at the breed level have been in and out of favour over time. These resources are the raw materials used to manipulate populations, and therefore, they are critical to the past and future success of the livestock sector. With increasing ability to rapidly change genetic composition of livestock populations, the conservation of these genetic resources becomes more critical. Globally, awareness of the need to steward genetic resources has increased. A growing number of countries have embarked on large scale conservation efforts by using in situ, ex situ (gene banking), or both approaches. Gene banking efforts have substantially increased and data suggest that gene banks are successfully capturing genetic diversity for research or industry use. It is also noteworthy that both industry and the research community are utilizing gene bank holdings. As pressures grow to meet consumer demands and potential changes in production systems, the linkage between selection goals and genetic conservation will increase as a mechanism to facilitate continued livestock sector development. © 2012 Blackwell Verlag GmbH.

  20. Genetic diversity for wheat improvement as a conduit to food security

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity is paramount for any crops genetic improvement and this resides in three gene pools of the Triticeae for wheat. Access to the diversity and its exploitation is based upon genetic distance of the species relatives from the wheat genomes. Apart from the conventional genetic base fo...

  1. Genetic diversity and genetic structure of the striped field mouse Apodemus agrarius coreae (Muridae, Rodentia) in Korea.

    PubMed

    Kim, Hye Ri; Park, Yung Chul

    2015-11-10

    The aim of this study was to investigate the genetic diversity and genetic structure of the striped field mouse Apodemus agrarius coreae in Korea. The Korean A. a. coreae is characterized by high levels of haplotype diversity (Hd=0.967) and low levels of nucleotide diversity (π=0.00683). Haplogroup 1 is well separated from the haplotypes of the neighboring regions of the Korean Peninsula, while the other haplogroups are closely related to those from the Russian Far East. Thus, further investigations are required to confirm the validity of the subspecies status of A. a. coreae by implementing additional morphological characters as well as genetic data from the populations present in the Korean Peninsula and its neighboring countries. Haplogroup 1 includes most Korean haplotypes and forms a star-like haplotype network structure, which reveals relatively low levels of sequence divergence and high frequency of unique mutations (only few mutations are shared in most of the haplotype nodes). The results indicate that the haplotypes of Haplogroup 1 might have experienced population expansion since their migration into Korea, which was further corroborated with negative results of neutrality tests for Korean population of A. a. coreae. Copyright © 2015. Published by Elsevier B.V.

  2. Does population size affect genetic diversity? A test with sympatric lizard species.

    PubMed

    Hague, M T J; Routman, E J

    2016-01-01

    Genetic diversity is a fundamental requirement for evolution and adaptation. Nonetheless, the forces that maintain patterns of genetic variation in wild populations are not completely understood. Neutral theory posits that genetic diversity will increase with a larger effective population size and the decreasing effects of drift. However, the lack of compelling evidence for a relationship between genetic diversity and population size in comparative studies has generated some skepticism over the degree that neutral sequence evolution drives overall patterns of diversity. The goal of this study was to measure genetic diversity among sympatric populations of related lizard species that differ in population size and other ecological factors. By sampling related species from a single geographic location, we aimed to reduce nuisance variance in genetic diversity owing to species differences, for example, in mutation rates or historical biogeography. We compared populations of zebra-tailed lizards and western banded geckos, which are abundant and short-lived, to chuckwallas and desert iguanas, which are less common and long-lived. We assessed population genetic diversity at three protein-coding loci for each species. Our results were consistent with the predictions of neutral theory, as the abundant species almost always had higher levels of haplotype diversity than the less common species. Higher population genetic diversity in the abundant species is likely due to a combination of demographic factors, including larger local population sizes (and presumably effective population sizes), faster generation times and high rates of gene flow with other populations.

  3. Effects of complex life cycles on genetic diversity: cyclical parthenogenesis

    PubMed Central

    Rouger, R; Reichel, K; Malrieu, F; Masson, J P; Stoeckel, S

    2016-01-01

    Neutral patterns of population genetic diversity in species with complex life cycles are difficult to anticipate. Cyclical parthenogenesis (CP), in which organisms undergo several rounds of clonal reproduction followed by a sexual event, is one such life cycle. Many species, including crop pests (aphids), human parasites (trematodes) or models used in evolutionary science (Daphnia), are cyclical parthenogens. It is therefore crucial to understand the impact of such a life cycle on neutral genetic diversity. In this paper, we describe distributions of genetic diversity under conditions of CP with various clonal phase lengths. Using a Markov chain model of CP for a single locus and individual-based simulations for two loci, our analysis first demonstrates that strong departures from full sexuality are observed after only a few generations of clonality. The convergence towards predictions made under conditions of full clonality during the clonal phase depends on the balance between mutations and genetic drift. Second, the sexual event of CP usually resets the genetic diversity at a single locus towards predictions made under full sexuality. However, this single recombination event is insufficient to reshuffle gametic phases towards full-sexuality predictions. Finally, for similar levels of clonality, CP and acyclic partial clonality (wherein a fixed proportion of individuals are clonally produced within each generation) differentially affect the distribution of genetic diversity. Overall, this work provides solid predictions of neutral genetic diversity that may serve as a null model in detecting the action of common evolutionary or demographic processes in cyclical parthenogens (for example, selection or bottlenecks). PMID:27436524

  4. Effects of complex life cycles on genetic diversity: cyclical parthenogenesis.

    PubMed

    Rouger, R; Reichel, K; Malrieu, F; Masson, J P; Stoeckel, S

    2016-11-01

    Neutral patterns of population genetic diversity in species with complex life cycles are difficult to anticipate. Cyclical parthenogenesis (CP), in which organisms undergo several rounds of clonal reproduction followed by a sexual event, is one such life cycle. Many species, including crop pests (aphids), human parasites (trematodes) or models used in evolutionary science (Daphnia), are cyclical parthenogens. It is therefore crucial to understand the impact of such a life cycle on neutral genetic diversity. In this paper, we describe distributions of genetic diversity under conditions of CP with various clonal phase lengths. Using a Markov chain model of CP for a single locus and individual-based simulations for two loci, our analysis first demonstrates that strong departures from full sexuality are observed after only a few generations of clonality. The convergence towards predictions made under conditions of full clonality during the clonal phase depends on the balance between mutations and genetic drift. Second, the sexual event of CP usually resets the genetic diversity at a single locus towards predictions made under full sexuality. However, this single recombination event is insufficient to reshuffle gametic phases towards full-sexuality predictions. Finally, for similar levels of clonality, CP and acyclic partial clonality (wherein a fixed proportion of individuals are clonally produced within each generation) differentially affect the distribution of genetic diversity. Overall, this work provides solid predictions of neutral genetic diversity that may serve as a null model in detecting the action of common evolutionary or demographic processes in cyclical parthenogens (for example, selection or bottlenecks).

  5. Habitat predictors of genetic diversity for two sympatric wetland-breeding amphibian species.

    PubMed

    McKee, Anna M; Maerz, John C; Smith, Lora L; Glenn, Travis C

    2017-08-01

    Population genetic diversity is widely accepted as important to the conservation and management of wildlife. However, habitat features may differentially affect evolutionary processes that facilitate population genetic diversity among sympatric species. We measured genetic diversity for two pond-breeding amphibian species (Dwarf salamanders, Eurycea quadridigitata ; and Southern Leopard frogs, Lithobates sphenocephalus ) to understand how habitat characteristics and spatial scale affect genetic diversity across a landscape. Samples were collected from wetlands on a longleaf pine reserve in Georgia. We genotyped microsatellite loci for both species to assess population structures and determine which habitat features were most closely associated with observed heterozygosity and rarefied allelic richness. Both species exhibited significant population genetic structure; however, structure in Southern Leopard frogs was driven primarily by one outlier site. Dwarf salamander allelic richness was greater at sites with less surrounding road area within 0.5 km and more wetland area within 1.0 and 2.5 km, and heterozygosity was greater at sites with more wetland area within 0.5 km. In contrast, neither measure of Southern Leopard frog genetic diversity was associated with any habitat features at any scale we evaluated. Genetic diversity in the Dwarf salamander was strongly associated with land cover variables up to 2.5 km away from breeding wetlands, and/or results suggest that minimizing roads in wetland buffers may be beneficial to the maintenance of population genetic diversity. This study suggests that patterns of genetic differentiation and genetic diversity have associations with different habitat features across different spatial scales for two syntopic pond-breeding amphibian species.

  6. Genetic Diversity and Spatial Genetic Structure of the Grassland Perennial Saxifraga granulata along Two River Systems

    PubMed Central

    van der Meer, Sascha; Jacquemyn, Hans

    2015-01-01

    Due to changes in land use, the natural habitats of an increasing number of plant species have become more and more fragmented. In landscapes that consist of patches of suitable habitat, the frequency and extent of long-distance seed dispersal can be expected to be an important factor determining local genetic diversity and regional population structure of the remaining populations. In plant species that are restricted to riparian habitats, rivers can be expected to have a strong impact on the dynamics and spatial genetic structure of populations as they may enable long-distance seed dispersal and thus maintain gene flow between fragmented populations. In this study, we used polymorphic microsatellite markers to investigate the genetic diversity and the spatial genetic structure of 28 populations of Saxifraga granulata along two rivers in central Belgium. We hypothesized that rivers might be essential for gene flow among increasingly isolated populations of this species. Genetic diversity was high (HS = 0.68), which to a certain extent can be explained by the octoploid nature of S. granulata in the study area. Populations along the Dijle and Demer rivers were also highly differentiated (G” ST = 0.269 and 0.164 and D EST = 0.190 and 0.124, respectively) and showed significant isolation-by-distance, indicating moderate levels of gene flow primarily between populations that are geographically close to each other. Along the river Demer population genetic diversity was higher upstream than downstream, suggesting that seed dispersal via the water was not the primary mode of dispersal. Overall, these results indicate that despite increasing fragmentation populations along both rivers were highly genetically diverse. The high ploidy level and longevity of S. granulata have most likely buffered negative effects of fragmentation on genetic diversity and the spatial genetic structure of populations in riparian grasslands. PMID:26079603

  7. Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. in south Italy.

    PubMed

    Maggioni, Lorenzo; von Bothmer, Roland; Poulsen, Gert; Branca, Ferdinando; Bagger Jørgensen, Rikke

    2014-12-01

    Local varieties of leafy kales (Brassica oleracea L.) are grown in home gardens in Calabria and Sicily for self-consumption, in the same area where the wild relative Brassica rupestris Raf. also grows. With the use of AFLP markers, comparisons were made of the genetic diversity and population structure of ten wild and 22 cultivated populations, as well as of a hybrid population and of four commercial cultivars of different B. oleracea crops. The level of genetic diversity was higher in leafy kales than in wild populations and this diversity was mainly distributed within populations. Wild populations remained distinct from cultivated material. Additionally, most wild populations were distinctively isolated from each other. On the other hand, it was not possible to molecularly distinguish even geographically distant leafy kale populations from each other or from different B. oleracea crops. It was possible to detect inter-crossing between leafy kales and B. rupestris. Findings from this study illustrate the existing level of genetic diversity in the B. oleracea gene pool. Individual populations (either wild or leafy kales) with higher levels of genetic diversity have been identified and suggestions are given for an informed conservation strategy. Domestication hypotheses are also discussed. © 2015 The Authors.

  8. Genetic diversity and structure of Megabalanus azoricus in the Azores: Implications for aquaculture management

    NASA Astrophysics Data System (ADS)

    De Girolamo, Mirko; Torboli, Valentina; Pallavicini, Alberto; Isidro, Eduardo

    2017-11-01

    Megabalanus azoricus giant barnacles are the most traditional seafood of the Azores archipelago (NE Atlantic). This valuable commercial species has been highly exploited in the past and it is considered one of the key species for the development of aquaculture in the region. Despite the importance for conservation and aquaculture there is still a lack of basic information about M. azoricus genetic diversity and population structure. Here we used seven microsatellites markers to analyse 300 samples collected at six out of nine islands of the Azores archipelago, including also different locations from a single island, to provide information on the scale of genetic diversity and population structure of this species. Parameters like heterozygosity, allelic richness and effective number of alleles indicated a high genetic diversity and variability among islands. Pairwise comparisons and PCoA analysis on FST and Jost's DEST showed significant and evident differentiation among sampling locations. Additionally, AMOVA allocates a small (6.02%) but statistically significant portion of the variance to the among Island level revealing also a weak resolution (1.87%) at finer scale. Additionally Monte Carlo resampling methods indicated the most likely sources of the recruits were the local or adjacent populations. Genetic risks associated with the giant barnacle potential production scheme should be taken into account in a future management plan delimiting, as precautionary measure, this culture at a single island or at groups of islands here identified. Moreover a monitoring strategy should be implemented with the aim to evaluate possible changes in genetic parameters of native populations.

  9. Spatio-temporal dynamics of genetic diversity in Sorghum bicolor in Niger.

    PubMed

    Deu, Monique; Sagnard, F; Chantereau, J; Calatayud, C; Vigouroux, Y; Pham, J L; Mariac, C; Kapran, I; Mamadou, A; Gérard, B; Ndjeunga, J; Bezançon, G

    2010-05-01

    The dynamics of crop genetic diversity need to be assessed to draw up monitoring and conservation priorities. However, few surveys have been conducted in centres of diversity. Sub-Saharan Africa is the centre of origin of sorghum. Most Sahel countries have been faced with major human, environmental and social changes in recent decades, which are suspected to cause genetic erosion. Sorghum is the second staple cereal in Niger, a centre of diversity for this crop. Niger was submitted to recurrent drought period and to major social changes during these last decades. We report here on a spatio-temporal analysis of sorghum genetic diversity, conducted in 71 villages covering the rainfall gradient and range of agro-ecological conditions in Niger's agricultural areas. We used 28 microsatellite markers and applied spatial and genetic clustering methods to investigate change in genetic diversity over a 26-year period (1976-2003). Global genetic differentiation between the two collections was very low (F (st) = 0.0025). Most of the spatial clusters presented no major differentiation, as measured by F (st), and showed stability or an increase in allelic richness, except for two of them located in eastern Niger. The genetic clusters identified by Bayesian analysis did not show a major change between the two collections in the distribution of accessions between them or in their spatial location. These results suggest that farmers' management has globally preserved sorghum genetic diversity in Niger.

  10. Genetic diversity analysis of common beans based on molecular markers

    PubMed Central

    Gill-Langarica, Homar R.; Muruaga-Martínez, José S.; Vargas-Vázquez, M.L. Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-01-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation. PMID:22215964

  11. Genetic diversity analysis of common beans based on molecular markers.

    PubMed

    Gill-Langarica, Homar R; Muruaga-Martínez, José S; Vargas-Vázquez, M L Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-10-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  12. Turtle Carapace Anomalies: The Roles of Genetic Diversity and Environment

    PubMed Central

    Velo-Antón, Guillermo; Becker, C. Guilherme; Cordero-Rivera, Adolfo

    2011-01-01

    Background Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales. Methodology/Principal Findings In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3% to 69% in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium. Conclusions/Significance Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants and heritability of anomalies would be useful to better understand the complex origin of anomalies in natural populations. PMID:21533278

  13. Analysis of genetic diversity of rapeseed genetic resources in Japan and core collection construction

    PubMed Central

    Chen, Ruikun; Hara, Takashi; Ohsawa, Ryo; Yoshioka, Yosuke

    2017-01-01

    Diversity analysis of rapeseed accessions preserved in the Japanese Genebank can provide valuable information for breeding programs. In this study, 582 accessions were genotyped with 30 SSR markers covering all 19 rapeseed chromosomes. These markers amplified 311 alleles (10.37 alleles per marker; range, 3–39). The genetic diversity of Japanese accessions was lower than that of overseas accessions. Analysis of molecular variance indicated significant genetic differentiation between Japanese and overseas accessions. Small but significant differences were found among geographical groups in Japan, and genetic differentiation tended to increase with geographical distance. STRUCTURE analysis indicated the presence of two main genetic clusters in the NARO rapeseed collection. With the membership probabilities threshold, 227 accessions mostly originating from overseas were assigned to one subgroup, and 276 accessions mostly originating from Japan were assigned to the other subgroup. The remaining 79 accessions are assigned to admixed group. The core collection constructed comprises 96 accessions of diverse origin. It represents the whole collection well and thus it may be useful for rapeseed genetic research and breeding programs. The core collection improves the efficiency of management, evaluation, and utilization of genetic resources. PMID:28744177

  14. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing.

    PubMed

    Shi, Ainong; Qin, Jun; Mou, Beiquan; Correll, James; Weng, Yuejin; Brenner, David; Feng, Chunda; Motes, Dennis; Yang, Wei; Dong, Lingdi; Bhattarai, Gehendra; Ravelombola, Waltram

    2017-01-01

    Spinach (Spinacia oleracea L., 2n = 2x = 12) is an economically important vegetable crop worldwide and one of the healthiest vegetables due to its high concentrations of nutrients and minerals. The objective of this research was to conduct genetic diversity and population structure analysis of a collection of world-wide spinach genotypes using single nucleotide polymorphisms (SNPs) markers. Genotyping by sequencing (GBS) was used to discover SNPs in spinach genotypes. Three sets of spinach genotypes were used: 1) 268 USDA GRIN spinach germplasm accessions originally collected from 30 countries; 2) 45 commercial spinach F1 hybrids from three countries; and 3) 30 US Arkansas spinach cultivars/breeding lines. The results from this study indicated that there was genetic diversity among the 343 spinach genotypes tested. Furthermore, the genetic background in improved commercial F1 hybrids and in Arkansas cultivars/lines had a different structured populations from the USDA germplasm. In addition, the genetic diversity and population structures were associated with geographic origin and germplasm from the US Arkansas breeding program had a unique genetic background. These data could provide genetic diversity information and the molecular markers for selecting parents in spinach breeding programs.

  15. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing

    PubMed Central

    Qin, Jun; Mou, Beiquan; Correll, James; Weng, Yuejin; Brenner, David; Feng, Chunda; Motes, Dennis; Yang, Wei; Dong, Lingdi; Bhattarai, Gehendra; Ravelombola, Waltram

    2017-01-01

    Spinach (Spinacia oleracea L., 2n = 2x = 12) is an economically important vegetable crop worldwide and one of the healthiest vegetables due to its high concentrations of nutrients and minerals. The objective of this research was to conduct genetic diversity and population structure analysis of a collection of world-wide spinach genotypes using single nucleotide polymorphisms (SNPs) markers. Genotyping by sequencing (GBS) was used to discover SNPs in spinach genotypes. Three sets of spinach genotypes were used: 1) 268 USDA GRIN spinach germplasm accessions originally collected from 30 countries; 2) 45 commercial spinach F1 hybrids from three countries; and 3) 30 US Arkansas spinach cultivars/breeding lines. The results from this study indicated that there was genetic diversity among the 343 spinach genotypes tested. Furthermore, the genetic background in improved commercial F1 hybrids and in Arkansas cultivars/lines had a different structured populations from the USDA germplasm. In addition, the genetic diversity and population structures were associated with geographic origin and germplasm from the US Arkansas breeding program had a unique genetic background. These data could provide genetic diversity information and the molecular markers for selecting parents in spinach breeding programs. PMID:29190770

  16. [Genetic diversity and genetic structure of endangered wild Sinopodophyllum emodi by start codon targeted polymorphism].

    PubMed

    Chen, Da-Xia; Zhao, Ji-Feng; Liu, Xiang; Wang, Chang-Hua; Zhang, Zhi-Wei; Qin, Song-Yun; Zhong, Guo-Yue

    2013-01-01

    Revealed the genetic diversity level and genetic structure characteristics in Sinopodophyllum emodi, a rare and endangered species in China. We detected the genetic polymorphism within and among six wild populations (45 individuals) by the approach of Start Codon Targeted (SCoT) Polymorphism. The associated genetic parameters were calculated by POP-GENE1.31 and the relationship was constructed based on UPGMA method. A total of 350 bands were scored by 27 primers and 284 bands of them were polymorphic. The average polymorphic bands of each primer were 10.52. At species level, there was a high level of genetic diversity among six populations (PPB = 79.27%, N(e) = 1.332 7, H = 0.210 9 and H(sp) = 0.328 6). At population level, the genetic diversity level was low (PPB = 10.48% (4.00% -23.71%), N(e) = 1.048 7 (1.020 7-1.103 7), H = 0.029 7 (0.012 9-0.063 1), H(pop) = 0.046 2 (0.019 9-0.098 6). The Nei's coefficient of genetic differentiation was 0.841 1, which was consistent with the Shannon's coefficient of genetic differentiation (0.849 4). Two calculated methods all showed that most of the genetic variation existed among populations. The gene flow (N(m) = 0.094 4) was less among populations, indicating that the degree of genetic differentiation was higher. Genetic similarity coefficient were changed from 0.570 8 to 0.978 7. By clustering analysis, the tested populations were divided into two classes and had a tendency that the same geographical origin or material of similar habitats clustered into one group. The genetic diversity of samples of S. emodi is high,which laid a certain foundation for effective protection and improvement of germplasm resources.

  17. Genome-wide characterization of genetic diversity and population structure in Secale

    PubMed Central

    2014-01-01

    Background Numerous rye accessions are stored in ex situ genebanks worldwide. Little is known about the extent of genetic diversity contained in any of them and its relation to contemporary varieties, since to date rye genetic diversity studies had a very limited scope, analyzing few loci and/ or few accessions. Development of high throughput genotyping methods for rye opened the possibility for genome wide characterizations of large accessions sets. In this study we used 1054 Diversity Array Technology (DArT) markers with defined chromosomal location to characterize genetic diversity and population structure in a collection of 379 rye accessions including wild species, landraces, cultivated materials, historical and contemporary rye varieties. Results Average genetic similarity (GS) coefficients and average polymorphic information content (PIC) values varied among chromosomes. Comparison of chromosome specific average GS within and between germplasm sub-groups indicated regions of chromosomes 1R and 4R as being targeted by selection in current breeding programs. Bayesian clustering, principal coordinate analysis and Neighbor Joining clustering demonstrated that source and improvement status contributed significantly to the structure observed in the analyzed set of Secale germplasm. We revealed a relatively limited diversity in improved rye accessions, both historical and contemporary, as well as lack of correlation between clustering of improved accessions and geographic origin, suggesting common genetic background of rye accessions from diverse geographic regions and extensive germplasm exchange. Moreover, contemporary varieties were distinct from the remaining accessions. Conclusions Our results point to an influence of reproduction methods on the observed diversity patterns and indicate potential of ex situ collections for broadening the genetic diversity in rye breeding programs. Obtained data show that DArT markers provide a realistic picture of the genetic

  18. Genetic diversity in Trichomonas vaginalis.

    PubMed

    Meade, John C; Carlton, Jane M

    2013-09-01

    Recent advances in genetic characterisation of Trichomonas vaginalis isolates show that the extensive clinical variability in trichomoniasis and its disease sequelae are matched by significant genetic diversity in the organism itself, suggesting a connection between the genetic identity of isolates and their clinical manifestations. Indeed, a high degree of genetic heterogeneity in T vaginalis isolates has been observed using multiple genotyping techniques. A unique two-type population structure that is both local and global in distribution has been identified, and there is evidence of recombination within each group, although sexual recombination between the groups appears to be constrained. There is conflicting evidence in these studies for correlations between T vaginalis genetic identity and clinical presentation, metronidazole susceptibility, and the presence of T vaginalis virus, underscoring the need for adoption of a common standard for genotyping the parasite. Moving forward, microsatellite genotyping and multilocus sequence typing are the most robust techniques for future investigations of T vaginalis genotype-phenotype associations.

  19. Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation.

    PubMed

    Aegisdóttir, Hafdís Hanna; Kuss, Patrick; Stöcklin, Jürg

    2009-12-01

    Gene flow and genetic variability within and among alpine plant populations can be greatly influenced by the steep environmental gradients and heterogeneous topography of alpine landscapes. In this study, the effects are examined of natural isolation of alpine habitats on genetic diversity and geographic structure in populations of C. thyrsoides, a rare and isolated European Alpine monocarpic perennial with limited seed dispersal capacity. Molecular diversity was analysed for 736 individuals from 32 populations in the Swiss Alps and adjacent Jura mountains using five polymorphic microsatellite loci. Pollen flow was estimated using pollen grain-sized fluorescent powder. In addition, individual-based Bayesian approaches were applied to examine population structure. High within-population genetic diversity (H(E) = 0.76) and a relatively low inbreeding coefficient (F(IS) = 0.022) were found. Genetic differentiation among populations measured with a standardized measure was considerable (G'(ST) = 0.53). A significant isolation-by-distance relationship was found (r = 0.62, P < 0.001) and a significant geographic sub-structure, coinciding with proposed postglacial migration patterns. Altitudinal location and size of populations did not influence molecular variation. Direct measures of pollen flow revealed that insect-mediated pollen dispersal was restricted to short distances within a population. The natural isolation of suitable habitats for C. thyrsoides restricts gene flow among the populations as expected for a monocarpic species with very limited seed dispersal capacities. The observed high within-population genetic diversity in this rare monocarpic perennial is best explained by its outcrossing behaviour, long-lived individuals and overlapping generations. Despite the high within-population genetic diversity, the considerable genetic differentiation and the clear western-eastern differentiation in this species merits consideration in future conservation efforts.

  20. Genetic diversity in the candidate trees of Madhuca indica J. F. Gmel. (Mahua) revealed by inter-simple sequence repeats (ISSRs).

    PubMed

    Nimbalkar, S D; Jade, S S; Kauthale, V K; Agale, S; Bahulikar, R A

    2018-03-01

    Madhuca indica provides livelihood to several tribal people in India, where the flowers are used for extraction of sweet juices having multiple applications. Certain trees have more value as judged by the tribal people mainly based on yield and quality performance of the trees, and these trees were selected for the genetic diversity analyses. Genetic diversity of 48 candidate Mahua trees from Etapalli, Dadagaon, and Jawhar, Maharashtra, India, was assessed using ISSR markers. Fourteen ISSR primers revealed a total of 132 polymorphic bands giving overall 92% polymorphism. Genetic diversity, in terms of expected number of alleles (Ne), the observed number of alleles (Na), Nei's genetic diversity (H), and Shannon's information index ( I ) was 1.921, 1.333, 0.211, and 0.337, respectively, and suggested lower genetic diversity. Region wise analysis revealed higher genetic diversity for site Etapalli ( H  = 0.206) and lowest at Dhadgaon ( H  = 0.140). Etapalli area possesses higher forest cover than Dhadgaon and Jawhar. Additionally, in Dhadgaon and Jawhar M. indica trees are restricted to field bunds; both reasons might contribute to lower genetic diversity in these regions. The dendrogram and the principal coordinate analyses showed no region-specific clustering. The clustering patterns were supported by AMOVA where higher genetic variance was observed within trees and lower variance among regions. Long-distance dispersal and/or higher human interference might be responsible for low diversity and higher genetic variance within the candidate trees.

  1. Additive genetic variation and evolvability of a multivariate trait can be increased by epistatic gene action.

    PubMed

    Griswold, Cortland K

    2015-12-21

    Epistatic gene action occurs when mutations or alleles interact to produce a phenotype. Theoretically and empirically it is of interest to know whether gene interactions can facilitate the evolution of diversity. In this paper, we explore how epistatic gene action affects the additive genetic component or heritable component of multivariate trait variation, as well as how epistatic gene action affects the evolvability of multivariate traits. The analysis involves a sexually reproducing and recombining population. Our results indicate that under stabilizing selection conditions a population with a mixed additive and epistatic genetic architecture can have greater multivariate additive genetic variation and evolvability than a population with a purely additive genetic architecture. That greater multivariate additive genetic variation can occur with epistasis is in contrast to previous theory that indicated univariate additive genetic variation is decreased with epistasis under stabilizing selection conditions. In a multivariate setting, epistasis leads to less relative covariance among individuals in their genotypic, as well as their breeding values, which facilitates the maintenance of additive genetic variation and increases a population׳s evolvability. Our analysis involves linking the combinatorial nature of epistatic genetic effects to the ancestral graph structure of a population to provide insight into the consequences of epistasis on multivariate trait variation and evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Genetic diversity is related to climatic variation and vulnerability in threatened bull trout

    USGS Publications Warehouse

    Kovach, Ryan; Muhlfeld, Clint C.; Wade, Alisa A.; Hand, Brian K.; Whited, Diane C.; DeHaan, Patrick W.; Al-Chokhachy, Robert K.; Luikart, Gordon

    2015-01-01

    Understanding how climatic variation influences ecological and evolutionary processes is crucial for informed conservation decision-making. Nevertheless, few studies have measured how climatic variation influences genetic diversity within populations or how genetic diversity is distributed across space relative to future climatic stress. Here, we tested whether patterns of genetic diversity (allelic richness) were related to climatic variation and habitat features in 130 bull trout (Salvelinus confluentus) populations from 24 watersheds (i.e., ~4–7th order river subbasins) across the Columbia River Basin, USA. We then determined whether bull trout genetic diversity was related to climate vulnerability at the watershed scale, which we quantified on the basis of exposure to future climatic conditions (projected scenarios for the 2040s) and existing habitat complexity. We found a strong gradient in genetic diversity in bull trout populations across the Columbia River Basin, where populations located in the most upstream headwater areas had the greatest genetic diversity. After accounting for spatial patterns with linear mixed models, allelic richness in bull trout populations was positively related to habitat patch size and complexity, and negatively related to maximum summer temperature and the frequency of winter flooding. These relationships strongly suggest that climatic variation influences evolutionary processes in this threatened species and that genetic diversity will likely decrease due to future climate change. Vulnerability at a watershed scale was negatively correlated with average genetic diversity (r = −0.77;P < 0.001); watersheds containing populations with lower average genetic diversity generally had the lowest habitat complexity, warmest stream temperatures, and greatest frequency of winter flooding. Together, these findings have important conservation implications for bull trout and other imperiled species. Genetic diversity is already

  3. Low worldwide genetic diversity in the killer whale (Orcinus orca): implications for demographic history.

    PubMed Central

    Hoelzel, A Rus; Natoli, Ada; Dahlheim, Marilyn E; Olavarria, Carlos; Baird, Robin W; Black, Nancy A

    2002-01-01

    A low level of genetic variation in mammalian populations where the census population size is relatively large has been attributed to various factors, such as a naturally small effective population size, historical bottlenecks and social behaviour. The killer whale (Orcinus orca) is an abundant, highly social species with reduced genetic variation. We find no consistent geographical pattern of global diversity and no mtDNA variation within some regional populations. The regional lack of variation is likely to be due to the strict matrilineal expansion of local populations. The worldwide pattern and paucity of diversity may indicate a historical bottleneck as an additional factor. PMID:12137576

  4. Status of genetic diversity of U. S. dairy goat breeds

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity underpins the livestock breeders’ ability to improve the production potential of their livestock. Therefore, it is important to periodically assess genetic diversity within a breed. Such an analysis was conducted on U.S. dairy goat breeds: Alpine, LaMancha, Nigerian Dwarf, Nubian, ...

  5. The study of relatedness and genetic diversity in cranes

    USGS Publications Warehouse

    Gee, G.F.; Dessauer, H.C.; Longmire, J.; Briles, W.E.; Simon, R.C.; Wood, Don A.

    1992-01-01

    The U.S. Fish and Wildlife Service (Service) is responsible for recovery of endangered species in the wild and, when necessary, maintenance in captivity. These programs provide an immediate measure of insurance against extinction. A prerequisite inherent in all of these programs is the preservation of enough genetic diversity to maintain a viable population and to maintain the capacity of the population to respond to change. Measures of genetic diversity examine polymorphic genes that are not influenced by selection pressures. Examples of these techniques and those used to determine relatedness are discussed. Studies of genetic diversity, electrophoresis of blood proteins, relatedness, blood typing, and restriction fragment length polymorphisms which are being used by the Patuxent Wildlife Research Center are discussed in detail.

  6. Polishing the craft of genetic diversity creation in directed evolution.

    PubMed

    Tee, Kang Lan; Wong, Tuck Seng

    2013-12-01

    Genetic diversity creation is a core technology in directed evolution where a high quality mutant library is crucial to its success. Owing to its importance, the technology in genetic diversity creation has seen rapid development over the years and its application has diversified into other fields of scientific research. The advances in molecular cloning and mutagenesis since 2008 were reviewed. Specifically, new cloning techniques were classified based on their principles of complementary overhangs, homologous sequences, overlapping PCR and megaprimers and the advantages, drawbacks and performances of these methods were highlighted. New mutagenesis methods developed for random mutagenesis, focused mutagenesis and DNA recombination were surveyed. The technical requirements of these methods and the mutational spectra were compared and discussed with references to commonly used techniques. The trends of mutant library preparation were summarised. Challenges in genetic diversity creation were discussed with emphases on creating "smart" libraries, controlling the mutagenesis spectrum and specific challenges in each group of mutagenesis methods. An outline of the wider applications of genetic diversity creation includes genome engineering, viral evolution, metagenomics and a study of protein functions. The review ends with an outlook for genetic diversity creation and the prospective developments that can have future impact in this field. © 2013. Published by Elsevier Inc. All rights reserved.

  7. High genetic diversity of Jatropha curcas assessed by ISSR.

    PubMed

    Díaz, B G; Argollo, D M; Franco, M C; Nucci, S M; Siqueira, W J; de Laat, D M; Colombo, C A

    2017-05-31

    Jatropha curcas L. is a highly promising oilseed for sustainable production of biofuels and bio-kerosene due to its high oil content and excellent quality. However, it is a perennial and incipiently domesticated species with none stable cultivar created until now despite genetic breeding programs in progress in several countries. Knowledge of the genetic structure and diversity of the species is a necessary step for breeding programs. The molecular marker can be used as a tool for speed up the process. This study was carried out to assess genetic diversity of a germplasm bank represented by J. curcas accessions from different provenance beside interspecific hybrid and backcrosses generated by IAC breeding programs using inter-simple sequence repeat markers. The molecular study revealed 271 bands of which 98.9% were polymorphic with an average of 22.7 polymorphic bands per primer. Genetic diversity of the germplasm evaluated was slightly higher than other germplasm around the world and ranged from 0.55 to 0.86 with an average of 0.59 (Jaccard index). Cluster analysis (UPGMA) revealed no clear grouping as to the geographical origin of accessions, consistent with genetic structure analysis using the Structure software. For diversity analysis between groups, accessions were divided into eight groups by origin. Nei's genetic distance between groups was 0.14. The results showed the importance of Mexican accessions, congeneric wild species, and interspecific hybrids for conservation and development of new genotypes in breeding programs.

  8. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study.

    PubMed

    de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina

    2013-03-01

    Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings.

  9. Coalescence and genetic diversity in sexual populations under selection.

    PubMed

    Neher, Richard A; Kessinger, Taylor A; Shraiman, Boris I

    2013-09-24

    In sexual populations, selection operates neither on the whole genome, which is repeatedly taken apart and reassembled by recombination, nor on individual alleles that are tightly linked to the chromosomal neighborhood. The resulting interference between linked alleles reduces the efficiency of selection and distorts patterns of genetic diversity. Inference of evolutionary history from diversity shaped by linked selection requires an understanding of these patterns. Here, we present a simple but powerful scaling analysis identifying the unit of selection as the genomic "linkage block" with a characteristic length, , determined in a self-consistent manner by the condition that the rate of recombination within the block is comparable to the fitness differences between different alleles of the block. We find that an asexual model with the strength of selection tuned to that of the linkage block provides an excellent description of genetic diversity and the site frequency spectra compared with computer simulations. This linkage block approximation is accurate for the entire spectrum of strength of selection and is particularly powerful in scenarios with many weakly selected loci. The latter limit allows us to characterize coalescence, genetic diversity, and the speed of adaptation in the infinitesimal model of quantitative genetics.

  10. Mapping human genetic diversity in Asia.

    PubMed

    Abdulla, Mahmood Ameen; Ahmed, Ikhlak; Assawamakin, Anunchai; Bhak, Jong; Brahmachari, Samir K; Calacal, Gayvelline C; Chaurasia, Amit; Chen, Chien-Hsiun; Chen, Jieming; Chen, Yuan-Tsong; Chu, Jiayou; Cutiongco-de la Paz, Eva Maria C; De Ungria, Maria Corazon A; Delfin, Frederick C; Edo, Juli; Fuchareon, Suthat; Ghang, Ho; Gojobori, Takashi; Han, Junsong; Ho, Sheng-Feng; Hoh, Boon Peng; Huang, Wei; Inoko, Hidetoshi; Jha, Pankaj; Jinam, Timothy A; Jin, Li; Jung, Jongsun; Kangwanpong, Daoroong; Kampuansai, Jatupol; Kennedy, Giulia C; Khurana, Preeti; Kim, Hyung-Lae; Kim, Kwangjoong; Kim, Sangsoo; Kim, Woo-Yeon; Kimm, Kuchan; Kimura, Ryosuke; Koike, Tomohiro; Kulawonganunchai, Supasak; Kumar, Vikrant; Lai, Poh San; Lee, Jong-Young; Lee, Sunghoon; Liu, Edison T; Majumder, Partha P; Mandapati, Kiran Kumar; Marzuki, Sangkot; Mitchell, Wayne; Mukerji, Mitali; Naritomi, Kenji; Ngamphiw, Chumpol; Niikawa, Norio; Nishida, Nao; Oh, Bermseok; Oh, Sangho; Ohashi, Jun; Oka, Akira; Ong, Rick; Padilla, Carmencita D; Palittapongarnpim, Prasit; Perdigon, Henry B; Phipps, Maude Elvira; Png, Eileen; Sakaki, Yoshiyuki; Salvador, Jazelyn M; Sandraling, Yuliana; Scaria, Vinod; Seielstad, Mark; Sidek, Mohd Ros; Sinha, Amit; Srikummool, Metawee; Sudoyo, Herawati; Sugano, Sumio; Suryadi, Helena; Suzuki, Yoshiyuki; Tabbada, Kristina A; Tan, Adrian; Tokunaga, Katsushi; Tongsima, Sissades; Villamor, Lilian P; Wang, Eric; Wang, Ying; Wang, Haifeng; Wu, Jer-Yuarn; Xiao, Huasheng; Xu, Shuhua; Yang, Jin Ok; Shugart, Yin Yao; Yoo, Hyang-Sook; Yuan, Wentao; Zhao, Guoping; Zilfalil, Bin Alwi

    2009-12-11

    Asia harbors substantial cultural and linguistic diversity, but the geographic structure of genetic variation across the continent remains enigmatic. Here we report a large-scale survey of autosomal variation from a broad geographic sample of Asian human populations. Our results show that genetic ancestry is strongly correlated with linguistic affiliations as well as geography. Most populations show relatedness within ethnic/linguistic groups, despite prevalent gene flow among populations. More than 90% of East Asian (EA) haplotypes could be found in either Southeast Asian (SEA) or Central-South Asian (CSA) populations and show clinal structure with haplotype diversity decreasing from south to north. Furthermore, 50% of EA haplotypes were found in SEA only and 5% were found in CSA only, indicating that SEA was a major geographic source of EA populations.

  11. Analysis of mitochondrial genetic diversity of Ustilago maydis in Mexico.

    PubMed

    Jiménez-Becerril, María F; Hernández-Delgado, Sanjuana; Solís-Oba, Myrna; González Prieto, Juan M

    2018-01-01

    The current understanding of the genetic diversity of the phytopathogenic fungus Ustilago maydis is limited. To determine the genetic diversity and structure of U. maydis, 48 fungal isolates were analyzed using mitochondrial simple sequence repeats (SSRs). Tumours (corn smut or 'huitlacoche') were collected from different Mexican states with diverse environmental conditions. Using bioinformatic tools, five microsatellites were identified within intergenic regions of the U. maydis mitochondrial genome. SSRMUM4 was the most polymorphic marker. The most common repeats were hexanucleotides. A total of 12 allelic variants were identified, with a mean of 2.4 alleles per locus. An estimate of the genetic diversity using analysis of molecular variance (AMOVA) revealed that the highest variance component is within states (84%), with moderate genetic differentiation between states (16%) (F ST  = 0.158). A dendrogram generated using the unweighted paired-grouping method with arithmetic averages (UPGMA) and the Bayesian analysis of population structure grouped the U. maydis isolates into two subgroups (K = 2) based on their shared SSRs.

  12. Genetic diversity and trait genomic prediction in a pea diversity panel.

    PubMed

    Burstin, Judith; Salloignon, Pauline; Chabert-Martinello, Marianne; Magnin-Robert, Jean-Bernard; Siol, Mathieu; Jacquin, Françoise; Chauveau, Aurélie; Pont, Caroline; Aubert, Grégoire; Delaitre, Catherine; Truntzer, Caroline; Duc, Gérard

    2015-02-21

    Pea (Pisum sativum L.), a major pulse crop grown for its protein-rich seeds, is an important component of agroecological cropping systems in diverse regions of the world. New breeding challenges imposed by global climate change and new regulations urge pea breeders to undertake more efficient methods of selection and better take advantage of the large genetic diversity present in the Pisum sativum genepool. Diversity studies conducted so far in pea used Simple Sequence Repeat (SSR) and Retrotransposon Based Insertion Polymorphism (RBIP) markers. Recently, SNP marker panels have been developed that will be useful for genetic diversity assessment and marker-assisted selection. A collection of diverse pea accessions, including landraces and cultivars of garden, field or fodder peas as well as wild peas was characterised at the molecular level using newly developed SNP markers, as well as SSR markers and RBIP markers. The three types of markers were used to describe the structure of the collection and revealed different pictures of the genetic diversity among the collection. SSR showed the fastest rate of evolution and RBIP the slowest rate of evolution, pointing to their contrasted mode of evolution. SNP markers were then used to predict phenotypes -the date of flowering (BegFlo), the number of seeds per plant (Nseed) and thousand seed weight (TSW)- that were recorded for the collection. Different statistical methods were tested including the LASSO (Least Absolute Shrinkage ans Selection Operator), PLS (Partial Least Squares), SPLS (Sparse Partial Least Squares), Bayes A, Bayes B and GBLUP (Genomic Best Linear Unbiased Prediction) methods and the structure of the collection was taken into account in the prediction. Despite a limited number of 331 markers used for prediction, TSW was reliably predicted. The development of marker assisted selection has not reached its full potential in pea until now. This paper shows that the high-throughput SNP arrays that are being

  13. Exploring the role of Micronesian islands in the maintenance of coral genetic diversity in the Pacific Ocean.

    PubMed

    Davies, S W; Treml, E A; Kenkel, C D; Matz, M V

    2015-01-01

    Understanding how genetic diversity is maintained across patchy marine environments remains a fundamental problem in marine biology. The Coral Triangle, located in the Indo-West Pacific, is the centre of marine biodiversity and has been proposed as an important source of genetic diversity for remote Pacific reefs. Several studies highlight Micronesia, a scattering of hundreds of small islands situated within the North Equatorial Counter Current, as a potentially important migration corridor. To test this hypothesis, we characterized the population genetic structure of two ecologically important congeneric species of reef-building corals across greater Micronesia, from Palau to the Marshall Islands. Genetic divergences between islands followed an isolation-by-distance pattern, with Acropora hyacinthus exhibiting greater genetic divergences than A. digitifera, suggesting different migration capabilities or different effective population sizes for these closely related species. We inferred dispersal distance using a biophysical larval transport model, which explained an additional 15-21% of the observed genetic variation compared to between-island geographical distance alone. For both species, genetic divergence accumulates and genetic diversity diminishes with distance from the Coral Triangle, supporting the hypothesis that Micronesian islands act as important stepping stones connecting the central Pacific with the species-rich Coral Triangle. However, for A. hyacinthus, the species with lower genetic connectivity, immigration from the subequatorial Pacific begins to play a larger role in shaping diversity than input from the Coral Triangle. This work highlights the enormous dispersal potential of broadcast-spawning corals and identifies the biological and physical drivers that influence coral genetic diversity on a regional scale. © 2014 John Wiley & Sons Ltd.

  14. Speciation and genetic diversity in Centaurea subsect. Phalolepis in Anatolia

    PubMed Central

    López-Pujol, Jordi; López-Vinyallonga, Sara; Susanna, Alfonso; Ertuğrul, Kuddisi; Uysal, Tuna; Tugay, Osman; Guetat, Arbi; Garcia-Jacas, Núria

    2016-01-01

    Mountains of Anatolia are one of the main Mediterranean biodiversity hotspots and their richness in endemic species amounts for 30% of the flora. Two main factors may account for this high diversity: the complex orography and its role as refugia during past glaciations. We have investigated seven narrow endemics of Centaurea subsection Phalolepis from Anatolia by means of microsatellites and ecological niche modelling (ENM), in order to analyse genetic polymorphisms and getting insights into their speciation. Despite being narrow endemics, all the studied species show moderate to high SSR genetic diversity. Populations are genetically isolated, but exchange of genes probably occurred at glacial maxima (likely through the Anatolian mountain arches as suggested by the ENM). The lack of correlation between genetic clusters and (morpho) species is interpreted as a result of allopatric diversification on the basis of a shared gene pool. As suggested in a former study in Greece, post-glacial isolation in mountains would be the main driver of diversification in these plants; mountains of Anatolia would have acted as plant refugia, allowing the maintenance of high genetic diversity. Ancient gene flow between taxa that became sympatric during glaciations may also have contributed to the high levels of genetic diversity. PMID:27886271

  15. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study

    PubMed Central

    de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina

    2013-01-01

    Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings. PMID:23569417

  16. Bacteriophages of Gordonia spp. Display a Spectrum of Diversity and Genetic Relationships

    PubMed Central

    Pope, Welkin H.; Mavrich, Travis N.; Garlena, Rebecca A.; Guerrero-Bustamante, Carlos A.; Jacobs-Sera, Deborah; Montgomery, Matthew T.; Russell, Daniel A.; Warner, Marcie H.

    2017-01-01

    ABSTRACT The global bacteriophage population is large, dynamic, old, and highly diverse genetically. Many phages are tailed and contain double-stranded DNA, but these remain poorly characterized genomically. A collection of over 1,000 phages infecting Mycobacterium smegmatis reveals the diversity of phages of a common bacterial host, but their relationships to phages of phylogenetically proximal hosts are not known. Comparative sequence analysis of 79 phages isolated on Gordonia shows these also to be diverse and that the phages can be grouped into 14 clusters of related genomes, with an additional 14 phages that are “singletons” with no closely related genomes. One group of six phages is closely related to Cluster A mycobacteriophages, but the other Gordonia phages are distant relatives and share only 10% of their genes with the mycobacteriophages. The Gordonia phage genomes vary in genome length (17.1 to 103.4 kb), percentage of GC content (47 to 68.8%), and genome architecture and contain a variety of features not seen in other phage genomes. Like the mycobacteriophages, the highly mosaic Gordonia phages demonstrate a spectrum of genetic relationships. We show this is a general property of bacteriophages and suggest that any barriers to genetic exchange are soft and readily violable. PMID:28811342

  17. Genetic diversities of cytochrome B in Xinjiang Uyghur unveiled its origin and migration history

    PubMed Central

    2013-01-01

    Background Uyghurs are one of the many populations of Central Eurasia that is considered to be genetically related to Eastern and Western Eurasian populations. However, there are some different opinions on the relative importance of the degree of Eastern and Western Eurasian genetic influence. In addition, the genetic diversity of the Uyghur in different geographic locations has not been clearly studied. Results In this study, we are the first to report on the DNA polymorphism of cytochrome B in the Uyghur population located in Xinjiang in northwest China. We observed a total of 102 mutant sites in the 240 samples that were studied. The average number of mutated nucleotides in the samples was 5.126. A total of 93 different haplotypes were observed. The gene diversity and discrimination power were 0.9480 and 0.9440, respectively. There were founder and bottleneck haplotypes observed in Xinjiang Uyghurs. Xinjiang Uyghurs are more genetically related to Chinese population in genetics than to Caucasians. Moreover, there was genetic diversity between Uyghurs from the southern and northern regions. There was significance in genetic distance between the southern Xinjiang Uyghurs and Chinese population, but not between the northern Xinjiang Uyghurs and Chinese. The European vs. East Asian contribution to the ten regional Uyghur groups varies among the groups and the European contribution to the Uyghur increases from north to south geographically. Conclusion This study is the first report on DNA polymorphisms of cytochrome B in the Uyghur population. The study also further confirms that there are significant genetic differences among the Uyghurs in different geographical locations. PMID:24103151

  18. Genetic diversity of lake whitefish in lakes Michigan and Huron: sampling, standardization, and research priorities

    USGS Publications Warehouse

    Stott, Wendylee; VanDeHey, Justin A.; Sloss, Brian L.

    2010-01-01

    We combined data from two laboratories to increase the spatial extent of a genetic data set for lake whitefish Coregonus clupeaformis from lakes Huron and Michigan and saw that genetic diversity was greatest between lakes, but that there was also structuring within lakes. Low diversity among stocks may be a reflection of relatively recent colonization of the Great Lakes, but other factors such as recent population fluctuation and localized stresses such as lamprey predation or heavy exploitation may also have a homogenizing effect. Our data suggested that there is asymmetrical movement of lake whitefish between Lake Huron and Lake Michigan; more genotypes associated with Lake Michigan were observed in Lake Huron. Adding additional collections to the calibrated set will allow further examination of diversity in other Great Lakes, answer questions regarding movement among lakes, and estimate contributions of stocks to commercial yields. As the picture of genetic diversity and population structure of lake whitefish in the Great Lakes region emerges, we need to develop methods to combine data types to help identify important areas for biodiversity and thus conservation. Adding genetic data to existing models will increase the precision of predictions of the impacts of new stresses and changes in existing pressures on an ecologically and commercially important species.

  19. Population structure and genetic diversity of wild Helianthus species from Mozambique.

    PubMed

    Ribeiro, A; Gouveia, M; Bessa, A; Ferreira, A; Magumisse, A T; Manjate, M; Faria, T

    2010-08-01

    The production of sunflower suffered a major decline in Mozambique after its independence in 1975. Civil war, human activities and environmental damage subjected the species to an ecological stress contributing to reduce the number and size of wild populations. As this reduction is often related to a loss of genetic variation we estimated the genetic diversity within and among populations of wild Helianthus from five districts of Mozambique using RAPD markers. The 44 accessions studied grouped into four major clusters exhibiting structured variability with regard to geographic origin. A high level of genetic diversity (He = 0.350 and I = 0.527) was retained at the population level. The genetic variation among populations was high (59.7%), which is consistent with low gene flow (Nm = 0.338). The proportion of total genetic diversity residing among these populations should be kept in mind to devise different conservation strategies in order to preserve these populations. Currently wild Helianthus genetic resources present in Maputo and Sofala are on the edge of extinction mainly due to excessive urbanization. Therefore, conservation of what remains of this plant genetic diversity is essential for sustainable utilization and can be useful for breeding programs.

  20. Genetic diversity, breed composition and admixture of Kenyan domestic pigs.

    PubMed

    Mujibi, Fidalis Denis; Okoth, Edward; Cheruiyot, Evans K; Onzere, Cynthia; Bishop, Richard P; Fèvre, Eric M; Thomas, Lian; Masembe, Charles; Plastow, Graham; Rothschild, Max

    2018-01-01

    The genetic diversity of African pigs, whether domestic or wild has not been widely studied and there is very limited published information available. Available data suggests that African domestic pigs originate from different domestication centers as opposed to international commercial breeds. We evaluated two domestic pig populations in Western Kenya, in order to characterize the genetic diversity, breed composition and admixture of the pigs in an area known to be endemic for African swine fever (ASF). One of the reasons for characterizing these specific populations is the fact that a proportion of indigenous pigs have tested ASF virus (ASFv) positive but do not present with clinical symptoms of disease indicating some form of tolerance to infection. Pigs were genotyped using either the porcine SNP60 or SNP80 chip. Village pigs were sourced from Busia and Homabay counties in Kenya. Because bush pigs (Potamochoerus larvatus) and warthogs (Phacochoerus spp.) are known to be tolerant to ASFv infection (exhibiting no clinical symptoms despite infection), they were included in the study to assess whether domestic pigs have similar genomic signatures. Additionally, samples representing European wild boar and international commercial breeds were included as references, given their potential contribution to the genetic make-up of the target domestic populations. The data indicate that village pigs in Busia are a non-homogenous admixed population with significant introgression of genes from international commercial breeds. Pigs from Homabay by contrast, represent a homogenous population with a "local indigenous' composition that is distinct from the international breeds, and clusters more closely with the European wild boar than African wild pigs. Interestingly, village pigs from Busia that tested negative by PCR for ASFv genotype IX, had significantly higher local ancestry (>54%) compared to those testing positive, which contained more commercial breed gene introgression

  1. Evaluation of genetic diversity of Panicum turgidum Forssk from Saudi Arabia.

    PubMed

    Assaeed, Abdulaziz M; Al-Faifi, Sulieman A; Migdadi, Hussein M; El-Bana, Magdy I; Al Qarawi, Abdulaziz A; Khan, Mohammad Altaf

    2018-01-01

    The genetic diversity of 177 accessions of Panicum turgidum Forssk, representing ten populations collected from four geographical regions in Saudi Arabia, was analyzed using amplified fragment length polymorphism (AFLP) markers. A set of four primer-pairs with two/three selective nucleotides scored 836 AFLP amplified fragments (putative loci/genome landmarks), all of which were polymorphic. Populations collected from the southern region of the country showed the highest genetic diversity parameters, whereas those collected from the central regions showed the lowest values. Analysis of molecular variance (AMOVA) revealed that 78% of the genetic variability was attributable to differences within populations. Pairwise values for population differentiation and genetic structure were statistically significant for all variances. The UPGMA dendrogram, validated by principal coordinate analysis-grouped accessions, corresponded to the geographical origin of the accessions. Mantel's test showed that there was a significant correlation between the genetic and geographical distances ( r  = 0.35, P  < 0.04). In summary, the AFLP assay demonstrated the existence of substantial genetic variation in P. turgidum . The relationship between the genetic diversity and geographical source of P. turgidum populations of Saudi Arabia, as revealed through this comprehensive study, will enable effective resource management and restoration of new areas without compromising adaptation and genetic diversity.

  2. Niger-wide assessment of in situ sorghum genetic diversity with microsatellite markers.

    PubMed

    Deu, M; Sagnard, F; Chantereau, J; Calatayud, C; Hérault, D; Mariac, C; Pham, J-L; Vigouroux, Y; Kapran, I; Traore, P S; Mamadou, A; Gerard, B; Ndjeunga, J; Bezançon, G

    2008-05-01

    Understanding the geographical, environmental and social patterns of genetic diversity on different spatial scales is key to the sustainable in situ management of genetic resources. However, few surveys have been conducted on crop genetic diversity using exhaustive in situ germplasm collections on a country scale and such data are missing for sorghum in sub-Saharan Africa, its centre of origin. We report here a genetic analysis of 484 sorghum varieties collected in 79 villages evenly distributed across Niger, using 28 microsatellite markers. We found a high level of SSR diversity in Niger. Diversity varied between eastern and western Niger, and allelic richness was lower in the eastern part of the country. Genetic differentiation between botanical races was the first structuring factor (Fst = 0.19), but the geographical distribution and the ethnic group to which farmers belonged were also significantly associated with genetic diversity partitioning. Gene pools are poorly differentiated among climatic zones. The geographical situation of Niger, where typical western African (guinea), central African (caudatum) and eastern Sahelian African (durra) sorghum races converge, explained the high observed genetic diversity and was responsible for the interactions among the ethnic, geographical and botanical structure revealed in our study. After correcting for the structure of botanical races, spatial correlation of genetic diversity was still detected within 100 km, which may hint at limited seed exchanges between farmers. Sorghum domestication history, in relation to the spatial organisation of human societies, is therefore key information for sorghum in situ conservation programs in sub-Saharan Africa.

  3. Parasites and genetic diversity in an invasive bumblebee.

    PubMed

    Jones, Catherine M; Brown, Mark J F

    2014-11-01

    Biological invasions are facilitated by the global transportation of species and climate change. Given that invasions may cause ecological and economic damage and pose a major threat to biodiversity, understanding the mechanisms behind invasion success is essential. Both the release of non-native populations from natural enemies, such as parasites, and the genetic diversity of these populations may play key roles in their invasion success. We investigated the roles of parasite communities, through enemy release and parasite acquisition, and genetic diversity in the invasion success of the non-native bumblebee, Bombus hypnorum, in the United Kingdom. The invasive B. hypnorum had higher parasite prevalence than most, or all native congeners for two high-impact parasites, probably due to higher susceptibility and parasite acquisition. Consequently parasites had a higher impact on B. hypnorum queens' survival and colony-founding success than on native species. Bombus hypnorum also had lower functional genetic diversity at the sex-determining locus than native species. Higher parasite prevalence and lower genetic diversity have not prevented the rapid invasion of the United Kingdom by B. hypnorum. These data may inform our understanding of similar invasions by commercial bumblebees around the world. This study suggests that concerns about parasite impacts on the small founding populations common to re-introduction and translocation programs may be less important than currently believed. © 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  4. [Evolutionary process unveiled by the maximum genetic diversity hypothesis].

    PubMed

    Huang, Yi-Min; Xia, Meng-Ying; Huang, Shi

    2013-05-01

    As two major popular theories to explain evolutionary facts, the neutral theory and Neo-Darwinism, despite their proven virtues in certain areas, still fail to offer comprehensive explanations to such fundamental evolutionary phenomena as the genetic equidistance result, abundant overlap sites, increase in complexity over time, incomplete understanding of genetic diversity, and inconsistencies with fossil and archaeological records. Maximum genetic diversity hypothesis (MGD), however, constructs a more complete evolutionary genetics theory that incorporates all of the proven virtues of existing theories and adds to them the novel concept of a maximum or optimum limit on genetic distance or diversity. It has yet to meet a contradiction and explained for the first time the half-century old Genetic Equidistance phenomenon as well as most other major evolutionary facts. It provides practical and quantitative ways of studying complexity. Molecular interpretation using MGD-based methods reveal novel insights on the origins of humans and other primates that are consistent with fossil evidence and common sense, and reestablished the important role of China in the evolution of humans. MGD theory has also uncovered an important genetic mechanism in the construction of complex traits and the pathogenesis of complex diseases. We here made a series of sequence comparisons among yeasts, fishes and primates to illustrate the concept of limit on genetic distance. The idea of limit or optimum is in line with the yin-yang paradigm in the traditional Chinese view of the universal creative law in nature.

  5. Genetic diversity of Kenyan native oyster mushroom (Pleurotus).

    PubMed

    Otieno, Ojwang D; Onyango, Calvin; Onguso, Justus Mungare; Matasyoh, Lexa G; Wanjala, Bramwel W; Wamalwa, Mark; Harvey, Jagger J W

    2015-01-01

    Members of the genus Pleurotus, also commonly known as oyster mushroom, are well known for their socioeconomic and biotechnological potentials. Despite being one of the most important edible fungi, the scarce information about the genetic diversity of the species in natural populations has limited their sustainable utilization. A total of 71 isolates of Pleurotus species were collected from three natural populations: 25 isolates were obtained from Kakamega forest, 34 isolates from Arabuko Sokoke forest and 12 isolates from Mount Kenya forest. Amplified fragment length polymorphism (AFLP) was applied to thirteen isolates of locally grown Pleurotus species obtained from laboratory samples using five primer pair combinations. AFLP markers and internal transcribed spacer (ITS) sequences of the ribosomal DNA were used to estimate the genetic diversity and evaluate phylogenetic relationships, respectively, among and within populations. The five primer pair combinations generated 293 polymorphic loci across the 84 isolates. The mean genetic diversity among the populations was 0.25 with the population from Arabuko Sokoke having higher (0.27) diversity estimates compared to Mount Kenya population (0.24). Diversity between the isolates from the natural population (0.25) and commercial cultivars (0.24) did not differ significantly. However, diversity was greater within (89%; P > 0.001) populations than among populations. Homology search analysis against the GenBank database using 16 rDNA ITS sequences randomly selected from the two clades of AFLP dendrogram revealed three mushroom species: P. djamor, P. floridanus and P. sapidus; the three mushrooms form part of the diversity of Pleurotus species in Kenya. The broad diversity within the Kenyan Pleurotus species suggests the possibility of obtaining native strains suitable for commercial cultivation. © 2015 by The Mycological Society of America.

  6. Relationships among walleye population characteristics and genetic diversity in northern Wisconsin Lakes

    USGS Publications Warehouse

    Waterhouse, Matthew D.; Sloss, Brian L.; Isermann, Daniel A.

    2014-01-01

    The maintenance of genetic integrity is an important goal of fisheries management, yet little is known regarding the effects of management actions (e.g., stocking, harvest regulations) on the genetic diversity of many important fish species. Furthermore, relationships between population characteristics and genetic diversity remain poorly understood. We examined relationships among population demographics (abundance, recruitment, sex ratio, and mean age of the breeding population), stocking intensity, and genetic characteristics (heterozygosity, effective number of alleles, allelic richness, Wright's inbreeding coefficient, effective population size [Ne], mean d2 [a measure of inbreeding], mean relatedness, and pairwise population ΦST estimates) for 15 populations of Walleye Sander vitreus in northern Wisconsin. We also tested for potential demographic and genetic influences on Walleye body condition and early growth. Combinations of demographic variables explained 47.1–79.8% of the variation in genetic diversity. Skewed sex ratios contributed to a reduction in Ne and subsequent increases in genetic drift and relatedness among individuals within populations; these factors were correlated to reductions in allelic richness and early growth rate. Levels of inbreeding were negatively related to both age-0 abundance and mean age, suggesting Ne was influenced by recruitment and generational overlap. A negative relationship between the effective number of alleles and body condition suggests stocking affected underlying genetic diversity of recipient populations and the overall productivity of the population. These relationships may result from poor performance of stocked fish, outbreeding depression, or density-dependent factors. An isolation-by-distance pattern of genetic diversity was apparent in nonstocked populations, but was disrupted in stocked populations, suggesting that stocking affected genetic structure. Overall, demographic factors were related to genetic

  7. Fire Increases Genetic Diversity of Populations of Six-Lined Racerunner.

    PubMed

    Ragsdale, Alexandria K; Frederick, Bridget M; Dukes, David W; Liebl, Andrea L; Ashton, Kyle G; McCoy, Earl D; Mushinsky, Henry R; Schrey, Aaron W

    2016-01-01

    Wildfires are highly variable and can disturb habitats, leading to direct and indirect effects on the genetic characteristics of local populations. Florida scrub is a fire-dependent, highly fragmented, and severely threatened habitat. Understanding the effect of fire on genetic characteristics of the species that use this habitat is critically important. We investigated one such lizard, the Six-lined Racerunner (Aspidoscelis sexlineata), which has a strong preference for open areas. We collected Six-lined Racerunners (n = 154) from 11 sites in Highlands County, FL, and defined 2 time-since-last-fire (TSF) categories: recently burned and long unburned. We screened genetic variation at 6 microsatellites to estimate genetic differentiation and compare genetic diversity among sites to determine the relationship with TSF. A clear pattern exists between genetic diversity and TSF in the absence of strong genetic differentiation. Genetic diversity was greater and inbreeding was lower in sites with more recent TSF, and genetic characteristics had significantly larger variance in long unburned sites compared with more recently burned sites. Our results suggest that fire suppression increases variance in genetic characteristics of the Six-lined Racerunner. More generally, fire may benefit genetic characteristics of some species that use fire-dependent habitats and management efforts for such severely fragmented habitat will be challenged by the presence of multiple species with incompatible fire preferences. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution.

    PubMed

    Ling, Shaoping; Hu, Zheng; Yang, Zuyu; Yang, Fang; Li, Yawei; Lin, Pei; Chen, Ke; Dong, Lili; Cao, Lihua; Tao, Yong; Hao, Lingtong; Chen, Qingjian; Gong, Qiang; Wu, Dafei; Li, Wenjie; Zhao, Wenming; Tian, Xiuyun; Hao, Chunyi; Hungate, Eric A; Catenacci, Daniel V T; Hudson, Richard R; Li, Wen-Hsiung; Lu, Xuemei; Wu, Chung-I

    2015-11-24

    The prevailing view that the evolution of cells in a tumor is driven by Darwinian selection has never been rigorously tested. Because selection greatly affects the level of intratumor genetic diversity, it is important to assess whether intratumor evolution follows the Darwinian or the non-Darwinian mode of evolution. To provide the statistical power, many regions in a single tumor need to be sampled and analyzed much more extensively than has been attempted in previous intratumor studies. Here, from a hepatocellular carcinoma (HCC) tumor, we evaluated multiregional samples from the tumor, using either whole-exome sequencing (WES) (n = 23 samples) or genotyping (n = 286) under both the infinite-site and infinite-allele models of population genetics. In addition to the many single-nucleotide variations (SNVs) present in all samples, there were 35 "polymorphic" SNVs among samples. High genetic diversity was evident as the 23 WES samples defined 20 unique cell clones. With all 286 samples genotyped, clonal diversity agreed well with the non-Darwinian model with no evidence of positive Darwinian selection. Under the non-Darwinian model, MALL (the number of coding region mutations in the entire tumor) was estimated to be greater than 100 million in this tumor. DNA sequences reveal local diversities in small patches of cells and validate the estimation. In contrast, the genetic diversity under a Darwinian model would generally be orders of magnitude smaller. Because the level of genetic diversity will have implications on therapeutic resistance, non-Darwinian evolution should be heeded in cancer treatments even for microscopic tumors.

  9. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution

    PubMed Central

    Ling, Shaoping; Hu, Zheng; Yang, Zuyu; Yang, Fang; Li, Yawei; Lin, Pei; Chen, Ke; Dong, Lili; Cao, Lihua; Tao, Yong; Hao, Lingtong; Chen, Qingjian; Gong, Qiang; Wu, Dafei; Li, Wenjie; Zhao, Wenming; Tian, Xiuyun; Hao, Chunyi; Hungate, Eric A.; Catenacci, Daniel V. T.; Hudson, Richard R.; Li, Wen-Hsiung; Lu, Xuemei; Wu, Chung-I

    2015-01-01

    The prevailing view that the evolution of cells in a tumor is driven by Darwinian selection has never been rigorously tested. Because selection greatly affects the level of intratumor genetic diversity, it is important to assess whether intratumor evolution follows the Darwinian or the non-Darwinian mode of evolution. To provide the statistical power, many regions in a single tumor need to be sampled and analyzed much more extensively than has been attempted in previous intratumor studies. Here, from a hepatocellular carcinoma (HCC) tumor, we evaluated multiregional samples from the tumor, using either whole-exome sequencing (WES) (n = 23 samples) or genotyping (n = 286) under both the infinite-site and infinite-allele models of population genetics. In addition to the many single-nucleotide variations (SNVs) present in all samples, there were 35 “polymorphic” SNVs among samples. High genetic diversity was evident as the 23 WES samples defined 20 unique cell clones. With all 286 samples genotyped, clonal diversity agreed well with the non-Darwinian model with no evidence of positive Darwinian selection. Under the non-Darwinian model, MALL (the number of coding region mutations in the entire tumor) was estimated to be greater than 100 million in this tumor. DNA sequences reveal local diversities in small patches of cells and validate the estimation. In contrast, the genetic diversity under a Darwinian model would generally be orders of magnitude smaller. Because the level of genetic diversity will have implications on therapeutic resistance, non-Darwinian evolution should be heeded in cancer treatments even for microscopic tumors. PMID:26561581

  10. Theileria lestoquardi displays reduced genetic diversity relative to sympatric Theileria annulata in Oman.

    PubMed

    Al-Hamidhi, Salama; Weir, William; Kinnaird, Jane; Tageledin, Mohemmed; Beja-Pereira, Albano; Morrison, Ivan; Thompson, Joanne; Tait, Andy; Shiels, Brian; Babiker, Hamza A

    2016-09-01

    The Apicomplexan parasites, Theileria lestoquardi and Theileria annulata, the causative agents of theileriosis in small and large ruminants, are widespread in Oman, in areas where cattle, sheep and goats co-graze. Genetic analysis can provide insight into the dynamics of the parasite and the evolutionary relationship between species. Here we identified ten genetic markers (micro- and mini-satellites) spread across the T. lestoquardi genome, and confirmed their species specificity. We then genotyped T. lestoquardi in different regions in Oman. The genetic structures of T. lestoquardi populations were then compared with previously published data, for comparable panels of markers, for sympatric T. annulata isolates. In addition, we examined two antigen genes in T. annulata (Tams1 and Ta9) and their orthologues in T. lestoquardi (Tlms1 and Tl9). The genetic diversity and multiplicity of infection (MOI) were lower in T. lestoquardi (He=0.64-0.77) than T. annulata (He=0.83-0.85) in all populations. Very limited genetic differentiation was found among T. lestoquardi and T. annulata populations. In contrast, limited but significant linkage disequilibrium was observed within regional populations of each species. We identified eight T. annulata isolates in small ruminants; the diversity and MOI were lower among ovine/caprine compared to bovine. Sequence diversity of the antigen genes, Tams1 and Ta9 in T. annulata (π=0.0733 and π=0.155 respectively), was 10-fold and 3-fold higher than the orthologous Tlms1 and Tl9 in T. lestoquardi (π=0.006 and π=0.055, respectively). Despite a comparably high prevalence, T. lestoquardi has lower genetic diversity compared to sympatric T. annulata populations. There was no evidence of differentiation among populations of either species. In comparison to T. lestoquardi, T. annulata has a larger effective population size. While genetic exchange and recombination occur in both parasite species, the extent of diversity, overall, is less for T

  11. Genetic and Metabolite Diversity of Sardinian Populations of Helichrysum italicum

    PubMed Central

    Melito, Sara; Sias, Angela; Petretto, Giacomo L.; Chessa, Mario; Pintore, Giorgio; Porceddu, Andrea

    2013-01-01

    Background Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. Methods H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. Key results The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. Conclusions The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil. PMID:24260149

  12. Genetic and metabolite diversity of Sardinian populations of Helichrysum italicum.

    PubMed

    Melito, Sara; Sias, Angela; Petretto, Giacomo L; Chessa, Mario; Pintore, Giorgio; Porceddu, Andrea

    2013-01-01

    Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil.

  13. Genetic diversity and reproductive success in mandrills (Mandrillus sphinx).

    PubMed

    Charpentier, M; Setchell, J M; Prugnolle, F; Knapp, L A; Wickings, E J; Peignot, P; Hossaert-McKey, M

    2005-11-15

    Recent studies of wild animal populations have shown that estimators of neutral genetic diversity, such as mean heterozygosity, are often correlated with various fitness traits, such as survival, disease susceptibility, or reproductive success. We used two estimators of genetic diversity to explore the relationship between heterozygosity and reproductive success in male and female mandrills (Mandrillus sphinx) living in a semifree ranging setting in Gabon. Because social rank is known to influence reproductive success in both sexes, we also examined the correlation between genetic diversity and social rank in females, and acquisition of alpha status in males, as well as length of alpha male tenure. We found that heterozygous individuals showed greater reproductive success, with both females and males producing more offspring. However, heterozygosity influenced reproductive success only in dominant males, not in subordinates. Neither the acquisition of alpha status in males, nor social rank in females, was significantly correlated with heterozygosity, although more heterozygous alpha males showed longer tenure than homozygous ones. We also tested whether the benefits of greater genetic diversity were due mainly to a genome-wide effect of inbreeding depression or to heterosis at one or a few loci. Multilocus effects best explained the correlation between heterozygosity and reproductive success and tenure, indicating the occurrence of inbreeding depression in this mandrill colony.

