Nie, Z Q; Ou, Y Q; Zhuang, J; Qu, Y J; Mai, J Z; Chen, J M; Liu, X Q
2016-05-10
Conditional logistic regression analysis and unconditional logistic regression analysis are commonly used in case control study, but Cox proportional hazard model is often used in survival data analysis. Most literature only refer to main effect model, however, generalized linear model differs from general linear model, and the interaction was composed of multiplicative interaction and additive interaction. The former is only statistical significant, but the latter has biological significance. In this paper, macros was written by using SAS 9.4 and the contrast ratio, attributable proportion due to interaction and synergy index were calculated while calculating the items of logistic and Cox regression interactions, and the confidence intervals of Wald, delta and profile likelihood were used to evaluate additive interaction for the reference in big data analysis in clinical epidemiology and in analysis of genetic multiplicative and additive interactions. PMID:27188374
Prediction in Multiple Regression.
ERIC Educational Resources Information Center
Osborne, Jason W.
2000-01-01
Presents the concept of prediction via multiple regression (MR) and discusses the assumptions underlying multiple regression analyses. Also discusses shrinkage, cross-validation, and double cross-validation of prediction equations and describes how to calculate confidence intervals around individual predictions. (SLD)
Eberly, Lynn E
2007-01-01
This chapter describes multiple linear regression, a statistical approach used to describe the simultaneous associations of several variables with one continuous outcome. Important steps in using this approach include estimation and inference, variable selection in model building, and assessing model fit. The special cases of regression with interactions among the variables, polynomial regression, regressions with categorical (grouping) variables, and separate slopes models are also covered. Examples in microbiology are used throughout. PMID:18450050
Multiple linear regression analysis
NASA Technical Reports Server (NTRS)
Edwards, T. R.
1980-01-01
Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.
Multiple Regression and Its Discontents
ERIC Educational Resources Information Center
Snell, Joel C.; Marsh, Mitchell
2012-01-01
Multiple regression is part of a larger statistical strategy originated by Gauss. The authors raise questions about the theory and suggest some changes that would make room for Mandelbrot and Serendipity.
Multiple weight stepwise regression
Atkins, J. |; Campbell, J.
1993-10-01
In many science and engineering applications, there is an interest in predicting the outputs of a process for given levels of inputs. In order to develop a model, one could run the process (or a simulation of the process) at a number of points (a point would be one run at one set of possible input values) and observe the values of the outputs at those points. There observations can be used to predict the values of the outputs for other values of the inputs. Since the outputs are a function of the inputs, we can generate a surface in the space of possible inputs and outputs. This surface is called a response surface. In some cases, collecting data needed to generate a response surface can e very expensive. Thus, in these cases, there is a powerful incentive to minimize the sample size while building better response surfaces. One such case is the semiconductor equipment manufacturing industry. Semiconductor manufacturing equipment is complex and expensive. Depending upon the type of equipment, the number of control parameters may range from 10 to 30 with perhaps 5 to 10 being important. Since a single run can cost hundreds or thousands of dollars, it is very important to have efficient methods for building response surfaces. A current approach to this problem is to do the experiment in two stages. First, a traditional design (such as fractional factorial) is used to screen variables. After deciding which variables are significant, additional runs of the experiment are conducted. The original runs and the new runs are used to build a model with the significant variables. However, the original (screening) runs are not as helpful for building the model as some other points might have been. This paper presents a point selection scheme that is more efficient than traditional designs.
Fungible Weights in Multiple Regression
ERIC Educational Resources Information Center
Waller, Niels G.
2008-01-01
Every set of alternate weights (i.e., nonleast squares weights) in a multiple regression analysis with three or more predictors is associated with an infinite class of weights. All members of a given class can be deemed "fungible" because they yield identical "SSE" (sum of squared errors) and R[superscript 2] values. Equations for generating…
Cross-Validation, Shrinkage, and Multiple Regression.
ERIC Educational Resources Information Center
Hynes, Kevin
One aspect of multiple regression--the shrinkage of the multiple correlation coefficient on cross-validation is reviewed. The paper consists of four sections. In section one, the distinction between a fixed and a random multiple regression model is made explicit. In section two, the cross-validation paradigm and an explanation for the occurrence…
Some Simple Computational Formulas for Multiple Regression
ERIC Educational Resources Information Center
Aiken, Lewis R., Jr.
1974-01-01
Short-cut formulas are presented for direct computation of the beta weights, the standard errors of the beta weights, and the multiple correlation coefficient for multiple regression problems involving three independent variables and one dependent variable. (Author)
Correlation Weights in Multiple Regression
ERIC Educational Resources Information Center
Waller, Niels G.; Jones, Jeff A.
2010-01-01
A general theory on the use of correlation weights in linear prediction has yet to be proposed. In this paper we take initial steps in developing such a theory by describing the conditions under which correlation weights perform well in population regression models. Using OLS weights as a comparison, we define cases in which the two weighting…
Practical Session: Multiple Linear Regression
NASA Astrophysics Data System (ADS)
Clausel, M.; Grégoire, G.
2014-12-01
Three exercises are proposed to illustrate the simple linear regression. In the first one investigates the influence of several factors on atmospheric pollution. It has been proposed by D. Chessel and A.B. Dufour in Lyon 1 (see Sect. 6 of http://pbil.univ-lyon1.fr/R/pdf/tdr33.pdf) and is based on data coming from 20 cities of U.S. Exercise 2 is an introduction to model selection whereas Exercise 3 provides a first example of analysis of variance. Exercises 2 and 3 have been proposed by A. Dalalyan at ENPC (see Exercises 2 and 3 of http://certis.enpc.fr/~dalalyan/Download/TP_ENPC_5.pdf).
The Geometry of Enhancement in Multiple Regression
ERIC Educational Resources Information Center
Waller, Niels G.
2011-01-01
In linear multiple regression, "enhancement" is said to occur when R[superscript 2] = b[prime]r greater than r[prime]r, where b is a p x 1 vector of standardized regression coefficients and r is a p x 1 vector of correlations between a criterion y and a set of standardized regressors, x. When p = 1 then b [is congruent to] r and enhancement cannot…
Multiple-Instance Regression with Structured Data
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri L.; Lane, Terran; Roper, Alex
2008-01-01
We present a multiple-instance regression algorithm that models internal bag structure to identify the items most relevant to the bag labels. Multiple-instance regression (MIR) operates on a set of bags with real-valued labels, each containing a set of unlabeled items, in which the relevance of each item to its bag label is unknown. The goal is to predict the labels of new bags from their contents. Unlike previous MIR methods, MI-ClusterRegress can operate on bags that are structured in that they contain items drawn from a number of distinct (but unknown) distributions. MI-ClusterRegress simultaneously learns a model of the bag's internal structure, the relevance of each item, and a regression model that accurately predicts labels for new bags. We evaluated this approach on the challenging MIR problem of crop yield prediction from remote sensing data. MI-ClusterRegress provided predictions that were more accurate than those obtained with non-multiple-instance approaches or MIR methods that do not model the bag structure.
Assumptions of Multiple Regression: Correcting Two Misconceptions
ERIC Educational Resources Information Center
Williams, Matt N.; Gomez Grajales, Carlos Alberto; Kurkiewicz, Dason
2013-01-01
In 2002, an article entitled "Four assumptions of multiple regression that researchers should always test" by Osborne and Waters was published in "PARE." This article has gone on to be viewed more than 275,000 times (as of August 2013), and it is one of the first results displayed in a Google search for "regression…
Multiple Linear Regression: A Realistic Reflector.
ERIC Educational Resources Information Center
Nutt, A. T.; Batsell, R. R.
Examples of the use of Multiple Linear Regression (MLR) techniques are presented. This is done to show how MLR aids data processing and decision-making by providing the decision-maker with freedom in phrasing questions and by accurately reflecting the data on hand. A brief overview of the rationale underlying MLR is given, some basic definitions…
Salience Assignment for Multiple-Instance Regression
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri L.; Lane, Terran
2007-01-01
We present a Multiple-Instance Learning (MIL) algorithm for determining the salience of each item in each bag with respect to the bag's real-valued label. We use an alternating-projections constrained optimization approach to simultaneously learn a regression model and estimate all salience values. We evaluate this algorithm on a significant real-world problem, crop yield modeling, and demonstrate that it provides more extensive, intuitive, and stable salience models than Primary-Instance Regression, which selects a single relevant item from each bag.
Hierarchical regression for analyses of multiple outcomes.
Richardson, David B; Hamra, Ghassan B; MacLehose, Richard F; Cole, Stephen R; Chu, Haitao
2015-09-01
In cohort mortality studies, there often is interest in associations between an exposure of primary interest and mortality due to a range of different causes. A standard approach to such analyses involves fitting a separate regression model for each type of outcome. However, the statistical precision of some estimated associations may be poor because of sparse data. In this paper, we describe a hierarchical regression model for estimation of parameters describing outcome-specific relative rate functions and associated credible intervals. The proposed model uses background stratification to provide flexible control for the outcome-specific associations of potential confounders, and it employs a hierarchical "shrinkage" approach to stabilize estimates of an exposure's associations with mortality due to different causes of death. The approach is illustrated in analyses of cancer mortality in 2 cohorts: a cohort of dioxin-exposed US chemical workers and a cohort of radiation-exposed Japanese atomic bomb survivors. Compared with standard regression estimates of associations, hierarchical regression yielded estimates with improved precision that tended to have less extreme values. The hierarchical regression approach also allowed the fitting of models with effect-measure modification. The proposed hierarchical approach can yield estimates of association that are more precise than conventional estimates when one wishes to estimate associations with multiple outcomes. PMID:26232395
Multiple linear regression for isotopic measurements
NASA Astrophysics Data System (ADS)
Garcia Alonso, J. I.
2012-04-01
There are two typical applications of isotopic measurements: the detection of natural variations in isotopic systems and the detection man-made variations using enriched isotopes as indicators. For both type of measurements accurate and precise isotope ratio measurements are required. For the so-called non-traditional stable isotopes, multicollector ICP-MS instruments are usually applied. In many cases, chemical separation procedures are required before accurate isotope measurements can be performed. The off-line separation of Rb and Sr or Nd and Sm is the classical procedure employed to eliminate isobaric interferences before multicollector ICP-MS measurement of Sr and Nd isotope ratios. Also, this procedure allows matrix separation for precise and accurate Sr and Nd isotope ratios to be obtained. In our laboratory we have evaluated the separation of Rb-Sr and Nd-Sm isobars by liquid chromatography and on-line multicollector ICP-MS detection. The combination of this chromatographic procedure with multiple linear regression of the raw chromatographic data resulted in Sr and Nd isotope ratios with precisions and accuracies typical of off-line sample preparation procedures. On the other hand, methods for the labelling of individual organisms (such as a given plant, fish or animal) are required for population studies. We have developed a dual isotope labelling procedure which can be unique for a given individual, can be inherited in living organisms and it is stable. The detection of the isotopic signature is based also on multiple linear regression. The labelling of fish and its detection in otoliths by Laser Ablation ICP-MS will be discussed using trout and salmon as examples. As a conclusion, isotope measurement procedures based on multiple linear regression can be a viable alternative in multicollector ICP-MS measurements.
Interpretation of Standardized Regression Coefficients in Multiple Regression.
ERIC Educational Resources Information Center
Thayer, Jerome D.
The extent to which standardized regression coefficients (beta values) can be used to determine the importance of a variable in an equation was explored. The beta value and the part correlation coefficient--also called the semi-partial correlation coefficient and reported in squared form as the incremental "r squared"--were compared for variables…
Technological Forecasting with a Multiple Regression Analysis Approach.
ERIC Educational Resources Information Center
Luftig, Jeffrey T.; Norton, Willis P.
1981-01-01
This article examines simple and multiple regression analysis as forecasting tools, and details the process by which multiple regression analysis may be used to increase the accuracy of the technology forecast. (CT)
Direction of Effects in Multiple Linear Regression Models.
Wiedermann, Wolfgang; von Eye, Alexander
2015-01-01
Previous studies analyzed asymmetric properties of the Pearson correlation coefficient using higher than second order moments. These asymmetric properties can be used to determine the direction of dependence in a linear regression setting (i.e., establish which of two variables is more likely to be on the outcome side) within the framework of cross-sectional observational data. Extant approaches are restricted to the bivariate regression case. The present contribution extends the direction of dependence methodology to a multiple linear regression setting by analyzing distributional properties of residuals of competing multiple regression models. It is shown that, under certain conditions, the third central moments of estimated regression residuals can be used to decide upon direction of effects. In addition, three different approaches for statistical inference are discussed: a combined D'Agostino normality test, a skewness difference test, and a bootstrap difference test. Type I error and power of the procedures are assessed using Monte Carlo simulations, and an empirical example is provided for illustrative purposes. In the discussion, issues concerning the quality of psychological data, possible extensions of the proposed methods to the fourth central moment of regression residuals, and potential applications are addressed. PMID:26609741
Nonparametric survival analysis using Bayesian Additive Regression Trees (BART).
Sparapani, Rodney A; Logan, Brent R; McCulloch, Robert E; Laud, Purushottam W
2016-07-20
Bayesian additive regression trees (BART) provide a framework for flexible nonparametric modeling of relationships of covariates to outcomes. Recently, BART models have been shown to provide excellent predictive performance, for both continuous and binary outcomes, and exceeding that of its competitors. Software is also readily available for such outcomes. In this article, we introduce modeling that extends the usefulness of BART in medical applications by addressing needs arising in survival analysis. Simulation studies of one-sample and two-sample scenarios, in comparison with long-standing traditional methods, establish face validity of the new approach. We then demonstrate the model's ability to accommodate data from complex regression models with a simulation study of a nonproportional hazards scenario with crossing survival functions and survival function estimation in a scenario where hazards are multiplicatively modified by a highly nonlinear function of the covariates. Using data from a recently published study of patients undergoing hematopoietic stem cell transplantation, we illustrate the use and some advantages of the proposed method in medical investigations. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26854022
Fuzzy multiple linear regression: A computational approach
NASA Technical Reports Server (NTRS)
Juang, C. H.; Huang, X. H.; Fleming, J. W.
1992-01-01
This paper presents a new computational approach for performing fuzzy regression. In contrast to Bardossy's approach, the new approach, while dealing with fuzzy variables, closely follows the conventional regression technique. In this approach, treatment of fuzzy input is more 'computational' than 'symbolic.' The following sections first outline the formulation of the new approach, then deal with the implementation and computational scheme, and this is followed by examples to illustrate the new procedure.
A Constrained Linear Estimator for Multiple Regression
ERIC Educational Resources Information Center
Davis-Stober, Clintin P.; Dana, Jason; Budescu, David V.
2010-01-01
"Improper linear models" (see Dawes, Am. Psychol. 34:571-582, "1979"), such as equal weighting, have garnered interest as alternatives to standard regression models. We analyze the general circumstances under which these models perform well by recasting a class of "improper" linear models as "proper" statistical models with a single predictor. We…
Estimation of adjusted rate differences using additive negative binomial regression.
Donoghoe, Mark W; Marschner, Ian C
2016-08-15
Rate differences are an important effect measure in biostatistics and provide an alternative perspective to rate ratios. When the data are event counts observed during an exposure period, adjusted rate differences may be estimated using an identity-link Poisson generalised linear model, also known as additive Poisson regression. A problem with this approach is that the assumption of equality of mean and variance rarely holds in real data, which often show overdispersion. An additive negative binomial model is the natural alternative to account for this; however, standard model-fitting methods are often unable to cope with the constrained parameter space arising from the non-negativity restrictions of the additive model. In this paper, we propose a novel solution to this problem using a variant of the expectation-conditional maximisation-either algorithm. Our method provides a reliable way to fit an additive negative binomial regression model and also permits flexible generalisations using semi-parametric regression functions. We illustrate the method using a placebo-controlled clinical trial of fenofibrate treatment in patients with type II diabetes, where the outcome is the number of laser therapy courses administered to treat diabetic retinopathy. An R package is available that implements the proposed method. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27073156
Sample Sizes when Using Multiple Linear Regression for Prediction
ERIC Educational Resources Information Center
Knofczynski, Gregory T.; Mundfrom, Daniel
2008-01-01
When using multiple regression for prediction purposes, the issue of minimum required sample size often needs to be addressed. Using a Monte Carlo simulation, models with varying numbers of independent variables were examined and minimum sample sizes were determined for multiple scenarios at each number of independent variables. The scenarios…
A Multiple Regression Approach to Normalization of Spatiotemporal Gait Features.
Wahid, Ferdous; Begg, Rezaul; Lythgo, Noel; Hass, Chris J; Halgamuge, Saman; Ackland, David C
2016-04-01
Normalization of gait data is performed to reduce the effects of intersubject variations due to physical characteristics. This study reports a multiple regression normalization approach for spatiotemporal gait data that takes into account intersubject variations in self-selected walking speed and physical properties including age, height, body mass, and sex. Spatiotemporal gait data including stride length, cadence, stance time, double support time, and stride time were obtained from healthy subjects including 782 children, 71 adults, 29 elderly subjects, and 28 elderly Parkinson's disease (PD) patients. Data were normalized using standard dimensionless equations, a detrending method, and a multiple regression approach. After normalization using dimensionless equations and the detrending method, weak to moderate correlations between walking speed, physical properties, and spatiotemporal gait features were observed (0.01 < |r| < 0.88), whereas normalization using the multiple regression method reduced these correlations to weak values (|r| <0.29). Data normalization using dimensionless equations and detrending resulted in significant differences in stride length and double support time of PD patients; however the multiple regression approach revealed significant differences in these features as well as in cadence, stance time, and stride time. The proposed multiple regression normalization may be useful in machine learning, gait classification, and clinical evaluation of pathological gait patterns. PMID:26426798
Hierarchical regression for epidemiologic analyses of multiple exposures.
Greenland, S
1994-01-01
Many epidemiologic investigations are designed to study the effects of multiple exposures. Most of these studies are analyzed either by fitting a risk-regression model with all exposures forced in the model, or by using a preliminary-testing algorithm, such as stepwise regression, to produce a smaller model. Research indicates that hierarchical modeling methods can outperform these conventional approaches. These methods are reviewed and compared to two hierarchical methods, empirical-Bayes regression and a variant here called "semi-Bayes" regression, to full-model maximum likelihood and to model reduction by preliminary testing. The performance of the methods in a problem of predicting neonatal-mortality rates are compared. Based on the literature to date, it is suggested that hierarchical methods should become part of the standard approaches to multiple-exposure studies. PMID:7851328
Multiple Response Regression for Gaussian Mixture Models with Known Labels.
Lee, Wonyul; Du, Ying; Sun, Wei; Hayes, D Neil; Liu, Yufeng
2012-12-01
Multiple response regression is a useful regression technique to model multiple response variables using the same set of predictor variables. Most existing methods for multiple response regression are designed for modeling homogeneous data. In many applications, however, one may have heterogeneous data where the samples are divided into multiple groups. Our motivating example is a cancer dataset where the samples belong to multiple cancer subtypes. In this paper, we consider modeling the data coming from a mixture of several Gaussian distributions with known group labels. A naive approach is to split the data into several groups according to the labels and model each group separately. Although it is simple, this approach ignores potential common structures across different groups. We propose new penalized methods to model all groups jointly in which the common and unique structures can be identified. The proposed methods estimate the regression coefficient matrix, as well as the conditional inverse covariance matrix of response variables. Asymptotic properties of the proposed methods are explored. Through numerical examples, we demonstrate that both estimation and prediction can be improved by modeling all groups jointly using the proposed methods. An application to a glioblastoma cancer dataset reveals some interesting common and unique gene relationships across different cancer subtypes. PMID:24416092
Multiple Linear Regression as a Technique for Predicting College Enrollment.
ERIC Educational Resources Information Center
Clegg, Ambrose A.; And Others
The application of multiple linear regression to the problem of identifying appropriate criterion variables and predicting enrollment in college courses during a period of major rapid decline was studied. Data were gathered on course enrollments for 1972-78 at Kent State University, and five independent variables were selected to determine the…
Interpreting Multiple Linear Regression: A Guidebook of Variable Importance
ERIC Educational Resources Information Center
Nathans, Laura L.; Oswald, Frederick L.; Nimon, Kim
2012-01-01
Multiple regression (MR) analyses are commonly employed in social science fields. It is also common for interpretation of results to typically reflect overreliance on beta weights, often resulting in very limited interpretations of variable importance. It appears that few researchers employ other methods to obtain a fuller understanding of what…
Analysis and Interpretation of Findings Using Multiple Regression Techniques
ERIC Educational Resources Information Center
Hoyt, William T.; Leierer, Stephen; Millington, Michael J.