  14. Genetic diversity promotes homeostasis in insect colonies.

    PubMed

    Oldroyd, Benjamin P; Fewell, Jennifer H

    2007-08-01

    Although most insect colonies are headed by a singly mated queen, some ant, wasp and bee taxa have evolved high levels of multiple mating or 'polyandry'. We argue here that a contributing factor towards the evolution of polyandry is that the resulting genetic diversity within colonies provides them with a system of genetically based task specialization, enabling them to respond resiliently to environmental perturbation. An alternate view is that genetic contributions to task specialization are a side effect of multiple mating, which evolved through other causes, and that genetically based task specialization now makes little or no contribution to colony fitness.

  15. Fatty Acid Diversity is Not Associated with Neutral Genetic Diversity in Native Populations of the Biodiesel Plant Jatropha curcas L.

    PubMed

    Martínez-Díaz, Yesenia; González-Rodríguez, Antonio; Rico-Ponce, Héctor Rómulo; Rocha-Ramírez, Víctor; Ovando-Medina, Isidro; Espinosa-García, Francisco J

    2017-01-01

    Jatropha curcas L. (Euphorbiaceae) is a shrub native to Mexico and Central America, which produces seeds with a high oil content that can be converted to biodiesel. The genetic diversity of this plant has been widely studied, but it is not known whether the diversity of the seed oil chemical composition correlates with neutral genetic diversity. The total seed oil content, the diversity of profiles of fatty acids and phorbol esters were quantified, also, the genetic diversity obtained from simple sequence repeats was analyzed in native populations of J. curcas in Mexico. Using the fatty acids profiles, a discriminant analysis recognized three groups of individuals according to geographical origin. Bayesian assignment analysis revealed two genetic groups, while the genetic structure of the populations could not be explained by isolation-by-distance. Genetic and fatty acid profile data were not correlated based on Mantel test. Also, phorbol ester content and genetic diversity were not associated. Multiple linear regression analysis showed that total oil content was associated with altitude and seasonality of temperature. The content of unsaturated fatty acids was associated with altitude. Therefore, the cultivation planning of J. curcas should take into account chemical variation related to environmental factors. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  16. The accumulation of genetic diversity within a canopy-stored seed bank.

    PubMed

    Ayre, David; O'Brien, Eleanor; Ottewell, Kym; Whelan, Rob

    2010-07-01

    Many plants regenerate after fire from a canopy-stored seed bank, in which seed are housed in fire resistant confructescences (cones) that remain on maternal plants. This strategy would be favoured if plants accumulate a sufficiently large and genetically diverse seed bank during interfire intervals. We use a 16-year demographic study and surveys of microsatellite variation to quantify and explain the rate of accumulation of genetic diversity within the canopy seed bank of the shrub Banksia spinulosa. Flowering and fruit set were highly variable. An initial sample in 1991 of 354 reproductively mature plants generated 426 cones over 16 years, of which only 55 cones from 40 maternal plants persisted until 2005. By genotyping seed from these 55 cones we demonstrated that genetic diversity accumulated rapidly within the seed bank. Resampling revealed that diversity was determined by the number, not the age, of cones. Cones were widely distributed among plants, outcrossing rates were high (mean t(m) = 1.00 +/- 0.04) and biparental inbreeding low. Adults displayed little evidence of isolation by distance and the genotypic diversity of seed cohorts was independent of the density of neighbouring potential sires. We therefore estimate that within at least 13 individual years the number of cones produced per year (14-63) would have contained 100% of the adult genetic diversity. We conclude that a highly outcrossed mating system and relatively widespread pollen dispersal ensure the rapid development of a genetically diverse and spatially and temporally homogeneous seed bank.

  17. Limited Genetic Diversity Preceded Extinction of the Tasmanian Tiger

    PubMed Central

    Menzies, Brandon R.; Renfree, Marilyn B.; Heider, Thomas; Mayer, Frieder; Hildebrandt, Thomas B.; Pask, Andrew J.

    2012-01-01

    The Tasmanian tiger or thylacine was the largest carnivorous marsupial when Europeans first reached Australia. Sadly, the last known thylacine died in captivity in 1936. A recent analysis of the genome of the closely related and extant Tasmanian devil demonstrated limited genetic diversity between individuals. While a similar lack of diversity has been reported for the thylacine, this analysis was based on just two individuals. Here we report the sequencing of an additional 12 museum-archived specimens collected between 102 and 159 years ago. We examined a portion of the mitochondrial DNA hyper-variable control region and determined that all sequences were on average 99.5% identical at the nucleotide level. As a measure of accuracy we also sequenced mitochondrial DNA from a mother and two offspring. As expected, these samples were found to be 100% identical, validating our methods. We also used 454 sequencing to reconstruct 2.1 kilobases of the mitochondrial genome, which shared 99.91% identity with the two complete thylacine mitochondrial genomes published previously. Our thylacine genomic data also contained three highly divergent putative nuclear mitochondrial sequences, which grouped phylogenetically with the published thylacine mitochondrial homologs but contained 100-fold more polymorphisms than the conserved fragments. Together, our data suggest that the thylacine population in Tasmania had limited genetic diversity prior to its extinction, possibly as a result of their geographic isolation from mainland Australia approximately 10,000 years ago. PMID:22530022

  18. Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras.

    PubMed

    Lopez, Ana Cecilia; Ortiz, Andres; Coello, Jorge; Sosa-Ochoa, Wilfredo; Torres, Rosa E Mejia; Banegas, Engels I; Jovel, Irina; Fontecha, Gustavo A

    2012-11-26

    Understanding the population structure of Plasmodium species through genetic diversity studies can assist in the design of more effective malaria control strategies, particularly in vaccine development. Central America is an area where malaria is a public health problem, but little is known about the genetic diversity of the parasite's circulating species. This study aimed to investigate the allelic frequency and molecular diversity of five surface antigens in field isolates from Honduras. Five molecular markers were analysed to determine the genotypes of Plasmodium vivax and Plasmodium falciparum from endemic areas in Honduras. Genetic diversity of ama-1, msp-1 and csp was investigated for P. vivax, and msp-1 and msp-2 for P. falciparum. Allelic frequencies were calculated and sequence analysis performed. A high genetic diversity was observed within Plasmodium isolates from Honduras. A different number of genotypes were elucidated: 41 (n = 77) for pvama-1; 23 (n = 84) for pvcsp; and 23 (n = 35) for pfmsp-1. Pvcsp sequences showed VK210 as the only subtype present in Honduran isolates. Pvmsp-1 (F2) was the most polymorphic marker for P. vivax isolates while pvama-1 was least variable. All three allelic families described for pfmsp-1 (n = 30) block 2 (K1, MAD20, and RO33), and both allelic families described for the central domain of pfmsp-2 (n = 11) (3D7 and FC27) were detected. However, K1 and 3D7 allelic families were predominant. All markers were randomly distributed across the country and no geographic correlation was found. To date, this is the most complete report on molecular characterization of P. vivax and P. falciparum field isolates in Honduras with regards to genetic diversity. These results indicate that P. vivax and P. falciparum parasite populations are highly diverse in Honduras despite the low level of transmission.

  19. Stress-related hormones and genetic diversity in sea otters (Enhydra lutris)

    USGS Publications Warehouse

    Larson, Shawn E.; Monson, Daniel H.; Ballachey, Brenda E.; Jameson, Ronald J.; Wasser, S.K.

    2009-01-01

    Sea otters (Enhydra lutris) once ranged throughout the coastal regions of the north Pacific, but were extirpated throughout their range during the fur trade of the 18th and 19th centuries, leaving only small, widely scattered, remnant populations. All extant sea otter populations are believed to have experienced a population bottleneck and thus have lost genetic variation. Populations that undergo severe population reduction and associated inbreeding may suffer from a general reduction in fitness termed inbreeding depression. Inbreeding depression may result in decreased testosterone levels in males, and reduced ability to respond to stressful stimuli associated with an increase in the stress-related adrenal glucocorticoid hormones, cortisol and corticosterone. We investigated correlations of testosterone, cortisol, and corticosterone with genetic diversity in sea otters from five populations. We found a significant negative correlation between genetic diversity and both mean population-level (r2= 0.27, P < 0.001) and individual-level (r2= 0.54, P < 0.001) corticosterone values, as well as a negative correlation between genetic diversity and cortisol at the individual level (r2= 0.17, P= 0.04). No relationship was found between genetic diversity and testosterone (P= 0.57). The strength of the correlations, especially with corticosterone, suggests potential negative consequences for overall population health, particularly for populations with the lowest genetic diversity.

  20. Molecular detection and genetic diversity of Babesia gibsoni in dogs in India.

    PubMed

    Singh, M N; Raina, O K; Sankar, M; Rialch, Ajayta; Tigga, M N; Kumar, G Ravi; Banerjee, P S

    2016-07-01

    Babesia gibsoni is a tick borne intraerythrocytic protozoan parasite causing piroplasmosis in dogs and has been predominantly reported in Asian countries, including Japan, Korea, Taiwan, Malaysia, Bangladesh and India. The present communication is the first evidence on the genetic diversity of B. gibsoni of dogs in India. Blood samples were collected from 164 dogs in north and northeast states of India and 13 dogs (7.9%) were found positive for B. gibsoni infection by microscopic examination of blood smears. Molecular confirmation of these microscopic positive cases for B. gibsoni was carried out by 18S rRNA nested-PCR, followed by sequencing. Nested-PCR for the 18S rRNA gene was also carried out on microscopically B. gibsoni negative samples that detected a higher percentage of dogs (28.6%) infected with B. gibsoni. Genetic diversity in B. gibsoni in India was determined by studying B. gibsoni thrombospondin-related adhesive protein (BgTRAP) gene fragments (855bp) in 19 isolates from four north and northeast states of India. Phylogenetic analysis of the BgTRAP gene revealed that B. gibsoni parasite in India and Bangladesh formed a distinct cluster away from other Asian B. gibsoni isolates available from Japan, Taiwan and Korea. In addition, tandem repeat analysis of the BgTRAP gene clearly showed considerable genetic variation among Indian isolates that was shared by B. gibsoni isolates of Bangladesh. These results suggested that B. gibsoni parasites in a different genetic clade are endemic in dogs in India and Bangladesh. Further studies are required for better understanding of the genetic diversity of B. gibsoni prevalent in India and in its neighbouring countries. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Centennial olive trees as a reservoir of genetic diversity

    PubMed Central

    Díez, Concepción M.; Trujillo, Isabel; Barrio, Eladio; Belaj, Angjelina; Barranco, Diego; Rallo, Luis

    2011-01-01

    Background and Aims Genetic characterization and phylogenetic analysis of the oldest trees could be a powerful tool both for germplasm collection and for understanding the earliest origins of clonally propagated fruit crops. The olive tree (Olea europaea L.) is a suitable model to study the origin of cultivars due to its long lifespan, resulting in the existence of both centennial and millennial trees across the Mediterranean Basin. Methods The genetic identity and diversity as well as the phylogenetic relationships among the oldest wild and cultivated olives of southern Spain were evaluated by analysing simple sequence repeat markers. Samples from both the canopy and the roots of each tree were analysed to distinguish which trees were self-rooted and which were grafted. The ancient olives were also put into chronological order to infer the antiquity of traditional olive cultivars. Key Results Only 9·6 % out of 104 a priori cultivated ancient genotypes matched current olive cultivars. The percentage of unidentified genotypes was higher among the oldest olives, which could be because they belong to ancient unknown cultivars or because of possible intra-cultivar variability. Comparing the observed patterns of genetic variation made it possible to distinguish which trees were grafted onto putative wild olives. Conclusions This study of ancient olives has been fruitful both for germplasm collection and for enlarging our knowledge about olive domestication. The findings suggest that grafting pre-existing wild olives with olive cultivars was linked to the beginnings of olive growing. Additionally, the low number of genotypes identified in current cultivars points out that the ancient olives from southern Spain constitute a priceless reservoir of genetic diversity. PMID:21852276

  2. Gene flow and genetic diversity of a broadcast-spawning coral in northern peripheral populations.

    PubMed

    Nakajima, Yuichi; Nishikawa, Akira; Iguchi, Akira; Sakai, Kazuhiko

    2010-06-16

    Recently, reef-building coral populations have been decreasing worldwide due to various disturbances. Population genetic studies are helpful for estimating the genetic connectivity among populations of marine sessile organisms with metapopulation structures such as corals. Moreover, the relationship between latitude and genetic diversity is informative when evaluating the fragility of populations. In this study, using highly variable markers, we examined the population genetics of the broadcast-spawning coral Acropora digitifera at 19 sites in seven regions along the 1,000 km long island chain of Nansei Islands, Japan. This area includes both subtropical and temperate habitats. Thus, the coral populations around the Nansei Islands in Japan are northern peripheral populations that would be subjected to environmental stresses different from those in tropical areas. The existence of high genetic connectivity across this large geographic area was suggested for all sites (F(ST) < or = 0.033) although small but significant genetic differentiation was detected among populations in geographically close sites and regions. In addition, A. digitifera appears to be distributed throughout the Nansei Islands without losing genetic diversity. Therefore, A. digitifera populations in the Nansei Islands may be able to recover relatively rapidly even when high disturbances of coral communities occur locally if populations on other reefs are properly maintained.

  3. Geographical distribution of genetic diversity in Secale landrace and wild accessions.

    PubMed

    Hagenblad, Jenny; Oliveira, Hugo R; Forsberg, Nils E G; Leino, Matti W

    2016-01-19

    Rye, Secale cereale L., has historically been a crop of major importance and is still a key cereal in many parts of Europe. Single populations of cultivated rye have been shown to capture a large proportion of the genetic diversity present in the species, but the distribution of genetic diversity in subspecies and across geographical areas is largely unknown. Here we explore the structure of genetic diversity in landrace rye and relate it to that of wild and feral relatives. A total of 567 SNPs were analysed in 434 individuals from 76 accessions of wild, feral and cultivated rye. Genetic diversity was highest in cultivated rye, slightly lower in feral rye taxa and significantly lower in the wild S. strictum Presl. and S. africanum Stapf. Evaluation of effects from ascertainment bias suggests underestimation of diversity primarily in S. strictum and S. africanum. Levels of ascertainment bias, STRUCTURE and principal component analyses all supported the proposed classification of S. africanum and S. strictum as a separate species from S. cereale. S. afghanicum (Vav.) Roshev, S. ancestrale Zhuk., S. dighoricum (Vav.) Roshev, S. segetale (Zhuk.) Roshev and S. vavilovii Grossh. seemed, in contrast, to share the same gene pool as S. cereale and their genetic clustering was more dependent on geographical origin than taxonomic classification. S. vavilovii was found to be the most likely wild ancestor of cultivated rye. Among cultivated rye landraces from Europe, Asia and North Africa five geographically discrete genetic clusters were identified. These had only limited overlap with major agro-climatic zones. Slash-and-burn rye from the Finnmark area in Scandinavia formed a distinct cluster with little similarity to other landrace ryes. Regional studies of Northern and South-West Europe demonstrate different genetic distribution patterns as a result of varying cultivation intensity. With the exception of S. strictum and S. africanum different rye taxa share the majority of

  4. Genetic Diversity in the UV Sex Chromosomes of the Brown Alga Ectocarpus.

    PubMed

    Avia, Komlan; Lipinska, Agnieszka P; Mignerot, Laure; Montecinos, Alejandro E; Jamy, Mahwash; Ahmed, Sophia; Valero, Myriam; Peters, Akira F; Cock, J Mark; Roze, Denis; Coelho, Susana M

    2018-06-06

    Three types of sex chromosome system exist in nature: diploid XY and ZW systems and haploid UV systems. For many years, research has focused exclusively on XY and ZW systems, leaving UV chromosomes and haploid sex determination largely neglected. Here, we perform a detailed analysis of DNA sequence neutral diversity levels across the U and V sex chromosomes of the model brown alga Ectocarpus using a large population dataset. We show that the U and V non-recombining regions of the sex chromosomes (SDR) exhibit about half as much neutral diversity as the autosomes. This difference is consistent with the reduced effective population size of these regions compared with the rest of the genome, suggesting that the influence of additional factors such as background selection or selective sweeps is minimal. The pseudoautosomal region (PAR) of this UV system, in contrast, exhibited surprisingly high neutral diversity and there were several indications that genes in this region may be under balancing selection. The PAR of Ectocarpus is known to exhibit unusual genomic features and our results lay the foundation for further work aimed at understanding whether, and to what extent, these structural features underlie the high level of genetic diversity. Overall, this study fills a gap between available information on genetic diversity in XY/ZW systems and UV systems and significantly contributes to advancing our knowledge of the evolution of UV sex chromosomes.

  5. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies.

    PubMed

    Jara, Laura; Muñoz, Irene; Cepero, Almudena; Martín-Hernández, Raquel; Serrano, José; Higes, Mariano; De la Rúa, Pilar

    2015-10-01

    In the last decades, the rapid spread of diseases, such as varroosis and nosemosis, associated with massive honey bee colonies mortality around the world has significantly decreased the number and size of honey bee populations and possibly their genetic diversity. Here, we compare the genetic diversity of Iberian honey bee colonies in two samplings performed in 2006 and 2010 in relation to the presence of the pathogenic agents Nosema apis, Nosema ceranae, and Varroa destructor in order to determine whether parasite and pathogen spread in honey bee colonies reflects changes in genetic diversity. We found that the genetic diversity remained similar, while the incidence of N. ceranae increased and the incidence of N. apis and V. destructor decreased slightly. These results indicate that the genetic diversity was not affected by the presence of these pathogenic agents in the analyzed period. However, the two groups of colonies with and without Nosema/Varroa detected showed significant genetic differentiation (G test). A detailed analysis of the allelic segregation of microsatellite loci in Nosema/Varroa-negative colonies and parasitized ones revealed two outlier loci related to genes involved in immune response.

  6. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies

    NASA Astrophysics Data System (ADS)

    Jara, Laura; Muñoz, Irene; Cepero, Almudena; Martín-Hernández, Raquel; Serrano, José; Higes, Mariano; De la Rúa, Pilar

    2015-10-01

    In the last decades, the rapid spread of diseases, such as varroosis and nosemosis, associated with massive honey bee colonies mortality around the world has significantly decreased the number and size of honey bee populations and possibly their genetic diversity. Here, we compare the genetic diversity of Iberian honey bee colonies in two samplings performed in 2006 and 2010 in relation to the presence of the pathogenic agents Nosema apis, Nosema ceranae, and Varroa destructor in order to determine whether parasite and pathogen spread in honey bee colonies reflects changes in genetic diversity. We found that the genetic diversity remained similar, while the incidence of N. ceranae increased and the incidence of N. apis and V. destructor decreased slightly. These results indicate that the genetic diversity was not affected by the presence of these pathogenic agents in the analyzed period. However, the two groups of colonies with and without Nosema/Varroa detected showed significant genetic differentiation (G test). A detailed analysis of the allelic segregation of microsatellite loci in Nosema/Varroa-negative colonies and parasitized ones revealed two outlier loci related to genes involved in immune response.

  7. Genetic diversity and fitness in black-footed ferrets before and during a bottleneck.

    PubMed

    Wisely, S M; Buskirk, S W; Fleming, M A; McDonald, D B; Ostrander, E A

    2002-01-01

    The black-footed ferret (Mustela nigripes) is an endangered North American carnivore that underwent a well-documented population bottleneck in the mid-1980s. To better understand the effects of a bottleneck on a free-ranging carnivore population, we used 24 microsatellite loci to compare genetic diversity before versus during the bottleneck, and compare the last wild population to two historical populations. We also compared genetic diversity in black-footed ferrets to that of two sibling species, the steppe polecat (Mustela eversmanni) and the European polecat (Mustela putorius). Black-footed ferrets during the bottleneck had less genetic diversity than steppe polecats. The three black-footed ferret populations were well differentiated (F(ST) = 0.57 +/- 0.15; mean +/- SE). We attributed the decrease in genetic diversity in black-footed ferrets to localized extinction of these genetically distinct subpopulations and to the bottleneck in the surviving subpopulation. Although genetic diversity decreased, female fecundity and juvenile survival were not affected by the population bottleneck.

  8. Evaluation of genetic diversity in Piper spp using RAPD and SRAP markers.

    PubMed

    Jiang, Y; Liu, J-P

    2011-11-29

    Random amplified polymorphic DNA (RAPD) and sequence-related amplified polymorphism (SRAP) analysis were applied to 74 individual plants of Piper spp in Hainan Island. The results showed that the SRAP technique may be more informative and more efficient and effective for studying genetic diversity of Piper spp than the RAPD technique. The overall level of genetic diversity among Piper spp in Hainan was relatively high, with the mean Shannon diversity index being 0.2822 and 0.2909, and the mean Nei's genetic diversity being 0.1880 and 0.1947, calculated with RAPD and SRAP data, respectively. The ranges of the genetic similarity coefficient were 0.486-0.991 and 0.520-1.000 for 74 individual plants of Piper spp (the mean genetic distance was 0.505 and 0.480) and the within-species genetic distance ranged from 0.063 to 0.291 and from 0.096 to 0.234, estimated with RAPD and SRAP data, respectively. These genetic indices indicated that these species are closely related genetically. The dendrogram generated with the RAPD markers was topologically different from the dendrogram based on SRAP markers, but the SRAP technique clearly distinguished all Piper spp from each other. Evaluation of genetic variation levels of six populations showed that the effective number of alleles, Nei's gene diversity and the Shannon information index within Jianfengling and Diaoluoshan populations are higher than those elsewhere; consequently conservation of wild resources of Piper in these two regions should have priority.

  9. Seed-mediated gene flow promotes genetic diversity of weedy rice within populations: implications for weed management.

    PubMed

    He, Zhuoxian; Jiang, Xiaoqi; Ratnasekera, Disna; Grassi, Fabrizio; Perera, Udugahapattuwage; Lu, Bao-Rong

    2014-01-01

    Increased infestation of weedy rice-a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka.

  10. Noninvasive genetics provides insights into the population size and genetic diversity of an Amur tiger population in China.

    PubMed

    Wang, Dan; Hu, Yibo; Ma, Tianxiao; Nie, Yonggang; Xie, Yan; Wei, Fuwen

    2016-01-01

    Understanding population size and genetic diversity is critical for effective conservation of endangered species. The Amur tiger (Panthera tigris altaica) is the largest felid and a flagship species for wildlife conservation. Due to habitat loss and human activities, available habitat and population size are continuously shrinking. However, little is known about the true population size and genetic diversity of wild tiger populations in China. In this study, we collected 55 fecal samples and 1 hair sample to investigate the population size and genetic diversity of wild Amur tigers in Hunchun National Nature Reserve, Jilin Province, China. From the samples, we determined that 23 fecal samples and 1 hair sample were from 7 Amur tigers: 2 males, 4 females and 1 individual of unknown sex. Interestingly, 2 fecal samples that were presumed to be from tigers were from Amur leopards, highlighting the significant advantages of noninvasive genetics over traditional methods in studying rare and elusive animals. Analyses from this sample suggested that the genetic diversity of wild Amur tigers is much lower than that of Bengal tigers, consistent with previous findings. Furthermore, the genetic diversity of this Hunchun population in China was lower than that of the adjoining subpopulation in southwest Primorye Russia, likely due to sampling bias. Considering the small population size and relatively low genetic diversity, it is urgent to protect this endangered local subpopulation in China. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  11. Genetic diversity of Entamoeba: Novel ribosomal lineages from cockroaches

    PubMed Central

    Kawano, Tetsuro; Imada, Mihoko; Chamavit, Pennapa; Kobayashi, Seiki; Hashimoto, Tetsuo

    2017-01-01

    Our current taxonomic perspective on Entamoeba is largely based on small-subunit ribosomal RNA genes (SSU rDNA) from Entamoeba species identified in vertebrate hosts with minor exceptions such as E. moshkovskii from sewage water and E. marina from marine sediment. Other Entamoeba species have also been morphologically identified and described from non-vertebrate species such as insects; however, their genetic diversity remains unknown. In order to further disclose the diversity of the genus, we investigated Entamoeba spp. in the intestines of three cockroach species: Periplaneta americana, Blaptica dubia, and Gromphadorhina oblongonota. We obtained 134 Entamoeba SSU rDNA sequences from 186 cockroaches by direct nested PCR using the DNA extracts of intestines from cockroaches, followed by scrutinized BLASTn screening and phylogenetic analyses. All the sequences identified in this study were distinct from those reported from known Entamoeba species, and considered as novel Entamoeba ribosomal lineages. Furthermore, they were positioned at the base of the clade of known Entamoeba species and displayed remarkable degree of genetic diversity comprising nine major groups in the three cockroach species. This is the first report of the diversity of SSU rDNA sequences from Entamoeba in non-vertebrate host species, and should help to understand the genetic diversity of the genus Entamoeba. PMID:28934335

  12. Old-growth Platycladus orientalis as a resource for reproductive capacity and genetic diversity.

    PubMed

    Zhu, Lin; Lou, Anru

    2013-01-01

    Platycladus orientalis (Cupressaceae) is an old-growth tree species which distributed in the imperial parks and ancient temples in Beijing, China. We aim to (1) examine the genetic diversity and reproductive traits of old-growth and young populations of P. orientalis to ascertain whether the older populations contain a higher genetic diversity, more private alleles and a higher reproductive output compared with younger populations; (2) determine the relationships between the age of the population and the genetic diversity and reproductive traits; and (3) determine whether the imperial parks and ancient temples played an important role in maintaining the reproductive capacity and genetic diversity of Platycladus orientalis. Samples from seven young (younger than 100 yrs.) and nine old-growth (older than 300 yrs.) artificial populations were collected. For comparison, three young and two old-growth natural populations were also sampled. Nine microsatellite loci were used to analyze genetic diversity parameters. These parameters were calculated using FSTAT version 2.9.3 and GenAlex v 6.41. The old-growth artificial populations of P. orientalis have significantly higher genetic diversity than younger artificial populations and similar levels to those in extant natural populations. The imperial parks and ancient temples, which have protected these old-growth trees for centuries, have played an important role in maintaining the genetic diversity and reproductive capacity of this tree species.

  13. Environmental factors influence both abundance and genetic diversity in a widespread bird species

    PubMed Central

    Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

    2013-01-01

    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations. PMID:24363897

  14. Considerable MHC Diversity Suggests That the Functional Extinction of Baiji Is Not Related to Population Genetic Collapse

    PubMed Central

    Xu, Shixia; Ju, Jianfeng; Zhou, Xuming; Wang, Lian; Zhou, Kaiya; Yang, Guang

    2012-01-01

    To further extend our understanding of the mechanism causing the current nearly extinct status of the baiji (Lipotes vexillifer), one of the most critically endangered species in the world, genetic diversity at the major histocompatibility complex (MHC) class II DRB locus was investigated in the baiji. Nine highly divergent DRB alleles were identified in 17 samples, with an average of 28.4 (13.2%) nucleotide difference and 16.7 (23.5%) amino acid difference between alleles. The unexpectedly high levels of DRB allelic diversity in the baiji may partly be attributable to its evolutionary adaptations to the freshwater environment which is regarded to have a higher parasite diversity compared to the marine environment. In addition, balancing selection was found to be the main mechanisms in generating sequence diversity at baiji DRB gene. Considerable sequence variation at the adaptive MHC genes despite of significant loss of neutral genetic variation in baiji genome might suggest that intense selection has overpowered random genetic drift as the main evolutionary forces, which further suggested that the critically endangered or nearly extinct status of the baiji is not an outcome of genetic collapse. PMID:22272349

  15. Bacteriophages of Gordonia spp. Display a Spectrum of Diversity and Genetic Relationships.

    PubMed

    Pope, Welkin H; Mavrich, Travis N; Garlena, Rebecca A; Guerrero-Bustamante, Carlos A; Jacobs-Sera, Deborah; Montgomery, Matthew T; Russell, Daniel A; Warner, Marcie H; Hatfull, Graham F

    2017-08-15

    The global bacteriophage population is large, dynamic, old, and highly diverse genetically. Many phages are tailed and contain double-stranded DNA, but these remain poorly characterized genomically. A collection of over 1,000 phages infecting Mycobacterium smegmatis reveals the diversity of phages of a common bacterial host, but their relationships to phages of phylogenetically proximal hosts are not known. Comparative sequence analysis of 79 phages isolated on Gordonia shows these also to be diverse and that the phages can be grouped into 14 clusters of related genomes, with an additional 14 phages that are "singletons" with no closely related genomes. One group of six phages is closely related to Cluster A mycobacteriophages, but the other Gordonia phages are distant relatives and share only 10% of their genes with the mycobacteriophages. The Gordonia phage genomes vary in genome length (17.1 to 103.4 kb), percentage of GC content (47 to 68.8%), and genome architecture and contain a variety of features not seen in other phage genomes. Like the mycobacteriophages, the highly mosaic Gordonia phages demonstrate a spectrum of genetic relationships. We show this is a general property of bacteriophages and suggest that any barriers to genetic exchange are soft and readily violable. IMPORTANCE Despite the numerical dominance of bacteriophages in the biosphere, there is a dearth of complete genomic sequences. Current genomic information reveals that phages are highly diverse genomically and have mosaic architectures formed by extensive horizontal genetic exchange. Comparative analysis of 79 phages of Gordonia shows them to not only be highly diverse, but to present a spectrum of relatedness. Most are distantly related to phages of the phylogenetically proximal host Mycobacterium smegmatis , although one group of Gordonia phages is more closely related to mycobacteriophages than to the other Gordonia phages. Phage genome sequence space remains largely unexplored, but

  16. How do reproductive skew and founder group size affect genetic diversity in reintroduced populations?

    PubMed

    Miller, K A; Nelson, N J; Smith, H G; Moore, J A

    2009-09-01

    Reduced genetic diversity can result in short-term decreases in fitness and reduced adaptive potential, which may lead to an increased extinction risk. Therefore, maintaining genetic variation is important for the short- and long-term success of reintroduced populations. Here, we evaluate how founder group size and variance in male reproductive success influence the long-term maintenance of genetic diversity after reintroduction. We used microsatellite data to quantify the loss of heterozygosity and allelic diversity in the founder groups from three reintroductions of tuatara (Sphenodon), the sole living representatives of the reptilian order Rhynchocephalia. We then estimated the maintenance of genetic diversity over 400 years (approximately 10 generations) using population viability analyses. Reproduction of tuatara is highly skewed, with as few as 30% of males mating across years. Predicted losses of heterozygosity over 10 generations were low (1-14%), and populations founded with more animals retained a greater proportion of the heterozygosity and allelic diversity of their source populations and founder groups. Greater male reproductive skew led to greater predicted losses of genetic diversity over 10 generations, but only accelerated the loss of genetic diversity at small population size (<250 animals). A reduction in reproductive skew at low density may facilitate the maintenance of genetic diversity in small reintroduced populations. If reproductive skew is high and density-independent, larger founder groups could be released to achieve genetic goals for management.

  17. Genetic diversity and population structure of an important wild berry crop

    PubMed Central

    Zoratti, Laura; Palmieri, Luisa; Jaakola, Laura; Häggman, Hely

    2015-01-01

    The success of plant breeding in the coming years will be associated with access to new sources of variation, which will include landraces and wild relatives of crop species. In order to access the reservoir of favourable alleles within wild germplasm, knowledge about the genetic diversity and the population structure of wild species is needed. Bilberry (Vaccinium myrtillus) is one of the most important wild crops growing in the forests of Northern European countries, noted for its nutritional properties and its beneficial effects on human health. Assessment of the genetic diversity of wild bilberry germplasm is needed for efforts such as in situ conservation, on-farm management and development of plant breeding programmes. However, to date, only a few local (small-scale) genetic studies of this species have been performed. We therefore conducted a study of genetic variability within 32 individual samples collected from different locations in Iceland, Norway, Sweden, Finland and Germany, and analysed genetic diversity among geographic groups. Four selected inter-simple sequence repeat primers allowed the amplification of 127 polymorphic loci which, based on analysis of variance, made it possible to identify 85 % of the genetic diversity within studied bilberry populations, being in agreement with the mixed-mating system of bilberry. Significant correlations were obtained between geographic and genetic distances for the entire set of samples. The analyses also highlighted the presence of a north–south genetic gradient, which is in accordance with recent findings on phenotypic traits of bilberry. PMID:26483325

  18. Promoting Utilization of Saccharum spp. Genetic Resources through Genetic Diversity Analysis and Core Collection Construction

    PubMed Central

    Pathak, Bhuvan; Ayala-Silva, Tomas; Yang, Xiping; Todd, James; Glynn, Neil C.; Kuhn, David N.; Glaz, Barry; Gilbert, Robert A.; Comstock, Jack C.; Wang, Jianping

    2014-01-01

    Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance. PMID:25333358

  19. sGD software for estimating spatially explicit indices of genetic diversity

    Treesearch

    A. J. Shirk; Samuel Cushman

    2011-01-01

    Anthropogenic landscape changes have greatly reduced the population size, range and migration rates of many terrestrial species. The small local effective population size of remnant populations favours loss of genetic diversity leading to reduced fitness and adaptive potential, and thus ultimately greater extinction risk. Accurately quantifying genetic diversity is...

  20. The impact of using old germplasm on genetic merit and diversity-A cattle breed case study.

    PubMed

    Eynard, Sonia E; Windig, Jack J; Hulsegge, Ina; Hiemstra, Sipke-Joost; Calus, Mario P L

    2018-05-29

    Artificial selection and high genetic gains in livestock breeds led to a loss of genetic diversity. Current genetic diversity conservation actions focus on long-term maintenance of breeds under selection. Gene banks play a role in such actions by storing genetic materials for future use and the recent development of genomic information is facilitating characterization of gene bank material for better use. Using the Meuse-Rhine-Issel Dutch cattle breed as a case study, we inferred the potential role of germplasm of old individuals for genetic diversity conservation of the current population. First, we described the evolution of genetic merit and diversity over time and then we applied the optimal contribution (OC) strategy to select individuals for maximizing genetic diversity, or maximizing genetic merit while constraining loss of genetic diversity. In the past decades, genetic merit increased while genetic diversity decreased. Genetic merit and diversity were both higher in an OC scenario restricting the rate of inbreeding when old individuals were considered for selection, compared to considering only animals from the current population. Thus, our study shows that gene bank material, in the form of old individuals, has the potential to support long-term maintenance and selection of breeds. © 2018 The Authors. Journal of Animal Breeding and Genetics Published by Blackwell Verlag GmbH.

  1. Population structure, genetic diversity and downy mildew resistance among Ocimum species germplasm.

    PubMed

    Pyne, Robert M; Honig, Josh A; Vaiciunas, Jennifer; Wyenandt, Christian A; Simon, James E

    2018-04-23

    levels of genetic diversity support the observed phenotypic diversity among Ocimum spp. accessions. EST-SSRs provided a robust evaluation of molecular diversity and can be used for additional studies to increase resolution of genetic relationships in the Ocimum genus. Elucidation of population structure and genetic relationships among Ocimum spp. germplasm provide the foundation for improved DM resistance breeding strategies and more rapid response to future disease outbreaks.

  2. Genetic diversity and connectivity in the East African giant mud crab Scylla serrata: Implications for fisheries management.

    PubMed

    Rumisha, Cyrus; Huyghe, Filip; Rapanoel, Diary; Mascaux, Nemo; Kochzius, Marc

    2017-01-01

    The giant mud crab Scylla serrata provides an important source of income and food to coastal communities in East Africa. However, increasing demand and exploitation due to the growing coastal population, export trade, and tourism industry are threatening the sustainability of the wild stock of this species. Because effective management requires a clear understanding of the connectivity among populations, this study was conducted to assess the genetic diversity and connectivity in the East African mangrove crab S. serrata. A section of 535 base pairs of the cytochrome oxidase subunit I (COI) gene and eight microsatellite loci were analysed from 230 tissue samples of giant mud crabs collected from Kenya, Tanzania, Mozambique, Madagascar, and South Africa. Microsatellite genetic diversity (He) ranged between 0.56 and 0.6. The COI sequences showed 57 different haplotypes associated with low nucleotide diversity (current nucleotide diversity = 0.29%). In addition, the current nucleotide diversity was lower than the historical nucleotide diversity, indicating overexploitation or historical bottlenecks in the recent history of the studied population. Considering that the coastal population is growing rapidly, East African countries should promote sustainable fishing practices and sustainable use of mangrove resources to protect mud crabs and other marine fauna from the increasing pressure of exploitation. While microsatellite loci did not show significant genetic differentiation (p > 0.05), COI sequences revealed significant genetic divergence between sites on the East coast of Madagascar (ECM) and sites on the West coast of Madagascar, mainland East Africa, as well as the Seychelles. Since East African countries agreed to achieve the Convention on Biological Diversity (CBD) target to protect over 10% of their marine areas by 2020, the observed pattern of connectivity and the measured genetic diversity can serve to provide useful information for designing networks of

  3. ASSOCIATIONS BETWEEN GENETIC DIVERSITY AND ANTHROPOGENIC DISTURBANCE IN MIDWESTERN STREAM-DWELLING MINNOWS

    EPA Science Inventory

    Anthropogenic disturbances may leave imprints on patterns of intraspecific genetic diversity through their effects on population size, adaptation, migration, and mutation. We examined patterns of genetic diversity for a stream-dwelling minnow (the central stoneroller, Campostoma...

  4. The functional consequences of non-genetic diversity in cellular navigation

    NASA Astrophysics Data System (ADS)

    Emonet, Thierry; Waite, Adam J.; Frankel, Nicholas W.; Dufour, Yann; Johnston, Jessica F.

    Substantial non-genetic diversity in complex behaviors, such as chemotaxis in E. coli, has been observed for decades, but the relevance of this diversity for the population is not well understood. Here, we use microfluidics to show that non-genetic diversity leads to significant structuring of the population in space and time, which confirms predictions made by our detailed mathematical model of chemotaxis. We then use genetic tools to show that altering the expression level of a single chemotaxis protein is sufficient to alter the distribution of swimming behaviors, which directly determines the performance of a population in a gradient of attractant, a result also predicted by our model. Supported by NIH 1R01GM106189, the James S McDonnell Foundation, and the Paul Allen foundation.

  5. Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat.

    PubMed

    Ren, Jing; Sun, Daokun; Chen, Liang; You, Frank M; Wang, Jirui; Peng, Yunliang; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2013-03-28

    Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity.

  6. Genetic Diversity of HIV-1 in Tunisia.

    PubMed

    El Moussi, Awatef; Thomson, Michael M; Delgado, Elena; Cuevas, María Teresa; Nasr, Majda; Abid, Salma; Ben Hadj Kacem, Mohamed Ali; Benaissa Tiouiri, Hanene; Letaief, Amel; Chakroun, Mohamed; Ben Jemaa, Mounir; Hamdouni, Hayet; Tej Dellagi, Rafla; Kheireddine, Khaled; Boutiba, Ilhem; Pérez-Álvarez, Lucía; Slim, Amine

    2017-01-01

    In this study, the genetic diversity of HIV-1 in Tunisia was analyzed. For this, 193 samples were collected in different regions of Tunisia between 2012 and 2015. A protease and reverse transcriptase fragment were amplified and sequenced. Phylogenetic analyses were performed through maximum likelihood and recombination was analyzed by bootscanning. Six HIV-1 subtypes (B, A1, G, D, C, and F2), 5 circulating recombinant forms (CRF02_AG, CRF25_cpx, CRF43_02G, CRF06_cpx, and CRF19_cpx), and 11 unique recombinant forms were identified. Subtype B (46.4%) and CRF02_AG (39.4%) were the predominant genetic forms. A group of 44 CRF02_AG sequences formed a distinct Tunisian cluster, which also included four viruses from western Europe. Nine viruses were closely related to isolates collected in other African or in European countries. In conclusion, a high HIV-1 genetic diversity is observed in Tunisia and the local spread of CRF02_AG is first documented in this country.

  7. Genomic patterns in Acropora cervicornis show extensive population structure and variable genetic diversity.

    PubMed

    Drury, Crawford; Schopmeyer, Stephanie; Goergen, Elizabeth; Bartels, Erich; Nedimyer, Ken; Johnson, Meaghan; Maxwell, Kerry; Galvan, Victor; Manfrino, Carrie; Lirman, Diego

    2017-08-01

    Threatened Caribbean coral communities can benefit from high-resolution genetic data used to inform management and conservation action. We use Genotyping by Sequencing (GBS) to investigate genetic patterns in the threatened coral, Acropora cervicornis , across the Florida Reef Tract (FRT) and the western Caribbean. Results show extensive population structure at regional scales and resolve previously unknown structure within the FRT. Different regions also exhibit up to threefold differences in genetic diversity (He), suggesting targeted management based on the goals and resources of each population is needed. Patterns of genetic diversity have a strong spatial component, and our results show Broward and the Lower Keys are among the most diverse populations in Florida. The genetic diversity of Caribbean staghorn coral is concentrated within populations and within individual reefs (AMOVA), highlighting the complex mosaic of population structure. This variance structure is similar over regional and local scales, which suggests that in situ nurseries are adequately capturing natural patterns of diversity, representing a resource that can replicate the average diversity of wild assemblages, serving to increase intraspecific diversity and potentially leading to improved biodiversity and ecosystem function. Results presented here can be translated into specific goals for the recovery of A. cervicornis , including active focus on low diversity areas, protection of high diversity and connectivity, and practical thresholds for responsible restoration.

  8. Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras

    PubMed Central

    2012-01-01

    Background Understanding the population structure of Plasmodium species through genetic diversity studies can assist in the design of more effective malaria control strategies, particularly in vaccine development. Central America is an area where malaria is a public health problem, but little is known about the genetic diversity of the parasite’s circulating species. This study aimed to investigate the allelic frequency and molecular diversity of five surface antigens in field isolates from Honduras. Methods Five molecular markers were analysed to determine the genotypes of Plasmodium vivax and Plasmodium falciparum from endemic areas in Honduras. Genetic diversity of ama-1, msp-1 and csp was investigated for P. vivax, and msp-1 and msp-2 for P. falciparum. Allelic frequencies were calculated and sequence analysis performed. Results and conclusion A high genetic diversity was observed within Plasmodium isolates from Honduras. A different number of genotypes were elucidated: 41 (n = 77) for pvama-1; 23 (n = 84) for pvcsp; and 23 (n = 35) for pfmsp-1. Pvcsp sequences showed VK210 as the only subtype present in Honduran isolates. Pvmsp-1 (F2) was the most polymorphic marker for P. vivax isolates while pvama-1 was least variable. All three allelic families described for pfmsp-1 (n = 30) block 2 (K1, MAD20, and RO33), and both allelic families described for the central domain of pfmsp-2 (n = 11) (3D7 and FC27) were detected. However, K1 and 3D7 allelic families were predominant. All markers were randomly distributed across the country and no geographic correlation was found. To date, this is the most complete report on molecular characterization of P. vivax and P. falciparum field isolates in Honduras with regards to genetic diversity. These results indicate that P. vivax and P. falciparum parasite populations are highly diverse in Honduras despite the low level of transmission. PMID:23181845

  9. Accumulation of genetic diversity in the US Potato Genebank

    USDA-ARS?s Scientific Manuscript database

    Efficient management of ex-situ collections includes understanding how conservation technologies impact the genetic diversity and integrity of these collections. For over 60 years, research at the US Potato Genebank has produced helpful scientific insights on diverse aspects of potato conservation. ...

  10. Seed-Mediated Gene Flow Promotes Genetic Diversity of Weedy Rice within Populations: Implications for Weed Management

    PubMed Central

    He, Zhuoxian; Jiang, Xiaoqi; Ratnasekera, Disna; Grassi, Fabrizio; Perera, Udugahapattuwage; Lu, Bao-Rong

    2014-01-01

    Increased infestation of weedy rice—a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka. PMID:25436611

  11. Genetic diversity trend in Indian rice varieties: an analysis using SSR markers.

    PubMed

    Singh, Nivedita; Choudhury, Debjani Roy; Tiwari, Gunjan; Singh, Amit Kumar; Kumar, Sundeep; Srinivasan, Kalyani; Tyagi, R K; Sharma, A D; Singh, N K; Singh, Rakesh

    2016-09-05

    The knowledge of the extent and pattern of diversity in the crop species is a prerequisite for any crop improvement as it helps breeders in deciding suitable breeding strategies for their future improvement. Rice is the main staple crop in India with the large number of varieties released every year. Studies based on the small set of rice genotypes have reported a loss in genetic diversity especially after green revolution. However, a detailed study of the trend of diversity in Indian rice varieties is lacking. SSR markers have proven to be a marker of choice for studying the genetic diversity. Therefore, the present study was undertaken with the aim to characterize and assess trends of genetic diversity in a large set of Indian rice varieties (released between 1940-2013), conserved in the National Gene Bank of India using SSR markers. A set of 729 Indian rice varieties were genotyped using 36 HvSSR markers to assess the genetic diversity and genetic relationship. A total of 112 alleles was amplified with an average of 3.11 alleles per locus with mean Polymorphic Information Content (PIC) value of 0.29. Cluster analysis grouped these varieties into two clusters whereas the model based population structure divided them into three populations. AMOVA study based on hierarchical cluster and model based approach showed 3 % and 11 % variation between the populations, respectively. Decadal analysis for gene diversity and PIC showed increasing trend from 1940 to 2005, thereafter values for both the parameters showed decreasing trend between years 2006-2013. In contrast to this, allele number demonstrated increasing trend in these varieties released and notified between1940 to 1985, it remained nearly constant during 1986 to 2005 and again showed an increasing trend. Our results demonstrated that the Indian rice varieties harbors huge amount of genetic diversity. However, the trait based improvement program in the last decades forced breeders to rely on few parents, which

  12. Tetraploid Wheat Landraces in the Mediterranean Basin: Taxonomy, Evolution and Genetic Diversity

    PubMed Central

    Oliveira, Hugo R.; Campana, Michael G.; Jones, Huw; Hunt, Harriet V.; Leigh, Fiona; Redhouse, David I.; Lister, Diane L.; Jones, Martin K.

    2012-01-01

    The geographic distribution of genetic diversity and the population structure of tetraploid wheat landraces in the Mediterranean basin has received relatively little attention. This is complicated by the lack of consensus concerning the taxonomy of tetraploid wheats and by unresolved questions regarding the domestication and spread of naked wheats. These knowledge gaps hinder crop diversity conservation efforts and plant breeding programmes. We investigated genetic diversity and population structure in tetraploid wheats (wild emmer, emmer, rivet and durum) using nuclear and chloroplast simple sequence repeats, functional variations and insertion site-based polymorphisms. Emmer and wild emmer constitute a genetically distinct population from durum and rivet, the latter seeming to share a common gene pool. Our population structure and genetic diversity data suggest a dynamic history of introduction and extinction of genotypes in the Mediterranean fields. PMID:22615891

  13. Genetic diversity of water use efficiency in Jerusalem artichoke (Helianthus tuberosus L.) germplasm

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity in crop germplasm is an important resource for crop improvement, but information on genetic diversity is rare for Jerusalem artichoke, especially for traits related to water use efficiency. The objectives of this study were to investigate genetic variations for water use and water...

  14. Roads, interrupted dispersal, and genetic diversity in timber rattlesnakes.

    PubMed

    Clark, Rulon W; Brown, William S; Stechert, Randy; Zamudio, Kelly R

    2010-08-01

    Anthropogenic habitat modification often creates barriers to animal movement, transforming formerly contiguous habitat into a patchwork of habitat islands with low connectivity. Roadways are a feature of most landscapes that can act as barriers or filters to migration among local populations. Even small and recently constructed roads can have a significant impact on population genetic structure of some species, but not others. We developed a research approach that combines fine-scale molecular genetics with behavioral and ecological data to understand the impacts of roads on population structure and connectivity. We used microsatellite markers to characterize genetic variation within and among populations of timber rattlesnakes (Crotalus horridus) occupying communal hibernacula (dens) in regions bisected by roadways. We examined the impact of roads on seasonal migration, genetic diversity, and gene flow among populations. Snakes in hibernacula isolated by roads had significantly lower genetic diversity and higher genetic differentiation than snakes in hibernacula in contiguous habitat. Genetic-assignment analyses revealed that interruption to seasonal migration was the mechanism underlying these patterns. Our results underscore the sizeable impact of roads on this species, despite their relatively recent construction at our study sites (7 to 10 generations of rattlesnakes), the utility of population genetics for studies of road ecology, and the need for mitigating effects of roads.

  15. Promiscuity, sexual selection, and genetic diversity: a reply to Spurgin.

    PubMed

    Lifjeld, Jan T; Gohli, Jostein; Johnsen, Arild

    2013-10-01

    We recently reported a positive association between female promiscuity and genetic diversity across passerine birds, and launched the hypothesis that female promiscuity acts as a balancing selection, pressure maintaining genetic diversity in populations (Gohli et al.2013). Spurgin (2013) questions both our analyses and interpretations. While we agree that the hypothesis needs more comprehensive empirical testing, we find his specific points of criticism unjustified. In a more general perspective, we call for a more explicit recognition of female mating preferences as mechanisms of selection in population genetics theory. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  16. [Genetic diversity of wild Cynodon dactylon germplasm detected by SRAP markers].

    PubMed

    Yi, Yang-Jie; Zhang, Xin-Quan; Huang, Lin-Kai; Ling, Yao; Ma, Xiao; Liu, Wei

    2008-01-01

    Sequence-related amplified polymorphism (SRAP) molecular markers were used to detect the genetic diversity of 32 wild accessions of Cynodon dactylon collected from Sichuan, Chongqing, Guizhou and Tibet, China. The following results were obtained. (1) Fourteen primer pairs produced 132 polymorphic bands, averaged 9.4 bands per primer pair. The percentage of polymorphic bands in average was 79.8%. The Nei's genetic similarity coefficient of the tested accessions ranged from 0.591 to 0.957, and the average Nei's coefficient was 0.759. These results suggested that there was rich genetic diversity among the wild resources of Cynodon dactylon tested. (2) Thirty two wild accessions were clustered into four groups. Moreover, the accessions from the same origin frequently clustered into one group. The findings implied that a correlation among the wild resources, geographical and ecological environment. (3) Genetic differentiation between and within six eco-geographical groups of C. dactylon was estimated by Shannon's diversity index, which showed that 65.56% genetic variance existed within group, and 34.44% genetic variance was among groups. (4) Based on Nei's unbiased measures of genetic identity, UPGMA cluster analysis measures of six eco-geographical groups of Cynodon dactylon, indicated that there was a correlation between genetic differentiation and eco-geographical habits among the groups.

  17. Conservation implications of the genetic diversity of Gymnospermium microrrhynchum in Korea.

    PubMed

    Lee, S H; Yeon, M H; Shim, J K

    2016-10-24

    Gymnospermium microrrhynchum (Berberidaceae) is an ephemeral perennial herb with a limited distributional range in the Baekdudaegan mountain areas of the Korean Peninsula, and is designated a rare plant by the Korean Forest Service. Information about its genetic variation and structure is important for developing successful conservation strategies. To investigate the genetic variation within and among seven G. microrrhynchum populations, random amplified polymorphic DNA data were obtained for 207 individuals. The populations exhibited relatively low genetic diversity: the percentage of polymorphic bands (PPB) ranged from 32.1 to 66.7% (mean = 51.4%) and Nei's gene diversity (H E ) ranged from 0.116 to 0.248 (mean = 0.188). However, genetic diversity at the species level was relatively high (PPB = 98.7%, H E = 0.349). An analysis of molecular variance revealed high differentiation among populations (Φ ST = 0.6818), but the low gene flow value (N m = 0.117) suggests a low level of gene exchange occurs among populations. Principal coordinates analysis revealed that individuals were separated according to population. The high level of genetic differentiation and restricted gene flow among G. microrrhynchum populations, which resulted from their isolation in alpine areas after the Ice Age, indicates that it is essential to protect and manage all populations, rather than focus on specific populations, in order to maintain the genetic diversity of this species.

  18. Serpentine soils affect heavy metal tolerance but not genetic diversity in a common Mediterranean ant.

    PubMed

    Frizzi, Filippo; Masoni, Alberto; Çelikkol, Mine; Palchetti, Enrico; Ciofi, Claudio; Chelazzi, Guido; Santini, Giacomo

    2017-08-01

    Natural habitats with serpentine soils are rich in heavy metal ions, which may significantly affect ecological communities. Exposure to metal pollutants results, for instance, in a reduction of population genetic diversity and a diffused higher tolerance towards heavy metals. In this study, we investigated whether chronic exposure to metals in serpentine soils affect accumulation patterns, tolerance towards metal pollutants, and genetic diversity in ants. In particular, we studied colonies of the common Mediterranean ant, Crematogaster scutellaris, along a contamination gradient consisting of two differently contaminated forests and a reference soil with no geogenic contamination. We first evaluated the metal content in both soil and ants' body. Then, we tested for tolerance towards metal pollutants by evaluating the mortality of ants fed with nickel (Ni) solutions of increasing concentrations. Finally, differences in genetic diversity among ants from different areas were assessed using eight microsatellite loci. Interestingly, a higher tolerance to nickel solutions was found in ants sampled in sites with intermediate levels of heavy metals. This may occur, because ants inhabiting strongly contaminated areas tend to accumulate higher amounts of contaminants. Additional ingestion of toxicants beyond the saturation threshold would lead to death. There was no difference in the genetic diversity among ant colonies sampled in different sites. This was probably the result of queen mediated gene flow during nuptial flights across uncontaminated and contaminated areas of limited geographical extent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Genetic diversity analysis of Gossypium arboreum germplasm accessions using genotyping-by-sequencing.

    PubMed

    Li, Ruijuan; Erpelding, John E

    2016-10-01

    The diploid cotton species Gossypium arboreum possesses many favorable agronomic traits such as drought tolerance and disease resistance, which can be utilized in the development of improved upland cotton cultivars. The USDA National Plant Germplasm System maintains more than 1600 G. arboreum accessions. Little information is available on the genetic diversity of the collection thereby limiting the utilization of this cotton species. The genetic diversity and population structure of the G. arboreum germplasm collection were assessed by genotyping-by-sequencing of 375 accessions. Using genome-wide single nucleotide polymorphism sequence data, two major clusters were inferred with 302 accessions in Cluster 1, 64 accessions in Cluster 2, and nine accessions unassigned due to their nearly equal membership to each cluster. These two clusters were further evaluated independently resulting in the identification of two sub-clusters for the 302 Cluster 1 accessions and three sub-clusters for the 64 Cluster 2 accessions. Low to moderate genetic diversity between clusters and sub-clusters were observed indicating a narrow genetic base. Cluster 2 accessions were more genetically diverse and the majority of the accessions in this cluster were landraces. In contrast, Cluster 1 is composed of varieties or breeding lines more recently added to the collection. The majority of the accessions had kinship values ranging from 0.6 to 0.8. Eight pairs of accessions were identified as potential redundancies due to their high kinship relatedness. The genetic diversity and genotype data from this study are essential to enhance germplasm utilization to identify genetically diverse accessions for the detection of quantitative trait loci associated with important traits that would benefit upland cotton improvement.

  20. Genetic diversity and structure of core collection of winter mushroom (Flammulina velutipes) developed by genomic SSR markers.

    PubMed

    Liu, Xiao Bin; Li, Jing; Yang, Zhu L

    2018-01-01

    A core collection is a subset of an entire collection that represents as much of the genetic diversity of the entire collection as possible. The establishment of a core collection for crops is practical for efficient management and use of germplasm. However, the establishment of a core collection of mushrooms is still in its infancy, and no established core collection of the economically important species Flammulina velutipes has been reported. We established the first core collection of F. velutipes , containing 32 strains based on 81 genetically different F. veltuipes strains. The allele retention proportion of the core collection for the entire collection was 100%. Moreover, the genetic diversity parameters (the effective number of alleles, Nei's expected heterozygosity, the number of observed heterozygosity, and Shannon's information index) of the core collection showed no significant differences from the entire collection ( p  > 0.01). Thus, the core collection is representative of the genetic diversity of the entire collection. Genetic structure analyses of the core collection revealed that the 32 strains could be clustered into 6 groups, among which groups 1 to 3 were cultivars and groups 4 to 6 were wild strains. The wild strains from different locations harbor their own specific alleles, and were clustered stringently in accordance with their geographic origins. Genetic diversity analyses of the core collection revealed that the wild strains possessed greater genetic diversity than the cultivars. We established the first core collection of F. velutipes in China, which is an important platform for efficient breeding of this mushroom in the future. In addition, the wild strains in the core collection possess favorable agronomic characters and produce unique bioactive compounds, adding value to the platform. More attention should be paid to wild strains in further strain breeding.

  1. Genetic Diversity and Structure among Isolated Populations of the Endangered Gees Golden Langur in Assam, India

    PubMed Central

    Biswas, Jihosuo; Nag, Sudipta; Shil, Joydeep; Umapathy, Govindhaswamy

    2016-01-01

    Gee’s golden langur (Trachypithecus geei) is an endangered colobine primate, endemic to the semi-evergreen and mixed-deciduous forests of Indo-Bhutan border. During the last few decades, extensive fragmentation has caused severe population decline and local extinction of golden langur from several fragments. However, no studies are available on the impact of habitat fragmentation and the genetic diversity of golden langur in the fragmented habitats. The present study aimed to estimate the genetic diversity in the Indian population of golden langur. We sequenced and analyzed around 500 bases of the mitochondrial DNA (mtDNA) hypervariable region-I from 59 fecal samples of wild langur collected from nine forest fragments. Overall, genetic diversity was high (h = 0.934, π = 0.0244) and comparable with other colobines. Populations in smaller fragments showed lower nucleotide diversity compared to the larger forest fragments. The median-joining network of haplotypes revealed a genetic structure that corresponded with the geographical distribution. The Aie and Champabati Rivers were found to be a barrier to gene flow between golden langur populations. In addition, it also established that T. geei is monophyletic but revealed possible hybridization with capped langur, T. pileatus, in the wild. It is hoped that these findings would result in a more scientific approach towards managing the fragmented populations of this enigmatic species. PMID:27564405

  2. Genetic diversity of turmeric germplasm (Curcuma longa; Zingiberaceae) identified by microsatellite markers.

    PubMed

    Sigrist, M S; Pinheiro, J B; Filho, J A Azevedo; Zucchi, M I

    2011-03-09

    Turmeric (Curcuma longa) is a triploid, vegetatively propagated crop introduced early during the colonization of Brazil. Turmeric rhizomes are ground into a powder used as a natural dye in the food industry, although recent research suggests a greater potential for the development of drugs and cosmetics. In Brazil, little is known about the genetic variability available for crop improvement. We examined the genetic diversity among turmeric accessions from a Brazilian germplasm collection comprising 39 accessions collected from the States of Goiás, Mato Grosso do Sul, Minas Gerais, São Paulo, and Pará. For comparison, 18 additional genotypes were analyzed, including samples from India and Puerto Rico. Total DNA was extracted from lyophilized leaf tissue and genetic analysis was performed using 17 microsatellite markers (single-sequence repeats). Shannon-Weiner indexes ranged from 0.017 (Minas Gerais) to 0.316 (São Paulo). Analyses of molecular variance (AMOVA) demonstrated major differences between countries (63.4%) and that most of the genetic diversity in Brazil is found within states (75.3%). Genotypes from São Paulo State were the most divergent and potentially useful for crop improvement. Structure analysis indicated two main groups of accessions. These results can help target future collecting efforts for introduction of new materials needed to develop more productive and better adapted cultivars.

  3. Estimation of loss of genetic diversity in modern Japanese cultivars by comparison of diverse genetic resources in Asian pear (Pyrus spp.).

    PubMed

    Nishio, Sogo; Takada, Norio; Saito, Toshihiro; Yamamoto, Toshiya; Iketani, Hiroyuki

    2016-06-14

    Pears (Pyrus spp.) are one of the most important fruit crops in temperate regions. Japanese pear breeding has been carried out for over 100 years, working to release new cultivars that have good fruit quality and other desirable traits. Local cultivar 'Nijisseiki' and its relatives, which have excellent fruit texture, have been repeatedly used as parents in the breeding program. This strategy has led to inbreeding within recent cultivars and selections. To avoid inbreeding depression, we need to clarify the degree of inbreeding among crossbred cultivars and to introgress genetic resources that are genetically different from modern cultivars and selections. The objective of the present study was to clarify the genetic relatedness between modern Japanese pear cultivars and diverse Asian pear genetic resources. We genotyped 207 diverse accessions by using 19 simple sequence repeat (SSR) markers. The heterozygosity and allelic richness of modern cultivars was obviously decreased compared with that of wild individuals, Chinese pear cultivars, and local cultivars. In analyses using Structure software, the 207 accessions were classified into four clusters (K = 4): one consisting primarily of wild individuals, one of Chinese pear cultivars, one of local cultivars from outside the Kanto region, and one containing both local cultivars from the Kanto region and crossbred cultivars. The results of principal coordinate analysis (PCoA) were similar to those from the Structure analysis. Wild individuals and Chinese pears appeared to be distinct from other groups, and crossbred cultivars became closer to 'Nijisseiki' as the year of release became more recent. Both Structure and PCoA results suggest that the modern Japanese pear cultivars are genetically close to local cultivars that originated in the Kanto region, and that the genotypes of the modern cultivars were markedly biased toward 'Nijisseiki'. Introgression of germplasm from Chinese pear and wild individuals that are

  4. Date Palm Genetic Diversity Analysis Using Microsatellite Polymorphism.

    PubMed

    Khierallah, Hussam S M; Bader, Saleh M; Hamwieh, Alladin; Baum, Michael

    2017-01-01

    Date palm (Phoenix dactylifera L.) is considered one of the great socioeconomic resources in the Middle East and the Arab regions. The tree has been and still is at the center of the comprehensive agricultural development. The number of known date palm cultivars, distributed worldwide, is approximately 3000. The success of genetic diversity conservation or any breeding program depends on an understanding of the amount and distribution of the genetic variation already in existence in the genetic pool. Development of suitable DNA molecular markers for this tree may allow researchers to estimate genetic diversity, which will ultimately lead to the genetic conservation of date palm. Simple sequence repeats (SSRs) are DNA strands, consisting of tandemly repeated mono-, di-, tri-, tetra-, or penta-nucleotide units that are arranged throughout the genomes of most eukaryotic species. Microsatellite markers, developed from genomic libraries, belong to either the transcribed region or the non-transcribed region of the genome, and there is rarely available information on their functions. Microsatellite sequences are especially suited to distinguish closely related genotypes due to a high degree of variability making them ideally suitable in population studies and the identification of closely related cultivars. This chapter focuses on the methods employed to characterize date palm genotypes using SSR markers.

  5. Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation.

    PubMed

    Vandewoestijne, Sofie; Schtickzelle, Nicolas; Baguette, Michel

    2008-11-05

    Theory predicts that lower dispersal, and associated gene flow, leads to decreased genetic diversity in small isolated populations, which generates adverse consequences for fitness, and subsequently for demography. Here we report for the first time this effect in a well-connected natural butterfly metapopulation with high population densities at the edge of its distribution range. We demonstrate that: (1) lower genetic diversity was coupled to a sharp decrease in adult lifetime expectancy, a key component of individual fitness; (2) genetic diversity was positively correlated to the number of dispersing individuals (indicative of landscape functional connectivity) and adult population size; (3) parameters inferred from capture-recapture procedures (population size and dispersal events between patches) correlated much better with genetic diversity than estimates usually used as surrogates for population size (patch area and descriptors of habitat quality) and dispersal (structural connectivity index). Our results suggest that dispersal is a very important factor maintaining genetic diversity. Even at a very local spatial scale in a metapopulation consisting of large high-density populations interconnected by considerable dispersal rates, genetic diversity can be decreased and directly affect the fitness of individuals. From a biodiversity conservation perspective, this study clearly shows the benefits of both in-depth demographic and genetic analyses. Accordingly, to ensure the long-term survival of populations, conservation actions should not be blindly based on patch area and structural isolation. This result may be especially pertinent for species at their range margins, particularly in this era of rapid environmental change.

  6. Genetic diversity, structure and differentiation in cultivate walnut (Juglans regia L.)

    Treesearch

    M. Aradhya; K. Woeste; D. Velasco

    2012-01-01

    An analysis of genetic structure and differentiation in cultivated walnut (Juglans regia) using 15 microsatellite loci revealed a considerable amount of genetic variation with a mild genetic structure indicating five genetic groups corresponding to the centers of diversity within the home range of walnut in Eurasia. Despite the narrow genetic...

  7. Application of RAD Sequencing for Evaluating the Genetic Diversity of Domesticated Panax notoginseng (Araliaceae)

    PubMed Central

    Pan, Yuezhi; Wang, Xueqin; Sun, Guiling; Li, Fusheng; Gong, Xun

    2016-01-01

    Panax notoginseng, a traditional Chinese medicinal plant, has been cultivated and domesticated for approximately 400 years, mainly in Yunnan and Guangxi, two provinces in southwest China. This species was named according to cultivated rather than wild individuals, and no wild populations had been found until now. The genetic resources available on farms are important for both breeding practices and resource conservation. In the present study, the recently developed technology RADseq, which is based on next-generation sequencing, was used to analyze the genetic variation and differentiation of P. notoginseng. The nucleotide diversity and heterozygosity results indicated that P. notoginseng had low genetic diversity at both the species and population levels. Almost no genetic differentiation has been detected, and all populations were genetically similar due to strong gene flow and insufficient splitting time. Although the genetic diversity of P. notoginseng was low at both species and population levels, several traditional plantations had relatively high genetic diversity, as revealed by the He and π values and by the private allele numbers. These valuable genetic resources should be protected as soon as possible to facilitate future breeding projects. The possible geographical origin of Sanqi domestication was discussed based on the results of the genetic diversity analysis. PMID:27846268

  8. Genetic Diversity in Introduced Golden Mussel Populations Corresponds to Vector Activity

    PubMed Central

    Ghabooli, Sara; Zhan, Aibin; Sardiña, Paula; Paolucci, Esteban; Sylvester, Francisco; Perepelizin, Pablo V.; Briski, Elizabeta; Cristescu, Melania E.; MacIsaac, Hugh J.

    2013-01-01

    We explored possible links between vector activity and genetic diversity in introduced populations of Limnoperna fortunei by characterizing the genetic structure in native and introduced ranges in Asia and South America. We surveyed 24 populations: ten in Asia and 14 in South America using the mitochondrial cytochrome c oxidase subunit I (COI) gene, as well as eight polymorphic microsatellite markers. We performed population genetics and phylogenetic analyses to investigate population genetic structure across native and introduced regions. Introduced populations in Asia exhibit higher genetic diversity (H E = 0.667–0.746) than those in South America (H E = 0.519–0.575), suggesting higher introduction effort for the former populations. We observed pronounced geographical structuring in introduced regions, as indicated by both mitochondrial and nuclear markers based on multiple genetic analyses including pairwise ФST, F ST, Bayesian clustering method, and three-dimensional factorial correspondence analyses. Pairwise F ST values within both Asia (F ST = 0.017–0.126, P = 0.000–0.009) and South America (F ST = 0.004–0.107, P = 0.000–0.721) were lower than those between continents (F ST = 0.180–0.319, P = 0.000). Fine-scale genetic structuring was also apparent among introduced populations in both Asia and South America, suggesting either multiple introductions of distinct propagules or strong post-introduction selection and demographic stochasticity. Higher genetic diversity in Asia as compared to South America is likely due to more frequent propagule transfers associated with higher shipping activities between source and donor regions within Asia. This study suggests that the intensity of human-mediated introduction vectors influences patterns of genetic diversity in non-indigenous species. PMID:23533614

  9. The yeast Starmerella bacillaris (synonym Candida zemplinina) shows high genetic diversity in winemaking environments.

    PubMed

    Masneuf-Pomarede, Isabelle; Juquin, Elodie; Miot-Sertier, Cécile; Renault, Philippe; Laizet, Yec'han; Salin, Franck; Alexandre, Hervé; Capozzi, Vittorio; Cocolin, Luca; Colonna-Ceccaldi, Benoit; Englezos, Vasileios; Girard, Patrick; Gonzalez, Beatriz; Lucas, Patrick; Mas, Albert; Nisiotou, Aspasia; Sipiczki, Matthias; Spano, Giuseppe; Tassou, Chrysoula; Bely, Marina; Albertin, Warren

    2015-08-01

    The yeast Candida zemplinina (Starmerella bacillaris) is frequently isolated from grape and wine environments. Its enological use in mixed fermentation with Saccharomyces cerevisiae has been extensively investigated these last few years, and several interesting features including low ethanol production, fructophily, glycerol and other metabolites production, have been described. In addition, molecular tools allowing the characterization of yeast populations have been developed, both at the inter- and intraspecific levels. However, most of these fingerprinting methods are not compatible with population genetics or ecological studies. In this work, we developed 10 microsatellite markers for the C. zemplinina species that were used for the genotyping of 163 strains from nature or various enological regions (28 vineyards/wineries from seven countries). We show that the genetic diversity of C. zemplinina is shaped by geographical localization. Populations isolated from winemaking environments are quite diverse at the genetic level: neither clonal-like behaviour nor specific genetic signature were associated with the different vineyards/wineries. Altogether, these results suggest that C. zemplinina is not under selective pressure in winemaking environments. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Genetic diversity and paternal origin of domestic donkeys.

    PubMed

    Han, H; Chen, N; Jordana, J; Li, C; Sun, T; Xia, X; Zhao, X; Ji, C; Shen, S; Yu, J; Ainhoa, F; Chen, H; Lei, C; Dang, R

    2017-12-01

    Numerous studies have been conducted to investigate genetic diversity, origins and domestication of donkey using autosomal microsatellites and the mitochondrial genome, whereas the male-specific region of the Y chromosome of modern donkeys is largely uncharacterized. In the current study, 14 published equine Y chromosome-specific microsatellites (Y-STR) were investigated in 395 male donkey samples from China, Egypt, Spain and Peru using fluorescent labeled microsatellite markers. The results showed that seven Y-STRs-EcaYP9, EcaYM2, EcaYE2, EcaYE3, EcaYNO1, EcaYNO2 and EcaYNO4-were male specific and polymorphic, showing two to eight alleles in the donkeys studied. A total of 21 haplotypes corresponding to three haplogroups were identified, indicating three independent patrilines in domestic donkey. These markers are useful for the study the Y-chromosome diversity and population genetics of donkeys in Africa, Europe, South America and China. © 2017 Stichting International Foundation for Animal Genetics.

  11. Genetic diversity and structure of managed and semi-natural populations of cocoa (Theobroma cacao) in the Huallaga and Ucayali Valleys of Peru.

    PubMed

    Zhang, Dapeng; Arevalo-Gardini, Enrique; Mischke, Sue; Zúñiga-Cernades, Luis; Barreto-Chavez, Alejandro; Del Aguila, Jorge Adriazola

    2006-09-01

    Cocoa (Theobroma cacao) is indigenous to the Amazon region of South America, and it is well known that the Peruvian Amazon harbours a large number of diverse cocoa populations. A small fraction of the diversity has been collected and maintained as an ex-situ germplasm repository in Peru. However, incorrect labelling of accessions and lack of information on genetic diversity have hindered efficient conservation and use of this germplasm. This study targeted assessment of genetic diversity and population structure in a managed and a semi-natural population. Using a capillary electrophoresis genotyping system, 105 cocoa accessions collected from the Huallaga and Ucayali valleys of Peru were fingerprinted. Based on 15 loci SSR profiles, genetic identity was examined for each accession and duplicates identified, population structure assessed and genetic diversity analysed in these two populations. Ten synonymous mislabelled groups were identified among the 105 accessions. The germplasm group in the Huallaga valley was clearly separated from the group in Ucayali valley by the Bayesian assignment test. The Huallaga group has lower genetic diversity, both in terms of allelic richness and of gene diversity, than the Ucayali group. Analysis of molecular variance suggested genetic substructure in the Ucayali group. Significant spatial correlation between genetic distance and geographical distances was detected in the Ucayali group by Mantel tests. These results substantiate the hypothesis that the Peruvian Amazon hosts a high level of cocoa genetic diversity, and the diversity has a spatial structure. The introduction of exotic seed populations into the Peruvian Amazon is changing the cocoa germplasm spectrum in this region. The spatial structure of cocoa diversity recorded here highlights the need for additional collecting and conservation measures for natural and semi-natural cocoa populations.

  12. Genetic Diversity and Structure of Managed and Semi-natural Populations of Cocoa (Theobroma cacao) in the Huallaga and Ucayali Valleys of Peru

    PubMed Central

    ZHANG, DAPENG; AREVALO-GARDINI, ENRIQUE; MISCHKE, SUE; ZÚÑIGA-CERNADES, LUIS; BARRETO-CHAVEZ, ALEJANDRO; AGUILA, JORGE ADRIAZOLA DEL

    2006-01-01

    • Background and Aims Cocoa (Theobroma cacao) is indigenous to the Amazon region of South America, and it is well known that the Peruvian Amazon harbours a large number of diverse cocoa populations. A small fraction of the diversity has been collected and maintained as an ex-situ germplasm repository in Peru. However, incorrect labelling of accessions and lack of information on genetic diversity have hindered efficient conservation and use of this germplasm. This study targeted assessment of genetic diversity and population structure in a managed and a semi-natural population. •Methods Using a capillary electrophoresis genotyping system, 105 cocoa accessions collected from the Huallaga and Ucayali valleys of Peru were fingerprinted. Based on 15 loci SSR profiles, genetic identity was examined for each accession and duplicates identified, population structure assessed and genetic diversity analysed in these two populations. •Key Results Ten synonymous mislabelled groups were identified among the 105 accessions. The germplasm group in the Huallaga valley was clearly separated from the group in Ucayali valley by the Bayesian assignment test. The Huallaga group has lower genetic diversity, both in terms of allelic richness and of gene diversity, than the Ucayali group. Analysis of molecular variance suggested genetic substructure in the Ucayali group. Significant spatial correlation between genetic distance and geographical distances was detected in the Ucayali group by Mantel tests. •Conclusions These results substantiate the hypothesis that the Peruvian Amazon hosts a high level of cocoa genetic diversity, and the diversity has a spatial structure. The introduction of exotic seed populations into the Peruvian Amazon is changing the cocoa germplasm spectrum in this region. The spatial structure of cocoa diversity recorded here highlights the need for additional collecting and conservation measures for natural and semi-natural cocoa populations. PMID:16845139

  13. Genetic Diversity and Population Structure of Two Tomato Species from the Galapagos Islands

    PubMed Central

    Pailles, Yveline; Ho, Shwen; Pires, Inês S.; Tester, Mark; Negrão, Sónia; Schmöckel, Sandra M.

    2017-01-01

    Endemic flora of the Galapagos Islands has adapted to thrive in harsh environmental conditions. The wild tomato species from the Galapagos Islands, Solanum cheesmaniae and S. galapagense, are tolerant to various stresses, and can be crossed with cultivated tomato. However, information about genetic diversity and relationships within and between populations is necessary to use these resources efficiently in plant breeding. In this study, we analyzed 3,974 polymorphic SNP markers, obtained through the genotyping-by-sequencing technique, DArTseq, to elucidate the genetic diversity and population structure of 67 accessions of Galapagos tomatoes (compared to two S. lycopersicum varieties and one S. pimpinellifolium accession). Two clustering methods, Principal Component Analysis and STRUCTURE, showed clear distinction between the two species and a subdivision in the S. cheesmaniae group corresponding to geographical origin and age of the islands. High genetic variation among the accessions within each species was suggested by the AMOVA. High diversity in the S. cheesmaniae group and its correlation with the islands of origin were also suggested. This indicates a possible influence of the movement of the islands, from west to east, on the gene flow. Additionally, the absence of S. galapagense populations in the eastern islands points to the species divergence occurring after the eastern islands became isolated. Based on these results, it can be concluded that the population structure of the Galapagos tomatoes collection partially explains the evolutionary history of both species, knowledge that facilitates exploitation of their genetic potential for the identification of novel alleles contributing to stress tolerance. PMID:28261227

  14. Human impact on genetic diversity of Toxoplasma gondii: example of the anthropized environment from French Guiana.

    PubMed

    Mercier, A; Ajzenberg, D; Devillard, S; Demar, M P; de Thoisy, B; Bonnabau, H; Collinet, F; Boukhari, R; Blanchet, D; Simon, S; Carme, B; Dardé, M-L

    2011-08-01

    In French Guiana, severe cases of toxoplasmosis in immunocompetent patients are associated with atypical strains of Toxoplasma gondii linked to a wild neotropical rainforest cycle and a higher genetic diversity than usually observed for T. gondii isolates from anthropized environment. This raises the question of the impact of anthropization of the natural environment, on genetic diversity and on the population structure of T. gondii. However, few data are available on strains circulating in the anthropized areas from French Guiana. Seropositive animals originating mainly from anthropized sub-urban areas and punctually from wild environment in French Guiana were analyzed for T. gondii isolation and genotyping. Thirty-three strains were obtained by bioassay in mice and compared with 18 previously reported isolates chiefly originating from the Amazon rainforest. The genotyping analysis performed with 15 microsatellite markers located on 12 different chromosomes revealed a lower genetic diversity in the anthropized environment. Results were analyzed in terms of population structure by clustering methods, Neighbor-joining trees reconstruction based on genetic distances, F(ST,) Mantel's tests and linkage disequilibrium. They clearly showed a genetic differentiation between strains associated to the anthropized environment and those associated to the wild, but with some inbreeding between them. The majority of strains from the anthropized environment were clustered into additional lineages of T. gondii that are common in the Caribbean. In conclusion the two environmental populations "wild" and "anthropized" were genetically well differentiated. The anthropization of the environment seems to be accompanied with a decreased diversity of T. gondii associated with a greater structure of the populations. We detected potential interpenetration and genetic exchanges between these two environmental populations. As a higher pathogenicity in human of "wild" genotypes has been

  15. Elm genetic diversity and hybridization in the presence of Dutch elm disease

    Treesearch

    Johanne Brunet; Raymond P. Guries

    2017-01-01

    The impact of Dutch elm disease (DED) on the genetic diversity of slippery elm (Ulmus rubra) is summarized and its potential impact on the genetic diversity of other North American native elms, American elm (U. americana), rock elm (U. thomasii), winged elm (U. alata), cedar elm (

  16. SSR-based genetic diversity and structure of garlic accessions from Brazil.

    PubMed

    da Cunha, Camila Pinto; Resende, Francisco Vilela; Zucchi, Maria Imaculada; Pinheiro, José Baldin

    2014-10-01

    Garlic is a spice and a medicinal plant; hence, there is an increasing interest in 'developing' new varieties with different culinary properties or with high content of nutraceutical compounds. Phenotypic traits and dominant molecular markers are predominantly used to evaluate the genetic diversity of garlic clones. However, 24 SSR markers (codominant) specific for garlic are available in the literature, fostering germplasm researches. In this study, we genotyped 130 garlic accessions from Brazil and abroad using 17 polymorphic SSR markers to assess the genetic diversity and structure. This is the first attempt to evaluate a large set of accessions maintained by Brazilian institutions. A high level of redundancy was detected in the collection (50 % of the accessions represented eight haplotypes). However, non-redundant accessions presented high genetic diversity. We detected on average five alleles per locus, Shannon index of 1.2, HO of 0.5, and HE of 0.6. A core collection was set with 17 accessions, covering 100 % of the alleles with minimum redundancy. Overall FST and D values indicate a strong genetic structure within accessions. Two major groups identified by both model-based (Bayesian approach) and hierarchical clustering (UPGMA dendrogram) techniques were coherent with the classification of accessions according to maturity time (growth cycle): early-late and midseason accessions. Assessing genetic diversity and structure of garlic collections is the first step towards an efficient management and conservation of accessions in genebanks, as well as to advance future genetic studies and improvement of garlic worldwide.

  17. Genetic diversity and differentiation of exotic and American commercial cattle breeds raised in Brazil.

    PubMed

    Brasil, B S A F; Coelho, E G A; Drummond, M G; Oliveira, D A A

    2013-11-18

    The Brazilian cattle population is mainly composed of breeds of zebuine origin and their American derivatives. Comprehensive knowledge about the genetic diversity of these populations is fundamental for animal breeding programs and the conservation of genetic resources. This study aimed to assess the phylogenetic relationships, levels of genetic diversity, and patterns of taurine/zebuine admixture among 9 commercial cattle breeds raised in Brazil. Analysis of DNA polymorphisms was performed on 2965 animals using the 11 microsatellite markers recommended by the International Society of Animal Genetics. High genetic diversity was detected in all breeds, even though significant inbreeding was observed within some. Differences among the breeds accounted for 14.72% of the total genetic variability, and genetic differentiation was higher among taurine than among zebuine cattle. Of note, Nelore cattle presented with high levels of admixture, which is consistent with the history of frequent gene flow during the establishment of this breed in Brazil. Furthermore, significant genetic variability was partitioned within the commercial cattle breeds formed in America, which, therefore, comprise important resources of genetic diversity in the tropics. The genetic characterization of these important Brazilian breeds may now facilitate the development of management and breeding programs for these populations.

  18. Genetic diversity in Malus ×domestica (Rosaceae) through time in response to domestication.

    PubMed

    Gross, Briana L; Henk, Adam D; Richards, Christopher M; Fazio, Gennaro; Volk, Gayle M

    2014-10-01

    • Patterns of genetic diversity in domesticated plants are affected by geographic region of origin and cultivation, intentional artificial selection, and unintentional genetic bottlenecks. While bottlenecks are mainly associated with the initial domestication process, they can also affect diversity during crop improvement. Here, we investigate the impact of the improvement process on the genetic diversity of domesticated apple in comparison with other perennial and annual fruit crops.• Apple cultivars that were developed at various times (ranging from the 13th through the 20th century) and 11 of the 15 apple cultivars that are used for 90% of the apple production in the United States were surveyed for genetic diversity based on either 9 or 19 simple sequence repeats (SSRs). Diversity was compared using standard metrics and model-based approaches based on expected heterozygosity (He) at equilibrium. Improvement bottleneck data for fruit crops were also collected from the literature.• Domesticated apples showed no significant reduction in genetic diversity through time across the last eight centuries. Diversity was generally high, with an average He > 0.7 for apples from all centuries. However, diversity of the apples currently used for the bulk of commercial production was lower.• The improvement bottleneck in domesticated apples appears to be mild or nonexistent, in contrast to improvement bottlenecks in many annual and perennial fruit crops, as documented from the literature survey. The low diversity of the subset of cultivars used for commercial production, however, indicates that an improvement bottleneck may be in progress for this perennial crop. © 2014 Botanical Society of America, Inc.

  19. Genetic diversity affects colony survivorship in commercial honey bee colonies

    NASA Astrophysics Data System (ADS)

    Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S.

    2013-08-01

    Honey bee ( Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency ( m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  20. Genetic diversity affects colony survivorship in commercial honey bee colonies.

    PubMed

    Tarpy, David R; Vanengelsdorp, Dennis; Pettis, Jeffrey S

    2013-08-01

    Honey bee (Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency (m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e  ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e  > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  1. Genetic diversity within honeybee colonies increases signal production by waggle-dancing foragers

    PubMed Central

    Mattila, Heather R; Burke, Kelly M; Seeley, Thomas D

    2008-01-01

    Recent work has demonstrated considerable benefits of intracolonial genetic diversity for the productivity of honeybee colonies: single-patriline colonies have depressed foraging rates, smaller food stores and slower weight gain relative to multiple-patriline colonies. We explored whether differences in the use of foraging-related communication behaviour (waggle dances and shaking signals) underlie differences in foraging effort of genetically diverse and genetically uniform colonies. We created three pairs of colonies; each pair had one colony headed by a multiply mated queen (inseminated by 15 drones) and one colony headed by a singly mated queen. For each pair, we monitored the production of foraging-related signals over the course of 3 days. Foragers in genetically diverse colonies had substantially more information available to them about food resources than foragers in uniform colonies. On average, in genetically diverse colonies compared with genetically uniform colonies, 36% more waggle dances were identified daily, dancers performed 62% more waggle runs per dance, foragers reported food discoveries that were farther from the nest and 91% more shaking signals were exchanged among workers each morning prior to foraging. Extreme polyandry by honeybee queens enhances the production of worker–worker communication signals that facilitate the swift discovery and exploitation of food resources. PMID:18198143

  2. Plasmodium vivax merozoite surface protein-3 alpha: a high-resolution marker for genetic diversity studies.

    PubMed

    Prajapati, Surendra Kumar; Joshi, Hema; Valecha, Neena

    2010-06-01

    Malaria, an ancient human infectious disease caused by five species of Plasmodium, among them Plasmodium vivax is the most widespread human malaria species and causes huge morbidity to its host. Identification of genetic marker to resolve higher genetic diversity for an ancient origin organism is a crucial task. We have analyzed genetic diversity of P. vivax field isolates using highly polymorphic antigen gene merozoite surface protein-3 alpha (msp-3 alpha) and assessed its suitability as high-resolution genetic marker for population genetic studies. 27 P. vivax field isolates collected during chloroquine therapeutic efficacy study at Chennai were analyzed for genetic diversity. PCR-RFLP was employed to assess the genetic variations using highly polymorphic antigen gene msp-3 alpha. We observed three distinct PCR alleles at msp-3 alpha, and among them allele A showed significantly high frequency (53%, chi2 = 8.22, p = 0.001). PCR-RFLP analysis revealed 14 and 17 distinct RFLP patterns for Hha1 and Alu1 enzymes respectively. Further, RFLP analysis revealed that allele A at msp-3 alpha is more diverse in the population compared with allele B and C. Combining Hha1 and Alu1 RFLP patterns revealed 21 distinct genotypes among 22 isolates reflects higher diversity resolution power of msp-3 alpha in the field isolates. P. vivax isolates from Chennai region revealed substantial amount of genetic diversity and comparison of allelic diversity with other antigen genes and microsatellites suggesting that msp-3 alpha could be a high-resolution marker for genetic diversity studies among P. vivax field isolates.

  3. Extraordinary Genetic Diversity in a Wood Decay Mushroom.

    PubMed

    Baranova, Maria A; Logacheva, Maria D; Penin, Aleksey A; Seplyarskiy, Vladimir B; Safonova, Yana Y; Naumenko, Sergey A; Klepikova, Anna V; Gerasimov, Evgeny S; Bazykin, Georgii A; James, Timothy Y; Kondrashov, Alexey S

    2015-10-01

    Populations of different species vary in the amounts of genetic diversity they possess. Nucleotide diversity π, the fraction of nucleotides that are different between two randomly chosen genotypes, has been known to range in eukaryotes between 0.0001 in Lynx lynx and 0.16 in Caenorhabditis brenneri. Here, we report the results of a comparative analysis of 24 haploid genotypes (12 from the United States and 12 from European Russia) of a split-gill fungus Schizophyllum commune. The diversity at synonymous sites is 0.20 in the American population of S. commune and 0.13 in the Russian population. This exceptionally high level of nucleotide diversity also leads to extreme amino acid diversity of protein-coding genes. Using whole-genome resequencing of 2 parental and 17 offspring haploid genotypes, we estimate that the mutation rate in S. commune is high, at 2.0 × 10(-8) (95% CI: 1.1 × 10(-8) to 4.1 × 10(-8)) per nucleotide per generation. Therefore, the high diversity of S. commune is primarily determined by its elevated mutation rate, although high effective population size likely also plays a role. Small genome size, ease of cultivation and completion of the life cycle in the laboratory, free-living haploid life stages and exceptionally high variability of S. commune make it a promising model organism for population, quantitative, and evolutionary genetics. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation

    PubMed Central

    Vandewoestijne, Sofie; Schtickzelle, Nicolas; Baguette, Michel

    2008-01-01

    Background Theory predicts that lower dispersal, and associated gene flow, leads to decreased genetic diversity in small isolated populations, which generates adverse consequences for fitness, and subsequently for demography. Here we report for the first time this effect in a well-connected natural butterfly metapopulation with high population densities at the edge of its distribution range. Results We demonstrate that: (1) lower genetic diversity was coupled to a sharp decrease in adult lifetime expectancy, a key component of individual fitness; (2) genetic diversity was positively correlated to the number of dispersing individuals (indicative of landscape functional connectivity) and adult population size; (3) parameters inferred from capture-recapture procedures (population size and dispersal events between patches) correlated much better with genetic diversity than estimates usually used as surrogates for population size (patch area and descriptors of habitat quality) and dispersal (structural connectivity index). Conclusion Our results suggest that dispersal is a very important factor maintaining genetic diversity. Even at a very local spatial scale in a metapopulation consisting of large high-density populations interconnected by considerable dispersal rates, genetic diversity can be decreased and directly affect the fitness of individuals. From a biodiversity conservation perspective, this study clearly shows the benefits of both in-depth demographic and genetic analyses. Accordingly, to ensure the long-term survival of populations, conservation actions should not be blindly based on patch area and structural isolation. This result may be especially pertinent for species at their range margins, particularly in this era of rapid environmental change. PMID:18986515

  5. Endemic and widespread coral reef fishes have similar mitochondrial genetic diversity.

    PubMed

    Delrieu-Trottin, Erwan; Maynard, Jeffrey; Planes, Serge

    2014-12-22

    Endemic species are frequently assumed to have lower genetic diversity than species with large distributions, even if closely related. This assumption is based on research from the terrestrial environment and theoretical evolutionary modelling. We test this assumption in the marine environment by analysing the mitochondrial genetic diversity of 33 coral reef fish species from five families sampled from Pacific Ocean archipelagos. Surprisingly, haplotype and nucleotide diversity did not differ significantly between endemic and widespread species. The probable explanation is that the effective population size of some widespread fishes locally is similar to that of many of the endemics. Connectivity across parts of the distribution of the widespread species is probably low, so widespread species can operate like endemics at the extreme or isolated parts of their range. Mitochondrial genetic diversity of many endemic reef fish species may not either limit range size or be a source of vulnerability. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: a meta-analysis

    PubMed Central

    Whitlock, Raj

    2014-01-01

    Understanding the effects of intraspecific genetic diversity on the structure and functioning of ecological communities is a fundamentally important part of evolutionary ecology and may also have conservation relevance in identifying the situations in which genetic diversity coincides with species-level diversity.Early studies within this field documented positive relationships between genetic diversity and ecological structure, but recent studies have challenged these findings. Conceptual synthesis has been hampered because studies have used different measures of intraspecific variation (phenotypically adaptive vs. neutral) and have considered different measures of ecological structure in different ecological and spatial contexts. The aim of this study is to strengthen conceptual understanding by providing an empirical synthesis quantifying the relationship between genetic diversity and ecological structure.Here, I present a meta-analysis of the relationship between genetic diversity within plant populations and the structure and functioning of associated ecological communities (including 423 effect sizes from 70 studies). I used Bayesian meta-analyses to examine (i) the strength and direction of this relationship, (ii) the extent to which phenotypically adaptive and neutral (molecular) measures of diversity differ in their association with ecological structure and (iii) variation in outcomes among different measures of ecological structure and in different ecological contexts.Effect sizes measuring the relationship between adaptive diversity (genotypic richness) and both community- and ecosystem-level ecological responses were small, but significantly positive. These associations were supported by genetic effects on species richness and productivity, respectively.There was no overall association between neutral genetic diversity and measures of ecological structure, but a positive correlation was observed under a limited set of demographic conditions. These

  7. Conserving genetic diversity in the honeybee: comments on Harpur et al. (2012).

    PubMed

    De la Rúa, Pilar; Jaffé, Rodolfo; Muñoz, Irene; Serrano, José; Moritz, Robin F A; Kraus, F Bernhard

    2013-06-01

    The article by Harpur et al. (2012) 'Management increases genetic diversity of honey bees via admixture' concludes that '…honey bees do not suffer from reduced genetic diversity caused by management and, consequently, that reduced genetic diversity is probably not contributing to declines of managed Apis mellifera populations'. In the light of current honeybee and beekeeping declines and their consequences for honeybee conservation and the pollination services they provide, we would like to express our concern about the conclusions drawn from the results of Harpur et al. (2012). While many honeybee management practices do not imply admixture, we are convinced that the large-scale genetic homogenization of admixed populations could drive the loss of valuable local adaptations. We also point out that the authors did not account for the extensive gene flow that occurs between managed and wild/feral honeybee populations and raise concerns about the data set used. Finally, we caution against underestimating the importance of genetic diversity for honeybee colonies and highlight the importance of promoting the use of endemic honeybee subspecies in apiculture. © 2013 John Wiley & Sons Ltd.

  8. Genetic diversity of Bromeliaceae species from the Atlantic Forest.

    PubMed

    Sheu, Y; Cunha-Machado, A S; Gontijo, A B P L; Favoreto, F C; Soares, T B C; Miranda, F D

    2017-04-20

    The Bromeliaceae family includes a range of species used for many purposes, including ornamental use and use as food, medicine, feed, and fiber. The state of Espírito Santo, Brazil is a center of diversity for this family in the Atlantic Forest. We evaluated the genetic diversity of five populations of the Bromeliaceae family, including specimens of the genera Aechmea, Billbergia (subfamily Bromelioideae), and Pitcairnia (subfamily Pitcairnioidea), all found in the Atlantic Forest and distributed in the state of Espírito Santo. The number of alleles per locus in populations ranged from two to six and the fixation index (F), estimated for some simple sequence repeats in bromeliad populations, was less than zero in all populations. All markers in the Pitcairnia flammea population were in Hardy-Weinberg equilibrium (P < 0.05). Moreover, significant deviations from Hardy-Weinberg equilibrium were observed at some loci in populations of the five bromeliad species. In most cases, this can be attributed to the presence of inbreeding or the Wahlund effect. The genetic diversity indices of five species showed greater allelic richness in P. flammea (3.55). Therefore, we provide useful information for the characterization of genetic diversity in natural populations of Aechmea ramosa, Aechmea nudicaulis, Billbergia horrid, Billbergia euphemia, and P. flammea in Atlantic Forest remnants in the south of Espírito Santo state.

  9. Maintenance of genetic diversity through plant-herbivore interactions

    PubMed Central

    Gloss, Andrew D.; Dittrich, Anna C. Nelson; Goldman-Huertas, Benjamin; Whiteman, Noah K.

    2013-01-01

    Identifying the factors governing the maintenance of genetic variation is a central challenge in evolutionary biology. New genomic data, methods and conceptual advances provide increasing evidence that balancing selection, mediated by antagonistic species interactions, maintains functionally-important genetic variation within species and natural populations. Because diverse interactions between plants and herbivorous insects dominate terrestrial communities, they provide excellent systems to address this hypothesis. Population genomic studies of Arabidopsis thaliana and its relatives suggest spatial variation in herbivory maintains adaptive genetic variation controlling defense phenotypes, both within and among populations. Conversely, inter-species variation in plant defenses promotes adaptive genetic variation in herbivores. Emerging genomic model herbivores of Arabidopsis could illuminate how genetic variation in herbivores and plants interact simultaneously. PMID:23834766

  10. Genetic diversity of Trichomonas vaginalis reinfection in HIV-positive women.

    PubMed

    Conrad, Melissa D; Kissinger, Patricia; Schmidt, Norine; Martin, David H; Carlton, Jane M

    2013-09-01

    Recently developed genotyping tools allow better understanding of Trichomonas vaginalis population genetics and epidemiology. These tools have yet to be applied to T vaginalis collected from HIV+ populations, where understanding the interaction between the pathogens is of great importance due to the correlation between T vaginalis infection and HIV transmission. The objectives of the study were twofold: first, to compare the genetic diversity and population structure of T vaginalis collected from HIV+ women with parasites from reference populations; second, to use the genetic markers to perform a case study demonstrating the usefulness of these techniques in investigating the mechanisms of repeat infections. Repository T vaginalis samples from a previously described treatment trial were genotyped at 11 microsatellite loci. Estimates of genetic diversity and population structure were determined using standard techniques and compared with previously reported estimates of global populations. Genotyping data were used in conjunction with behavioural data to evaluate mechanisms of repeat infections. T vaginalis from HIV+ women maintain many of the population genetic characteristics of parasites from global reference populations. Although there is evidence of reduced diversity and bias towards type 1 parasites in the HIV+ population, the populations share a two-type population structure and parasite haplotypes. Genotyping/behavioural data suggest that 36% (12/33) of repeat infections in HIV+ women can be attributed to treatment failure. T vaginalis infecting HIV+ women is not genetically distinct from T vaginalis infecting reference populations. Information from genotyping can be valuable for understanding mechanisms of repeat infections.

  11. Capturing neutral and adaptive genetic diversity for conservation in a highly structured tree species.

    PubMed

    Rodríguez-Quilón, Isabel; Santos-Del-Blanco, Luis; Serra-Varela, María Jesús; Koskela, Jarkko; González-Martínez, Santiago C; Alía, Ricardo

    2016-10-01

    Preserving intraspecific genetic diversity is essential for long-term forest sustainability in a climate change scenario. Despite that, genetic information is largely neglected in conservation planning, and how conservation units should be defined is still heatedly debated. Here, we use maritime pine (Pinus pinaster Ait.), an outcrossing long-lived tree with a highly fragmented distribution in the Mediterranean biodiversity hotspot, to prove the importance of accounting for genetic variation, of both neutral molecular markers and quantitative traits, to define useful conservation units. Six gene pools associated to distinct evolutionary histories were identified within the species using 12 microsatellites and 266 single nucleotide polymorphisms (SNPs). In addition, height and survival standing variation, their genetic control, and plasticity were assessed in a multisite clonal common garden experiment (16 544 trees). We found high levels of quantitative genetic differentiation within previously defined neutral gene pools. Subsequent cluster analysis and post hoc trait distribution comparisons allowed us to define 10 genetically homogeneous population groups with high evolutionary potential. They constitute the minimum number of units to be represented in a maritime pine dynamic conservation program. Our results uphold that the identification of conservation units below the species level should account for key neutral and adaptive components of genetic diversity, especially in species with strong population structure and complex evolutionary histories. The environmental zonation approach currently used by the pan-European genetic conservation strategy for forest trees would be largely improved by gradually integrating molecular and quantitative trait information, as data become available. © 2016 by the Ecological Society of America.

  12. Genetic Diversity of Hibiscus tiliaceus (Malvaceae) in China Assessed using AFLP Markers

    PubMed Central

    TANG, TIAN; ZHONG, YANG; JIAN, SHUGUANG; SHI, SUHUA

    2003-01-01

    Amplified fragment length polymorphism (AFLP) markers were used to investigate the genetic variations within and among nine natural populations of Hibiscus tiliaceus in China. DNA from 145 individuals was amplified with eight primer pairs. No polymorphisms were found among the 20 samples of a marginal population of recent origin probably due to a founder effect. Across the other 125 individuals, 501 of 566 bands (88·5 %) were polymorphic, and 125 unique AFLP phenotypes were observed. Estimates of genetic diversity agreed with life history traits of H. tiliaceus and geographical distribution. AMOVA analysis revealed that most genetic diversity resided within populations (84·8 %), which corresponded to results reported for outcrossing plants. The indirect estimate of gene flow based on ϕST was moderate (Nm = 1·395). Long-distance dispersal of floating seeds and local environments may play an important role in shaping the genetic diversity of the population and the genetic structure of this species. PMID:12930729

  13. Elm genetic diversity and hybridization in the presence of Dutch elm disease

    USDA-ARS?s Scientific Manuscript database

    Dutch elm disease (DED) has devastated native North American elm species for more than 75 years. The impact of DED on the genetic diversity of one native elm species, U. rubra or slippery elm, is summarized and its potential impact on the genetic diversity of the other four North American native elm...

  14. Genetic diversity in Malus × domestica (Rosaceae) through time in response to domestication

    USDA-ARS?s Scientific Manuscript database

    Patterns of genetic diversity in domesticated plants are affected by geographic region of origin and cultivation, intentional artificial selection, and unintentional loss of diversity referred to as genetic bottlenecks. While bottlenecks are mainly associated with the initial domestication process, ...

  15. Landscape genetics, adaptive diversity and population structure in Phaseolus vulgaris.

    PubMed

    Rodriguez, Monica; Rau, Domenico; Bitocchi, Elena; Bellucci, Elisa; Biagetti, Eleonora; Carboni, Andrea; Gepts, Paul; Nanni, Laura; Papa, Roberto; Attene, Giovanna

    2016-03-01

    Here we studied the organization of genetic variation of the common bean (Phaseolus vulgaris) in its centres of domestication. We used 131 single nucleotide polymorphisms to investigate 417 wild common bean accessions and a representative sample of 160 domesticated genotypes, including Mesoamerican and Andean genotypes, for a total of 577 accessions. By analysing the genetic spatial patterns of the wild common bean, we documented the existence of several genetic groups and the occurrence of variable degrees of diversity in Mesoamerica and the Andes. Moreover, using a landscape genetics approach, we demonstrated that both demographic processes and selection for adaptation were responsible for the observed genetic structure. We showed that the study of correlations between markers and ecological variables at a continental scale can help in identifying local adaptation genes. We also located putative areas of common bean domestication in Mesoamerica, in the Oaxaca Valley, and the Andes, in southern Bolivia-northern Argentina. These observations are of paramount importance for the conservation and exploitation of the genetic diversity preserved within this species and other plant genetic resources. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Genetic diversity in natural populations of a soil bacterium across a landscape gradient

    PubMed Central

    McArthur, J. Vaun; Kovacic, David A.; Smith, Michael H.

    1988-01-01

    Genetic diversity in natural populations of the bacterium Pseudomonas cepacia was surveyed in 10 enzymes from 70 clones isolated along a landscape gradient. Estimates of genetic diversity, ranging from 0.54 to 0.70, were higher than any previously reported values of which we are aware and were positively correlated with habitat variability. Patterns of bacterial genetic diversity were correlated with habitat variability. Findings indicate that the source of strains used in genetic engineering will greatly affect the outcome of planned releases in variable environments. Selection of generalist strains may confer a large advantage to engineered populations, while selection of laboratory strains may result in quick elimination of the engineered strains. PMID:16594009

  17. Genetic diversity analysis of fruit characteristics of hawthorn germplasm.

    PubMed

    Su, K; Guo, Y S; Wang, G; Zhao, Y H; Dong, W X

    2015-12-07

    One hundred and six accessions of hawthorn intraspecific resources, from the National Germplasm Repository at Shenyang, were subjected to genetic diversity and principal component analysis based on evaluation data of 15 fruit traits. Results showed that the genetic diversity of hawthorn fruit traits varied. Among the 15 traits, the fruit shape variable coefficient had the most obvious evaluation, followed by fruit surface state, dot color, taste, weight of single fruit, sepal posture, peduncle form, and metula traits. These are the primary traits by which hawthorn could be classified in the future. The principal component demonstrated that these traits are the most influential factors of hawthorn fruit characteristics.

  18. Complete genome analysis of 33 ecologically and biologically diverse Rift Valley fever virus strains reveals widespread virus movement and low genetic diversity due to recent common ancestry.

    PubMed

    Bird, Brian H; Khristova, Marina L; Rollin, Pierre E; Ksiazek, Thomas G; Nichol, Stuart T

    2007-03-01

    Rift Valley fever (RVF) virus is a mosquito-borne RNA virus responsible for large explosive outbreaks of acute febrile disease in humans and livestock in Africa with significant mortality and economic impact. The successful high-throughput generation of the complete genome sequence was achieved for 33 diverse RVF virus strains collected from throughout Africa and Saudi Arabia from 1944 to 2000, including strains differing in pathogenicity in disease models. While several distinct virus genetic lineages were determined, which approximately correlate with geographic origin, multiple exceptions indicative of long-distance virus movement have been found. Virus strains isolated within an epidemic (e.g., Mauritania, 1987, or Egypt, 1977 to 1978) exhibit little diversity, while those in enzootic settings (e.g., 1970s Zimbabwe) can be highly diverse. In addition, the large Saudi Arabian RVF outbreak in 2000 appears to have involved virus introduction from East Africa, based on the close ancestral relationship of a 1998 East African virus. Virus genetic diversity was low (approximately 5%) and primarily involved accumulation of mutations at an average of 2.9 x 10(-4) substitutions/site/year, although some evidence of RNA segment reassortment was found. Bayesian analysis of current RVF virus genetic diversity places the most recent common ancestor of these viruses in the late 1800s, the colonial period in Africa, a time of dramatic changes in agricultural practices and introduction of nonindigenous livestock breeds. In addition to insights into the evolution and ecology of RVF virus, these genomic data also provide a foundation for the design of molecular detection assays and prototype vaccines useful in combating this important disease.

  19. Dispersal responses override density effects on genetic diversity during post-disturbance succession

    PubMed Central

    Landguth, Erin L.; Bull, C. Michael; Banks, Sam C.; Gardner, Michael G.; Driscoll, Don A.

    2016-01-01

    Dispersal fundamentally influences spatial population dynamics but little is known about dispersal variation in landscapes where spatial heterogeneity is generated predominantly by disturbance and succession. We tested the hypothesis that habitat succession following fire inhibits dispersal, leading to declines over time in genetic diversity in the early successional gecko Nephrurus stellatus. We combined a landscape genetics field study with a spatially explicit simulation experiment to determine whether successional patterns in genetic diversity were driven by habitat-mediated dispersal or demographic effects (declines in population density leading to genetic drift). Initial increases in genetic structure following fire were likely driven by direct mortality and rapid population expansion. Subsequent habitat succession increased resistance to gene flow and decreased dispersal and genetic diversity in N. stellatus. Simulated changes in population density alone did not reproduce these results. Habitat-mediated reductions in dispersal, combined with changes in population density, were essential to drive the field-observed patterns. Our study provides a framework for combining demographic, movement and genetic data with simulations to discover the relative influence of demography and dispersal on patterns of landscape genetic structure. Our results suggest that succession can inhibit connectivity among individuals, opening new avenues for understanding how disturbance regimes influence spatial population dynamics. PMID:27009225

  20. The DNA of coral reef biodiversity: predicting and protecting genetic diversity of reef assemblages

    PubMed Central

    Gaggiotti, Oscar E.; Treml, Eric A.; Wren, Johanna L. K.; Donovan, Mary K.; Toonen, Robert J.

    2016-01-01

    Conservation of ecological communities requires deepening our understanding of genetic diversity patterns and drivers at community-wide scales. Here, we use seascape genetic analysis of a diversity metric, allelic richness (AR), for 47 reef species sampled across 13 Hawaiian Islands to empirically demonstrate that large reefs high in coral cover harbour the greatest genetic diversity on average. We found that a species's life history (e.g. depth range and herbivory) mediates response of genetic diversity to seascape drivers in logical ways. Furthermore, a metric of combined multi-species AR showed strong coupling to species richness and habitat area, quality and stability that few species showed individually. We hypothesize that macro-ecological forces and species interactions, by mediating species turnover and occupancy (and thus a site's mean effective population size), influence the aggregate genetic diversity of a site, potentially allowing it to behave as an apparent emergent trait that is shaped by the dominant seascape drivers. The results highlight inherent feedbacks between ecology and genetics, raise concern that genetic resilience of entire reef communities is compromised by factors that reduce coral cover or available habitat, including thermal stress, and provide a foundation for new strategies for monitoring and preserving biodiversity of entire reef ecosystems. PMID:27122569

  1. The DNA of coral reef biodiversity: predicting and protecting genetic diversity of reef assemblages.

    PubMed

    Selkoe, Kimberly A; Gaggiotti, Oscar E; Treml, Eric A; Wren, Johanna L K; Donovan, Mary K; Toonen, Robert J

    2016-04-27

    Conservation of ecological communities requires deepening our understanding of genetic diversity patterns and drivers at community-wide scales. Here, we use seascape genetic analysis of a diversity metric, allelic richness (AR), for 47 reef species sampled across 13 Hawaiian Islands to empirically demonstrate that large reefs high in coral cover harbour the greatest genetic diversity on average. We found that a species's life history (e.g. depth range and herbivory) mediates response of genetic diversity to seascape drivers in logical ways. Furthermore, a metric of combined multi-species AR showed strong coupling to species richness and habitat area, quality and stability that few species showed individually. We hypothesize that macro-ecological forces and species interactions, by mediating species turnover and occupancy (and thus a site's mean effective population size), influence the aggregate genetic diversity of a site, potentially allowing it to behave as an apparent emergent trait that is shaped by the dominant seascape drivers. The results highlight inherent feedbacks between ecology and genetics, raise concern that genetic resilience of entire reef communities is compromised by factors that reduce coral cover or available habitat, including thermal stress, and provide a foundation for new strategies for monitoring and preserving biodiversity of entire reef ecosystems. © 2016 The Authors.

  2. Complementary effects of species and genetic diversity on productivity and stability of sown grasslands.

    PubMed

    Prieto, Iván; Violle, Cyrille; Barre, Philippe; Durand, Jean-Louis; Ghesquiere, Marc; Litrico, Isabelle

    2015-03-30

    Plant species diversity regulates the productivity(1-3) and stability(2,4) of natural ecosystems, along with their resilience to disturbance(5,6). The influence of species diversity on the productivity of agronomic systems is less clear(7-10). Plant genetic diversity is also suspected to influence ecosystem function(3,11-14), although empirical evidence is scarce. Given the large range of genotypes that can be generated per species through artificial selection, genetic diversity is a potentially important leverage of productivity in cultivated systems. Here we assess the effect of species and genetic diversity on the production and sustainable supply of livestock fodder in sown grasslands, comprising single and multispecies assemblages characterized by different levels of genetic diversity, exposed to drought and non-drought conditions. Multispecies assemblages proved more productive than monocultures when subject to drought, regardless of the number of genotypes per species present. Conversely, the temporal stability of production increased only with the number of genotypes present under both drought and non-drought conditions, and was unaffected by the number of species. We conclude that taxonomic and genetic diversity can play complementary roles when it comes to optimizing livestock fodder production in managed grasslands, and suggest that both levels of diversity should be considered in plant breeding programmes designed to boost the productivity and resilience of managed grasslands in the face of increasing environmental hazards.

  3. Genetic diversity of high performance cultivars of upland and irrigated Brazilian rice.

    PubMed

    Coelho, G R C; Brondani, C; Hoffmann, L V; Valdisser, P A M R; Borba, T C O; Mendonça, J A; Rodrigues, L A; de Menezes, I P P

    2017-09-21

    The objective of this study was to analyze the diversity and discrimination of high-performance Brazilian rice cultivars using microsatellite markers. Twenty-nine rice cultivars belonging to EMBRAPA Arroz e Feijão germplasm bank in Brazil were genotyped by 24 SSR markers to establish their structure and genetic discrimination. It was demonstrated that the analyzed germplasm of rice presents an expressive and significant genetic diversity with low heterogeneity among the cultivars. All 29 cultivars were differentiated genetically, and were organized into two groups related to their upland and irrigated cultivation systems. These groups showed a high genetic differentiation, with greater diversity within the group that includes the cultivars for irrigated system. The genotyping data of these cultivars, with the morphological e phenotypical data, are valuable information to be used by rice breeding programs to develop new improved cultivars.

  4. Genetic diversity of functional food species Spinacia oleracea L. by protein markers.

    PubMed

    Rashid, M; Yousaf, Z; Haider, M S; Khalid, S; Rehman, H A; Younas, A; Arif, A

    2014-01-01

    Exploration of genetic diversity contributes primarily towards crop improvement. Spinaciaoleracea L. is a functional food species but unfortunately the genetic diversity of this vegetable is still unexplored. Therefore, this research was planned to explore the genetic diversity of S. oleracea by using morphological and protein markers. Protein profile of 25 accessions was generated on sodium dodecyl sulphate polyacrylamide gel. Total allelic variation of 27 bands was found. Out of these, 20 were polymorphic and the rest of the bands were monomorphic. Molecular weights of the bands ranged from 12.6 to 91.2 kDa. Major genetic differences were observed in accession 20541 (Peshawar) followed by 20180 (Lahore) and 19902 (AVRDC). Significant differences exist in the protein banding pattern. This variation can further be studied by advanced molecular techniques, including two-dimensional electrophoresis and DNA markers.

  5. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance.

    PubMed

    Hughes, A Randall; Stachowicz, John J

    2004-06-15

    Motivated by recent global reductions in biodiversity, empirical and theoretical research suggests that more species-rich systems exhibit enhanced productivity, nutrient cycling, or resistance to disturbance or invasion relative to systems with fewer species. In contrast, few data are available to assess the potential ecosystem-level importance of genetic diversity within species known to play a major functional role. Using a manipulative field experiment, we show that increasing genotypic diversity in a habitat-forming species (the seagrass Zostera marina) enhances community resistance to disturbance by grazing geese. The time required for recovery to near predisturbance densities also decreases with increasing eelgrass genotypic diversity. However, there is no effect of diversity on resilience, measured as the rate of shoot recovery after the disturbance, suggesting that more rapid recovery in diverse plots is due solely to differences in disturbance resistance. Genotypic diversity did not affect ecosystem processes in the absence of disturbance. Thus, our results suggest that genetic diversity, like species diversity, may be most important for enhancing the consistency and reliability of ecosystems by providing biological insurance against environmental change.

  6. Genetic Diversity of the Two Commercial Tetraploid Cotton Species in the Gossypium Diversity Reference Set.

    PubMed

    Hinze, Lori L; Gazave, Elodie; Gore, Michael A; Fang, David D; Scheffler, Brian E; Yu, John Z; Jones, Don C; Frelichowski, James; Percy, Richard G

    2016-05-01

    A diversity reference set has been constructed for the Gossypium accessions in the US National Cotton Germplasm Collection to facilitate more extensive evaluation and utilization of accessions held in the Collection. A set of 105 mapped simple sequence repeat markers was used to study the allelic diversity of 1933 tetraploid Gossypium accessions representative of the range of diversity of the improved and wild accessions of G. hirsutum and G. barbadense. The reference set contained 410 G. barbadense accessions and 1523 G. hirsutum accessions. Observed numbers of polymorphic and private bands indicated a greater diversity in G. hirsutum as compared to G. barbadense as well as in wild-type accessions as compared to improved accessions in both species. The markers clearly differentiated the 2 species. Patterns of diversity within species were observed but not clearly delineated, with much overlap occurring between races and regions of origin for wild accessions and between historical and geographic breeding pools for cultivated accessions. Although the percentage of accessions showing introgression was higher among wild accessions than cultivars in both species, the average level of introgression within individual accessions, as indicated by species-specific bands, was much higher in wild accessions of G. hirsutum than in wild accessions of G. barbadense. The average level of introgression within individual accessions was higher in improved G. barbadense cultivars than in G. hirsutum cultivars. This molecular characterization reveals the levels and distributions of genetic diversity that will allow for better exploration and utilization of cotton genetic resources. Published by Oxford University Press on behalf of the American Genetic Association 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Comparative use of InDel and SSR markers in deciphering the interspecific structure of cultivated citrus genetic diversity: a perspective for genetic association studies.

    PubMed

    García-Lor, Andrés; Luro, François; Navarro, Luis; Ollitrault, Patrick

    2012-01-01

    Genetic stratification associated with domestication history is a key parameter for estimating the pertinence of genetic association study within a gene pool. Previous molecular and phenotypic studies have shown that most of the diversity of cultivated citrus results from recombination between three main species: C. medica (citron), C. reticulata (mandarin) and C. maxima (pummelo). However, the precise contribution of each of these basic species to the genomes of secondary cultivated species, such as C. sinensis (sweet orange), C. limon (lemon), C. aurantium (sour orange), C. paradisi (grapefruit) and recent hybrids is unknown. Our study focused on: (1) the development of insertion-deletion (InDel) markers and their comparison with SSR markers for use in genetic diversity and phylogenetic studies; (2) the analysis of the contributions of basic taxa to the genomes of secondary species and modern cultivars and (3) the description of the organisation of the Citrus gene pool, to evaluate how genetic association studies should be done at the cultivated Citrus gene pool level. InDel markers appear to be better phylogenetic markers for tracing the contributions of the three ancestral species, whereas SSR markers are more useful for intraspecific diversity analysis. Most of the genetic organisation of the Citrus gene pool is related to the differentiation between C. reticulata, C. maxima and C. medica. High and generalised LD was observed, probably due to the initial differentiation between the basic species and a limited number of interspecific recombinations. This structure precludes association genetic studies at the genus level without developing additional recombinant populations from interspecific hybrids. Association genetic studies should also be affordable at intraspecific level in a less structured pool such as C. reticulata.

  8. Herbicides induce change in metabolic and genetic diversity of bacterial community from a cold oligotrophic lake.

    PubMed

    Aguayo, P; González, C; Barra, R; Becerra, J; Martínez, M

    2014-03-01

    Pristine cold oligotrophic lakes show unique physical and chemical characteristics with permanent fluctuation in temperature and carbon source availability. Incorporation of organic toxic matters to these ecosystems could alter the bacterial community composition. Our goal was to assess the effects of simazine (Sz) and 2,4 dichlorophenoxyacetic acid (2,4-D) upon the metabolic and genetic diversity of the bacterial community in sediment samples from a pristine cold oligotrophic lake. Sediment samples were collected in winter and summer season, and microcosms were prepared using a ration 1:10 (sediments:water). The microcosms were supplemented with 0.1 mM 2,4-D or 0.5 mM Sz and incubated for 20 days at 10 °C. Metabolic diversity was evaluated by using the Biolog Ecoplate™ system and genetic diversity by 16S rDNA amplification followed by denaturing gradient gel electrophoresis analysis. Total bacterial counts and live/dead ratio were determined by epifluorescence microscopy. The control microcosms showed no significant differences (P > 0.05) in both metabolic and genetic diversity between summer and winter samples. On the other hand, the addition of 2,4-D or Sz to microcosms induces statistical significant differences (P < 0.05) in metabolic and genetic diversity showing the prevalence of Actinobacteria group which are usually not detected in the sediments of these non-contaminated lacustrine systems. The obtained results suggest that contaminations of cold pristine lakes with organic toxic compounds of anthropic origin alter their homeostasis by inhibiting specific susceptible bacterial groups. The concomitant increase of usually low representative bacterial groups modifies the bacterial composition commonly found in this pristine lake.

  9. Concordance between genetic and species diversity in coral reef fishes across the Pacific Ocean biodiversity gradient.

    PubMed

    Messmer, Vanessa; Jones, Geoffrey P; Munday, Philip L; Planes, Serge

    2012-12-01

    The relationship between genetic diversity and species diversity provides insights into biogeography and historic patterns of evolution and is critical for developing contemporary strategies for biodiversity conservation. Although concordant large-scale clines in genetic and species diversity have been described for terrestrial organisms, whether these parameters co-vary in marine species remains largely unknown. We examined patterns of genetic diversity for 11 coral reef fish species sampled at three locations across the Pacific Ocean species diversity gradient (Australia: ∼1600 species; New Caledonia: ∼1400 species; French Polynesia: ∼800 species). Combined genetic diversity for all 11 species paralleled the decline in species diversity from West to East, with French Polynesia exhibiting lowest total haplotype and nucleotide diversities. Haplotype diversity consistently declined toward French Polynesia in all and nucleotide diversity in the majority of species. The French Polynesian population of most species also exhibited significant genetic differentiation from populations in the West Pacific. A number of factors may have contributed to the general positive correlation between genetic and species diversity, including location and time of species origin, vicariance events, reduced gene flow with increasing isolation, and decreasing habitat area from West to East. However, isolation and habitat area, resulting in reduced population size, are likely to be the most influential. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  10. A genomic scale map of genetic diversity in Trypanosoma cruzi

    PubMed Central

    2012-01-01

    Background Trypanosoma cruzi, the causal agent of Chagas Disease, affects more than 16 million people in Latin America. The clinical outcome of the disease results from a complex interplay between environmental factors and the genetic background of both the human host and the parasite. However, knowledge of the genetic diversity of the parasite, is currently limited to a number of highly studied loci. The availability of a number of genomes from different evolutionary lineages of T. cruzi provides an unprecedented opportunity to look at the genetic diversity of the parasite at a genomic scale. Results Using a bioinformatic strategy, we have clustered T. cruzi sequence data available in the public domain and obtained multiple sequence alignments in which one or two alleles from the reference CL-Brener were included. These data covers 4 major evolutionary lineages (DTUs): TcI, TcII, TcIII, and the hybrid TcVI. Using these set of alignments we have identified 288,957 high quality single nucleotide polymorphisms and 1,480 indels. In a reduced re-sequencing study we were able to validate ~ 97% of high-quality SNPs identified in 47 loci. Analysis of how these changes affect encoded protein products showed a 0.77 ratio of synonymous to non-synonymous changes in the T. cruzi genome. We observed 113 changes that introduce or remove a stop codon, some causing significant functional changes, and a number of tri-allelic and tetra-allelic SNPs that could be exploited in strain typing assays. Based on an analysis of the observed nucleotide diversity we show that the T. cruzi genome contains a core set of genes that are under apparent purifying selection. Interestingly, orthologs of known druggable targets show statistically significant lower nucleotide diversity values. Conclusions This study provides the first look at the genetic diversity of T. cruzi at a genomic scale. The analysis covers an estimated ~ 60% of the genetic diversity present in the population, providing an

  11. Genetic diversity in soybean genotypes using phenotypic characters and enzymatic markers.

    PubMed

    Zambiazzi, E V; Bruzi, A T; Sales, A P; Borges, I M M; Guilherme, S R; Zuffo, A M; Lima, J G; Ribeiro, F O; Mendes, A E S; Godinho, S H M; Carvalho, M L M

    2017-09-21

    The objective of this study was to evaluate the genetic diversity of soybean cultivars by adopting phenotypic traits and enzymatic markers, the relative contribution of agronomic traits to diversity, as well as diversity between the level of technology used in soybean cultivars and genetic breeding programs in which cultivars were inserted. The experiments were conducted on the field at the Center for Scientific and Technological Development in crop-livestock production and the Electrophoresis Laboratory of Lavras Federal University. The agronomic traits adopted were grain yield, plant height, first legume insertion, plant lodging, the mass of one thousand seeds, and days for complete maturation, in which the Euclidean distance, grouped by Tocher and UPGMA criteria, was obtained. After electrophorese gels for enzymatic systems, dehydrogenase alcohol, esterase, superoxide dismutase, and peroxidase were performed. The genetic similarity estimative was also obtained between genotypes by the Jaccard coefficient with subsequent grouping by the UPGMA method. The formation of two groups was shown using phenotypic characters in the genetic diversity study and individually discriminating the cultivar 97R73 RR. The character with the greatest contribution to the genetic divergence was grain yield with contribution higher than 90.0%. To obtain six different groups, individually discriminating the cultivars CG 8166 RR, FPS Jupiter RR, and BRS MG 780 RR, enzymatic markers were used. Cultivars carrying the RR technology presented more divergence than conventional cultivars and IPRO cultivars.

  12. Genetic diversity of a newly established population of golden eagles on the Channel Islands, California

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Coonan, Timothy J.; Latta, Brian C.; Sage, George K.; Talbot, Sandra L.

    2012-01-01

    Gene flow can have profound effects on the genetic diversity of a founding population depending on the number and relationship among colonizers and the duration of the colonization event. Here we used data from nuclear microsatellite and mitochondrial DNA control region loci to assess genetic diversity in golden eagles of the recently colonized Channel Islands, California. Genetic diversity in the Channel Island population was low, similar to signatures observed for other recent colonizing island populations. Differences in levels of genetic diversity and structure observed between mainland California and the islands suggests that few individuals were involved in the initial founding event, and may have comprised a family group. The spatial genetic structure observed between Channel Island and mainland California golden eagle populations across marker types, and genetic signature of population decline observed for the Channel Island population, suggest a single or relatively quick colonization event. Polarity in gene flow estimates based on mtDNA confirm an initial colonization of the Channel Islands by mainland golden eagles, but estimates from microsatellite data suggest that golden eagles on the islands were dispersing more recently to the mainland, possibly after reaching the carrying capacity of the island system. These results illustrate the strength of founding events on the genetic diversity of a population, and confirm that changes to genetic diversity can occur within just a few generations.

  13. Genetic diversity of Plasmodium Vivax revealed by the merozoite surface protein-1 icb5-6 fragment.

    PubMed

    Ruan, Wei; Zhang, Ling-Ling; Feng, Yan; Zhang, Xuan; Chen, Hua-Liang; Lu, Qiao-Yi; Yao, Li-Nong; Hu, Wei

    2017-06-05

    Plasmodium vivax remains a potential cause of morbidity and mortality for people living in its endemic areas. Understanding the genetic diversity of P. vivax from different regions is valuable for studying population dynamics and tracing the origins of parasites. The PvMSP-1 gene is highly polymorphic and has been used as a marker in many P. vivax population studies. The aim of this study was to investigate the genetic diversity of the PvMSP-1 gene icb5-6 fragment and to provide more genetic polymorphism data for further studies on P. vivax population structure and tracking of the origin of clinical cases. Nested PCR and sequencing of the PvMSP-1 icb5-6 marker were performed to obtain the nucleotide sequences of 95 P. vivax isolates collected from Zhejiang province, China. To investigate the genetic diversity of PvMSP-1, the 95 nucleotide sequences of the PvMSP-1 icb5-6 fragment were genotyped and analyzed using DnaSP v5, MEGA software. The 95 P. vivax isolates collected from Zhejiang province were either indigenous cases or imported cases from different regions around the world. A total of 95 sequences ranging from 390 to 460 bp were obtained. The 95 sequences were genotyped into four allele-types (Sal I, Belem, R-III and R-IV) and 17 unique haplotypes. R-III and Sal I were the predominant allele-types. The haplotype diversity (Hd) and nucleotide diversity (Pi) were estimated to be 0.729 and 0.062, indicating that the PvMSP-1 icb5-6 fragment had the highest level of polymorphism due to frequent recombination processes and single nucleotide polymorphism. The values of dN/dS and Tajima's D both suggested neutral selection for the PvMSP-1icb5-6 fragment. In addition, a rare recombinant style of R-IV type was identified. This study presented high genetic diversity in the PvMSP-1 marker among P. vivax strains from around the world. The genetic data is valuable for expanding the polymorphism information on P. vivax, which could be helpful for further study on

  14. Genetic diversity and population structure of a protected species: Polygala tenuifolia Willd.

    PubMed

    Peng, Yan Qun; Fan, Ling Ling; Mao, Fu Ying; Zhao, Yun Sheng; Xu, Rui; Yin, Yu Jie; Chen, Xin; Wan, De Guang; Zhang, Xin Hui

    2018-03-01

    Polygala tenuifolia Willd. is an important protected species used in traditional Chinese medicine. In the present study, amplified fragment length polymorphism (AFLP) markers were employed to characterize the genetic diversity in wild and cultivated P. tenuifolia populations. Twelve primer combinations of AFLP produced 310 unambiguous and repetitious bands. Among these bands, 261 (84.2%) were polymorphic. The genetic diversity was high at the species level: percentage of polymorphic loci (PPL)=84.2%, Nei's gene diversity (h)=0.3296 and Shannon's information index (I)=0.4822. Between the two populations, the genetic differentiation of 0.1250 was low and the gene flow was relatively high, at 3.4989. The wild population (PPL=81.9%, h=0.3154, I=0.4635) showed a higher genetic diversity level than the cultivated population (PPL=63.9%, h=0.2507, I=0.3688). The results suggest that the major factors threatening the persistence of P. tenuifolia resources are ecological and human factors rather than genetic. These results will assist with the design of conservation and management programs, such as in natural habitat conservation, setting the excavation time interval for resource regeneration and the substitution of cultivated for wild plants. Copyright © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  15. Temporal analysis of mtDNA variation reveals decreased genetic diversity in least terns

    USGS Publications Warehouse

    Draheim, Hope M.; Baird, Patricia; Haig, Susan M.

    2012-01-01

    The Least Tern (Sternula antillarum) has undergone large population declines over the last century as a result of direct and indirect anthropogenic factors. The genetic implications of these declines are unknown. We used historical museum specimens (pre-1960) and contemporary (2001–2005) samples to examine range-wide phylogeographic patterns and investigate potential loss in the species' genetic variation. We obtained sequences (522 bp) of the mitochondrial gene for NADH dehydrogenase subunit 6 (ND6) from 268 individuals from across the species' range. Phylogeographic analysis revealed no association with geography or traditional subspecies designations. However, we detected potential reductions in genetic diversity in contemporary samples from California and the Atlantic coast Least Tern from that in historical samples, suggesting that current genetic diversity in Least Tern populations is lower than in their pre-1960 counterparts. Our results offer unique insights into changes in the Least Tern's genetic diversity over the past century and highlight the importance and utility of museum specimens in studies of conservation genetics.

  16. Natural Selection and Genetic Diversity in the Butterfly Heliconius melpomene.

    PubMed

    Martin, Simon H; Möst, Markus; Palmer, William J; Salazar, Camilo; McMillan, W Owen; Jiggins, Francis M; Jiggins, Chris D

    2016-05-01

    A combination of selective and neutral evolutionary forces shape patterns of genetic diversity in nature. Among the insects, most previous analyses of the roles of drift and selection in shaping variation across the genome have focused on the genus Drosophila A more complete understanding of these forces will come from analyzing other taxa that differ in population demography and other aspects of biology. We have analyzed diversity and signatures of selection in the neotropical Heliconius butterflies using resequenced genomes from 58 wild-caught individuals of Heliconius melpomene and another 21 resequenced genomes representing 11 related species. By comparing intraspecific diversity and interspecific divergence, we estimate that 31% of amino acid substitutions between Heliconius species are adaptive. Diversity at putatively neutral sites is negatively correlated with the local density of coding sites as well as nonsynonymous substitutions and positively correlated with recombination rate, indicating widespread linked selection. This process also manifests in significantly reduced diversity on longer chromosomes, consistent with lower recombination rates. Although hitchhiking around beneficial nonsynonymous mutations has significantly shaped genetic variation in H. melpomene, evidence for strong selective sweeps is limited overall. We did however identify two regions where distinct haplotypes have swept in different populations, leading to increased population differentiation. On the whole, our study suggests that positive selection is less pervasive in these butterflies as compared to fruit flies, a fact that curiously results in very similar levels of neutral diversity in these very different insects. Copyright © 2016 by the Genetics Society of America.

  17. Genetic Diversity Strategy for the Management and Use of Rubber Genetic Resources: More than 1,000 Wild and Cultivated Accessions in a 100-Genotype Core Collection

    PubMed Central

    Cerqueira-Silva, Carlos Bernardo Moreno; Silva, Carla Cristina; Mantello, Camila Campos; Conson, Andre Ricardo Oliveira; Vianna, João Paulo Gomes; Zucchi, Maria Imaculada; Scaloppi Junior, Erivaldo José; Fialho, Josefino de Freitas; de Moraes, Mario Luis Teixeira; Gonçalves, Paulo de Souza; de Souza, Anete Pereira

    2015-01-01

    The rubber tree [Hevea brasiliensis (Willd. ex Adr. de Juss.) Muell. Arg.] is the only plant species worldwide that is cultivated for the commercial production of natural rubber. This study describes the genetic diversity of the Hevea spp. complex that is available in the main ex situ collections of South America, including Amazonian populations that have never been previously described. Genetic data were analyzed to determine the genetic structure of the wild populations, quantify the allelic diversity and suggest the composition of a core collection to capture the maximum genetic diversity within a minimal sample size. A total of 1,117 accessions were genotyped with 13 microsatellite markers. We identified a total of 408 alleles, 319 of which were shared between groups and 89 that were private in different groups of accessions. In a population structure and principal component analysis, the level of clustering reflected a primary division into the following two subgroups: cluster 1, which consisted of varieties from the advanced breeding germplasm that originated from the Wickham and Mato Grosso accessions; and cluster 2, which consisted of the wild germplasm from the Acre, Amazonas, Pará and Rondônia populations and Hevea spp. The analyses revealed a high frequency of gene flow between the groups, with the genetic differentiation coefficient (GST) estimated to be 0.018. Additionally, no distinct separation among the H. brasiliensis accessions and the other species from Amazonas was observed. A core collection of 99 accessions was identified that captured the maximum genetic diversity. Rubber tree breeders can effectively utilize this core collection for cultivar improvement. Furthermore, such a core collection could provide resources for forming an association panel to evaluate traits with agronomic and commercial importance. Our study generated a molecular database that should facilitate the management of the Hevea germplasm and its use for subsequent genetic

  18. Genetic diversity of Trichomonas vaginalis reinfection in HIV-positive women

    PubMed Central

    Conrad, Melissa D; Kissinger, Patricia; Schmidt, Norine; Martin, David H; Carlton, Jane M

    2013-01-01

    Objectives Recently developed genotyping tools allow better understanding of Trichomonas vaginalis population genetics and epidemiology. These tools have yet to be applied to T vaginalis collected from HIV+ populations, where understanding the interaction between the pathogens is of great importance due to the correlation between T vaginalis infection and HIV transmission. The objectives of the study were twofold: first, to compare the genetic diversity and population structure of T vaginalis collected from HIV+ women with parasites from reference populations; second, to use the genetic markers to perform a case study demonstrating the usefulness of these techniques in investigating the mechanisms of repeat infections. Methods Repository T vaginalis samples from a previously described treatment trial were genotyped at 11 microsatellite loci. Estimates of genetic diversity and population structure were determined using standard techniques and compared with previously reported estimates of global populations. Genotyping data were used in conjunction with behavioural data to evaluate mechanisms of repeat infections. Results T vaginalis from HIV+ women maintain many of the population genetic characteristics of parasites from global reference populations. Although there is evidence of reduced diversity and bias towards type 1 parasites in the HIV+ population, the populations share a two-type population structure and parasite haplotypes. Genotyping/behavioural data suggest that 36% (12/33) of repeat infections in HIV+ women can be attributed to treatment failure. Conclusions T vaginalis infecting HIV+ women is not genetically distinct from T vaginalis infecting reference populations. Information from genotyping can be valuable for understanding mechanisms of repeat infections. PMID:23694936

  19. Postglacial recolonization shaped the genetic diversity of the winter moth (Operophtera brumata) in Europe.

    PubMed

    Andersen, Jeremy C; Havill, Nathan P; Caccone, Adalgisa; Elkinton, Joseph S

    2017-05-01

    Changes in climate conditions, particularly during the Quaternary climatic oscillations, have long been recognized to be important for shaping patterns of species diversity. For species residing in the western Palearctic, two commonly observed genetic patterns resulting from these cycles are as follows: (1) that the numbers and distributions of genetic lineages correspond with the use of geographically distinct glacial refugia and (2) that southern populations are generally more diverse than northern populations (the "southern richness, northern purity" paradigm). To determine whether these patterns hold true for the widespread pest species the winter moth ( Operophtera brumata ), we genotyped 699 individual winter moths collected from 15 Eurasian countries with 24 polymorphic microsatellite loci. We find strong evidence for the presence of two major genetic clusters that diverged ~18 to ~22 ka, with evidence that secondary contact (i.e., hybridization) resumed ~ 5 ka along a well-established hybrid zone in Central Europe. This pattern supports the hypothesis that contemporary populations descend from populations that resided in distinct glacial refugia. However, unlike many previous studies of postglacial recolonization, we found no evidence for the "southern richness, northern purity" paradigm. We also find evidence for ongoing gene flow between populations in adjacent Eurasian countries, suggesting that long-distance dispersal plays an important part in shaping winter moth genetic diversity. In addition, we find that this gene flow is predominantly in a west-to-east direction, suggesting that recently debated reports of cyclical outbreaks of winter moth spreading from east to west across Europe are not the result of dispersal.

  20. Genetic diversity, genetic structure and demographic history of Cycas simplicipinna (Cycadaceae) assessed by DNA sequences and SSR markers

    PubMed Central

    2014-01-01

    Background Cycas simplicipinna (T. Smitinand) K. Hill. (Cycadaceae) is an endangered species in China. There were seven populations and 118 individuals that we could collect were genotyped in this study. Here, we assessed the genetic diversity, genetic structure and demographic history of this species. Results Analyses of data of DNA sequences (two maternally inherited intergenic spacers of chloroplast, cpDNA and one biparentally inherited internal transcribed spacer region ITS4-ITS5, nrDNA) and sixteen microsatellite loci (SSR) were conducted in the species. Of the 118 samples, 86 individuals from the seven populations were used for DNA sequencing and 115 individuals from six populations were used for the microsatellite study. We found high genetic diversity at the species level, low genetic diversity within each of the seven populations and high genetic differentiation among the populations. There was a clear genetic structure within populations of C. simplicipinna. A demographic history inferred from DNA sequencing data indicates that C. simplicipinna experienced a recent population contraction without retreating to a common refugium during the last glacial period. The results derived from SSR data also showed that C. simplicipinna underwent past effective population contraction, likely during the Pleistocene. Conclusions Some genetic features of C. simplicipinna such as having high genetic differentiation among the populations, a clear genetic structure and a recent population contraction could provide guidelines for protecting this endangered species from extinction. Furthermore, the genetic features with population dynamics of the species in our study would help provide insights and guidelines for protecting other endangered species effectively. PMID:25016306

  1. AFRICAN GENETIC DIVERSITY: Implications for Human Demographic History, Modern Human Origins, and Complex Disease Mapping

    PubMed Central

    Campbell, Michael C.; Tishkoff, Sarah A.

    2010-01-01

    Comparative studies of ethnically diverse human populations, particularly in Africa, are important for reconstructing human evolutionary history and for understanding the genetic basis of phenotypic adaptation and complex disease. African populations are characterized by greater levels of genetic diversity, extensive population substructure, and less linkage disequilibrium (LD) among loci compared to non-African populations. Africans also possess a number of genetic adaptations that have evolved in response to diverse climates and diets, as well as exposure to infectious disease. This review summarizes patterns and the evolutionary origins of genetic diversity present in African populations, as well as their implications for the mapping of complex traits, including disease susceptibility. PMID:18593304

  2. Genetic diversity of Toxoplama gondii isolates from Ethiopian feral cats

    USDA-ARS?s Scientific Manuscript database

    Recent studies indicate greater genetic variability among isolates of Toxoplasma gondii worldwide than previously thought. However, there is no information on genetic diversity of T. gondii from any host in Ethiopia. In the present study, genotyping was performed on viable T. gondii isolates by bioa...

  3. The 'Out of Africa' Hypothesis, Human Genetic Diversity, and Comparative Economic Development

    PubMed Central

    Ashraf, Quamrul; Galor, Oded

    2013-01-01

    This research argues that deep-rooted factors, determined tens of thousands of years ago, had a significant effect on the course of economic development from the dawn of human civilization to the contemporary era. It advances and empirically establishes the hypothesis that, in the course of the exodus of Homo sapiens out of Africa, variation in migratory distance from the cradle of humankind to various settlements across the globe affected genetic diversity and has had a long-lasting effect on the pattern of comparative economic development that is not captured by geographical, institutional, and cultural factors. In particular, the level of genetic diversity within a society is found to have a hump-shaped effect on development outcomes in both the pre-colonial and the modern era, reflecting the trade-off between the beneficial and the detrimental effects of diversity on productivity. While the intermediate level of genetic diversity prevalent among Asian and European populations has been conducive for development, the high degree of diversity among African populations and the low degree of diversity among Native American populations have been a detrimental force in the development of these regions. PMID:25506083

  4. The Effect and Relative Importance of Neutral Genetic Diversity for Predicting Parasitism Varies across Parasite Taxa

    PubMed Central

    Ruiz-López, María José; Monello, Ryan J.; Gompper, Matthew E.; Eggert, Lori S.

    2012-01-01

    Understanding factors that determine heterogeneity in levels of parasitism across individuals is a major challenge in disease ecology. It is known that genetic makeup plays an important role in infection likelihood, but the mechanism remains unclear as does its relative importance when compared to other factors. We analyzed relationships between genetic diversity and macroparasites in outbred, free-ranging populations of raccoons (Procyon lotor). We measured heterozygosity at 14 microsatellite loci and modeled the effects of both multi-locus and single-locus heterozygosity on parasitism using an information theoretic approach and including non-genetic factors that are known to influence the likelihood of parasitism. The association of genetic diversity and parasitism, as well as the relative importance of genetic diversity, differed by parasitic group. Endoparasite species richness was better predicted by a model that included genetic diversity, with the more heterozygous hosts harboring fewer endoparasite species. Genetic diversity was also important in predicting abundance of replete ticks (Dermacentor variabilis). This association fit a curvilinear trend, with hosts that had either high or low levels of heterozygosity harboring fewer parasites than those with intermediate levels. In contrast, genetic diversity was not important in predicting abundance of non-replete ticks and lice (Trichodectes octomaculatus). No strong single-locus effects were observed for either endoparasites or replete ticks. Our results suggest that in outbred populations multi-locus diversity might be important for coping with parasitism. The differences in the relationships between heterozygosity and parasitism for the different parasites suggest that the role of genetic diversity varies with parasite-mediated selective pressures. PMID:23049796

  5. Genetic diversity in Carthamus tinctorius (Asteraceae; safflower), an underutilized oilseed crop.

    PubMed

    Pearl, Stephanie A; Burke, John M

    2014-10-01

    • Underutilized crops are potentially valuable resources for meeting increasing food demands. Safflower, an oilseed crop, is an example of one such underutilized crop that thrives in moisture-limited areas. Characterization of the genetic diversity maintained within the gene pools of underutilized crops such as safflower is an important step in their further development.• A total of 190 safflower individuals, including 134 USDA accessions, 48 breeding lines from two private North American safflower breeding companies, and eight wild safflower individuals, were genotyped using 133 single nucleotide polymorphism (SNP) markers. We then used the resulting data to assess the amount and distribution of genetic diversity within and among these collections of safflower.• Although just a modest reduction in gene diversity was observed in the commercial breeding lines (relative to the other safflower groupings), safflower domestication was accompanied by a significant decrease in allelic richness. Further, our results suggest that most safflower breeding lines originated from a single pool of diversity within the Old World safflower germplasm.• Taken together, our results suggest that both the safflower germplasm collection and related, wild species harbor previously undocumented genetic diversity that could help fuel future improvement efforts. Paired with analyses of functional diversity, the molecular resources described herein will be thus be useful in the continued development of safflower as an oilseed crop. © 2014 Botanical Society of America, Inc.