2006-01-01
Multiple regression and correlation (MRC) methods form a flexible family of statistical techniques that can address a wide variety of different types of research questions of interest to rehabilitation professionals. In this article, we review basic concepts and terms, with an emphasis on interpretation of findings relevant to research questions…
Multiple Regression Analyses in Clinical Child and Adolescent Psychology
ERIC Educational Resources Information Center
Jaccard, James; Guilamo-Ramos, Vincent; Johansson, Margaret; Bouris, Alida
2006-01-01
A major form of data analysis in clinical child and adolescent psychology is multiple regression. This article reviews issues in the application of such methods in light of the research designs typical of this field. Issues addressed include controlling covariates, evaluation of predictor relevance, comparing predictors, analysis of moderation,…
A Theoretical Note on the Stochastics of Moderated Multiple Regression.
ERIC Educational Resources Information Center
Fisicaro, Sebastiano A.; Tisak, John
1994-01-01
Examination of the stochastics of moderated multiple regression (MMR) reveals that MMR is an appropriate technique when predictors are fixed variables and the distribution of errors is normal but is not appropriate when predictors are random variables and the joint distribution of criterion and predictor variables is multivariate normal. (SLD)
Moderated Multiple Regression, Spurious Interaction Effects, and IRT
ERIC Educational Resources Information Center
Kang, Sun-Mee; Waller, Niels G.
2005-01-01
Two Monte Carlo studies were conducted to explore the Type I error rates in moderated multiple regression (MMR) of observed scores and estimated latent trait scores from a two-parameter logistic item response theory (IRT) model. The results of both studies showed that MMR Type I error rates were substantially higher than the nominal alpha levels…
Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits
Xie, Dan; Liang, Meimei; Xiong, Momiao
2016-01-01
To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI’s Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes. PMID:27104857
Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.
Zhang, Futao; Xie, Dan; Liang, Meimei; Xiong, Momiao
2016-04-01
To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes. PMID:27104857
Developing Multiplicative Thinking from Additive Reasoning
ERIC Educational Resources Information Center
Tobias, Jennifer M.; Andreasen, Janet B.
2013-01-01
As students progress through elementary school, they encounter mathematics concepts that shift from additive to multiplicative situations (NCTM 2000). When they encounter fraction problems that require multiplicative thinking, they tend to incorrectly extend additive properties from whole numbers (Post et al. 1985). As a result, topics such as …
Additive-multiplicative rates model for recurrent events.
Liu, Yanyan; Wu, Yuanshan; Cai, Jianwen; Zhou, Haibo
2010-07-01
Recurrent events are frequently encountered in biomedical studies. Evaluating the covariates effects on the marginal recurrent event rate is of practical interest. There are mainly two types of rate models for the recurrent event data: the multiplicative rates model and the additive rates model. We consider a more flexible additive-multiplicative rates model for analysis of recurrent event data, wherein some covariate effects are additive while others are multiplicative. We formulate estimating equations for estimating the regression parameters. The estimators for these regression parameters are shown to be consistent and asymptotically normally distributed under appropriate regularity conditions. Moreover, the estimator of the baseline mean function is proposed and its large sample properties are investigated. We also conduct simulation studies to evaluate the finite sample behavior of the proposed estimators. A medical study of patients with cystic fibrosis suffered from recurrent pulmonary exacerbations is provided for illustration of the proposed method. PMID:20229314
A multiple regression equation for prediction of posthepatectomy liver failure.
Yamanaka, N; Okamoto, E; Kuwata, K; Tanaka, N
1984-01-01
This article reports a multiple regression equation for prediction of posthepatectomy liver failure. In phase I, using the correlations between 17 preoperative parameters (Xi) and the postoperative course scored (Y) of the past 36 hepatectomized patients, we proposed the following multiple regression equation: Y = -110 + 0.942 X resection rate (%) + 1.36 X ICG retention rate (%) + 1.17 X patient's age + 5.94 X ICG maximal removal rate (mg/kg/min). With the equation, the calculated Y value (prediction score) of these patients revealed that prediction scores of the eight nonsurvivors with liver failure were more than 50 points while those of the 28 survivors were 50 points or less. In phase II, the relationships between early prognosis and a precalculated prediction score were prospectively found the same as that seen in phase I. These findings indicate that our formula is a useful prognostic index for prediction of posthepatectomy liver failure. PMID:6486915
Deciphering the roles of multiple additives in organocatalyzed Michael additions.
Günler, Z Inci; Companyó, Xavier; Alfonso, Ignacio; Burés, Jordi; Jimeno, Ciril; Pericàs, Miquel A
2016-05-21
The synergistic effects of multiple additives (water and acetic acid) on the asymmetric Michael addition of acetone to nitrostyrene catalyzed by primary amine-thioureas (PAT) were precisely determined. Acetic acid facilitates hydrolysis of the imine intermediates, thus leading to catalytic behavior, and minimizes the formation of the double addition side product. In contrast, water slows down the reaction but minimizes catalyst deactivation, eventually leading to higher final yields. PMID:27128165
Multiplicative and additive Adelson's snake illusions.
Petrini, Karin
2008-01-01
Two different versions of Adelson's snake lightness illusion are quantitatively investigated. In one experiment an additive version of the illusion is investigated by varying the additive component of the atmosphere transfer function (ATF) introduced by Adelson [2000, in The New Cognitive Neuroscience Ed. M Gazzaniga (Cambridge, MA: MIT Press) pp 339-351]. In the other, a multiplicative version of the illusion is examined by varying the multiplicative component of the ATE In both experiments four observers matched the targets' lightness of the snake patterns with Munsell samples. Increasing the additive or the multiplicative component elicited an approximately equal increase in the magnitude of the lightness illusion. The results show that both components, in the absence of other kinds of information, can be used as heuristics by our visual system to anchor luminance of the object when converting it into lightness. PMID:19189728
Precipitation interpolation in mountainous regions using multiple linear regression
Hay, L.; Viger, R.; McCabe, G.
1998-01-01
Multiple linear regression (MLR) was used to spatially interpolate precipitation for simulating runoff in the Animas River basin of southwestern Colorado. MLR equations were defined for each time step using measured precipitation as dependent variables. Explanatory variables used in each MLR were derived for the dependent variable locations from a digital elevation model (DEM) using a geographic information system. The same explanatory variables were defined for a 5 ?? 5 km grid of the DEM. For each time step, the best MLR equation was chosen and used to interpolate precipitation onto the 5 ?? 5 km grid. The gridded values of precipitation provide a physically-based estimate of the spatial distribution of precipitation and result in reliable simulations of daily runoff in the Animas River basin.
Teasing out the effect of tutorials via multiple regression
NASA Astrophysics Data System (ADS)
Chasteen, Stephanie V.
2012-02-01
We transformed an upper-division physics course using a variety of elements, including homework help sessions, tutorials, clicker questions with peer instruction, and explicit learning goals. Overall, the course transformations improved student learning, as measured by our conceptual assessment. Since these transformations were multi-faceted, we would like to understand the impact of individual course elements. Attendance at tutorials and homework help sessions was optional, and occurred outside the class environment. In order to identify the impact of these optional out-of-class sessions, given self-selection effects in student attendance, we performed a multiple regression analysis. Even when background variables are taken into account, tutorial attendance is positively correlated with student conceptual understanding of the material - though not with performance on course exams. Other elements that increase student time-on-task, such as homework help sessions and lectures, do not achieve the same impacts.
Multiple regression analyses in the prediction of aerospace instrument costs
NASA Astrophysics Data System (ADS)
Tran, Linh
The aerospace industry has been investing for decades in ways to improve its efficiency in estimating the project life cycle cost (LCC). One of the major focuses in the LCC is the cost/prediction of aerospace instruments done during the early conceptual design phase of the project. The accuracy of early cost predictions affects the project scheduling and funding, and it is often the major cause for project cost overruns. The prediction of instruments' cost is based on the statistical analysis of these independent variables: Mass (kg), Power (watts), Instrument Type, Technology Readiness Level (TRL), Destination: earth orbiting or planetary, Data rates (kbps), Number of bands, Number of channels, Design life (months), and Development duration (months). This author is proposing a cost prediction approach of aerospace instruments based on these statistical analyses: Clustering Analysis, Principle Components Analysis (PCA), Bootstrap, and multiple regressions (both linear and non-linear). In the proposed approach, the Cost Estimating Relationship (CER) will be developed for the dependent variable Instrument Cost by using a combination of multiple independent variables. "The Full Model" will be developed and executed to estimate the full set of nine variables. The SAS program, Excel, Automatic Cost Estimating Integrate Tool (ACEIT) and Minitab are the tools to aid the analysis. Through the analysis, the cost drivers will be identified which will help develop an ultimate cost estimating software tool for the Instrument Cost prediction and optimization of future missions.
Kuhn, David; Parida, Laxmi
2016-01-01
Given a set of biallelic molecular markers, such as SNPs, with genotype values encoded numerically on a collection of plant, animal or human samples, the goal of genetic trait prediction is to predict the quantitative trait values by simultaneously modeling all marker effects. Genetic trait prediction is usually represented as linear regression models. In many cases, for the same set of samples and markers, multiple traits are observed. Some of these traits might be correlated with each other. Therefore, modeling all the multiple traits together may improve the prediction accuracy. In this work, we view the multitrait prediction problem from a machine learning angle: as either a multitask learning problem or a multiple output regression problem, depending on whether different traits share the same genotype matrix or not. We then adapted multitask learning algorithms and multiple output regression algorithms to solve the multitrait prediction problem. We proposed a few strategies to improve the least square error of the prediction from these algorithms. Our experiments show that modeling multiple traits together could improve the prediction accuracy for correlated traits. Availability and implementation: The programs we used are either public or directly from the referred authors, such as MALSAR (http://www.public.asu.edu/~jye02/Software/MALSAR/) package. The Avocado data set has not been published yet and is available upon request. Contact: dhe@us.ibm.com PMID:27307640
Modeling Pan Evaporation for Kuwait by Multiple Linear Regression
Almedeij, Jaber
2012-01-01
Evaporation is an important parameter for many projects related to hydrology and water resources systems. This paper constitutes the first study conducted in Kuwait to obtain empirical relations for the estimation of daily and monthly pan evaporation as functions of available meteorological data of temperature, relative humidity, and wind speed. The data used here for the modeling are daily measurements of substantial continuity coverage, within a period of 17 years between January 1993 and December 2009, which can be considered representative of the desert climate of the urban zone of the country. Multiple linear regression technique is used with a procedure of variable selection for fitting the best model forms. The correlations of evaporation with temperature and relative humidity are also transformed in order to linearize the existing curvilinear patterns of the data by using power and exponential functions, respectively. The evaporation models suggested with the best variable combinations were shown to produce results that are in a reasonable agreement with observation values. PMID:23226984
Regression Discontinuity Designs with Multiple Rating-Score Variables
ERIC Educational Resources Information Center
Reardon, Sean F.; Robinson, Joseph P.
2012-01-01
In the absence of a randomized control trial, regression discontinuity (RD) designs can produce plausible estimates of the treatment effect on an outcome for individuals near a cutoff score. In the standard RD design, individuals with rating scores higher than some exogenously determined cutoff score are assigned to one treatment condition; those…
Using Robust Standard Errors to Combine Multiple Regression Estimates with Meta-Analysis
ERIC Educational Resources Information Center
Williams, Ryan T.
2012-01-01
Combining multiple regression estimates with meta-analysis has continued to be a difficult task. A variety of methods have been proposed and used to combine multiple regression slope estimates with meta-analysis, however, most of these methods have serious methodological and practical limitations. The purpose of this study was to explore the use…
Beyond Multiple Regression: Using Commonality Analysis to Better Understand R[superscript 2] Results
ERIC Educational Resources Information Center
Warne, Russell T.
2011-01-01
Multiple regression is one of the most common statistical methods used in quantitative educational research. Despite the versatility and easy interpretability of multiple regression, it has some shortcomings in the detection of suppressor variables and for somewhat arbitrarily assigning values to the structure coefficients of correlated…
ERIC Educational Resources Information Center
Shear, Benjamin R.; Zumbo, Bruno D.
2013-01-01
Type I error rates in multiple regression, and hence the chance for false positive research findings, can be drastically inflated when multiple regression models are used to analyze data that contain random measurement error. This article shows the potential for inflated Type I error rates in commonly encountered scenarios and provides new…
Crawford, John R; Garthwaite, Paul H; Denham, Annie K; Chelune, Gordon J
2012-12-01
Regression equations have many useful roles in psychological assessment. Moreover, there is a large reservoir of published data that could be used to build regression equations; these equations could then be employed to test a wide variety of hypotheses concerning the functioning of individual cases. This resource is currently underused because (a) not all psychologists are aware that regression equations can be built not only from raw data but also using only basic summary data for a sample, and (b) the computations involved are tedious and prone to error. In an attempt to overcome these barriers, Crawford and Garthwaite (2007) provided methods to build and apply simple linear regression models using summary statistics as data. In the present study, we extend this work to set out the steps required to build multiple regression models from sample summary statistics and the further steps required to compute the associated statistics for drawing inferences concerning an individual case. We also develop, describe, and make available a computer program that implements these methods. Although there are caveats associated with the use of the methods, these need to be balanced against pragmatic considerations and against the alternative of either entirely ignoring a pertinent data set or using it informally to provide a clinical "guesstimate." Upgraded versions of earlier programs for regression in the single case are also provided; these add the point and interval estimates of effect size developed in the present article. PMID:22449035
Multiple regression technique for Pth degree polynominals with and without linear cross products
NASA Technical Reports Server (NTRS)
Davis, J. W.
1973-01-01
A multiple regression technique was developed by which the nonlinear behavior of specified independent variables can be related to a given dependent variable. The polynomial expression can be of Pth degree and can incorporate N independent variables. Two cases are treated such that mathematical models can be studied both with and without linear cross products. The resulting surface fits can be used to summarize trends for a given phenomenon and provide a mathematical relationship for subsequent analysis. To implement this technique, separate computer programs were developed for the case without linear cross products and for the case incorporating such cross products which evaluate the various constants in the model regression equation. In addition, the significance of the estimated regression equation is considered and the standard deviation, the F statistic, the maximum absolute percent error, and the average of the absolute values of the percent of error evaluated. The computer programs and their manner of utilization are described. Sample problems are included to illustrate the use and capability of the technique which show the output formats and typical plots comparing computer results to each set of input data.
Duarte, Elisa; de Sousa, Bruno; Cadarso-Suarez, Carmen; Rodrigues, Vitor; Kneib, Thomas
2014-05-01
Breast cancer risk is believed to be associated with several reproductive factors, such as early menarche and late menopause. This study is based on the registries of the first time a woman enters the screening program, and presents a spatio-temporal analysis of the variables age of menarche and age of menopause along with other reproductive and socioeconomic factors. The database was provided by the Portuguese Cancer League (LPCC), a private nonprofit organization dealing with multiple issues related to oncology of which the Breast Cancer Screening Program is one of its main activities. The registry consists of 259,652 records of women who entered the screening program for the first time between 1990 and 2007 (45-69-year age group). Structured Additive Regression (STAR) models were used to explore spatial and temporal correlations with a wide range of covariates. These models are flexible enough to deal with a variety of complex datasets, allowing us to reveal possible relationships among the variables considered in this study. The analysis shows that early menarche occurs in younger women and in municipalities located in the interior of central Portugal. Women living in inland municipalities register later ages for menopause, and those born in central Portugal after 1933 show a decreasing trend in the age of menopause. Younger ages of menarche and late menopause are observed in municipalities with a higher purchasing power index. The analysis performed in this study portrays the time evolution of the age of menarche and age of menopause and their spatial characterization, adding to the identification of factors that could be of the utmost importance in future breast cancer incidence research. PMID:24615881
Isolating and Examining Sources of Suppression and Multicollinearity in Multiple Linear Regression
ERIC Educational Resources Information Center
Beckstead, Jason W.
2012-01-01
The presence of suppression (and multicollinearity) in multiple regression analysis complicates interpretation of predictor-criterion relationships. The mathematical conditions that produce suppression in regression analysis have received considerable attention in the methodological literature but until now nothing in the way of an analytic…
Confidence Intervals for an Effect Size Measure in Multiple Linear Regression
ERIC Educational Resources Information Center
Algina, James; Keselman, H. J.; Penfield, Randall D.
2007-01-01
The increase in the squared multiple correlation coefficient ([Delta]R[squared]) associated with a variable in a regression equation is a commonly used measure of importance in regression analysis. The coverage probability that an asymptotic and percentile bootstrap confidence interval includes [Delta][rho][squared] was investigated. As expected,…
MULTIPLE REGRESSION MODELS FOR HINDCASTING AND FORECASTING MIDSUMMER HYPOXIA IN THE GULF OF MEXICO
A new suite of multiple regression models were developed that describe the relationship between the area of bottom water hypoxia along the northern Gulf of Mexico and Mississippi-Atchafalaya River nitrate concentration, total phosphorus (TP) concentration, and discharge. Variabil...
As a fast and effective technique, the multiple linear regression (MLR) method has been widely used in modeling and prediction of beach bacteria concentrations. Among previous works on this subject, however, several issues were insufficiently or inconsistently addressed. Those is...
An improved multiple linear regression and data analysis computer program package
NASA Technical Reports Server (NTRS)
Sidik, S. M.
1972-01-01
NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Wiswadarma, Aditya; Hase, Yota; Tanaka, Noriyuki; Maeda, Takaaki; Niizeki, Kyuichi; Aizu, Yoshihisa
2011-08-01
In order to visualize melanin and blood concentrations and oxygen saturation in human skin tissue, a simple imaging technique based on multispectral diffuse reflectance images acquired at six wavelengths (500, 520, 540, 560, 580 and 600nm) was developed. The technique utilizes multiple regression analysis aided by Monte Carlo simulation for diffuse reflectance spectra. Using the absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are deduced numerically in advance, while oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments with human skin of the human hand during upper limb occlusion and of the inner forearm exposed to UV irradiation demonstrated the ability of the method to evaluate physiological reactions of human skin tissue.
NASA Astrophysics Data System (ADS)
Styborski, Jeremy A.
This project was started in the interest of supplementing existing data on additives to composite solid propellants. The study on the addition of iron and aluminum nanoparticles to composite AP/HTPB propellants was conducted at the Combustion and Energy Systems Laboratory at RPI in the new strand-burner experiment setup. For this study, a large literature review was conducted on history of solid propellant combustion modeling and the empirical results of tests on binders, plasticizers, AP particle size, and additives. The study focused on the addition of nano-scale aluminum and iron in small concentrations to AP/HTPB solid propellants with an average AP particle size of 200 microns. Replacing 1% of the propellant's AP with 40-60 nm aluminum particles produced no change in combustive behavior. The addition of 1% 60-80 nm iron particles produced a significant increase in burn rate, although the increase was lesser at higher pressures. These results are summarized in Table 2. The increase in the burn rate at all pressures due to the addition of iron nanoparticles warranted further study on the effect of concentration of iron. Tests conducted at 10 atm showed that the mean regression rate varied with iron concentration, peaking at 1% and 3%. Regardless of the iron concentration, the regression rate was higher than the baseline AP/HTPB propellants. These results are summarized in Table 3.
ERIC Educational Resources Information Center
Baylor, Carolyn; Yorkston, Kathryn; Bamer, Alyssa; Britton, Deanna; Amtmann, Dagmar
2010-01-01
Purpose: To explore variables associated with self-reported communicative participation in a sample (n = 498) of community-dwelling adults with multiple sclerosis (MS). Method: A battery of questionnaires was administered online or on paper per participant preference. Data were analyzed using multiple linear backward stepwise regression. The…
Use of Empirical Estimates of Shrinkage in Multiple Regression: A Caution.
ERIC Educational Resources Information Center
Kromrey, Jeffrey D.; Hines, Constance V.
1995-01-01
The accuracy of four empirical techniques to estimate shrinkage in multiple regression was studied through Monte Carlo simulation. None of the techniques provided unbiased estimates of the population squared multiple correlation coefficient, but the normalized jackknife and bootstrap techniques demonstrated marginally acceptable performance with…
Estimating R-squared Shrinkage in Multiple Regression: A Comparison of Different Analytical Methods.
ERIC Educational Resources Information Center
Yin, Ping; Fan, Xitao
2001-01-01
Studied the effectiveness of various analytical formulas for estimating "R" squared shrinkage in multiple regression analysis, focusing on estimators of the squared population multiple correlation coefficient and the squared population cross validity coefficient. Simulation results suggest that the most widely used Wherry (R. Wherry, 1931) formula…
Tools to Support Interpreting Multiple Regression in the Face of Multicollinearity
Kraha, Amanda; Turner, Heather; Nimon, Kim; Zientek, Linda Reichwein; Henson, Robin K.
2012-01-01
While multicollinearity may increase the difficulty of interpreting multiple regression (MR) results, it should not cause undue problems for the knowledgeable researcher. In the current paper, we argue that rather than using one technique to investigate regression results, researchers should consider multiple indices to understand the contributions that predictors make not only to a regression model, but to each other as well. Some of the techniques to interpret MR effects include, but are not limited to, correlation coefficients, beta weights, structure coefficients, all possible subsets regression, commonality coefficients, dominance weights, and relative importance weights. This article will review a set of techniques to interpret MR effects, identify the elements of the data on which the methods focus, and identify statistical software to support such analyses. PMID:22457655
Modeling of retardance in ferrofluid with Taguchi-based multiple regression analysis
NASA Astrophysics Data System (ADS)
Lin, Jing-Fung; Wu, Jyh-Shyang; Sheu, Jer-Jia
2015-03-01
The citric acid (CA) coated Fe3O4 ferrofluids are prepared by a co-precipitation method and the magneto-optical retardance property is measured by a Stokes polarimeter. Optimization and multiple regression of retardance in ferrofluids are executed by combining Taguchi method and Excel. From the nine tests for four parameters, including pH of suspension, molar ratio of CA to Fe3O4, volume of CA, and coating temperature, influence sequence and excellent program are found. Multiple regression analysis and F-test on the significance of regression equation are performed. It is found that the model F value is much larger than Fcritical and significance level P <0.0001. So it can be concluded that the regression model has statistically significant predictive ability. Substituting excellent program into equation, retardance is obtained as 32.703°, higher than the highest value in tests by 11.4%.
Application of wavelet-based multiple linear regression model to rainfall forecasting in Australia
NASA Astrophysics Data System (ADS)
He, X.; Guan, H.; Zhang, X.; Simmons, C.
2013-12-01
In this study, a wavelet-based multiple linear regression model is applied to forecast monthly rainfall in Australia by using monthly historical rainfall data and climate indices as inputs. The wavelet-based model is constructed by incorporating the multi-resolution analysis (MRA) with the discrete wavelet transform and multiple linear regression (MLR) model. The standardized monthly rainfall anomaly and large-scale climate index time series are decomposed using MRA into a certain number of component subseries at different temporal scales. The hierarchical lag relationship between the rainfall anomaly and each potential predictor is identified by cross correlation analysis with a lag time of at least one month at different temporal scales. The components of predictor variables with known lag times are then screened with a stepwise linear regression algorithm to be selectively included into the final forecast model. The MRA-based rainfall forecasting method is examined with 255 stations over Australia, and compared to the traditional multiple linear regression model based on the original time series. The models are trained with data from the 1959-1995 period and then tested in the 1996-2008 period for each station. The performance is compared with observed rainfall values, and evaluated by common statistics of relative absolute error and correlation coefficient. The results show that the wavelet-based regression model provides considerably more accurate monthly rainfall forecasts for all of the selected stations over Australia than the traditional regression model.
NASA Astrophysics Data System (ADS)
Sykas, Dimitris; Karathanassi, Vassilia
2015-06-01
This paper presents a new method for automatically determining the optimum regression model, which enable the estimation of a parameter. The concept lies on the combination of k spectral pre-processing algorithms (SPPAs) that enhance spectral features correlated to the desired parameter. Initially a pre-processing algorithm uses as input a single spectral signature and transforms it according to the SPPA function. A k-step combination of SPPAs uses k preprocessing algorithms serially. The result of each SPPA is used as input to the next SPPA, and so on until the k desired pre-processed signatures are reached. These signatures are then used as input to three different regression methods: the Normalized band Difference Regression (NDR), the Multiple Linear Regression (MLR) and the Partial Least Squares Regression (PLSR). Three Simple Genetic Algorithms (SGAs) are used, one for each regression method, for the selection of the optimum combination of k SPPAs. The performance of the SGAs is evaluated based on the RMS error of the regression models. The evaluation not only indicates the selection of the optimum SPPA combination but also the regression method that produces the optimum prediction model. The proposed method was applied on soil spectral measurements in order to predict Soil Organic Matter (SOM). In this study, the maximum value assigned to k was 3. PLSR yielded the highest accuracy while NDR's accuracy was satisfactory compared to its complexity. MLR method showed severe drawbacks due to the presence of noise in terms of collinearity at the spectral bands. Most of the regression methods required a 3-step combination of SPPAs for achieving the highest performance. The selected preprocessing algorithms were different for each regression method since each regression method handles with a different way the explanatory variables.
Regression Models for the Analysis of Longitudinal Gaussian Data from Multiple Sources
O’Brien, Liam M.; Fitzmaurice, Garrett M.
2006-01-01
We present a regression model for the joint analysis of longitudinal multiple source Gaussian data. Longitudinal multiple source data arise when repeated measurements are taken from two or more sources, and each source provides a measure of the same underlying variable and on the same scale. This type of data generally produces a relatively large number of observations per subject; thus estimation of an unstructured covariance matrix often may not be possible. We consider two methods by which parsimonious models for the covariance can be obtained for longitudinal multiple source data. The methods are illustrated with an example of multiple informant data arising from a longitudinal interventional trial in psychiatry. PMID:15726666
ERIC Educational Resources Information Center
Barringer, Mary S.
Researchers are becoming increasingly aware of the advantages of using multiple regression as opposed to analysis of variance (ANOVA) or analysis of covariance (ANCOVA). Multiple regression is more versatile and does not force the researcher to throw away variance by categorizing intervally scaled data. Polynomial regression analysis offers the…
Fenske, Nora; Burns, Jacob; Hothorn, Torsten; Rehfuess, Eva A.
2013-01-01
Background Most attempts to address undernutrition, responsible for one third of global child deaths, have fallen behind expectations. This suggests that the assumptions underlying current modelling and intervention practices should be revisited. Objective We undertook a comprehensive analysis of the determinants of child stunting in India, and explored whether the established focus on linear effects of single risks is appropriate. Design Using cross-sectional data for children aged 0–24 months from the Indian National Family Health Survey for 2005/2006, we populated an evidence-based diagram of immediate, intermediate and underlying determinants of stunting. We modelled linear, non-linear, spatial and age-varying effects of these determinants using additive quantile regression for four quantiles of the Z-score of standardized height-for-age and logistic regression for stunting and severe stunting. Results At least one variable within each of eleven groups of determinants was significantly associated with height-for-age in the 35% Z-score quantile regression. The non-modifiable risk factors child age and sex, and the protective factors household wealth, maternal education and BMI showed the largest effects. Being a twin or multiple birth was associated with dramatically decreased height-for-age. Maternal age, maternal BMI, birth order and number of antenatal visits influenced child stunting in non-linear ways. Findings across the four quantile and two logistic regression models were largely comparable. Conclusions Our analysis confirms the multifactorial nature of child stunting. It emphasizes the need to pursue a systems-based approach and to consider non-linear effects, and suggests that differential effects across the height-for-age distribution do not play a major role. PMID:24223839
ERIC Educational Resources Information Center
Anderson, Lance E.; And Others
1996-01-01
Simulations were used to compare the moderator variable detection capabilities of moderated multiple regression (MMR) and errors-in-variables regression (EIVR). Findings show that EIVR estimates are superior for large samples, but that MMR is better when reliabilities or sample sizes are low. (SLD)
ERIC Educational Resources Information Center
Li, Spencer D.
2011-01-01
Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…
Using Robust Variance Estimation to Combine Multiple Regression Estimates with Meta-Analysis
ERIC Educational Resources Information Center
Williams, Ryan
2013-01-01
The purpose of this study was to explore the use of robust variance estimation for combining commonly specified multiple regression models and for combining sample-dependent focal slope estimates from diversely specified models. The proposed estimator obviates traditionally required information about the covariance structure of the dependent…
ERIC Educational Resources Information Center
Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.
2006-01-01
Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…
ERIC Educational Resources Information Center
Campbell, S. Duke; Greenberg, Barry
The development of a predictive equation capable of explaining a significant percentage of enrollment variability at Florida International University is described. A model utilizing trend analysis and a multiple regression approach to enrollment forecasting was adapted to investigate enrollment dynamics at the university. Four independent…
Double Cross-Validation in Multiple Regression: A Method of Estimating the Stability of Results.
ERIC Educational Resources Information Center
Rowell, R. Kevin
In multiple regression analysis, where resulting predictive equation effectiveness is subject to shrinkage, it is especially important to evaluate result replicability. Double cross-validation is an empirical method by which an estimate of invariance or stability can be obtained from research data. A procedure for double cross-validation is…
A Simple and Convenient Method of Multiple Linear Regression to Calculate Iodine Molecular Constants
ERIC Educational Resources Information Center
Cooper, Paul D.
2010-01-01
A new procedure using a student-friendly least-squares multiple linear-regression technique utilizing a function within Microsoft Excel is described that enables students to calculate molecular constants from the vibronic spectrum of iodine. This method is advantageous pedagogically as it calculates molecular constants for ground and excited…
Multiple Regression Analysis of Factors that May Influence Middle School Science Scores
ERIC Educational Resources Information Center
Glover, Judith
2012-01-01
The purpose of this quantitative multiple regression study was to determine whether a relationship existed between Maryland State Assessment (MSA) reading scores, MSA math scores, gender, ethnicity, age, and MSA science scores. Also examined was if MSA reading scores, MSA math scores, gender, ethnicity, and age can be used in combination or alone…
Use of Multiple Regression to Predict Academic Achievement at a Small Liberal Arts College.
ERIC Educational Resources Information Center
Hardesty, Larry
The relationship between academic success at DePauw University and such commonly used predictors as tested ability and academic success in high school was examined. The various subtleties of the multiple regression research method were also examined. Subjects were 1758 students who entered DePauw University during the fall semester of 1973, 1974,…
Due to the complexity of the processes contributing to beach bacteria concentrations, many researchers rely on statistical modeling, among which multiple linear regression (MLR) modeling is most widely used. Despite its ease of use and interpretation, there may be time dependence...
ERIC Educational Resources Information Center
Anderson, Joan L.
2006-01-01
Data from graduate student applications at a large Western university were used to determine which factors were the best predictors of success in graduate school, as defined by cumulative graduate grade point average. Two statistical models were employed and compared: artificial neural networking and simultaneous multiple regression. Both models…
Bateson, Thomas F; Wright, J Michael
2010-08-01
Environmental epidemiologic studies are often hierarchical in nature if they estimate individuals' personal exposures using ambient metrics. Local samples are indirect surrogate measures of true local pollutant concentrations which estimate true personal exposures. These ambient metrics include classical-type nondifferential measurement error. The authors simulated subjects' true exposures and their corresponding surrogate exposures as the mean of local samples and assessed the amount of bias attributable to classical and Berkson measurement error on odds ratios, assuming that the logit of risk depends on true individual-level exposure. The authors calibrated surrogate exposures using scalar transformation functions based on observed within- and between-locality variances and compared regression-calibrated results with naive results using surrogate exposures. The authors further assessed the performance of regression calibration in the presence of Berkson-type error. Following calibration, bias due to classical-type measurement error, resulting in as much as 50% attenuation in naive regression estimates, was eliminated. Berkson-type error appeared to attenuate logistic regression results less than 1%. This regression calibration method reduces effects of classical measurement error that are typical of epidemiologic studies using multiple local surrogate exposures as indirect surrogate exposures for unobserved individual exposures. Berkson-type error did not alter the performance of regression calibration. This regression calibration method does not require a supplemental validation study to compute an attenuation factor. PMID:20573838
ERIC Educational Resources Information Center
Van Dooren, Wim; De Bock, Dirk; Verschaffel, Lieven
2010-01-01
This study builds on two lines of research that have so far developed largely separately: the use of additive methods to solve proportional word problems and the use of proportional methods to solve additive word problems. We investigated the development with age of both kinds of erroneous solution methods. We gave a test containing missing-value…
Masiuk, S V; Shklyar, S V; Kukush, A G; Carroll, R J; Kovgan, L N; Likhtarov, I A
2016-07-01
In this paper, the influence of measurement errors in exposure doses in a regression model with binary response is studied. Recently, it has been recognized that uncertainty in exposure dose is characterized by errors of two types: classical additive errors and Berkson multiplicative errors. The combination of classical additive and Berkson multiplicative errors has not been considered in the literature previously. In a simulation study based on data from radio-epidemiological research of thyroid cancer in Ukraine caused by the Chornobyl accident, it is shown that ignoring measurement errors in doses leads to overestimation of background prevalence and underestimation of excess relative risk. In the work, several methods to reduce these biases are proposed. They are new regression calibration, an additive version of efficient SIMEX, and novel corrected score methods. PMID:26795191
Seo, Min-Seok; Kim, Ja-Kyung
2015-01-01
We report a case of regression of multiple pulmonary metastases, which originated from hepatocellular carcinoma after treatment with intravenous administration of high-dose vitamin C. A 74-year-old woman presented to the clinic for her cancer-related symptoms such as general weakness and anorexia. After undergoing initial transarterial chemoembolization (TACE), local recurrence with multiple pulmonary metastases was found. She refused further conventional therapy, including sorafenib tosylate (Nexavar). She did receive high doses of vitamin C (70 g), which were administered into a peripheral vein twice a week for 10 months, and multiple pulmonary metastases were observed to have completely regressed. She then underwent subsequent TACE, resulting in remission of her primary hepatocellular carcinoma. PMID:26256994
ERIC Educational Resources Information Center
Crawford, John R.; Garthwaite, Paul H.; Denham, Annie K.; Chelune, Gordon J.
2012-01-01
Regression equations have many useful roles in psychological assessment. Moreover, there is a large reservoir of published data that could be used to build regression equations; these equations could then be employed to test a wide variety of hypotheses concerning the functioning of individual cases. This resource is currently underused because…
A Josephson systolic array processor for multiplication/addition operations
Morisue, M.; Li, F.Q.; Tobita, M.; Kaneko, S. )
1991-03-01
A novel Josephson systolic array processor to perform multiplication/addition operations is proposed. The systolic array processor proposed here consists of a set of three kinds of interconnected cells of which main circuits are made by using SQUID gates. A multiplication of 2 bits by 2 bits is performed in the single cell at a time and an addition of three data with two bits is simultaneously performed in an another type of cell. Furthermore, information in this system flows between cells in a pipeline fashion so that a high performance can be achieved. In this paper the principle of Josephson systolic array processor is described in detail and the simulation results are illustrated for the multiplication/addition of (4 bits {times} 4 bits + 8 bits). The results show that these operations can be executed in 330ps.
Optimization of fixture layouts of glass laser optics using multiple kernel regression.
Su, Jianhua; Cao, Enhua; Qiao, Hong
2014-05-10
We aim to build an integrated fixturing model to describe the structural properties and thermal properties of the support frame of glass laser optics. Therefore, (a) a near global optimal set of clamps can be computed to minimize the surface shape error of the glass laser optic based on the proposed model, and (b) a desired surface shape error can be obtained by adjusting the clamping forces under various environmental temperatures based on the model. To construct the model, we develop a new multiple kernel learning method and call it multiple kernel support vector functional regression. The proposed method uses two layer regressions to group and order the data sources by the weights of the kernels and the factors of the layers. Because of that, the influences of the clamps and the temperature can be evaluated by grouping them into different layers. PMID:24922017
User's Guide to the Weighted-Multiple-Linear Regression Program (WREG version 1.0)
Eng, Ken; Chen, Yin-Yu; Kiang, Julie.E.
2009-01-01
Streamflow is not measured at every location in a stream network. Yet hydrologists, State and local agencies, and the general public still seek to know streamflow characteristics, such as mean annual flow or flood flows with different exceedance probabilities, at ungaged basins. The goals of this guide are to introduce and familiarize the user with the weighted multiple-linear regression (WREG) program, and to also provide the theoretical background for program features. The program is intended to be used to develop a regional estimation equation for streamflow characteristics that can be applied at an ungaged basin, or to improve the corresponding estimate at continuous-record streamflow gages with short records. The regional estimation equation results from a multiple-linear regression that relates the observable basin characteristics, such as drainage area, to streamflow characteristics.
La Delfa, Nicholas J; Potvin, Jim R
2016-02-29
In ergonomics, strength prediction has typically been accomplished using linked-segment biomechanical models, and independent estimates of strength about each axis of the wrist, elbow and shoulder joints. It has recently been shown that multiple regression approaches, using the simple task-relevant inputs of hand location and force direction, may be a better method for predicting manual arm strength (MAS) capabilities. Artificial neural networks (ANNs) also serve as a powerful data fitting approach, but their application to occupational biomechanics and ergonomics is limited. Therefore, the purpose of this study was to perform a direct comparison between ANN and regression models, by evaluating their ability to predict MAS with identical sets of development and validation MAS data. Multi-directional MAS data were obtained from 95 healthy female participants at 36 hand locations within the reach envelope. ANN and regression models were developed using a random, but identical, sample of 85% of the MAS data (n=456). The remaining 15% of the data (n=80) were used to validate the two approaches. When compared to the development data, the ANN predictions had a much higher explained variance (90.2% vs. 66.5%) and much lower RMSD (9.3N vs. 17.2N), vs. the regression model. The ANN also performed better with the independent validation data (r(2)=78.6%, RMSD=15.1) compared to the regression approach (r(2)=65.3%, RMSD=18.6N). These results suggest that ANNs provide a more accurate and robust alternative to regression approaches, and should be considered more often in biomechanics and ergonomics evaluations. PMID:26876987
Stone, Wesley W.; Crawford, Charles G.; Gilliom, Robert J.
2013-01-01
Watershed Regressions for Pesticides for multiple pesticides (WARP-MP) are statistical models developed to predict concentration statistics for a wide range of pesticides in unmonitored streams. The WARP-MP models use the national atrazine WARP models in conjunction with an adjustment factor for each additional pesticide. The WARP-MP models perform best for pesticides with application timing and methods similar to those used with atrazine. For other pesticides, WARP-MP models tend to overpredict concentration statistics for the model development sites. For WARP and WARP-MP, the less-than-ideal sampling frequency for the model development sites leads to underestimation of the shorter-duration concentration; hence, the WARP models tend to underpredict 4- and 21-d maximum moving-average concentrations, with median errors ranging from 9 to 38% As a result of this sampling bias, pesticides that performed well with the model development sites are expected to have predictions that are biased low for these shorter-duration concentration statistics. The overprediction by WARP-MP apparent for some of the pesticides is variably offset by underestimation of the model development concentration statistics. Of the 112 pesticides used in the WARP-MP application to stream segments nationwide, 25 were predicted to have concentration statistics with a 50% or greater probability of exceeding one or more aquatic life benchmarks in one or more stream segments. Geographically, many of the modeled streams in the Corn Belt Region were predicted to have one or more pesticides that exceeded an aquatic life benchmark during 2009, indicating the potential vulnerability of streams in this region.
[A Case of Spontaneous Regression of Breast Cancer with Multiple Lung Metastases].