  6. Diverse spore rains and limited local exchange shape fern genetic diversity in a recently created habitat colonized by long-distance dispersal

    PubMed Central

    De Groot, G. A.; During, H. J.; Ansell, S. W.; Schneider, H.; Bremer, P.; Wubs, E. R. J.; Maas, J. W.; Korpelainen, H.; Erkens, R. H. J.

    2012-01-01

    Background and Aims Populations established by long-distance colonization are expected to show low levels of genetic variation per population, but strong genetic differentiation among populations. Whether isolated populations indeed show this genetic signature of isolation depends on the amount and diversity of diaspores arriving by long-distance dispersal, and time since colonization. For ferns, however, reliable estimates of long-distance dispersal rates remain largely unknown, and previous studies on fern population genetics often sampled older or non-isolated populations. Young populations in recent, disjunct habitats form a useful study system to improve our understanding of the genetic impact of long-distance dispersal. Methods Microsatellite markers were used to analyse the amount and distribution of genetic diversity in young populations of four widespread calcicole ferns (Asplenium scolopendrium, diploid; Asplenium trichomanes subsp. quadrivalens, tetraploid; Polystichum setiferum, diploid; and Polystichum aculeatum, tetraploid), which are rare in The Netherlands but established multiple populations in a forest (the Kuinderbos) on recently reclaimed Dutch polder land following long-distance dispersal. Reference samples from populations throughout Europe were used to assess how much of the existing variation was already present in the Kuinderbos. Key Results A large part of the Dutch and European genetic diversity in all four species was already found in the Kuinderbos. This diversity was strongly partitioned among populations. Most populations showed low genetic variation and high inbreeding coefficients, and were assigned to single, unique gene pools in cluster analyses. Evidence for interpopulational gene flow was low, except for the most abundant species. Conclusions The results show that all four species, diploids as well as polyploids, were capable of frequent long-distance colonization via single-spore establishment. This indicates that even isolated

  7. The role of propagule pressure, genetic diversity and microsite availability for Senecio vernalis invasion.

    PubMed

    Erfmeier, Alexandra; Hantsch, Lydia; Bruelheide, Helge

    2013-01-01

    Genetic diversity is supposed to support the colonization success of expanding species, in particular in situations where microsite availability is constrained. Addressing the role of genetic diversity in plant invasion experimentally requires its manipulation independent of propagule pressure. To assess the relative importance of these components for the invasion of Senecio vernalis, we created propagule mixtures of four levels of genotype diversity by combining seeds across remote populations, across proximate populations, within single populations and within seed families. In a first container experiment with constant Festuca rupicola density as matrix, genotype diversity was crossed with three levels of seed density. In a second experiment, we tested for effects of establishment limitation and genotype diversity by manipulating Festuca densities. Increasing genetic diversity had no effects on abundance and biomass of S. vernalis but positively affected the proportion of large individuals to small individuals. Mixtures composed from proximate populations had a significantly higher proportion of large individuals than mixtures composed from within seed families only. High propagule pressure increased emergence and establishment of S. vernalis but had no effect on individual growth performance. Establishment was favoured in containers with Festuca, but performance of surviving seedlings was higher in open soil treatments. For S. vernalis invasion, we found a shift in driving factors from density dependence to effects of genetic diversity across life stages. While initial abundance was mostly linked to the amount of seed input, genetic diversity, in contrast, affected later stages of colonization probably via sampling effects and seemed to contribute to filtering the genotypes that finally grew up. In consequence, when disentangling the mechanistic relationships of genetic diversity, seed density and microsite limitation in colonization of invasive plants, a clear

  8. Fire alters patterns of genetic diversity among 3 lizard species in Florida Scrub habitat.

    PubMed

    Schrey, Aaron W; Ashton, Kyle G; Heath, Stacy; McCoy, Earl D; Mushinsky, Henry R

    2011-01-01

    The Florida Sand Skink (Plestiodon reynoldsi), the Florida Scrub Lizard (Sceloporus woodi), and the Six-lined Racerunner (Aspidoscelis sexlineata) occur in the threatened and fire-maintained Florida scrub habitat. Fire may have different consequences to local genetic diversity of these species because they each have different microhabitat preference. We collected tissue samples of each species from 3 sites with different time-since-fire: Florida Sand Skink n = 73, Florida Scrub Lizard n = 70, and Six-lined Racerunner n = 66. We compared the effect of fire on genetic diversity at microsatellite loci for each species. We screened 8 loci for the Florida Sand Skink, 6 loci for the Florida Scrub Lizard, and 6 loci for the Six-lined Racerunner. We also tested 2 potential driving mechanisms for the observed change in genetic diversity, a metapopulation source/sink model and a local demographic model. Genetic diversity varied with fire history, and significant genetic differentiation occurred among sites. The Florida Scrub Lizard had highest genetic variation at more recently burned sites, whereas the Florida Sand Skink and the Six-lined Racerunner had highest genetic variation at less recently burned sites. Habitat preferences of the Florida Sand Skink and the Florida Scrub Lizard may explain their discordant results, and the Six-lined Racerunner may have a more complicated genetic response to fire or is acted on at a different geographic scale than we have investigated. Our results indicate that these species may respond to fire in a more complicated manner than predicted by our metapopulation model or local demographic model. Our results show that the population-level responses in genetic diversity to fire are species-specific mandating conservation management of habitat diversity through a mosaic of burn frequencies.

  9. Global genetic diversity of Aedes aegypti.

    PubMed

    Gloria-Soria, Andrea; Ayala, Diego; Bheecarry, Ambicadutt; Calderon-Arguedas, Olger; Chadee, Dave D; Chiappero, Marina; Coetzee, Maureen; Elahee, Khouaildi Bin; Fernandez-Salas, Ildefonso; Kamal, Hany A; Kamgang, Basile; Khater, Emad I M; Kramer, Laura D; Kramer, Vicki; Lopez-Solis, Alma; Lutomiah, Joel; Martins, Ademir; Micieli, Maria Victoria; Paupy, Christophe; Ponlawat, Alongkot; Rahola, Nil; Rasheed, Syed Basit; Richardson, Joshua B; Saleh, Amag A; Sanchez-Casas, Rosa Maria; Seixas, Gonçalo; Sousa, Carla A; Tabachnick, Walter J; Troyo, Adriana; Powell, Jeffrey R

    2016-11-01

    Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations. © 2016 John Wiley & Sons Ltd.

  10. Global Genetic Diversity of Aedes aegypti

    PubMed Central

    Gloria-Soria, Andrea; Ayala, Diego; Bheecarry, Ambicadutt; Calderon-Arguedas, Olger; Chadee, Dave D.; Chiappero, Marina; Coetzee, Maureen; Elahee, Khouaildi bin; Fernandez-Salas, Ildefonso; Kamal, Hany A.; Kamgang, Basile; Khater, Emad I. M.; Kramer, Laura D.; Kramer, Vicki; Lopez-Solis, Alma; Lutomiah, Joel; Martins, Ademir; Micieli, Maria Victoria; Paupy, Christophe; Ponlawat, Alongkot; Rahola, Nil; Rasheed, Syed Basit; Richardson, Joshua B.; Saleh, Amag A.; Sanchez-Casas, Rosa Maria; Seixas, Gonçalo; Sousa, Carla A.; Tabachnick, Walter J.; Troyo, Adriana; Powell, Jeffrey R.

    2016-01-01

    Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti, from 30 countries in six continents and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya) the two subspecies remain genetically distinct whereas in urban settings they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats, and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th Centuries was followed by its introduction to Asia in the late 19th Century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l.. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for methods using genetic modification of populations. PMID:27671732

  11. Reduction of Genetic Diversity of the Harpy Eagle in Brazilian Tropical Forests.

    PubMed

    Banhos, Aureo; Hrbek, Tomas; Sanaiotti, Tânia M; Farias, Izeni Pires

    2016-01-01

    Habitat loss and fragmentation intensify the effects of genetic drift and endogamy, reducing genetic variability of populations with serious consequences for wildlife conservation. The Harpy Eagle (Harpia harpyja) is a forest dwelling species that is considered near threatened and suffers from habitat loss in the forests of the Neotropical region. In this study, 72 historical and current samples were assessed using eight autosomal microsatellite markers to investigate the distribution of genetic diversity of the Harpy Eagle of the Amazonian and Atlantic forests in Brazil. The results showed that the genetic diversity of Harpy Eagle decreased in the regions where deforestation is intense in the southern Amazon and Atlantic Forest.

  12. Reduction of Genetic Diversity of the Harpy Eagle in Brazilian Tropical Forests

    PubMed Central

    2016-01-01

    Habitat loss and fragmentation intensify the effects of genetic drift and endogamy, reducing genetic variability of populations with serious consequences for wildlife conservation. The Harpy Eagle (Harpia harpyja) is a forest dwelling species that is considered near threatened and suffers from habitat loss in the forests of the Neotropical region. In this study, 72 historical and current samples were assessed using eight autosomal microsatellite markers to investigate the distribution of genetic diversity of the Harpy Eagle of the Amazonian and Atlantic forests in Brazil. The results showed that the genetic diversity of Harpy Eagle decreased in the regions where deforestation is intense in the southern Amazon and Atlantic Forest. PMID:26871719

  13. Genetic diversity and environmental associations of sacsaoul ( Haloxylon ammodendron)

    NASA Astrophysics Data System (ADS)

    Zhang, Linjing; Zhao, Guifang; Yue, Ming; Pan, Xiaoling

    2003-07-01

    Random amplified polymorphic DNA (RAPD) markers were used to assess levels and patterns of genetic diversity in H. ammodendron (Chenopodiaceae). A total of 117 plants from 6 subpopulations on oasis-desert ecotone was analyzed by 16 arbitrarily chosen primers resulting in highly reproducible RAPD bands. The analysis of molecular variance (AMOVA) with distances among individuals showed that most of the variation (74%) occurred among individuals within subpopulations, which is expected for a crossing organism, and 26% of variation among subpopulations. Estimates of Shannon index and Nei"s index from allele frequencies corroborated AMOVA partitioning in H. ammodendron. UPGMA cluster analyses, based on genetic distance, do not revealed grouping of some geographically proximate populations. This is the first report of the partitioning of genetic variability within and between subpopulations of H. ammodendron and provides important baseline data for optimizing sampling strategies and for conserving the genetic resources of this species. The Percentage of polymorphic loci was as high as 96%, presumably being response to oasis-desert ecotone. There were gene flows (Nm=5.38 individuals/generation), based on gene differentiation coefficient (GST was 0.1567) between subpopulations, and strong habitat selection override the gene flow to maintain the subpopulation differentiation. Correlation analyses showed that there was significant relationship between genetic diversity and soil CL ion.

  14. EvoSNP-DB: A database of genetic diversity in East Asian populations.

    PubMed

    Kim, Young Uk; Kim, Young Jin; Lee, Jong-Young; Park, Kiejung

    2013-08-01

    Genome-wide association studies (GWAS) have become popular as an approach for the identification of large numbers of phenotype-associated variants. However, differences in genetic architecture and environmental factors mean that the effect of variants can vary across populations. Understanding population genetic diversity is valuable for the investigation of possible population specific and independent effects of variants. EvoSNP-DB aims to provide information regarding genetic diversity among East Asian populations, including Chinese, Japanese, and Korean. Non-redundant SNPs (1.6 million) were genotyped in 54 Korean trios (162 samples) and were compared with 4 million SNPs from HapMap phase II populations. EvoSNP-DB provides two user interfaces for data query and visualization, and integrates scores of genetic diversity (Fst and VarLD) at the level of SNPs, genes, and chromosome regions. EvoSNP-DB is a web-based application that allows users to navigate and visualize measurements of population genetic differences in an interactive manner, and is available online at [http://biomi.cdc.go.kr/EvoSNP/].

  15. Genetic Diversity of Aromatic Rice Germplasm Revealed By SSR Markers.

    PubMed

    Jasim Aljumaili, Saba; Rafii, M Y; Latif, M A; Sakimin, Siti Zaharah; Arolu, Ibrahim Wasiu; Miah, Gous

    2018-01-01

    Aromatic rice cultivars constitute a small but special group of rice and are considered the best in terms of quality and aroma. Aroma is one of the most significant quality traits of rice, and variety with aroma has a higher price in the market. This research was carried out to study the genetic diversity among the 50 aromatic rice accessions from three regions (Peninsular Malaysia, Sabah, and Sarawak) with 3 released varieties as a control using the 32 simple sequence repeat (SSR) markers. The objectives of this research were to quantify the genetic divergence of aromatic rice accessions using SSR markers and to identify the potential accessions for introgression into the existing rice breeding program. Genetic diversity index among the three populations such as Shannon information index ( I ) ranged from 0.25 in control to 0.98 in Sabah population. The mean numbers of effective alleles and Shannon's information index were 0.36 and 64.90%, respectively. Similarly, the allelic diversity was very high with mean expected heterozygosity ( H e ) of 0.60 and mean Nei's gene diversity index of 0.36. The dendrogram based on UPGMA and Nei's genetic distance classified the 53 rice accessions into 10 clusters. Analysis of molecular variance (AMOVA) revealed that 89% of the total variation observed in this germplasm came from within the populations, while 11% of the variation emanated among the populations. These results reflect the high genetic differentiation existing in this aromatic rice germplasm. Using all these criteria and indices, seven accessions (Acc9993, Acc6288, Acc6893, Acc7580, Acc6009, Acc9956, and Acc11816) from three populations have been identified and selected for further evaluation before introgression into the existing breeding program and for future aromatic rice varietal development.

  16. Genetic Diversity of Aromatic Rice Germplasm Revealed By SSR Markers

    PubMed Central

    Jasim Aljumaili, Saba; Sakimin, Siti Zaharah; Arolu, Ibrahim Wasiu; Miah, Gous

    2018-01-01

    Aromatic rice cultivars constitute a small but special group of rice and are considered the best in terms of quality and aroma. Aroma is one of the most significant quality traits of rice, and variety with aroma has a higher price in the market. This research was carried out to study the genetic diversity among the 50 aromatic rice accessions from three regions (Peninsular Malaysia, Sabah, and Sarawak) with 3 released varieties as a control using the 32 simple sequence repeat (SSR) markers. The objectives of this research were to quantify the genetic divergence of aromatic rice accessions using SSR markers and to identify the potential accessions for introgression into the existing rice breeding program. Genetic diversity index among the three populations such as Shannon information index (I) ranged from 0.25 in control to 0.98 in Sabah population. The mean numbers of effective alleles and Shannon's information index were 0.36 and 64.90%, respectively. Similarly, the allelic diversity was very high with mean expected heterozygosity (He) of 0.60 and mean Nei's gene diversity index of 0.36. The dendrogram based on UPGMA and Nei's genetic distance classified the 53 rice accessions into 10 clusters. Analysis of molecular variance (AMOVA) revealed that 89% of the total variation observed in this germplasm came from within the populations, while 11% of the variation emanated among the populations. These results reflect the high genetic differentiation existing in this aromatic rice germplasm. Using all these criteria and indices, seven accessions (Acc9993, Acc6288, Acc6893, Acc7580, Acc6009, Acc9956, and Acc11816) from three populations have been identified and selected for further evaluation before introgression into the existing breeding program and for future aromatic rice varietal development. PMID:29736396

  17. Species delimitation, genetic diversity and population historical dynamics of Cycas diannanensis (Cycadaceae) occurring sympatrically in the Red River region of China

    PubMed Central

    Liu, Jian; Zhou, Wei; Gong, Xun

    2015-01-01

    Delimitating species boundaries could be of critical importance when evaluating the species' evolving process and providing guidelines for conservation genetics. Here, species delimitation was carried out on three endemic and endangered Cycas species with resembling morphology and overlapped distribution range along the Red River (Yuanjiang) in China: Cycas diananensis Z. T. Guan et G. D. Tao, Cycas parvula S. L. Yang and Cycas multiovula D. Y. Wang. A total of 137 individuals from 15 populations were genotyped by using three chloroplastic (psbA-trnH, atpI-atpH, and trnL-rps4) and two single copy nuclear (RPB1 and SmHP) DNA sequences. Basing on the carefully morphological comparison and cladistic haplotype aggregation (CHA) analysis, we propose all the populations as one species, with the rest two incorporated into C. diannanensis. Genetic diversity and structure analysis of the conflated C. diannanensis revealed this species possessed a relative lower genetic diversity than estimates of other Cycas species. The higher genetic diversity among populations and relative lower genetic diversity within populations, as well as obvious genetic differentiation among populations inferred from chloroplastic DNA (cpDNA) suggested a recent genetic loss within this protected species. Additionally, a clear genetic structure of C. diannanensis corresponding with geography was detected based on cpDNA, dividing its population ranges into “Yuanjiang-Nanhun” basin and “Ejia-Jiepai” basin groups. Demographical history analyses based on combined cpDNA and one nuclear DNA (nDNA) SmHP both showed the population size of C. diannanensis began to decrease in Quaternary glaciation with no subsequent expansion, while another nDNA RPB1 revealed a more recent sudden expansion after long-term population size contraction, suggesting its probable bottleneck events in history. Our findings offer grounded views for clarifying species boundaries of C. diannanensis when determining the

  18. Species delimitation, genetic diversity and population historical dynamics of Cycas diannanensis (Cycadaceae) occurring sympatrically in the Red River region of China.

    PubMed

    Liu, Jian; Zhou, Wei; Gong, Xun

    2015-01-01

    Delimitating species boundaries could be of critical importance when evaluating the species' evolving process and providing guidelines for conservation genetics. Here, species delimitation was carried out on three endemic and endangered Cycas species with resembling morphology and overlapped distribution range along the Red River (Yuanjiang) in China: Cycas diananensis Z. T. Guan et G. D. Tao, Cycas parvula S. L. Yang and Cycas multiovula D. Y. Wang. A total of 137 individuals from 15 populations were genotyped by using three chloroplastic (psbA-trnH, atpI-atpH, and trnL-rps4) and two single copy nuclear (RPB1 and SmHP) DNA sequences. Basing on the carefully morphological comparison and cladistic haplotype aggregation (CHA) analysis, we propose all the populations as one species, with the rest two incorporated into C. diannanensis. Genetic diversity and structure analysis of the conflated C. diannanensis revealed this species possessed a relative lower genetic diversity than estimates of other Cycas species. The higher genetic diversity among populations and relative lower genetic diversity within populations, as well as obvious genetic differentiation among populations inferred from chloroplastic DNA (cpDNA) suggested a recent genetic loss within this protected species. Additionally, a clear genetic structure of C. diannanensis corresponding with geography was detected based on cpDNA, dividing its population ranges into "Yuanjiang-Nanhun" basin and "Ejia-Jiepai" basin groups. Demographical history analyses based on combined cpDNA and one nuclear DNA (nDNA) SmHP both showed the population size of C. diannanensis began to decrease in Quaternary glaciation with no subsequent expansion, while another nDNA RPB1 revealed a more recent sudden expansion after long-term population size contraction, suggesting its probable bottleneck events in history. Our findings offer grounded views for clarifying species boundaries of C. diannanensis when determining the conservation

  19. Evaluation of genetic diversity and population structure of West-Central Indian cattle breeds.

    PubMed

    Shah, Tejas M; Patel, Jaina S; Bhong, Chandrakant D; Doiphode, Aakash; Umrikar, Uday D; Parmar, Shivnandan S; Rank, Dharamshibhai N; Solanki, Jitendra V; Joshi, Chaitanya G

    2013-08-01

    Evaluations of genetic diversity in domestic livestock populations are necessary to implement region-specific conservation measures. We determined the genetic diversity and evolutionary relationships among eight geographically and phenotypically diverse cattle breeds indigenous to west-central India by genotyping these animals for 22 microsatellite loci. A total of 326 alleles were detected, and the expected heterozygosity ranged from 0.614 (Kenkatha) to 0.701 (Dangi). The mean number of alleles among the cattle breeds ranged from 7.182 (Khillar) to 9.409 (Gaolao). There were abundant genetic variations displayed within breeds, and the genetic differentiation was also high between the Indian cattle breeds, which displayed 15.9% of the total genetic differentiation among the different breeds. The genetic differentiation (pairwise FST ) among the eight Indian breeds varied from 0.0126 for the Kankrej-Malvi pair to 0.2667 for Khillar-Kenkatha pair. The phylogeny, principal components analysis, and structure analysis further supported close grouping of Kankrej, Malvi, Nimari and Gir; Gaolao and Kenkatha, whereas Dangi and Khillar remained at distance from other breeds. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  20. The Genetic Diversity of Mesodinium and Associated Cryptophytes

    PubMed Central

    Johnson, Matthew D.; Beaudoin, David J.; Laza-Martinez, Aitor; Dyhrman, Sonya T.; Fensin, Elizabeth; Lin, Senjie; Merculief, Aaron; Nagai, Satoshi; Pompeu, Mayza; Setälä, Outi; Stoecker, Diane K.

    2016-01-01

    Ciliates from the genus Mesodinium are globally distributed in marine and freshwater ecosystems and may possess either heterotrophic or mixotrophic nutritional modes. Members of the Mesodinium major/rubrum species complex photosynthesize by sequestering and maintaining organelles from cryptophyte prey, and under certain conditions form periodic or recurrent blooms (= red tides). Here, we present an analysis of the genetic diversity of Mesodinium and cryptophyte populations from 10 environmental samples (eight globally dispersed habitats including five Mesodinium blooms), using group-specific primers for Mesodinium partial 18S, ITS, and partial 28S rRNA genes as well as cryptophyte large subunit RuBisCO genes (rbcL). In addition, 22 new cryptophyte and four new M. rubrum cultures were used to extract DNA and sequence rbcL and 18S-ITS-28S genes, respectively, in order to provide a stronger phylogenetic context for our environmental sequences. Bloom samples were analyzed from coastal Brazil, Chile, two Northeastern locations in the United States, and the Pribilof Islands within the Bering Sea. Additionally, samples were also analyzed from the Baltic and Barents Seas and coastal California under non-bloom conditions. Most blooms were dominated by a single Mesodinium genotype, with coastal Brazil and Chile blooms composed of M. major and the Eastern USA blooms dominated by M. rubrum variant B. Sequences from all four blooms were dominated by Teleaulax amphioxeia-like cryptophytes. Non-bloom communities revealed more diverse assemblages of Mesodinium spp., including heterotrophic species and the mixotrophic Mesodinium chamaeleon. Similarly, cryptophyte diversity was also higher in non-bloom samples. Our results confirm that Mesodinium blooms may be caused by M. major, as well as multiple variants of M. rubrum, and further implicate T. amphioxeia as the key cryptophyte species linked to these phenomena in temperate and subtropical regions. PMID:28066344

  1. The Genetic Diversity of Mesodinium and Associated Cryptophytes.

    PubMed

    Johnson, Matthew D; Beaudoin, David J; Laza-Martinez, Aitor; Dyhrman, Sonya T; Fensin, Elizabeth; Lin, Senjie; Merculief, Aaron; Nagai, Satoshi; Pompeu, Mayza; Setälä, Outi; Stoecker, Diane K

    2016-01-01

    Ciliates from the genus Mesodinium are globally distributed in marine and freshwater ecosystems and may possess either heterotrophic or mixotrophic nutritional modes. Members of the Mesodinium major/rubrum species complex photosynthesize by sequestering and maintaining organelles from cryptophyte prey, and under certain conditions form periodic or recurrent blooms (= red tides). Here, we present an analysis of the genetic diversity of Mesodinium and cryptophyte populations from 10 environmental samples (eight globally dispersed habitats including five Mesodinium blooms), using group-specific primers for Mesodinium partial 18S, ITS, and partial 28S rRNA genes as well as cryptophyte large subunit RuBisCO genes ( rbcL ). In addition, 22 new cryptophyte and four new M. rubrum cultures were used to extract DNA and sequence rbcL and 18S-ITS-28S genes, respectively, in order to provide a stronger phylogenetic context for our environmental sequences. Bloom samples were analyzed from coastal Brazil, Chile, two Northeastern locations in the United States, and the Pribilof Islands within the Bering Sea. Additionally, samples were also analyzed from the Baltic and Barents Seas and coastal California under non-bloom conditions. Most blooms were dominated by a single Mesodinium genotype, with coastal Brazil and Chile blooms composed of M. major and the Eastern USA blooms dominated by M. rubrum variant B. Sequences from all four blooms were dominated by Teleaulax amphioxeia -like cryptophytes. Non-bloom communities revealed more diverse assemblages of Mesodinium spp., including heterotrophic species and the mixotrophic Mesodinium chamaeleon . Similarly, cryptophyte diversity was also higher in non-bloom samples. Our results confirm that Mesodinium blooms may be caused by M. major , as well as multiple variants of M. rubrum , and further implicate T. amphioxeia as the key cryptophyte species linked to these phenomena in temperate and subtropical regions.

  2. European Invasion of North American Pinus strobus at Large and Fine Scales: High Genetic Diversity and Fine-Scale Genetic Clustering over Time in the Adventive Range

    PubMed Central

    Mandák, Bohumil; Hadincová, Věroslava; Mahelka, Václav; Wildová, Radka

    2013-01-01

    Background North American Pinus strobus is a highly invasive tree species in Central Europe. Using ten polymorphic microsatellite loci we compared various aspects of the large-scale genetic diversity of individuals from 30 sites in the native distribution range with those from 30 sites in the European adventive distribution range. To investigate the ascertained pattern of genetic diversity of this intercontinental comparison further, we surveyed fine-scale genetic diversity patterns and changes over time within four highly invasive populations in the adventive range. Results Our data show that at the large scale the genetic diversity found within the relatively small adventive range in Central Europe, surprisingly, equals the diversity found within the sampled area in the native range, which is about thirty times larger. Bayesian assignment grouped individuals into two genetic clusters separating North American native populations from the European, non-native populations, without any strong genetic structure shown over either range. In the case of the fine scale, our comparison of genetic diversity parameters among the localities and age classes yielded no evidence of genetic diversity increase over time. We found that SGS differed across age classes within the populations under study. Old trees in general completely lacked any SGS, which increased over time and reached its maximum in the sapling stage. Conclusions Based on (1) the absence of difference in genetic diversity between the native and adventive ranges, together with the lack of structure in the native range, and (2) the lack of any evidence of any temporal increase in genetic diversity at four highly invasive populations in the adventive range, we conclude that population amalgamation probably first happened in the native range, prior to introduction. In such case, there would have been no need for multiple introductions from previously isolated populations, but only several introductions from

  3. Alpine Crossroads or Origin of Genetic Diversity? Comparative Phylogeography of Two Sympatric Microgastropod Species

    PubMed Central

    Weigand, Alexander M.; Pfenninger, Markus; Jochum, Adrienne; Klussmann-Kolb, Annette

    2012-01-01

    The Alpine Region, constituting the Alps and the Dinaric Alps, has played a major role in the formation of current patterns of biodiversity either as a contact zone of postglacial expanding lineages or as the origin of genetic diversity. In our study, we tested these hypotheses for two widespread, sympatric microgastropod taxa – Carychium minimum O.F. Müller, 1774 and Carychium tridentatum (Risso, 1826) (Gastropoda, Eupulmonata, Carychiidae) – by using COI sequence data and species potential distribution models analyzed in a statistical phylogeographical framework. Additionally, we examined disjunct transatlantic populations of those taxa from the Azores and North America. In general, both Carychium taxa demonstrate a genetic structure composed of several differentiated haplotype lineages most likely resulting from allopatric diversification in isolated refugial areas during the Pleistocene glacial periods. However, the genetic structure of Carychium minimum is more pronounced, which can be attributed to ecological constraints relating to habitat proximity to permanent bodies of water. For most of the Carychium lineages, the broader Alpine Region was identified as the likely origin of genetic diversity. Several lineages are endemic to the broader Alpine Region whereas a single lineage per species underwent a postglacial expansion to (re)colonize previously unsuitable habitats, e.g. in Northern Europe. The source populations of those expanding lineages can be traced back to the Eastern and Western Alps. Consequently, we identify the Alpine Region as a significant ‘hot-spot’ for the formation of genetic diversity within European Carychium lineages. Passive dispersal via anthropogenic means best explains the presence of transatlantic European Carychium populations on the Azores and in North America. We conclude that passive (anthropogenic) transport could mislead the interpretation of observed phylogeographical patterns in general. PMID:22606334

  4. Genetic Diversity of the Endangered Neotropical Cichlid Fish (Gymnogeophagus setequedas) in Brazil.

    PubMed

    Souza-Shibatta, Lenice; Kotelok-Diniz, Thais; Ferreira, Dhiego G; Shibatta, Oscar A; Sofia, Silvia H; de Assumpção, Lucileine; Pini, Suelen F R; Makrakis, Sergio; Makrakis, Maristela C

    2018-01-01

    , causing loss of genetic diversity and population decline, and for this reason it is necessary to maintain the Iguaçu River tributaries and downstream area from the Lower Iguaçu Reservoir free of additional dams, to guarantee the survival of this species.

  5. Genetic Diversity of the Endangered Neotropical Cichlid Fish (Gymnogeophagus setequedas) in Brazil

    PubMed Central

    Souza-Shibatta, Lenice; Kotelok-Diniz, Thais; Ferreira, Dhiego G.; Shibatta, Oscar A.; Sofia, Silvia H.; de Assumpção, Lucileine; Pini, Suelen F. R.; Makrakis, Sergio; Makrakis, Maristela C.

    2018-01-01

    genetic diversity and population decline, and for this reason it is necessary to maintain the Iguaçu River tributaries and downstream area from the Lower Iguaçu Reservoir free of additional dams, to guarantee the survival of this species. PMID:29456551

  6. Synthetic biology: advancing the design of diverse genetic systems

    PubMed Central

    Wang, Yen-Hsiang; Wei, Kathy Y.; Smolke, Christina D.

    2013-01-01

    A main objective of synthetic biology is to make the process of designing genetically-encoded biological systems more systematic, predictable, robust, scalable, and efficient. The examples of genetic systems in the field vary widely in terms of operating hosts, compositional approaches, and network complexity, ranging from a simple genetic switch to search-and-destroy systems. While significant advances in synthesis capabilities support the potential for the implementation of pathway- and genome-scale programs, several design challenges currently restrict the scale of systems that can be reasonably designed and implemented. Synthetic biology offers much promise in developing systems to address challenges faced in manufacturing, the environment and sustainability, and health and medicine, but the realization of this potential is currently limited by the diversity of available parts and effective design frameworks. As researchers make progress in bridging this design gap, advances in the field hint at ever more diverse applications for biological systems. PMID:23413816

  7. Complex spatial dynamics maintain northern leopard frog (Lithobates pipiens) genetic diversity in a temporally varying landscape

    USGS Publications Warehouse

    Mushet, David M.; Euliss, Ned H.; Chen, Yongjiu; Stockwell, Craig A.

    2013-01-01

    In contrast to most local amphibian populations, northeastern populations of the Northern Leopard Frog (Lithobates pipiens) have displayed uncharacteristically high levels of genetic diversity that have been attributed to large, stable populations. However, this widely distributed species also occurs in areas known for great climatic fluctuations that should be reflected in corresponding fluctuations in population sizes and reduced genetic diversity. To test our hypothesis that Northern Leopard Frog genetic diversity would be reduced in areas subjected to significant climate variability, we examined the genetic diversity of L. pipiens collected from 12 sites within the Prairie Pothole Region of North Dakota. Despite the region's fluctuating climate that includes periods of recurring drought and deluge, we found unexpectedly high levels of genetic diversity approaching that of northeastern populations. Further, genetic structure at a landscape scale was strikingly homogeneous; genetic differentiation estimates (Dest) averaged 0.10 (SD = 0.036) across the six microsatellite loci we studied, and two Bayesian assignment tests (STRUCTURE and BAPS) failed to reveal the development of significant population structure across the 68 km breadth of our study area. These results suggest that L. pipiens in the Prairie Pothole Region consists of a large, panmictic population capable of maintaining high genetic diversity in the face of marked climate variability.

  8. Population demographics and genetic diversity in remnant and translocated populations of sea otters

    USGS Publications Warehouse

    Bodkin, James L.; Ballachey, Brenda E.; Cronin, M.A.; Scribner, K.T.

    1999-01-01

    The effects of small population size on genetic diversity and subsequent population recovery are theoretically predicted, but few empirical data are available to describe those relations. We use data from four remnant and three translocated sea otter (Enhydra lutris) populations to examine relations among magnitude and duration of minimum population size, population growth rates, and genetic variation. Metochondrial (mt)DNA haplotype diversity was correlated with the number of years at minimum population size (r = -0.741, p = 0.038) and minimum population size (r = 0.709, p = 0.054). We found no relation between population growth and haplotype diversity, altough growth was significantly greater in translocated than in remnant populations. Haplotype diversity in populations established from two sources was higher than in a population established from a single source and was higher than in the respective source populations. Haplotype frequencies in translocated populations of founding sizes of 4 and 28 differed from expected, indicating genetic drift and differential reproduction between source populations, whereas haplotype frequencies in a translocated population with a founding size of 150 did not. Relations between population demographics and genetic characteristics suggest that genetic sampling of source and translocated populations can provide valuable inferences about translocations.

  9. Genetic diversity of the Chinese liver fluke Clonorchis sinensis from Russia and Vietnam.

    PubMed

    Chelomina, Galina N; Tatonova, Yulia V; Hung, Nguyen Manh; Ngo, Ha Duy

    2014-10-01

    Clonorchiasis is a parasitic disease of high public health importance in many countries in southeastern Asia and is caused by the Chinese liver fluke Clonorchis sinensis. However, the genetic structure and demographic history of its populations has not been sufficiently studied throughout the geographic range of the species and available data are based mainly on partial gene sequencing. In this study, we explored the genetic diversity of the complete 1560 bp cytochrome c oxidase subunit 1 (cox1) gene sequence for geographically isolated C. sinensis populations in Russia and Vietnam, to our knowledge for the first time. The results demonstrated low nucleotide and high haplotype differentiation within and between the two compared regions and a clear geographical vector for the distribution of genetic diversity patterns among the studied populations. These results suggest a deep local adaptation of the parasite to its environment including intermediate hosts and the existence of gene flow across the species' range. Additionally, we have predicted an amino acid substitution in the functional site of the COX1 protein among the Vietnamese populations, which were reported to be difficult to treat with praziquantel. The haplotype networks consisted of several region-specific phylogenetic lineages, the formation of which could have occurred during the most extensive penultimate glaciations in the Pleistocene Epoch. The patterns of genetic diversity and demographics are consistent with population growth of the liver fluke in the late Pleistocene following the Last Glacial Maximum, indicating the lack of a population bottleneck during the recent past in the species' history. The data obtained have important implications for understanding the phylogeography of C. sinensis, its host-parasite interactions, the ability of this parasite to evolve drug resistance, and the epidemiology of clonorchiasis under global climate change. Copyright © 2014 Australian Society for

  10. Genetic diversity and variation of mitochondrial DNA in native and introduced bighead carp

    USGS Publications Warehouse

    Li, Si-Fa; Yang, Qin-Ling; Xu, Jia-Wei; Wang, Cheng-Hui; Chapman, Duane C.; Lu, Guoping

    2010-01-01

    The bighead carp Hypophthalmichthys nobilis is native to China but has been introduced to over 70 countries and is established in many large river systems. Genetic diversity and variation in introduced bighead carp have not previously been evaluated, and a systematic comparison among fish from different river systems was unavailable. In this study, 190 bighead carp specimens were sampled from five river systems in three countries (Yangtze, Pearl, and Amur rivers, China; Danube River, Hungary; Mississippi River basin, USA) and their mitochondrial 16S ribosomal RNA gene and D-loop region were sequenced (around 1,345 base pairs). Moderate genetic diversity was found in bighead carp, ranging from 0.0014 to 0.0043 for nucleotide diversity and from 0.6879 to 0.9333 for haplotype diversity. Haplotype analysis provided evidence that (1) multiple haplotype groups might be present among bighead carp, (2) bighead carp probably originated from the Yangtze River, and (3) bighead carp in the Mississippi River basin may have some genetic ancestry in the Danube River. The analysis of molecular variance showed significant genetic differentiation among these five populations but also revealed limited differentiation between the Yangtze and Amur River bighead carp. This large-scale study of bighead carp genetic diversity and variation provides the first global perspective of bighead carp in the context of biodiversity conservation as well as invasive species control and management.

  11. Analysis of genetic diversity in Bolivian llama populations using microsatellites.

    PubMed

    Barreta, J; Gutiérrez-Gil, B; Iñiguez, V; Romero, F; Saavedra, V; Chiri, R; Rodríguez, T; Arranz, J J

    2013-08-01

    South American camelids (SACs) have a major role in the maintenance and potential future of rural Andean human populations. More than 60% of the 3.7 million llamas living worldwide are found in Bolivia. Due to the lack of studies focusing on genetic diversity in Bolivian llamas, this analysis investigates both the genetic diversity and structure of 12 regional groups of llamas that span the greater part of the range of distribution for this species in Bolivia. The analysis of 42 microsatellite markers in the considered regional groups showed that, in general, there were high levels of polymorphism (a total of 506 detected alleles; average PIC across per marker: 0.66), which are comparable with those reported for other populations of domestic SACs. The estimated diversity parameters indicated that there was high intrapopulational genetic variation (average number of alleles and average expected heterozygosity per marker: 12.04 and 0.68, respectively) and weak genetic differentiation among populations (FST range: 0.003-0.052). In agreement with these estimates, Bolivian llamas showed a weak genetic structure and an intense gene flow between all the studied regional groups, which is due to the exchange of reproductive males between the different flocks. Interestingly, the groups for which the largest pairwise FST estimates were observed, Sud Lípez and Nor Lípez, showed a certain level of genetic differentiation that is probably due to the pattern of geographic isolation and limited communication infrastructures of these southern localities. Overall, the population parameters reported here may serve as a reference when establishing conservation policies that address Bolivian llama populations. © 2012 Blackwell Verlag GmbH.

  12. Genetic diversity among and within cultured cyanobionts of diverse species of Azolla.

    PubMed

    Sood, A; Prasanna, R; Prasanna, B M; Singh, P K

    2008-01-01

    The cyanobionts isolated from 10 Azolla accessions belonging to 6 species (Azolla mexicana, A. microphylla, A. rubra, A. caroliniana, A. filiculoides, A. pinnata) were cultured under laboratory conditions and analyzed on the basis of whole cell protein profiles and molecular marker dataset generated using repeat sequence primers (STRR(mod) and HipTG). The biochemical and molecular marker profiles of the cyanobionts were compared with those of the free-living cyanobacteria and symbiotic Nostoc strains from Anthoceros sp., Cycas sp. and Gunnera monoika. Cluster analysis revealed the genetic diversity among the selected strains, and identified 3 distinct clusters. Group 1 included cyanobionts from all the 10 accessions of Azolla, group 2 comprised all the symbiotic Nostoc strains, while group 3 included the free-living cyanobacteria belonging to the genera Nostoc and Anabaena. The interrelationships among the Azolla cyanobionts were further revealed by principal component analysis. Cyanobionts from A. caroliniana-A. microphylla grouped together while cyanobionts associated with A. mexicana-A. filiculoides along with A. pinnata formed another group. A. rubra cyanobionts had intermediate relationship with both the subgroups. This is the first study analyzing the diversity existing among the cultured cyanobionts of diverse Azolla species through the use of biochemical and molecular profiles and also the genetic distinctness of these free-living cyanobionts as compared to cyanobacterial strains of the genera Anabaena and Nostoc.

  13. Genetic calibration of species diversity among North America's freshwater fishes.

    PubMed

    April, Julien; Mayden, Richard L; Hanner, Robert H; Bernatchez, Louis

    2011-06-28

    Freshwater ecosystems are being heavily exploited and degraded by human activities all over the world, including in North America, where fishes and fisheries are strongly affected. Despite centuries of taxonomic inquiry, problems inherent to species identification continue to hamper the conservation of North American freshwater fishes. Indeed, nearly 10% of species diversity is thought to remain undescribed. To provide an independent calibration of taxonomic uncertainty and to establish a more accessible molecular identification key for its application, we generated a standard reference library of mtDNA sequences (DNA barcodes) derived from expert-identified museum specimens for 752 North American freshwater fish species. This study demonstrates that 90% of known species can be delineated using barcodes. Moreover, it reveals numerous genetic discontinuities indicative of independently evolving lineages within described species, which points to the presence of morphologically cryptic diversity. From the 752 species analyzed, our survey flagged 138 named species that represent as many as 347 candidate species, which suggests a 28% increase in species diversity. In contrast, several species of parasitic and nonparasitic lampreys lack such discontinuity and may represent alternative life history strategies within single species. Therefore, it appears that the current North American freshwater fish taxonomy at the species level significantly conceals diversity in some groups, although artificially creating diversity in others. In addition to providing an easily accessible digital identification system, this study identifies 151 fish species for which taxonomic revision is required.

  14. Genetic calibration of species diversity among North America's freshwater fishes

    PubMed Central

    April, Julien; Mayden, Richard L.; Hanner, Robert H.; Bernatchez, Louis

    2011-01-01

    Freshwater ecosystems are being heavily exploited and degraded by human activities all over the world, including in North America, where fishes and fisheries are strongly affected. Despite centuries of taxonomic inquiry, problems inherent to species identification continue to hamper the conservation of North American freshwater fishes. Indeed, nearly 10% of species diversity is thought to remain undescribed. To provide an independent calibration of taxonomic uncertainty and to establish a more accessible molecular identification key for its application, we generated a standard reference library of mtDNA sequences (DNA barcodes) derived from expert-identified museum specimens for 752 North American freshwater fish species. This study demonstrates that 90% of known species can be delineated using barcodes. Moreover, it reveals numerous genetic discontinuities indicative of independently evolving lineages within described species, which points to the presence of morphologically cryptic diversity. From the 752 species analyzed, our survey flagged 138 named species that represent as many as 347 candidate species, which suggests a 28% increase in species diversity. In contrast, several species of parasitic and nonparasitic lampreys lack such discontinuity and may represent alternative life history strategies within single species. Therefore, it appears that the current North American freshwater fish taxonomy at the species level significantly conceals diversity in some groups, although artificially creating diversity in others. In addition to providing an easily accessible digital identification system, this study identifies 151 fish species for which taxonomic revision is required. PMID:21670289

  15. Analysis of genetic diversity of Persea bombycina "Som" using RAPD-based molecular markers.

    PubMed

    Bhau, Brijmohan Singh; Medhi, Kalyani; Das, Ambrish P; Saikia, Siddhartha P; Neog, Kartik; Choudhury, S N

    2009-08-01

    The utility of RAPD markers in assessing genetic diversity and phenetic relationships in Persea bombycina, a major tree species for golden silk (muga) production, was investigated using 48 genotypes from northeast India. Thirteen RAPD primer combinations generated 93 bands. On average, seven RAPD fragments were amplified per reaction. In a UPGMA phenetic dendrogram based on Jaccard's coefficient, the P. bombycina accessions showed a high level of genetic variation, as indicated by genetic similarity. The grouping in the phenogram was highly consistent, as indicated by high values of cophenetic correlation and high bootstrap values at the key nodes. The accessions were scattered on a plot derived from principal correspondence analysis. The study concluded that the high level of genetic diversity in the P. bombycina accessions may be attributed to the species' outcrossing nature. This study may be useful in identifying diverse genetic stocks of P. bombycina, which may then be conserved on a priority basis.

  16. Analysis of genetic diversity of Chinese dairy goats via microsatellite markers.

    PubMed

    Wang, G Z; Chen, S S; Chao, T L; Ji, Z B; Hou, L; Qin, Z J; Wang, J M

    2017-05-01

    In this study, 15 polymorphic microsatellite markers were used to analyze the genetic structure and phylogenetic relationships of 6 dairy goat breeds in China, including 4 native developed breeds and 2 introduced breeds. The results showed that a total of 172 alleles were detected in 347 samples of the dairy goat breeds included in this study. The mean number of effective alleles per locus was 4.92. Except for BMS0812, all of the remaining microsatellite loci were highly polymorphic (polymorphism information content [PIC] > 0.5). The analysis of genetic diversity parameters, including the number of effective alleles, PIC, and heterozygosity, revealed that the native developed dairy goat breeds in China harbored a rich genetic diversity. However, these breeds showed a low breeding degree and a high population intermix degree, with a certain degree of inbreeding and within-subpopulation inbreeding coefficient ( > 0). The analysis of population genetic differentiation and phylogenetic tree topologies showed a moderate state of genetic differentiation among subpopulations of native developed breed dairy goats in China (0.05 < gene fixation coefficient [] < 0.15). The native developed breeds shared a common ancestor, namely, the Saanen dairy goat, originating from Europe. The results showed that there was a close genetic relationship between Wendeng and Laoshan dairy goats while the Guanzhong dairy goat and the Xinong Saanen dairy goat were also found to have a close genetic relationship, which were both in agreement with the formation history and geographical distribution of the breeds. This study revealed that adopting genetic management strategies, such as expanding pedigree source and strengthening multi-trait selection, is useful in maintaining the genetic diversity of native developed breeds and improving the population uniformity of dairy goats.

  17. Genetic diversity is largely unpredictable but scales with museum occurrences in a species-rich clade of Australian lizards

    PubMed Central

    Huang, Huateng; Title, Pascal O.; Donnellan, Stephen C.; Holmes, Iris; Rabosky, Daniel L.

    2017-01-01

    Genetic diversity is a fundamental characteristic of species and is affected by many factors, including mutation rate, population size, life history and demography. To better understand the processes that influence levels of genetic diversity across taxa, we collected genome-wide restriction-associated DNA data from more than 500 individuals spanning 76 nominal species of Australian scincid lizards in the genus Ctenotus. To avoid potential biases associated with variation in taxonomic practice across the group, we used coalescent-based species delimitation to delineate 83 species-level lineages within the genus for downstream analyses. We then used these genetic data to infer levels of within-population genetic diversity. Using a phylogenetically informed approach, we tested whether variation in genetic diversity could be explained by population size, environmental heterogeneity or historical demography. We find that the strongest predictor of genetic diversity is a novel proxy for census population size: the number of vouchered occurrences in museum databases. However, museum occurrences only explain a limited proportion of the variance in genetic diversity, suggesting that genetic diversity might be difficult to predict at shallower phylogenetic scales. PMID:28469025

  18. Genetic diversity and population structure of an extremely endangered species: the world's largest Rhododendron.

    PubMed

    Wu, Fu Qin; Shen, Shi Kang; Zhang, Xin Jun; Wang, Yue Hua; Sun, Wei Bang

    2014-12-04

    Comprehensive studies on the genetic diversity and structure of endangered species are urgently needed to promote effective conservation and management activities. The big tree rhododendron, Rhododendron protistum var. giganteum, is a highly endangered species with only two known endemic populations in a small area in the southern part of Yunnan Province in China. Unfortunately, limited information is available regarding the population genetics of this species. Therefore, we conducted amplified fragment length polymorphism (AFLP) analysis to characterize the genetic diversity and variation of this species within and between remaining populations. Twelve primer combinations of AFLP produced 447 unambiguous and repetitious bands. Among these bands, 298 (66.67 %) were polymorphic. We found high genetic diversity at the species level (percentage of polymorphic loci = 66.67 %, h = 0.240, I = 0.358) and low genetic differentiation (Gst = 0.110) between the two populations. Gene flow between populations (Nm) was relatively high at 4.065. Analysis of molecular variance results revealed that 22 % of the genetic variation was partitioned between populations and 78 % of the genetic variation was within populations. The presence of moderate to high genetic diversity and low genetic differentiation in the two populations can be explained by life history traits, pollen dispersal and high gene flow (Nm = 4.065). Bayesian structure and principal coordinate analysis revealed that 56 sampled trees were clustered into two groups. Our results suggest that some rare and endangered species are able to maintain high levels of genetic diversity even at small population sizes. These results will assist with the design of conservation and management programmes, such as in situ and ex situ conservation, seed collection for germplasm conservation and reintroduction. Published by Oxford University Press on behalf of the Annals of Botany Company.

  19. Genetic diversity, morphological uniformity and polyketide production in dinoflagellates (Amphidinium, Dinoflagellata).

    PubMed

    Murray, Shauna A; Garby, Tamsyn; Hoppenrath, Mona; Neilan, Brett A

    2012-01-01

    Dinoflagellates are an intriguing group of eukaryotes, showing many unusual morphological and genetic features. Some groups of dinoflagellates are morphologically highly uniform, despite indications of genetic diversity. The species Amphidinium carterae is abundant and cosmopolitan in marine environments, grows easily in culture, and has therefore been used as a 'model' dinoflagellate in research into dinoflagellate genetics, polyketide production and photosynthesis. We have investigated the diversity of 'cryptic' species of Amphidinium that are morphologically similar to A. carterae, including the very similar species Amphidinium massartii, based on light and electron microscopy, two nuclear gene regions (LSU rDNA and ITS rDNA) and one mitochondrial gene region (cytochrome b). We found that six genetically distinct cryptic species (clades) exist within the species A. massartii and four within A. carterae, and that these clades differ from one another in molecular sequences at levels comparable to other dinoflagellate species, genera or even families. Using primers based on an alignment of alveolate ketosynthase sequences, we isolated partial ketosynthase genes from several Amphidinium species. We compared these genes to known dinoflagellate ketosynthase genes and investigated the evolution and diversity of the strains of Amphidinium that produce them.

  20. Genetic Diversity, Morphological Uniformity and Polyketide Production in Dinoflagellates (Amphidinium, Dinoflagellata)

    PubMed Central

    Hoppenrath, Mona; Neilan, Brett A.

    2012-01-01

    Dinoflagellates are an intriguing group of eukaryotes, showing many unusual morphological and genetic features. Some groups of dinoflagellates are morphologically highly uniform, despite indications of genetic diversity. The species Amphidinium carterae is abundant and cosmopolitan in marine environments, grows easily in culture, and has therefore been used as a ‘model’ dinoflagellate in research into dinoflagellate genetics, polyketide production and photosynthesis. We have investigated the diversity of ‘cryptic’ species of Amphidinium that are morphologically similar to A. carterae, including the very similar species Amphidinium massartii, based on light and electron microscopy, two nuclear gene regions (LSU rDNA and ITS rDNA) and one mitochondrial gene region (cytochrome b). We found that six genetically distinct cryptic species (clades) exist within the species A. massartii and four within A. carterae, and that these clades differ from one another in molecular sequences at levels comparable to other dinoflagellate species, genera or even families. Using primers based on an alignment of alveolate ketosynthase sequences, we isolated partial ketosynthase genes from several Amphidinium species. We compared these genes to known dinoflagellate ketosynthase genes and investigated the evolution and diversity of the strains of Amphidinium that produce them. PMID:22675531

  1. Genetic diversity affects the strength of population regulation in a marine fish.

    PubMed

    Johnson, D W; Freiwald, J; Bernardi, G

    2016-03-01

    Variation is an essential feature of biological populations, yet much of ecological theory treats individuals as though they are identical. This simplifying assumption is often justified by the perception that variation among individuals does not have significant effects on the dynamics of whole populations. However, this perception may be skewed by a historic focus on studying single populations. A true evaluation of the extent to which among-individual variation affects the dynamics of populations requires the study of multiple populations. In this study, we examined variation in the dynamics of populations of a live-bearing, marine fish (black surfperch; Embiotoca jacksoni). In collaboration with an organization of citizen scientists (Reef Check California), we were able to examine the dynamics of eight populations that were distributed throughout approximately 700 km of coastline, a distance that encompasses much of this species' range. We hypothesized that genetic variation within a local population would be related to the intensity of competition and to the strength of population regulation. To test this hypothesis, we examined whether genetic diversity (measured by the diversity of mitochondrial DNA haplotypes) was related to the strength of population regulation. Low-diversity populations experienced strong density dependence in population growth rates and population sizes were regulated much more tightly than they were in high-diversity populations. Mechanisms that contributed to this pattern include links between genetic diversity, habitat use, and spatial crowding. On average, low-diversity populations used less of the available habitat and exhibited greater spatial clustering (and more intense competition) for a given level of density (measured at the scale of the reef). Although the populations we studied also varied with respect to exogenous characteristics (habitat complexity, densities of predators, and interspecific competitors), none of these

  2. Genetic and Epigenetic Diversities Shed Light on Domestication of Cultivated Ginseng (Panax ginseng).

    PubMed

    Li, Ming-Rui; Shi, Feng-Xue; Zhou, Yu-Xin; Li, Ya-Ling; Wang, Xin-Feng; Zhang, Cui; Wang, Xu-Tong; Liu, Bao; Xiao, Hong-Xing; Li, Lin-Feng

    2015-11-02

    Chinese ginseng (Panax ginseng) is a medically important herb within Panax and has crucial cultural values in East Asia. As the symbol of traditional Chinese medicine, Chinese ginseng has been used as a herbal remedy to restore stamina and capacity in East Asia for thousands of years. To address the evolutionary origin and domestication history of cultivated ginseng, we employed multiple molecular approaches to investigate the genetic structures of cultivated and wild ginseng across their distribution ranges in northeastern Asia. Phylogenetic and population genetic analyses revealed that the four cultivated ginseng landraces, COMMON, BIANTIAO, SHIZHU, and GAOLI (also known as Korean ginseng), were not domesticated independently and Fusong Town is likely one of the primary domestication centers. In addition, our results from population genetic and epigenetic analyses demonstrated that cultivated ginseng maintained high levels of genetic and epigenetic diversity, but showed distinct cytosine methylation patterns compared with wild ginseng. The patterns of genetic and epigenetic variation revealed by this study have shed light on the domestication history of cultivated ginseng, which may serve as a framework for future genetic improvements. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  3. Genetic and Epigenetic Variations Induced by Wheat-Rye 2R and 5R Monosomic Addition Lines

    PubMed Central

    Fu, Shulan; Sun, Chuanfei; Yang, Manyu; Fei, Yunyan; Tan, Feiqun; Yan, Benju; Ren, Zhenglong; Tang, Zongxiang

    2013-01-01

    Background Monosomic alien addition lines (MAALs) can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. Methodology/Principal Findings In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. Conclusions/Significance The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat. PMID:23342073

  4. Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines.

    PubMed

    Fu, Shulan; Sun, Chuanfei; Yang, Manyu; Fei, Yunyan; Tan, Feiqun; Yan, Benju; Ren, Zhenglong; Tang, Zongxiang

    2013-01-01

    Monosomic alien addition lines (MAALs) can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat.

  5. Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents

    PubMed Central

    2011-01-01

    Background Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, Riftia pachyptila, a widely distributed constituent of vents along the East Pacific Rise and Galápagos Rift. Results Genetic differentiation (FST) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically. Conclusions Compared to other vent species, DNA sequence diversity is extremely low in R. pachyptila. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events. PMID:21489281

  6. Addition of multiple limiting resources reduces grassland diversity.

    PubMed

    Harpole, W Stanley; Sullivan, Lauren L; Lind, Eric M; Firn, Jennifer; Adler, Peter B; Borer, Elizabeth T; Chase, Jonathan; Fay, Philip A; Hautier, Yann; Hillebrand, Helmut; MacDougall, Andrew S; Seabloom, Eric W; Williams, Ryan; Bakker, Jonathan D; Cadotte, Marc W; Chaneton, Enrique J; Chu, Chengjin; Cleland, Elsa E; D'Antonio, Carla; Davies, Kendi F; Gruner, Daniel S; Hagenah, Nicole; Kirkman, Kevin; Knops, Johannes M H; La Pierre, Kimberly J; McCulley, Rebecca L; Moore, Joslin L; Morgan, John W; Prober, Suzanne M; Risch, Anita C; Schuetz, Martin; Stevens, Carly J; Wragg, Peter D

    2016-09-01

    Niche dimensionality provides a general theoretical explanation for biodiversity-more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number of species that can coexist. Multiple nutrient limitation of plant production is common and therefore fertilization may reduce diversity by reducing the number or dimensionality of belowground limiting factors. At the same time, nutrient addition, by increasing biomass, should ultimately shift competition from belowground nutrients towards a one-dimensional competitive trade-off for light. Here we show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network. The number of added nutrients predicted diversity loss, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited. We found that elevated resource supply reduced niche dimensionality and diversity and increased both productivity and compositional turnover. Our results point to the importance of understanding dimensionality in ecological systems that are undergoing diversity loss in response to multiple global change factors.

  7. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm.

    PubMed

    Lee, Hea-Young; Ro, Na-Young; Jeong, Hee-Jin; Kwon, Jin-Kyung; Jo, Jinkwan; Ha, Yeaseong; Jung, Ayoung; Han, Ji-Woong; Venkatesh, Jelli; Kang, Byoung-Cheorl

    2016-11-14

    Conservation of genetic diversity is an essential prerequisite for developing new cultivars with desirable agronomic traits. Although a large number of germplasm collections have been established worldwide, many of them face major difficulties due to large size and a lack of adequate information about population structure and genetic diversity. Core collection with a minimum number of accessions and maximum genetic diversity of pepper species and its wild relatives will facilitate easy access to genetic material as well as the use of hidden genetic diversity in Capsicum. To explore genetic diversity and population structure, we investigated patterns of molecular diversity using a transcriptome-based 48 single nucleotide polymorphisms (SNPs) in a large germplasm collection comprising 3,821 accessions. Among the 11 species examined, Capsicum annuum showed the highest genetic diversity (H E  = 0.44, I = 0.69), whereas the wild species C. galapagoense showed the lowest genetic diversity (H E  = 0.06, I = 0.07). The Capsicum germplasm collection was divided into 10 clusters (cluster 1 to 10) based on population structure analysis, and five groups (group A to E) based on phylogenetic analysis. Capsicum accessions from the five distinct groups in an unrooted phylogenetic tree showed taxonomic distinctness and reflected their geographic origins. Most of the accessions from European countries are distributed in the A and B groups, whereas the accessions from Asian countries are mainly distributed in C and D groups. Five different sampling strategies with diverse genetic clustering methods were used to select the optimal method for constructing the core collection. Using a number of allelic variations based on 48 SNP markers and 32 different phenotypic/morphological traits, a core collection 'CC240' with a total of 240 accessions (5.2 %) was selected from within the entire Capsicum germplasm. Compared to the other core collections, CC240 displayed higher

  8. Genetic diversity of mtDNA D-loop sequences in four native Chinese chicken breeds.

    PubMed

    Guo, H W; Li, C; Wang, X N; Li, Z J; Sun, G R; Li, G X; Liu, X J; Kang, X T; Han, R L

    2017-10-01

    1. To explore the genetic diversity of Chinese indigenous chicken breeds, a 585 bp fragment of the mitochondrial DNA (mtDNA) region was sequenced in 102 birds from the Xichuan black-bone chicken, Yunyang black-bone chicken and Lushi chicken. In addition, 30 mtDNA D-loop sequences of Silkie fowls were downloaded from NCBI. The mtDNA D-loop sequence polymorphism and maternal origin of 4 chicken breeds were analysed in this study. 2. The results showed that a total of 33 mutation sites and 28 haplotypes were detected in the 4 chicken breeds. The haplotype diversity and nucleotide diversity of these 4 native breeds were 0.916 ± 0.014 and 0.012 ± 0.002, respectively. Three clusters were formed in 4 Chinese native chickens and 12 reference breeds. Both the Xichuan black-bone chicken and Yunyang black-bone chicken were grouped into one cluster. Four haplogroups (A, B, C and E) emerged in the median-joining network in these breeds. 3. It was concluded that these 4 Chinese chicken breeds had high genetic diversity. The phylogenetic tree and median network profiles showed that Chinese native chickens and its neighbouring countries had at least two maternal origins, one from Yunnan, China and another from Southeast Asia or its surrounding area.

  9. Understanding Genetic Diversity and Population Structure of a Poa pratensis Worldwide Collection through Morphological, Nuclear and Chloroplast Diversity Analysis

    PubMed Central

    Russi, Luigi; Marconi, Gianpiero; Sharbel, Timothy F.; Veronesi, Fabio; Albertini, Emidio

    2015-01-01

    Poa pratensis L. is a forage and turf grass species well adapted to a wide range of mesic to moist habitats. Due to its genome complexity little is known regarding evolution, genome composition and intraspecific phylogenetic relationships of this species. In the present study we investigated the morphological and genetic diversity of 33 P. pratensis accessions from 23 different countries using both nuclear and chloroplast molecular markers as well as flow cytometry of somatic tissues. This with the aim of shedding light on the genetic diversity and phylogenetic relationships of the collection that includes both cultivated and wild materials. Morphological characterization showed that the most relevant traits able to distinguish cultivated from wild forms were spring growth habit and leaf colour. The genome size analysis revealed high variability both within and between accessions in both wild and cultivated materials. The sequence analysis of the trnL-F chloroplast region revealed a low polymorphism level that could be the result of the complex mode of reproduction of this species. In addition, a strong reduction of chloroplast SSR variability was detected in cultivated materials, where only two alleles were conserved out of the four present in wild accessions. Contrarily, at nuclear level, high variability exist in the collection where the analysis of 11 SSR loci allowed the detection of a total of 91 different alleles. A Bayesian analysis performed on nuclear SSR data revealed that studied materials belong to two main clusters. While wild materials are equally represented in both clusters, the domesticated forms are mostly belonging to cluster P2 which is characterized by lower genetic diversity compared to the cluster P1. In the Neighbour Joining tree no clear distinction was found between accessions with the exception of those from China and Mongolia that were clearly separated from all the others. PMID:25893249

  10. Population structure and genetic diversity of black redhorse (Moxostoma duquesnei) in a highly fragmented watershed

    USGS Publications Warehouse

    Reid, S.M.; Wilson, C.C.; Mandrak, N.E.; Carl, L.M.

    2008-01-01

    Dams have the potential to affect population size and connectivity, reduce genetic diversity, and increase genetic differences among isolated riverine fish populations. Previous research has reported adverse effects on the distribution and demographics of black redhorse (Moxostoma duquesnei), a threatened fish species in Canada. However, effects on genetic diversity and population structure are unknown. We used microsatellite DNA markers to assess the number of genetic populations in the Grand River (Ontario) and to test whether dams have resulted in a loss of genetic diversity and increased genetic differentiation among populations. Three hundred and seventy-seven individuals from eight Grand River sites were genotyped at eight microsatellite loci. Measures of genetic diversity were moderately high and not significantly different among populations; strong evidence of recent population bottlenecks was not detected. Pairwise FST and exact tests identified weak (global FST = 0.011) but statistically significant population structure, although little population structuring was detected using either genetic distances or an individual-based clustering method. Neither geographic distance nor the number of intervening dams were correlated with pairwise differences among populations. Tests for regional equilibrium indicate that Grand River populations were either in equilibrium between gene flow and genetic drift or that gene flow is more influential than drift. While studies on other species have identified strong dam-related effects on genetic diversity and population structure, this study suggests that barrier permeability, river fragment length and the ecological characteristics of affected species can counterbalance dam-related effects. ?? 2007 Springer Science+Business Media B.V.

  11. Genetic Diversity and Population Structure of Theileria annulata in Oman

    PubMed Central

    Al-Hamidhi, Salama; H. Tageldin, Mohammed.; Weir, William; Al-Fahdi, Amira; Johnson, Eugene H.; Bobade, Patrick; Alqamashoui, Badar; Beja-Pereira, Albano; Thompson, Joanne; Kinnaird, Jane; Shiels, Brian; Tait, Andy; Babiker, Hamza

    2015-01-01

    Background Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle. Methods Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites) representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman. Results We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia). A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST

  12. Genetic Diversity and Population Structure of Theileria annulata in Oman.

    PubMed

    Al-Hamidhi, Salama; H Tageldin, Mohammed; Weir, William; Al-Fahdi, Amira; Johnson, Eugene H; Bobade, Patrick; Alqamashoui, Badar; Beja-Pereira, Albano; Thompson, Joanne; Kinnaird, Jane; Shiels, Brian; Tait, Andy; Babiker, Hamza

    2015-01-01

    Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle. Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites) representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman. We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia). A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST' = 0.075, θ = 0.07) were

  13. Genetic diversity and connectivity of the megamouth shark (Megachasma pelagios)

    PubMed Central

    Joung, Shoou Jeng; Yu, Chi-Ju; Hsu, Hua-Hsun; Tsai, Wen-Pei; Liu, Kwang Ming

    2018-01-01

    The megamouth shark (Megachasma pelagios) was described as a new species in 1983. Since then, only ca. 100 individuals have been observed or caught. Its horizontal migration, dispersal, and connectivity patterns are still unknown due to its rarity. Two genetic markers were used in this study to reveal its genetic diversity and connectivity pattern. This approach provides a proxy to indirectly measure gene flow between populations. Tissues from 27 megamouth sharks caught by drift nets off the Hualien coast (eastern Taiwan) were collected from 2013 to 2015. With two additional tissue samples from megamouths caught in Baja California, Mexico, and sequences obtained from GenBank, we were able to perform the first population genetic analyses of the megamouth shark. The mtDNA cox1 gene and a microsatellite (Loc 6) were sequenced and analyzed. Our results showed that there is no genetic structure in the megamouth shark, suggesting a possible panmictic population. Based on occurrence data, we also suggest that the Kuroshio region, including the Philippines, Taiwan, and Japan, may act as a passageway for megamouth sharks to reach their feeding grounds from April to August. Our results provide insights into the dispersal and connectivity of megamouth sharks. Future studies should focus on collecting more samples and conducting satellite tagging to better understand the global migration and connectivity pattern of the megamouth shark. PMID:29527411

  14. Genetic diversity and population structure of African village dogs based on microsatellite and immunity-related molecular markers.

    PubMed

    Vychodilova, Leona; Necesankova, Michaela; Albrechtova, Katerina; Hlavac, Jan; Modry, David; Janova, Eva; Vyskocil, Mirko; Mihalca, Andrei D; Kennedy, Lorna J; Horin, Petr

    2018-01-01

    The village and street dogs represent a unique model of canine populations. In the absence of selective breeding and veterinary care, they are subject mostly to natural selection. Their analyses contribute to understanding general mechanisms governing the genetic diversity, evolution and adaptation. In this study, we analyzed the genetic diversity and population structure of African village dogs living in villages in three different geographical areas in Northern Kenya. Data obtained for neutral microsatellite molecular markers were compared with those computed for potentially non-neutral markers of candidate immunity-related genes. The neutral genetic diversity was similar to other comparable village dog populations studied so far. The overall genetic diversity in microsatellites was higher than the diversity of European pure breeds, but it was similar to the range of diversity observed in a group composed of many European breeds, indicating that the African population has maintained a large proportion of the genetic diversity of the canine species as a whole. Microsatellite marker diversity indicated that the entire population is subdivided into three genetically distinct, although closely related subpopulations. This genetical partitioning corresponded to their geographical separation and the observed gene flow well correlated with the communication patterns among the three localities. In contrast to neutral microsatellites, the genetic diversity in immunity-related candidate SNP markers was similar across all three subpopulations and to the European group. It seems that the genetic structure of this particular population of Kenyan village dogs is mostly determined by geographical and anthropogenic factors influencing the gene flow between various subpopulations rather than by biological factors, such as genetic contribution of original migrating populations and/or the pathogen-mediated selection. On the other hand, the study of oldest surviving dogs suggested a

  15. Molecular Genetic Diversity of Major Indian Rice Cultivars over Decadal Periods

    PubMed Central

    Deborah, Dondapati Annekitty; Vipparla, Abhilash; Anuradha, Ghanta; Siddiq, Ebrahimali Abubacker; Vemireddy, Lakshminarayana Reddy

    2013-01-01

    Genetic diversity in representative sets of high yielding varieties of rice released in India between 1970 and 2010 was studied at molecular level employing hypervariable microsatellite markers. Of 64 rice SSR primer pairs studied, 52 showed polymorphism, when screened in 100 rice genotypes. A total of 184 alleles was identified averaging 3.63 alleles per locus. Cluster analysis clearly grouped the 100 genotypes into their respective decadal periods i.e., 1970s, 1980s, 1990s and 2000s. The trend of diversity over the decadal periods estimated based on the number of alleles (Na), allelic richness (Rs), Nei’s genetic diversity index (He), observed heterozygosity (Ho) and polymorphism information content (PIC) revealed increase of diversity over the periods in year of releasewise and longevitywise classification of rice varieties. Analysis of molecular variance (AMOVA) suggested more variation in within the decadal periods than among the decades. Pairwise comparison of population differentiation (Fst) among decadal periods showed significant difference between all the pairs except a few. Analysis of trends of appearing and disappearing alleles over decadal periods showed an increase in the appearance of alleles and decrease in disappearance in both the categories of varieties. It was obvious from the present findings, that genetic diversity was progressively on the rise in the varieties released during the decadal periods, between 1970s and 2000s. PMID:23805204

  16. Genetic Diversity and Population Structure of F3:6 Nebraska Winter Wheat Genotypes Using Genotyping-By-Sequencing.

    PubMed

    Eltaher, Shamseldeen; Sallam, Ahmed; Belamkar, Vikas; Emara, Hamdy A; Nower, Ahmed A; Salem, Khaled F M; Poland, Jesse; Baenziger, Peter S

    2018-01-01

    The availability of information on the genetic diversity and population structure in wheat ( Triticum aestivum L.) breeding lines will help wheat breeders to better use their genetic resources and manage genetic variation in their breeding program. The recent advances in sequencing technology provide the opportunity to identify tens or hundreds of thousands of single nucleotide polymorphism (SNPs) in large genome species (e.g., wheat). These SNPs can be utilized for understanding genetic diversity and performing genome wide association studies (GWAS) for complex traits. In this study, the genetic diversity and population structure were investigated in a set of 230 genotypes (F 3:6 ) derived from various crosses as a prerequisite for GWAS and genomic selection. Genotyping-by-sequencing provided 25,566 high-quality SNPs. The polymorphism information content (PIC) across chromosomes ranged from 0.09 to 0.37 with an average of 0.23. The distribution of SNPs markers on the 21 chromosomes ranged from 319 on chromosome 3D to 2,370 on chromosome 3B. The analysis of population structure revealed three subpopulations (G1, G2, and G3). Analysis of molecular variance identified 8% variance among and 92% within subpopulations. Of the three subpopulations, G2 had the highest level of genetic diversity based on three genetic diversity indices: Shannon's information index ( I ) = 0.494, diversity index ( h ) = 0.328 and unbiased diversity index (uh) = 0.331, while G3 had lowest level of genetic diversity ( I = 0.348, h = 0.226 and uh = 0.236). This high genetic diversity identified among the subpopulations can be used to develop new wheat cultivars.

  17. Genetic Diversity and Population Structure of F3:6 Nebraska Winter Wheat Genotypes Using Genotyping-By-Sequencing

    PubMed Central

    Eltaher, Shamseldeen; Sallam, Ahmed; Belamkar, Vikas; Emara, Hamdy A.; Nower, Ahmed A.; Salem, Khaled F. M.; Poland, Jesse; Baenziger, Peter S.

    2018-01-01

    The availability of information on the genetic diversity and population structure in wheat (Triticum aestivum L.) breeding lines will help wheat breeders to better use their genetic resources and manage genetic variation in their breeding program. The recent advances in sequencing technology provide the opportunity to identify tens or hundreds of thousands of single nucleotide polymorphism (SNPs) in large genome species (e.g., wheat). These SNPs can be utilized for understanding genetic diversity and performing genome wide association studies (GWAS) for complex traits. In this study, the genetic diversity and population structure were investigated in a set of 230 genotypes (F3:6) derived from various crosses as a prerequisite for GWAS and genomic selection. Genotyping-by-sequencing provided 25,566 high-quality SNPs. The polymorphism information content (PIC) across chromosomes ranged from 0.09 to 0.37 with an average of 0.23. The distribution of SNPs markers on the 21 chromosomes ranged from 319 on chromosome 3D to 2,370 on chromosome 3B. The analysis of population structure revealed three subpopulations (G1, G2, and G3). Analysis of molecular variance identified 8% variance among and 92% within subpopulations. Of the three subpopulations, G2 had the highest level of genetic diversity based on three genetic diversity indices: Shannon’s information index (I) = 0.494, diversity index (h) = 0.328 and unbiased diversity index (uh) = 0.331, while G3 had lowest level of genetic diversity (I = 0.348, h = 0.226 and uh = 0.236). This high genetic diversity identified among the subpopulations can be used to develop new wheat cultivars. PMID:29593779

  18. Mapping genetic diversity of cherimoya (Annona cherimola Mill.): application of spatial analysis for conservation and use of plant genetic resources.

    PubMed

    Zonneveld, Maarten van; Scheldeman, Xavier; Escribano, Pilar; Viruel, María A; Van Damme, Patrick; Garcia, Willman; Tapia, César; Romero, José; Sigueñas, Manuel; Hormaza, José I

    2012-01-01

    There is a growing call for inventories that evaluate geographic patterns in diversity of plant genetic resources maintained on farm and in species' natural populations in order to enhance their use and conservation. Such evaluations are relevant for useful tropical and subtropical tree species, as many of these species are still undomesticated, or in incipient stages of domestication and local populations can offer yet-unknown traits of high value to further domestication. For many outcrossing species, such as most trees, inbreeding depression can be an issue, and genetic diversity is important to sustain local production. Diversity is also crucial for species to adapt to environmental changes. This paper explores the possibilities of incorporating molecular marker data into Geographic Information Systems (GIS) to allow visualization and better understanding of spatial patterns of genetic diversity as a key input to optimize conservation and use of plant genetic resources, based on a case study of cherimoya (Annona cherimola Mill.), a Neotropical fruit tree species. We present spatial analyses to (1) improve the understanding of spatial distribution of genetic diversity of cherimoya natural stands and cultivated trees in Ecuador, Bolivia and Peru based on microsatellite molecular markers (SSRs); and (2) formulate optimal conservation strategies by revealing priority areas for in situ conservation, and identifying existing diversity gaps in ex situ collections. We found high levels of allelic richness, locally common alleles and expected heterozygosity in cherimoya's putative centre of origin, southern Ecuador and northern Peru, whereas levels of diversity in southern Peru and especially in Bolivia were significantly lower. The application of GIS on a large microsatellite dataset allows a more detailed prioritization of areas for in situ conservation and targeted collection across the Andean distribution range of cherimoya than previous studies could do, i.e. at

  19. Mapping Genetic Diversity of Cherimoya (Annona cherimola Mill.): Application of Spatial Analysis for Conservation and Use of Plant Genetic Resources

    PubMed Central

    van Zonneveld, Maarten; Scheldeman, Xavier; Escribano, Pilar; Viruel, María A.; Van Damme, Patrick; Garcia, Willman; Tapia, César; Romero, José; Sigueñas, Manuel; Hormaza, José I.

    2012-01-01

    There is a growing call for inventories that evaluate geographic patterns in diversity of plant genetic resources maintained on farm and in species' natural populations in order to enhance their use and conservation. Such evaluations are relevant for useful tropical and subtropical tree species, as many of these species are still undomesticated, or in incipient stages of domestication and local populations can offer yet-unknown traits of high value to further domestication. For many outcrossing species, such as most trees, inbreeding depression can be an issue, and genetic diversity is important to sustain local production. Diversity is also crucial for species to adapt to environmental changes. This paper explores the possibilities of incorporating molecular marker data into Geographic Information Systems (GIS) to allow visualization and better understanding of spatial patterns of genetic diversity as a key input to optimize conservation and use of plant genetic resources, based on a case study of cherimoya (Annona cherimola Mill.), a Neotropical fruit tree species. We present spatial analyses to (1) improve the understanding of spatial distribution of genetic diversity of cherimoya natural stands and cultivated trees in Ecuador, Bolivia and Peru based on microsatellite molecular markers (SSRs); and (2) formulate optimal conservation strategies by revealing priority areas for in situ conservation, and identifying existing diversity gaps in ex situ collections. We found high levels of allelic richness, locally common alleles and expected heterozygosity in cherimoya's putative centre of origin, southern Ecuador and northern Peru, whereas levels of diversity in southern Peru and especially in Bolivia were significantly lower. The application of GIS on a large microsatellite dataset allows a more detailed prioritization of areas for in situ conservation and targeted collection across the Andean distribution range of cherimoya than previous studies could do, i.e. at

  20. Genetic diversity of a large set of horse breeds raised in France assessed by microsatellite polymorphism

    PubMed Central

    2009-01-01

    The genetic diversity and structure of horses raised in France were investigated using 11 microsatellite markers and 1679 animals belonging to 34 breeds. Between-breed differences explained about ten per cent of the total genetic diversity (Fst = 0.099). Values of expected heterozygosity ranged from 0.43 to 0.79 depending on the breed. According to genetic relationships, multivariate and structure analyses, breeds could be classified into four genetic differentiated groups: warm-blooded, draught, Nordic and pony breeds. Using complementary maximisation of diversity and aggregate diversity approaches, we conclude that particular efforts should be made to conserve five local breeds, namely the Boulonnais, Landais, Merens, Poitevin and Pottok breeds. PMID:19284689

  1. How and how much does RAD-seq bias genetic diversity estimates?

    PubMed

    Cariou, Marie; Duret, Laurent; Charlat, Sylvain

    2016-11-08

    RAD-seq is a powerful tool, increasingly used in population genomics. However, earlier studies have raised red flags regarding possible biases associated with this technique. In particular, polymorphism on restriction sites results in preferential sampling of closely related haplotypes, so that RAD data tends to underestimate genetic diversity. Here we (1) clarify the theoretical basis of this bias, highlighting the potential confounding effects of population structure and selection, (2) confront predictions to real data from in silico digestion of full genomes and (3) provide a proof of concept toward an ABC-based correction of the RAD-seq bias. Under a neutral and panmictic model, we confirm the previously established relationship between the true polymorphism and its RAD-based estimation, showing a more pronounced bias when polymorphism is high. Using more elaborate models, we show that selection, resulting in heterogeneous levels of polymorphism along the genome, exacerbates the bias and leads to a more pronounced underestimation. On the contrary, spatial genetic structure tends to reduce the bias. We confront the neutral and panmictic model to "ideal" empirical data (in silico RAD-sequencing) using full genomes from natural populations of the fruit fly Drosophila melanogaster and the fungus Shizophyllum commune, harbouring respectively moderate and high genetic diversity. In D. melanogaster, predictions fit the model, but the small difference between the true and RAD polymorphism makes this comparison insensitive to deviations from the model. In the highly polymorphic fungus, the model captures a large part of the bias but makes inaccurate predictions. Accordingly, ABC corrections based on this model improve the estimations, albeit with some imprecisions. The RAD-seq underestimation of genetic diversity associated with polymorphism in restriction sites becomes more pronounced when polymorphism is high. In practice, this means that in many systems where

  2. A neutral theory for interpreting correlations between species and genetic diversity in communities.

    PubMed

    Laroche, Fabien; Jarne, Philippe; Lamy, Thomas; David, Patrice; Massol, Francois

    2015-01-01

    Spatial patterns of biological diversity have been extensively studied in ecology and population genetics, because they reflect the forces acting on biodiversity. A growing number of studies have found that genetic (within-species) and species diversity can be correlated in space (the so-called species-gene diversity correlation [SGDC]), which suggests that they are controlled by nonindependent processes. Positive SGDCs are generally assumed to arise from parallel responses of genetic and species diversity to variation in site size and connectivity. However, this argument implicitly assumes a neutral model that has yet to be developed. Here, we build such a model to predict SGDC in a metacommunity. We describe how SGDC emerges from competition within sites and variation in connectivity and carrying capacity among sites. We then introduce the formerly ignored mutation process, which affects genetic but not species diversity. When mutation rate is low, our model confirms that variation in the number of migrants among sites creates positive SGDCs. However, when considering high mutation rates, interactions between mutation, migration, and competition can produce negative SGDCs. Neutral processes thus do not always contribute positively to SGDCs. Our approach provides empirical guidelines for interpreting these novel patterns in natura with respect to evolutionary and ecological forces shaping metacommunities.

  3. Genetic diversity analysis among collected purslane (Portulaca oleracea L.) accessions using ISSR markers.

    PubMed

    Alam, M Amirul; Juraimi, Abdul Shukor; Rafii, Mohd Yusop; Hamid, Azizah Abdul; Arolu, Ibrahim Wasiu; Abdul Latif, M

    2015-01-01

    Genetic diversity and relationships among 45 collected purslane accessions were evaluated using ISSR markers. The 28 primers gave a total of 167 bands, among which 163 were polymorphic (97.6%). The genetic diversity as estimated by Shannon's information index was 0.513, revealing a quite high level of genetic diversity in the germplasm. The average number of observed allele, effective allele, expected heterozygosity, polymorphic information content (PIC) and Nei's index were 5.96, 1.59, 0.43, 0.35 and 0.35, respectively. The UPGMA dendrogram based on Nei's genetic distance grouped the whole germplasm into 7 distinct clusters. The analysis of molecular variance (AMOVA) revealed that 89% of total variation occurred within population, while 11% were found among populations. Based on the constructed dendrogram using ISSR markers those accessions that are far from each other by virtue of genetic origin and diversity index (like Ac1 and Ac42; Ac19 and Ac45; Ac9 and Ac23; Ac18 and A25; Ac24 and Ac18) are strongly recommended to select as parent for future breeding program to develop high yielding and stress tolerant purslane variety in contribution to global food security. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  4. Resequencing microarray probe design for typing genetically diverse viruses: human rhinoviruses and enteroviruses

    PubMed Central

    Wang, Zheng; Malanoski, Anthony P; Lin, Baochuan; Kidd, Carolyn; Long, Nina C; Blaney, Kate M; Thach, Dzung C; Tibbetts, Clark; Stenger, David A

    2008-01-01

    Background Febrile respiratory illness (FRI) has a high impact on public health and global economics and poses a difficult challenge for differential diagnosis. A particular issue is the detection of genetically diverse pathogens, i.e. human rhinoviruses (HRV) and enteroviruses (HEV) which are frequent causes of FRI. Resequencing Pathogen Microarray technology has demonstrated potential for differential diagnosis of several respiratory pathogens simultaneously, but a high confidence design method to select probes for genetically diverse viruses is lacking. Results Using HRV and HEV as test cases, we assess a general design strategy for detecting and serotyping genetically diverse viruses. A minimal number of probe sequences (26 for HRV and 13 for HEV), which were potentially capable of detecting all serotypes of HRV and HEV, were determined and implemented on the Resequencing Pathogen Microarray RPM-Flu v.30/31 (Tessarae RPM-Flu). The specificities of designed probes were validated using 34 HRV and 28 HEV strains. All strains were successfully detected and identified at least to species level. 33 HRV strains and 16 HEV strains could be further differentiated to serotype level. Conclusion This study provides a fundamental evaluation of simultaneous detection and differential identification of genetically diverse RNA viruses with a minimal number of prototype sequences. The results demonstrated that the newly designed RPM-Flu v.30/31 can provide comprehensive and specific analysis of HRV and HEV samples which implicates that this design strategy will be applicable for other genetically diverse viruses. PMID:19046445

  5. Assessment of the genetic diversity of the Tunisian citrus rootstock germplasm

    PubMed Central

    2012-01-01

    Background Citrus represents a substantial income for farmers in the Mediterranean Basin. However, the Mediterranean citrus industry faces increasing biotic and abiotic constraints. Therefore the breeding and selection of new rootstocks are now of the utmost importance. In Tunisia, in addition to sour orange, the most widespread traditional rootstock of the Mediterranean area, other citrus rootstocks and well adapted to local environmental conditions, are traditionally used and should be important genetic resources for breeding. To characterize the diversity of Tunisian citrus rootstocks, two hundred and one local accessions belonging to four facultative apomictic species (C. aurantium, sour orange; C. sinensis, orange; C. limon, lemon; and C. aurantifolia, lime) were collected and genotyped using 20 nuclear SSR markers and four indel mitochondrial markers. Multi-locus genotypes (MLGs) were compared to references from French and Spanish collections. Results The differentiation of the four varietal groups was well-marked. The groups displayed a relatively high allelic diversity, primarily due to very high heterozygosity. Sixteen distinct MLGs were identified. Ten of these were noted in sour oranges. However, the majority of the analysed sour orange accessions corresponded with only two MLGs, differentiated by a single allele, likely due to a mutation. The most frequent MLG is shared with the reference sour oranges. No polymorphism was found within the sweet orange group. Two MLGs, differentiated by a single locus, were noted in lemon. The predominant MLG was shared with the reference lemons. Limes were represented by three genotypes. Two corresponded to the 'Mexican lime' and 'limonette de Marrakech' references. The MLG of 'Chiiri' lime was unique. Conclusions The Tunisian citrus rootstock genetic diversity is predominantly due to high heterozygosity and differentiation between the four varietal groups. The phenotypic diversity within the varietal groups has

  6. Stoichiometric differences in food quality: impacts on genetic diversity and the coexistence of aquatic herbivores in a Daphnia hybrid complex.

    PubMed

    Weider, Lawrence J; Jeyasingh, Punidan D; Looper, Karen G

    2008-11-01

    The maintenance of genetic and species diversity in an assemblage of genotypes (clones) in the Daphnia pulex species complex (Cladocera: Anomopoda) in response to variation in the carbon:phosphorus ratio (quantity and quality) of the green alga, Scenedesmus acutus, was examined in a 90-day microcosm competition experiment. Results indicated that mixed assemblages of seven distinct genotypes (representing clonal lineages of D. pulex, D. pulicaria and interspecific hybrids) showed rapid loss of genetic diversity in all treatments (2 x 2 factorial design, high vs. low quantity, and high vs. low quality). However, the erosion of diversity (measured as the effective number of clones) was slowest under the poorest food conditions (i.e., low quantity, low quality) and by the conclusion of the experiment (90 days) had resulted in the (low, low) treatment having significantly greater genetic diversity than the other three treatments. In addition, significant genotype (clone) x (food) environment interactions were observed, with a different predominant species/clone found under low food quality versus high food quality (no significant differences were detected for the two food quantities). A clone of D. pulex displaced the other clones under low food quality conditions, while a clone of D. pulicaria displaced the other clones in the high food quality treatments. Subsequent life-history experiments were not sufficient to predict the outcome of competitive interactions among members of this clonal assemblage. Our results suggest that genetic diversity among herbivore species such as Daphnia may be impacted not only by differences in food quantity but also by those in food quality and could be important in the overall maintenance of genetic diversity in natural populations.

  7. Structure and genetic diversity of natural Brazilian pepper populations (Schinus terebinthifolius Raddi).

    PubMed

    Álvares-Carvalho, S V; Duarte, J F; Santos, T C; Santos, R M; Silva-Mann, R; Carvalho, D

    2016-06-17

    In the face of a possible loss of genetic diversity in plants due the environmental changes, actions to ensure the genetic variability are an urgent necessity. The extraction of Brazilian pepper fruits is a cause of concern because it results in the lack of seeds in soil, hindering its distribution in space and time. It is important to address this concern and explore the species, used by riparian communities and agro-factories without considering the need for keeping the seeds for natural seed banks and for species sustainability. The objective of this study was to evaluate the structure and the genetic diversity in natural Brazilian pepper populations (Schinus terebinthifolius Raddi). Twenty-two alleles in 223 individuals were identified from eight forest remnants located in the states of Minas Gerais, Espírito Santo, and Sergipe. All populations presented loci in Hardy-Weinberg equilibrium deviation. Four populations presented six combinations of loci in linkage disequilibrium. Six exclusive alleles were detected in four populations. Analysis of molecular variance showed the absence of diversity between regions and that between the populations (GST) was 41%. Genetic diversity was structured in seven clusters (ΔK7). Brazilian pepper populations were not structured in a pattern of isolation by distance and present genetic bottleneck. The populations São Mateus, Canastra, Barbacena, and Ilha das Flores were identified as management units and may support conservation projects, ecological restoration and in implementation of management plans for Brazilian pepper in the State of Sergipe.

  8. Genetic effects of habitat restoration in the Laurentian Great Lakes: an assessment of lake sturgeon origin and genetic diversity

    USGS Publications Warehouse

    Jamie Marie Marranca,; Amy Welsh,; Roseman, Edward F.

    2015-01-01

    Lake sturgeon (Acipenser fulvescens) have experienced significant habitat loss, resulting in reduced population sizes. Three artificial reefs were built in the Huron-Erie corridor in the Great Lakes to replace lost spawning habitat. Genetic data were collected to determine the source and numbers of adult lake sturgeon spawning on the reefs and to determine if the founder effect resulted in reduced genetic diversity. DNA was extracted from larval tail clips and 12 microsatellite loci were amplified. Larval genotypes were then compared to 22 previously studied spawning lake sturgeon populations in the Great Lakes to determine the source of the parental population. The effective number of breeders (Nb) was calculated for each reef cohort. The larval genotypes were then compared to the source population to determine if there were any losses in genetic diversity that are indicative of the founder effect. The St. Clair and Detroit River adult populations were found to be the source parental population for the larvae collected on all three artificial reefs. There were large numbers of contributing adults relative to the number of sampled larvae. There was no significant difference between levels of genetic diversity in the source population and larval samples from the artificial reefs; however, there is some evidence for a genetic bottleneck in the reef populations likely due to the founder effect. Habitat restoration in the Huron-Erie corridor is likely resulting in increased habitat for the large lake sturgeon population in the system and in maintenance of the population's genetic diversity.

  9. Genetic diversity is largely unpredictable but scales with museum occurrences in a species-rich clade of Australian lizards.

    PubMed

    Singhal, Sonal; Huang, Huateng; Title, Pascal O; Donnellan, Stephen C; Holmes, Iris; Rabosky, Daniel L

    2017-05-17

    Genetic diversity is a fundamental characteristic of species and is affected by many factors, including mutation rate, population size, life history and demography. To better understand the processes that influence levels of genetic diversity across taxa, we collected genome-wide restriction-associated DNA data from more than 500 individuals spanning 76 nominal species of Australian scincid lizards in the genus Ctenotus To avoid potential biases associated with variation in taxonomic practice across the group, we used coalescent-based species delimitation to delineate 83 species-level lineages within the genus for downstream analyses. We then used these genetic data to infer levels of within-population genetic diversity. Using a phylogenetically informed approach, we tested whether variation in genetic diversity could be explained by population size, environmental heterogeneity or historical demography. We find that the strongest predictor of genetic diversity is a novel proxy for census population size: the number of vouchered occurrences in museum databases. However, museum occurrences only explain a limited proportion of the variance in genetic diversity, suggesting that genetic diversity might be difficult to predict at shallower phylogenetic scales. © 2017 The Author(s).

  10. New hosts and genetic diversity of Flavobacterium columnare isolated from Brazilian native species and Nile tilapia.

    PubMed

    Barony, G M; Tavares, G C; Assis, G B N; Luz, R K; Figueiredo, H C P; Leal, C A G

    2015-11-17

    Flavobacterium columnare is responsible for disease outbreaks in freshwater fish farms. Several Brazilian native fish have been commercially exploited or studied for aquaculture purposes, including Amazon catfish Leiarius marmoratus × Pseudoplatystoma fasciatum and pacamã Lophiosilurus alexandri. This study aimed to identify the aetiology of disease outbreaks in Amazon catfish and pacamã hatcheries and to address the genetic diversity of F. columnare isolates obtained from diseased fish. Two outbreaks in Amazon catfish and pacamã hatcheries took place in 2010 and 2011. Four F. columnare strains were isolated from these fish and identified by PCR. The disease was successfully reproduced under experimental conditions for both fish species, fulfilling Koch's postulates. The genomovar of these 4 isolates and of an additional 11 isolates from Nile tilapia Oreochromis niloticus was determined by 16S rRNA restriction fragment length polymorphism PCR. The genetic diversity was evaluated by phylogenetic analysis of the 16S rRNA gene and repetitive extragenic palindromic PCR (REP-PCR). Most isolates (n = 13) belonged to genomovar II; the remaining 2 isolates (both from Nile tilapia) were assigned to genomovar I. Phylogenetic analysis and REP-PCR were able to demonstrate intragenomovar diversity. This is the first report of columnaris in Brazilian native Amazon catfish and pacamã. The Brazilian F. columnare isolates showed moderate diversity, and REP-PCR was demonstrated to be a feasible method to evaluate genetic variability in this bacterium.

  11. Genetic diversity and population structure of cowpea (Vigna unguiculata L. Walp)

    USDA-ARS?s Scientific Manuscript database

    The genetic diversity of cowpea was analyzed and the population structure was estimated in a diverse set of 768 cultivated cowpea genotypes from USDA GRIN cowpea collection, originally collected from 56 countries worldwide. Genotyping by sequencing was used to discover single nucleotide polymorphism...

  12. Genetic diversity and structure of elite cotton germplasm (Gossypium hirsutum L.) using genome-wide SNP data.

    PubMed

    Ai, XianTao; Liang, YaJun; Wang, JunDuo; Zheng, JuYun; Gong, ZhaoLong; Guo, JiangPing; Li, XueYuan; Qu, YanYing

    2017-10-01

    Cotton (Gossypium spp.) is the most important natural textile fiber crop, and Gossypium hirsutum L. is responsible for 90% of the annual cotton crop in the world. Information on cotton genetic diversity and population structure is essential for new breeding lines. In this study, we analyzed population structure and genetic diversity of 288 elite Gossypium hirsutum cultivar accessions collected from around the world, and especially from China, using genome-wide single nucleotide polymorphisms (SNP) markers. The average polymorphsim information content (PIC) was 0.25, indicating a relatively low degree of genetic diversity. Population structure analysis revealed extensive admixture and identified three subgroups. Phylogenetic analysis supported the subgroups identified by STRUCTURE. The results from both population structure and phylogenetic analysis were, for the most part, in agreement with pedigree information. Analysis of molecular variance revealed a larger amount of variation was due to diversity within the groups. Establishment of genetic diversity and population structure from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in upland cotton.

  13. Genetic diversity provides opportunities for improvement of fresh-cut pepper quality

    USDA-ARS?s Scientific Manuscript database

    Extensive genetic diversity present in the Capsicum genepool has been utilized extensively to improve pepper disease resistance, fruit quality and varied yield attributes. Little attention has been dedicated to genetic enhancement of pepper fresh-cut quality. We evaluated pepper accessions with dive...

  14. Genetic Diversity of Pancreatic Ductal Adenocarcinoma and Opportunities for Precision Medicine.

    PubMed

    Knudsen, Erik S; O'Reilly, Eileen M; Brody, Jonathan R; Witkiewicz, Agnieszka K

    2016-01-01

    Patients with pancreatic ductal adenocarcinoma (PDA) have a poor prognosis despite new treatments; approximately 7% survive for 5 years. Although there have been advances in systemic, primarily cytotoxic, therapies, it has been a challenge to treat patients with PDA using targeted therapies. Sequence analyses have provided a wealth of information about the genetic features of PDA and have identified potential therapeutic targets. Preclinical and early-phase clinical studies have found specific pathways could be rationally targeted; it might also be possible to take advantage of the genetic diversity of PDAs to develop therapeutic agents. The genetic diversity and instability of PDA cells have long been thought of as obstacles to treatment, but are now considered exploitable features. We review the latest findings in pancreatic cancer genetics and the promise of targeted approaches in PDA therapy. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  15. Genetic diversity of polysporic isolates of Moniliophthora perniciosa (Tricholomataceae).

    PubMed

    Ferreira, L F R; Duarte, K M R; Gomes, L H; Carvalho, R S; Leal Junior, G A; Aguiar, M M; Armas, R D; Tavares, F C A

    2012-08-16

    The causal agent of witches' broom disease, Moniliophthora perniciosa is a hemibiotrophic and endemic fungus of the Amazon basin and the most important cocoa disease in Brazil. The purpose of this study was to analyze the genetic diversity of polysporic isolates of M. perniciosa to evaluate the adaptation of the pathogen from different Brazilian regions and its association with different hosts. Polysporic isolates obtained previously in potato dextrose agar cultures of M. perniciosa from different Brazilian states and different hosts (Theobroma cacao, Solanum cernuum, S. paniculatum, S. lycocarpum, Solanum sp, and others) were analyzed by somatic compatibility grouping where the mycelium interactions were distinguished after 4-8 weeks of confrontation between the different isolates of M. perniciosa based on the precipitation line in the transition zone and by protein electrophoresis through SDS-PAGE. The diversity of polysporic isolates of M. perniciosa was grouped according to geographic proximity and respective hosts. The great genetic diversity of M. perniciosa strains from different Brazilian states and hosts favored adaptation in unusual environments and dissemination at long distances generating new biotypes.

  16. Ancient Male Recombination Shaped Genetic Diversity of Neo-Y Chromosome in Drosophila albomicans.

    PubMed

    Satomura, Kazuhiro; Tamura, Koichiro

    2016-02-01

    Researchers studying Y chromosome evolution have drawn attention to neo-Y chromosomes in Drosophila species due to their resembling the initial stage of Y chromosome evolution. In the studies of neo-Y chromosome of Drosophila miranda, the extremely low genetic diversity observed suggested various modes of natural selection acting on the nonrecombining genome. However, alternative possibility may come from its peculiar origin from a single chromosomal fusion event with male achiasmy, which potentially caused and maintained the low genetic diversity of the neo-Y chromosome. Here, we report a real case where a neo-Y chromosome is in transition from an autosome to a typical Y chromosome. The neo-Y chromosome of Drosophila albomicans harbored a rich genetic diversity comparable to its gametologous neo-X chromosome and an autosome in the same genome. Analyzing sequence variations in 53 genes and measuring recombination rates between pairs of loci by cross experiments, we elucidated the evolutionary scenario of the neo-Y chromosome of D. albomicans having high genetic diversity without assuming selective force, i.e., it originated from a single chromosomal fusion event, experienced meiotic recombination during the initial stage of evolution and diverged from neo-X chromosome by the suppression of recombination tens or a few hundreds of thousand years ago. Consequently, the observed high genetic diversity on the neo-Y chromosome suggested a strong effect of meiotic recombination to introduce genetic variations into the newly arisen sex chromosome. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. HIV genetic diversity in Cameroon: possible public health importance.

    PubMed

    Ndongmo, Clement B; Pieniazek, Danuta; Holberg-Petersen, Mona; Holm-Hansen, Carol; Zekeng, Leopold; Jeansson, Stig L; Kaptue, Lazare; Kalish, Marcia L

    2006-08-01

    To monitor the evolving molecular epidemiology and genetic diversity of HIV in a country where many distinct strains cocirculate, we performed genetic analyses on sequences from 75 HIV-1-infected Cameroonians: 74 were group M and 1 was group O. Of the group M sequences, 74 were classified into the following env gp41 subtypes or recombinant forms: CRF02 (n = 54), CRF09 (n = 2), CRF13 (n = 2), A (n = 5), CRF11 (n = 4), CRF06 (n = 1), G (n = 2), F2 (n = 2), and E (n = 1, CRF01), and 1 was a JG recombinant. Comparison of phylogenies for 70 matched gp41 and protease sequences showed inconsistent classifications for 18 (26%) strains. Our data show that recombination is rampant in Cameroon with recombinant viruses continuing to recombine, adding to the complexity of circulating HIV strains. This expanding genetic diversity raises public health concerns for the ability of diagnostic assays to detect these unique HIV mosaic variants and for the development of broadly effective HIV vaccines.

  18. Genetic Diversity in the Paramecium aurelia Species Complex

    PubMed Central

    Catania, Francesco; Wurmser, François; Potekhin, Alexey A.; Przyboś, Ewa; Lynch, Michael

    2009-01-01

    Current understanding of the population genetics of free-living unicellular eukaryotes is limited, and the amount of genetic variability in these organisms is still a matter of debate. We characterized—reproductively and genetically—worldwide samples of multiple Paramecium species belonging to a cryptic species complex, Paramecium aurelia, whose species have been shown to be reproductively isolated. We found that levels of genetic diversity both in the nucleus and in the mitochondrion are substantial within groups of reproductively compatible P. aurelia strains but drop considerably when strains are partitioned according to their phylogenetic groupings. Our study reveals the existence of discrepancies between the mating behavior of a number of P. aurelia strains and their multilocus genetic profile, a controversial finding that has major consequences for both the current methods of species assignment and the species problem in the P. aurelia complex. PMID:19023087

  19. Genetic Diversity and Population Structure of Siberian apricot (Prunus sibirica L.) in China

    PubMed Central

    Li, Ming; Zhao, Zhong; Miao, Xingjun; Zhou, Jingjing

    2014-01-01

    The genetic diversity and population genetic structure of 252 accessions from 21 Prunus sibirica L. populations were investigated using 10 ISSR, SSR, and SRAP markers. The results suggest that the entire population has a relatively high level of genetic diversity, with populations HR and MY showing very high diversity. A low level of inter-population genetic differentiation and a high level of intra-population genetic differentiation was found, which is supported by a moderate level of gene flow, and largely attributable to the cross-pollination and self-incompatibility reproductive system. A STRUCTURE (model-based program) analysis revealed that the 21 populations can be divided into two main groups, mainly based on geographic differences and genetic exchanges. The entire wild Siberia apricot population in China could be divided into two subgroups, including 107 accessions in subgroup (SG) 1 and 147 accessions in SG 2. A Mantel test revealed a significant positive correlation between genetic and geographic distance matrices, and there was a very significant positive correlation among three marker datasets. Overall, we recommend a combination of conservation measures, with ex situ and in situ conservation that includes the construction of a core germplasm repository and the implement of in situ conservation for populations HR, MY, and ZY. PMID:24384840

  20. Diachronic analysis of genetic diversity in rice landraces under on-farm conservation in Yunnan, China.

    PubMed

    Cui, Di; Li, Jinmei; Tang, Cuifeng; A, Xinxiang; Yu, Tengqiong; Ma, Xiaoding; Zhang, Enlai; Cao, Guilan; Xu, Furong; Qiao, Yongli; Dai, Luyuan; Han, Longzhi

    2016-01-01

    Diachronic analysis showed no significant changes in the level of genetic diversity occurred over the past 27 years' domestication, which indicated genetic diversity was successfully maintained under on-farm conservation. Rice (Oryza sativa L.) is one of the earliest domesticated crop species. Its genetic diversity has been declining as a result of natural and artificial selection. In this study, we performed the first analysis of the levels and patterns of nucleotide variation in rice genomes under on-farm conservation in Yunnan during a 27-year period of domestication. We performed large-scale sequencing of 600 rice accessions with high diversity, which were collected in 1980 and 2007, using ten unlinked nuclear loci. Diachronic analysis showed no significant changes in the level of genetic diversity occurring over the past 27 years' domestication, which indicated genetic diversity was successfully maintained under on-farm conservation. Population structure revealed that the rice landraces could be grouped into two subpopulations, namely the indica and japonica groups. Interestingly, the alternate distribution of indica and japonica rice landraces could be found in each ecological zone. The results of AMOVA showed that on-farm conservation provides opportunities for continued differentiation and variation of landraces. Therefore, dynamic conservation measures such as on-farm conservation (which is a backup, complementary strategy to ex situ conservation) should be encouraged and enhanced, especially in crop genetic diversity centers. The results of this study offered accurate insights into short-term evolutionary processes and provided a scientific basis for on-farm management practices.

  1. Genetic Diversity of Ascaris in China Assessed Using Simple Sequence Repeat Markers.

    PubMed

    Zhou, Chunhua; Jian, Shaoqing; Peng, Weidong; Li, Min

    2018-04-01

    The giant roundworm Ascaris infects pigs and people worldwide and causes serious diseases. The taxonomic relationship between Ascaris suum and Ascaris lumbricoides is still unclear. The purpose of the present study was to investigate the genetic diversity and population genetic structure of 258 Ascaris specimens from humans and pigs from 6 sympatric regions in Ascaris -endemic regions of China using existing simple sequence repeat data. The microsatellite markers showed a high level of allelic richness and genetic diversity in the samples. Each of the populations demonstrated excess homozygosity (Ho0). According to a genetic differentiation index (Fst=0.0593), there was a high-level of gene flow in the Ascaris populations. A hierarchical analysis on molecular variance revealed remarkably high levels of variation within the populations. Moreover, a population structure analysis indicated that Ascaris populations fell into 3 main genetic clusters, interpreted as A. suum , A. lumbricoides , and a hybrid of the species. We speculated that humans can be infected with A. lumbricoides , A. suum , and the hybrid, but pigs were mainly infected with A. suum . This study provided new information on the genetic diversity and population structure of Ascaris from human and pigs in China, which can be used for designing Ascaris control strategies. It can also be beneficial to understand the introgression of host affiliation.

  2. Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents

    USGS Publications Warehouse

    Coykendall, D.K.; Johnson, S.B.; Karl, S.A.; Lutz, R.A.; Vrijenhoek, R.C.

    2011-01-01

    Background: Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, Riftia pachyptila, a widely distributed constituent of vents along the East Pacific Rise and Galpagos Rift. Results: Genetic differentiation (FST) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically. Conclusions: Compared to other vent species, DNA sequence diversity is extremely low in R. pachyptila. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events. ?? 2011 Coykendall et al; licensee BioMed Central Ltd.

  3. Species mtDNA genetic diversity explained by infrapopulation size in a host-symbiont system.

    PubMed

    Doña, Jorge; Moreno-García, Marina; Criscione, Charles D; Serrano, David; Jovani, Roger

    2015-12-01

    Understanding what shapes variation in genetic diversity among species remains a major challenge in evolutionary ecology, and it has been seldom studied in parasites and other host-symbiont systems. Here, we studied mtDNA variation in a host-symbiont non-model system: 418 individual feather mites from 17 feather mite species living on 17 different passerine bird species. We explored how a surrogate of census size, the median infrapopulation size (i.e., the median number of individual parasites per infected host individual), explains mtDNA genetic diversity. Feather mite species genetic diversity was positively correlated with mean infrapopulation size, explaining 34% of the variation. As expected from the biology of feather mites, we found bottleneck signatures for most of the species studied but, in particular, three species presented extremely low mtDNA diversity values given their infrapopulation size. Their star-like haplotype networks (in contrast with more reticulated networks for the other species) suggested that their low genetic diversity was the consequence of severe bottlenecks or selective sweeps. Our study shows for the first time that mtDNA diversity can be explained by infrapopulation sizes, and suggests that departures from this relationship could be informative of underlying ecological and evolutionary processes.

  4. Molecular Identification and Genetic Diversity of Acropora hyacinthus from Boo and Deer Island, Raja Ampat, West Papua

    NASA Astrophysics Data System (ADS)

    Wijayanti, DP; Indrayanti, E.; Nuryadi, H.; Dewi, RA; Sabdono, A.

    2018-02-01

    Indonesia lies at the centre of biodiversity for corals. However, the reefs suffered from extensive human exploitation. Marine Protected Areas is thought to be best solution to protect coral reefs ecosystem. Understanding genetic diversity is crucial for effective management of the MPAs, however genetic diversity is rarely been corporate in designing an MPA. Moreover, many MPAs are uneffectively manage due to poor designated and demarcated.Raja Ampat which is located in western tip of West Papua, was designated as a park to mitigatethreatsand protect the valuable marine resources.Scleractinian corals in the genus Acropora are among the most dominant distributed in Raja Ampat waters, including the species of Acroporahyacinthus. The research aimed to analyze genetic diversity and to describe the kinship relationship of Acroporahyacinthus between 2 populations: Boo Island and Deer Island, Raja Ampat. Genetic marker Cytochrome Oxidase I (CO I) of the mitochondrial genome DNA (mtDNA) was used to analyze genetic diversity. Reconstruction of phylogenetic tree and genetic diversity were made by usingsoftware MEGA 5.05 (Moleculer Evolutionary Genetics Analysis). The results of this research indicatecorals A. hyacinthus from Boo Island and Deer Island Raja Ampat are in the low category of genetic diversity and overall had a close genetic relationship of kinship. This is likely due to the small size of the population and few numbers of samples that may not represent the population.

  5. Genetic diversity, structure, and patterns of differentiation in the genus vitis

    USDA-ARS?s Scientific Manuscript database

    Vitis (Vitaceae) is a taxonomically complicated genus with ca. 60 taxa divided into two subgenera, Vitis and Muscadinia. We used population genetic approaches to gain insights into the genetic diversity, patterns of evolutionary differentiation and to decipher the taxonomic status of some of the con...

  6. Genetic diversity analysis of Varronia curassavica Jacq. accessions using ISSR markers.

    PubMed

    Brito, F A; Nizio, D A C; Silva, A V C; Diniz, L E C; Rabbani, A R C; Arrigoni-Blank, M F; Alvares-Carvalho, S V; Figueira, G M; Montanari Júnior, I; Blank, A F

    2016-09-02

    Varronia curassavica Jacq. is a medicinal and aromatic plant from Brazil with significant economic importance. Studies on genetic diversity in active germplasm banks (AGB) are essential for conservation and breeding programs. The aim of this study was to analyze the genetic diversity of V. curassavica accessions of the AGB of Medicinal and Aromatic Plants of the Federal University of Sergipe (UFS), using inter-simple sequence repeat molecular markers. Twenty-four primers were tested, and 14 were polymorphic and informative, resulting in 149 bands with 97.98% polymorphism. The UPGMA dendrogram divided the accessions into Clusters I and II. Jaccard similarity coefficients for pair-wise comparisons of accessions ranged between 0.24 and 0.78. The pairs of accessions VCUR-001/VCUR-503, VCUR-001/VCUR-504, and VCUR-104/VCUR-501 showed relatively low similarity (0.24), and the pair of accessions VCUR-402/VCUR- 403 showed medium similarity (0.78). Twenty-eight accessions were divided into three distinct clusters, according to the STRUCTURE analysis. The genetic diversity of V. curassavica in the AGB of UFS is low to medium, and it requires expansion. Accession VCUR-802 is the most suitable for selection in breeding program of this species, since it clearly represents all of the diversity present in the AGB.

  7. Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata L. Walp).

    PubMed

    Xiong, Haizheng; Shi, Ainong; Mou, Beiquan; Qin, Jun; Motes, Dennis; Lu, Weiguo; Ma, Jianbing; Weng, Yuejin; Yang, Wei; Wu, Dianxing

    2016-01-01

    The genetic diversity of cowpea was analyzed, and the population structure was estimated in a diverse set of 768 cultivated cowpea genotypes from the USDA GRIN cowpea collection, originally collected from 56 countries. Genotyping by sequencing was used to discover single nucleotide polymorphism (SNP) in cowpea and the identified SNP alleles were used to estimate the level of genetic diversity, population structure, and phylogenetic relationships. The aim of this study was to detect the gene pool structure of cowpea and to determine its relationship between different regions and countries. Based on the model-based ancestry analysis, the phylogenetic tree, and the principal component analysis, three well-differentiated genetic populations were postulated from 768 worldwide cowpea genotypes. According to the phylogenetic analyses between each individual, region, and country, we may trace the accession from off-original, back to the two candidate original areas (West and East of Africa) to predict the migration and domestication history during the cowpea dispersal and development. To our knowledge, this is the first report of the analysis of the genetic variation and relationship between globally cultivated cowpea genotypes. The results will help curators, researchers, and breeders to understand, utilize, conserve, and manage the collection for more efficient contribution to international cowpea research.

  8. Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata L. Walp)

    PubMed Central

    Xiong, Haizheng; Shi, Ainong; Mou, Beiquan; Qin, Jun; Motes, Dennis; Lu, Weiguo; Ma, Jianbing; Weng, Yuejin; Yang, Wei; Wu, Dianxing

    2016-01-01

    The genetic diversity of cowpea was analyzed, and the population structure was estimated in a diverse set of 768 cultivated cowpea genotypes from the USDA GRIN cowpea collection, originally collected from 56 countries. Genotyping by sequencing was used to discover single nucleotide polymorphism (SNP) in cowpea and the identified SNP alleles were used to estimate the level of genetic diversity, population structure, and phylogenetic relationships. The aim of this study was to detect the gene pool structure of cowpea and to determine its relationship between different regions and countries. Based on the model-based ancestry analysis, the phylogenetic tree, and the principal component analysis, three well-differentiated genetic populations were postulated from 768 worldwide cowpea genotypes. According to the phylogenetic analyses between each individual, region, and country, we may trace the accession from off-original, back to the two candidate original areas (West and East of Africa) to predict the migration and domestication history during the cowpea dispersal and development. To our knowledge, this is the first report of the analysis of the genetic variation and relationship between globally cultivated cowpea genotypes. The results will help curators, researchers, and breeders to understand, utilize, conserve, and manage the collection for more efficient contribution to international cowpea research. PMID:27509049

  9. Structure and genetic diversity of Anacardium humile (Anacardiaceae): a tropical shrub.

    PubMed

    Cota, L G; Moreira, P A; Brandão, M M; Royo, V A; Junior, A F Melo; Menezes, E V; Oliveira, D A

    2017-09-27

    Anacardium humile Saint Hilaire is a tropical shrub native to the Cerrado biome. It is a fruiting species with biological, medicinal, and socioeconomic significance. Thus, knowing how the genetic variability of natural populations is organized allows for the establishment of strategies for conservation and the sustainable use of the species and its biome. Six microsatellite loci previously developed from Anacardium occidentale were used to investigate the spatial genetic structure and genetic diversity of eight natural A. humile populations based on analyses of 242 adult plants. The results obtained indicate that these populations show a high level of genetic diversity (expected heterozygosity = 0.710). The endogamy coefficient was positive and significant for most populations, with a mean of 0.142 (P = 0.001). The genetic differentiation between populations was low (θ = 0.075 and G ST = 0.066) but significant (P = 0.0001). The genotypes of five of the eight populations were non-randomly distributed with clusters of related plants for which the coancestry values were positive and significant. These populations exhibited high and significant endogamy indices. The results obtained for A. humile populations show that genetic conservation programs should be implemented to maintain this species.

  10. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers

    PubMed Central

    2014-01-01

    Background Tea is one of the most popular beverages in the world. Many species in the Thea section of the Camellia genus can be processed for drinking and have been domesticated. However, few investigations have focused on the genetic consequence of domestication and geographic origin of landraces on tea plants using credible wild and planted populations of a single species. Here, C. taliensis provides us with a unique opportunity to explore these issues. Results Fourteen nuclear microsatellite loci were employed to determine the genetic diversity and domestication origin of C. taliensis, which were represented by 587 individuals from 25 wild, planted and recently domesticated populations. C. taliensis showed a moderate high level of overall genetic diversity. The greater reduction of genetic diversity and stronger genetic drift were detected in the wild group than in the recently domesticated group, indicating the loss of genetic diversity of wild populations due to overexploitation and habitat fragmentation. Instead of the endangered wild trees, recently domesticated individuals were used to compare with the planted trees for detecting the genetic consequence of domestication. A little and non-significant reduction in genetic diversity was found during domestication. The long life cycle, selection for leaf traits and gene flow between populations will delay the emergence of bottleneck in planted trees. Both phylogenetic and assignment analyses suggested that planted trees may have been domesticated from the adjacent central forest of western Yunnan and dispersed artificially to distant places. Conclusions This study contributes to the knowledge about levels and distribution of genetic diversity of C. taliensis and provides new insights into genetic consequence of domestication and geographic origin of planted trees of this species. As an endemic tea source plant, wild, planted and recently domesticated C. taliensis trees should all be protected for their unique

  11. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers.

    PubMed

    Zhao, Dong-Wei; Yang, Jun-Bo; Yang, Shi-Xiong; Kato, Kenji; Luo, Jian-Ping

    2014-01-09

    Tea is one of the most popular beverages in the world. Many species in the Thea section of the Camellia genus can be processed for drinking and have been domesticated. However, few investigations have focused on the genetic consequence of domestication and geographic origin of landraces on tea plants using credible wild and planted populations of a single species. Here, C. taliensis provides us with a unique opportunity to explore these issues. Fourteen nuclear microsatellite loci were employed to determine the genetic diversity and domestication origin of C. taliensis, which were represented by 587 individuals from 25 wild, planted and recently domesticated populations. C. taliensis showed a moderate high level of overall genetic diversity. The greater reduction of genetic diversity and stronger genetic drift were detected in the wild group than in the recently domesticated group, indicating the loss of genetic diversity of wild populations due to overexploitation and habitat fragmentation. Instead of the endangered wild trees, recently domesticated individuals were used to compare with the planted trees for detecting the genetic consequence of domestication. A little and non-significant reduction in genetic diversity was found during domestication. The long life cycle, selection for leaf traits and gene flow between populations will delay the emergence of bottleneck in planted trees. Both phylogenetic and assignment analyses suggested that planted trees may have been domesticated from the adjacent central forest of western Yunnan and dispersed artificially to distant places. This study contributes to the knowledge about levels and distribution of genetic diversity of C. taliensis and provides new insights into genetic consequence of domestication and geographic origin of planted trees of this species. As an endemic tea source plant, wild, planted and recently domesticated C. taliensis trees should all be protected for their unique genetic characteristics, which

  12. Genetic diversity of bats coronaviruses in the Atlantic Forest hotspot biome, Brazil.

    PubMed

    Góes, Luiz Gustavo Bentim; Campos, Angélica Cristine de Almeida; Carvalho, Cristiano de; Ambar, Guilherme; Queiroz, Luzia Helena; Cruz-Neto, Ariovaldo Pereira; Munir, Muhammad; Durigon, Edison Luiz

    2016-10-01

    Bats are notorious reservoirs of genetically-diverse and high-profile pathogens, and are playing crucial roles in the emergence and re-emergence of viruses, both in human and in animals. In this report, we identified and characterized previously unknown and diverse genetic clusters of bat coronaviruses in the Atlantic Forest Biome, Brazil. These results highlight the virus richness of bats and their possible roles in the public health. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers

    USDA-ARS?s Scientific Manuscript database

    Carrot is one of the most economically important vegetables worldwide, however, genetic and genomic resources supporting carrot breeding remain limited. We developed a Diversity Arrays Technology (DArT) platform for wild and cultivated carrot and used it to investigate genetic diversity and to devel...

  14. Periodic Pattern of Genetic and Fitness Diversity during Evolution of an Artificial Cell-Like System.

    PubMed

    Ichihashi, Norikazu; Aita, Takuyo; Motooka, Daisuke; Nakamura, Shota; Yomo, Tetsuya

    2015-12-01

    Genetic and phenotypic diversity are the basis of evolution. Despite their importance, however, little is known about how they change over the course of evolution. In this study, we analyzed the dynamics of the adaptive evolution of a simple evolvable artificial cell-like system using single-molecule real-time sequencing technology that reads an entire single artificial genome. We found that the genomic RNA population increases in fitness intermittently, correlating with a periodic pattern of genetic and fitness diversity produced by repeated diversification and domination. In the diversification phase, a genomic RNA population spreads within a genetic space by accumulating mutations until mutants with higher fitness are generated, resulting in an increase in fitness diversity. In the domination phase, the mutants with higher fitness dominate, decreasing both the fitness and genetic diversity. This study reveals the dynamic nature of genetic and fitness diversity during adaptive evolution and demonstrates the utility of a simplified artificial cell-like system to study evolution at an unprecedented resolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Characterization of Capsicum annuum Genetic Diversity and Population Structure Based on Parallel Polymorphism Discovery with a 30K Unigene Pepper GeneChip

    PubMed Central

    Hill, Theresa A.; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W.; Van Deynze, Allen

    2013-01-01

    The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome

  16. Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery with a 30K unigene Pepper GeneChip.

    PubMed

    Hill, Theresa A; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W; Van Deynze, Allen

    2013-01-01

    The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome

  17. Genetic diversity and structure of Sinopodophyllum hexandrum (Royle) Ying in the Qinling Mountains, China.

    PubMed

    Liu, Wei; Yin, Dongxue; Liu, Jianjun; Li, Na

    2014-01-01

    Sinopodophyllum hexandrum is an important medicinal plant whose genetic diversity must be conserved because it is endangered. The Qinling Mts. are a S. hexandrum distribution area that has unique environmental features that highly affect the evolution of the species. To provide the reference data for evolutionary and conservation studies, the genetic diversity and population structure of S. hexandrum in its overall natural distribution areas in the Qinling Mts. were investigated through inter-simple sequence repeats analysis of 32 natural populations. The 11 selected primers generated a total of 135 polymorphic bands. S. hexandrum genetic diversity was low within populations (average He = 0.0621), but higher at the species level (He = 0.1434). Clear structure and high genetic differentiation among populations were detected by using the unweighted pair group method for arithmetic averages, principle coordinate analysis and Bayesian clustering. The clustering approaches supported a division of the 32 populations into three major groups, for which analysis of molecular variance confirmed significant variation (63.27%) among populations. The genetic differentiation may have been attributed to the limited gene flow (Nm = 0.3587) in the species. Isolation by distance among populations was determined by comparing genetic distance versus geographic distance by using the Mantel test. Result was insignificant (r = 0.212, P = 0.287) at 0.05, showing that their spatial pattern and geographic locations are not correlated. Given the low within-population genetic diversity, high differentiation among populations and the increasing anthropogenic pressure on the species, in situ conservation measures were recommended to preserve S. hexandrum in Qinling Mts., and other populations must be sampled to retain as much genetic diversity of the species to achieve ex situ preservation as a supplement to in situ conservation.

  18. Genetic Diversity and Structure of Sinopodophyllum hexandrum (Royle) Ying in the Qinling Mountains, China

    PubMed Central

    Liu, Wei; Yin, Dongxue; Liu, Jianjun; Li, Na

    2014-01-01

    Sinopodophyllum hexandrum is an important medicinal plant whose genetic diversity must be conserved because it is endangered. The Qinling Mts. are a S. hexandrum distribution area that has unique environmental features that highly affect the evolution of the species. To provide the reference data for evolutionary and conservation studies, the genetic diversity and population structure of S. hexandrum in its overall natural distribution areas in the Qinling Mts. were investigated through inter-simple sequence repeats analysis of 32 natural populations. The 11 selected primers generated a total of 135 polymorphic bands. S. hexandrum genetic diversity was low within populations (average He = 0.0621), but higher at the species level (He = 0.1434). Clear structure and high genetic differentiation among populations were detected by using the unweighted pair group method for arithmetic averages, principle coordinate analysis and Bayesian clustering. The clustering approaches supported a division of the 32 populations into three major groups, for which analysis of molecular variance confirmed significant variation (63.27%) among populations. The genetic differentiation may have been attributed to the limited gene flow (Nm = 0.3587) in the species. Isolation by distance among populations was determined by comparing genetic distance versus geographic distance by using the Mantel test. Result was insignificant (r = 0.212, P = 0.287) at 0.05, showing that their spatial pattern and geographic locations are not correlated. Given the low within-population genetic diversity, high differentiation among populations and the increasing anthropogenic pressure on the species, in situ conservation measures were recommended to preserve S. hexandrum in Qinling Mts., and other populations must be sampled to retain as much genetic diversity of the species to achieve ex situ preservation as a supplement to in situ conservation. PMID:25333788

  19. Low Genetic Diversity and Low Gene Flow Corresponded to a Weak Genetic Structure of Ruddy-Breasted Crake (Porzana fusca) in China.

    PubMed

    Zhu, Chaoying; Chen, Peng; Han, Yuqing; Ruan, Luzhang

    2018-05-12

    The Ruddy-breasted Crake (Porzana fusca) is an extremely poorly known species. Although it is not listed as globally endangered, in recent years, with the interference of climate change and human activities, its habitat is rapidly disappearing and its populations have been shrinking. There are two different life history traits for Ruddy-breasted Crake in China, i.e., non-migratory population in the south and migratory population in the north of China. In this study, mitochondrial control sequences and microsatellite datasets of 88 individuals sampled from 8 sites were applied to analyze their genetic diversity, genetic differentiation, and genetic structure. Our results indicated that low genetic diversity and genetic differentiation exit in most populations. The neutrality test suggested significantly negative Fu's Fs value, which, in combination with detection of the mismatch distribution, indicated that population expansion occurred in the interglacier approximately 98,000 years ago, and the time of the most recent common ancestor (TMRCA) was estimated to about 202,705 years ago. Gene flow analysis implied that the gene flow was low, but gene exchange was frequent among adjacent populations. Both phylogenetic and STRUCTURE analyses implied weak genetic structure. In general, the genetic diversity, gene flow, and genetic structure of Ruddy-breasted Crake were low.

  20. Regional patterns of genetic diversity in swine influenza A viruses in the United States from 2010 to 2016.

    PubMed

    Walia, Rasna R; Anderson, Tavis K; Vincent, Amy L

    2018-04-06

    Regular spatial and temporal analyses of the genetic diversity and evolutionary patterns of influenza A virus (IAV) in swine informs control efforts and improves animal health. Initiated in 2009, the USDA passively surveils IAV in U.S. swine, with a focus on subtyping clinical respiratory submissions, sequencing at minimum the hemagglutinin (HA) and neuraminidase (NA) genes, and sharing these data publicly. In this study, our goal was to quantify and describe regional and national patterns in the genetic diversity and evolution of IAV in U.S. swine from 2010 to 2016. A comprehensive phylogenetic and epidemiological analysis of publicly available HA and NA genes generated by the USDA surveillance system collected from January 2010 to December 2016 was conducted. The dominant subtypes and genetic clades detected during the study period were H1N1 (H1-γ/1A.3.3.3, N1-classical, 29%), H1N2 (H1-δ1/1B.2.2, N2-2002, 27%), and H3N2 (H3-IV-A, N2-2002, 15%), but many other minor clades were also maintained. Year-round circulation was observed, with a primary epidemic peak in October-November and a secondary epidemic peak in March-April. Partitioning these data into 5 spatial zones revealed that genetic diversity varied regionally and was not correlated with aggregated national patterns of HA/NA diversity. These data suggest that vaccine composition and control efforts should consider IAV diversity within swine production regions in addition to aggregated national patterns. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Genetic diversity and relationships among different tomato varieties revealed by EST-SSR markers.

    PubMed

    Korir, N K; Diao, W; Tao, R; Li, X; Kayesh, E; Li, A; Zhen, W; Wang, S

    2014-01-08

    The genetic diversity and relationship of 42 tomato varieties sourced from different geographic regions was examined with EST-SSR markers. The genetic diversity was between 0.18 and 0.77, with a mean of 0.49; the polymorphic information content ranged from 0.17 to 0.74, with a mean of 0.45. This indicates a fairly high degree of diversity among these tomato varieties. Based on the cluster analysis using unweighted pair-group method with arithmetic average (UPGMA), all the tomato varieties fell into 5 groups, with no obvious geographical distribution characteristics despite their diverse sources. The principal component analysis (PCA) supported the clustering result; however, relationships among varieties were more complex in the PCA scatterplot than in the UPGMA dendrogram. This information about the genetic relationships between these tomato lines helps distinguish these 42 varieties and will be useful for tomato variety breeding and selection. We confirm that the EST-SSR marker system is useful for studying genetic diversity among tomato varieties. The high degree of polymorphism and the large number of bands obtained per assay shows that SSR is the most informative marker system for tomato genotyping for purposes of rights/protection and for the tomato industry in general. It is recommended that these varieties be subjected to identification using an SSR-based manual cultivar identification diagram strategy or other easy-to-use and referable methods so as to provide a complete set of information concerning genetic relationships and a readily usable means of identifying these varieties.

  2. Further insight into genetic variation and haplotype diversity of Cherry virus A from China

    PubMed Central

    Candresse, Thierry; He, Zhen; Li, Shifang; Ma, Yuxin

    2017-01-01

    Cherry virus A (CVA) infection appears to be prevalent in cherry plantations worldwide. In this study, the diversity of CVA isolates from 31 cherry samples collected from different orchards around Bohai Bay in northeastern China was analyzed. The complete genome of one of these isolates, ChYT52, was found to be 7,434 nt in length excluding the poly (A) tail. It shares between 79.9–98.7% identity with CVA genome sequences in GenBank, while its RdRp core is more divergent (79.1–90.7% nt identity), likely as a consequence of a recombination event. Phylogenetic analysis of ChYT52 genome with CVA genomes in Genbank resulted in at least 7 major clusters plus additional 5 isolates alone at the end of long branches suggesting the existence of further phylogroups diversity in CVA. The genetic diversity of Chinese CVA isolates from 31 samples and GenBank sequences were analyzed in three genomic regions that correspond to the coat protein, the RNA-dependent RNA polymerase core region, and the movement protein genes. With few exceptions likely representing further recombination impact, the trees various trees are largely congruent, indicating that each region provides valuable phylogenetic information. In all cases, the majority of the Chinese CVA isolates clustering in phylogroup I, together with the X82547 reference sequence from Germany. Statistically significant negative values were obtained for Tajima’s D in the three genes for phylogroup I, suggesting that it may be undergoing a period of expansion. There was considerable haplotype diversity in the individual samples and more than half samples contained genetically diverse haplotypes belonging to different phylogroups. In addition, a number of statistically significant recombination events were detected in CVA genomes or in the partial genomic sequences indicating an important contribution of recombination to CVA evolution. This work provides a foundation for elucidation of the epidemiological characteristics and

  3. Genetic Diversity and Population Structure of the Critically Endangered Yangtze Finless Porpoise (Neophocaena asiaeorientalis asiaeorientalis) as Revealed by Mitochondrial and Microsatellite DNA

    PubMed Central

    Chen, Minmin; Zheng, Jinsong; Wu, Min; Ruan, Rui; Zhao, Qingzhong; Wang, Ding

    2014-01-01

    Ecological surveys have indicated that the population of the critically endangered Yangtze finless porpoise (YFP, Neophocaena asiaeorientalis asiaeorientalis) is becoming increasingly small and fragmented, and will be at high risk of extinction in the near future. Genetic conservation of this population will be an important component of the long-term conservation effort. We used a 597 base pair mitochondrial DNA (mtDNA) control region and 11 microsatellite loci to analyze the genetic diversity and population structure of the YFP. The analysis of both mtDNA and microsatellite loci suggested that the genetic diversity of the YFP will possibly decrease in the future if the population keeps declining at a rapid rate, even though these two types of markers revealed different levels of genetic diversity. In addition, mtDNA revealed strong genetic differentiation between one local population, Xingchang–Shishou (XCSS), and the other five downstream local populations; furthermore, microsatellite DNA unveiled fine but significant genetic differentiation between three of the local populations (not only XCSS but also Poyang Lake (PY) and Tongling (TL)) and the other local populations. With an increasing number of distribution gaps appearing in the Yangtze main steam, the genetic differentiation of local populations will likely intensify in the future. The YFP is becoming a genetically fragmented population. Therefore, we recommend attention should be paid to the genetic conservation of the YFP. PMID:24968271

  4. Genetic diversity in mesoamerican populations of mahogany (Swietenia macrophylla), assessed using RAPDs.

    PubMed

    Gillies, A C; Navarro, C; Lowe, A J; Newton, A C; Hernández, M; Wilson, J; Cornelius, J P

    1999-12-01

    Swietenia macrophylla King, a timber species native to tropical America, is threatened by selective logging and deforestation. To quantify genetic diversity within the species and monitor the impact of selective logging, populations were sampled across Mesoamerica, from Mexico to Panama, and analysed for RAPD DNA variation. Ten decamer primers generated 102 polymorphic RAPD bands and pairwise distances were calculated between populations according to Nei, then used to construct a radial neighbour-joining dendrogram and examine intra- and interpopulation variance coefficients, by analysis of molecular variation (AMOVA). Populations from Mexico clustered closely together in the dendrogram and were distinct from the rest of the populations. Those from Belize also clustered closely together. Populations from Panama, Guatemala, Costa Rica, Nicaragua and Honduras, however, did not cluster closely by country but were more widely scattered throughout the dendrogram. This result was also reflected by an autocorrelation analysis of genetic and geographical distance. Genetic diversity estimates indicated that 80% of detected variation was maintained within populations and regression analysis demonstrated that logging significantly decreased population diversity (P = 0.034). This study represents one of the most wide-ranging surveys of molecular variation within a tropical tree species to date. It offers practical information for the future conservation of mahogany and highlights some factors that may have influenced the partitioning of genetic diversity in this species across Mesoamerica.

  5. Influence of ethnic traditional cultures on genetic diversity of rice landraces under on-farm conservation in southwest China.

    PubMed

    Wang, Yanjie; Wang, Yanli; Sun, Xiaodong; Caiji, Zhuoma; Yang, Jingbiao; Cui, Di; Cao, Guilan; Ma, Xiaoding; Han, Bing; Xue, Dayuan; Han, Longzhi

    2016-10-27

    Crop genetic resources are important components of biodiversity. However, with the large-scale promotion of mono-cropping, genetic diversity has largely been lost. Ex-situ conservation approaches were widely used to protect traditional crop varieties worldwide. However, this method fails to maintain the dynamic evolutionary processes of crop genetic resources in their original habitats, leading to genetic diversity reduction and even loss of the capacity of resistance to new diseases and pests. Therefore, on-farm conservation has been considered a crucial complement to ex-situ conservation. This study aimed at clarifying the genetic diversity differences between ex-situ conservation and on-farm conservation and to exploring the influence of traditional cultures on genetic diversity of rice landraces under on-farm conservation. The conservation status of rice landrace varieties, including Indica and Japonica, non-glutinous rice (Oryza sativa) and glutinous rice (Oryza sativa var. glutinosa Matsum), was obtained through ethno-biology investigation method in 12 villages of ethnic groups from Guizhou, Yunnan and Guangxi provinces of China. The genetic diversity between 24 pairs of the same rice landraces from different times were compared using simple sequence repeat (SSR) molecular markers technology. The landrace paris studied were collected in 1980 and maintained ex-situ, while 2014 samples were collected on-farm in southwest of China. The results showed that many varieties of rice landraces have been preserved on-farm by local farmers for hundreds or thousands of years. The number of alleles (Na), effective number of alleles (Ne), Nei genetic diversity index (He) and Shannon information index (I) of rice landraces were significantly higher by 12.3-30.4 % under on-farm conservation than under ex-situ conservation. Compared with the ex-situ conservation approach, rice landraces under on-farm conservation programs had more alleles and higher genetic diversity. In

  6. Genetic diversity in three endangered pitcher plant species (Sarracenia; Sarraceniaceae) is lower than widespread congeners.

    PubMed

    Furches, M Steven; Small, Randall L; Furches, Anna

    2013-10-01

    Narrow-ranging, rare species often exhibit levels of genetic diversity lower than more common or widespread congeners. These taxa are at increased risk of extinction due to threats associated with natural as well as anthropogenic events. We assessed genetic variation in three federally endangered Sarracenia species. We discuss maintenance of genetic diversity and evolutionary implications of rarity. • We analyzed three noncoding chloroplast regions and nine microsatellite loci in populations spanning the geographic ranges of S. oreophila, S. alabamensis, and S. jonesii. The same microsatellite loci were used to examine a single field site of three more widespread species (S. alata, S. leucophylla, and S. rubra subsp. wherryi). • All three endangered species have experienced reductions in population size and numbers. All show considerably less variation than more widespread members of the genus. Sarracenia alabamensis maintains the greatest microsatellite variation but has the fewest remaining populations and may be under the greatest threat. More widespread S. oreophila maintains surprising chloroplast diversity, yet exhibits little microsatellite diversity. Sarracenia jonesii lacks chloroplast diversity, yet maintains greater microsatellite diversity than S. oreophila. • The three endangered species differ in levels and structure of diversity, yet not in predictable ways, emphasizing that unique demographic and ecological histories, rather than current distribution and population size, best explain present patterns of genetic variation. Maintenance of remaining genetic variation is important, but preventing further habitat loss and degradation is critical.

  7. Conserving genetic diversity in Ponderosa Pine ecosystem restoration

    Treesearch

    L.E. DeWald

    2017-01-01

    Restoration treatments in the ponderosa pine (Pinus ponderosa P. & C. Lawson) ecosystems of the southwestern United States often include removing over 80 percent of post-EuroAmerican settlement-aged trees to create healthier forest structural conditions. These types of stand density reductions can have negative effects on genetic diversity. Allozyme analyses...

  8. Genetic diversity and geographic differentiation in the threatened species Dysosma pleiantha in China as revealed by ISSR analysis.

    PubMed

    Zong, Min; Liu, Hai-Long; Qiu, Ying-Xiong; Yang, Shu-Zhen; Zhao, Ming-Shui; Fu, Cheng-Xin

    2008-04-01

    Dysosma pleiantha, an important threatened medicinal plant species, is restricted in distribution to southeastern China. The species is capable of reproducing both sexually and asexually. In this study, inter-simple sequence repeat marker data were obtained and analyzed with respect to genetic variation and genetic structure. The extent of clonality, together with the clonal and sexual reproductive strategies, varied among sites, and the populations under harsh ecological conditions tended to have large clones with relatively low clonal diversity caused by vegetative reproduction. The ramets sharing the same genotype show a clumped distribution. Across all populations surveyed, average within-population diversity was remarkably low (e.g., 0.111 for Nei's gene diversity), with populations from the nature reserves maintaining relatively high amounts of genetic diversity. Among all populations, high genetic differentiation (AMOVA: Phi(ST) = 0.500; Nei's genetic diversity: G (ST) = 0.465, Bayesian analysis: Phi(B) = 0.436) was detected, together with an isolation-by-distance pattern. Low seedling recruitment due to inbreeding, restricted gene flow, and genetic drift are proposed as determinant factors responsible for the low genetic diversity and high genetic differentiation observed.

  9. Genetic diversity and recombination analysis of sweepoviruses from Brazil

    PubMed Central

    2012-01-01

    Background Monopartite begomoviruses (genus Begomovirus, family Geminiviridae) that infect sweet potato (Ipomoea batatas) around the world are known as sweepoviruses. Because sweet potato plants are vegetatively propagated, the accumulation of viruses can become a major constraint for root production. Mixed infections of sweepovirus species and strains can lead to recombination, which may contribute to the generation of new recombinant sweepoviruses. Results This study reports the full genome sequence of 34 sweepoviruses sampled from a sweet potato germplasm bank and commercial fields in Brazil. These sequences were compared with others from public nucleotide sequence databases to provide a comprehensive overview of the genetic diversity and patterns of genetic exchange in sweepoviruses isolated from Brazil, as well as to review the classification and nomenclature of sweepoviruses in accordance with the current guidelines proposed by the Geminiviridae Study Group of the International Committee on Taxonomy of Viruses (ICTV). Co-infections and extensive recombination events were identified in Brazilian sweepoviruses. Analysis of the recombination breakpoints detected within the sweepovirus dataset revealed that most recombination events occurred in the intergenic region (IR) and in the middle of the C1 open reading frame (ORF). Conclusions The genetic diversity of sweepoviruses was considerably greater than previously described in Brazil. Moreover, recombination analysis revealed that a genomic exchange is responsible for the emergence of sweepovirus species and strains and provided valuable new information for understanding the diversity and evolution of sweepoviruses. PMID:23082767

  10. Genetic diversity and distribution of Senegalia senegal (L.) Britton under climate change scenarios in West Africa.

    PubMed

    Lyam, Paul Terwase; Duque-Lazo, Joaquín; Durka, Walter; Hauenschild, Frank; Schnitzler, Jan; Michalak, Ingo; Ogundipe, Oluwatoyin Temitayo; Muellner-Riehl, Alexandra Nora

    2018-01-01

    Climate change is predicted to impact species' genetic diversity and distribution. We used Senegalia senegal (L.) Britton, an economically important species distributed in the Sudano-Sahelian savannah belt of West Africa, to investigate the impact of climate change on intraspecific genetic diversity and distribution. We used ten nuclear and two plastid microsatellite markers to assess genetic variation, population structure and differentiation across thirteen sites in West Africa. We projected suitable range, and potential impact of climate change on genetic diversity using a maximum entropy approach, under four different climate change scenarios. We found higher genetic and haplotype diversity at both nuclear and plastid markers than previously reported. Genetic differentiation was strong for chloroplast and moderate for the nuclear genome. Both genomes indicated three spatially structured genetic groups. The distribution of Senegalia senegal is strongly correlated with extractable nitrogen, coarse fragments, soil organic carbon stock, precipitation of warmest and coldest quarter and mean temperature of driest quarter. We predicted 40.96 to 6.34 per cent of the current distribution to favourably support the species' ecological requirements under future climate scenarios. Our results suggest that climate change is going to affect the population genetic structure of Senegalia senegal, and that patterns of genetic diversity are going to influence the species' adaptive response to climate change. Our study contributes to the growing evidence predicting the loss of economically relevant plants in West Africa in the next decades due to climate change.