Asano, Yuka; Kashiwagi, Shinichiro; Goto, Wataru; Kurata, Kento; Morisaki, Tamami; Noda, Satoru; Takashima, Tsutomu; Onoda, Naoyoshi; Ohsawa, Masahiko; Hirakawa, Kosei
2015-11-01
Spontaneous regression of any malignant tumor is a rare event, occurring in about 1 of 60,000-100,000 cases of malignant tumor. We report a case of spontaneous regression of breast cancer with multiple pulmonary metastases. The patient was a 73-year-old woman who complained of a left mammary mass. A tumor, approximately 2.2 cm in diameter, was palpated, and breast cancer was suspected based on ultrasound examination. Histopathological findings of the core needle biopsy specimen indicated invasive ductal carcinoma. The patient underwent partial mastectomy with axillary lymph node dissection. It was a stage ⅡB (pT2N1 [sn] M0) tumor. CT performed after adjuvant therapy confirmed the presence of multiple pulmonary metastases 6 years after surgery. We started anti-cancer therapy with TS-1; however, it was discontinued because an adverse event occurred. Half a year later, tumor shrinkage was confirmed after a recurrence. Four years and 6 months after the treatment was discontinued, the tumor continued to regress spontaneously. PMID:26805177
Cao, Han-Han; Du, Ruo-Fei; Yang, Jia-Ning; Feng, Yi
2014-03-01
In this paper, microcrystalline cellulose WJ101 was used as a model material to investigate the effect of various process parameters on granule yield and friability after dry granulation with a single factor and the effect of comprehensive inspection process parameters on the effect of granule yield and friability, then the correlation between process parameters and granule quality was established. The regress equation was established between process parameters and granule yield and friability by multiple regression analysis, the affecting the order of the size of the order of the process parameters on granule yield and friability was: rollers speed > rollers pressure > speed of horizontal feed. Granule yield was positively correlated with pressure and speed of horizontal feed and negatively correlated rollers speed, while friability was on the contrary. By comparison, fitted value and real value, fitted and real value are basically the same of no significant differences (P > 0.05) and with high precision and reliability. PMID:24961115
Genomewide Multiple-Loci Mapping in Experimental Crosses by Iterative Adaptive Penalized Regression
Sun, Wei; Ibrahim, Joseph G.; Zou, Fei
2010-01-01
Genomewide multiple-loci mapping can be viewed as a challenging variable selection problem where the major objective is to select genetic markers related to a trait of interest. It is challenging because the number of genetic markers is large (often much larger than the sample size) and there is often strong linkage or linkage disequilibrium between markers. In this article, we developed two methods for genomewide multiple loci mapping: the Bayesian adaptive Lasso and the iterative adaptive Lasso. Compared with eight existing methods, the proposed methods have improved variable selection performance in both simulation and real data studies. The advantages of our methods come from the assignment of adaptive weights to different genetic makers and the iterative updating of these adaptive weights. The iterative adaptive Lasso is also computationally much more efficient than the commonly used marginal regression and stepwise regression methods. Although our methods are motivated by multiple-loci mapping, they are general enough to be applied to other variable selection problems. PMID:20157003
Turkson, Anthony Joe; Otchey, James Eric
2015-01-01
Introduction: Various psychosocial studies on health related lifestyles lay emphasis on the fact that the perception one has of himself as being at risk of HIV/AIDS infection was a necessary condition for preventive behaviors to be adopted. Hierarchical Multiple Regression models was used to examine the relationship between eight independent variables and one dependent variable to isolate predictors which have significant influence on behavior and sexual practices. Methods: A Cross-sectional design was used for the study. Structured close-ended interviewer-administered questionnaire was used to collect primary data. Multistage stratified technique was used to sample views from 380 students from Takoradi Polytechnic, Ghana. A Hierarchical multiple regression model was used to ascertain the significance of certain predictors of sexual behavior and practices. Results: The variables that were extracted from the multiple regression were; for the constant; β=14.202, t=2.279, p=0.023, variable is significant; for the marital status; β=0.092, t=1.996, p<0.05, variable is significant; for the knowledge on AIDs; β= 0.090, t=1.996, p<0.05, variable is significant; for the attitude towards HIV/AIDs; β=0.486, t=10.575, p<0.001, variable is highly significant. Thus, the best fitting model for predicting behavior and sexual practices was a linear combination of the constant, one’s marital status, knowledge on HIV/AIDs and Attitude towards HIV/AIDs., Y (Behavior and sexual practices) = β0 + β1 (Marital status) + β2 (Knowledge on HIV AIDs issues) + β3 (Attitude towards HIV AIDs issues) β0, β1, β2 and β3 are respectively 14.201, 2.038, 0.148 and 0.486; the higher the better. Conclusions: Attitude and behavior change education on HIV/AIDs should be intensified in the institution so that students could adopt better lifestyles. PMID:25946917
Multiple regression approach to optimize drilling operations in the Arabian Gulf area
Al-Betairi, E.A.; Moussa, M.M.; Al-Otaibi, S.
1988-03-01
This paper reports a successful application of multiple regression analysis, supported by a detailed statistical study to verify the Bourgoyne and Young model. The model estimates the optimum penetration rate (ROP), weight on bit (WOB), and rotary speed under the effect of controllable and uncontrollable factors. Field data from three wells in the Arabian Gulf were used and emphasized the validity of this model. The model coefficients are sensitive to the number of points included. The correlation coefficients and multicollinearity sensitivity of each drilling parameter on the ROP are studied.
ERIC Educational Resources Information Center
Cohen, Ayala; Nahum-Shani, Inbal; Doveh, Etti
2010-01-01
In their seminal paper, Edwards and Parry (1993) presented the polynomial regression as a better alternative to applying difference score in the study of congruence. Although this method is increasingly applied in congruence research, its complexity relative to other methods for assessing congruence (e.g., difference score methods) was one of the…
Fitting additive hazards models for case-cohort studies: a multiple imputation approach.
Jung, Jinhyouk; Harel, Ofer; Kang, Sangwook
2016-07-30
In this paper, we consider fitting semiparametric additive hazards models for case-cohort studies using a multiple imputation approach. In a case-cohort study, main exposure variables are measured only on some selected subjects, but other covariates are often available for the whole cohort. We consider this as a special case of a missing covariate by design. We propose to employ a popular incomplete data method, multiple imputation, for estimation of the regression parameters in additive hazards models. For imputation models, an imputation modeling procedure based on a rejection sampling is developed. A simple imputation modeling that can naturally be applied to a general missing-at-random situation is also considered and compared with the rejection sampling method via extensive simulation studies. In addition, a misspecification aspect in imputation modeling is investigated. The proposed procedures are illustrated using a cancer data example. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26194861
Ohlmacher, G.C.; Davis, J.C.
2003-01-01
Landslides in the hilly terrain along the Kansas and Missouri rivers in northeastern Kansas have caused millions of dollars in property damage during the last decade. To address this problem, a statistical method called multiple logistic regression has been used to create a landslide-hazard map for Atchison, Kansas, and surrounding areas. Data included digitized geology, slopes, and landslides, manipulated using ArcView GIS. Logistic regression relates predictor variables to the occurrence or nonoccurrence of landslides within geographic cells and uses the relationship to produce a map showing the probability of future landslides, given local slopes and geologic units. Results indicated that slope is the most important variable for estimating landslide hazard in the study area. Geologic units consisting mostly of shale, siltstone, and sandstone were most susceptible to landslides. Soil type and aspect ratio were considered but excluded from the final analysis because these variables did not significantly add to the predictive power of the logistic regression. Soil types were highly correlated with the geologic units, and no significant relationships existed between landslides and slope aspect. ?? 2003 Elsevier Science B.V. All rights reserved.
Removal of River-Stage Fluctuations from Well Response Using Multiple-Regression
Spane, Frank A.; Mackley, Rob D.
2011-11-01
Many contaminated unconfined aquifers are located in proximity to river systems. In groundwater studies, the physical presence of a river is commonly represented as a transient-head boundary that imposes hydrologic responses within the intersected unconfined aquifer. The periodic fluctuation of river-stage height at the boundary produces associated responses within the adjacent aquifer system, the magnitude of which is a function of the existing well, aquifer, boundary conditions, and river-stage fluctuation characteristics. The presence of well responses induced by the river stage can significantly limit characterization and monitoring of remedial activities within the stress-impacted area. This paper demonstrates the use of a time-domain, multiple-regression, convolution (superposition) method to develop well/aquifer river response function (RRF) relationships. Following RRF development, a multiple-regression deconvolution correction approach can be applied to remove river-stage effects from well water-level responses. Corrected well responses can then be analyzed to improve local aquifer characterization activities in support of optimizing remedial actions, assessing the area-of-influence of remediation activities, and determining mean groundwater flow and contaminant flux to the river system.
Parisi Kern, Andrea; Ferreira Dias, Michele; Piva Kulakowski, Marlova; Paulo Gomes, Luciana
2015-05-01
Reducing construction waste is becoming a key environmental issue in the construction industry. The quantification of waste generation rates in the construction sector is an invaluable management tool in supporting mitigation actions. However, the quantification of waste can be a difficult process because of the specific characteristics and the wide range of materials used in different construction projects. Large variations are observed in the methods used to predict the amount of waste generated because of the range of variables involved in construction processes and the different contexts in which these methods are employed. This paper proposes a statistical model to determine the amount of waste generated in the construction of high-rise buildings by assessing the influence of design process and production system, often mentioned as the major culprits behind the generation of waste in construction. Multiple regression was used to conduct a case study based on multiple sources of data of eighteen residential buildings. The resulting statistical model produced dependent (i.e. amount of waste generated) and independent variables associated with the design and the production system used. The best regression model obtained from the sample data resulted in an adjusted R(2) value of 0.694, which means that it predicts approximately 69% of the factors involved in the generation of waste in similar constructions. Most independent variables showed a low determination coefficient when assessed in isolation, which emphasizes the importance of assessing their joint influence on the response (dependent) variable. PMID:25704604
Performance Evaluation of Button Bits in Coal Measure Rocks by Using Multiple Regression Analyses
NASA Astrophysics Data System (ADS)
Su, Okan
2016-02-01
Electro-hydraulic and jumbo drills are commonly used for underground coal mines and tunnel drives for the purpose of blasthole drilling and rock bolt installations. Not only machine parameters but also environmental conditions have significant effects on drilling. This study characterizes the performance of button bits during blasthole drilling in coal measure rocks by using multiple regression analyses. The penetration rate of jumbo and electro-hydraulic drills was measured in the field by employing bits in different diameters and the specific energy of the drilling was calculated at various locations, including highway tunnels and underground roadways of coal mines. Large block samples were collected from each location at which in situ drilling measurements were performed. Then, the effects of rock properties and machine parameters on the drilling performance were examined. Multiple regression models were developed for the prediction of the specific energy of the drilling and the penetration rate. The results revealed that hole area, impact (blow) energy, blows per minute of the piston within the drill, and some rock properties, such as the uniaxial compressive strength (UCS) and the drilling rate index (DRI), influence the drill performance.
NASA Astrophysics Data System (ADS)
Seeboonruang, U.
2013-12-01
Time series techniques have been extensively applied to research works of many academic disciplines, particularly those concerned with economics and environment. This paper presents application of a time series multiple linear regression technique to a groundwater system to predict groundwater level and salinity fluctuations in a saline area in the northeastern part of Thailand. Surface and groundwater interaction is the major mechanism controlling the shallow subsurface system and salinity of the area. The basic technique is based on the lagged correlation between hydrologic, and hydrogeological and environmental parameters. As a result of a large irrigation project in the area, several regulating gates have been installed to control flooding to the downstream rivers and to provide the upstream areas with sufficient irrigating water. From the lagged correlation analysis, the shallow groundwater and groundwater salinity fluctuation in the irrigating area are shown to be dependent upon the surface water levels at the installed regulated gates and prior rainfall. A set of multiple linear regression equations with lagged time dependent function are then formulated. The dependent variables are groundwater level and groundwater salinity while the independent variables are rainfall rates and water levels measured at the regulating gates. After calibration and verification, the model, as an alternative to the conventional method which requires detailed and continuous variables and is costlier, can be used to forecast and manage future groundwater systems.
Modeling Errors in Daily Precipitation Measurements: Additive or Multiplicative?
NASA Technical Reports Server (NTRS)
Tian, Yudong; Huffman, George J.; Adler, Robert F.; Tang, Ling; Sapiano, Matthew; Maggioni, Viviana; Wu, Huan
2013-01-01
The definition and quantification of uncertainty depend on the error model used. For uncertainties in precipitation measurements, two types of error models have been widely adopted: the additive error model and the multiplicative error model. This leads to incompatible specifications of uncertainties and impedes intercomparison and application.In this letter, we assess the suitability of both models for satellite-based daily precipitation measurements in an effort to clarify the uncertainty representation. Three criteria were employed to evaluate the applicability of either model: (1) better separation of the systematic and random errors; (2) applicability to the large range of variability in daily precipitation; and (3) better predictive skills. It is found that the multiplicative error model is a much better choice under all three criteria. It extracted the systematic errors more cleanly, was more consistent with the large variability of precipitation measurements, and produced superior predictions of the error characteristics. The additive error model had several weaknesses, such as non constant variance resulting from systematic errors leaking into random errors, and the lack of prediction capability. Therefore, the multiplicative error model is a better choice.
Majumdar, Arunabha; Witte, John S; Ghosh, Saurabh
2015-12-01
Binary phenotypes commonly arise due to multiple underlying quantitative precursors and genetic variants may impact multiple traits in a pleiotropic manner. Hence, simultaneously analyzing such correlated traits may be more powerful than analyzing individual traits. Various genotype-level methods, e.g., MultiPhen (O'Reilly et al. []), have been developed to identify genetic factors underlying a multivariate phenotype. For univariate phenotypes, the usefulness and applicability of allele-level tests have been investigated. The test of allele frequency difference among cases and controls is commonly used for mapping case-control association. However, allelic methods for multivariate association mapping have not been studied much. In this article, we explore two allelic tests of multivariate association: one using a Binomial regression model based on inverted regression of genotype on phenotype (Binomial regression-based Association of Multivariate Phenotypes [BAMP]), and the other employing the Mahalanobis distance between two sample means of the multivariate phenotype vector for two alleles at a single-nucleotide polymorphism (Distance-based Association of Multivariate Phenotypes [DAMP]). These methods can incorporate both discrete and continuous phenotypes. Some theoretical properties for BAMP are studied. Using simulations, the power of the methods for detecting multivariate association is compared with the genotype-level test MultiPhen's. The allelic tests yield marginally higher power than MultiPhen for multivariate phenotypes. For one/two binary traits under recessive mode of inheritance, allelic tests are found to be substantially more powerful. All three tests are applied to two different real data and the results offer some support for the simulation study. We propose a hybrid approach for testing multivariate association that implements MultiPhen when Hardy-Weinberg Equilibrium (HWE) is violated and BAMP otherwise, because the allelic approaches assume HWE
NASA Astrophysics Data System (ADS)
Liu, Pudong; Shi, Runhe; Wang, Hong; Bai, Kaixu; Gao, Wei
2014-10-01
Leaf pigments are key elements for plant photosynthesis and growth. Traditional manual sampling of these pigments is labor-intensive and costly, which also has the difficulty in capturing their temporal and spatial characteristics. The aim of this work is to estimate photosynthetic pigments at large scale by remote sensing. For this purpose, inverse model were proposed with the aid of stepwise multiple linear regression (SMLR) analysis. Furthermore, a leaf radiative transfer model (i.e. PROSPECT model) was employed to simulate the leaf reflectance where wavelength varies from 400 to 780 nm at 1 nm interval, and then these values were treated as the data from remote sensing observations. Meanwhile, simulated chlorophyll concentration (Cab), carotenoid concentration (Car) and their ratio (Cab/Car) were taken as target to build the regression model respectively. In this study, a total of 4000 samples were simulated via PROSPECT with different Cab, Car and leaf mesophyll structures as 70% of these samples were applied for training while the last 30% for model validation. Reflectance (r) and its mathematic transformations (1/r and log (1/r)) were all employed to build regression model respectively. Results showed fair agreements between pigments and simulated reflectance with all adjusted coefficients of determination (R2) larger than 0.8 as 6 wavebands were selected to build the SMLR model. The largest value of R2 for Cab, Car and Cab/Car are 0.8845, 0.876 and 0.8765, respectively. Meanwhile, mathematic transformations of reflectance showed little influence on regression accuracy. We concluded that it was feasible to estimate the chlorophyll and carotenoids and their ratio based on statistical model with leaf reflectance data.
ERIC Educational Resources Information Center
Quinino, Roberto C.; Reis, Edna A.; Bessegato, Lupercio F.
2013-01-01
This article proposes the use of the coefficient of determination as a statistic for hypothesis testing in multiple linear regression based on distributions acquired by beta sampling. (Contains 3 figures.)
Nie, Lei; Wu, G; Zhang, Weiwen
2006-01-13
Using whole-genome microarray and LC-MC/MS proteomic data collected from Desulfovibrio vulgaris grown under three different conditions, we systematically investigate the relationship between mRNA and protein abundunce by a multiple regression approach.
Data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network are used to estimate organic mass to organic carbon (OM/OC) ratios across the United States by extending previously published multiple regression techniques. Our new methodology addresses com...
NASA Astrophysics Data System (ADS)
Rajab, Jasim M.; MatJafri, M. Z.; Lim, H. S.
2013-06-01
This study encompasses columnar ozone modelling in the peninsular Malaysia. Data of eight atmospheric parameters [air surface temperature (AST), carbon monoxide (CO), methane (CH4), water vapour (H2Ovapour), skin surface temperature (SSKT), atmosphere temperature (AT), relative humidity (RH), and mean surface pressure (MSP)] data set, retrieved from NASA's Atmospheric Infrared Sounder (AIRS), for the entire period (2003-2008) was employed to develop models to predict the value of columnar ozone (O3) in study area. The combined method, which is based on using both multiple regressions combined with principal component analysis (PCA) modelling, was used to predict columnar ozone. This combined approach was utilized to improve the prediction accuracy of columnar ozone. Separate analysis was carried out for north east monsoon (NEM) and south west monsoon (SWM) seasons. The O3 was negatively correlated with CH4, H2Ovapour, RH, and MSP, whereas it was positively correlated with CO, AST, SSKT, and AT during both the NEM and SWM season periods. Multiple regression analysis was used to fit the columnar ozone data using the atmospheric parameter's variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to acquire subsets of the predictor variables to be comprised in the linear regression model of the atmospheric parameter's variables. It was found that the increase in columnar O3 value is associated with an increase in the values of AST, SSKT, AT, and CO and with a drop in the levels of CH4, H2Ovapour, RH, and MSP. The result of fitting the best models for the columnar O3 value using eight of the independent variables gave about the same values of the R (≈0.93) and R2 (≈0.86) for both the NEM and SWM seasons. The common variables that appeared in both regression equations were SSKT, CH4 and RH, and the principal precursor of the columnar O3 value in both the NEM and SWM seasons was SSKT.
NASA Astrophysics Data System (ADS)
Montanari, A.
2006-12-01
This contribution introduces a statistically based approach for uncertainty assessment in hydrological modeling, in an optimality context. Indeed, in several real world applications, there is the need for the user to select a model that is deemed to be the best possible choice accordingly to a given goodness of fit criteria. In this case, it is extremely important to assess the model uncertainty, intended as the range around the model output within which the measured hydrological variable is expected to fall with a given probability. This indication allows the user to quantify the risk associated to a decision that is based on the model response. The technique proposed here is carried out by inferring the probability distribution of the hydrological model error through a non linear multiple regression approach, depending on an arbitrary number of selected conditioning variables. These may include the current and previous model output as well as internal state variables of the model. The purpose is to indirectly relate the model error to the sources of uncertainty, through the conditioning variables. The method can be applied to any model of arbitrary complexity, included distributed approaches. The probability distribution of the model error is derived in the Gaussian space, through a meta-Gaussian approach. The normal quantile transform is applied in order to make the marginal probability distribution of the model error and the conditioning variables Gaussian. Then the above marginal probability distributions are related through the multivariate Gaussian distribution, whose parameters are estimated via multiple regression. Application of the inverse of the normal quantile transform allows the user to derive the confidence limits of the model output for an assigned significance level. The proposed technique is valid under statistical assumptions, that are essentially those conditioning the validity of the multiple regression in the Gaussian space. Statistical tests
NASA Astrophysics Data System (ADS)
Simms, Laura E.; Engebretson, Mark J.; Pilipenko, Viacheslav; Reeves, Geoffrey D.; Clilverd, Mark
2016-04-01
The daily maximum relativistic electron flux at geostationary orbit can be predicted well with a set of daily averaged predictor variables including previous day's flux, seed electron flux, solar wind velocity and number density, AE index, IMF Bz, Dst, and ULF and VLF wave power. As predictor variables are intercorrelated, we used multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Empirical models produced from regressions of flux on measured predictors from 1 day previous were reasonably effective at predicting novel observations. Adding previous flux to the parameter set improves the prediction of the peak of the increases but delays its anticipation of an event. Previous day's solar wind number density and velocity, AE index, and ULF wave activity are the most significant explanatory variables; however, the AE index, measuring substorm processes, shows a negative correlation with flux when other parameters are controlled. This may be due to the triggering of electromagnetic ion cyclotron waves by substorms that cause electron precipitation. VLF waves show lower, but significant, influence. The combined effect of ULF and VLF waves shows a synergistic interaction, where each increases the influence of the other on flux enhancement. Correlations between observations and predictions for this 1 day lag model ranged from 0.71 to 0.89 (average: 0.78). A path analysis of correlations between predictors suggests that solar wind and IMF parameters affect flux through intermediate processes such as ring current (Dst), AE, and wave activity.