  11. Genetic diversity and distribution of Senegalia senegal (L.) Britton under climate change scenarios in West Africa

    PubMed Central

    Duque-Lazo, Joaquín; Durka, Walter; Hauenschild, Frank; Schnitzler, Jan; Michalak, Ingo; Ogundipe, Oluwatoyin Temitayo; Muellner-Riehl, Alexandra Nora

    2018-01-01

    Climate change is predicted to impact species’ genetic diversity and distribution. We used Senegalia senegal (L.) Britton, an economically important species distributed in the Sudano-Sahelian savannah belt of West Africa, to investigate the impact of climate change on intraspecific genetic diversity and distribution. We used ten nuclear and two plastid microsatellite markers to assess genetic variation, population structure and differentiation across thirteen sites in West Africa. We projected suitable range, and potential impact of climate change on genetic diversity using a maximum entropy approach, under four different climate change scenarios. We found higher genetic and haplotype diversity at both nuclear and plastid markers than previously reported. Genetic differentiation was strong for chloroplast and moderate for the nuclear genome. Both genomes indicated three spatially structured genetic groups. The distribution of Senegalia senegal is strongly correlated with extractable nitrogen, coarse fragments, soil organic carbon stock, precipitation of warmest and coldest quarter and mean temperature of driest quarter. We predicted 40.96 to 6.34 per cent of the current distribution to favourably support the species’ ecological requirements under future climate scenarios. Our results suggest that climate change is going to affect the population genetic structure of Senegalia senegal, and that patterns of genetic diversity are going to influence the species’ adaptive response to climate change. Our study contributes to the growing evidence predicting the loss of economically relevant plants in West Africa in the next decades due to climate change. PMID:29659603

  12. Genetic diversity shaped by historical and recent factors in the live-bearing twoline skiffia Neotoca bilineata.

    PubMed

    Ornelas-García, C P; Alda, F; Díaz-Pardo, E; Gutiérrez-Hernández, A; Doadrio, I

    2012-11-01

    The endangered twoline skiffia Neotoca bilineata, a viviparous fish of the subfamily Goodeinae, endemic to central Mexico (inhabiting two basins, Cuitzeo and Lerma-Santiago) was evaluated using genetic and habitat information. The genetic variation of all remaining populations of the species was analysed using both mitochondrial and microsatellite markers and their habitat conditions were assessed using a water quality index (I(WQ)). An 80% local extinction was found across the distribution of N. bilineata. The species was found in three of the 16 historical localities plus one previously unreported site. Most areas inhabited by the remaining populations had I(WQ) scores unsuitable for the conservation of freshwater biodiversity. Populations showed low but significant genetic differentiation with both markers (mtDNA φ(ST) = 0.076, P < 0.001; microsatellite F(ST) = 0.314, P < 0.001). Borbollon, in the Cuitzeo Basin, showed the highest level of differentiation and was identified as a single genetic unit by Bayesian assignment methods. Rio Grande de Morelia and Salamanca populations showed the highest genetic diversity and also a high migration rate facilitated by an artificial channel that connected the two basins. Overall, high genetic diversity values were observed compared with other freshwater fishes (average N(a) = 16 alleles and loci and mean ±S.D. H(o) = 0.63 ± 0.10 and nucleotide diversity π = 0.006). This suggests that the observed genetic diversity has not diminished as rapidly as the species' habitat destruction. No evidence of correlation between habitat conditions and genetic diversity was found. The current pattern of genetic diversity may be the result of both historical factors and recent modifications of the hydrological system. The main threat to the species may be the rapid habitat deterioration and associated demographic stochasticity rather than genetic factors. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the

  13. The relationship between species diversity and genetic structure in the rare Picea chihuahuana tree species community, Mexico.

    PubMed

    Simental-Rodríguez, Sergio Leonel; Quiñones-Pérez, Carmen Zulema; Moya, Daniel; Hernández-Tecles, Enrique; López-Sánchez, Carlos Antonio; Wehenkel, Christian

    2014-01-01

    Species diversity and genetic diversity, the most basic elements of biodiversity, have long been treated as separate topics, although populations evolve within a community context. Recent studies on community genetics and ecology have suggested that genetic diversity is not completely independent of species diversity. The Mexican Picea chihuahuana Martínez is an endemic species listed as "Endangered" on the Red List. Forty populations of Chihuahua spruce have been identified. This species is often associated with tree species of eight genera in gallery forests. This rare Picea chihuahuana tree community covers an area no more than 300 ha and has been subject of several studies involving different topics such as ecology, genetic structure and climate change. The overall aim of these studies was to obtain a dataset for developing management tools to help decision makers implement preservation and conservation strategies. However, this unique forest tree community may also represent an excellent subject for helping us to understand the interplay between ecological and evolutionary processes in determining community structure and dynamics. The AFLP technique and species composition data were used together to test the hypothesis that species diversity is related to the adaptive genetic structure of some dominant tree species (Picea chihuahuana, Pinus strobiformis, Pseudotsuga menziesii and Populus tremuloides) of the Picea chihuahuana tree community at fourteen locations. The Hill numbers were used as a diversity measure. The results revealed a significant correlation between tree species diversity and genetic structure in Populus tremuloides. Because the relationship between the two levels of diversity was found to be positive for the putative adaptive AFLP detected, genetic and species structures of the tree community were possibly simultaneously adapted to a combination of ecological or environmental factors. The present findings indicate that interactions between

  14. AFLP analysis of genetic diversity and phylogenetic relationships of Brassica oleracea in Ireland.

    PubMed

    El-Esawi, Mohamed A; Germaine, Kieran; Bourke, Paula; Malone, Renee

    2016-01-01

    Brassica oleracea L. is one of the most economically important vegetable crop species of the genus Brassica L. This species is threatened in Ireland, without any prior reported genetic studies. The use of this species is being very limited due to its imprecise phylogeny and uncompleted genetic characterisation. The main objective of this study was to assess the genetic diversity and phylogenetic relationships of a set of 25 Irish B. oleracea accessions using the powerful amplified fragment length polymorphism (AFLP) technique. A total of 471 fragments were scored across all the 11 AFLP primer sets used, out of which 423 (89.8%) were polymorphic and could differentiate the accessions analysed. The dendrogram showed that cauliflowers were more closely related to cabbages than kales were, and accessions of some cabbage types were distributed among different clusters within cabbage subgroups. Approximately 33.7% of the total genetic variation was found among accessions, and 66.3% of the variation resided within accessions. The total genetic diversity (HT) and the intra-accessional genetic diversity (HS) were 0.251 and 0.156, respectively. This high level of variation demonstrates that the Irish B. oleracea accessions studied should be managed and conserved for future utilisation and exploitation in food and agriculture. In conclusion, this study addressed important phylogenetic questions within this species, and provided a new insight into the inclusion of four accessions of cabbages and kales in future breeding programs for improving varieties. AFLP markers were efficient for assessing genetic diversity and phylogenetic relationships in Irish B. oleracea species. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  15. Low genetic diversity and minimal population substructure in the endangered Florida manatee: implications for conservation

    USGS Publications Warehouse

    Tucker, Kimberly Pause; Hunter, Margaret E.; Bonde, Robert K.; Austin, James D.; Clark, Ann Marie; Beck, Cathy A.; McGuire, Peter M.; Oli, Madan K.

    2012-01-01

    Species of management concern that have been affected by human activities typically are characterized by low genetic diversity, which can adversely affect their ability to adapt to environmental changes. We used 18 microsatellite markers to genotype 362 Florida manatees (Trichechus manatus latirostris), and investigated genetic diversity, population structure, and estimated genetically effective population size (Ne). The observed and expected heterozygosity and average number of alleles were 0.455 ± 0.04, 0.479 ± 0.04, and 4.77 ± 0.51, respectively. All measures of Florida manatee genetic diversity were less than averages reported for placental mammals, including fragmented or nonideal populations. Overall estimates of differentiation were low, though significantly greater than zero, and analysis of molecular variance revealed that over 95% of the total variance was among individuals within predefined management units or among individuals along the coastal subpopulations, with only minor portions of variance explained by between group variance. Although genetic issues, as inferred by neutral genetic markers, appear not to be critical at present, the Florida manatee continues to face demographic challenges due to anthropogenic activities and stochastic factors such as red tides, oil spills, and disease outbreaks; these can further reduce genetic diversity of the manatee population.

  16. Genetic Diversity among Clostridium botulinum Strains Harboring bont/A2 and bont/A3 Genes

    PubMed Central

    Raphael, Brian H.; Joseph, Lavin A.; Meno, Sarah R.; Fernández, Rafael A.; Maslanka, Susan E.

    2012-01-01

    Clostridium botulinum type A strains are known to be genetically diverse and widespread throughout the world. Genetic diversity studies have focused mainly on strains harboring one type A botulinum toxin gene, bont/A1, although all reported bont/A gene variants have been associated with botulism cases. Our study provides insight into the genetic diversity of C. botulinum type A strains, which contain bont/A2 (n = 42) and bont/A3 (n = 4) genes, isolated from diverse samples and geographic origins. Genetic diversity was assessed by using bont nucleotide sequencing, content analysis of the bont gene clusters, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). Sequences of bont genes obtained in this study showed 99.9 to 100% identity with other bont/A2 or bont/A3 gene sequences available in public databases. The neurotoxin gene clusters of the subtype A2 and A3 strains analyzed in this study were similar in gene content. C. botulinum strains harboring bont/A2 and bont/A3 genes were divided into six and two MLST profiles, respectively. Four groups of strains shared a similarity of at least 95% by PFGE; the largest group included 21 out of 46 strains. The strains analyzed in this study showed relatively limited genetic diversity using either MLST or PFGE. PMID:23042179

  17. Do hatchery-reared sea urchins pose a threat to genetic diversity in wild populations?

    PubMed Central

    Segovia-Viadero, M; Serrão, E A; Canteras-Jordana, J C; Gonzalez-Wangüemert, M

    2016-01-01

    In salmonids, the release of hatchery-reared fish has been shown to cause irreversible genetic impacts on wild populations. However, although responsible practices for producing and releasing genetically diverse, hatchery-reared juveniles have been published widely, they are rarely implemented. Here, we investigated genetic differences between wild and early-generation hatchery-reared populations of the purple sea urchin Paracentrotus lividus (a commercially important species in Europe) to assess whether hatcheries were able to maintain natural levels of genetic diversity. To test the hypothesis that hatchery rearing would cause bottleneck effects (that is, a substantial reduction in genetic diversity and differentiation from wild populations), we compared the levels and patterns of genetic variation between two hatcheries and four nearby wild populations, using samples from both Spain and Ireland. We found that hatchery-reared populations were less diverse and had diverged significantly from the wild populations, with a very small effective population size and a high degree of relatedness between individuals. These results raise a number of concerns about the genetic impacts of their release into wild populations, particularly when such a degree of differentiation can occur in a single generation of hatchery rearing. Consequently, we suggest that caution should be taken when using hatchery-reared individuals to augment fisheries, even for marine species with high dispersal capacity, and we provide some recommendations to improve hatchery rearing and release practices. Our results further highlight the need to consider the genetic risks of releasing hatchery-reared juveniles into the wild during the establishment of restocking, stock enhancement and sea ranching programs. PMID:26758187

  18. Genetic Diversity and Population Structure Analysis of European Hexaploid Bread Wheat (Triticum aestivum L.) Varieties

    PubMed Central

    Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed

    2014-01-01

    Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents. PMID:24718292

  19. Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties.

    PubMed

    Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed

    2014-01-01

    Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.

  20. A systematic review of genetic diversity of human rotavirus circulating in South Korea.

    PubMed

    Than, Van Thai; Jeong, Sunyoung; Kim, Wonyong

    2014-12-01

    Rotavirus infections continue to be the leading cause of severe diarrhea in young Korean children. Rotavirus data acquired from uninterrupted surveillance studies between 1989 and 2009 in South Korea were analyzed to better understand the genetic diversity and evolution. The relationship between rotaviruses and the currently licensed rotavirus vaccine viruses was also examined. The most prevalent rotavirus strains, with genotype G1P[8], followed by G3P[8], G4P[6], and G2P[4], accounted for approximately 76.7% of the total identified strains, and more recently, rotavirus G9P[8] has significance increased to be the fifth most common genotype. Phylogenetic analyses underscored the heterogeneity between viral populations within each genotype, with different lineages and sub-lineages. Although the currently licensed rotavirus vaccines are effective, safe, and economical, additional data from rotavirus monitoring is necessary to evaluate the efficacy of these vaccines for their sustained use in South Korea. The present study provides comprehensive and up-to-date information regarding the epidemiology, genetic diversity, and evolution of the circulating rotaviruses in South Korea. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  1. Genetic diversity and drivers of genetic differentiation of Reaumuria soongorica of the Inner Mongolia plateau in China

    Treesearch

    Jiuyan Yang; Samuel A. Cushman; Xuemei Song; Jie Yang; Pujin Zhang

    2015-01-01

    We quantified genetic diversity and gene flow among eight populations of Reaumuria soongorica in Inner Mongolia, China. Our results showed that genetic differentiation of R. soongorica across the Inner Mongolian plateau is primarily clinal in nature and is driven primarily by differential landscape resistance across areas with changing patterns of seasonal...

  2. The genomic signature of sexual selection in the genetic diversity of the sex chromosomes and autosomes.

    PubMed

    Corl, Ammon; Ellegren, Hans

    2012-07-01

    Genomic levels of variation can help reveal the selective and demographic forces that have affected a species during its history. The relative amount of genetic diversity observed on the sex chromosomes as compared to the autosomes is predicted to differ among monogamous and polygynous species. Many species show departures from the expectation for monogamy, but it can be difficult to conclude that this pattern results from variation in mating system because forces other than sexual selection can act upon sex chromosome genetic diversity. As a critical test of the role of mating system, we compared levels of genetic diversity on the Z chromosome and autosomes of phylogenetically independent pairs of shorebirds that differed in their mating systems. We found general support for sexual selection shaping sex chromosome diversity because most polygynous species showed relatively reduced genetic variation on their Z chromosomes as compared to monogamous species. Differences in levels of genetic diversity between the sex chromosomes and autosomes may therefore contribute to understanding the long-term history of sexual selection experienced by a species. © 2012 The Author(s).

  3. Genetic diversity of Diaphorina citri and its endosymbionts across east and south-east Asia.

    PubMed

    Wang, Yanjing; Xu, Changbao; Tian, Mingyi; Deng, Xiaoling; Cen, Yijing; He, Yurong

    2017-10-01

    Diaphorina citri is the vector of 'Candidatus Liberibacter asiaticus', the most widespread pathogen associated huanglongbing, the most serious disease of citrus. To enhance our understanding of the distribution and origin of the psyllid, we investigated the genetic diversity and population structures of 24 populations in Asia and one from Florida based on the mtCOI gene. Simultaneously, genetic diversity and population structures of the primary endosymbiont (P-endosymbiont) 'Candidatus Carsonella ruddii' and secondary endosymbiont (S-endosymbiont) 'Candidatus Profftella armatura' of D. citri were determined with the housekeeping genes. AMOVA analysis indicated that populations of D. citri and its endosymbionts in east and south-east Asia were genetically distinct from populations in Pakistan and Florida. Furthermore, P-endosymbiont populations displayed a strong geographical structure across east and south-east Asia, while low genetic diversity indicated the absence of genetic structure among the populations of D. citri and its S-endosymbiont across these regions. The 'Ca. C. ruddii' is more diverse and structured than the D. citri and the 'Ca. P. armatura' across east and south-east Asia. Multiple introductions of the psyllid have occurred in China. Management application for controlling the pest is proposed based on the genetic information of D. citri and its endosymbionts. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Genetic structure and diversity in natural and stocked populations of the mandarin fish (Siniperca chuatsi) in China.

    PubMed

    Yang, M; Tian, C; Liang, X-F; Zheng, H; Zhao, C; Zhu, K

    2015-05-18

    The Chinese perch, or mandarin fish (Siniperca chuatsi), is a freshwater fish that is endemic to East Asia. In this study, we investigated the genetic diversity and structure of nine natural mandarin fish populations (from the Yangtze River and Amur River basins) and six hatchery stocks (from central and south China) using microsatellite markers. The results show that the genetic diversity of the Yangtze River populations was high and stable, and genetic differences between them were not significant. In contrast, a low level of genetic diversity and strong genetic structure were detected in the Amur River population. These results suggest that the Yangtze River region and the Amur River region should be treated as two separate units in conservation programs. The hatchery stocks exhibited low genetic diversity and significant genetic differentiation compared to natural populations; this may result in a significant impact on the species if escape events occur. Therefore, a scientific aquaculture management strategy is necessary for the long-term development of hatcheries.

  5. Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil)

    PubMed Central

    Miller, Webb; Hayes, Vanessa M.; Ratan, Aakrosh; Petersen, Desiree C.; Wittekindt, Nicola E.; Miller, Jason; Walenz, Brian; Knight, James; Qi, Ji; Zhao, Fangqing; Wang, Qingyu; Bedoya-Reina, Oscar C.; Katiyar, Neerja; Tomsho, Lynn P.; Kasson, Lindsay McClellan; Hardie, Rae-Anne; Woodbridge, Paula; Tindall, Elizabeth A.; Bertelsen, Mads Frost; Dixon, Dale; Pyecroft, Stephen; Helgen, Kristofer M.; Lesk, Arthur M.; Pringle, Thomas H.; Patterson, Nick; Zhang, Yu; Kreiss, Alexandre; Woods, Gregory M.; Jones, Menna E.; Schuster, Stephan C.

    2011-01-01

    The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction because of a contagious cancer known as Devil Facial Tumor Disease. The inability to mount an immune response and to reject these tumors might be caused by a lack of genetic diversity within a dwindling population. Here we report a whole-genome analysis of two animals originating from extreme northwest and southeast Tasmania, the maximal geographic spread, together with the genome from a tumor taken from one of them. A 3.3-Gb de novo assembly of the sequence data from two complementary next-generation sequencing platforms was used to identify 1 million polymorphic genomic positions, roughly one-quarter of the number observed between two genetically distant human genomes. Analysis of 14 complete mitochondrial genomes from current and museum specimens, as well as mitochondrial and nuclear SNP markers in 175 animals, suggests that the observed low genetic diversity in today's population preceded the Devil Facial Tumor Disease disease outbreak by at least 100 y. Using a genetically characterized breeding stock based on the genome sequence will enable preservation of the extant genetic diversity in future Tasmanian devil populations. PMID:21709235

  6. Clan, Language, and Migration History Has Shaped Genetic Diversity in Haida and Tlingit Populations From Southeast Alaska

    PubMed Central

    Schurr, Theodore G.; Dulik, Matthew C.; Owings, Amanda C.; Zhadanov, Sergey I.; Gaieski, Jill B.; Vilar, Miguel G.; Ramos, Judy; Moss, Mary Beth; Natkong, Francis

    2013-01-01

    The linguistically distinctive Haida and Tlingit tribes of Southeast Alaska are known for their rich material culture, complex social organization, and elaborate ritual practices. However, much less is known about these tribes from a population genetic perspective. For this reason, we analyzed mtDNA and Y-chromosome variation in Haida and Tlingit populations to elucidate several key issues pertaining to the history of this region. These included the genetic relationships of Haida and Tlingit to other indigenous groups in Alaska and Canada; the relationship between linguistic and genetic data for populations assigned to the Na-Dene linguistic family, specifically, the inclusion of Haida with Athapaskan, Eyak, and Tlingit in the language family; the possible influence of matrilineal clan structure on patterns of genetic variation in Haida and Tlingit populations; and the impact of European entry into the region on the genetic diversity of these indigenous communities. Our analysis indicates that, while sharing a “northern” genetic profile, the Haida and the Tlingit are genetically distinctive from each other. In addition, Tlingit groups themselves differ across their geographic range, in part due to interactions of Tlingit tribes with Athapaskan and Eyak groups to the north. The data also reveal a strong influence of maternal clan identity on mtDNA variation in these groups, as well as the significant influence of non-native males on Y-chromosome diversity. These results yield new details about the histories of the Haida and Tlingit tribes in this region. PMID:22549307

  7. Genetic diversity and selection gain in the physic nut (Jatropha curcas).

    PubMed

    Brasileiro, B P; Silva, S A; Souza, D R; Santos, P A; Oliveira, R S; Lyra, D H

    2013-07-08

    The use of efficient breeding methods depends on knowledge of genetic control of traits to be improved. We estimated genetic parameters, selection gain, and genetic diversity in physic nut half-sib families, in order to provide information for breeding programs of this important biofuel species. The progeny test included 20 half-sib families in 4 blocks and 10 plants per plot. The mean progeny heritability values were: 50% for number of bunches, 47% for number of fruits, 35% for number of seeds, 6% for stem diameter, 26% for number of primary branches, 14% for number of secondary branches, 66% for plant height, and 25% for survival of the plants, demonstrating good potential for early selection in plant height, number of branches, and number of fruits per plant. In the analysis of genetic diversity, genotypes were divided into 4 groups. Genotypes 18, 19, 20, and 8 clustered together and presented the highest means for the vegetative and production. Lower means were observed in the 17, 12, 13, and 9 genotypes from the same group. We detected genetic variability in this population, with high heritability estimates and accuracy, demonstrating the possibility of obtaining genetic gains for vegetative characters and production at 24 months after planting.

  8. Genetic and Biochemical Diversity among Valeriana jatamansi Populations from Himachal Pradesh

    PubMed Central

    Singh, Sunil Kumar; Katoch, Rajan; Kapila, Rakesh Kumar

    2015-01-01

    Valeriana jatamansi Jones is an important medicinal plant that grows wild in Himachal Pradesh, India. Molecular and biochemical diversity among 13 natural populations from Himachal Pradesh was assessed using RAPD and GC-MS to know the extent of existing variation. A total of seven genetically diverse groups have been identified based on RAPD analysis which corroborated well with the analysis based on chemical constituents. The essential oil yield ranged from 0.6% to 1.66% (v/w). A negative correlation between patchouli alcohol and viridiflorol, the two major valued constituents, limits the scope of their simultaneous improvement. However, other few populations like Chamba-II and Kandi-I were found promising for viridiflorol and patchouli alcohol, respectively. The analysis of chemical constitution of oil of the populations from a specific region revealed predominance of specific constituents indicating possibility of their collection/selection for specific end uses like phytomedicines. The prevalence of genetically diverse groups along with sufficient chemical diversity in a defined region clearly indicates the role of ecology in the maintenance of evolution of this species. Sufficient molecular and biochemical diversity detected among natural populations of this species will form basis for the future improvement. PMID:25741533

  9. Genetic Diversity in Lens Species Revealed by EST and Genomic Simple Sequence Repeat Analysis

    PubMed Central

    Dikshit, Harsh Kumar; Singh, Akanksha; Singh, Dharmendra; Aski, Muraleedhar Sidaram; Prakash, Prapti; Jain, Neelu; Meena, Suresh; Kumar, Shiv; Sarker, Ashutosh

    2015-01-01

    Low productivity of pilosae type lentils grown in South Asia is attributed to narrow genetic base of the released cultivars which results in susceptibility to biotic and abiotic stresses. For enhancement of productivity and production, broadening of genetic base is essentially required. The genetic base of released cultivars can be broadened by using diverse types including bold seeded and early maturing lentils from Mediterranean region and related wild species. Genetic diversity in eighty six accessions of three species of genus Lens was assessed based on twelve genomic and thirty one EST-SSR markers. The evaluated set of genotypes included diverse lentil varieties and advanced breeding lines from Indian programme, two early maturing ICARDA lines and five related wild subspecies/species endemic to the Mediterranean region. Genomic SSRs exhibited higher polymorphism in comparison to EST SSRs. GLLC 598 produced 5 alleles with highest gene diversity value of 0.80. Among the studied subspecies/species 43 SSRs detected maximum number of alleles in L. orientalis. Based on Nei’s genetic distance cultivated lentil L. culinaris subsp. culinaris was found to be close to its wild progenitor L. culinaris subsp. orientalis. The Prichard’s structure of 86 genotypes distinguished different subspecies/species. Higher variability was recorded among individuals within population than among populations. PMID:26381889

  10. Exploiting a wheat EST database to assess genetic diversity

    PubMed Central

    2010-01-01

    Expressed sequence tag (EST) markers have been used to assess variety and genetic diversity in wheat (Triticum aestivum). In this study, 1549 ESTs from wheat infested with yellow rust were used to examine the genetic diversity of six susceptible and resistant wheat cultivars. The aim of using these cultivars was to improve the competitiveness of public wheat breeding programs through the intensive use of modern, particularly marker-assisted, selection technologies. The F2 individuals derived from cultivar crosses were screened for resistance to yellow rust at the seedling stage in greenhouses and adult stage in the field to identify DNA markers genetically linked to resistance. Five hundred and sixty ESTs were assembled into 136 contigs and 989 singletons. BlastX search results showed that 39 (29%) contigs and 96 (10%) singletons were homologous to wheat genes. The database-matched contigs and singletons were assigned to eight functional groups related to protein synthesis, photosynthesis, metabolism and energy, stress proteins, transporter proteins, protein breakdown and recycling, cell growth and division and reactive oxygen scavengers. PCR analyses with primers based on the contigs and singletons showed that the most polymorphic functional categories were photosynthesis (contigs) and metabolism and energy (singletons). EST analysis revealed considerable genetic variability among the Turkish wheat cultivars resistant and susceptible to yellow rust disease and allowed calculation of the mean genetic distance between cultivars, with the greatest similarity (0.725) being between Harmankaya99 and Sönmez2001, and the lowest (0.622) between Aytin98 and Izgi01. PMID:21637582

  11. Exploiting a wheat EST database to assess genetic diversity.

    PubMed

    Karakas, Ozge; Gurel, Filiz; Uncuoglu, Ahu Altinkut

    2010-10-01

    Expressed sequence tag (EST) markers have been used to assess variety and genetic diversity in wheat (Triticum aestivum). In this study, 1549 ESTs from wheat infested with yellow rust were used to examine the genetic diversity of six susceptible and resistant wheat cultivars. The aim of using these cultivars was to improve the competitiveness of public wheat breeding programs through the intensive use of modern, particularly marker-assisted, selection technologies. The F(2) individuals derived from cultivar crosses were screened for resistance to yellow rust at the seedling stage in greenhouses and adult stage in the field to identify DNA markers genetically linked to resistance. Five hundred and sixty ESTs were assembled into 136 contigs and 989 singletons. BlastX search results showed that 39 (29%) contigs and 96 (10%) singletons were homologous to wheat genes. The database-matched contigs and singletons were assigned to eight functional groups related to protein synthesis, photosynthesis, metabolism and energy, stress proteins, transporter proteins, protein breakdown and recycling, cell growth and division and reactive oxygen scavengers. PCR analyses with primers based on the contigs and singletons showed that the most polymorphic functional categories were photosynthesis (contigs) and metabolism and energy (singletons). EST analysis revealed considerable genetic variability among the Turkish wheat cultivars resistant and susceptible to yellow rust disease and allowed calculation of the mean genetic distance between cultivars, with the greatest similarity (0.725) being between Harmankaya99 and Sönmez2001, and the lowest (0.622) between Aytin98 and Izgi01.

  12. Natural Allelic Diversity, Genetic Structure and Linkage Disequilibrium Pattern in Wild Chickpea

    PubMed Central

    Kujur, Alice; Das, Shouvik; Badoni, Saurabh; Kumar, Vinod; Singh, Mohar; Bansal, Kailash C.; Tyagi, Akhilesh K.; Parida, Swarup K.

    2014-01-01

    Characterization of natural allelic diversity and understanding the genetic structure and linkage disequilibrium (LD) pattern in wild germplasm accessions by large-scale genotyping of informative microsatellite and single nucleotide polymorphism (SNP) markers is requisite to facilitate chickpea genetic improvement. Large-scale validation and high-throughput genotyping of genome-wide physically mapped 478 genic and genomic microsatellite markers and 380 transcription factor gene-derived SNP markers using gel-based assay, fluorescent dye-labelled automated fragment analyser and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass array have been performed. Outcome revealed their high genotyping success rate (97.5%) and existence of a high level of natural allelic diversity among 94 wild and cultivated Cicer accessions. High intra- and inter-specific polymorphic potential and wider molecular diversity (11–94%) along with a broader genetic base (13–78%) specifically in the functional genic regions of wild accessions was assayed by mapped markers. It suggested their utility in monitoring introgression and transferring target trait-specific genomic (gene) regions from wild to cultivated gene pool for the genetic enhancement. Distinct species/gene pool-wise differentiation, admixed domestication pattern, and differential genome-wide recombination and LD estimates/decay observed in a six structured population of wild and cultivated accessions using mapped markers further signifies their usefulness in chickpea genetics, genomics and breeding. PMID:25222488

  13. Genetic diversity of three surface protein genes in Plasmodium malariae from three Asian countries.

    PubMed

    Srisutham, Suttipat; Saralamba, Naowarat; Sriprawat, Kanlaya; Mayxay, Mayfong; Smithuis, Frank; Nosten, Francois; Pukrittayakamee, Sasithon; Day, Nicholas P J; Dondorp, Arjen M; Imwong, Mallika

    2018-01-11

    Genetic diversity of the three important antigenic proteins, namely thrombospondin-related anonymous protein (TRAP), apical membrane antigen 1 (AMA1), and 6-cysteine protein (P48/45), all of which are found in various developmental stages of Plasmodium parasites is crucial for targeted vaccine development. While studies related to the genetic diversity of these proteins are available for Plasmodium falciparum and Plasmodium vivax, barely enough information exists regarding Plasmodium malariae. The present study aims to demonstrate the genetic variations existing among these three genes in P. malariae by analysing their diversity at nucleotide and protein levels. Three surface protein genes were isolated from 45 samples collected in Thailand (N = 33), Myanmar (N = 8), and Lao PDR (N = 4), using conventional polymerase chain reaction (PCR) assay. Then, the PCR products were sequenced and analysed using BioEdit, MEGA6, and DnaSP programs. The average pairwise nucleotide diversities (π) of P. malariae trap, ama1, and p48/45 were 0.00169, 0.00413, and 0.00029, respectively. The haplotype diversities (Hd) of P. malariae trap, ama1, and p48/45 were 0.919, 0.946, and 0.130, respectively. Most of the nucleotide substitutions were non-synonymous, which indicated that the genetic variations of these genes were maintained by positive diversifying selection, thus, suggesting their role as a potential target of protective immune response. Amino acid substitutions of P. malariae TRAP, AMA1, and P48/45 could be categorized to 17, 20, and 2 unique amino-acid variants, respectively. For further vaccine development, carboxyl terminal of P48/45 would be a good candidate according to conserved amino acid at low genetic diversity (π = 0.2-0.3). High mutational diversity was observed in P. malariae trap and ama1 as compared to p48/45 in P. malariae samples isolated from Thailand, Myanmar, and Lao PDR. Taken together, these results suggest that P48/45 might be a good vaccine

  14. Extensive genetic diversity present within North American switchgrass germplasm

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum L.) is a perennial, native North American grass currently grown for ecological restoration and forage purposes that has potential as a biofuel feedstock crop. Understanding the genetic diversity of switchgrass can provide insight into allelic variants important in devel...

  15. Estimation of genetic diversity using SSR markers in sunflower

    USDA-ARS?s Scientific Manuscript database

    Sunflower is a major oilseed crop in central Asia, but little is known of the molecular diversity among collections of sunflower from Pakistan region. This paper described inherent genetic relationships among sunflower collections using Simple Sequence Repeat molecular markers. Results should help...

  16. Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species

    PubMed Central

    Lind, Abigail L.; Wisecaver, Jennifer H.; Lameiras, Catarina; Wiemann, Philipp; Palmer, Jonathan M.; Keller, Nancy P.; Rodrigues, Fernando; Goldman, Gustavo H.

    2017-01-01

    Filamentous fungi produce a diverse array of secondary metabolites (SMs) critical for defense, virulence, and communication. The metabolic pathways that produce SMs are found in contiguous gene clusters in fungal genomes, an atypical arrangement for metabolic pathways in other eukaryotes. Comparative studies of filamentous fungal species have shown that SM gene clusters are often either highly divergent or uniquely present in one or a handful of species, hampering efforts to determine the genetic basis and evolutionary drivers of SM gene cluster divergence. Here, we examined SM variation in 66 cosmopolitan strains of a single species, the opportunistic human pathogen Aspergillus fumigatus. Investigation of genome-wide within-species variation revealed 5 general types of variation in SM gene clusters: nonfunctional gene polymorphisms; gene gain and loss polymorphisms; whole cluster gain and loss polymorphisms; allelic polymorphisms, in which different alleles corresponded to distinct, nonhomologous clusters; and location polymorphisms, in which a cluster was found to differ in its genomic location across strains. These polymorphisms affect the function of representative A. fumigatus SM gene clusters, such as those involved in the production of gliotoxin, fumigaclavine, and helvolic acid as well as the function of clusters with undefined products. In addition to enabling the identification of polymorphisms, the detection of which requires extensive genome-wide synteny conservation (e.g., mobile gene clusters and nonhomologous cluster alleles), our approach also implicated multiple underlying genetic drivers, including point mutations, recombination, and genomic deletion and insertion events as well as horizontal gene transfer from distant fungi. Finally, most of the variants that we uncover within A. fumigatus have been previously hypothesized to contribute to SM gene cluster diversity across entire fungal classes and phyla. We suggest that the drivers of genetic

  17. High genetic diversity in the offshore island populations of the tephritid fruit fly Bactrocera dorsalis.

    PubMed

    Yi, Chunyan; Zheng, Chunyan; Zeng, Ling; Xu, Yijuan

    2016-10-13

    Geographic isolation is an important factor that limit species dispersal and thereby affects genetic diversity. Because islands are often small and surrounded by a natural water barrier to dispersal, they generally form discrete isolated habitats. Therefore, islands may play a key role in the distribution of the genetic diversity of insects, including flies. To characterize the genetic structure of island populations of Bactrocera dorsalis, we analyzed a dataset containing both microsatellite and mtDNA loci of B. dorsalis samples collected from six offshore islands in Southern China. The microsatellite data revealed a high level of genetic diversity among these six island populations based on observed heterozygosity (Ho), expected heterozygosity (H E ), Nei's standard genetic distance (D), genetic identity (I) and the percentage of polymorphic loci (PIC). These island populations had low F ST values (F ST  = 0.04161), and only 4.16 % of the total genetic variation in the species was found on these islands, as determined by an analysis of molecular variance. Based on the mtDNA COI data, high nucleotide diversity (0.9655) and haplotype diversity (0.00680) were observed in all six island populations. F-statistics showed that the six island populations exhibited low or medium levels of genetic differentiation among some island populations. To investigate the population differentiation between the sampled locations, a factorial correspondence analysis and both the unweighted pair-group method with arithmetic mean and Bayesian clustering methods were used to analyze the microsatellite data. The results showed that Hebao Island, Weizhou Island and Dong'ao Island were grouped together in one clade. Another clade consisted of Shangchuan Island and Naozhou Island, and a final, separate clade contained only the Wailingding Island population. Phylogenetic analysis of the mtDNA COI sequences revealed that the populations on each of these six islands were closely related to

  18. Genetic diversity of Elaeis oleifera (HBK) Cortes populations using cross species SSRs: implication's for germplasm utilization and conservation.

    PubMed

    Ithnin, Maizura; Teh, Chee-Keng; Ratnam, Wickneswari

    2017-04-19

    The Elaeis oleifera genetic materials were assembled from its center of diversity in South and Central America. These materials are currently being preserved in Malaysia as ex situ living collections. Maintaining such collections is expensive and requires sizable land. Information on the genetic diversity of these collections can help achieve efficient conservation via maintenance of core collection. For this purpose, we have applied fourteen unlinked microsatellite markers to evaluate 532 E. oleifera palms representing 19 populations distributed across Honduras, Costa Rica, Panama and Colombia. In general, the genetic diversity decreased from Costa Rica towards the north (Honduras) and south-east (Colombia). Principle coordinate analysis (PCoA) showed a single cluster indicating low divergence among palms. The phylogenetic tree and STRUCTURE analysis revealed clusters based on country of origin, indicating considerable gene flow among populations within countries. Based on the values of the genetic diversity parameters, some genetically diverse populations could be identified. Further, a total of 34 individual palms that collectively captured maximum allelic diversity with reduced redundancy were also identified. High pairwise genetic differentiation (Fst > 0.250) among populations was evident, particularly between the Colombian populations and those from Honduras, Panama and Costa Rica. Crossing selected palms from highly differentiated populations could generate off-springs that retain more genetic diversity. The results attained are useful for selecting palms and populations for core collection. The selected materials can also be included into crossing scheme to generate offsprings that capture greater genetic diversity for selection gain in the future.

  19. Genetic diversity and phylogeography of broomcorn millet (Panicum miliaceum L.) across Eurasia

    PubMed Central

    Hunt, Harriet V; Campana, Michael G; Lawes, Matthew C; Park, Yong-Jin; Bower, Mim A; Howe, Christopher J; Jones, Martin K

    2011-01-01

    Broomcorn millet (Panicum miliaceum L.) is one of the world's oldest cultivated cereals, with several lines of recent evidence indicating that it was grown in northern China from at least 10 000 cal bp. Additionally, a cluster of archaeobotanical records of P. miliaceum dated to at least 7000 cal bp exists in eastern Europe. These two centres of early records could either represent independent domestications or cross-continental movement of this cereal that would predate that of any other crop by some 2 millennia. Here, we analysed genetic diversity among 98 landrace accessions from across Eurasia using 16 microsatellite loci, to explore phylogeographic structure in the Old World range of this historically important crop. The major genetic split in the data divided the accessions into an eastern and a western grouping with an approximate boundary in northwestern China. A substantial number of accessions belonging to the ‘western’ genetic group were also found in northeastern China. Further resolution subdivided the western and eastern genepools into 2 and 4 clusters respectively, each showing clear geographic patterning. The genetic data are consistent with both the single and multiple domestication centre hypotheses and add specific detail to what these hypotheses would entail regarding the spread of broomcorn millet. Discrepancies exist between the predictions from the genetic data and the current archaeobotanical record, highlighting priorities for investigation into early farming in Central Asia. PMID:22004244

  20. Genetic Diversity Analysis of Highly Incomplete SNP Genotype Data with Imputations: An Empirical Assessment

    PubMed Central

    Fu, Yong-Bi

    2014-01-01

    Genotyping by sequencing (GBS) recently has emerged as a promising genomic approach for assessing genetic diversity on a genome-wide scale. However, concerns are not lacking about the uniquely large unbalance in GBS genotype data. Although some genotype imputation has been proposed to infer missing observations, little is known about the reliability of a genetic diversity analysis of GBS data, with up to 90% of observations missing. Here we performed an empirical assessment of accuracy in genetic diversity analysis of highly incomplete single nucleotide polymorphism genotypes with imputations. Three large single-nucleotide polymorphism genotype data sets for corn, wheat, and rice were acquired, and missing data with up to 90% of missing observations were randomly generated and then imputed for missing genotypes with three map-independent imputation methods. Estimating heterozygosity and inbreeding coefficient from original, missing, and imputed data revealed variable patterns of bias from assessed levels of missingness and genotype imputation, but the estimation biases were smaller for missing data without genotype imputation. The estimates of genetic differentiation were rather robust up to 90% of missing observations but became substantially biased when missing genotypes were imputed. The estimates of topology accuracy for four representative samples of interested groups generally were reduced with increased levels of missing genotypes. Probabilistic principal component analysis based imputation performed better in terms of topology accuracy than those analyses of missing data without genotype imputation. These findings are not only significant for understanding the reliability of the genetic diversity analysis with respect to large missing data and genotype imputation but also are instructive for performing a proper genetic diversity analysis of highly incomplete GBS or other genotype data. PMID:24626289

  1. Population genetic diversity and structure of a naturally isolated plant species, Rhodiola dumulosa (Crassulaceae).

    PubMed

    Hou, Yan; Lou, Anru

    2011-01-01

    Rhodiola dumulosa (Crassulaceae) is a perennial diploid species found in high-montane areas. It is distributed in fragmented populations across northern, central and northwestern China. In this study, we aimed to (i) measure the genetic diversity of this species and that of its populations; (ii) describe the genetic structure of these populations across the entire distribution range in China; and (iii) evaluate the extent of gene flow among the naturally fragmented populations. Samples from 1089 individuals within 35 populations of R. dumulosa were collected, covering as much of the entire distribution range of this species within China as possible. Population genetic diversity and structure were analyzed using AFLP molecular markers. Gene flow among populations was estimated according to the level of population differentiation. The total genetic diversity of R. dumulosa was high but decreased with increasing altitude. Population-structure analysis indicated that the most closely related populations were geographically restricted and occurred in close proximity to each other. A significant isolation-by-distance pattern, caused by the naturally fragmented population distribution, was observed. At least two distinct gene pools were found in the 35 sampled populations, one composed of populations in northern China and the other composed of populations in central and northwestern China. The calculation of Nei's gene diversity index revealed that the genetic diversity in the northern China pool (0.1972) was lower than that in the central and northwestern China pool (0.2216). The populations were significantly isolated, and gene flow was restricted throughout the entire distribution. However, gene flow among populations on the same mountain appears to be unrestricted, as indicated by the weak genetic isolation among these populations.

  2. Population Genetic Diversity and Structure of a Naturally Isolated Plant Species, Rhodiola dumulosa (Crassulaceae)

    PubMed Central

    Hou, Yan; Lou, Anru

    2011-01-01

    Aims Rhodiola dumulosa (Crassulaceae) is a perennial diploid species found in high-montane areas. It is distributed in fragmented populations across northern, central and northwestern China. In this study, we aimed to (i) measure the genetic diversity of this species and that of its populations; (ii) describe the genetic structure of these populations across the entire distribution range in China; and (iii) evaluate the extent of gene flow among the naturally fragmented populations. Methods Samples from 1089 individuals within 35 populations of R. dumulosa were collected, covering as much of the entire distribution range of this species within China as possible. Population genetic diversity and structure were analyzed using AFLP molecular markers. Gene flow among populations was estimated according to the level of population differentiation. Important Findings The total genetic diversity of R. dumulosa was high but decreased with increasing altitude. Population-structure analysis indicated that the most closely related populations were geographically restricted and occurred in close proximity to each other. A significant isolation-by-distance pattern, caused by the naturally fragmented population distribution, was observed. At least two distinct gene pools were found in the 35 sampled populations, one composed of populations in northern China and the other composed of populations in central and northwestern China. The calculation of Nei's gene diversity index revealed that the genetic diversity in the northern China pool (0.1972) was lower than that in the central and northwestern China pool (0.2216). The populations were significantly isolated, and gene flow was restricted throughout the entire distribution. However, gene flow among populations on the same mountain appears to be unrestricted, as indicated by the weak genetic isolation among these populations. PMID:21909437

  3. [Genetic diversity analysis of Andrographis paniculata in China based on SRAP and SNP].

    PubMed

    Chen, Rong; Wang, Xiao-Yun; Song, Yu-Ning; Zhu, Yun-feng; Wang, Peng-liang; Li, Min; Zhong, Guo-Yue

    2014-12-01

    In order to reveal genetic diversity of domestic Andrographis paniculata and its impact on quality, genetic backgrounds of 103 samples from 7 provinces in China were analyzed using SRAP marker and SNP marker. Genetic structures of the A. paniculata populations were estimated with Powermarker V 3.25 and Mega 6.0 software, and polymorphic SNPs were identified with CodonCode Aligner software. The results showed that the genetic distances of domestic A. paniculata germplasm ranged from 0. 01 to 0.09, and no polymorphic SNPs were discovered in coding sequence fragments of ent-copalyl diphosphate synthase. A. paniculata germplasm from various regions in China had poor genetic diversity. This phenomenon was closely related to strict self-fertilization and earlier introduction from the same origin. Therefore, genetic background had little impact on variable qualities of A. paniculata in domestic market. Mutation breeding, polyploid breeding and molecular breeding were proposed as promising strategies in germplasm innovation.

  4. Genetic Diversity and Population Structure of Mesoamerican Jaguars (Panthera onca): Implications for Conservation and Management

    PubMed Central

    Wultsch, Claudia; Caragiulo, Anthony; Dias-Freedman, Isabela; Quigley, Howard; Rabinowitz, Salisa; Amato, George

    2016-01-01

    Mesoamerican jaguars (Panthera onca) have been extirpated from over 77% of their historic range, inhabiting fragmented landscapes at potentially reduced population sizes. Maintaining and restoring genetic diversity and connectivity across human-altered landscapes has become a major conservation priority; nonetheless large-scale genetic monitoring of natural populations is rare. This is the first regional conservation genetic study of jaguars to primarily use fecal samples collected in the wild across five Mesoamerican countries: Belize, Costa Rica, Guatemala, Honduras, and Mexico. We genotyped 445 jaguar fecal samples and examined patterns of genetic diversity and connectivity among 115 individual jaguars using data from 12 microsatellite loci. Overall, moderate levels of genetic variation were detected (NA = 4.50 ± 1.05, AR = 3.43 ± 0.22, HE = 0.59 ± 0.04), with Mexico having the lowest genetic diversity, followed by Honduras, Guatemala, Belize, and Costa Rica. Population-based gene flow measures (FST = 0.09 to 0.15, Dest = 0.09 to 0.21), principal component analysis, and Bayesian clustering applied in a hierarchical framework revealed significant genetic structure in Mesoamerican jaguars, roughly grouping individuals into four genetic clusters with varying levels of admixture. Gene flow was highest among Selva Maya jaguars (northern Guatemala and central Belize), whereas genetic differentiation among all other sampling sites was moderate. Genetic subdivision was most pronounced between Selva Maya and Honduran jaguars, suggesting limited jaguar movement between these close geographic regions and ultimately refuting the hypothesis of contemporary panmixia. To maintain a critical linkage for jaguars dispersing through the Mesoamerican landscape and ensure long-term viability of this near threatened species, we recommend continued management and maintenance of jaguar corridors. The baseline genetic data provided by this study underscores the importance of

  5. Genetic Diversity and Population Structure of Mesoamerican Jaguars (Panthera onca): Implications for Conservation and Management.

    PubMed

    Wultsch, Claudia; Caragiulo, Anthony; Dias-Freedman, Isabela; Quigley, Howard; Rabinowitz, Salisa; Amato, George

    2016-01-01

    Mesoamerican jaguars (Panthera onca) have been extirpated from over 77% of their historic range, inhabiting fragmented landscapes at potentially reduced population sizes. Maintaining and restoring genetic diversity and connectivity across human-altered landscapes has become a major conservation priority; nonetheless large-scale genetic monitoring of natural populations is rare. This is the first regional conservation genetic study of jaguars to primarily use fecal samples collected in the wild across five Mesoamerican countries: Belize, Costa Rica, Guatemala, Honduras, and Mexico. We genotyped 445 jaguar fecal samples and examined patterns of genetic diversity and connectivity among 115 individual jaguars using data from 12 microsatellite loci. Overall, moderate levels of genetic variation were detected (NA = 4.50 ± 1.05, AR = 3.43 ± 0.22, HE = 0.59 ± 0.04), with Mexico having the lowest genetic diversity, followed by Honduras, Guatemala, Belize, and Costa Rica. Population-based gene flow measures (FST = 0.09 to 0.15, Dest = 0.09 to 0.21), principal component analysis, and Bayesian clustering applied in a hierarchical framework revealed significant genetic structure in Mesoamerican jaguars, roughly grouping individuals into four genetic clusters with varying levels of admixture. Gene flow was highest among Selva Maya jaguars (northern Guatemala and central Belize), whereas genetic differentiation among all other sampling sites was moderate. Genetic subdivision was most pronounced between Selva Maya and Honduran jaguars, suggesting limited jaguar movement between these close geographic regions and ultimately refuting the hypothesis of contemporary panmixia. To maintain a critical linkage for jaguars dispersing through the Mesoamerican landscape and ensure long-term viability of this near threatened species, we recommend continued management and maintenance of jaguar corridors. The baseline genetic data provided by this study underscores the importance of

  6. Genetic health and population monitoring of two small black bear (Ursus americanus) populations in Alabama, with a regional perspective of genetic diversity and exchange

    PubMed Central

    Waits, Lisette P.; Adams, Jennifer R.; Seals, Christopher L.; Steury, Todd D.

    2017-01-01

    One of the major concerns in conservation today is the loss of genetic diversity which is a frequent consequence of population isolation and small population sizes. Fragmentation of populations and persecution of carnivores has posed a substantial threat to the persistence of free ranging carnivores in North America since the arrival of European settlers. Black bears have seen significant reductions in range size from their historic extent, which is most pronounced in the southeastern United States and even more starkly in Alabama where until recently bears were reduced to a single geographically isolated population in the Mobile River Basin. Recently a second population has naturally re-established itself in northeastern Alabama. We sought to determine size, genetic diversity and genetic connectivity for these two populations in relation to other regional populations. Both populations of black bears in Alabama had small population sizes and had moderate to low genetic diversity, but showed different levels of connectivity to surrounding populations of bears. The Mobile River Basin population had a small population size at only 86 individuals (76–124, 95% C.I.), the lowest genetic diversity of compared populations (richness = 2.33, Ho and He = 0.33), and showed near complete genetic isolation from surrounding populations across multiple tests. The newly recolonizing population in northeastern Alabama had a small but growing population doubling in 3 years (34 individuals 26–43, 95% C.I.), relatively moderate genetic diversity compared to surrounding populations (richness = 3.32, Ho = 0.53, He = 0.65), and showed a high level of genetic connectivity with surrounding populations. PMID:29117263

  7. Genetic diversity and conservation of Mexican forest trees

    Treesearch

    C. Wehenkel; S. Mariscal-Lucero; J.P. Jaramillo-Correa; C.A. López-Sánchez; J.J. Vargas Hernández; C. Sáenz-Romero

    2017-01-01

    Over the last 200 years, humans have impacted the genetic diversity of forest trees. Because of widespread deforestation and over-exploitation, about 9,000 tree species are listed worldwide as threatened with extinction, including more than half of the ~600 known conifer taxa. A comprehensive review of the floristic-taxonomic literature compiled a list of 4,331...

  8. Understanding the genetic diversity and population structure of yam (Dioscorea alata L.) using microsatellite markers

    PubMed Central

    Arnau, Gemma; MN, Sheela; Chair, Hana; Lebot, Vincent; K, Abraham; Perrier, Xavier; Petro, Dalila; Penet, Laurent; Pavis, Claudie

    2017-01-01

    Yams (Dioscorea sp.) are staple food crops for millions of people in tropical and subtropical regions. Dioscorea alata, also known as greater yam, is one of the major cultivated species and most widely distributed throughout the tropics. Despite its economic and cultural importance, very little is known about its origin, diversity and genetics. As a consequence, breeding efforts for resistance to its main disease, anthracnose, have been fairly limited. The objective of this study was to contribute to the understanding of D. alata genetic diversity by genotyping 384 accessions from different geographical regions (South Pacific, Asia, Africa and the Caribbean), using 24 microsatellite markers. Diversity structuration was assessed via Principal Coordinate Analysis, UPGMA analysis and the Bayesian approach implemented in STRUCTURE. Our results revealed the existence of a wide genetic diversity and a significant structuring associated with geographic origin, ploidy levels and morpho-agronomic characteristics. Seventeen major groups of genetically close cultivars have been identified, including eleven groups of diploid cultivars, four groups of triploids and two groups of tetraploids. STRUCTURE revealed the existence of six populations in the diploid genetic pool and a few admixed cultivars. These results will be very useful for rationalizing D. alata genetic resources in breeding programs across different regions and for improving germplasm conservation methods. PMID:28355293

  9. Preservation of the genetic diversity of a local common carp in the agricultural heritage rice–fish system

    PubMed Central

    Ren, Weizheng; Hu, Liangliang; Guo, Liang; Zhang, Jian; Tang, Lu; Zhang, Entao; Zhang, Jiaen; Luo, Shiming; Tang, Jianjun; Chen, Xin

    2018-01-01

    We examined how traditional farmers preserve the genetic diversity of a local common carp (Cyprinus carpio), which is locally referred to as “paddy field carp” (PF-carp), in a “globally important agricultural heritage system” (GIAHS), i.e., the 1,200-y-old rice–fish coculture system in Zhejiang Province, China. Our molecular and morphological analysis showed that the PF-carp has changed into a distinct local population with higher genetic diversity and diverse color types. Within this GIAHS region, PF-carps exist as a continuous metapopulation, although three genetic groups could be identified by microsatellite markers. Thousands of small farmer households interdependently obtained fry and parental carps for their own rice–fish production, resulting in a high gene flow and large numbers of parent carps distributing in a mosaic pattern in the region. Landscape genetic analysis indicated that farmers’ connectivity was one of the major factors that shaped this genetic pattern. Population viability analysis further revealed that the numbers of these interconnected small farmer households and their connection intensity affect the carps’ inherent genetic diversity. The practice of mixed culturing of carps with diverse color types helped to preserve a wide range of genetic resources in the paddy field. This widespread traditional practice increases fish yield and resource use, which, in return, encourages famers to continue their practice of selecting and conserving diverse color types of PF-carp. Our results suggested that traditional farmers secure the genetic diversity of PF-carp and its viability over generations in this region through interdependently incubating and mixed-culturing practices within the rice−fish system. PMID:29295926

  10. Contrasting results from molecular and pedigree-based population diversity measures in captive zebra highlight challenges facing genetic management of zoo populations.

    PubMed

    Ito, Hideyuki; Ogden, Rob; Langenhorst, Tanya; Inoue-Murayama, Miho

    2017-01-01

    Zoo conservation breeding programs manage the retention of population genetic diversity through analysis of pedigree records. The range of demographic and genetic indices determined through pedigree analysis programs allows the conservation of diversity to be monitored relative to the particular founder population for a species. Such approaches are based on a number of well-documented founder assumptions, however without knowledge of actual molecular genetic diversity there is a risk that pedigree-based measures will be misinterpreted and population genetic diversity misunderstood. We examined the genetic diversity of the captive populations of Grevy's zebra, Hartmann's mountain zebra and plains zebra in Japan and the United Kingdom through analysis of mitochondrial DNA sequences. Very low nucleotide variability was observed in Grevy's zebra. The results were evaluated with respect to current and historic diversity in the wild, and indicate that low genetic diversity in the captive population is likely a result of low founder diversity, which in turn suggests relatively low wild genetic diversity prior to recent population declines. Comparison of molecular genetic diversity measures with analogous diversity indices generated from the studbook data for Grevy's zebra and Hartmann's mountain zebra show contrasting patterns, with Grevy's zebra displaying markedly less molecular diversity than mountain zebra, despite studbook analysis indicating that the Grevy's zebra population has substantially more founders, greater effective population size, lower mean kinship, and has suffered less loss of gene diversity. These findings emphasize the need to validate theoretical estimates of genetic diversity in captive breeding programs with empirical molecular genetic data. Zoo Biol. 36:87-94, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Clonality, genetic diversity and support for the diversifying selection hypothesis in natural populations of a flower-living yeast.

    PubMed

    Herrera, C M; Pozo, M I; Bazaga, P

    2011-11-01

    Vast amounts of effort have been devoted to investigate patterns of genetic diversity and structuring in plants and animals, but similar information is scarce for organisms of other kingdoms. The study of the genetic structure of natural populations of wild yeasts can provide insights into the ecological and genetic correlates of clonality, and into the generality of recent hypotheses postulating that microbial populations lack the potential for genetic divergence and allopatric speciation. Ninety-one isolates of the flower-living yeast Metschnikowia gruessii from southeastern Spain were DNA fingerprinted using amplified fragment length polymorphism (AFLP) markers. Genetic diversity and structuring was investigated with band-based methods and model- and nonmodel-based clustering. Linkage disequilibrium tests were used to assess reproduction mode. Microsite-dependent, diversifying selection was tested by comparing genetic characteristics of isolates from bumble bee vectors and different floral microsites. AFLP polymorphism (91%) and genotypic diversity were very high. Genetic diversity was spatially structured, as shown by amova (Φ(st)  = 0.155) and clustering. The null hypothesis of random mating was rejected, clonality seeming the prevailing reproductive mode in the populations studied. Genetic diversity of isolates declined from bumble bee mouthparts to floral microsites, and frequency of five AFLP markers varied significantly across floral microsites, thus supporting the hypothesis of diversifying selection on clonal lineages. Wild populations of clonal fungal microbes can exhibit levels of genetic diversity and spatial structuring that are not singularly different from those shown by sexually reproducing plants or animals. Microsite-dependent, divergent selection can maintain high local and regional genetic diversity in microbial populations despite extensive clonality. © 2011 Blackwell Publishing Ltd.

  12. Pollen flow in fragmented landscapes maintains genetic diversity following stand-replacing disturbance in a neotropical pioneer tree, Vochysia ferruginea Mart.

    PubMed

    Davies, S J; Cavers, S; Finegan, B; White, A; Breed, M F; Lowe, A J

    2015-08-01

    In forests with gap disturbance regimes, pioneer tree regeneration is typically abundant following stand-replacing disturbances, whether natural or anthropogenic. Differences in pioneer tree density linked to disturbance regime can influence pollinator behaviour and impact on mating patterns and genetic diversity of pioneer populations. Such mating pattern shifts can manifest as higher selfing rates and lower pollen diversity in old growth forest populations. In secondary forest, where more closely related pollen donors occur, an increase in biparental inbreeding is a potential problem. Here, we investigate the consequences of secondary forest colonisation on the mating patterns and genetic diversity of open-pollinated progeny arrays for the long-lived, self-compatible pioneer tree, Vochysia ferruginea, at two Costa Rican sites. Five microsatellite loci were screened across adult and seed cohorts from old growth forest with lower density, secondary forest with higher density, and isolated individual trees in pasture. Progeny from both old growth and secondary forest contexts were predominantly outcrossed (tm=1.00) and experienced low levels of biparental inbreeding (tm-ts=0.00-0.04). In contrast to predictions, our results indicated that the mating patterns of V. ferruginea are relatively robust to density differences between old growth and secondary forest stands. In addition, we observed that pollen-mediated gene flow possibly maintained the genetic diversity of open-pollinated progeny arrays in stands of secondary forest adults. As part of a natural resource management strategy, we suggest that primary forest remnants should be prioritised for conservation to promote restoration of genetic diversity during forest regeneration.

  13. Genetic diversity and relationship analysis of Gossypium arboreum accessions.

    PubMed

    Liu, F; Zhou, Z L; Wang, C Y; Wang, Y H; Cai, X Y; Wang, X X; Zhang, Z S; Wang, K B

    2015-11-19

    Simple sequence repeat techniques were used to identify the genetic diversity of 101 Gossypium arboreum accessions collected from India, Vietnam, and the southwest of China (Guizhou, Guangxi, and Yunnan provinces). Twenty-six pairs of SSR primers produced a total of 103 polymorphic loci with an average of 3.96 polymorphic loci per primer. The average of the effective number of alleles, Nei's gene diversity, and Shannon's information index were 0.59, 0.2835, and 0.4361, respectively. The diversity varied among different geographic regions. The result of principal component analysis was consistent with that of unweighted pair group method with arithmetic mean clustering analysis. The 101 G. arboreum accessions were clustered into 2 groups.

  14. Genetic diversity and accession structure in European Cynara cardunculus collections

    PubMed Central

    Fernández, Juan A.; Sonnante, Gabriella; Egea-Gilabert, Catalina

    2017-01-01

    Understanding the distribution of genetic variations and accession structures is an important factor for managing genetic resources, but also for using proper germplasm in association map analyses and breeding programs. The globe artichoke is the fourth most important horticultural crop in Europe. Here, we report the results of a molecular analysis of a collection including globe artichoke and leafy cardoon germplasm present in the Italian, French and Spanish gene banks. The aims of this study were to: (i) assess the diversity present in European collections, (ii) determine the population structure, (iii) measure the genetic distance between accessions; (iv) cluster the accessions; (v) properly distinguish accessions present in the different national collections carrying the same name; and (vi) understand the diversity distribution in relation to the gene bank and the geographic origin of the germplasm. A total of 556 individuals grouped into 174 accessions of distinct typologies were analyzed by different types of molecular markers, i.e. dominant (ISSR and AFLP) and co-dominant (SSR). The data of the two crops (globe artichoke and leafy cardoon) were analyzed jointly and separately to compute, among other aims, the gene diversity, heterozygosity (He, Ho), fixation indexes, AMOVA, genetic distance and structure. The findings underline the huge diversity present in the analyzed material, and the existence of alleles that are able to discriminate among accessions. The accessions were clustered not only on the basis of their typology, but also on the basis of the gene bank they come from. Probably, the environmental conditions of the different field gene banks affected germplasm conservation. These outcomes will be useful in plant breeding to select accessions and to fingerprint varieties. Moreover, the results highlight the particular attention that should be paid to the method used to conserve the Cynara cardunculus germplasm and suggest to the preference of using

  15. Does silvoagropecuary landscape fragmentation affect the genetic diversity of the sigmodontine rodent Oligoryzomys longicaudatus?

    PubMed

    Lazo-Cancino, Daniela; Musleh, Selim S; Hernandez, Cristian E; Palma, Eduardo; Rodriguez-Serrano, Enrique

    2017-01-01

    Fragmentation of native forests is a highly visible result of human land-use throughout the world. In this study, we evaluated the effects of landscape fragmentation and matrix features on the genetic diversity and structure of Oligoryzomys longicaudatus, the natural reservoir of Hantavirus in southern South America. We focused our work in the Valdivian Rainforest where human activities have produced strong change of natural habitats, with an important number of human cases of Hantavirus. We sampled specimens of O. longicaudatus from five native forest patches surrounded by silvoagropecuary matrix from Panguipulli, Los Rios Region, Chile. Using the hypervariable domain I (mtDNA), we characterized the genetic diversity and evaluated the effect of fragmentation and landscape matrix on the genetic structure of O. longicaudatus . For the latter, we used three approaches: (i) Isolation by Distance (IBD) as null model, (ii) Least-cost Path (LCP) where genetic distances between patch pairs increase with cost-weighted distances, and (iii) Isolation by Resistance (IBR) where the resistance distance is the average number of steps that is needed to commute between the patches during a random walk. We found low values of nucleotide diversity ( π ) for the five patches surveyed, ranging from 0.012 to 0.015, revealing that the 73 sampled specimens of this study belong to two populations but with low values of genetic distance ( γ ST ) ranging from 0.022 to 0.099. Likewise, we found that there are no significant associations between genetic distance and geographic distance for IBD and IBR. However, we found for the LCP approach, a significant positive relationship ( r  = 0.737, p  = 0.05), with shortest least-cost paths traced through native forest and arborescent shrublands. In this work we found that, at this reduced geographical scale , Oligoryzomys longicaudatus shows genetic signs of fragmentation. In addition, we found that connectivity between full growth native

  16. Genetic diversity patterns of arbuscular mycorrhizal fungi associated with the mycoheterotroph Arachnitis uniflora Phil. (Corsiaceae)

    PubMed Central

    Acosta, M. Cristina; Cofré, Noelia; Domínguez, Laura S.; Bidartondo, Martin I.; Sérsic, Alicia N.

    2017-01-01

    Abstract Background and Aims Arachnitis uniflora is a mycoheterotrophic plant that exploits arbuscular mycorrhizal fungi of neighbouring plants. We tested A. uniflora's specificity towards fungi across its large latitudinal range, as well as the role of historical events and current environmental, geographical and altitudinal variables on fungal genetic diversity. Methods Arachnitis uniflora mycorrhizas were sampled at 25 sites. Fungal phylogenetic relationships were reconstructed, genetic diversity was calculated and the main divergent lineages were dated. Phylogeographical analysis was performed with the main fungal clade. Fungal diversity correlations with environmental factors were investigated. Key Results Glomeraceae fungi dominated, with a main clade that likely originated in the Upper Cretaceous and diversified in the Miocene. Two other arbuscular mycorrhizal fungal families not previously known to be targeted by A. uniflora were detected rarely and appear to be facultative associations. High genetic diversity, found in Bolivia and both northern and southern Patagonia, was correlated with temperature, rainfall and soil features. Conclusions Fungal genetic diversity and its distribution can be explained by the ancient evolutionary history of the target fungi and by micro-scale environmental conditions with a geographical mosaic pattern. PMID:28398457

  17. Consequences of harvesting for genetic diversity in American ginseng (Panax quinquefolius L.): A simulation study

    USGS Publications Warehouse

    Cruse-Sanders, J. M.; Hamrick, J.L.; Ahumada, J.A.

    2005-01-01

    American ginseng, Panax quinquefolius L., is one of the most heavily traded medicinal plants in North America. The effect of harvest on genetic diversity in ginseng was measured with a single generation culling simulation program. Culling scenarios included random harvest at varying levels, legal limit random harvest and legal limit mature plant harvest. The legal limit was determined by the proportion of legally harvestable plants per population (% mature plants per population). Random harvest at varying levels resulted in significant loss of genetic diversity, especially allelic richness. Relative to initial levels, average within-population genetic diversity (H e) was significantly lower when plants were culled randomly at the legal limit (Mann-Whitney U = 430, p < 0.001) or when only mature plants were culled (Mann-Whitney U = 394, p < 0.01). Within-population genetic diversity was significantly higher with legal limit mature plant harvest (H e = 0.068) than when plants were culled randomly at the legal limit (H e = 0.064; U = 202, p < 0.01). Based on these simulations of harvest over one generation, we recommend that harvesting fewer than the proportion of mature plants could reduce the negative genetic effects of harvest on ginseng populations. ?? Springer 2005.

  18. Indicator 1.08. Population levels of selected representative forest-associated species to describe genetic diversity

    Treesearch

    C. H. Sieg; S. M. Owen; C. H. Flather

    2011-01-01

    This indicator uses population trends of selected bird and tree species as a surrogate measure of genetic diversity. Population decreases, especially associated with small populations, can lead to decreases in genetic diversity, and contribute to increased risk of extinction. Many forest-associated species rely on some particular forest structure, vegetation...

  19. Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Morris, Katrina M; Wright, Belinda; Grueber, Catherine E; Hogg, Carolyn; Belov, Katherine

    2015-08-01

    The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction due to the spread of devil facial tumour disease. Polymorphisms in immune genes can provide adaptive potential to resist diseases. Previous studies in diversity at immune loci in wild species have almost exclusively focused on genes of the major histocompatibility complex (MHC); however, these genes only account for a fraction of immune gene diversity. Devils lack diversity at functionally important immunity loci, including MHC and Toll-like receptor genes. Whether there are polymorphisms at devil immune genes outside these two families is unknown. Here, we identify polymorphisms in a wide range of key immune genes, and develop assays to type single nucleotide polymorphisms (SNPs) within a subset of these genes. A total of 167 immune genes were examined, including cytokines, chemokines and natural killer cell receptors. Using genome-level data from ten devils, SNPs within coding regions, introns and 10 kb flanking genes of interest were identified. We found low polymorphism across 167 immune genes examined bioinformatically using whole-genome data. From this data, we developed long amplicon assays to target nine genes. These amplicons were sequenced in 29-220 devils and found to contain 78 SNPs, including eight SNPS within exons. Despite the extreme paucity of genetic diversity within these genes, signatures of balancing selection were exhibited by one chemokine gene, suggesting that remaining diversity may hold adaptive potential. The low functional diversity may leave devils highly vulnerable to infectious disease, and therefore, monitoring and preserving remaining diversity will be critical for the long-term management of this species. Examining genetic variation in diverse immune genes should be a priority for threatened wildlife species. This study can act as a model for broad-scale immunogenetic diversity analysis in threatened species. © 2015 The Authors. Molecular Ecology Published

  20. Genetic Diversity and Association Studies in US Hispanic/Latino Populations: Applications in the Hispanic Community Health Study/Study of Latinos

    PubMed Central

    Conomos, Matthew P.; Laurie, Cecelia A.; Stilp, Adrienne M.; Gogarten, Stephanie M.; McHugh, Caitlin P.; Nelson, Sarah C.; Sofer, Tamar; Fernández-Rhodes, Lindsay; Justice, Anne E.; Graff, Mariaelisa; Young, Kristin L.; Seyerle, Amanda A.; Avery, Christy L.; Taylor, Kent D.; Rotter, Jerome I.; Talavera, Gregory A.; Daviglus, Martha L.; Wassertheil-Smoller, Sylvia; Schneiderman, Neil; Heiss, Gerardo; Kaplan, Robert C.; Franceschini, Nora; Reiner, Alex P.; Shaffer, John R.; Barr, R. Graham; Kerr, Kathleen F.; Browning, Sharon R.; Browning, Brian L.; Weir, Bruce S.; Avilés-Santa, M. Larissa; Papanicolaou, George J.; Lumley, Thomas; Szpiro, Adam A.; North, Kari E.; Rice, Ken; Thornton, Timothy A.; Laurie, Cathy C.