Hema, M; Srinivasan, K
2011-07-01
Nickel removal efficiency of powered activated carbons of coconut oilcake, neem oilcake and commercial carbon was investigated by using artificial neural network. The effective parameters for the removal of nickel (%R) by adsorption process, which included the pH, contact time (T), distinctiveness of activated carbon (Cn), amount of activated carbon (Cw) and initial concentration of nickel (Co) were investigated. Levenberg-Marquardt (LM) Back-propagation algorithm is used to train the network. The network topology was optimized by varying number of hidden layer and number of neurons in hidden layer. The model was developed in terms of training; validation and testing of experimental data, the test subsets that each of them contains 60%, 20% and 20% of total experimental data, respectively. Multiple regression equation was developed for nickel adsorption system and the output was compared with both simulated and experimental outputs. Standard deviation (SD) with respect to experimental output was quite higher in the case of regression model when compared with ANN model. The obtained experimental data best fitted with the artificial neural network. PMID:23029923
Ling, Steve S H; Nguyen, Hung T
2011-03-01
Hypoglycemia or low blood glucose is dangerous and can result in unconsciousness, seizures, and even death. It is a common and serious side effect of insulin therapy in patients with diabetes. Hypoglycemic monitor is a noninvasive monitor that measures some physiological parameters continuously to provide detection of hypoglycemic episodes in type 1 diabetes mellitus patients (T1DM). Based on heart rate (HR), corrected QT interval of the ECG signal, change of HR, and the change of corrected QT interval, we develop a genetic algorithm (GA)-based multiple regression with fuzzy inference system (FIS) to classify the presence of hypoglycemic episodes. GA is used to find the optimal fuzzy rules and membership functions of FIS and the model parameters of regression method. From a clinical study of 16 children with T1DM, natural occurrence of nocturnal hypoglycemic episodes is associated with HRs and corrected QT intervals. The overall data were organized into a training set (eight patients) and a testing set (another eight patients) randomly selected. The results show that the proposed algorithm performs a good sensitivity with an acceptable specificity. PMID:21349796
NASA Astrophysics Data System (ADS)
Liu, Pao-Wen Grace; Tsai, Jiun-Horng; Lai, Hsin-Chih; Tsai, Der-Min; Li, Li-Wei
2013-11-01
Sensitivity of meteorological variation to air quality has attracted people's attention since climate change became a world issue. The goal of this study is to investigate the sensitivity of ground-level ozone concentrations to temperature variation in Taiwan. Several multivariate regression models were built based on historical data of ozone and meteorological variables at three cities located in northern, mid-western, and southern Taiwan. Results of descriptive statistics indicate that the severe pollution from the highest to the minor conditions following by the order of the southern (Pingtung), mid-western (Fengyuan), and the northern sites (Hsichih). Multiple regression models containing a principal component trigger variable effectively simulated the historical ozone exceedance during 2004-2009. Inclusion of the PC trigger were improved R2 from the lowest 0.38 to the highest 0.58. High probability of detection and critical success index (mostly between 85% and 90%) and low false alarm rates (0-2.6%) were achieved for predicting the high ozone days (≧100 ppb). The results of sensitivity analysis indicated that (1) the ozone sensitivity was positively correlated with the temperature variation, (2) the sensitivity levels were opposite to that of the ozone problem severity, (3) the sensitivity was mostly apparent in ozone seasons, and (4) the sensitivity strongly depended on the seasonality in the urban cities Hischih and Fengyuan, but weakly depended on seasonality in the rural city Pingtung.
NASA Astrophysics Data System (ADS)
Urrutia, Jackie D.; Tampis, Razzcelle L.; Mercado, Joseph; Baygan, Aaron Vito M.; Baccay, Edcon B.
2016-02-01
The objective of this research is to formulate a mathematical model for the Philippines' Real Gross Domestic Product (Real GDP). The following factors are considered: Consumers' Spending (x1), Government's Spending (x2), Capital Formation (x3) and Imports (x4) as the Independent Variables that can actually influence in the Real GDP in the Philippines (y). The researchers used a Normal Estimation Equation using Matrices to create the model for Real GDP and used α = 0.01.The researchers analyzed quarterly data from 1990 to 2013. The data were acquired from the National Statistical Coordination Board (NSCB) resulting to a total of 96 observations for each variable. The data have undergone a logarithmic transformation particularly the Dependent Variable (y) to satisfy all the assumptions of the Multiple Linear Regression Analysis. The mathematical model for Real GDP was formulated using Matrices through MATLAB. Based on the results, only three of the Independent Variables are significant to the Dependent Variable namely: Consumers' Spending (x1), Capital Formation (x3) and Imports (x4), hence, can actually predict Real GDP (y). The regression analysis displays that 98.7% (coefficient of determination) of the Independent Variables can actually predict the Dependent Variable. With 97.6% of the result in Paired T-Test, the Predicted Values obtained from the model showed no significant difference from the Actual Values of Real GDP. This research will be essential in appraising the forthcoming changes to aid the Government in implementing policies for the development of the economy.
Inferring genetic networks from DNA microarray data by multiple regression analysis.
Kato, M; Tsunoda, T; Takagi, T
2000-01-01
Inferring gene regulatory networks by differential equations from the time series data of a DNA microarray is one of the most challenging tasks in the post-genomic era. However, there have been no studies actually inferring gene regulatory networks by differential equations from genome-level data. The reason for this is that the number of parameters in the equations exceeds the number of measured time points. We here succeeded in executing the inference, not by directly determining parameters but by applying multiple regression analysis to our equations. We derived our differential equations and steady state equations from the rate equations of transcriptional reactions in an organism. Verification with a number of genes related to respiration indicated the validity and effectiveness of our method. Moreover, the steady state equations were more appropriate than the differential equations for the microarray data used. PMID:11700593
On-line contextual influences during reading normal text: a multiple-regression analysis.
Pynte, Joel; New, Boris; Kennedy, Alan
2008-09-01
On-line contextual influences during reading were examined in a series of multiple-regression analyses conducted on a large-scale corpus of eye-movement data, using Latent Semantic Analysis (LSA) to assess the degree of contextual constraints exerted on a given target word by the immediately prior word and by the prior sentence fragment. A decrease in inspection time was observed as contextual constraints increased. Word-level constraints exerted their influence both forward (on both single-fixation and gaze durations) and backward (on gaze duration only). An independent sentence-level effect was only visible in the forward direction, and only for gaze duration. Gaze duration was also sensitive to the depth of embedding of the target word in the syntactic structure. We conclude that both low-level and high-level contextual constraints can translate in the eye-movement record. PMID:18701125
Rao, Pramod; Escudier, Bernard; Baere, Thierry de
2011-04-15
We report two cases of spontaneous regression of multiple pulmonary metastases occurring after radiofrequency ablation (RFA) of a single lung metastasis. To the best of our knowledge, these are the first such cases reported. These two patients presented with lung metastases progressive despite treatment with interleukin-2, interferon, or sorafenib but were safely ablated with percutaneous RFA under computed tomography guidance. Percutaneous RFA allowed control of the targeted tumors for >1 year. Distant lung metastases presented an objective response despite the fact that they received no targeted local treatment. Local ablative techniques, such as RFA, induce the release of tumor-degradation product, which is probably responsible for an immunologic reaction that is able to produce a response in distant tumors.
Heinze, Georg; Ploner, Meinhard; Beyea, Jan
2013-12-20
In the logistic regression analysis of a small-sized, case-control study on Alzheimer's disease, some of the risk factors exhibited missing values, motivating the use of multiple imputation. Usually, Rubin's rules (RR) for combining point estimates and variances would then be used to estimate (symmetric) confidence intervals (CIs), on the assumption that the regression coefficients were distributed normally. Yet, rarely is this assumption tested, with or without transformation. In analyses of small, sparse, or nearly separated data sets, such symmetric CI may not be reliable. Thus, RR alternatives have been considered, for example, Bayesian sampling methods, but not yet those that combine profile likelihoods, particularly penalized profile likelihoods, which can remove first order biases and guarantee convergence of parameter estimation. To fill the gap, we consider the combination of penalized likelihood profiles (CLIP) by expressing them as posterior cumulative distribution functions (CDFs) obtained via a chi-squared approximation to the penalized likelihood ratio statistic. CDFs from multiple imputations can then easily be averaged into a combined CDF c , allowing confidence limits for a parameter β at level 1 - α to be identified as those β* and β** that satisfy CDF c (β*) = α ∕ 2 and CDF c (β**) = 1 - α ∕ 2. We demonstrate that the CLIP method outperforms RR in analyzing both simulated data and data from our motivating example. CLIP can also be useful as a confirmatory tool, should it show that the simpler RR are adequate for extended analysis. We also compare the performance of CLIP to Bayesian sampling methods using Markov chain Monte Carlo. CLIP is available in the R package logistf. PMID:23873477
Screening for ketosis using multiple logistic regression based on milk yield and composition.
Kayano, Mitsunori; Kataoka, Tomoko
2015-11-01
Multiple logistic regression was applied to milk yield and composition data for 632 records of healthy cows and 61 records of ketotic cows in Hokkaido, Japan. The purpose was to diagnose ketosis based on milk yield and composition, simultaneously. The cows were divided into two groups: (1) multiparous, including 314 healthy cows and 45 ketotic cows and (2) primiparous, including 318 healthy cows and 16 ketotic cows, since nutritional status, milk yield and composition are affected by parity. Multiple logistic regression was applied to these groups separately. For multiparous cows, milk yield (kg/day/cow) and protein-to-fat (P/F) ratio in milk were significant factors (P<0.05) for the diagnosis of ketosis. For primiparous cows, lactose content (%), solid not fat (SNF) content (%) and milk urea nitrogen (MUN) content (mg/dl) were significantly associated with ketosis (P<0.01). A diagnostic rule was constructed for each group of cows: (1) 9.978 × P/F ratio + 0.085 × milk yield <10 and (2) 2.327 × SNF - 2.703 × lactose + 0.225 × MUN <10. The sensitivity, specificity and the area under the curve (AUC) of the diagnostic rules were (1) 0.800, 0.729 and 0.811; (2) 0.813, 0.730 and 0.787, respectively. The P/F ratio, which is a widely used measure of ketosis, provided the sensitivity, specificity and AUC values of (1) 0.711, 0.726 and 0.781; and (2) 0.678, 0.767 and 0.738, respectively. PMID:26074408
Screening for ketosis using multiple logistic regression based on milk yield and composition
KAYANO, Mitsunori; KATAOKA, Tomoko
2015-01-01
Multiple logistic regression was applied to milk yield and composition data for 632 records of healthy cows and 61 records of ketotic cows in Hokkaido, Japan. The purpose was to diagnose ketosis based on milk yield and composition, simultaneously. The cows were divided into two groups: (1) multiparous, including 314 healthy cows and 45 ketotic cows and (2) primiparous, including 318 healthy cows and 16 ketotic cows, since nutritional status, milk yield and composition are affected by parity. Multiple logistic regression was applied to these groups separately. For multiparous cows, milk yield (kg/day/cow) and protein-to-fat (P/F) ratio in milk were significant factors (P<0.05) for the diagnosis of ketosis. For primiparous cows, lactose content (%), solid not fat (SNF) content (%) and milk urea nitrogen (MUN) content (mg/dl) were significantly associated with ketosis (P<0.01). A diagnostic rule was constructed for each group of cows: (1) 9.978 × P/F ratio + 0.085 × milk yield <10 and (2) 2.327 × SNF − 2.703 × lactose + 0.225 × MUN <10. The sensitivity, specificity and the area under the curve (AUC) of the diagnostic rules were (1) 0.800, 0.729 and 0.811; (2) 0.813, 0.730 and 0.787, respectively. The P/F ratio, which is a widely used measure of ketosis, provided the sensitivity, specificity and AUC values of (1) 0.711, 0.726 and 0.781; and (2) 0.678, 0.767 and 0.738, respectively. PMID:26074408
Majumdar, Arunabha; Witte, John S.; Ghosh, Saurabh
2016-01-01
Binary phenotypes commonly arise due to multiple underlying quantitative precursors. Genetic variants may impact multiple traits in a pleiotropic manner. Hence, simultaneously analyzing such correlated traits may be more powerful than analyzing individual traits. Various genotype-level methods, e.g. MultiPhen [O'Reilly et al., 2012], have been developed to identify genetic factors underlying a multivariate phenotype. For univariate phenotypes, the usefulness and applicability of allele-level tests have been investigated. The test of allele frequency difference among cases and controls is commonly used for mapping case-control association. However, allelic methods for multivariate association mapping have not been studied much. We explore two allelic tests of multivariate association: one using a Binomial regression model based on inverted regression of genotype on phenotype (BAMP), and the other employing the Mahalanobis distance between two sample means of the multivariate phenotype vector for two alleles at a SNP (DAMP). These methods can incorporate both discrete and continuous phenotypes. Some theoretical properties for BAMP are studied. Using simulations, the power of the methods for detecting multivariate association are compared with the genotype-level test MultiPhen. The allelic tests yield marginally higher power than MultiPhen for multivariate phenotypes. For one/two binary traits under recessive mode of inheritance, allelic tests are found substantially more powerful. All three tests are applied to two real data and the results offer some support for the simulation study. Since the allelic approaches assume Hardy-Weinberg Equilibrium (HWE), we propose a hybrid approach for testing multivariate association that implements MultiPhen when HWE is violated and BAMP otherwise. PMID:26493781
NASA Technical Reports Server (NTRS)
Barrett, C. A.
1985-01-01
Multiple linear regression analysis was used to determine an equation for estimating hot corrosion attack for a series of Ni base cast turbine alloys. The U transform (i.e., 1/sin (% A/100) to the 1/2) was shown to give the best estimate of the dependent variable, y. A complete second degree equation is described for the centered" weight chemistries for the elements Cr, Al, Ti, Mo, W, Cb, Ta, and Co. In addition linear terms for the minor elements C, B, and Zr were added for a basic 47 term equation. The best reduced equation was determined by the stepwise selection method with essentially 13 terms. The Cr term was found to be the most important accounting for 60 percent of the explained variability hot corrosion attack.
NASA Astrophysics Data System (ADS)
Oommen, T.; Misra, D.; Prakash, A.; Bandopadhyay, S.; Naidu, S.; Kelley, J. J.
2006-12-01
The ultramafic rocks of the Red Mountain in Goodnews Bay area of southwest Alaska have been the commercial source of onshore placer Pt since 1926. The proximity of the Red Mountain to the Bering Sea, our geophysical survey revealing the possibility of drowned ultramafic and paleo-drainage channels offshore, and the platinum samples collected by various agencies suggests the availability of a significant quantity of marine Pt accumulations in this region. We have created a comprehensive geodatabase for future Pt prospecting and possible exploration in the offshore regions of Goodnews Bay. Offshore exploration needs a preliminary assessment of the marine Pt resource. We have used several regression techniques such as inverse distance weight, kriging, radial basis function, support vector machines (SVM) and relevant vector machines for our assessment. None of these techniques individually was able to capture the entire Pt data variability obtained from the sampled data. The reason could be simply due to the limitation of the method used or the complexity of the governing processes that influence the accumulation of marine Pt such as glaciations, littoral currents, bathymetry, sea-level transgression, or paleo-drainage processes that are difficult to be quantitatively included in the assessment. To obtain improved accuracy of assessment, we propose a new method called the Multiple Regressive Pattern Recognition Technique (MRPRT). We hypothesize that by using the outputs of the different individual regression techniques as the input for a pattern recognition technique, such as the SVM, we will be able to overcome the shortcomings of these regression methods discussed above. The performance of MRPRT was evaluated using the coefficient of correlation (CC) and the coefficient of efficiency (CE). With MRPRT, the CC of our prediction has improved from 0.57 to 0.77 and the CE from 0.28 to 0.43. Post comparative analysis of the predicted marine Pt resource with the different
Tosteson, Tor D.; Morden, Nancy E.; Stukel, Therese A.; O'Malley, A. James
2014-01-01
The estimation of treatment effects is one of the primary goals of statistics in medicine. Estimation based on observational studies is subject to confounding. Statistical methods for controlling bias due to confounding include regression adjustment, propensity scores and inverse probability weighted estimators. These methods require that all confounders are recorded in the data. The method of instrumental variables (IVs) can eliminate bias in observational studies even in the absence of information on confounders. We propose a method for integrating IVs within the framework of Cox's proportional hazards model and demonstrate the conditions under which it recovers the causal effect of treatment. The methodology is based on the approximate orthogonality of an instrument with unobserved confounders among those at risk. We derive an estimator as the solution to an estimating equation that resembles the score equation of the partial likelihood in much the same way as the traditional IV estimator resembles the normal equations. To justify this IV estimator for a Cox model we perform simulations to evaluate its operating characteristics. Finally, we apply the estimator to an observational study of the effect of coronary catheterization on survival. PMID:25506259
Accounting for data errors discovered from an audit in multiple linear regression.
Shepherd, Bryan E; Yu, Chang
2011-09-01
A data coordinating team performed onsite audits and discovered discrepancies between the data sent to the coordinating center and that recorded at sites. We present statistical methods for incorporating audit results into analyses. This can be thought of as a measurement error problem, where the distribution of errors is a mixture with a point mass at 0. If the error rate is nonzero, then even if the mean of the discrepancy between the reported and correct values of a predictor is 0, naive estimates of the association between two continuous variables will be biased. We consider scenarios where there are (1) errors in the predictor, (2) errors in the outcome, and (3) possibly correlated errors in the predictor and outcome. We show how to incorporate the error rate and magnitude, estimated from a random subset (the audited records), to compute unbiased estimates of association and proper confidence intervals. We then extend these results to multiple linear regression where multiple covariates may be incorrect in the database and the rate and magnitude of the errors may depend on study site. We study the finite sample properties of our estimators using simulations, discuss some practical considerations, and illustrate our methods with data from 2815 HIV-infected patients in Latin America, of whom 234 had their data audited using a sequential auditing plan. PMID:21281274
Wang, Molin; Kuchiba, Aya; Ogino, Shuji
2015-01-01
In interdisciplinary biomedical, epidemiologic, and population research, it is increasingly necessary to consider pathogenesis and inherent heterogeneity of any given health condition and outcome. As the unique disease principle implies, no single biomarker can perfectly define disease subtypes. The complex nature of molecular pathology and biology necessitates biostatistical methodologies to simultaneously analyze multiple biomarkers and subtypes. To analyze and test for heterogeneity hypotheses across subtypes defined by multiple categorical and/or ordinal markers, we developed a meta-regression method that can utilize existing statistical software for mixed-model analysis. This method can be used to assess whether the exposure-subtype associations are different across subtypes defined by 1 marker while controlling for other markers and to evaluate whether the difference in exposure-subtype association across subtypes defined by 1 marker depends on any other markers. To illustrate this method in molecular pathological epidemiology research, we examined the associations between smoking status and colorectal cancer subtypes defined by 3 correlated tumor molecular characteristics (CpG island methylator phenotype, microsatellite instability, and the B-Raf protooncogene, serine/threonine kinase (BRAF), mutation) in the Nurses' Health Study (1980–2010) and the Health Professionals Follow-up Study (1986–2010). This method can be widely useful as molecular diagnostics and genomic technologies become routine in clinical medicine and public health. PMID:26116215
Jamali, Jamshid; Ayatollahi, Seyyed Mohammad Taghi; Jafari, Peyman
2016-01-01
Background: Measurement equivalence is an essential prerequisite for making valid comparisons in mental health questionnaires across groups. In most methods used for assessing measurement equivalence, which is known as Differential Item Functioning (DIF), latent variables are assumed to be continuous. Objective: To compare a new method called Latent Class Regression (LCR) designed for discrete latent variable with the multiple indicators multiple cause (MIMIC) as a continuous latent variable technique to assess the measurement equivalence of the 12-item General Health Questionnaire (GHQ-12), which is a cross deferent subgroup of Iranian nurses. Methods: A cross-sectional survey was conducted in 2014 among 771 nurses working in the hospitals of Fars and Bushehr provinces of southern Iran. To identify the Minor Psychiatric Disorders (MPD), the nurses completed self-report GHQ-12 questionnaires and sociodemographic questions. Two uniform-DIF detection methods, LCR and MIMIC, were applied for comparability when the GHQ-12 score was assumed to be discrete and continuous, respectively. Results: The result of fitting LCR with 2 classes indicated that 27.4% of the nurses had MPD. Gender was identified as an influential factor of the level of MPD.LCR and MIMIC agree with detection of DIF and DIF-free items by gender, age, education and marital status in 83.3, 100.0, 91.7 and 83.3% cases, respectively. Conclusions: The results indicated that the GHQ-12 is to a great degree, an invariant measure for the assessment of MPD among nurses. High convergence between the two methods suggests using the LCR approach in cases of discrete latent variable, e.g. GHQ-12 and adequate sample size. PMID:27482129
NASA Astrophysics Data System (ADS)
Shu, Yuqin; Lam, Nina S. N.