    2016-01-01

    US Hispanic/Latino individuals are diverse in genetic ancestry, culture, and environmental exposures. Here, we characterized and controlled for this diversity in genome-wide association studies (GWASs) for the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). We simultaneously estimated population-structure principal components (PCs) robust to familial relatedness and pairwise kinship coefficients (KCs) robust to population structure, admixture, and Hardy-Weinberg departures. The PCs revealed substantial genetic differentiation within and among six self-identified background groups (Cuban, Dominican, Puerto Rican, Mexican, and Central and South American). To control for variation among groups, we developed a multi-dimensional clustering method to define a “genetic-analysis group” variable that retains many properties of self-identified background while achieving substantially greater genetic homogeneity within groups and including participants with non-specific self-identification. In GWASs of 22 biomedical traits, we used a linear mixed model (LMM) including pairwise empirical KCs to account for familial relatedness, PCs for ancestry, and genetic-analysis groups for additional group-associated effects. Including the genetic-analysis group as a covariate accounted for significant trait variation in 8 of 22 traits, even after we fit 20 PCs. Additionally, genetic-analysis groups had significant heterogeneity of residual variance for 20 of 22 traits, and modeling this heteroscedasticity within the LMM reduced genomic inflation for 19 traits. Furthermore, fitting an LMM that utilized a genetic-analysis group rather than a self-identified background group achieved higher power to detect previously reported associations. We expect that the methods applied here will be useful in other studies with multiple ethnic groups, admixture, and relatedness. PMID:26748518

  1. Model-based conservation planning of the genetic diversity of Phellodendron amurense Rupr due to climate change

    PubMed Central

    Wan, Jizhong; Wang, Chunjing; Yu, Jinghua; Nie, Siming; Han, Shijie; Zu, Yuangang; Chen, Changmei; Yuan, Shusheng; Wang, Qinggui

    2014-01-01

    Climate change affects both habitat suitability and the genetic diversity of wild plants. Therefore, predicting and establishing the most effective and coherent conservation areas is essential for the conservation of genetic diversity in response to climate change. This is because genetic variance is a product not only of habitat suitability in conservation areas but also of efficient protection and management. Phellodendron amurense Rupr. is a tree species (family Rutaceae) that is endangered due to excessive and illegal harvesting for use in Chinese medicine. Here, we test a general computational method for the prediction of priority conservation areas (PCAs) by measuring the genetic diversity of P. amurense across the entirety of northeast China using a single strand repeat analysis of twenty microsatellite markers. Using computational modeling, we evaluated the geographical distribution of the species, both now and in different future climate change scenarios. Different populations were analyzed according to genetic diversity, and PCAs were identified using a spatial conservation prioritization framework. These conservation areas were optimized to account for the geographical distribution of P. amurense both now and in the future, to effectively promote gene flow, and to have a long period of validity. In situ and ex situ conservation, strategies for vulnerable populations were proposed. Three populations with low genetic diversity are predicted to be negatively affected by climate change, making conservation of genetic diversity challenging due to decreasing habitat suitability. Habitat suitability was important for the assessment of genetic variability in existing nature reserves, which were found to be much smaller than the proposed PCAs. Finally, a simple set of conservation measures was established through modeling. This combined molecular and computational ecology approach provides a framework for planning the protection of species endangered by climate

  2. GENETIC DIVERSITY AND THE ORIGINS OF CULTURAL FRAGMENTATION

    PubMed Central

    Ashraf, Quamrul; Galor, Oded

    2013-01-01

    Despite the importance attributed to the effects of diversity on the stability and prosperity of nations, the origins of the uneven distribution of ethnic and cultural fragmentation across countries have been underexplored. Building on the role of deeply-rooted biogeographical forces in comparative development, this research empirically demonstrates that genetic diversity, predominantly determined during the prehistoric “out of Africa” migration of humans, is an underlying cause of various existing manifestations of ethnolinguistic heterogeneity. Further exploration of this uncharted territory may revolutionize the understanding of the effects of deeply-rooted factors on economic development and the composition of human capital across the globe. PMID:25506084

  3. Genetic diversity of Y-short tandem repeats in Chinese native cattle breeds.

    PubMed

    Xin, Y P; Zan, L S; Liu, Y F; Tian, W Q; Wang, H B; Cheng, G; Li, A N; Yang, W C

    2014-11-14

    The aim of this study is to use Y-chromosome gene polymorphism method to investigate regional differences in genetic variation and population evolution history of the Chinese native cattle breeds. Six Y-chromosome short tandem repeat (Y-STR) loci (UMN0929, UMN0108, UMN0920, INRA124, UMN2404, and UMN0103) were analyzed using 1016 healthy and heterogenetic males and 90 females of 9 native cattle breeds (Qinchuan, Jinnan, Zaosheng, Luxi, Nanyang, Jiaxian, Dabieshan, Yanbian, and Menggu) in China. Allele frequency and gene diversity were calculated for the various populations. The results indicated that Y-STRs in the 6 loci have polymorphisms and genetic diversity in Chinese cattle populations. The genetic diversity analysis revealed that the Chinese cattle populations have a close genetic relationship. The analysis of INRA124, UMN2404, and UMN0103 loci revealed the original history of Chinese cattle because of which cattle belonging to Bos taurus or Bos indicus could be determined. Interestingly, a declining zebu introgression was displayed from South to North and from East to West in the Chinese geographical distribution, which implied that cattle population from various regions of China had been subjected to somewhat different evolutionary history. This conclusion supported other evidences such as earlier archaeological, historical research, and blood protein polymorphism analysis.

  4. African genetic diversity provides novel insights into evolutionary history and local adaptations.

    PubMed

    Choudhury, Ananyo; Aron, Shaun; Sengupta, Dhriti; Hazelhurst, Scott; Ramsay, Michèle

    2018-05-08

    Genetic variation and susceptibility to disease are shaped by human demographic history. We can now study the genomes of extant Africans and uncover traces of population migration, admixture, assimilation and selection by applying sophisticated computational algorithms. There are four major ethnolinguistic divisions among present day Africans: Hunter-gatherer populations in southern and central Africa; Nilo-Saharan speakers from north and northeast Africa; Afro-Asiatic speakers from east Africa; and Niger-Congo speakers who are the predominant ethnolinguistic group spread across most of sub-Saharan Africa. The enormous ethnolinguistic diversity in sub-Saharan African populations is largely paralleled by extensive genetic diversity and until a decade ago, little was known about the origins and divergence of these groups. Results from large-scale population genetic studies, and more recently whole genome sequence data, are unraveling the critical role of events like migration and admixture and environment factors including diet, infectious diseases and climatic conditions in shaping current population diversity. It is now possible to start providing quantitative estimates of divergence times, population size and dynamic processes that have affected populations and their genetic risk for disease. Finally, the availability of ancient genomes from Africa is providing historical insights of unprecedented depth. In this review, we highlight some key interpretations that have emerged from recent African genome studies.

  5. Genetic diversity in Oryza glumaepatula wild rice populations in Costa Rica and possible gene flow from O. sativa.

    PubMed

    Fuchs, Eric J; Meneses Martínez, Allan; Calvo, Amanda; Muñoz, Melania; Arrieta-Espinoza, Griselda

    2016-01-01

    Wild crop relatives are an important source of genetic diversity for crop improvement. Diversity estimates are generally lacking for many wild crop relatives. The objective of the present study was to analyze how genetic diversity is distributed within and among populations of the wild rice species Oryza glumaepatula in Costa Rica. We also evaluated the likelihood of gene flow between wild and commercial rice species because the latter is commonly sympatric with wild rice populations. Introgression may change wild species by incorporating alleles from domesticated species, increasing the risk of losing original variation. Specimens from all known O. glumaepatula populations in Costa Rica were analyzed with 444 AFLP markers to characterize genetic diversity and structure. We also compared genetic diversity estimates between O. glumaepatula specimens and O. sativa commercial rice. Our results showed that O. glumaepatula populations in Costa Rica have moderately high levels of genetic diversity, comparable to those found in South American populations. Despite the restricted distribution of this species in Costa Rica, populations are fairly large, reducing the effects of drift on genetic diversity. We found a dismissible but significant structure (θ = 0.02 ± 0.001) among populations. A Bayesian structure analysis suggested that some individuals share a significant proportion of their genomes with O. sativa. These results suggest that gene flow from cultivated O. sativa populations may have occurred in the recent past. These results expose an important biohazard: recurrent hybridization may reduce the genetic diversity of this wild rice species. Introgression may transfer commercial traits into O. glumaepatula, which in turn could alter genetic diversity and increase the likelihood of local extinction. These results have important implications for in situ conservation strategies of the only wild populations of O. glumaepatula in Costa Rica.

  6. Genetic diversity in Oryza glumaepatula wild rice populations in Costa Rica and possible gene flow from O. sativa

    PubMed Central

    Meneses Martínez, Allan; Calvo, Amanda; Muñoz, Melania

    2016-01-01

    Wild crop relatives are an important source of genetic diversity for crop improvement. Diversity estimates are generally lacking for many wild crop relatives. The objective of the present study was to analyze how genetic diversity is distributed within and among populations of the wild rice species Oryza glumaepatula in Costa Rica. We also evaluated the likelihood of gene flow between wild and commercial rice species because the latter is commonly sympatric with wild rice populations. Introgression may change wild species by incorporating alleles from domesticated species, increasing the risk of losing original variation. Specimens from all known O. glumaepatula populations in Costa Rica were analyzed with 444 AFLP markers to characterize genetic diversity and structure. We also compared genetic diversity estimates between O. glumaepatula specimens and O. sativa commercial rice. Our results showed that O. glumaepatula populations in Costa Rica have moderately high levels of genetic diversity, comparable to those found in South American populations. Despite the restricted distribution of this species in Costa Rica, populations are fairly large, reducing the effects of drift on genetic diversity. We found a dismissible but significant structure (θ = 0.02 ± 0.001) among populations. A Bayesian structure analysis suggested that some individuals share a significant proportion of their genomes with O. sativa. These results suggest that gene flow from cultivated O. sativa populations may have occurred in the recent past. These results expose an important biohazard: recurrent hybridization may reduce the genetic diversity of this wild rice species. Introgression may transfer commercial traits into O. glumaepatula, which in turn could alter genetic diversity and increase the likelihood of local extinction. These results have important implications for in situ conservation strategies of the only wild populations of O. glumaepatula in Costa Rica. PMID:27077002

  7. Large-scale longitudinal gradients of genetic diversity: a meta-analysis across six phyla in the Mediterranean basin

    PubMed Central

    Conord, Cyrille; Gurevitch, Jessica; Fady, Bruno

    2012-01-01

    Biodiversity is the diversity of life at all scales, from genes to ecosystems. Predicting its patterns of variation across the globe is a fundamental issue in ecology and evolution. Diversity within species, that is, genetic diversity, is of prime importance for understanding past and present evolutionary patterns, and highlighting areas where conservation might be a priority. Using published data on the genetic diversity of species whose populations occur in the Mediterranean basin, we calculated a coefficient of correlation between within-population genetic diversity indices and longitude. Using a meta-analysis framework, we estimated the role of biological, ecological, biogeographic, and marker type factors on the strength and magnitude of this correlation in six phylla. Overall, genetic diversity increases from west to east in the Mediterranean basin. This correlation is significant for both animals and plants, but is not uniformly expressed for all groups. It is stronger in the southern than in the northern Mediterranean, in true Mediterranean plants than in plants found at higher elevations, in trees than in other plants, and in bi-parentally and paternally than in maternally inherited DNA makers. Overall, this correlation between genetic diversity and longitude, and its patterns across biological and ecological traits, suggests the role of two non-mutually exclusive major processes that shaped the genetic diversity in the Mediterranean during and after the cold periods of the Pleistocene: east-west recolonization during the Holocene and population size contraction under local Last Glacial Maximum climate in resident western and low elevation Mediterranean populations. PMID:23145344

  8. Population structure and genetic diversity of the amphiatlantic haploid peatmoss Sphagnum affine (Sphagnopsida).

    PubMed

    Thingsgaard, K

    2001-10-01

    Nineteen populations of Sphagnum affine were included in a study of genetic diversity and structure in fragmented and less fragmented landscapes, and differentiation at intercontinental and three regional levels. Isozyme electrophoresis of eight enzyme systems revealed 12 variable loci, which could be used for haplotype identification. A hierachical analysis of variance (AMOVA) revealed no significant intercontinental differentiation, and very limited differentiation among European regions. A trend of decreasing diversity with increasing latitude was apparent. Gametic phase disequilibria was high, suggesting nonrandom mating and regionally high incidences of inbreeding. The partitioning of genetic variation within and among populations in each region varied among regions, the northernmost populations having 86% of the total variation among populations, the southernmost in Scandinavia having 25% of the variation among populations, whereas the American populations displayed 89% of the variation within populations. Fifteen alleles at eight loci occurred in the U.S.A. which were not encountered in Europe, whereas only three European alleles at one locus in three populations were not encountered in U.S.A. The differences in diversity between North America and Europe may result from loss of genetic diversity caused by founder effects during postglacial recolonization of northern Europe. In Europe, the main mountain ranges extend E-W, posing severe barriers to northwards migration of lowland species, compared to the N-S trend of mountain ranges in North America. The decline in genetic diversity and increase in population differentiation and gametic phase disequilibria towards the north in Scandinavia may be caused by a series of founder effects during postglacial migration. These may have corresponded to minor climatic oscillations that influenced the migration front/leading edge in the suboceanic lowlands of Norway. According to this model random genetic drift will be an

  9. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats.

    PubMed

    Towner, Jonathan S; Amman, Brian R; Sealy, Tara K; Carroll, Serena A Reeder; Comer, James A; Kemp, Alan; Swanepoel, Robert; Paddock, Christopher D; Balinandi, Stephen; Khristova, Marina L; Formenty, Pierre B H; Albarino, Cesar G; Miller, David M; Reed, Zachary D; Kayiwa, John T; Mills, James N; Cannon, Deborah L; Greer, Patricia W; Byaruhanga, Emmanuel; Farnon, Eileen C; Atimnedi, Patrick; Okware, Samuel; Katongole-Mbidde, Edward; Downing, Robert; Tappero, Jordan W; Zaki, Sherif R; Ksiazek, Thomas G; Nichol, Stuart T; Rollin, Pierre E

    2009-07-01

    In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus) based on detection of Marburg virus RNA in 31/611 (5.1%) bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans.

  10. High genetic diversity in a small population: the case of Chilean blue whales

    PubMed Central

    Torres-Florez, Juan P; Hucke-Gaete, Rodrigo; Rosenbaum, Howard; Figueroa, Christian C

    2014-01-01

    It is generally assumed that species with low population sizes have lower genetic diversities than larger populations and vice versa. However, this would not be the case for long-lived species with long generation times, and which populations have declined due to anthropogenic effects, such as the blue whale (Balaenoptera musculus). This species was intensively decimated globally to near extinction during the 20th century. Along the Chilean coast, it is estimated that at least 4288 blue whales were hunted from an apparently pre-exploitation population size (k) of a maximum of 6200 individuals (Southeastern Pacific). Thus, here, we describe the mtDNA (control region) and nDNA (microsatellites) diversities of the Chilean blue whale aggregation site in order to verify the expectation of low genetic diversity in small populations. We then compare our findings with other blue whale aggregations in the Southern Hemisphere. Interestingly, although the estimated population size is small compared with the pre-whaling era, there is still considerable genetic diversity, even after the population crash, both in mitochondrial (N = 46) and nuclear (N = 52) markers (Hd = 0.890 and Ho = 0.692, respectively). Our results suggest that this diversity could be a consequence of the long generation times and the relatively short period of time elapsed since the end of whaling, which has been observed in other heavily-exploited whale populations. The genetic variability of blue whales on their southern Chile feeding grounds was similar to that found in other Southern Hemisphere blue whale feeding grounds. Our phylogenetic analysis of mtDNA haplotypes does not show extensive differentiation of populations among Southern Hemisphere blue whale feeding grounds. The present study suggests that although levels of genetic diversity are frequently used as estimators of population health, these parameters depend on the biology of the species and should be taken into account in a

  11. Males and Females Contribute Unequally to Offspring Genetic Diversity in the Polygynandrous Mating System of Wild Boar

    PubMed Central

    Pérez-González, Javier; Costa, Vânia; Santos, Pedro; Slate, Jon; Carranza, Juan; Fernández-Llario, Pedro; Zsolnai, Attila; Monteiro, Nuno M.; Anton, István; Buzgó, József; Varga, Gyula; Beja-Pereira, Albano

    2014-01-01

    The maintenance of genetic diversity across generations depends on both the number of reproducing males and females. Variance in reproductive success, multiple paternity and litter size can all affect the relative contributions of male and female parents to genetic variation of progeny. The mating system of the wild boar (Sus scrofa) has been described as polygynous, although evidence of multiple paternity in litters has been found. Using 14 microsatellite markers, we evaluated the contribution of males and females to genetic variation in the next generation in independent wild boar populations from the Iberian Peninsula and Hungary. Genetic contributions of males and females were obtained by distinguishing the paternal and maternal genetic component inherited by the progeny. We found that the paternally inherited genetic component of progeny was more diverse than the maternally inherited component. Simulations showed that this finding might be due to a sampling bias. However, after controlling for the bias by fitting both the genetic diversity in the adult population and the number of reproductive individuals in the models, paternally inherited genotypes remained more diverse than those inherited maternally. Our results suggest new insights into how promiscuous mating systems can help maintain genetic variation. PMID:25541986

  12. Assessing the functionality and genetic diversity of lactococcal prophages.

    PubMed

    Kelleher, Philip; Mahony, Jennifer; Schweinlin, Katharina; Neve, Horst; Franz, Charles M; van Sinderen, Douwe

    2018-05-02

    Lactococcus lactis is a lactic acid bacterium that is intensively and globally exploited in commercial dairy food fermentations. Though the presence of prophages in lactococcal genomes is widely reported, only limited studies pertaining to the stability of prophages in lactococcal genomes have been performed. The current study reports on the complete genome exploration of thirty lactococcal strains for the presence of potentially intact prophages, so as to assess their genomic diversity and the associated risk or benefit of harbouring such prophages. Genomic predictions partnered with mitomycin C inductions and flow cytometric analysis of the induced cell lysates confirmed that only four strains consistently produced intact phage particles, thus indicating a relatively low risk associated with prophage induction in the fermentation setting. Our analysis revealed the widespread presence of putative phage-resistance systems encoded by lactococcal prophages, thus highlighting the potential benefits for host fitness. Many of the identified lactococcal prophages belong to the so-called P335 phage group, while a large group of phage remnants bear similarity to members of the 936 phage group. The P335 phage group was recently shown to encompass four distinct genetic lineages. Our study identified an additional lineage, thus expanding the diversity of this industrially significant phage group. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Identification of genetically diverse genotypes for photoperiod insensitivity in soybean using RAPD markers.

    PubMed

    Singh, R K; Bhatia, V S; Yadav, Sanjeev; Athale, Rashmi; Lakshmi, N; Guruprasad, K N; Chauhan, G S

    2008-10-01

    Most of the Indian soybean varieties were found to be highly sensitive to photoperiod, which limits their cultivation in only localized area. Identification of genetically diverse source of photoperiod insensitive would help to broaden the genetic base for this trait. Present study was undertaken with RAPD markers for genetic diversity estimation in 44 accessions of soybean differing in response to photoperiod sensitivity. The selected twenty-five RAPD primers produced a total of 199 amplicons, which generated 89.9 % polymorphism. The number of amplification products ranged from 2 to 13 for different primers. The polymorphism information content ranged from 0.0 for monomorphic loci to 0.5 with an average of 0.289. Genetic diversity between pairs of genotypes was 37.7% with a range of 3.9 to 71.6%. UPGMA cluster analysis placed all the accessions of soybean into four major clusters. No discernable geographical patterns were observed in clustering however; the smaller groups corresponded well with pedigree. Mantel's test (r = 0.915) indicates very good fit for clustering pattern. Two genotypes, MACS 330 and 111/2/1939 made a very divergent group from other accessions of soybean and highly photoperiod insensitive that may be potential source for broadening the genetic base of soybean for this trait.

  14. Assessing the impact of breeding strategies on inherited disorders and genetic diversity in dogs.

    PubMed

    Leroy, Grégoire; Rognon, Xavier

    2012-12-01

    In the context of management of genetic diversity and control of genetic disorders within dog breeds, a method is proposed for assessing the impact of different breeding strategies that takes into account the genealogical information specific to a given breed. Two types of strategies were investigated: (1) eradication of an identified monogenic recessive disorder, taking into account three different mating limitations and various initial allele frequencies; and (2) control of the population sire effect by limiting the number of offspring per reproducer. The method was tested on four dog breeds: Braque Saint Germain, Berger des Pyrénées, Coton de Tulear and Epagneul Breton. Breeding policies, such as the removal of all carriers from the reproduction pool, may have a range of effects on genetic diversity, depending on the breed and the frequency of deleterious alleles. Limiting the number of offspring per reproducer may also have a positive impact on genetic diversity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Genetic diversity of Clostridium perfringens type A isolates from animals, food poisoning outbreaks and sludge

    PubMed Central

    Johansson, Anders; Aspan, Anna; Bagge, Elisabeth; Båverud, Viveca; Engström, Björn E; Johansson, Karl-Erik

    2006-01-01

    Background Clostridium perfringens, a serious pathogen, causes enteric diseases in domestic animals and food poisoning in humans. The epidemiological relationship between C. perfringens isolates from the same source has previously been investigated chiefly by pulsed-field gel electrophoresis (PFGE). In this study the genetic diversity of C. perfringens isolated from various animals, from food poisoning outbreaks and from sludge was investigated. Results We used PFGE to examine the genetic diversity of 95 C. perfringens type A isolates from eight different sources. The isolates were also examined for the presence of the beta2 toxin gene (cpb2) and the enterotoxin gene (cpe). The cpb2 gene from the 28 cpb2-positive isolates was also partially sequenced (519 bp, corresponding to positions 188 to 706 in the consensus cpb2 sequence). The results of PFGE revealed a wide genetic diversity among the C. perfringens type A isolates. The genetic relatedness of the isolates ranged from 58 to 100% and 56 distinct PFGE types were identified. Almost all clusters with similar patterns comprised isolates with a known epidemiological correlation. Most of the isolates from pig, horse and sheep carried the cpb2 gene. All isolates originating from food poisoning outbreaks carried the cpe gene and three of these also carried cpb2. Two evolutionary different populations were identified by sequence analysis of the partially sequenced cpb2 genes from our study and cpb2 sequences previously deposited in GenBank. Conclusion As revealed by PFGE, there was a wide genetic diversity among C. perfringens isolates from different sources. Epidemiologically related isolates showed a high genetic similarity, as expected, while isolates with no obvious epidemiological relationship expressed a lesser degree of genetic similarity. The wide diversity revealed by PFGE was not reflected in the 16S rRNA sequences, which had a considerable degree of sequence similarity. Sequence comparison of the partially

  16. Genetic structure and diversity of indigenous rice (Oryza sativa) varieties in the Eastern Himalayan region of Northeast India.

    PubMed

    Choudhury, Baharul; Khan, Mohamed Latif; Dayanandan, Selvadurai

    2013-12-01

    The Eastern Himalayan region of Northeast (NE) India is home to a large number of indigenous rice varieties, which may serve as a valuable genetic resource for future crop improvement to meet the ever-increasing demand for food production. However, these varieties are rapidly being lost due to changes in land-use and agricultural practices, which favor agronomically improved varieties. A detailed understanding of the genetic structure and diversity of indigenous rice varieties is crucial for efficient utilization of rice genetic resources and for developing suitable conservation strategies. To explore the genetic structure and diversity of rice varieties in NE India, we genotyped 300 individuals of 24 indigenous rice varieties representing sali, boro, jum and glutinous types, 5 agronomically improved varieties, and one wild rice species (O. rufipogon) using seven SSR markers. A total of 85 alleles and a very high level of gene diversity (0.776) were detected among the indigenous rice varieties of the region. Considerable level of genetic variation was found within indigenous varieties whereas improved varieties were monoporphic across all loci. The comparison of genetic diversity among different types of rice revealed that sali type possessed the highest gene diversity (0.747) followed by jum (0.627), glutinous (0.602) and boro (0.596) types of indigenous rice varieties, while the lowest diversity was detected in agronomically improved varieties (0.459). The AMOVA results showed that 66% of the variation was distributed among varieties indicating a very high level of genetic differentiation in rice varieties in the region. Two major genetically defined clusters corresponding to indica and japonica groups were detected in rice varieties of the region. Overall, traditionally cultivated indigenous rice varieties in NE India showed high levels of genetic diversity comparable to levels of genetic diversity reported from wild rice populations in various parts of the

  17. Genetic diversity and structure of Brazilian ginger germplasm (Zingiber officinale) revealed by AFLP markers.

    PubMed

    Blanco, Eleonora Zambrano; Bajay, Miklos Maximiliano; Siqueira, Marcos Vinícius Bohrer Monteiro; Zucchi, Maria Imaculada; Pinheiro, José Baldin

    2016-12-01

    Ginger is a vegetable with medicinal and culinary properties widely cultivated in the Southern and Southeastern Brazil. The knowledge of ginger species' genetic variability is essential to direct correctly future studies of conservation and genetic improvement, but in Brazil, little is known about this species' genetic variability. In this study, we analyzed the genetic diversity and structure of 55 Brazilian accessions and 6 Colombian accessions of ginger, using AFLP (Amplified Fragment Length Polymorphism) molecular markers. The molecular characterization was based on 13 primers combinations, which generated an average of 113.5 polymorphic loci. The genetic diversity estimates of Nei (Hj), Shannon-Weiner index (I) and an effective number of alleles (n e ) were greater in the Colombian accessions in relation to the Brazilian accessions. The analysis of molecular variance showed that most of the genetic variation occurred between the two countries while in the Brazilian populations there is no genetic structure and probably each region harbors 100 % of genetic variation found in the samples. The bayesian model-based clustering and the dendrogram using the dissimilarity's coefficient of Jaccard were congruent with each other and showed that the Brazilian accessions are highly similar between themselves, regardless of the geographic region of origin. We suggested that the exploration of the interspecific variability and the introduction of new varieties of Z.officinale are viable alternatives for generating diversity in breeding programs in Brazil. The introduction of new genetic materials will certainly contribute to a higher genetic basis of such crop.

  18. Comparative genetic diversity of Lyme disease bacteria in Northern Californian ticks and their vertebrate hosts.

    PubMed

    Swei, Andrea; Bowie, Verna C; Bowie, Rauri C K

    2015-04-01

    Vector-borne pathogens are transmitted between vertebrate hosts and arthropod vectors, two immensely different environments for the pathogen. There is further differentiation among vertebrate hosts that often have complex, species-specific immunological responses to the pathogen. All this presents a heterogeneous environmental and immunological landscape with possible consequences on the population genetic structure of the pathogen. We evaluated the differential genetic diversity of the Lyme disease pathogen, Borrelia burgdorferi, in its vector, the western black-legged tick (Ixodes pacificus), and in its mammal host community using the 5S-23S rRNA intergenic spacer region. We found differences in haplotype distribution of B. burgdorferi in tick populations from two counties in California as well as between a sympatric tick and vertebrate host community. In addition, we found that three closely related haplotypes consistently occurred in high frequency in all sample types. Lastly, our study found lower species diversity of the B. burgdorferi species complex, known as B. burgdorferi sensu lato, in small mammal hosts versus the tick populations in a sympatric study area. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Genetic diversity analysis of cultivated Korarima [Aframomum corrorima (Braun) P.C.M. Jansen] populations from southwestern Ethiopia using inter simple sequence repeats (ISSR) marker.

    PubMed

    Chombe, Dagmawit; Bekele, Endashaw

    2018-12-01

    Korarima ( Aframomum corrorima ) is a perennial and aromatic herb native and widely distributed in southwestern Ethiopia. It is known for its fine flavor as a spice in various Ethiopian traditional dishes. Few molecular studies have been performed on this species so far. In the present paper, the ISSR technique was employed to study the genetic diversity in populations of cultivated A. corrorima . Seven ISSR primers produced a total of 86 clearly scorable DNA bands. High levels of genetic diversity were detected in cultivated A. corrorima (percentage of polymorphic bands = 97.67%, gene diversity = 0.35, Shannon's information index = 0.52). Analysis of molecular variance (AMOVA) showed that 27.47% of the variation is attributed to the variation among populations and 72.53% to the variation within populations. The F st (0.28) value showed a significant ( p  < 0.0001) genetic differentiation among populations. This was supported by the high coefficient of gene differentiation (G st  = 0.32) and low estimated gene flow (Nm = 1.08). A neighbor-joining dendrogram showed that the thirteen cultivated populations were separated into three clusters, which was in good accordance with the results provided by the two dimensional and three dimensional coordinate analyses. However, the clusters did not reveal clear pattern of populations clustering according to their geographic origin. This could be due to human mediated transfer of genetic material among different localities. The genetic diversity in populations of A. corrorima from the southwestern part of Ethiopia was relatively high. This finding should be taken into account when conservation actions, management policies for the species and site identification for in situ and ex situ conservation strategies are developed. Mizan Teferi II population displayed the highest genetic diversity; this population should be considered as the key site in designing conservation strategies for this crop. In addition, Jimma I

  20. [Age structure and genetic diversity of Homatula pycnolepis in the Nujiang River basin].

    PubMed

    Yue, Xing-Jian; Liu, Shao-Ping; Liu, Ming-Dian; Duan, Xin-Bin; Wang, Deng-Qiang; Chen, Da-Qing

    2013-08-01

    This study examined the age structure of the Loach, Homatula pycnolepis through the otolith growth rings in 204 individual specimens collected from the Xiaomengtong River of the Nujiang River (Salween River) basin in April, 2008. There were only two different age classes, 1 and 2 years of age-no 3 year olds were detected. The age structure of H. pycnolepis was simple. The complete mitochondrial DNA cytochrome b gene sequences (1140) of 80 individuals from 4 populations collected in the Nujiang River drainage were sequenced and a total of 44 variable sites were found among 4 different haplotypes. The global haplotype diversity (Hd) and nucleotide diversity (Pi) were calculated at 0.7595, 0.0151 respectively, and 0, 0 in each population, indicating a consistent lack of genetic diversity in each small population. There was obvious geographic structure in both the Nujiang River basin (NJB) group, and the Nanding River (NDR) group. The genetic distance between NJB and NDR was calculated at 0.0356, suggesting that genetic divergence resulted from long-term isolation of individual population. Such a simple age structure and a lack of genetic diversity in H. pycnolepis may potentially be due to small populations and locale fishing pressures. Accordingly, the results of this study prompt us to recommend that the NJB, NDR and Lancang River populations should be protected as three different evolutionary significant units or separated management units.

  1. Conservation of Eelgrass (Zostera marina) Genetic Diversity in a Mesocosm-Based Restoration Experiment

    PubMed Central

    Ort, Brian S.; Cohen, C. Sarah; Boyer, Katharyn E.; Reynolds, Laura K.; Tam, Sheh May; Wyllie-Echeverria, Sandy

    2014-01-01

    Eelgrass (Zostera marina) forms the foundation of an important shallow coastal community in protected estuaries and bays. Widespread population declines have stimulated restoration efforts, but these have often overlooked the importance of maintaining the evolutionary potential of restored populations by minimizing the reduction in genetic diversity that typically accompanies restoration. In an experiment simulating a small-scale restoration, we tested the effectiveness of a buoy-deployed seeding technique to maintain genetic diversity comparable to the seed source populations. Seeds from three extant source populations in San Francisco Bay were introduced into eighteen flow-through baywater mesocosms. Following seedling establishment, we used seven polymorphic microsatellite loci to compare genetic diversity indices from 128 shoots to those found in the source populations. Importantly, allelic richness and expected heterozygosity were not significantly reduced in the mesocosms, which also preserved the strong population differentiation present among source populations. However, the inbreeding coefficient F IS was elevated in two of the three sets of mesocosms when they were grouped according to their source population. This is probably a Wahlund effect from confining all half-siblings within each spathe to a single mesocosm, elevating F IS when the mesocosms were considered together. The conservation of most alleles and preservation of expected heterozygosity suggests that this seeding technique is an improvement over whole-shoot transplantation in the conservation of genetic diversity in eelgrass restoration efforts. PMID:24586683

  2. Conservation of eelgrass (Zostera marina) genetic diversity in a mesocosm-based restoration experiment.

    PubMed

    Ort, Brian S; Cohen, C Sarah; Boyer, Katharyn E; Reynolds, Laura K; Tam, Sheh May; Wyllie-Echeverria, Sandy

    2014-01-01

    Eelgrass (Zostera marina) forms the foundation of an important shallow coastal community in protected estuaries and bays. Widespread population declines have stimulated restoration efforts, but these have often overlooked the importance of maintaining the evolutionary potential of restored populations by minimizing the reduction in genetic diversity that typically accompanies restoration. In an experiment simulating a small-scale restoration, we tested the effectiveness of a buoy-deployed seeding technique to maintain genetic diversity comparable to the seed source populations. Seeds from three extant source populations in San Francisco Bay were introduced into eighteen flow-through baywater mesocosms. Following seedling establishment, we used seven polymorphic microsatellite loci to compare genetic diversity indices from 128 shoots to those found in the source populations. Importantly, allelic richness and expected heterozygosity were not significantly reduced in the mesocosms, which also preserved the strong population differentiation present among source populations. However, the inbreeding coefficient F IS was elevated in two of the three sets of mesocosms when they were grouped according to their source population. This is probably a Wahlund effect from confining all half-siblings within each spathe to a single mesocosm, elevating F IS when the mesocosms were considered together. The conservation of most alleles and preservation of expected heterozygosity suggests that this seeding technique is an improvement over whole-shoot transplantation in the conservation of genetic diversity in eelgrass restoration efforts.

  3. Genetic Diversity of an Imperiled Neotropical Catfish and Recommendations for Its Restoration

    PubMed Central

    Fonseca, Fernando S.; Domingues, Rodrigo R.; Hallerman, Eric M.; Hilsdorf, Alexandre W. S.

    2017-01-01

    The long-whiskered catfish Steindachneridion parahybae (Family Pimelodidae) is endemic to the Paraíba do Sul River basin in southeastern Brazil. This species was heavily exploited by artisanal fisheries and faces challenges posed by dams, introduced species, and deterioration of critical habitat. The remaining populations are small and extirpated from some locales, and the species is listed as critically endangered in Brazil. Screening variation at a partial mitochondrial control region sequence (mtCR) and 20 microsatellite loci, we: (i) describe the patterns of genetic diversity along its current distributional range; (ii) test the null hypothesis of panmixia; (iii) investigate the main factors driving its current population structure, and (iv) propose management of broodstock for fostering recovery of wild populations through genetically cognizant restocking. Our microsatellite data for 70 individuals from five collections indicate moderate levels of heterozygosity (HO = 0.45) and low levels of inbreeding (FIS = 0.016). Individual-based cluster analyses showed clear genetic structure, with three clusters of individuals over the collection area with no mis-assigned individuals, suggesting no recent migration among the three clusters. Pairwise DEST values showed moderate and significant genetic differentiation among all populations so identified. The MUR population may have suffered a recent demographic reduction. mtCRs for 70 individuals exhibited 36 haplotypes resulting from 38 polymorphic sites. Overall, mitochondrial haplotype diversity was 0.930 (±0.023) and nucleotide diversity was 0.011 (±0.002). Significant population structure was observed, with ϕST = 0.226. Genetic markers could be used in a hatchery-based restoration program emphasizing breeding of pairs with low kinship values in order to promote retention of genetic diversity and avoid inbreeding. Individual average kinship relationships showed 87.3% advised matings, 11.0% marginal matings, and 1

  4. Multiple introductions boosted genetic diversity in the invasive range of black cherry (Prunus serotina; Rosaceae)

    PubMed Central

    Pairon, Marie; Petitpierre, Blaise; Campbell, Michael; Guisan, Antoine; Broennimann, Olivier; Baret, Philippe V.; Jacquemart, Anne-Laure; Besnard, Guillaume

    2010-01-01

    Background and Aims Black cherry (Prunus serotina) is a North American tree that is rapidly invading European forests. This species was introduced first as an ornamental plant then it was massively planted by foresters in many countries but its origins and the process of invasion remain poorly documented. Based on a genetic survey of both native and invasive ranges, the invasion history of black cherry was investigated by identifying putative source populations and then assessing the importance of multiple introductions on the maintenance of gene diversity. Methods Genetic variability and structure of 23 populations from the invasive range and 22 populations from the native range were analysed using eight nuclear microsatellite loci and five chloroplast DNA regions. Key Results Chloroplast DNA diversity suggests there were multiple introductions from a single geographic region (the north-eastern United States). A low reduction of genetic diversity was observed in the invasive range for both nuclear and plastid genomes. High propagule pressure including both the size and number of introductions shaped the genetic structure in Europe and boosted genetic diversity. Populations from Denmark, The Netherlands, Belgium and Germany showed high genetic diversity and low differentiation among populations, supporting the hypothesis that numerous introduction events, including multiple individuals and exchanges between sites, have taken place during two centuries of plantation. Conclusions This study postulates that the invasive black cherry has originated from east of the Appalachian Mountains (mainly the Allegheny plateau) and its invasiveness in north-western Europe is mainly due to multiple introductions containing high numbers of individuals. PMID:20400456

  5. Evidence of two genetic clusters of manatees with low genetic diversity in Mexico and implications for their conservation.

    PubMed

    Nourisson, Coralie; Morales-Vela, Benjamín; Padilla-Saldívar, Janneth; Tucker, Kimberly Pause; Clark, Annmarie; Olivera-Gómez, Leon David; Bonde, Robert; McGuire, Peter

    2011-07-01

    The Antillean manatee (Trichechus manatus manatus) occupies the tropical coastal waters of the Greater Antilles and Caribbean, extending from Mexico along Central and South America to Brazil. Historically, manatees were abundant in Mexico, but hunting during the pre-Columbian period, the Spanish colonization and throughout the history of Mexico, has resulted in the significantly reduced population occupying Mexico today. The genetic structure, using microsatellites, shows the presence of two populations in Mexico: the Gulf of Mexico (GMx) and Chetumal Bay (ChB) on the Caribbean coast, with a zone of admixture in between. Both populations show low genetic diversity (GMx: N(A) = 2.69; H(E) = 0.41 and ChB: N(A) = 3.0; H(E) = 0.46). The lower genetic diversity found in the GMx, the largest manatee population in Mexico, is probably due to a combination of a founder effect, as this is the northern range of the sub-species of T. m. manatus, and a bottleneck event. The greater genetic diversity observed along the Caribbean coast, which also has the smallest estimated number of individuals, is possibly due to manatees that come from the GMx and Belize. There is evidence to support limited or unidirectional gene flow between these two important areas. The analyses presented here also suggest minimal evidence of a handful of individual migrants possibly between Florida and Mexico. To address management issues we suggest considering two distinct genetic populations in Mexico, one along the Caribbean coast and one in the riverine systems connected to the GMx.

  6. Evidence of two genetic clusters of manatees with low genetic diversity in Mexico and implications for their conservation

    USGS Publications Warehouse

    Nourisson, C.; Morales-Vela, B.; Padilla-Saldivar, J.; Tucker, K.P.; Clark, A.; Olivera-Gomez, L. D.; Bonde, R.; McGuire, P.

    2011-01-01

    The Antillean manatee (Trichechus manatus manatus) occupies the tropical coastal waters of the Greater Antilles and Caribbean, extending from Mexico along Central and South America to Brazil. Historically, manatees were abundant in Mexico, but hunting during the pre-Columbian period, the Spanish colonization and throughout the history of Mexico, has resulted in the significantly reduced population occupying Mexico today. The genetic structure, using microsatellites, shows the presence of two populations in Mexico: the Gulf of Mexico (GMx) and Chetumal Bay (ChB) on the Caribbean coast, with a zone of admixture in between. Both populations show low genetic diversity (GMx: NA=2.69; HE=0.41 and ChB: NA=3.0; HE=0.46). The lower genetic diversity found in the GMx, the largest manatee population in Mexico, is probably due to a combination of a founder effect, as this is the northern range of the sub-species of T. m. manatus, and a bottleneck event. The greater genetic diversity observed along the Caribbean coast, which also has the smallest estimated number of individuals, is possibly due to manatees that come from the GMx and Belize. There is evidence to support limited or unidirectional gene flow between these two important areas. The analyses presented here also suggest minimal evidence of a handful of individual migrants possibly between Florida and Mexico. To address management issues we suggest considering two distinct genetic populations in Mexico, one along the Caribbean coast and one in the riverine systems connected to the GMx. ?? 2011 Springer Science+Business Media B.V.

  7. Evidence of two genetic clusters of manatees with low genetic diversity in Mexico and implications for their conservation

    USGS Publications Warehouse

    Nourisson, Coralie; Morales-Vela, Benjamin; Padilla-Saldivar, Janneth; Tucker, Kimberly Pause; Clark, Ann Marie; Olivera-Gomez, Leon David; Bonde, Robert; McGuire, Peter

    2011-01-01

    The Antillean manatee (Trichechus manatus manatus) occupies the tropical coastal waters of the Greater Antilles and Caribbean, extending from Mexico along Central and South America to Brazil. Historically, manatees were abundant in Mexico, but hunting during the pre-Columbian period, the Spanish colonization and throughout the history of Mexico, has resulted in the significantly reduced population occupying Mexico today. The genetic structure, using microsatellites, shows the presence of two populations in Mexico: the Gulf of Mexico (GMx) and Chetumal Bay (ChB) on the Caribbean coast, with a zone of admixture in between. Both populations show low genetic diversity (GMx: NA = 2.69; HE = 0.41 and ChB: NA = 3.0; HE = 0.46). The lower genetic diversity found in the GMx, the largest manatee population in Mexico, is probably due to a combination of a founder effect, as this is the northern range of the sub-species of T. m. manatus, and a bottleneck event. The greater genetic diversity observed along the Caribbean coast, which also has the smallest estimated number of individuals, is possibly due to manatees that come from the GMx and Belize. There is evidence to support limited or unidirectional gene flow between these two important areas. The analyses presented here also suggest minimal evidence of a handful of individual migrants possibly between Florida and Mexico. To address management issues we suggest considering two distinct genetic populations in Mexico, one along the Caribbean coast and one in the riverine systems connected to the GMx.

  8. Genetic diversity and population structure among six cattle breeds in South Africa using a whole genome SNP panel

    PubMed Central

    Makina, Sithembile O.; Muchadeyi, Farai C.; van Marle-Köster, Este; MacNeil, Michael D.; Maiwashe, Azwihangwisi

    2014-01-01

    Information about genetic diversity and population structure among cattle breeds is essential for genetic improvement, understanding of environmental adaptation as well as utilization and conservation of cattle breeds. This study investigated genetic diversity and the population structure among six cattle breeds in South African (SA) including Afrikaner (n = 44), Nguni (n = 54), Drakensberger (n = 47), Bonsmara (n = 44), Angus (n = 31), and Holstein (n = 29). Genetic diversity within cattle breeds was analyzed using three measures of genetic diversity namely allelic richness (AR), expected heterozygosity (He) and inbreeding coefficient (f). Genetic distances between breed pairs were evaluated using Nei's genetic distance. Population structure was assessed using model-based clustering (ADMIXTURE). Results of this study revealed that the allelic richness ranged from 1.88 (Afrikaner) to 1.73 (Nguni). Afrikaner cattle had the lowest level of genetic diversity (He = 0.24) and the Drakensberger cattle (He = 0.30) had the highest level of genetic variation among indigenous and locally-developed cattle breeds. The level of inbreeding was lower across the studied cattle breeds. As expected the average genetic distance was the greatest between indigenous cattle breeds and Bos taurus cattle breeds but the lowest among indigenous and locally-developed breeds. Model-based clustering revealed some level of admixture among indigenous and locally-developed breeds and supported the clustering of the breeds according to their history of origin. The results of this study provided useful insight regarding genetic structure of SA cattle breeds. PMID:25295053

  9. Genetic diversity and population structure among six cattle breeds in South Africa using a whole genome SNP panel.

    PubMed

    Makina, Sithembile O; Muchadeyi, Farai C; van Marle-Köster, Este; MacNeil, Michael D; Maiwashe, Azwihangwisi

    2014-01-01

    Information about genetic diversity and population structure among cattle breeds is essential for genetic improvement, understanding of environmental adaptation as well as utilization and conservation of cattle breeds. This study investigated genetic diversity and the population structure among six cattle breeds in South African (SA) including Afrikaner (n = 44), Nguni (n = 54), Drakensberger (n = 47), Bonsmara (n = 44), Angus (n = 31), and Holstein (n = 29). Genetic diversity within cattle breeds was analyzed using three measures of genetic diversity namely allelic richness (AR), expected heterozygosity (He) and inbreeding coefficient (f). Genetic distances between breed pairs were evaluated using Nei's genetic distance. Population structure was assessed using model-based clustering (ADMIXTURE). Results of this study revealed that the allelic richness ranged from 1.88 (Afrikaner) to 1.73 (Nguni). Afrikaner cattle had the lowest level of genetic diversity (He = 0.24) and the Drakensberger cattle (He = 0.30) had the highest level of genetic variation among indigenous and locally-developed cattle breeds. The level of inbreeding was lower across the studied cattle breeds. As expected the average genetic distance was the greatest between indigenous cattle breeds and Bos taurus cattle breeds but the lowest among indigenous and locally-developed breeds. Model-based clustering revealed some level of admixture among indigenous and locally-developed breeds and supported the clustering of the breeds according to their history of origin. The results of this study provided useful insight regarding genetic structure of SA cattle breeds.

  10. Evidence for extensive genetic diversity and substructuring of the Babesia bovis metapopulation.

    PubMed

    Flores, D A; Minichiello, Y; Araujo, F R; Shkap, V; Benítez, D; Echaide, I; Rolls, P; Mosqueda, J; Pacheco, G M; Petterson, M; Florin-Christensen, M; Schnittger, L

    2013-11-01

    Babesia bovis is a tick-transmitted haemoprotozoan and a causative agent of bovine babesiosis, a cattle disease that causes significant economic loss in tropical and subtropical regions. A panel of nineteen micro- and minisatellite markers was used to estimate population genetic parameters of eighteen parasite isolates originating from different continents, countries and geographic regions including North America (Mexico, USA), South America (Argentina, Brazil), the Middle East (Israel) and Australia. For eleven of the eighteen isolates, a unique haplotype was inferred suggesting selection of a single genotype by either in vitro cultivation or amplification in splenectomized calves. Furthermore, a high genetic diversity (H = 0.780) over all marker loci was estimated. Linkage disequilibrium was observed in the total study group but also in sample subgroups from the Americas, Brazil, and Israel and Australia. In contrast, corresponding to their more confined geographic origin, samples from Israel and Argentina were each found to be in equilibrium suggestive of random mating and frequent genetic exchange. The genetic differentiation (F(ST)) of the total study group over all nineteen loci was estimated by analysis of variance (Θ) and Nei's estimation of heterozygosity (G(ST')) as 0.296 and 0.312, respectively. Thus, about 30% of the genetic diversity of the parasite population is associated with genetic differences between parasite isolates sampled from the different geographic regions. The pairwise similarity of multilocus genotypes (MLGs) was assessed and a neighbour-joining dendrogram generated. MLGs were found to cluster according to the country/continent of origin of isolates, but did not distinguish the attenuated from the pathogenic parasite state. The distant geographic origin of the isolates studied allows an initial glimpse into the large extent of genetic diversity and differentiation of the B. bovis population on a global scale. © 2013 Blackwell Verlag

  11. Genetic diversity and genetic relationships of japonica rice varieties in Northeast Asia based on SSR markers

    PubMed Central

    Wang, Jingguo; Jiang, Tingbo; Zou, Detang; Zhao, Hongwei; Li, Qiang; Liu, Hualong; Zhou, Changjun

    2014-01-01

    Genetic diversity and the relationship among nine japonica rice groups consisting of 288 landraces and varieties in different geographical origins of Northeast Asia (China, Japan, Korea, Democratic People's Republic of Korea) and the Russian Far East district of the Russian Federation were evaluated with 154 simple sequence repeat (SSR) markers. A total of 823 alleles were detected. The observed allele numbers (Na) per locus, Nei's gene diversity (He) and the polymorphism information content (PIC) ranged from 2 to 9, 0.061 to 0.869 and 0.060 to 0.856, with an average of 5.344, 0.624 and 0.586, respectively. Five SSR loci, RM1350, RM1369, RM257, RM336 and RM1374, provided the highest PIC values and are potential for exploring the genetic diversity of rice cultivars in Northeast Asia. Molecular variance analysis showed that a significant difference existed both among groups (91.6%) and within each group (8.4%). The low genetic variation within each group indicated that the gene pool is narrow and alien genetic variation should be introduced into the rice breeding program in Northeast Asia. Based on the He and PIC values, the nine groups were ranked in a descending order: Heilongjiang landraces, Jilin landraces, Japanese improved varieties, Heilongjiang improved varieties, Russian Far East district of the Russian Federation improved varieties, Liaoning improved varieties, Jilin improved varieties, Korean improved varieties and Democratic People's Republic of Korea improved varieties. The nine groups were further divided into three subgroups and the 288 varieties into five clusters. This study provided information for parent selection in order to broaden the gene pool of the japonica rice germplasm in Northeast Asia. PMID:26019508

  12. Genetic diversity and genetic relationships of japonica rice varieties in Northeast Asia based on SSR markers.

    PubMed

    Wang, Jingguo; Jiang, Tingbo; Zou, Detang; Zhao, Hongwei; Li, Qiang; Liu, Hualong; Zhou, Changjun

    2014-03-04

    Genetic diversity and the relationship among nine japonica rice groups consisting of 288 landraces and varieties in different geographical origins of Northeast Asia (China, Japan, Korea, Democratic People's Republic of Korea) and the Russian Far East district of the Russian Federation were evaluated with 154 simple sequence repeat (SSR) markers. A total of 823 alleles were detected. The observed allele numbers (Na) per locus, Nei's gene diversity (He) and the polymorphism information content (PIC) ranged from 2 to 9, 0.061 to 0.869 and 0.060 to 0.856, with an average of 5.344, 0.624 and 0.586, respectively. Five SSR loci, RM1350, RM1369, RM257, RM336 and RM1374, provided the highest PIC values and are potential for exploring the genetic diversity of rice cultivars in Northeast Asia. Molecular variance analysis showed that a significant difference existed both among groups (91.6%) and within each group (8.4%). The low genetic variation within each group indicated that the gene pool is narrow and alien genetic variation should be introduced into the rice breeding program in Northeast Asia. Based on the He and PIC values, the nine groups were ranked in a descending order: Heilongjiang landraces, Jilin landraces, Japanese improved varieties, Heilongjiang improved varieties, Russian Far East district of the Russian Federation improved varieties, Liaoning improved varieties, Jilin improved varieties, Korean improved varieties and Democratic People's Republic of Korea improved varieties. The nine groups were further divided into three subgroups and the 288 varieties into five clusters. This study provided information for parent selection in order to broaden the gene pool of the japonica rice germplasm in Northeast Asia.

  13. Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers.

    PubMed

    Zong, Jian-Wei; Zhao, Tian-Tian; Ma, Qing-Hua; Liang, Li-Song; Wang, Gui-Xi

    2015-01-01

    Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR) markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777). According to the coefficient of genetic differentiation (Fst = 0.1215), genetic variation within the populations (87.85%) were remarkably higher than among populations (12.15%). The average gene flow (Nm = 1.8080) significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080) among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages) dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei's genetic distance and geographic distance (km) among populations (r = 0.419, P = 0.005), suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic distance. These

  14. Genetic diversity of Babesia bovis in virulent and attenuated strains.

    PubMed

    Mazuz, M L; Molad, T; Fish, L; Leibovitz, B; Wolkomirsky, R; Fleiderovitz, L; Shkap, V

    2012-03-01

    The aim of this study was to compare the genetic diversity of the single copy Bv80 gene sequences of Babesia bovis in populations of attenuated and virulent parasites. PCR/ RT-PCR followed by cloning and sequence analyses of 4 attenuated and 4 virulent strains were performed. Multiple fragments in the range of 420 to 744 bp were amplified by PCR or RT-PCR. Cloning of the PCR fragments and sequence analyses revealed the presence of mixed subpopulations in either virulent or attenuated parasites with a total of 19 variants with 12 different sequences that differed in number and type of tandem repeats. High levels of intra- and inter-strain diversity of the Bv80 gene, with the presence of mixed populations of parasites were found in both the virulent field isolates and the attenuated vaccine strains. In addition, during the attenuation process, sequence analyses showed changes in the pattern of the parasite subpopulations. Despite high polymorphism found by sequence analyses, the patterns observed and the number of repeats, order, or motifs found could not discriminate between virulent field isolates and attenuated vaccine strains of the parasite.

  15. Population densities and genetic diversity of actinomycetes associated to the rhizosphere of Theobroma cacao

    PubMed Central

    Barreto, Tâmara R.; da Silva, Augusto C.M.; Soares, Ana Cristina F.; de Souza, Jorge T.

    2008-01-01

    In spite of the acknowledged importance of growth-promoting bacteria, only a reduced number of studies were conducted with these microorganisms on Theobroma cacao. The objectives of this work were to study the population densities and genetic diversity of actinomycetes associated with the rhizosphere of cacao as a first step in their application in plant growth promotion and biological control. The populations densities of actinomycetes in soil and cacao roots were similar, with mean values of 1,0 x 106 CFU/g and 9,6 x 105 CFU/g, respectively. All isolates selected and used in this study were identified through sequencing analyses of a fragment of the rpoB gene that encodes the β-subunit of the RNA polymerase as species of the genus Streptomyces. In vitro cellulolytic, xilanolytic and chitinolytic activity, indolacetic acid production and phosphate solubilization activities were observed in most of the isolates tested. The data obtained in this study demonstrate that actinomycetes account for a higher percentage of the total population of culturable bacteria in soil than on cacao roots. Additionally, actinomycetes from the cacao rhizosphere are genetically diverse and have potential applications as agents of growth promotion. PMID:24031247

  16. Founder effects, inbreeding, and loss of genetic diversity in four avian reintroduction programs.

    PubMed

    Jamieson, Ian G

    2011-02-01

    The number of individuals translocated and released as part of a reintroduction is often small, as is the final established population, because the reintroduction site is typically small. Small founder and small resulting populations can result in population bottlenecks, which are associated with increased rates of inbreeding and loss of genetic diversity, both of which can affect the long-term viability of reintroduced populations. I used information derived from pedigrees of four monogamous bird species reintroduced onto two different islands (220 and 259 ha) in New Zealand to compare the pattern of inbreeding and loss of genetic diversity among the reintroduced populations. Although reintroduced populations founded with few individuals had higher levels of inbreeding, as predicted, other factors, including biased sex ratio and skewed breeding success, contributed to high levels of inbreeding and loss of genetic diversity. Of the 10-58 individuals released, 4-25 genetic founders contributed at least one living descendent and yielded approximately 3-11 founder-genome equivalents (number of genetic founders assuming an equal contribution of offspring and no random loss of alleles across generations) after seven breeding seasons. This range is much lower than the 20 founder-genome equivalents recommended for captive-bred populations. Although the level of inbreeding in one reintroduced population initially reached three times that of a closely related species, the long-term estimated rate of inbreeding of this one population was approximately one-third that of the other species due to differences in carrying capacities of the respective reintroduction sites. The increasing number of reintroductions to suitable areas that are smaller than those I examined here suggests that it might be useful to develop long-term strategies and guidelines for reintroduction programs, which would minimize inbreeding and maintain genetic diversity. ©2010 Society for Conservation

  17. Levels of genetic diversity and taxonomic status of Epinephelus species in United Arab Emirates fish markets.

    PubMed

    Ketchum, Remi N; Dieng, Mame M; Vaughan, Grace O; Burt, John A; Idaghdour, Youssef

    2016-04-30

    Understanding the patterns of genetic diversity of fish species is essential for marine conservation and management. This is particularly important in the Arabian Gulf where marine life is subject to extreme environmental conditions that could impact genetic diversity. Here we assess genetic diversity of the most commercially important fish in the United Arab Emirates; groupers (Epinephelus spp.). Sequencing of 973 bp mitochondrial DNA from 140 tissue samples collected in four main fish markets revealed 58 haplotypes clustered within three groups. Data analysis revealed the presence of three distinct Epinephelus species being marketed as one species (hammour): Epinephelus coioides, Epinephelus areolatus and Epinephelus bleekeri. We report species-specific genetic markers and demonstrate that all three species exhibit relatively low levels of genetic variation, reflecting the effect of overfishing and environmental pressures. In light of the genetic evidence presented here, conservation and management of groupers in the UAE warrant the implementation of species-specific measures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Ethnic diversity in the genetics of venous thromboembolism.

    PubMed

    Tang, Liang; Hu, Yu

    2015-11-01

    Genetic susceptibility is considered as a crucial factor for the development of venous thromboembolism (VTE). Epidemiologic and genetic studies have revealed clear disparities in the incidence of VTE and the distribution of genetic factors for VTE in populations stratified by ethnicity worldwide. While gain-of-function polymorphisms in the procoagulant genes are common inherited factors in European-origin populations, the most prevalent molecular basis for venous thrombosis in Asians is confirmed to be dysfunctional variants in the anticoagulant genes. With the breakthrough of genomic technologies, a set of novel common alleles and rare mutations associated with VTE have also been identified, in different ethnic groups. Several putative pathways contributing to the pathogenesis of thrombophilia in populations of African-ancestry are largely unknown, as current knowledge of hereditary and acquired risk factors do not fully explain the highest risk of VTE in Black groups. In-depth studies across diverse ethnic populations are needed to unravel the whole genetics of VTE, which will help developing individual risk prediction models and strategies to minimise VTE in all populations.

  19. Loss of genetic connectivity and diversity in urban microreserves in a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus n. sp. "santa monica")

    USGS Publications Warehouse

    Vandergast, A.G.; Lewallen, E.A.; Deas, J.; Bohonak, A.J.; Weissman, D.B.; Fisher, R.N.

    2009-01-01

    Microreserves may be useful in protecting native arthropod diversity in urbanized landscapes. However, species that do not disperse through the urban matrix may eventually be lost from these fragments. Population extinctions may be precipitated by an increase in genetic differentiation among fragments and loss of genetic diversity within fragments, and these effects should become stronger with time. We analyzed population genetic structure in the dispersal limited Jerusalem cricket Stenopelmatus n. sp. "santa monica" in the Santa Monica Mountains and Simi Hills north of Los Angeles, California (CA), to determine the impacts of fragmentation over the past 70 years. MtDNA divergence was greater among urban fragments than within contiguous habitat and was positively correlated with fragment age. MtDNA genetic diversity within fragments increased with fragment size and decreased with fragment age. Genetic divergence across 38 anonymous nuclear Inter-Simple Sequence Repeat (ISSR) loci was influenced by the presence of major highways and highway age, but there was no effect of additional urban fragmentation. ISSR diversity was not correlated with fragment size or age. Differing results between markers may be due to male-biased dispersal, or different effective population sizes, sorting rates, or mutation rates among sampled genes. Results suggest that genetic connectivity among populations has been disrupted by highways and urban development, prior to declines in local population sizes. We emphasize that genetic connectivity can rapidly erode in fragmented landscapes and that flightless arthropods can serve as sensitive indicators for these effects. ?? Springer Science+Business Media B.V. 2008.

  20. Genetic Diversity Analysis of Medicinally Important Horticultural Crop Aegle marmelos by ISSR Markers.

    PubMed

    Mujeeb, Farina; Bajpai, Preeti; Pathak, Neelam; Verma, Smita Rastogi

    2017-01-01

    Inter simple sequence repeat (ISSR) markers help in identifying and determining the extent of genetic diversity in cultivars. Here, we describe their application in determining the genetic diversity of bael (Aegle marmelos Corr.). Universal ISSR primers are selected and their marker characteristics such as polymorphism information content, effective multiplex ratio and marker index have been evaluated. ISSR-PCR is then performed using universal ISSR primers to generate polymorphic bands. This information is used to determine the degree of genetic similarity among the bael varieties/accessions by cluster analysis using unweighted pair-group method with arithmetic averages (UPGMA). This technology is valuable for biodiversity conservation and for making an efficient choice of parents in breeding programs.

  1. Climatic niche and neutral genetic diversity of the six Iberian pine species: a retrospective and prospective view.

    PubMed

    Soto, A; Robledo-Arnuncio, J J; González-Martínez, S C; Smouse, P E; Alía, R

    2010-04-01

    Quaternary climatic fluctuations have left contrasting historical footprints on the neutral genetic diversity patterns of existing populations of different tree species. We should expect the demography, and consequently the neutral genetic structure, of taxa less tolerant to particular climatic extremes to be more sensitive to long-term climate fluctuations. We explore this hypothesis here by sampling all six pine species found in the Iberian Peninsula (2464 individuals, 105 populations), using a common set of chloroplast microsatellite markers, and by looking at the association between neutral genetic diversity and species-specific climatic requirements. We found large variation in neutral genetic diversity and structure among Iberian pines, with cold-enduring mountain species (Pinus uncinata, P. sylvestris and P. nigra) showing substantially greater diversity than thermophilous taxa (P. pinea and P. halepensis). Within species, we observed a significant positive correlation between population genetic diversity and summer precipitation for some of the mountain pines. The observed pattern is consistent with the hypotheses that: (i) more thermophilous species have been subjected to stronger demographic fluctuations in the past, as a consequence of their maladaptation to recurrent glacial cold stages; and (ii) altitudinal migrations have allowed the maintenance of large effective population sizes and genetic variation in cold-tolerant species, especially in more humid regions. In the light of these results and hypotheses, we discuss some potential genetic consequences of impending climate change.

  2. Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest

    PubMed Central

    2013-01-01

    Background In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. Methods Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. Results Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. Conclusions The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and geographically restricted

  3. Low genetic diversity in pygmy blue whales is due to climate-induced diversification rather than anthropogenic impacts.

    PubMed

    Attard, Catherine R M; Beheregaray, Luciano B; Jenner, K Curt S; Gill, Peter C; Jenner, Micheline-Nicole M; Morrice, Margaret G; Teske, Peter R; Möller, Luciana M

    2015-05-01

    Unusually low genetic diversity can be a warning of an urgent need to mitigate causative anthropogenic activities. However, current low levels of genetic diversity in a population could also be due to natural historical events, including recent evolutionary divergence, or long-term persistence at a small population size. Here, we determine whether the relatively low genetic diversity of pygmy blue whales (Balaenoptera musculus brevicauda) in Australia is due to natural causes or overexploitation. We apply recently developed analytical approaches in the largest genetic dataset ever compiled to study blue whales (297 samples collected after whaling and representing lineages from Australia, Antarctica and Chile). We find that low levels of genetic diversity in Australia are due to a natural founder event from Antarctic blue whales (Balaenoptera musculus intermedia) that occurred around the Last Glacial Maximum, followed by evolutionary divergence. Historical climate change has therefore driven the evolution of blue whales into genetically, phenotypically and behaviourally distinct lineages that will likely be influenced by future climate change. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Neonicotinoid pesticides can reduce honeybee colony genetic diversity

    PubMed Central

    Troxler, Aline; Retschnig, Gina; Gauthier, Laurent; Straub, Lars; Moritz, Robin F. A.; Neumann, Peter; Williams, Geoffrey R.

    2017-01-01

    Neonicotinoid insecticides can cause a variety of adverse sub-lethal effects in bees. In social species such as the honeybee, Apis mellifera, queens are essential for reproduction and colony functioning. Therefore, any negative effect of these agricultural chemicals on the mating success of queens may have serious consequences for the fitness of the entire colony. Queens were exposed to the common neonicotinoid pesticides thiamethoxam and clothianidin during their developmental stage. After mating, their spermathecae were dissected to count the number of stored spermatozoa. Furthermore, their worker offspring were genotyped with DNA microsatellites to determine the number of matings and the genotypic composition of the colony. Colonies providing the male mating partners were also inferred. Both neonicotinoid and control queens mated with drones originating from the same drone source colonies, and stored similar number of spermatozoa. However, queens reared in colonies exposed to both neonicotinoids experienced fewer matings. This resulted in a reduction of the genetic diversity in their colonies (i.e. higher intracolonial relatedness). As decreased genetic diversity among worker bees is known to negatively affect colony vitality, neonicotinoids may have a cryptic effect on colony health by reducing the mating frequency of queens. PMID:29059234

  5. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.

    PubMed

    Shen, Lan; Hua, Yufeng; Fu, Yaping; Li, Jian; Liu, Qing; Jiao, Xiaozhen; Xin, Gaowei; Wang, Junjie; Wang, Xingchun; Yan, Changjie; Wang, Kejian

    2017-05-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease 9 (CRISPR/Cas9) system has emerged as a promising technology for specific genome editing in many species. Here we constructed one vector targeting eight agronomic genes in rice using the CRISPR/Cas9 multiplex genome editing system. By subsequent genetic transformation and DNA sequencing, we found that the eight target genes have high mutation efficiencies in the T 0 generation. Both heterozygous and homozygous mutations of all editing genes were obtained in T 0 plants. In addition, homozygous sextuple, septuple, and octuple mutants were identified. As the abundant genotypes in T 0 transgenic plants, various phenotypes related to the editing genes were observed. The findings demonstrate the potential of the CRISPR/Cas9 system for rapid introduction of genetic diversity during crop breeding.

  6. Diversity and population structure of a dominant deciduous tree based on morphological and genetic data

    PubMed Central

    Zhang, Qin-di; Jia, Rui-Zhi; Meng, Chao; Ti, Chao-Wen; Wang, Yi-Ling

    2015-01-01

    Knowledge of the genetic diversity and structure of tree species across their geographic ranges is essential for sustainable use and management of forest ecosystems. Acer grosseri Pax., an economically and ecologically important maple species, is mainly distributed in North China. In this study, the genetic diversity and population differentiation of 24 natural populations of this species were evaluated using sequence-related amplified polymorphism markers and morphological characters. The results show that highly significant differences occurred in 32 morphological traits. The coefficient of variation of 34 characters was 18.19 %. Principal component analysis indicated that 18 of 34 traits explained 60.20 % of the total variance. The phenotypic differentiation coefficient (VST) was 36.06 % for all morphological traits. The Shannon–Wiener index of 34 morphological characters was 6.09, while at the population level, it was 1.77. The percentage of polymorphic bands of all studied A. grosseri populations was 82.14 %. Nei's gene diversity (He) and Shannon's information index (I) were 0.35 and 0.50, respectively. Less genetic differentiation was detected among the natural populations (GST = 0.20, ΦST = 0.10). Twenty-four populations of A. grosseri formed two main clusters, which is consistent with morphological cluster analysis. Principal coordinates analysis and STRUCTURE analysis supported the UPGMA-cluster dendrogram. There was no significant correlation between genetic and geographical distances among populations. Both molecular and morphological data suggested that A. grosseri is rich in genetic diversity. The high level of genetic variation within populations could be affected by the biological characters, mating system and lifespan of A. grosseri, whereas the lower genetic diversity among populations could be caused by effective gene exchange, selective pressure from environmental heterogeneity and the species' geographical range. PMID:26311734

  7. Intra-specific genetic diversity in wild olives (Olea europaea ssp cuspidata) in Hormozgan Province, Iran.

    PubMed

    Noormohammadi, Z; Samadi-Molayousefi, H; Sheidai, M

    2012-03-19

    Wild olive (O. europaea ssp cuspidata) plants grow in various regions of Iran and are expected to have considerable genetic diversity due to adaptation to the various environmental conditions. We examined the genetic diversity of four populations of wild olive growing in Hormozgan Province located in southern Iran by using 30 RAPDs and 10 ISSR markers. The mean value of polymorphism for RAPD loci was 73.71%, while the value for ISSR loci was 81.74%. The Keshar population had the highest value of intra-population polymorphism for both RAPD and ISSR loci (66.86 and 62.71%, respectively), while the Tudar population had the lowest values (20.35 and 28.81%, respectively). Similarly, the highest and lowest number of effective alleles, Shannon index and Nei's genetic diversity were also found for these two populations. The highest value of H(pop)/H(sp) within population genetic diversity for RAPD and ISSR loci was found for the Keshar population (H(pop) = 0.85 and H(sp) = 0.90). OPA04-750, OPA13-650 and OPA02-350 RAPD bands were specific for Tudar, Bondon and Keshar populations, respectively, while no specific ISSR bands were observed. Analysis of molecular variance as well as the pairwise F(ST) test showed significant differences for RAPD and ISSR markers among the populations. The NJ and UPGMA trees also separated the wild olive populations from each other, indicating their genetic distinctness. UPGMA clustering of the four wild olive populations placed the Tudar population far from the other populations; Keshar and Bokhoon population samples revealed more similarity and were grouped together. We conclude that there is high genetic diversity among O. europaea ssp cuspidata populations located in southern Iran. We also found RAPD and ISSR markers to be useful molecular tools to discriminate and evaluate genetic variations in wild olive trees.

  8. Analysis of genetic diversity of certain species of Piper using RAPD-based molecular markers.

    PubMed

    Chowdhury, Utpal; Tanti, Bhaben; Rethy, Parakkal; Gajurel, Padma Raj

    2014-09-01

    The utility of RAPD markers in assessing genetic diversity and phenetic relationships of six different species of Piper from Northeast India was investigated. Polymerase chain reaction (PCR) with four arbitrary 10-mer oligonucleotide primers applied to the six species produced a total of 195 marker bands, of which, 159 were polymorphic. On average, six RAPD fragments were amplified per reaction. In the UPGMA phenetic dendrogram based on Jaccard's coefficient, the different accessions of Piper showed a high level of genetic variation. This study may be useful in identifying diverse genetic stocks of Piper, which may then be conserved on a priority basis.

  9. Pleistocene climatic oscillations rather than recent human disturbance influence genetic diversity in one of the world's highest treeline species.

    PubMed

    Peng, Yanling; Lachmuth, Susanne; Gallegos, Silvia C; Kessler, Michael; Ramsay, Paul M; Renison, Daniel; Suarez, Ricardo; Hensen, Isabell

    2015-10-01

    Biological responses to climatic change usually leave imprints on the genetic diversity and structure of plants. Information on the current genetic diversity and structure of dominant tree species has facilitated our general understanding of phylogeographical patterns. Using amplified fragment length polymorphism (AFLPs), we compared genetic diversity and structure of 384 adults of P. tarapacana with those of 384 seedlings across 32 forest sites spanning a latitudinal gradient of 600 km occurring between 4100 m and 5000 m a.s.l. in Polylepis tarapacana (Rosaceae), one of the world's highest treeline species endemic to the central Andes. Moderate to high levels of genetic diversity and low genetic differentiation were detected in both adults and seedlings, with levels of genetic diversity and differentiation being almost identical. Four slightly genetically divergent clusters were identified that accorded to differing geographical regions. Genetic diversity decreased from south to north and with increasing precipitation for adults and seedlings, but there was no relationship to elevation. Our study shows that, unlike the case for other Andean treeline species, recent human activities have not affected the genetic structure of P. tarapacana, possibly because its inhospitable habitat is unsuitable for agriculture. The current genetic pattern of P. tarapacana points to a historically more widespread distribution at lower altitudes, which allowed considerable gene flow possibly during the glacial periods of the Pleistocene epoch, and also suggests that the northern Argentinean Andes may have served as a refugium for historical populations. © 2015 Botanical Society of America.

  10. Genetic diversity of the human immunoglobulin heavy chain VH region.

    PubMed

    Li, Honghua; Cui, Xiangfeng; Pramanik, Sreemanta; Chimge, Nyam-Osor

    2002-12-01

    The human immunoglobulin heavy chain VH region is one of the most complex regions in the human genome. The high level of diversity of this region has been shown by a number of studies. However, because of the limitations of the conventional experimental methods, it has been difficult to learn the extent of the diversity and the underlying mechanisms. This review describes a number of new genetic approaches developed in the authors' laboratory. By using these approaches, significant progress has been made in assigning different VH sequences to their respective loci, in learning the diversity of gene segment number and composition among the VH haplotypes, and in learning VH gene segment organization in individual haplotypes. Information obtained toward this direction could help in understanding the mechanisms underlying VH region diversity and the biological impact of the VH region diversity.

  11. Isolation of Genetically Diverse Marburg Viruses from Egyptian Fruit Bats

    PubMed Central

    Towner, Jonathan S.; Amman, Brian R.; Sealy, Tara K.; Carroll, Serena A. Reeder; Comer, James A.; Kemp, Alan; Swanepoel, Robert; Paddock, Christopher D.; Balinandi, Stephen; Khristova, Marina L.; Formenty, Pierre B. H.; Albarino, Cesar G.; Miller, David M.; Reed, Zachary D.; Kayiwa, John T.; Mills, James N.; Cannon, Deborah L.; Greer, Patricia W.; Byaruhanga, Emmanuel; Farnon, Eileen C.; Atimnedi, Patrick; Okware, Samuel; Katongole-Mbidde, Edward; Downing, Robert; Tappero, Jordan W.; Zaki, Sherif R.; Ksiazek, Thomas G.; Nichol, Stuart T.; Rollin, Pierre E.