2011-01-01
Detailed estimates of carbon dioxide emissions at fine spatial scales are critical to both modelers and decision makers dealing with global warming and climate change. Globally, traffic-related emissions of carbon dioxide are growing rapidly. This paper presents a new method based on a multiple linear regression model to disaggregate traffic-related CO 2 emission estimates from the parish-level scale to a 1 × 1 km grid scale. Considering the allocation factors (population density, urban area, income, road density) together, we used a correlation and regression analysis to determine the relationship between these factors and traffic-related CO 2 emissions, and developed the best-fit model. The method was applied to downscale the traffic-related CO 2 emission values by parish (i.e. county) for the State of Louisiana into 1-km 2 grid cells. In the four highest parishes in traffic-related CO 2 emissions, the biggest area that has above average CO 2 emissions is found in East Baton Rouge, and the smallest area with no CO 2 emissions is also in East Baton Rouge, but Orleans has the most CO 2 emissions per unit area. The result reveals that high CO 2 emissions are concentrated in dense road network of urban areas with high population density and low CO 2 emissions are distributed in rural areas with low population density, sparse road network. The proposed method can be used to identify the emission "hot spots" at fine scale and is considered more accurate and less time-consuming than the previous methods.
PUMA: A Unified Framework for Penalized Multiple Regression Analysis of GWAS Data
Hoffman, Gabriel E.; Logsdon, Benjamin A.; Mezey, Jason G.
2013-01-01
Penalized Multiple Regression (PMR) can be used to discover novel disease associations in GWAS datasets. In practice, proposed PMR methods have not been able to identify well-supported associations in GWAS that are undetectable by standard association tests and thus these methods are not widely applied. Here, we present a combined algorithmic and heuristic framework for PUMA (Penalized Unified Multiple-locus Association) analysis that solves the problems of previously proposed methods including computational speed, poor performance on genome-scale simulated data, and identification of too many associations for real data to be biologically plausible. The framework includes a new minorize-maximization (MM) algorithm for generalized linear models (GLM) combined with heuristic model selection and testing methods for identification of robust associations. The PUMA framework implements the penalized maximum likelihood penalties previously proposed for GWAS analysis (i.e. Lasso, Adaptive Lasso, NEG, MCP), as well as a penalty that has not been previously applied to GWAS (i.e. LOG). Using simulations that closely mirror real GWAS data, we show that our framework has high performance and reliably increases power to detect weak associations, while existing PMR methods can perform worse than single marker testing in overall performance. To demonstrate the empirical value of PUMA, we analyzed GWAS data for type 1 diabetes, Crohns's disease, and rheumatoid arthritis, three autoimmune diseases from the original Wellcome Trust Case Control Consortium. Our analysis replicates known associations for these diseases and we discover novel etiologically relevant susceptibility loci that are invisible to standard single marker tests, including six novel associations implicating genes involved in pancreatic function, insulin pathways and immune-cell function in type 1 diabetes; three novel associations implicating genes in pro- and anti-inflammatory pathways in Crohn's disease; and one
Optimization of end-members used in multiple linear regression geochemical mixing models
NASA Astrophysics Data System (ADS)
Dunlea, Ann G.; Murray, Richard W.
2015-11-01
Tracking marine sediment provenance (e.g., of dust, ash, hydrothermal material, etc.) provides insight into contemporary ocean processes and helps construct paleoceanographic records. In a simple system with only a few end-members that can be easily quantified by a unique chemical or isotopic signal, chemical ratios and normative calculations can help quantify the flux of sediment from the few sources. In a more complex system (e.g., each element comes from multiple sources), more sophisticated mixing models are required. MATLAB codes published in Pisias et al. solidified the foundation for application of a Constrained Least Squares (CLS) multiple linear regression technique that can use many elements and several end-members in a mixing model. However, rigorous sensitivity testing to check the robustness of the CLS model is time and labor intensive. MATLAB codes provided in this paper reduce the time and labor involved and facilitate finding a robust and stable CLS model. By quickly comparing the goodness of fit between thousands of different end-member combinations, users are able to identify trends in the results that reveal the CLS solution uniqueness and the end-member composition precision required for a good fit. Users can also rapidly check that they have the appropriate number and type of end-members in their model. In the end, these codes improve the user's confidence that the final CLS model(s) they select are the most reliable solutions. These advantages are demonstrated by application of the codes in two case studies of well-studied datasets (Nazca Plate and South Pacific Gyre).
PUMA: a unified framework for penalized multiple regression analysis of GWAS data.
Hoffman, Gabriel E; Logsdon, Benjamin A; Mezey, Jason G
2013-01-01
Penalized Multiple Regression (PMR) can be used to discover novel disease associations in GWAS datasets. In practice, proposed PMR methods have not been able to identify well-supported associations in GWAS that are undetectable by standard association tests and thus these methods are not widely applied. Here, we present a combined algorithmic and heuristic framework for PUMA (Penalized Unified Multiple-locus Association) analysis that solves the problems of previously proposed methods including computational speed, poor performance on genome-scale simulated data, and identification of too many associations for real data to be biologically plausible. The framework includes a new minorize-maximization (MM) algorithm for generalized linear models (GLM) combined with heuristic model selection and testing methods for identification of robust associations. The PUMA framework implements the penalized maximum likelihood penalties previously proposed for GWAS analysis (i.e. Lasso, Adaptive Lasso, NEG, MCP), as well as a penalty that has not been previously applied to GWAS (i.e. LOG). Using simulations that closely mirror real GWAS data, we show that our framework has high performance and reliably increases power to detect weak associations, while existing PMR methods can perform worse than single marker testing in overall performance. To demonstrate the empirical value of PUMA, we analyzed GWAS data for type 1 diabetes, Crohns's disease, and rheumatoid arthritis, three autoimmune diseases from the original Wellcome Trust Case Control Consortium. Our analysis replicates known associations for these diseases and we discover novel etiologically relevant susceptibility loci that are invisible to standard single marker tests, including six novel associations implicating genes involved in pancreatic function, insulin pathways and immune-cell function in type 1 diabetes; three novel associations implicating genes in pro- and anti-inflammatory pathways in Crohn's disease; and one
Banno, Masahiro; Koide, Takayoshi; Aleksic, Branko; Okada, Takashi; Kikuchi, Tsutomu; Kohmura, Kunihiro; Adachi, Yasunori; Kawano, Naoko; Iidaka, Tetsuya; Ozaki, Norio
2012-01-01
Objectives This study investigated what clinical and sociodemographic factors affected Wisconsin Card Sorting Test (WCST) factor scores of patients with schizophrenia to evaluate parameters or items of the WCST. Design Cross-sectional study. Setting Patients with schizophrenia from three hospitals participated. Participants Participants were recruited from July 2009 to August 2011. 131 Japanese patients with schizophrenia (84 men and 47 women, 43.5±13.8 years (mean±SD)) entered and completed the study. Participants were recruited in the study if they (1) met DSM-IV criteria for schizophrenia; (2) were physically healthy and (3) had no mood disorders, substance abuse, neurodevelopmental disorders, epilepsy or mental retardation. We examined their basic clinical and sociodemographic factors (sex, age, education years, age of onset, duration of illness, chlorpromazine equivalent doses and the positive and negative syndrome scale (PANSS) scores). Primary and secondary outcome measures All patients carried out the WCST Keio version. Five indicators were calculated, including categories achieved (CA), perseverative errors in Milner (PEM) and Nelson (PEN), total errors (TE) and difficulties of maintaining set (DMS). From the principal component analysis, we identified two factors (1 and 2). We assessed the relationship between these factor scores and clinical and sociodemographic factors, using multiple logistic regression analysis. Results Factor 1 was mainly composed of CA, PEM, PEN and TE. Factor 2 was mainly composed of DMS. The factor 1 score was affected by age, education years and the PANSS negative scale score. The factor 2 score was affected by duration of illness. Conclusions Age, education years, PANSS negative scale score and duration of illness affected WCST factor scores in patients with schizophrenia. Using WCST factor scores may reduce the possibility of type I errors due to multiple comparisons. PMID:23135537
The purpose of this report is to provide a reference manual that could be used by investigators for making informed use of logistic regression using two methods (standard logistic regression and MARS). The details for analyses of relationships between a dependent binary response ...
Anomalous particle pinch and scaling of vin/D based on transport analysis and multiple regression
NASA Astrophysics Data System (ADS)
Becker, G.; Kardaun, O.
2007-01-01
Predictions of density profiles in current tokamaks and ITER require a validated scaling relation for vin/D where vin is the anomalous inward drift velocity and D is the anomalous diffusion coefficient. Transport analysis is necessary for determining the anomalous particle pinch from measured density profiles and for separating the impact of particle sources. A set of discharges in ASDEX Upgrade, DIII-D, JET and ASDEX is analysed using a special version of the 1.5-D BALDUR transport code. Profiles of ρsvin/D with ρs the effective separatrix radius, five other dimensionless parameters and many further quantities in the confinement zone are compiled, resulting in the dataset VIND1.dat, which covers a wide parameter range. Weighted multiple regression is applied to the ASDEX Upgrade subset which leads to a two-term scaling \\rho _sv_in ({x'}) /D ({x'}) =0.0432 [ { ({L_{T_{\\rme}} ({ \\bar {x}'}) / \\rho _s}) ^{-2.58}+7.13 \\, U_L^{1.55} \
A Nonlinear Causality Estimator Based on Non-Parametric Multiplicative Regression
Nicolaou, Nicoletta; Constandinou, Timothy G.
2016-01-01
Causal prediction has become a popular tool for neuroscience applications, as it allows the study of relationships between different brain areas during rest, cognitive tasks or brain disorders. We propose a nonparametric approach for the estimation of nonlinear causal prediction for multivariate time series. In the proposed estimator, CNPMR, Autoregressive modeling is replaced by Nonparametric Multiplicative Regression (NPMR). NPMR quantifies interactions between a response variable (effect) and a set of predictor variables (cause); here, we modified NPMR for model prediction. We also demonstrate how a particular measure, the sensitivity Q, could be used to reveal the structure of the underlying causal relationships. We apply CNPMR on artificial data with known ground truth (5 datasets), as well as physiological data (2 datasets). CNPMR correctly identifies both linear and nonlinear causal connections that are present in the artificial data, as well as physiologically relevant connectivity in the real data, and does not seem to be affected by filtering. The Sensitivity measure also provides useful information about the latent connectivity.The proposed estimator addresses many of the limitations of linear Granger causality and other nonlinear causality estimators. CNPMR is compared with pairwise and conditional Granger causality (linear) and Kernel-Granger causality (nonlinear). The proposed estimator can be applied to pairwise or multivariate estimations without any modifications to the main method. Its nonpametric nature, its ability to capture nonlinear relationships and its robustness to filtering make it appealing for a number of applications. PMID:27378901
Hou, J
1989-01-01
Cixian county, one of the high-risk counties of esophageal cancer in the world, has a standardized mortality of 142.19/10(5) population, 1969-1971. The incidence of esophageal cancer had dropped year by year from 1974 to 1982. The significance of the incidence tendency was studied. The results are highly significant (P less than 0.001). The causative factors of esophageal cancer including five independent variables: X1 (number of people taking sanitized water), X2 (number of people on pickled Chinese cabbage), X3 (annual output of fruit), X4 (annual output of fresh vegetable) and X5 (annual output of sweet potato) and one dependent variable Y (morbidity of esophageal cancer) were studied by correlative analysis and multiple stepwise regression. Three correlative factors (X1, X2, and X5) with significant effect on the esophageal cancer were selected from the five suspected factors. The result indicated that taking sanitized water, reducing the number of people on pickled Chinese cabbage, changing the structure of food and keeping the nutrient balance, might decrease the incidence of esophageal cancer. PMID:2789130
ERIC Educational Resources Information Center
Choi, Kilchan
2011-01-01
This report explores a new latent variable regression 4-level hierarchical model for monitoring school performance over time using multisite multiple-cohorts longitudinal data. This kind of data set has a 4-level hierarchical structure: time-series observation nested within students who are nested within different cohorts of students. These…
ERIC Educational Resources Information Center
Thatcher, Greg W.; Henson, Robin K.
This study examined research in training and development to determine effect size reporting practices. It focused on the reporting of corrected effect sizes in research articles using multiple regression analyses. When possible, researchers calculated corrected effect sizes and determine if the associated shrinkage could have impacted researcher…
ERIC Educational Resources Information Center
Kromrey, Jeffrey D.; Hines, Constance V.
1996-01-01
The accuracy of three analytical formulas for shrinkage estimation and four empirical techniques were investigated in a Monte Carlo study of the coefficient of cross-validity in multiple regression. Substantial statistical bias was evident for all techniques except the formula of M. W. Brown (1975) and multicross-validation. (SLD)
ERIC Educational Resources Information Center
Harris, Richard J.
Interpretation of emergent variables on the basis of structure coefficients (zero order correlations between original and emergent variables) is potentially very misleading and should be avoided in favor of interpretation on the basis of scoring coefficients. This is most apparent in multiple regression analysis and its special case, two-group…
ERIC Educational Resources Information Center
Muller, Veronica; Brooks, Jessica; Tu, Wei-Mo; Moser, Erin; Lo, Chu-Ling; Chan, Fong
2015-01-01
Purpose: The main objective of this study was to determine the extent to which physical and cognitive-affective factors are associated with fibromyalgia (FM) fatigue. Method: A quantitative descriptive design using correlation techniques and multiple regression analysis. The participants consisted of 302 members of the National Fibromyalgia &…
ERIC Educational Resources Information Center
Le, Huy; Marcus, Justin
2012-01-01
This study used Monte Carlo simulation to examine the properties of the overall odds ratio (OOR), which was recently introduced as an index for overall effect size in multiple logistic regression. It was found that the OOR was relatively independent of study base rate and performed better than most commonly used R-square analogs in indexing model…
ERIC Educational Resources Information Center
Fraas, John W.; Newman, Isadore
1996-01-01
In a conjoint-analysis consumer-preference study, researchers must determine whether the product factor estimates, which measure consumer preferences, should be calculated and interpreted for each respondent or collectively. Multiple regression models can determine whether to aggregate data by examining factor-respondent interaction effects. This…
ERIC Educational Resources Information Center
Wong, Vivian C.; Steiner, Peter M.; Cook, Thomas D.
2013-01-01
In a traditional regression-discontinuity design (RDD), units are assigned to treatment on the basis of a cutoff score and a continuous assignment variable. The treatment effect is measured at a single cutoff location along the assignment variable. This article introduces the multivariate regression-discontinuity design (MRDD), where multiple…
NASA Astrophysics Data System (ADS)
Morandi, Maria T.; Daisey, Joan M.; Lioy, Paul J.
A modified factor analysis/multiple regression (FA/MR) receptor-oriented source apportionment model has been developed which permits application of FA/MR statistical methods when some of the tracers are not unique to an individual source type. The new method uses factor and regression analyses to apportion non-unique tracer ambient concentrations in situations where there are unique tracers for all sources contributing to the non-unique tracer except one, and ascribes the residual concentration to that source. This value is then used as the source tracer in the final FA/MR apportionment model for ambient paniculate matter. In addition, factor analyses results are complemented with examination of regression residuals in order to optimize the number of identifiable sources. The new method has been applied to identify and apportion the sources of inhalable particulate matter (IPM; D5015 μm), Pb and Fe at a site in Newark, NJ. The model indicated that sulfate/secondary aerosol contributed an average of 25.8 μ -3 (48%) to IPM concentrations, followed by soil resuspension (8.2 μ -3 or 15%), paint spraying/paint pigment (6.7/gmm -3or 13%), fuel oil burning/space heating (4.3 μ -3 or 8 %), industrial emissions (3.6 μm -3 or 7 %) and motor vehicle exhaust (2.7 μ -3 or 15 %). Contributions to ambient Pb concentrations were: motor vehicle exhaust (0.16μm -3or 36%), soil resuspension (0.10μm -3 or 24%), fuel oil burning/space heating (0.08μm -3or 18%), industrial emissions (0.07 μ -3 or 17 %), paint spraying/paint pigment (0.036 μm -3or 9 %) and zinc related sources (0.022 μ -3 or 5 %). Contributions to ambient Fe concentrations were: soil resuspension (0.43μ -3or 51%), paint spraying/paint pigment (0.28 μm -3or 33 %) and industrial emissions (0.15 μ -3or 18 %). The models were validated by comparing partial source profiles calculated from modeling results with the corresponding published source emissions composition.
A method for the analysis of capillary column Polychlorinated biphenyl (PCB) data using regression analysis with outlier checking and elimination, COMSTAR, is presented and evaluated. his algorithm determines the best combination of the commercial PCB mixtures which best fits the...
Worachartcheewan, Apilak; Nantasenamat, Chanin; Owasirikul, Wiwat; Monnor, Teerawat; Naruepantawart, Orapan; Janyapaisarn, Sayamon; Prachayasittikul, Supaluk; Prachayasittikul, Virapong
2014-02-12
A data set of 1-adamantylthiopyridine analogs (1-19) with antioxidant activity, comprising of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide dismutase (SOD) activities, was used for constructing quantitative structure-activity relationship (QSAR) models. Molecular structures were geometrically optimized at B3LYP/6-31g(d) level and subjected for further molecular descriptor calculation using Dragon software. Multiple linear regression (MLR) was employed for the development of QSAR models using 3 significant descriptors (i.e. Mor29e, F04[N-N] and GATS5v) for predicting the DPPH activity and 2 essential descriptors (i.e. EEig06r and Mor06v) for predicting the SOD activity. Such molecular descriptors accounted for the effects and positions of substituent groups (R) on the 1-adamantylthiopyridine ring. The results showed that high atomic electronegativity of polar substituent group (R = CO2H) afforded high DPPH activity, while substituent with high atomic van der Waals volumes such as R = Br gave high SOD activity. Leave-one-out cross-validation (LOO-CV) and external test set were used for model validation. Correlation coefficient (QCV) and root mean squared error (RMSECV) of the LOO-CV set for predicting DPPH activity were 0.5784 and 8.3440, respectively, while QExt and RMSEExt of external test set corresponded to 0.7353 and 4.2721, respectively. Furthermore, QCV and RMSECV values of the LOO-CV set for predicting SOD activity were 0.7549 and 5.6380, respectively. The QSAR model's equation was then used in predicting the SOD activity of tested compounds and these were subsequently verified experimentally. It was observed that the experimental activity was more potent than the predicted activity. Structure-activity relationships of significant descriptors governing antioxidant activity are also discussed. The QSAR models investigated herein are anticipated to be useful in the rational design and development of novel compounds with antioxidant activity. PMID
Hu, L.; Zhang, Z.G.; Mouraux, A.; Iannetti, G.D.
2015-01-01
Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the ongoing electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations. These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchronization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in the parameters that control oscillations in neuronal networks and, depending on the frequency at which they occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are commonly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial variability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to (1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental factors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distributions; (2) time-frequency multiple linear regression with dispersion term (TF-MLRd) enhances the signal-to-noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods described in this article allow exploring fully non-phase-locked stimulus-induced cortical
Hu, L; Zhang, Z G; Mouraux, A; Iannetti, G D
2015-05-01
Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the ongoing electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations. These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchronization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in the parameters that control oscillations in neuronal networks and, depending on the frequency at which they occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are commonly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial variability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to (1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental factors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distributions; (2) time-frequency multiple linear regression with dispersion term (TF-MLRd) enhances the signal-to-noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods described in this article allow exploring fully non-phase-locked stimulus-induced cortical
Clougherty, Jane E; Wright, Rosalind J; Baxter, Lisa K; Levy, Jonathan I
2008-01-01
Background There is a growing body of literature linking GIS-based measures of traffic density to asthma and other respiratory outcomes. However, no consensus exists on which traffic indicators best capture variability in different pollutants or within different settings. As part of a study on childhood asthma etiology, we examined variability in outdoor concentrations of multiple traffic-related air pollutants within urban communities, using a range of GIS-based predictors and land use regression techniques. Methods We measured fine particulate matter (PM2.5), nitrogen dioxide (NO2), and elemental carbon (EC) outside 44 homes representing a range of traffic densities and neighborhoods across Boston, Massachusetts and nearby communities. Multiple three to four-day average samples were collected at each home during winters and summers from 2003 to 2005. Traffic indicators were derived using Massachusetts Highway Department data and direct traffic counts. Multivariate regression analyses were performed separately for each pollutant, using traffic indicators, land use, meteorology, site characteristics, and central site concentrations. Results PM2.5 was strongly associated with the central site monitor (R2 = 0.68). Additional variability was explained by total roadway length within 100 m of the home, smoking or grilling near the monitor, and block-group population density (R2 = 0.76). EC showed greater spatial variability, especially during winter months, and was predicted by roadway length within 200 m of the home. The influence of traffic was greater under low wind speed conditions, and concentrations were lower during summer (R2 = 0.52). NO2 showed significant spatial variability, predicted by population density and roadway length within 50 m of the home, modified by site characteristics (obstruction), and with higher concentrations during summer (R2 = 0.56). Conclusion Each pollutant examined displayed somewhat different spatial patterns within urban neighborhoods
Pectasides, Eirini; Miksad, Rebecca; Pyatibrat, Sergey; Srivastava, Amogh; Bullock, Andrea
2016-09-01
Spontaneous regression of hepatocellular carcinoma (HCC) is a rare event. Here we present a case of spontaneous regression of metastatic HCC. A 53-year-old man with hepatitis C and alcoholic cirrhosis was found to have a large liver mass consistent with HCC based on its radiographic features. Imaging also revealed left portal and hepatic vein thrombosis, as well as multiple lung nodules concerning for metastases. Approximately 2 months after the initial diagnosis, both the primary liver lesion and the lung metastases decreased in size and eventually resolved without any intervention. Thereafter, the left hepatic vein thrombus progressed into the inferior vena cava and the right atrium, and the patient died due to right heart failure. In this case report and literature review, we discuss the potential mechanisms for and review the literature on spontaneous regression of metastatic HCC. PMID:27038447
Preisser, J. S.; Phillips, C.; Perin, J.; Schwartz, T. A.
2011-01-01
Objectives The article reviews proportional and partial proportional odds regression for ordered categorical outcomes, such as patient-reported measures, that are frequently used in clinical research in dentistry. Methods The proportional odds regression model for ordinal data is a generalization of ordinary logistic regression for dichotomous responses. When the proportional odds assumption holds for some but not all of the covariates, the lesser known partial proportional odds model is shown to provide a useful extension. Results The ordinal data models are illustrated for the analysis of repeated ordinal outcomes to determine whether the burden associated with sensory alteration following a bilateral sagittal split osteotomy procedure differed for those patients who were given opening exercises only following surgery and those who received sensory retraining exercises in conjunction with standard opening exercises. Conclusions Proportional and partial proportional odds models are broadly applicable to the analysis of cross-sectional and longitudinal ordinal data in dental research. PMID:21070317
Protein stabilisation using additives based on multiple electrostatic interactions.
Gibson, T D
1996-01-01
A method of elevating the storage lifetime of purified proteins has been discovered which appears to confer stability to all proteins investigated and may therefore be classed as generic in action. The basic methodology involves the formation of multiple electrostatic complexes between the protein and selected soluble polyelectrolytes to give protein-polyelectrolyte (PP) complexes and then to add solutions of polyalcohols or other compounds containing multiple hydroxyl groups. Dehydration of the resulting solution by vacuum evaporation, freeze drying or forced air convection produces a dry film or powder of stabilised protein. The method has been used mainly in the preparation of active enzymes for analytical tests. It has also been found that the formation of PP complexes also enhances the stability of enzymes in solution and the technique may be applicable to the stabilisation of virus suspensions by polycations. Examples of stabilised enzymes prepared by these methods are given and the proposed mechanism of stabilisation and applicability of the method to shelf-stable vaccine products are discussed. PMID:8854019
About the multiple linear regressions applied in studying the solvatochromic effects.
Dorohoi, Dana-Ortansa
2010-03-01
Statistical analysis is applied to study the solvatochromic effects using the solvent parameters (regressors) influencing the spectral shifts in the electronic spectra. The data pointed to eliminate the non-significant parameters and the aberrant points (for which supplemental interactions were neglected in used theories) from those supposed to multi-linear regression. A BASIC program permits to follow these desiderates step by step. In order to exemplify the steps of regression, the wavenumbers of the maximum pi-pi* absorption band of three benzene derivatives in various solvents were used. PMID:20089443
An additional monogenic disorder that masquerades as multiple sclerosis
Vahedi, K.; Tournier-Lasserve, E.; Vahedi, K.
1996-11-11
In their comprehensive differential diagnosis of monogenic diseases that can mimic multiple sclerosis, Natowicz and Bejjani did not include a newly recognized monogenic disorder known under the acronym of CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy); this disorder can mimic MS clinically and radiologically to a remarkable extent. The underlying histopathological lesion of CADASIL is a non-atherosclerotic, non-amyloid arteriopathy affecting mainly the penetrating medullary arteries to the subcortical white matter and basal ganglia. Electron microscopy shows an abnormal deposit of granular osmiophilic material in the arterial wall. These arterial changes are observed in various tissues even though clinical manifestations seem to be restricted to the central nervous system. The CADASIL gene was mapped recently to chromosome 19 and gene identification is ongoing. 6 refs., 1 fig.
Multiple Logistic Regression Analysis of Cigarette Use among High School Students
ERIC Educational Resources Information Center
Adwere-Boamah, Joseph
2011-01-01
A binary logistic regression analysis was performed to predict high school students' cigarette smoking behavior from selected predictors from 2009 CDC Youth Risk Behavior Surveillance Survey. The specific target student behavior of interest was frequent cigarette use. Five predictor variables included in the model were: a) race, b) frequency of…
NASA Astrophysics Data System (ADS)
Keat, Sim Chong; Chun, Beh Boon; San, Lim Hwee; Jafri, Mohd Zubir Mat
2015-04-01
Climate change due to carbon dioxide (CO2) emissions is one of the most complex challenges threatening our planet. This issue considered as a great and international concern that primary attributed from different fossil fuels. In this paper, regression model is used for analyzing the causal relationship among CO2 emissions based on the energy consumption in Malaysia using time series data for the period of 1980-2010. The equations were developed using regression model based on the eight major sources that contribute to the CO2 emissions such as non energy, Liquefied Petroleum Gas (LPG), diesel, kerosene, refinery gas, Aviation Turbine Fuel (ATF) and Aviation Gasoline (AV Gas), fuel oil and motor petrol. The related data partly used for predict the regression model (1980-2000) and partly used for validate the regression model (2001-2010). The results of the prediction model with the measured data showed a high correlation coefficient (R2=0.9544), indicating the model's accuracy and efficiency. These results are accurate and can be used in early warning of the population to comply with air quality standards.
Point Estimates and Confidence Intervals for Variable Importance in Multiple Linear Regression
ERIC Educational Resources Information Center
Thomas, D. Roland; Zhu, PengCheng; Decady, Yves J.
2007-01-01
The topic of variable importance in linear regression is reviewed, and a measure first justified theoretically by Pratt (1987) is examined in detail. Asymptotic variance estimates are used to construct individual and simultaneous confidence intervals for these importance measures. A simulation study of their coverage properties is reported, and an…
ERIC Educational Resources Information Center
Wong, Vivian C.; Steiner, Peter M.; Cook, Thomas D.
2012-01-01
In a traditional regression-discontinuity design (RDD), units are assigned to treatment and comparison conditions solely on the basis of a single cutoff score on a continuous assignment variable. The discontinuity in the functional form of the outcome at the cutoff represents the treatment effect, or the average treatment effect at the cutoff.…
ERIC Educational Resources Information Center
Magis, David; Raiche, Gilles; Beland, Sebastien; Gerard, Paul
2011-01-01
We present an extension of the logistic regression procedure to identify dichotomous differential item functioning (DIF) in the presence of more than two groups of respondents. Starting from the usual framework of a single focal group, we propose a general approach to estimate the item response functions in each group and to test for the presence…
The Development and Demonstration of Multiple Regression Models for Operant Conditioning Questions.
ERIC Educational Resources Information Center
Fanning, Fred; Newman, Isadore
Based on the assumption that inferential statistics can make the operant conditioner more sensitive to possible significant relationships, regressions models were developed to test the statistical significance between slopes and Y intercepts of the experimental and control group subjects. These results were then compared to the traditional operant…
NASA Astrophysics Data System (ADS)
Saeidi, Omid; Torabi, Seyed Rahman; Ataei, Mohammad
2014-03-01
Rock mass classification systems are one of the most common ways of determining rock mass excavatability and related equipment assessment. However, the strength and weak points of such rating-based classifications have always been questionable. Such classification systems assign quantifiable values to predefined classified geotechnical parameters of rock mass. This causes particular ambiguities, leading to the misuse of such classifications in practical applications. Recently, intelligence system approaches such as artificial neural networks (ANNs) and neuro-fuzzy methods, along with multiple regression models, have been used successfully to overcome such uncertainties. The purpose of the present study is the construction of several models by using an adaptive neuro-fuzzy inference system (ANFIS) method with two data clustering approaches, including fuzzy c-means (FCM) clustering and subtractive clustering, an ANN and non-linear multiple regression to estimate the basic rock mass diggability index. A set of data from several case studies was used to obtain the real rock mass diggability index and compared to the predicted values by the constructed models. In conclusion, it was observed that ANFIS based on the FCM model shows higher accuracy and correlation with actual data compared to that of the ANN and multiple regression. As a result, one can use the assimilation of ANNs with fuzzy clustering-based models to construct such rigorous predictor tools.
Sanford, Ward E.; Nelms, David L.; Pope, Jason P.; Selnick, David L.
2012-01-01
This study by the U.S. Geological Survey, prepared in cooperation with the Virginia Department of Environmental Quality, quantifies the components of the hydrologic cycle across the Commonwealth of Virginia. Long-term, mean fluxes were calculated for precipitation, surface runoff, infiltration, total evapotranspiration (ET), riparian ET, recharge, base flow (or groundwater discharge) and net total outflow. Fluxes of these components were first estimated on a number of real-time-gaged watersheds across Virginia. Specific conductance was used to distinguish and separate surface runoff from base flow. Specific-conductance data were collected every 15 minutes at 75 real-time gages for approximately 18 months between March 2007 and August 2008. Precipitation was estimated for 1971–2000 using PRISM climate data. Precipitation and temperature from the PRISM data were used to develop a regression-based relation to estimate total ET. The proportion of watershed precipitation that becomes surface runoff was related to physiographic province and rock type in a runoff regression equation. Component flux estimates from the watersheds were transferred to flux estimates for counties and independent cities using the ET and runoff regression equations. Only 48 of the 75 watersheds yielded sufficient data, and data from these 48 were used in the final runoff regression equation. The base-flow proportion for the 48 watersheds averaged 72 percent using specific conductance, a value that was substantially higher than the 61 percent average calculated using a graphical-separation technique (the USGS program PART). Final results for the study are presented as component flux estimates for all counties and independent cities in Virginia.
Path model analyzed with ordinary least squares multiple regression versus LISREL.
Kline, T J; Klammer, J D
2001-03-01
The data of a specified path model using the variables of voice, perceived organizational support, being heard, and procedural justice were subjected to the two separate structural equation modeling analytic techniques--that of ordinary least squares regression and LISREL. A comparison of the results and differences between the analyses is discussed, with the LISREL approach being stronger from both theoretical and statistical perspectives. PMID:11403343
Multiple regression models of δ13C and δ15N for fish populations in the eastern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Radabaugh, Kara R.; Peebles, Ernst B.
2014-08-01
Multiple regression models were created to explain spatial and temporal variation in the δ13C and δ15N values of fish populations on the West Florida Shelf (eastern Gulf of Mexico, USA). Extensive trawl surveys from three time periods were used to acquire muscle samples from seven groundfish species. Isotopic variation (δ13Cvar and δ15Nvar) was calculated as the deviation from the isotopic mean of each fish species. Static spatial data and dynamic water quality parameters were used to create models predicting δ13Cvar and δ15Nvar in three fish species that were caught in the summers of 2009 and 2010. Additional data sets were then used to determine the accuracy of the models for predicting isotopic variation (1) in a different time period (fall 2010) and (2) among four entirely different fish species that were collected during summer 2009. The δ15Nvar model was relatively stable and could be applied to different time periods and species with similar accuracy (mean absolute errors 0.31-0.33‰). The δ13Cvar model had a lower predictive capability and mean absolute errors ranged from 0.42 to 0.48‰. δ15N trends are likely linked to gradients in nitrogen fixation and Mississippi River influence on the West Florida Shelf, while δ13C trends may be linked to changes in algal species, photosynthetic fractionation, and abundance of benthic vs. planktonic basal resources. These models of isotopic variability may be useful for future stable isotope investigations of trophic level, basal resource use, and animal migration on the West Florida Shelf.
Schilling, K.E.; Wolter, C.F.
2005-01-01
Nineteen variables, including precipitation, soils and geology, land use, and basin morphologic characteristics, were evaluated to develop Iowa regression models to predict total streamflow (Q), base flow (Qb), storm flow (Qs) and base flow percentage (%Qb) in gauged and ungauged watersheds in the state. Discharge records from a set of 33 watersheds across the state for the 1980 to 2000 period were separated into Qb and Qs. Multiple linear regression found that 75.5 percent of long term average Q was explained by rainfall, sand content, and row crop percentage variables, whereas 88.5 percent of Qb was explained by these three variables plus permeability and floodplain area variables. Qs was explained by average rainfall and %Qb was a function of row crop percentage, permeability, and basin slope variables. Regional regression models developed for long term average Q and Qb were adapted to annual rainfall and showed good correlation between measured and predicted values. Combining the regression model for Q with an estimate of mean annual nitrate concentration, a map of potential nitrate loads in the state was produced. Results from this study have important implications for understanding geomorphic and land use controls on streamflow and base flow in Iowa watersheds and similar agriculture dominated watersheds in the glaciated Midwest. (JAWRA) (Copyright ?? 2005).
Zhang, Chen; Li, Xiaoming; Su, Shaobing; Hong, Yan; Zhou, Yuejiao; Tang, Zhenzhu; Shen, Zhiyong
2015-01-01
Limited data are available regarding risk factors that are related to intimate partner violence (IPV) against female sex workers (FSWs) in the context of stable partnerships. Out of the 1,022 FSWs, 743 reported ever having a stable partnership and 430 (more than half) of those reported experiencing IPV. Hierarchical multivariate regression revealed that some characteristics of stable partners (e.g., low education, alcohol use) and relationship stressors (e.g., frequent friction, concurrent partnerships) were independently predictive of IPV against FSWs. Public health professionals who design future violence prevention interventions targeting FSWs need to consider the influence of their stable partners. PMID:24730642
Yu, Donghai; Du, Ruobing; Xiao, Ji-Chang
2016-07-01
Ninety-six acidic phosphorus-containing molecules with pKa 1.88 to 6.26 were collected and divided into training and test sets by random sampling. Structural parameters were obtained by density functional theory calculation of the molecules. The relationship between the experimental pKa values and structural parameters was obtained by multiple linear regression fitting for the training set, and tested with the test set; the R(2) values were 0.974 and 0.966 for the training and test sets, respectively. This regression equation, which quantitatively describes the influence of structural parameters on pKa , and can be used to predict pKa values of similar structures, is significant for the design of new acidic phosphorus-containing extractants. © 2016 Wiley Periodicals, Inc. PMID:27218266
Litman, Heather J; Horton, Nicholas J; Hernández, Bernardo; Laird, Nan M
2007-02-28
Multiple informant data refers to information obtained from different individuals or sources used to measure the same construct; for example, researchers might collect information regarding child psychopathology from the child's teacher and the child's parent. Frequently, studies with multiple informants have incomplete observations; in some cases the missingness of informants is substantial. We introduce a Maximum Likelihood (ML) technique to fit models with multiple informants as predictors that permits missingness in the predictors as well as the response. We provide closed form solutions when possible and analytically compare the ML technique to the existing Generalized Estimating Equations (GEE) approach. We demonstrate that the ML approach can be used to compare the effect of the informants on response without standardizing the data. Simulations incorporating missingness show that ML is more efficient than the existing GEE method. In the presence of MCAR missing data, we find through a simulation study that the ML approach is robust to a relatively extreme departure from the normality assumption. We implement both methods in a study investigating the association between physical activity and obesity with activity measured using multiple informants (children and their mothers). PMID:16755531
McIntosh, Chris; Purdie, Thomas G
2016-04-01
Radiation therapy is an integral part of cancer treatment, but to date it remains highly manual. Plans are created through optimization of dose volume objectives that specify intent to minimize, maximize, or achieve a prescribed dose level to clinical targets and organs. Optimization is NP-hard, requiring highly iterative and manual initialization procedures. We present a proof-of-concept for a method to automatically infer the radiation dose directly from the patient's treatment planning image based on a database of previous patients with corresponding clinical treatment plans. Our method uses regression forests augmented with density estimation over the most informative features to learn an automatic atlas-selection metric that is tailored to dose prediction. We validate our approach on 276 patients from 3 clinical treatment plan sites (whole breast, breast cavity, and prostate), with an overall dose prediction accuracies of 78.68%, 64.76%, 86.83% under the Gamma metric. PMID:26660888
NASA Astrophysics Data System (ADS)
Mekanik, F.; Imteaz, M. A.; Gato-Trinidad, S.; Elmahdi, A.
2013-10-01
In this study, the application of Artificial Neural Networks (ANN) and Multiple regression analysis (MR) to forecast long-term seasonal spring rainfall in Victoria, Australia was investigated using lagged El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) as potential predictors. The use of dual (combined lagged ENSO-IOD) input sets for calibrating and validating ANN and MR Models is proposed to investigate the simultaneous effect of past values of these two major climate modes on long-term spring rainfall prediction. The MR models that did not violate the limits of statistical significance and multicollinearity were selected for future spring rainfall forecast. The ANN was developed in the form of multilayer perceptron using Levenberg-Marquardt algorithm. Both MR and ANN modelling were assessed statistically using mean square error (MSE), mean absolute error (MAE), Pearson correlation (r) and Willmott index of agreement (d). The developed MR and ANN models were tested on out-of-sample test sets; the MR models showed very poor generalisation ability for east Victoria with correlation coefficients of -0.99 to -0.90 compared to ANN with correlation coefficients of 0.42-0.93; ANN models also showed better generalisation ability for central and west Victoria with correlation coefficients of 0.68-0.85 and 0.58-0.97 respectively. The ability of multiple regression models to forecast out-of-sample sets is compatible with ANN for Daylesford in central Victoria and Kaniva in west Victoria (r = 0.92 and 0.67 respectively). The errors of the testing sets for ANN models are generally lower compared to multiple regression models. The statistical analysis suggest the potential of ANN over MR models for rainfall forecasting using large scale climate modes.
NASA Astrophysics Data System (ADS)
Dragomir, Carmelia Mariana; Voiculescu, Mirela; Constantin, Daniel-Eduard; Georgescu, Lucian Puiu
2015-12-01
The probability of exceeding EU limit values for NO2 concentrations has increased in many European cities. Meteorological parameters have an extremely important role in evaluating the dispersion of pollutants in various city areas. This paper focuses on meteorological variations and their impact on urban background NO2 concentrations in the city of Braila for 2009-2013. The dependence between measured NO2 data and meteorological parameters are analyzed using two modeling methods: multiple linear regression and artificial neuronal networks. The dataset calculated using the proposed models indicate that artificial neural networks can be applied in the analysis and forecasting of air quality.