    2009-01-01

    In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus) based on detection of Marburg virus RNA in 31/611 (5.1%) bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans. PMID:19649327

  12. Genetic diversity patterns of arbuscular mycorrhizal fungi associated with the mycoheterotroph Arachnitis uniflora Phil. (Corsiaceae).

    PubMed

    Renny, Mauricio; Acosta, M Cristina; Cofré, Noelia; Domínguez, Laura S; Bidartondo, Martin I; Sérsic, Alicia N

    2017-06-01

    Arachnitis uniflora is a mycoheterotrophic plant that exploits arbuscular mycorrhizal fungi of neighbouring plants. We tested A. uniflora 's specificity towards fungi across its large latitudinal range, as well as the role of historical events and current environmental, geographical and altitudinal variables on fungal genetic diversity. Arachnitis uniflora mycorrhizas were sampled at 25 sites. Fungal phylogenetic relationships were reconstructed, genetic diversity was calculated and the main divergent lineages were dated. Phylogeographical analysis was performed with the main fungal clade. Fungal diversity correlations with environmental factors were investigated. Glomeraceae fungi dominated, with a main clade that likely originated in the Upper Cretaceous and diversified in the Miocene. Two other arbuscular mycorrhizal fungal families not previously known to be targeted by A. uniflora were detected rarely and appear to be facultative associations. High genetic diversity, found in Bolivia and both northern and southern Patagonia, was correlated with temperature, rainfall and soil features. Fungal genetic diversity and its distribution can be explained by the ancient evolutionary history of the target fungi and by micro-scale environmental conditions with a geographical mosaic pattern. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Specialist and generalist symbionts show counterintuitive levels of genetic diversity and discordant demographic histories along the Florida Reef Tract

    NASA Astrophysics Data System (ADS)

    Titus, Benjamin M.; Daly, Marymegan

    2017-03-01

    Specialist and generalist life histories are expected to result in contrasting levels of genetic diversity at the population level, and symbioses are expected to lead to patterns that reflect a shared biogeographic history and co-diversification. We test these assumptions using mtDNA sequencing and a comparative phylogeographic approach for six co-occurring crustacean species that are symbiotic with sea anemones on western Atlantic coral reefs, yet vary in their host specificities: four are host specialists and two are host generalists. We first conducted species discovery analyses to delimit cryptic lineages, followed by classic population genetic diversity analyses for each delimited taxon, and then reconstructed the demographic history for each taxon using traditional summary statistics, Bayesian skyline plots, and approximate Bayesian computation to test for signatures of recent and concerted population expansion. The genetic diversity values recovered here contravene the expectations of the specialist-generalist variation hypothesis and classic population genetics theory; all specialist lineages had greater genetic diversity than generalists. Demography suggests recent population expansions in all taxa, although Bayesian skyline plots and approximate Bayesian computation suggest the timing and magnitude of these events were idiosyncratic. These results do not meet the a priori expectation of concordance among symbiotic taxa and suggest that intrinsic aspects of species biology may contribute more to phylogeographic history than extrinsic forces that shape whole communities. The recovery of two cryptic specialist lineages adds an additional layer of biodiversity to this symbiosis and contributes to an emerging pattern of cryptic speciation in the specialist taxa. Our results underscore the differences in the evolutionary processes acting on marine systems from the terrestrial processes that often drive theory. Finally, we continue to highlight the Florida Reef

  14. Genetic diversity and structure of a rare endemic cactus and an assessment of its genetic relationship with a more common congener.

    PubMed

    Rayamajhi, Niraj; Sharma, Jyotsna

    2018-06-01

    Endemic, obligate outcrossing plant species with narrow geographic distributions and disjunct populations are prone to loss of genetic diversity. Simultaneously, delineating clear species boundaries is important for targeted conservation efforts. The rare and endemic cactus, Sclerocactus brevihamatus subsp. tobuschii (SBT), has a parapatric relationship with Sclerocactus brevihamatus subsp. brevihamatus (SBB) but genetic distance between the two taxa is unknown. We: (1) developed taxon-specific polymorphic microsatellites, (2) assessed genetic diversity within and among nine populations of SBT, and within one population of SBB, and (3) estimated the genetic relationship between the two subspecies. Within-population genetic diversity of SBT was moderate to high (mean H o  = 0.37; mean H e  = 0.59). Indirect estimate of inbreeding corrected for null alleles (F is-INEst ) was low for SBT, ranging from 0.03 to 0.14 (mean F is-INEst  = 0.07). Genetic differentiation among populations of SBT was low based on F st (0.08) and AMOVA (Ф PT  = 0.10). Lack of genetic and spatial correlation in SBT populations coupled with the presence of private alleles and bottleneck events in several populations suggests that reproductive isolation is occurring but that sufficient time may not have yet passed to manifest strong differentiation. Cluster analyses segregated the 10 populations into three distinct groups, and separated SBB genotypes clearly. Results suggest that while hybridization between the two subspecies may occur, SBT is clearly differentiated genetically from SBB to retain its current taxonomic status.

  15. Genetic Diversity and Population Parameters of Sea Otters, Enhydra lutris, before Fur Trade Extirpation from 1741–1911

    PubMed Central

    Larson, Shawn; Jameson, Ron; Etnier, Michael; Jones, Terry; Hall, Roberta

    2012-01-01

    All existing sea otter, Enhydra lutris, populations have suffered at least one historic population bottleneck stemming from the fur trade extirpations of the eighteenth and nineteenth centuries. We examined genetic variation, gene flow, and population structure at five microsatellite loci in samples from five pre-fur trade populations throughout the sea otter's historical range: California, Oregon, Washington, Alaska, and Russia. We then compared those values to genetic diversity and population structure found within five modern sea otter populations throughout their current range: California, Prince William Sound, Amchitka Island, Southeast Alaska and Washington. We found twice the genetic diversity in the pre-fur trade populations when compared to modern sea otters, a level of diversity that was similar to levels that are found in other mammal populations that have not experienced population bottlenecks. Even with the significant loss in genetic diversity modern sea otters have retained historical structure. There was greater gene flow before extirpation than that found among modern sea otter populations but the difference was not statistically significant. The most dramatic effect of pre fur trade population extirpation was the loss of genetic diversity. For long term conservation of these populations increasing gene flow and the maintenance of remnant genetic diversity should be encouraged. PMID:22403635

  16. Genetic Diversity and Structure of the Apiosporina morbosa Populations on Prunus spp.

    PubMed

    Zhang, Jinxiu; Fernando, W G Dilantha; Remphrey, William R

    2005-08-01

    ABSTRACT Populations of Apiosporina morbosa collected from 15 geographic locations in Canada and the United States and three host species, Prunus virginiana, P. pensylvanica, and P. padus, were evaluated using the sequence-related amplified polymorphism (SRAP) technique to determine their genetic diversity and population differentiation. Extensive diversity was detected in the A. morbosa populations, including 134 isolates from Canada and the United States, regardless of the origin of the population. The number of polymorphic loci varied from 6.9 to 82.8% in the geographic populations, and from 41.4 to 79.3% in the populations from four host genotypes based on 58 polymorphic fragments. In all, 44 to 100% of isolates in the geographic populations and 43.6 to 76.2% in populations from four host genotypes represented unique genotypes. Values of heterozygosity (H) varied from 2.8 to 28.3% in the geographic populations and 10.2 to 26.1% in the populations from four host genotypes. In general, the A. morbosa populations sampled from wild chokecherry showed a higher genetic diversity than those populations collected from other host species, whereas the populations isolated from cultivated chokecherry, P. virginiana 'Shubert Select', showed a reduction of genetic diversity compared with populations from wild P. virginiana. Significant population differentiation was found among both the geographic populations (P < 0.05) and populations from different host genotypes (P < 0.02). In the geographic populations, most of populations from cultivated and wild P. virginiana were closely clustered, and no population differentiation was detected except for the populations from Morris, Morden, and Winnipeg, Manitoba, Canada. Furthermore, the populations from P. virginiana in the same geographic locations had higher genetic identity and closer genetic distance to each other compared with those from different locations. Four populations from P. virginiana, P. pensylvanica, and P. padus

  17. Comparison of genetic diversity between Canadian adapted genotypes and exotic germplasm of soybean.

    PubMed

    Iquira, Elmer; Gagnon, Eric; Belzile, François

    2010-05-01

    Soybean (Glycine max (L.) Merr.) was domesticated in China and the greatest genetic diversity for this species is found in Asia. In contrast, in North America, soybean cultivars trace back to a small number of plant introductions from Asia and genetic diversity is typically quite limited. The purpose of this work was to measure and compare the genetic diversity in two sets of soybean lines. The first set (termed "local") was composed of 100 lines used in a private breeding program in Quebec. The second set (termed "exotic") was composed of 200 lines from elsewhere in the world (but mostly from Asia) and included a few lines of Glycine soja, the wild progenitor of cultivated soybean. Almost all the genotypes belonged to maturity groups between 000 and II. A total of 39 microsatellites (SSRs) were used to genotype the two collections. The number of alleles per locus was almost twice as great in the exotic set compared with the local set. Also, the number of "unique" alleles, i.e., those uniquely present in one set and absent in the other, was almost fivefold greater (191 vs. 37) in a subset of 108 exotic lines with good adaptation than among the local set. A genetic distance matrix, a UPGMA cluster analysis, and a principal coordinate analysis were conducted based on the SSR data. These analyses all indicated that the exotic set was much more diverse and formed a clearly distinct group from the local set. Interestingly, some of the lines showing the best adaptation to local conditions were quite distinctive in terms of their genotype and could potentially contribute useful novel genetic variation within the breeding program.

  18. Genetic diversity in three invasive clonal aquatic species in New Zealand

    PubMed Central

    2010-01-01

    Background Elodea canadensis, Egeria densa and Lagarosiphon major are dioecious clonal species which are invasive in New Zealand and other regions. Unlike many other invasive species, the genetic variation in New Zealand is very limited. Clonal reproduction is often considered an evolutionary dead end, even though a certain amount of genetic divergence may arise due to somatic mutations. The successful growth and establishment of invasive clonal species may be explained not by adaptability but by pre-existing ecological traits that prove advantageous in the new environment. We studied the genetic diversity and population structure in the North Island of New Zealand using AFLPs and related the findings to the number of introductions and the evolution that has occurred in the introduced area. Results Low levels of genetic diversity were found in all three species and appeared to be due to highly homogeneous founding gene pools. Elodea canadensis was introduced in 1868, and its populations showed more genetic structure than those of the more recently introduced of E. densa (1946) and L. major (1950). Elodea canadensis and L. major, however, had similar phylogeographic patterns, in spite of the difference in time since introduction. Conclusions The presence of a certain level of geographically correlated genetic structure in the absence of sexual reproduction, and in spite of random human dispersal of vegetative propagules, can be reasonably attributed to post-dispersal somatic mutations. Direct evidence of such evolutionary events is, however, still insufficient. PMID:20565861

  19. Strong fluctuations in aboveground population size do not limit genetic diversity in populations of an endangered biennial species.

    PubMed

    Münzbergová, Zuzana; Šurinová, Maria; Husáková, Iveta; Brabec, Jiří

    2018-04-26

    Assessing genetic diversity within populations of rare species and understanding its determinants are crucial for effective species protection. While a lot is known about the relationships between genetic diversity, fitness, and current population size, very few studies explored the effects of past population size. Knowledge of past population size may, however, improve our ability to predict future population fates. We studied Gentianella praecox subsp. bohemica, a biennial species with extensive seed bank. We tested the effect of current, past minimal and maximal population size, and harmonic mean of population sizes within the last 15 years on genetic diversity and fitness. Maximum population size over the last 15 years was the best predictor of expected heterozygosity of the populations and was significantly related to current population size and management. Plant fitness was significantly related to current as well as maximum population size and expected heterozygosity. The results suggested that information on past population size may improve our understanding of contemporary genetic diversity across populations. They demonstrated that despite the strong fluctuations in population size, large reductions in population size do not result in immediate loss of genetic diversity and reduction of fitness within the populations. This is likely due to the seed bank of the species serving as reservoir of the genetic diversity of the populations. From a conservation point of view, this suggests that the restoration of small populations of short-lived species with permanent seed bank is possible as these populations may still be genetically diverse.

  20. Development of genetic diversity, differentiation and structure over 500 years in four ponderosa pine populations.

    PubMed

    Lesser, M R; Parchman, T L; Jackson, S T

    2013-05-01

    Population history plays an important role in shaping contemporary levels of genetic variation and geographic structure. This is especially true in small, isolated range-margin populations, where effects of inbreeding, genetic drift and gene flow may be more pronounced than in large continuous populations. Effects of landscape fragmentation and isolation distance may have implications for persistence of range-margin populations if they are demographic sinks. We studied four small, disjunct populations of ponderosa pine over a 500-year period. We coupled demographic data obtained through dendroecological methods with microsatellite data to discern how and when contemporary levels of allelic diversity, among and within-population levels of differentiation, and geographic structure, arose. Alleles accumulated rapidly following initial colonization, demonstrating proportionally high levels of gene flow into the populations. At population sizes of approximately 100 individuals, allele accumulation saturated. Levels of genetic differentiation among populations (F(ST) and Jost's D(est)) and diversity within populations (F(IS)) remained stable through time. There was no evidence of geographic genetic structure at any time in the populations' history. Proportionally, high gene flow in the early stages of population growth resulted in rapid accumulation of alleles and quickly created relatively homogenous genetic patterns among populations. Our study demonstrates that contemporary levels of genetic diversity were formed quickly and early in population development. How contemporary genetic diversity accumulates over time is a key facet of understanding population growth and development. This is especially relevant given the extent and speed at which species ranges are predicted to shift in the coming century. © 2013 Blackwell Publishing Ltd.

  1. Patterns of ancestry and genetic diversity in reintroduced populations of the slimy sculpin: Implications for conservation

    USGS Publications Warehouse

    Huff, David D.; Miller, Loren M.; Vondracek, Bruce C.

    2010-01-01

    Reintroductions are a common approach for preserving intraspecific biodiversity in fragmented landscapes. However, they may exacerbate the reduction in genetic diversity initially caused by population fragmentation because the effective population size of reintroduced populations is often smaller and reintroduced populations also tend to be more geographically isolated than native populations. Mixing genetically divergent sources for reintroduction purposes is a practice intended to increase genetic diversity. We documented the outcome of reintroductions from three mixed sources on the ancestral composition and genetic variation of a North American fish, the slimy sculpin (Cottus cognatus). We used microsatellite markers to evaluate allelic richness and heterozygosity in the reintroduced populations relative to computer simulated expectations. Sculpins in reintroduced populations exhibited higher levels of heterozygosity and allelic richness than any single source, but only slightly higher than the single most genetically diverse source population. Simulations intended to mimic an ideal scenario for maximizing genetic variation in the reintroduced populations also predicted increases, but they were only moderately greater than the most variable source population. We found that a single source contributed more than the other two sources at most reintroduction sites. We urge caution when choosing whether to mix source populations in reintroduction programs. Genetic characteristics of candidate source populations should be evaluated prior to reintroduction if feasible. When combined with knowledge of the degree of genetic distinction among sources, simulations may allow the genetic diversity benefits of mixing populations to be weighed against the risks of outbreeding depression in reintroduced and nearby populations.

  2. Patterns of ancestry and genetic diversity in reintroduced populations of the slimy sculpin: Implications for conservation

    USGS Publications Warehouse

    Huff, D.D.; Miller, L.M.; Vondracek, B.

    2010-01-01

    Reintroductions are a common approach for preserving intraspecific biodiversity in fragmented landscapes. However, they may exacerbate the reduction in genetic diversity initially caused by population fragmentation because the effective population size of reintroduced populations is often smaller and reintroduced populations also tend to be more geographically isolated than native populations. Mixing genetically divergent sources for reintroduction purposes is a practice intended to increase genetic diversity. We documented the outcome of reintroductions from three mixed sources on the ancestral composition and genetic variation of a North American fish, the slimy sculpin (Cottus cognatus). We used microsatellite markers to evaluate allelic richness and heterozygosity in the reintroduced populations relative to computer simulated expectations. Sculpins in reintroduced populations exhibited higher levels of heterozygosity and allelic richness than any single source, but only slightly higher than the single most genetically diverse source population. Simulations intended to mimic an ideal scenario for maximizing genetic variation in the reintroduced populations also predicted increases, but they were only moderately greater than the most variable source population. We found that a single source contributed more than the other two sources at most reintroduction sites. We urge caution when choosing whether to mix source populations in reintroduction programs. Genetic characteristics of candidate source populations should be evaluated prior to reintroduction if feasible. When combined with knowledge of the degree of genetic distinction among sources, simulations may allow the genetic diversity benefits of mixing populations to be weighed against the risks of outbreeding depression in reintroduced and nearby populations. ?? 2010 US Government.

  3. Microsatellite-based genetic diversity patterns in disjunct populations of a rare orchid.

    PubMed

    Pandey, Madhav; Richards, Matt; Sharma, Jyotsna

    2015-12-01

    We investigated the patterns of genetic diversity and structure in seven disjunct populations of a rare North American orchid, Cypripedium kentuckiense by including populations that represented the periphery and the center of the its range. Eight nuclear and two chloroplast microsatellites were used. Genetic diversity was low across the sampled populations of C. kentuckiense based on both nuclear (average An = 4.0, Ho = 0.436, He = 0.448) and cpDNA microsatellites (average An = 1.57, Nh = 1.57 and H = 0.133). The number of private alleles ranged from one to four per population with a total of 17 private alleles detected at five nuclear microsatellites. One private allele at one cpDNA microsatellite was also observed. Although the absolute values for nuclear microsatellite based population differentiation were low (Fst = 0.075; ϕPT = 0.24), they were statistically significant. Pairwise Fst values ranged from 0.038 to 0.123 and each comparison was significant. We also detected isolation by distance with nDNA microsatellites based on the Mantel test (r(2) = 0.209, P = 0.05). STRUCTURE analysis and the neighbor joining trees grouped the populations similarly whereby the geographically proximal populations were genetically similar. Our data indicate that the species is genetically depauperate but the diversity is distributed more or less equally across its range. Population differentiation and isolation by distance were detectable, which indicates that genetic isolation is beginning to manifest itself across the range in this rare species.

  4. Genetic diversity of resin yielder Pinus merkusii from West Java - Indonesia revealed by microsatellites marker

    NASA Astrophysics Data System (ADS)

    Susilowati, A.; Rachmat, H. H.; Siregar, I. Z.; Supriyanto

    2018-02-01

    Phenotypic observation of resin yielder Pinus merkusii showed higher value of genetic variation and narrow sense heritability values for resin production trait. This result indicated that genetic factor played as dominant aspect. However, further observation using molecular marker would still be needed to overcome the weakness of phenotypic observation. This study was carried out in order to characterize the genetic diversity and genetic differentiation of resin yielder genotype candidate P.merkusii using microsatellite markers and to characterize the genetic structure in the resin yielder populations. Seventy needle and inner bark samples were collected from resin yielder in Cijambu Seedling Seed Orchard (SSO) Sumedang, West Java and further divided into two genotype candidates (lower and high resin yielder). Seven microsatellites loci (pm01, pm04, pm05, pm07, pm08, pm09a, pm12, pde5 and SPAC 11.6) were used for detection of genetic diversity. Results showed that genetic diversity in higher resin candidates was (0.551), slightly different compared lower candidates (0.545). However, cluster analysis determined that higher resin yielder grouped with lower one. Molecular variation was found to be low among populations (21%) and high among individuals within the populations (79%). Private alleles were detected both in higher yielder and also normal population.

  5. Genetic Structure of Wild Bonobo Populations: Diversity of Mitochondrial DNA and Geographical Distribution

    PubMed Central

    Higuchi, Shoko; Sakamaki, Tetsuya; Hart, John A.; Hart, Terese B.; Tokuyama, Nahoko; Reinartz, Gay E.; Guislain, Patrick; Dupain, Jef; Cobden, Amy K.; Mulavwa, Mbangi N.; Yangozene, Kumugo; Darroze, Serge; Devos, Céline; Furuichi, Takeshi

    2013-01-01

    Bonobos (Pan paniscus) inhabit regions south of the Congo River including all areas between its southerly tributaries. To investigate the genetic diversity and evolutionary relationship among bonobo populations, we sequenced mitochondrial DNA from 376 fecal samples collected in seven study populations located within the eastern and western limits of the species’ range. In 136 effective samples from different individuals (range: 7–37 per population), we distinguished 54 haplotypes in six clades (A1, A2, B1, B2, C, D), which included a newly identified clade (D). MtDNA haplotypes were regionally clustered; 83 percent of haplotypes were locality-specific. The distribution of haplotypes across populations and the genetic diversity within populations thus showed highly geographical patterns. Using population distance measures, seven populations were categorized in three clusters: the east, central, and west cohorts. Although further elucidation of historical changes in the geological setting is required, the geographical patterns of genetic diversity seem to be shaped by paleoenvironmental changes during the Pleistocene. The present day riverine barriers appeared to have a weak effect on gene flow among populations, except for the Lomami River, which separates the TL2 population from the others. The central cohort preserves a high genetic diversity, and two unique clades of haplotypes were found in the Wamba/Iyondji populations in the central cohort and in the TL2 population in the eastern cohort respectively. This knowledge may contribute to the planning of bonobo conservation. PMID:23544084

  6. Conservation of biodiversity in sugar pine: effects of the blister rust epidemic on genetic diversity

    Treesearch

    Constance I. Millar; Bohun B. Kinloch; Robert D. Westfall

    1992-01-01

    Genetic diversity in sugar plne will be severely reduced by the blister rust pandemic predicted within the next 50 to 75 years. We model effects of the epidemic on genetic diversity at the stand and landscape levels for both natural and artificial regeneration. In natural stands, because natural frequencies of the dominant gene (R) for resistance are low, the most...

  7. Genetic diversity and epidemiology of infectious hematopoietic necrosis virus in Alaska

    USGS Publications Warehouse

    Emmenegger, E.G; Meyers, T.R.; Burton, T.O.; Kurath, G.

    2000-01-01

    Forty-two infectious hematopoietic necrosis virus (IHNV) isolates from Alaska were analyzed using the ribonuclease protection assay (RPA) and nucleotide sequencing. RPA analyses, utilizing 4 probes, N5, N3 (N gene), GF (G gene), and NV (NV gene), determined that the haplotypes of all 3 genes demonstrated a consistent spatial pattern. Virus isolates belonging to the most common haplotype groups were distributed throughout Alaska, whereas isolates in small haplotype groups were obtained from only 1 site (hatchery, lake, etc.). The temporal pattern of the GF haplotypes suggested a 'genetic acclimation' of the G gene, possibly due to positive selection on the glycoprotein. A pairwise comparison of the sequence data determined that the maximum nucleotide diversity of the isolates was 2.75% (10 mismatches) for the NV gene, and 1.99% (6 mismatches) for a 301 base pair region of the G gene, indicating that the genetic diversity of IHNV within Alaska is notably lower than in the more southern portions of the IHNV North American range. Phylogenetic analysis of representative Alaskan sequences and sequences of 12 previously characterized IHNV strains from Washington, Oregon, Idaho, California (USA) and British Columbia (Canada) distinguished the isolates into clusters that correlated with geographic origin and indicated that the Alaskan and British Columbia isolates may have a common viral ancestral lineage. Comparisons of multiple isolates from the same site provided epidemiological insights into viral transmission patterns and indicated that viral evolution, viral introduction, and genetic stasis were the mechanisms involved with IHN virus population dynamics in Alaska. The examples of genetic stasis and the overall low sequence heterogeneity of the Alaskan isolates suggested that they are evolutionarily constrained. This study establishes a baseline of genetic fingerprint patterns and sequence groups representing the genetic diversity of Alaskan IHNV isolates. This

  8. The impact of translocations on neutral and functional genetic diversity within and among populations of the Seychelles warbler.

    PubMed

    Wright, David J; Spurgin, Lewis G; Collar, Nigel J; Komdeur, Jan; Burke, Terry; Richardson, David S

    2014-05-01

    Translocations are an increasingly common tool in conservation. The maintenance of genetic diversity through translocation is critical for both the short- and long-term persistence of populations and species. However, the relative spatio-temporal impacts of translocations on neutral and functional genetic diversity, and how this affects genetic structure among the conserved populations overall, have received little investigation. We compared the impact of translocating different numbers of founders on both microsatellite and major histocompatibility complex (MHC) class I diversity over a 23-year period in the Seychelles warbler (Acrocephalus sechellensis). We found low and stable microsatellite and MHC diversity in the source population and evidence for only a limited loss of either type of diversity in the four new populations. However, we found evidence of significant, but low to moderate, genetic differentiation between populations, with those populations established with fewer founders clustering separately. Stochastic genetic capture (as opposed to subsequent drift) was the main determinant of translocated population diversity. Furthermore, a strong correlation between microsatellite and MHC differentiation suggested that neutral processes outweighed selection in shaping MHC diversity in the new populations. These data provide important insights into how to optimize the use of translocation as a conservation tool. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  9. The impact of translocations on neutral and functional genetic diversity within and among populations of the Seychelles warbler

    PubMed Central

    Wright, David J; Spurgin, Lewis G; Collar, Nigel J; Komdeur, Jan; Burke, Terry; Richardson, David S

    2014-01-01

    Translocations are an increasingly common tool in conservation. The maintenance of genetic diversity through translocation is critical for both the short- and long-term persistence of populations and species. However, the relative spatio-temporal impacts of translocations on neutral and functional genetic diversity, and how this affects genetic structure among the conserved populations overall, have received little investigation. We compared the impact of translocating different numbers of founders on both microsatellite and major histocompatibility complex (MHC) class I diversity over a 23-year period in the Seychelles warbler (Acrocephalus sechellensis). We found low and stable microsatellite and MHC diversity in the source population and evidence for only a limited loss of either type of diversity in the four new populations. However, we found evidence of significant, but low to moderate, genetic differentiation between populations, with those populations established with fewer founders clustering separately. Stochastic genetic capture (as opposed to subsequent drift) was the main determinant of translocated population diversity. Furthermore, a strong correlation between microsatellite and MHC differentiation suggested that neutral processes outweighed selection in shaping MHC diversity in the new populations. These data provide important insights into how to optimize the use of translocation as a conservation tool. PMID:24689851

  10. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle

    PubMed Central

    Bickhart, Derek M.; Xu, Lingyang; Hutchison, Jana L.; Cole, John B.; Null, Daniel J.; Schroeder, Steven G.; Song, Jiuzhou; Garcia, Jose Fernando; Sonstegard, Tad S.; Van Tassell, Curtis P.; Schnabel, Robert D.; Taylor, Jeremy F.; Lewin, Harris A.; Liu, George E.

    2016-01-01

    The diversity and population genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analysed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, and Romagnola), sequenced to 11-fold coverage to identify 1,853 non-redundant CNV regions. Supported by high validation rates in array comparative genomic hybridization (CGH) and qPCR experiments, these CNV regions accounted for 3.1% (87.5 Mb) of the cattle reference genome, representing a significant increase over previous estimates of the area of the genome that is copy number variable (∼2%). Further population genetics and evolutionary genomics analyses based on these CNVs revealed the population structures of the cattle taurine and indicine breeds and uncovered potential diversely selected CNVs near important functional genes, including AOX1, ASZ1, GAT, GLYAT, and KRTAP9-1. Additionally, 121 CNV gene regions were found to be either breed specific or differentially variable across breeds, such as RICTOR in dairy breeds and PNPLA3 in beef breeds. In contrast, clusters of the PRP and PAG genes were found to be duplicated in all sequenced animals, suggesting that subfunctionalization, neofunctionalization, or overdominance play roles in diversifying those fertility-related genes. These CNV results provide a new glimpse into the diverse selection histories of cattle breeds and a basis for correlating structural variation with complex traits in the future. PMID:27085184

  11. Genetic diversity and conservation status of managed vicuña (Vicugna vicugna) populations in Argentina.

    PubMed

    Anello, M; Daverio, M S; Romero, S R; Rigalt, F; Silbestro, M B; Vidal-Rioja, L; Di Rocco, F

    2016-02-01

    The vicuña (Vicugna vicugna) was indiscriminately hunted for more than 400 years and, by the end of 1960s, it was seriously endangered. At that time, a captive breeding program was initiated in Argentina by the National Institute of Agricultural Technology (INTA) with the aim of preserving the species. Nowadays, vicuñas are managed in captivity and in the wild to obtain their valuable fiber. The current genetic status of Argentinean vicuña populations is virtually unknown. Using mitochondrial DNA and microsatellite markers, we assessed levels of genetic diversity of vicuña populations managed in the wild and compared it with a captive population from INTA. Furthermore, we examined levels of genetic structure and evidence for historical bottlenecks. Overall, all populations revealed high genetic variability with no signs of inbreeding. Levels of genetic diversity between captive and wild populations were not significantly different, although the captive population showed the lowest estimates of allelic richness, number of mitochondrial haplotypes, and haplotype diversity. Significant genetic differentiation at microsatellite markers was found between free-living populations from Jujuy and Catamarca provinces. Moreover, microsatellite data also revealed genetic structure within the Catamarca management area. Genetic signatures of past bottlenecks were detected in wild populations by the Garza Williamson test. Results from this study are discussed in relation to the conservation and management of the species.

  12. Genetic diversity of populations and clones of Rhopilema esculentum in China based on AFLP analysis

    NASA Astrophysics Data System (ADS)

    Qiao, Hongjin; Liu, Xiangquan; Zhang, Xijia; Jiang, Haibin; Wang, Jiying; Zhang, Limin

    2013-03-01

    Amplified fragment length polymorphisms (AFLP) markers were developed to assess the genetic variation of populations and clones of Rhopilema esculentum Kishinouye (Scyphozoa, Rhizostomatidae). One hundred and seventy-nine loci from 56 individuals of two hatchery populations and two wild populations were genotyped with five primer combinations. The polymorphic ratio, Shannon's diversity index and average heterozygosity were 70.3%, 0.346 and 0.228 for the white hatchery population, 74.3%, 0.313, and 0.201 for the red hatchery population, 79.3%, 0.349, and 0.224 for the Jiangsu wild population, and 74.9%, 0.328 and 0.210 for the Penglai wild population, respectively. Thus, all populations had a relatively high level of genetic diversity. A specific band was identified that could separate the white from the red hatchery population. There was 84.85% genetic differentiation within populations. Individual cluster analysis using unweighted pair-group method with arithmetic mean (UPGMA) suggested that hatchery populations and wild populations could be divided. For the hatchery populations, the white and red populations clustered separately; however, for the wild populations, Penglai and Jiangsu populations clustered together. The genetic diversity at the clone level was also determined. Our data suggest that there are relatively high genetic diversities within populations but low genetic differentiation between populations, which may be related to the long-term use of germplasm resources from Jiangsu Province for artificial seeding and releasing. These findings will benefit the artificial seeding and conservation of the germplasm resources.

  13. Genetic diversity of the Andean tuber-bearing species, oca (Oxalis tuberosa Mol.), investigated by inter-simple sequence repeats.

    PubMed

    Pissard, A; Ghislain, M; Bertin, P

    2006-01-01

    The Andean tuber-bearing species, Oxalis tuberosa Mol., is a vegetatively propagated crop cultivated in the uplands of the Andes. Its genetic diversity was investigated in the present study using the inter-simple sequence repeat (ISSR) technique. Thirty-two accessions originating from South America (Argentina, Bolivia, Chile, and Peru) and maintained in vitro were chosen to represent the ecogeographic diversity of its cultivation area. Twenty-two primers were tested and 9 were selected according to fingerprinting quality and reproducibility. Genetic diversity analysis was performed with 90 markers. Jaccard's genetic distance between accessions ranged from 0 to 0.49 with an average of 0.28 +/- 0.08 (mean +/- SD). Dendrogram (UPGMA (unweighted pair-group method with arithmetic averaging)) and factorial correspondence analysis (FCA) showed that the genetic structure was influenced by the collection site. The two most distant clusters contained all of the Peruvian accessions, one from Bolivia, none from Argentina or Chile. Analysis by country revealed that Peru presented the greatest genetic distances from the other countries and possessed the highest intra-country genetic distance (0.30 +/- 0.08). This suggests that the Peruvian oca accessions form a distinct genetic group. The relatively low level of genetic diversity in the oca species may be related to its predominating reproduction strategy, i.e., vegetative propagation. The extent and structure of the genetic diversity of the species detailed here should help the establishment of conservation strategies.

  14. The evolutionary history of Plasmodium vivax as inferred from mitochondrial genomes: parasite genetic diversity in the Americas.

    PubMed

    Taylor, Jesse E; Pacheco, M Andreína; Bacon, David J; Beg, Mohammad A; Machado, Ricardo Luiz; Fairhurst, Rick M; Herrera, Socrates; Kim, Jung-Yeon; Menard, Didier; Póvoa, Marinete Marins; Villegas, Leopoldo; Mulyanto; Snounou, Georges; Cui, Liwang; Zeyrek, Fadile Yildiz; Escalante, Ananias A

    2013-09-01

    Plasmodium vivax is the most prevalent human malaria parasite in the Americas. Previous studies have contrasted the genetic diversity of parasite populations in the Americas with those in Asia and Oceania, concluding that New World populations exhibit low genetic diversity consistent with a recent introduction. Here we used an expanded sample of complete mitochondrial genome sequences to investigate the diversity of P. vivax in the Americas as well as in other continental populations. We show that the diversity of P. vivax in the Americas is comparable to that in Asia and Oceania, and we identify several divergent clades circulating in South America that may have resulted from independent introductions. In particular, we show that several haplotypes sampled in Venezuela and northeastern Brazil belong to a clade that diverged from the other P. vivax lineages at least 30,000 years ago, albeit not necessarily in the Americas. We propose that, unlike in Asia where human migration increases local genetic diversity, the combined effects of the geographical structure and the low incidence of vivax malaria in the Americas has resulted in patterns of low local but high regional genetic diversity. This could explain previous views that P. vivax in the Americas has low genetic diversity because these were based on studies carried out in limited areas. Further elucidation of the complex geographical pattern of P. vivax variation will be important both for diversity assessments of genes encoding candidate vaccine antigens and in the formulation of control and surveillance measures aimed at malaria elimination.

  15. The Evolutionary History of Plasmodium vivax as Inferred from Mitochondrial Genomes: Parasite Genetic Diversity in the Americas

    PubMed Central

    Taylor, Jesse E.; Pacheco, M. Andreína; Bacon, David J.; Beg, Mohammad A.; Machado, Ricardo Luiz; Fairhurst, Rick M.; Herrera, Socrates; Kim, Jung-Yeon; Menard, Didier; Póvoa, Marinete Marins; Villegas, Leopoldo; Mulyanto; Snounou, Georges; Cui, Liwang; Zeyrek, Fadile Yildiz; Escalante, Ananias A.

    2013-01-01

    Plasmodium vivax is the most prevalent human malaria parasite in the Americas. Previous studies have contrasted the genetic diversity of parasite populations in the Americas with those in Asia and Oceania, concluding that New World populations exhibit low genetic diversity consistent with a recent introduction. Here we used an expanded sample of complete mitochondrial genome sequences to investigate the diversity of P. vivax in the Americas as well as in other continental populations. We show that the diversity of P. vivax in the Americas is comparable to that in Asia and Oceania, and we identify several divergent clades circulating in South America that may have resulted from independent introductions. In particular, we show that several haplotypes sampled in Venezuela and northeastern Brazil belong to a clade that diverged from the other P. vivax lineages at least 30,000 years ago, albeit not necessarily in the Americas. We propose that, unlike in Asia where human migration increases local genetic diversity, the combined effects of the geographical structure and the low incidence of vivax malaria in the Americas has resulted in patterns of low local but high regional genetic diversity. This could explain previous views that P. vivax in the Americas has low genetic diversity because these were based on studies carried out in limited areas. Further elucidation of the complex geographical pattern of P. vivax variation will be important both for diversity assessments of genes encoding candidate vaccine antigens and in the formulation of control and surveillance measures aimed at malaria elimination. PMID:23733143

  16. Spatial and temporal genetic diversity of lake whitefish (Coregonus clupeaformis (Mitchill)) from Lake Huron and Lake Erie

    USGS Publications Warehouse

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Hartman, Travis; Johnson, Jim; Roseman, Edward F.

    2013-01-01

    Lake whitefish (Coregonus clupeaformis (Mitchill)) are important commercially, culturally, and ecologically in the Laurentian Great Lakes. Stocks of lake whitefish in the Great Lakes have recovered from low levels of abundance in the 1960s. Reductions in abundance, loss of habitat and environmental degradation can be accompanied by losses of genetic diversity and overall fitness that may persist even as populations recover demographically. Therefore, it is important to be able to identify stocks that have reduced levels of genetic diversity. In this study, we investigated patterns of genetic diversity at microsatellite DNA loci in lake whitefish collected between 1927 and 1929 (historical period) and between 1997 and 2005 (contemporary period) from Lake Huron and Lake Erie. Genetic analysis of lake whitefish from Lakes Huron and Erie shows that the amount of population structuring varies from lake to lake. Greater genetic divergences among collections from Lake Huron may be the result of sampling scale, migration patterns and demographic processes. Fluctuations in abundance of lake whitefish populations may have resulted in periods of increased genetic drift that have resulted in changes in allele frequencies over time, but periodic genetic drift was not severe enough to result in a significant loss of genetic diversity. Migration among stocks may have decreased levels of genetic differentiation while not completely obscuring stock boundaries. Recent changes in spatial boundaries to stocks, the number of stocks and life history characteristics of stocks further demonstrate the potential of coregonids for a swift and varied response to environmental change and emphasise the importance of incorporating both spatial and temporal considerations into management plans to ensure that diversity is preserved.

  17. Reduced Genetic Diversity and Increased Dispersal in Guigna (Leopardus guigna) in Chilean Fragmented Landscapes.

    PubMed

    Napolitano, Constanza; Díaz, Diego; Sanderson, Jim; Johnson, Warren E; Ritland, Kermit; Ritland, Carol E; Poulin, Elie

    2015-01-01

    Landscape fragmentation is often a major cause of species extinction as it can affect a wide variety of ecological processes. The impact of fragmentation varies among species depending on many factors, including their life-history traits and dispersal abilities. Felids are one of the groups most threatened by fragmented landscapes because of their large home ranges, territorial behavior, and low population densities. Here, we model the impacts of habitat fragmentation on patterns of genetic diversity in the guigna (Leopardus guigna), a small felid that is closely associated with the heavily human-impacted temperate rainforests of southern South America. We assessed genetic variation in 1798 base pairs of mitochondrial DNA sequences, 15 microsatellite loci, and 2 sex chromosome genes and estimated genetic diversity, kinship, inbreeding, and dispersal in 38 individuals from landscapes with differing degrees of fragmentation on Chiloé Island in southern Chile. Increased fragmentation was associated with reduced genetic diversity, but not with increased kinship or inbreeding. However, in fragmented landscapes, there was a weaker negative correlation between pairwise kinship and geographic distance, suggesting increased dispersal distances. These results highlight the importance of biological corridors to maximize connectivity in fragmented landscapes and contribute to our understanding of the broader genetic consequences of habitat fragmentation, especially for forest-specialist carnivores. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Invasion genetics of the Bermuda buttercup (Oxalis pes-caprae): complex intercontinental patterns of genetic diversity, polyploidy and heterostyly characterize both native and introduced populations.

    PubMed

    Ferrero, Victoria; Barrett, Spencer C H; Castro, Sílvia; Caldeirinha, Patrícia; Navarro, Luis; Loureiro, João; Rodríguez-Echeverría, Susana

    2015-05-01

    Genetic diversity in populations of invasive species is influenced by a variety of factors including reproductive systems, ploidy level, stochastic forces associated with colonization and multiple introductions followed by admixture. Here, we compare genetic variation in native and introduced populations of the clonal plant Oxalis pes-caprae to investigate the influence of reproductive mode and ploidy on levels of diversity. This species is a tristylous geophyte native to South Africa. Invasive populations throughout much of the introduced range are composed of a sterile clonal pentaploid short-styled form. We examined morph ratios, ploidy level, reproductive mode and genetic diversity at nuclear microsatellite loci in 10 and 12 populations from South Africa and the Western Mediterranean region, respectively. Flow cytometry confirmed earlier reports of diploids and tetraploids in the native range, with a single population containing pentaploid individuals. Introduced populations were composed mainly of pentaploids, but sexual tetraploids were also found. There was clear genetic differentiation between ploidy levels, but sexual populations from both regions were not significantly different in levels of diversity. Invasive populations of the pentaploid exhibited dramatically reduced levels of diversity but were not genetically uniform. The occurrence of mixed ploidy levels and stylar polymorphism in the introduced range is consistent with multiple introductions to the Western Mediterranean. This inference was supported by variation patterns at microsatellite loci. Our study indicates that some invasive populations of Oxalis pes-caprae are not entirely clonal, as often assumed, and multiple introductions and recombination have the potential to increase genetic variation in the introduced range. © 2014 John Wiley & Sons Ltd.

  19. Genetic diversity of Afrikaner cattle in southern Africa.

    PubMed

    Pienaar, Lené; Grobler, J Paul; Scholtz, Michiel M; Swart, Hannelize; Ehlers, Karen; Marx, Munro; MacNeil, Michael D; Neser, Frederick W C

    2018-02-01

    The Afrikaner is an indigenous South African breed of "Sanga" type beef cattle along with breeds such as the Drakensberger and Nguni. Six composite breeds have been developed from crosses with the Afrikaner. Additionally, Afrikaner has been the base from which exotic breeds were established in South Africa through backcrossing. The study examined genetic diversity of Afrikaner cattle by genotyping 1257 animals from 27 herds in different geographic areas of South Africa and Namibia using 11 microsatellite markers. Multiple-locus assignment, performed using the Bayesian clustering algorithm of STRUCTURE, revealed three underlying genotypic groups. These groups were not geographically localized. Across herds and markers, the proportion of unbiased heterozygosity ranged from 0.49 to 0.72 averaging 0.57; mean number of alleles per locus ranged from 3.18 to 7.09, averaging 4.81; and allelic richness ranged from 2.35 to 3.38, averaging 2.67. It is concluded that a low inbreeding level of 2.7% and a moderate to high degree of variation still persists within the Afrikaner cattle breed, despite the recent decline in numbers of animals.

  20. Identifying Genetic Hotspots by Mapping Molecular Diversity of Widespread Trees: When Commonness Matters.

    PubMed

    Souto, Cintia P; Mathiasen, Paula; Acosta, María Cristina; Quiroga, María Paula; Vidal-Russell, Romina; Echeverría, Cristian; Premoli, Andrea C

    2015-01-01

    Conservation planning requires setting priorities at the same spatial scale at which decision-making processes are undertaken considering all levels of biodiversity, but current methods for identifying biodiversity hotspots ignore its genetic component. We developed a fine-scale approach based on the definition of genetic hotspots, which have high genetic diversity and unique variants that represent their evolutionary potential and evolutionary novelties. Our hypothesis is that wide-ranging taxa with similar ecological tolerances, yet of phylogenetically independent lineages, have been and currently are shaped by ecological and evolutionary forces that result in geographically concordant genetic patterns. We mapped previously published genetic diversity and unique variants of biparentally inherited markers and chloroplast sequences for 9 species from 188 and 275 populations, respectively, of the 4 woody dominant families of the austral temperate forest, an area considered a biodiversity hotspot. Spatial distribution patterns of genetic polymorphisms differed among taxa according to their ecological tolerances. Eight genetic hotspots were detected and we recommend conservation actions for some in the southern Coastal Range in Chile. Existing spatially explicit genetic data from multiple populations and species can help to identify biodiversity hotspots and guide conservation actions to establish science-based protected areas that will preserve the evolutionary potential of key habitats and species. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Genetic diversity of Aspergillus fumigatus in indoor hospital environments.

    PubMed

    Araujo, Ricardo; Amorim, António; Gusmão, Leonor

    2010-09-01

    Environmental isolates of Aspergillus fumigatus are less studied than those recovered from clinical sources. In the present study, the genetic diversity among such environmental isolates was assessed, as well as their dispersion ability and the acquisition of new strains in 19 medical units of the same hospital. A. fumigatus isolates were genotyped using a single multiplex PCR-based reaction with eight microsatellite markers and an insertion/deletion polymorphism. A total of 130 unique genotypes were found among a total of 250 A. fumigatus isolates. Genotypic diversity ranged from 0.86 to 1 in samples from hospital rooms, and there was no correlation between these samples and the presence of high-efficiency particulate air filters or any other air filtration system. Four of the six most prevalent A. fumigatus strains were recovered from water samples. The occurrence of microvariation was common among environmental isolates, which affected each of the microsatellite markers. The assessment of the genetic diversity of A. fumigatus is a useful tool for illustrating the presence or absence of specific clonal populations in a clinical setting. A. fumigatus populations were highly dynamic indoors, and new populations were found in just a few months. Due to the high indoor dispersion capability of A. fumigatus, more attention should be given to strains with increased pathogenic potential or reduced susceptibility to anti-fungal drugs.

  2. Ancient DNA from Giant Panda (Ailuropoda melanoleuca) of South-Western China Reveals Genetic Diversity Loss during the Holocene

    PubMed Central

    Barlow, Axel; Cooper, Alan; Hou, Xin-Dong; Ji, Xue-Ping; Zhong, Bo-Jian; Liu, Hong; Flynn, Lawrence J.; Yuan, Jun-Xia; Wang, Li-Rui; Basler, Nikolas; Westbury, Michael V.; Hofreiter, Michael; Lai, Xu-Long

    2018-01-01

    The giant panda was widely distributed in China and south-eastern Asia during the middle to late Pleistocene, prior to its habitat becoming rapidly reduced in the Holocene. While conservation reserves have been established and population numbers of the giant panda have recently increased, the interpretation of its genetic diversity remains controversial. Previous analyses, surprisingly, have indicated relatively high levels of genetic diversity raising issues concerning the efficiency and usefulness of reintroducing individuals from captive populations. However, due to a lack of DNA data from fossil specimens, it is unknown whether genetic diversity was even higher prior to the most recent population decline. We amplified complete cytb and 12s rRNA, partial 16s rRNA and ND1, and control region sequences from the mitochondrial genomes of two Holocene panda specimens. We estimated genetic diversity and population demography by analyzing the ancient mitochondrial DNA sequences alongside those from modern giant pandas, as well as from other members of the bear family (Ursidae). Phylogenetic analyses show that one of the ancient haplotypes is sister to all sampled modern pandas and the second ancient individual is nested among the modern haplotypes, suggesting that genetic diversity may indeed have been higher earlier during the Holocene. Bayesian skyline plot analysis supports this view and indicates a slight decline in female effective population size starting around 6000 years B.P., followed by a recovery around 2000 years ago. Therefore, while the genetic diversity of the giant panda has been affected by recent habitat contraction, it still harbors substantial genetic diversity. Moreover, while its still low population numbers require continued conservation efforts, there seem to be no immediate threats from the perspective of genetic evolutionary potential. PMID:29642393

  3. Ancient DNA from Giant Panda (Ailuropoda melanoleuca) of South-Western China Reveals Genetic Diversity Loss during the Holocene.

    PubMed

    Sheng, Gui-Lian; Barlow, Axel; Cooper, Alan; Hou, Xin-Dong; Ji, Xue-Ping; Jablonski, Nina G; Zhong, Bo-Jian; Liu, Hong; Flynn, Lawrence J; Yuan, Jun-Xia; Wang, Li-Rui; Basler, Nikolas; Westbury, Michael V; Hofreiter, Michael; Lai, Xu-Long

    2018-04-06

    The giant panda was widely distributed in China and south-eastern Asia during the middle to late Pleistocene, prior to its habitat becoming rapidly reduced in the Holocene. While conservation reserves have been established and population numbers of the giant panda have recently increased, the interpretation of its genetic diversity remains controversial. Previous analyses, surprisingly, have indicated relatively high levels of genetic diversity raising issues concerning the efficiency and usefulness of reintroducing individuals from captive populations. However, due to a lack of DNA data from fossil specimens, it is unknown whether genetic diversity was even higher prior to the most recent population decline. We amplified complete cyt b and 12s rRNA, partial 16s rRNA and ND1 , and control region sequences from the mitochondrial genomes of two Holocene panda specimens. We estimated genetic diversity and population demography by analyzing the ancient mitochondrial DNA sequences alongside those from modern giant pandas, as well as from other members of the bear family (Ursidae). Phylogenetic analyses show that one of the ancient haplotypes is sister to all sampled modern pandas and the second ancient individual is nested among the modern haplotypes, suggesting that genetic diversity may indeed have been higher earlier during the Holocene. Bayesian skyline plot analysis supports this view and indicates a slight decline in female effective population size starting around 6000 years B.P., followed by a recovery around 2000 years ago. Therefore, while the genetic diversity of the giant panda has been affected by recent habitat contraction, it still harbors substantial genetic diversity. Moreover, while its still low population numbers require continued conservation efforts, there seem to be no immediate threats from the perspective of genetic evolutionary potential.

  4. Genetic diversity of wild and hatchery lake trout populations: Relevance for management and restoration in the Great Lakes

    USGS Publications Warehouse

    Page, K.S.; Scribner, K.T.; Burnham-Curtis, M.

    2004-01-01

    The biological diversity of lake trout Salvelinus namaycush in the upper Great Lakes was historically high, consisting of many recognizable morphological types and discrete spawning populations. During the 1950s and 1960s, lake trout populations were extirpated from much of the Great Lakes primarily as a result of overfishing and predation by the parasitic sea lamprey Petromyzon marinus. Investigations of how genetic diversity is partitioned among remnant wild lake trout populations and hatchery broodstocks have been advocated to guide lake trout management and conservation planning. Using microsatellite genetic markers, we estimated measures of genetic diversity and the apportionment of genetic variance among 6 hatchery broodstocks and 10 wild populations representing three morphotypes (lean, humper, and siscowet). Analyses revealed that different hatchery broodstocks and wild populations contributed disproportionally to the total levels of genetic diversity. The genetic affinities of hatchery lake trout reflected the lake basins of origin of the wild source populations. The variance in allele frequency over all sampled extant wild populations was apportioned primarily on the basis of morphotype (??MT = 0.029) and secondarily among geographically dispersed populations within each morphotype (??ST = 0.024). The findings suggest that the genetic divergence reflected in recognized morphotypes and the associated ecological and physiological specialization occurred prior to the partitioning of large proglacial lakes into the Great Lakes or as a consequence of higher contemporary levels of gene flow within than among morphotypes. Information on the relative contributions of different broodstocks to total gene diversity within the regional hatchery program can be used to prioritize the broodstocks to be retained and to guide future stocking strategies. The findings highlight the importance of ecological and phenotypic diversity in Great Lakes fish communities and

  5. Does silvoagropecuary landscape fragmentation affect the genetic diversity of the sigmodontine rodent Oligoryzomys longicaudatus?

    PubMed Central

    Lazo-Cancino, Daniela; Musleh, Selim S.; Hernandez, Cristian E.; Palma, Eduardo

    2017-01-01

    Background Fragmentation of native forests is a highly visible result of human land-use throughout the world. In this study, we evaluated the effects of landscape fragmentation and matrix features on the genetic diversity and structure of Oligoryzomys longicaudatus, the natural reservoir of Hantavirus in southern South America. We focused our work in the Valdivian Rainforest where human activities have produced strong change of natural habitats, with an important number of human cases of Hantavirus. Methods We sampled specimens of O. longicaudatus from five native forest patches surrounded by silvoagropecuary matrix from Panguipulli, Los Rios Region, Chile. Using the hypervariable domain I (mtDNA), we characterized the genetic diversity and evaluated the effect of fragmentation and landscape matrix on the genetic structure of O. longicaudatus. For the latter, we used three approaches: (i) Isolation by Distance (IBD) as null model, (ii) Least-cost Path (LCP) where genetic distances between patch pairs increase with cost-weighted distances, and (iii) Isolation by Resistance (IBR) where the resistance distance is the average number of steps that is needed to commute between the patches during a random walk. Results We found low values of nucleotide diversity (π) for the five patches surveyed, ranging from 0.012 to 0.015, revealing that the 73 sampled specimens of this study belong to two populations but with low values of genetic distance (γST) ranging from 0.022 to 0.099. Likewise, we found that there are no significant associations between genetic distance and geographic distance for IBD and IBR. However, we found for the LCP approach, a significant positive relationship (r = 0.737, p = 0.05), with shortest least-cost paths traced through native forest and arborescent shrublands. Discussion In this work we found that, at this reduced geographical scale, Oligoryzomys longicaudatus shows genetic signs of fragmentation. In addition, we found that connectivity

  6. Relationship between Trypanosoma brucei rhodesiense genetic diversity and clinical spectrum among sleeping sickness patients in Uganda.

    PubMed

    Kato, Charles D; Mugasa, Claire M; Nanteza, Ann; Matovu, Enock; Alibu, Vincent P

    2017-10-27

    Human African trypanosomiasis (HAT) due to Trypanosoma brucei rhodesiense in East and southern Africa is reported to be clinically diverse. We tested the hypothesis that this clinical diversity is associated with a variation in trypanosome genotypes. Trypanosome DNA isolated from HAT patients was genotyped using 7 microsatellite markers directly from blood spotted FTA cards following a whole genome amplification. All markers were polymorphic and identified 17 multi-locus genotypes with 56% of the isolates having replicate genotypes. We did not observe any significant clustering between isolates and bootstrap values across major tree nodes were insignificant. When genotypes were compared among patients with varying clinical presentation or outcome, replicate genotypes were observed at both extremes showing no significant association between genetic diversity and clinical outcome. Our study shows that T. b. rhodesiense isolates are homogeneous within a focus and that observed clinical diversity may not be associated with parasite genetic diversity. Other factors like host genetics and environmental factors might be involved in determining clinical diversity. Our study may be important in designing appropriate control measures that target the parasite.

  7. Effect of latitudinal gradient and impact of logging on genetic diversity of Cedrela lilloi along the Argentine Yungas Rainforest

    PubMed Central

    Inza, Maria V; Zelener, Noga; Fornes, Luis; Gallo, Leonardo A

    2012-01-01

    Cedrela lilloi C. DC. (cedro coya, Meliaceae), an important south American timber species, has been historically overexploited through selective logging in Argentine Yungas Rainforest. Management and conservation programs of the species require knowledge of its genetic variation patterns; however, no information is available. Molecular genetic variability of the species was characterized to identify high-priority populations for conservation and domestication purposes. Fourteen native populations (160 individuals) along a latitudinal gradient and with different logging's intensities were assessed by 293 polymorphic AFLP (amplified fragment length polymorphism) markers. Genetic diversity was low (Ht = 0.135), according to marginal location of the species in Argentina. Most of the diversity was distributed within populations (87%). Northern populations showed significant higher genetic diversity (R2= 0.69) that agreed with latitudinal pattern of distribution of taxonomic diversity in the Yungas. Three clusters were identified by Bayesian analysis in correspondence with northern, central, and southern Yungas. An analysis of molecular variance (AMOVA) revealed significant genetic differences among latitudinal clusters even when logging (ΦRT = 0.07) and unlogging populations (ΦPT = 0.10) were separately analyzed. Loss of genetic diversity with increasing logging intensity was observed between neighboring populations with different disturbance (ΦPT = 0.03–0.10). Bottlenecks in disturbed populations are suggested as the main cause. Our results emphasize both: the necessity of maintaining the genetic diversity in protected areas that appear as possible long-term refuges of the species; and to rescue for the national system of protected areas some high genetic diversity populations that are on private fields. PMID:23170208

  8. Changes in the genetic diversity of eastern hemlock as a result of different forest management practices

    Treesearch

    Gary J. Hawley; Donald H. DeHayes; John C. Brissette

    2000-01-01

    Loss of populations and individuals within species to human-induced selective forces can result in loss of specific genes and overall genetic diversity upon which productivity, ecosystem stability, long-term survival, and evolution depend. This is particularly true for long-lived organisms, such as forest trees, because genetic diversity confers adaptability necessary...

  9. Change in Emiliania huxleyi Virus Assemblage Diversity but Not in Host Genetic Composition during an Ocean Acidification Mesocosm Experiment.

    PubMed

    Highfield, Andrea; Joint, Ian; Gilbert, Jack A; Crawfurd, Katharine J; Schroeder, Declan C

    2017-03-08

    Effects of elevated p CO₂ on Emiliania huxleyi genetic diversity and the viruses that infect E. huxleyi (EhVs) have been investigated in large volume enclosures in a Norwegian fjord. Triplicate enclosures were bubbled with air enriched with CO₂ to 760 ppmv whilst the other three enclosures were bubbled with air at ambient p CO₂; phytoplankton growth was initiated by the addition of nitrate and phosphate. E. huxleyi was the dominant coccolithophore in all enclosures, but no difference in genetic diversity, based on DGGE analysis using primers specific to the calcium binding protein gene ( gpa ) were detected in any of the treatments. Chlorophyll concentrations and primary production were lower in the three elevated p CO₂ treatments than in the ambient treatments. However, although coccolithophores numbers were reduced in two of the high- p CO₂ treatments; in the third, there was no suppression of coccolithophores numbers, which were very similar to the three ambient treatments. In contrast, there was considerable variation in genetic diversity in the EhVs, as determined by analysis of the major capsid protein ( mcp ) gene. EhV diversity was much lower in the high- p CO₂ treatment enclosure that did not show inhibition of E. huxleyi growth. Since virus infection is generally implicated as a major factor in terminating phytoplankton blooms, it is suggested that no study of the effect of ocean acidification in phytoplankton can be complete if it does not include an assessment of viruses.

  10. Genetic diversity, linkage disequilibrium, and association mapping analyses of gossypium barbadense l. germplasm and cultivars

    USDA-ARS?s Scientific Manuscript database

    Limited polymorphism and narrow genetic base, due to genetic bottleneck through historic domestication, highlight a need for comprehensive characterization and utilization of existing genetic diversity in cotton germplasm collections. In this study, 288 worldwide Gossypium barbadense L. cotton germ...

  11. Genetic Diversity of an Imperiled Neotropical Catfish and Recommendations for Its Restoration.

    PubMed

    Fonseca, Fernando S; Domingues, Rodrigo R; Hallerman, Eric M; Hilsdorf, Alexandre W S

    2017-01-01

    The long-whiskered catfish Steindachneridion parahybae (Family Pimelodidae) is endemic to the Paraíba do Sul River basin in southeastern Brazil. This species was heavily exploited by artisanal fisheries and faces challenges posed by dams, introduced species, and deterioration of critical habitat. The remaining populations are small and extirpated from some locales, and the species is listed as critically endangered in Brazil. Screening variation at a partial mitochondrial control region sequence (mtCR) and 20 microsatellite loci, we: (i) describe the patterns of genetic diversity along its current distributional range; (ii) test the null hypothesis of panmixia; (iii) investigate the main factors driving its current population structure, and (iv) propose management of broodstock for fostering recovery of wild populations through genetically cognizant restocking. Our microsatellite data for 70 individuals from five collections indicate moderate levels of heterozygosity ( H O = 0.45) and low levels of inbreeding ( F IS = 0.016). Individual-based cluster analyses showed clear genetic structure, with three clusters of individuals over the collection area with no mis-assigned individuals, suggesting no recent migration among the three clusters. Pairwise D EST values showed moderate and significant genetic differentiation among all populations so identified. The MUR population may have suffered a recent demographic reduction. mtCRs for 70 individuals exhibited 36 haplotypes resulting from 38 polymorphic sites. Overall, mitochondrial haplotype diversity was 0.930 (±0.023) and nucleotide diversity was 0.011 (±0.002). Significant population structure was observed, with ϕ ST = 0.226. Genetic markers could be used in a hatchery-based restoration program emphasizing breeding of pairs with low kinship values in order to promote retention of genetic diversity and avoid inbreeding. Individual average kinship relationships showed 87.3% advised matings, 11.0% marginal matings

  12. Genetic diversity and population structure of Vriesea reitzii (Bromeliaceae), a species from the Southern Brazilian Highlands

    PubMed Central

    Soares, Luis Eduardo; Goetze, Márcia; Zanella, Camila M.; Bered, Fernanda

    2018-01-01

    Abstract The Southern Brazilian Highlands are composed by a mosaic of Mixed Ombrophilous Forest (MOF) and grassland formations, an interesting landscape for the study of population structure. We analyzed the genetic diversity within and among populations of the MOF-endemic bromeliad Vriesea reitzii by genotyping seven nuclear microsatellite loci in 187 individuals from six populations. We characterized levels of genetic diversity and assessed the genetic structure among populations. Vriesea reitzii populations showed high levels of genetic variation (number of alleles 28 - 43, allelic richness 3.589 - 5.531) and moderate levels of genetic differentiation (F ST = 0.123, R ST = 0.096). The high levels of genetic diversity may be explained by species life-history traits, such as habit and mating system. The moderate structure may be a product of the combination of ancient and contemporary gene flow, resulting from the expansion of the forest in the Holocene, and/or due to facilitated dispersal mediated by the MOF’s mosaic landscape. The genetic results indicated no imminent threat to this bromeliad. However, the species is highly associated with the MOF, putting landscape conservation at the center of conservation efforts for the species’ maintenance. PMID:29583153

  13. Limited genetic diversity of Brucella spp.

    PubMed

    Gándara, B; Merino, A L; Rogel, M A; Martínez-Romero, E

    2001-01-01

    Multilocus enzyme electrophoresis (MLEE) of 99 Brucella isolates, including the type strains from all recognized species, revealed a very limited genetic diversity and supports the proposal of a monospecific genus. In MLEE-derived dendrograms, Brucella abortus and a marine Brucella sp. grouped into a single electrophoretic type related to Brucella neotomae and Brucella ovis. Brucella suis and Brucella canis formed another cluster linked to Brucella melitensis and related to Rhizobium tropici. The Brucella strains tested that were representatives of the six electrophoretic types had the same rRNA gene restriction fragment length polymorphism patterns and identical ribotypes. All 99 isolates had similar chromosome profiles as revealed by the Eckhardt procedure.

  14. Genetics, Genomics and Evolution of Ergot Alkaloid Diversity

    PubMed Central

    Young, Carolyn A.; Schardl, Christopher L.; Panaccione, Daniel G.; Florea, Simona; Takach, Johanna E.; Charlton, Nikki D.; Moore, Neil; Webb, Jennifer S.; Jaromczyk, Jolanta

    2015-01-01

    The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary) metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization). The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine. PMID:25875294

  15. Analysis of genetic diversity in pigeon pea germplasm using retrotransposon-based molecular markers.

    PubMed

    Maneesha; Upadhyaya, Kailash C

    2017-09-01

    Pigeon pea (Cajanus cajan), an important legume crop is predominantly cultivated in tropical and subtropical regions of Asia and Africa. It is normally considered to have a low degree of genetic diversity, an impediment in undertaking crop improvement programmes.We have analysed genetic polymorphism of domesticated pigeon pea germplasm (47 accessions) across the world using earlier characterized panzee retrotransposon-based molecularmarkers. Itwas conjectured that since retrotransposons are interspersed throughout the genome, retroelements-based markers would be able to uncover polymorphism possibly inherent in the diversity of retroelement sequences. Two PCR-based techniques, sequence-specific amplified polymorphism (SSAP) and retrotransposon microsatellite amplified polymorphism (REMAP) were utilized for the analyses.We show that a considerable degree of polymorphism could be detected using these techniques. Three primer combinations in SSAP generated 297 amplified products across 47 accessions with an average of 99 amplicons per assay. Degree of polymorphism varied from 84-95%. In the REMAP assays, the number of amplicons was much less but up to 73% polymorphism could be detected. On the basis of similarity coefficients, dendrograms were constructed. The results demonstrate that the retrotransposon-based markers could serve as a better alternative for the assessment of genetic diversity in crops with apparent low genetic base.

  16. Zebra Alphaherpesviruses (EHV-1 and EHV-9): Genetic Diversity, Latency and Co-Infections.

    PubMed

    Abdelgawad, Azza; Damiani, Armando; Ho, Simon Y W; Strauss, Günter; Szentiks, Claudia A; East, Marion L; Osterrieder, Nikolaus; Greenwood, Alex D

    2016-09-20

    Alphaherpesviruses are highly prevalent in equine populations and co-infections with more than one of these viruses' strains frequently diagnosed. Lytic replication and latency with subsequent reactivation, along with new episodes of disease, can be influenced by genetic diversity generated by spontaneous mutation and recombination. Latency enhances virus survival by providing an epidemiological strategy for long-term maintenance of divergent strains in animal populations. The alphaherpesviruses equine herpesvirus 1 (EHV-1) and 9 (EHV-9) have recently been shown to cross species barriers, including a recombinant EHV-1 observed in fatal infections of a polar bear and Asian rhinoceros. Little is known about the latency and genetic diversity of EHV-1 and EHV-9, especially among zoo and wild equids. Here, we report evidence of limited genetic diversity in EHV-9 in zebras, whereas there is substantial genetic variability in EHV-1. We demonstrate that zebras can be lytically and latently infected with both viruses concurrently. Such a co-occurrence of infection in zebras suggests that even relatively slow-evolving viruses such as equine herpesviruses have the potential to diversify rapidly by recombination. This has potential consequences for the diagnosis of these viruses and their management in wild and captive equid populations.

  17. Beyond Serial Founder Effects: The Impact of Admixture and Localized Gene Flow on Patterns of Regional Genetic Diversity.

    PubMed

    Hunley, Keith L; Cabana, Graciela S

    2016-07-01

    Geneticists have argued that the linear decay in within-population genetic diversity with increasing geographic distance from East Africa is best explained by a phylogenetic process of repeated founder effects, growth, and isolation. However, this serial founder effect (SFE) process has not yet been adequately vetted against other evolutionary processes that may also affect geospatial patterns of diversity. Additionally, studies of the SFE process have been largely based on a limited 52-population sample. Here, we assess the effects of founder effect, admixture, and localized gene flow processes on patterns of global and regional diversity using a published data set of 645 autosomal microsatellite genotypes from 5,415 individuals in 248 widespread populations. We used a formal tree-fitting approach to explore the role of founder effects. The approach involved fitting global and regional population trees to extant patterns of gene diversity and then systematically examining the deviations in fit. We also informally tested the SFE process using linear models of gene diversity versus waypoint geographic distances from Africa. We tested the role of localized gene flow using partial Mantel correlograms of gene diversity versus geographic distance controlling for the confounding effects of treelike genetic structure. We corroborate previous findings that global patterns of diversity, both within and between populations, are the product of an out-of-Africa SFE process. Within regions, however, diversity within populations is uncorrelated with geographic distance from Africa. Here, patterns of diversity have been largely shaped by recent interregional admixture and secondary range expansions. Our detailed analyses of the pattern of diversity within and between populations reveal that the signatures of different evolutionary processes dominate at different geographic scales. These findings have important implications for recent publications on the biology of race.

  18. A simulations approach for meta-analysis of genetic association studies based on additive genetic model.

    PubMed

    John, Majnu; Lencz, Todd; Malhotra, Anil K; Correll, Christoph U; Zhang, Jian-Ping

    2018-06-01

    Meta-analysis of genetic association studies is being increasingly used to assess phenotypic differences between genotype groups. When the underlying genetic model is assumed to be dominant or recessive, assessing the phenotype differences based on summary statistics, reported for individual studies in a meta-analysis, is a valid strategy. However, when the genetic model is additive, a similar strategy based on summary statistics will lead to biased results. This fact about the additive model is one of the things that we establish in this paper, using simulations. The main goal of this paper is to present an alternate strategy for the additive model based on simulating data for the individual studies. We show that the alternate strategy is far superior to the strategy based on summary statistics.

  19. Genetic diversity of transmission-blocking vaccine candidate Pvs48/45 in Plasmodium vivax populations in China.

    PubMed

    Feng, Hui; Gupta, Bhavna; Wang, Meilian; Zheng, Wenqi; Zheng, Li; Zhu, Xiaotong; Yang, Yimei; Fang, Qiang; Luo, Enjie; Fan, Qi; Tsuboi, Takafumi; Cao, Yaming; Cui, Liwang

    2015-12-01

    The male gamete fertilization factor P48/45 in malaria parasites is a prime transmission-blocking vaccine (TBV) candidate. Efforts to develop antimalarial vaccines are often thwarted by genetic diversity of the target antigens. Here we evaluated the genetic diversity of Pvs48/45 gene in global Plasmodium vivax populations. We determined 200 Pvs48/45 sequences collected from temperate and subtropical parasite populations in China. Population genetic and evolutionary analyses were performed to determine the levels of genetic diversity, potential signature of selection, and population differentiation. Analysis of the Pvs48/45 sequences from 200 P. vivax parasites collected in a temperate and a tropical region revealed a low level of genetic diversity (π = 0.0012) with 14 single nucleotide polymorphisms, of which 11 were nonsynonymous. Analysis of 344 Pvs48/45 sequences from nine worldwide P. vivax populations detected a total of 38 haplotypes, of which 13 haplotypes were present only once. Multiple tests for selection confirmed a signature of positive selection on Pvs48/45 with selection skewed to the second cysteine domain. Haplotype network analysis and Wright's fixation index showed large geographical differentiation with the presence of continent-or region-specific mutations in this gene. Pvs48/45 displays low levels of genetic diversity with the presence of region-specific mutations. Some of the mutations may be potential epitope targets based on their positions in the predicted structure, highlighting the need for future evaluation of these mutations in designing Pvs48/45-based TBV.

  20. Genetic diversity and phylogenetic relationships of seven Amorphophallus species in southwestern China revealed by chloroplast DNA sequences.

    PubMed

    Gao, Yong; Yin, Si; Yang, Huixiao; Wu, Lifang; Yan, Yuehui

    2017-07-15

    Plants species in the genus Amorphophallus are of great economic importance, as they are the only plants known to produce glucomannan. Although southwestern China has been recognized as one of the origin centres of Amorphophallus, only a few studies assessing its genetic diversity have been reported. To aid in the utilization and conservation of Amorphophallus species, we evaluated the genetic diversity and phylogenetic relationships among seven edible Amorphophallus species using three chloroplast DNA regions (rbcL, trnL and trnK-matK). The results showed that the genetic diversity at the population level was relatively low, with over half of the populations harbouring only one haplotype. The widely scattered species, A. konjac, had the largest genetic diversity, while the narrow endemic species, A. yuloensis, possessed only one haplotype. Phylogeny analysis identified three well-supported major lineages. Our study suggested that habitat fragmentation might be a driver of the genetic variation patterns within and between populations of Amorphophallus. A conservation strategy consisting of in situ conservation and germplasm collection is recommended.