Vadivelu, Sudhakar; Sharer, Leroy; Schulder, Michael
2010-05-01
The authors present the case of a patient that demonstrates the long-standing use of megestrol acetate, a progesterone agonist, and its association with multiple intracranial meningioma presentation. Discontinuation of megestrol acetate led to shrinkage of multiple tumors and to the complete resolution of one tumor. Histological examination demonstrated that the largest tumor had high (by > 25% of tumor cell nuclei) progesterone-positive expression, including progesterone receptor (PR) isoform B, compared with low expression of PR isoform A; there was no evidence of estrogen receptor expression and only unaccentuated collagen expression. This is the first clinical report illustrating a causal relationship between exogenous hormones and modulation of meningioma biology in situ. PMID:19731987
Nagai, Mika; Konno, Yoshihiro; Satsukawa, Masahiro; Yamashita, Shinji; Yoshinari, Kouichi
2016-08-01
Drug-drug interactions (DDIs) via cytochrome P450 (P450) induction are one clinical problem leading to increased risk of adverse effects and the need for dosage adjustments and additional therapeutic monitoring. In silico models for predicting P450 induction are useful for avoiding DDI risk. In this study, we have established regression models for CYP3A4 and CYP2B6 induction in human hepatocytes using several physicochemical parameters for a set of azole compounds with different P450 induction as characteristics as model compounds. To obtain a well-correlated regression model, the compounds for CYP3A4 or CYP2B6 induction were independently selected from the tested azole compounds using principal component analysis with fold-induction data. Both of the multiple linear regression models obtained for CYP3A4 and CYP2B6 induction are represented by different sets of physicochemical parameters. The adjusted coefficients of determination for these models were of 0.8 and 0.9, respectively. The fold-induction of the validation compounds, another set of 12 azole-containing compounds, were predicted within twofold limits for both CYP3A4 and CYP2B6. The concordance for the prediction of CYP3A4 induction was 87% with another validation set, 23 marketed drugs. However, the prediction of CYP2B6 induction tended to be overestimated for these marketed drugs. The regression models show that lipophilicity mostly contributes to CYP3A4 induction, whereas not only the lipophilicity but also the molecular polarity is important for CYP2B6 induction. Our regression models, especially that for CYP3A4 induction, might provide useful methods to avoid potent CYP3A4 or CYP2B6 inducers during the lead optimization stage without performing induction assays in human hepatocytes. PMID:27208383
Use of multiple regression models in the study of sandhopper orientation under natural conditions
NASA Astrophysics Data System (ADS)
Marchetti, Giovanni M.; Scapini, Felicita
2003-10-01
In sandhoppers (Amphipoda; Talitridae), typical dwellers of the supralittoral zone of sandy beaches, orientation with respect to the sun and landscape vision is adapted to the local direction of the shoreline. Variation of this behavioural adaptation can be related to the characteristics of the beach. Measures of orientation with respect to the shoreline direction can thus be made as a tool to assess beach stability versus changeability, once the sources of variation are correctly interpreted. Orientation of animals can be studied by statistical analysis of directions taken after release in nature. In this paper some new tools for exploring directional data are reviewed, with special emphasis on non-parametric smoothers and regression models. Results from a large study concerning one species of sandhoppers, Talitrus saltator (Montagu), from an exposed sandy beach in northeastern Tunisia are presented. Seasonal differences in orientation behaviour were shown with a higher scatter in autumn with respect to spring. The higher scatter shown in autumn depended both on intrinsic (sex) and external (climatic conditions and landscape visibility) factors and was related to the tendency of this species to migrate towards the dune anticipating winter conditions.
NASA Astrophysics Data System (ADS)
Hoss, F.; Fischbeck, P. S.
2015-09-01
This study applies quantile regression (QR) to predict exceedance probabilities of various water levels, including flood stages, with combinations of deterministic forecasts, past forecast errors and rates of water level rise as independent variables. A computationally cheap technique to estimate forecast uncertainty is valuable, because many national flood forecasting services, such as the National Weather Service (NWS), only publish deterministic single-valued forecasts. The study uses data from the 82 river gauges, for which the NWS' North Central River Forecast Center issues forecasts daily. Archived forecasts for lead times of up to 6 days from 2001 to 2013 were analyzed. Besides the forecast itself, this study uses the rate of rise of the river stage in the last 24 and 48 h and the forecast error 24 and 48 h ago as predictors in QR configurations. When compared to just using the forecast as an independent variable, adding the latter four predictors significantly improved the forecasts, as measured by the Brier skill score and the continuous ranked probability score. Mainly, the resolution increases, as the forecast-only QR configuration already delivered high reliability. Combining the forecast with the other four predictors results in a much less favorable performance. Lastly, the forecast performance does not strongly depend on the size of the training data set but on the year, the river gauge, lead time and event threshold that are being forecast. We find that each event threshold requires a separate configuration or at least calibration.
Sharp, P E
1996-01-01
Head direction cells in the rat postsubiculum fire in relation to the momentary directional heading of the animal, with each cell firing only when the animal faces in one particular direction. To understand how this signal might be generated, one useful step is to discover what other cell types, in addition to the head direction cells, may exist in the postsubiculum, since these cells might be involved in helping to generate the direction-specific activity. Here postsubicular cells were recorded as animals navigated in a cylindrical recording chamber. It was found that, in addition to head direction cells, the postsubiculum contains cells that show several other types of spatial/behavioral correlates, including angular velocity of the head, running speed, and location. Ten percent of the cells were classified as angular velocity cells, and they resembled vestibular afferent fibers, with antagonistic responses to clockwise versus counterclockwise turns. In addition, numerous other cell types were observed. These latter cells were harder to classify, but all showed a significant correlation with one or more of the above variables. These findings suggest that the head direction cell signal may be at least partly based on the angular velocity, running speed, and locational signals observed here. PMID:8670654
Suresh, Arumuganainar; Choi, Hong Lim
2011-10-01
Swine waste land application has increased due to organic fertilization, but excess application in an arable system can cause environmental risk. Therefore, in situ characterizations of such resources are important prior to application. To explore this, 41 swine slurry samples were collected from Korea, and wide differences were observed in the physico-biochemical properties. However, significant (P<0.001) multiple property correlations (R²) were obtained between nutrients with specific gravity (SG), electrical conductivity (EC), total solids (TS) and pH. The different combinations of hydrometer, EC meter, drying oven and pH meter were found useful to estimate Mn, Fe, Ca, K, Al, Na, N and 5-day biochemical oxygen demands (BOD₅) at improved R² values of 0.83, 0.82, 0.77, 0.75, 0.67, 0.47, 0.88 and 0.70, respectively. The results from this study suggest that multiple property regressions can facilitate the prediction of micronutrients and organic matter much better than a single property regression for livestock waste. PMID:21767950
Steiner, Genevieve Z.; Barry, Robert J.; Gonsalvez, Craig J.
2016-01-01
In oddball tasks, increasing the time between stimuli within a particular condition (target-to-target interval, TTI; nontarget-to-nontarget interval, NNI) systematically enhances N1, P2, and P300 event-related potential (ERP) component amplitudes. This study examined the mechanism underpinning these effects in ERP components recorded from 28 adults who completed a conventional three-tone oddball task. Bivariate correlations, partial correlations and multiple regression explored component changes due to preceding ERP component amplitudes and intervals found within the stimulus series, rather than constraining the task with experimentally constructed intervals, which has been adequately explored in prior studies. Multiple regression showed that for targets, N1 and TTI predicted N2, TTI predicted P3a and P3b, and Processing Negativity (PN), P3b, and TTI predicted reaction time. For rare nontargets, P1 predicted N1, NNI predicted N2, and N1 predicted Slow Wave (SW). Findings show that the mechanism is operating on separate stages of stimulus-processing, suggestive of either increased activation within a number of stimulus-specific pathways, or very long component generator recovery cycles. These results demonstrate the extent to which matching-stimulus intervals influence ERP component amplitudes and behavior in a three-tone oddball task, and should be taken into account when designing similar studies. PMID:27445774
NASA Astrophysics Data System (ADS)
Joshi, Deepti; St-Hilaire, André; Daigle, Anik; Ouarda, Taha B. M. J.
2013-04-01
SummaryThis study attempts to compare the performance of two statistical downscaling frameworks in downscaling hydrological indices (descriptive statistics) characterizing the low flow regimes of three rivers in Eastern Canada - Moisie, Romaine and Ouelle. The statistical models selected are Relevance Vector Machine (RVM), an implementation of Sparse Bayesian Learning, and the Automated Statistical Downscaling tool (ASD), an implementation of Multiple Linear Regression. Inputs to both frameworks involve climate variables significantly (α = 0.05) correlated with the indices. These variables were processed using Canonical Correlation Analysis and the resulting canonical variates scores were used as input to RVM to estimate the selected low flow indices. In ASD, the significantly correlated climate variables were subjected to backward stepwise predictor selection and the selected predictors were subsequently used to estimate the selected low flow indices using Multiple Linear Regression. With respect to the correlation between climate variables and the selected low flow indices, it was observed that all indices are influenced, primarily, by wind components (Vertical, Zonal and Meridonal) and humidity variables (Specific and Relative Humidity). The downscaling performance of the framework involving RVM was found to be better than ASD in terms of Relative Root Mean Square Error, Relative Mean Absolute Bias and Coefficient of Determination. In all cases, the former resulted in less variability of the performance indices between calibration and validation sets, implying better generalization ability than for the latter.
NASA Astrophysics Data System (ADS)
Ijima, Yusuke; Nose, Takashi; Tachibana, Makoto; Kobayashi, Takao
In this paper, we propose a rapid model adaptation technique for emotional speech recognition which enables us to extract paralinguistic information as well as linguistic information contained in speech signals. This technique is based on style estimation and style adaptation using a multiple-regression HMM (MRHMM). In the MRHMM, the mean parameters of the output probability density function are controlled by a low-dimensional parameter vector, called a style vector, which corresponds to a set of the explanatory variables of the multiple regression. The recognition process consists of two stages. In the first stage, the style vector that represents the emotional expression category and the intensity of its expressiveness for the input speech is estimated on a sentence-by-sentence basis. Next, the acoustic models are adapted using the estimated style vector, and then standard HMM-based speech recognition is performed in the second stage. We assess the performance of the proposed technique in the recognition of simulated emotional speech uttered by both professional narrators and non-professional speakers.
El-Ansary, Afaf
2016-06-01
This work demonstrates data of multiple regression analysis between nine biomarkers related to glutamate excitotoxicity and impaired detoxification as two mechanisms recently recorded as autism phenotypes. The presented data was obtained by measuring a panel of markers in 20 autistic patients aged 3-15 years and 20 age and gender matching healthy controls. Levels of GSH, glutathione status (GSH/GSSG), glutathione reductase (GR), glutathione-s-transferase (GST), thioredoxin (Trx), thioredoxin reductase (TrxR) and peroxidoxins (Prxs I and III), glutamate, glutamine, glutamate/glutamine ratio glutamate dehydrogenase (GDH) in plasma and mercury (Hg) in red blood cells were determined in both groups. In Multiple regression analysis, R (2) values which describe the proportion or percentage of variance in the dependent variable attributed to the variance in the independent variables together were calculated. Moreover, β coefficients values which show the direction either positive or negative and the contribution of the independent variable relative to the other independent variables in explaining the variation of the dependent variable were determined. A panel of inter-related markers was recorded. This paper contains data related to and supporting research articles currently published entitled "Mechanism of nitrogen metabolism-related parameters and enzyme activities in the pathophysiology of autism" [1], "Novel metabolic biomarkers related to sulfur-dependent detoxification pathways in autistic patients of Saudi Arabia [2], and "A key role for an impaired detoxification mechanism in the etiology and severity of autism spectrum disorders" [3]. PMID:26933667
Multiple logistic regression model of signalling practices of drivers on urban highways
NASA Astrophysics Data System (ADS)
Puan, Othman Che; Ibrahim, Muttaka Na'iya; Zakaria, Rozana
2015-05-01
Giving signal is a way of informing other road users, especially to the conflicting drivers, the intention of a driver to change his/her movement course. Other users are exposed to hazard situation and risks of accident if the driver who changes his/her course failed to give signal as required. This paper describes the application of logistic regression model for the analysis of driver's signalling practices on multilane highways based on possible factors affecting driver's decision such as driver's gender, vehicle's type, vehicle's speed and traffic flow intensity. Data pertaining to the analysis of such factors were collected manually. More than 2000 drivers who have performed a lane changing manoeuvre while driving on two sections of multilane highways were observed. Finding from the study shows that relatively a large proportion of drivers failed to give any signals when changing lane. The result of the analysis indicates that although the proportion of the drivers who failed to provide signal prior to lane changing manoeuvre is high, the degree of compliances of the female drivers is better than the male drivers. A binary logistic model was developed to represent the probability of a driver to provide signal indication prior to lane changing manoeuvre. The model indicates that driver's gender, type of vehicle's driven, speed of vehicle and traffic volume influence the driver's decision to provide a signal indication prior to a lane changing manoeuvre on a multilane urban highway. In terms of types of vehicles driven, about 97% of motorcyclists failed to comply with the signal indication requirement. The proportion of non-compliance drivers under stable traffic flow conditions is much higher than when the flow is relatively heavy. This is consistent with the data which indicates a high degree of non-compliances when the average speed of the traffic stream is relatively high.
Cherry, Kevin M; Peplinski, Brandon; Kim, Lauren; Wang, Shijun; Lu, Le; Zhang, Weidong; Liu, Jianfei; Wei, Zhuoshi; Summers, Ronald M
2015-01-01
Given the potential importance of marginal artery localization in automated registration in computed tomography colonography (CTC), we have devised a semi-automated method of marginal vessel detection employing sequential Monte Carlo tracking (also known as particle filtering tracking) by multiple cue fusion based on intensity, vesselness, organ detection, and minimum spanning tree information for poorly enhanced vessel segments. We then employed a random forest algorithm for intelligent cue fusion and decision making which achieved high sensitivity and robustness. After applying a vessel pruning procedure to the tracking results, we achieved statistically significantly improved precision compared to a baseline Hessian detection method (2.7% versus 75.2%, p<0.001). This method also showed statistically significantly improved recall rate compared to a 2-cue baseline method using fewer vessel cues (30.7% versus 67.7%, p<0.001). These results demonstrate that marginal artery localization on CTC is feasible by combining a discriminative classifier (i.e., random forest) with a sequential Monte Carlo tracking mechanism. In so doing, we present the effective application of an anatomical probability map to vessel pruning as well as a supplementary spatial coordinate system for colonic segmentation and registration when this task has been confounded by colon lumen collapse. PMID:25461335
Narumalani, S.; Jensen, J.R.; Althausen, J.D.; Burkhalter, S.; Mackey, H.E. Jr.
1994-06-01
Since aquatic macrophytes have an important influence on the physical and chemical processes of an ecosystem while simultaneously affecting human activity, it is imperative that they be inventoried and managed wisely. However, mapping wetlands can be a major challenge because they are found in diverse geographic areas ranging from small tributary streams, to shrub or scrub and marsh communities, to open water lacustrian environments. In addition, the type and spatial distribution of wetlands can change dramatically from season to season, especially when nonpersistent species are present. This research, focuses on developing a model for predicting the future growth and distribution of aquatic macrophytes. This model will use a geographic information system (GIS) to analyze some of the biophysical variables that affect aquatic macrophyte growth and distribution. The data will provide scientists information on the future spatial growth and distribution of aquatic macrophytes. This study focuses on the Savannah River Site Par Pond (1,000 ha) and L Lake (400 ha) these are two cooling ponds that have received thermal effluent from nuclear reactor operations. Par Pond was constructed in 1958, and natural invasion of wetland has occurred over its 35-year history, with much of the shoreline having developed extensive beds of persistent and non-persistent aquatic macrophytes.
Satellite mapping of Baltic Sea Secchi depth with multiple regression models
NASA Astrophysics Data System (ADS)
Stock, Andy
2015-08-01
Secchi depth is a measure of water transparency. In the Baltic Sea region, Secchi depth maps are used to assess eutrophication and as input for habitat models. Due to their spatial and temporal coverage, satellite data would be the most suitable data source for such maps. But the Baltic Sea's optical properties are so different from the open ocean that globally calibrated standard models suffer from large errors. Regional predictive models that take the Baltic Sea's special optical properties into account are thus needed. This paper tests how accurately generalized linear models (GLMs) and generalized additive models (GAMs) with MODIS/Aqua and auxiliary data as inputs can predict Secchi depth at a regional scale. It uses cross-validation to test the prediction accuracy of hundreds of GAMs and GLMs with up to 5 input variables. A GAM with 3 input variables (chlorophyll a, remote sensing reflectance at 678 nm, and long-term mean salinity) made the most accurate predictions. Tested against field observations not used for model selection and calibration, the best model's mean absolute error (MAE) for daily predictions was 1.07 m (22%), more than 50% lower than for other publicly available Baltic Sea Secchi depth maps. The MAE for predicting monthly averages was 0.86 m (15%). Thus, the proposed model selection process was able to find a regional model with good prediction accuracy. It could be useful to find predictive models for environmental variables other than Secchi depth, using data from other satellite sensors, and for other regions where non-standard remote sensing models are needed for prediction and mapping. Annual and monthly mean Secchi depth maps for 2003-2012 come with this paper as Supplementary materials.
NASA Astrophysics Data System (ADS)
Eghnam, Karam M.; Sheta, Alaa F.
2008-06-01
Development of accurate models is necessary in critical applications such as prediction. In this paper, a solution to the stock prediction problem of the Barents Sea capelin is introduced using Artificial Neural Network (ANN) and Multiple Linear model Regression (MLR) models. The Capelin stock in the Barents Sea is one of the largest in the world. It normally maintained a fishery with annual catches of up to 3 million tons. The Capelin stock problem has an impact in the fish stock development. The proposed prediction model was developed using an ANNs with their weights adapted using Genetic Algorithm (GA). The proposed model was compared to traditional linear model the MLR. The results showed that the ANN-GA model produced an overall accuracy of 21% better than the MLR model.
NASA Astrophysics Data System (ADS)
Soares dos Santos, T.; Mendes, D.; Rodrigues Torres, R.
2016-01-01
Several studies have been devoted to dynamic and statistical downscaling for analysis of both climate variability and climate change. This paper introduces an application of artificial neural networks (ANNs) and multiple linear regression (MLR) by principal components to estimate rainfall in South America. This method is proposed for downscaling monthly precipitation time series over South America for three regions: the Amazon; northeastern Brazil; and the La Plata Basin, which is one of the regions of the planet that will be most affected by the climate change projected for the end of the 21st century. The downscaling models were developed and validated using CMIP5 model output and observed monthly precipitation. We used general circulation model (GCM) experiments for the 20th century (RCP historical; 1970-1999) and two scenarios (RCP 2.6 and 8.5; 2070-2100). The model test results indicate that the ANNs significantly outperform the MLR downscaling of monthly precipitation variability.
NASA Astrophysics Data System (ADS)
Nose, Takashi; Kobayashi, Takao
In this paper, we propose a technique for estimating the degree or intensity of emotional expressions and speaking styles appearing in speech. The key idea is based on a style control technique for speech synthesis using a multiple regression hidden semi-Markov model (MRHSMM), and the proposed technique can be viewed as the inverse of the style control. In the proposed technique, the acoustic features of spectrum, power, fundamental frequency, and duration are simultaneously modeled using the MRHSMM. We derive an algorithm for estimating explanatory variables of the MRHSMM, each of which represents the degree or intensity of emotional expressions and speaking styles appearing in acoustic features of speech, based on a maximum likelihood criterion. We show experimental results to demonstrate the ability of the proposed technique using two types of speech data, simulated emotional speech and spontaneous speech with different speaking styles. It is found that the estimated values have correlation with human perception.
NASA Astrophysics Data System (ADS)
dos Santos, T. S.; Mendes, D.; Torres, R. R.
2015-08-01
Several studies have been devoted to dynamic and statistical downscaling for analysis of both climate variability and climate change. This paper introduces an application of artificial neural networks (ANN) and multiple linear regression (MLR) by principal components to estimate rainfall in South America. This method is proposed for downscaling monthly precipitation time series over South America for three regions: the Amazon, Northeastern Brazil and the La Plata Basin, which is one of the regions of the planet that will be most affected by the climate change projected for the end of the 21st century. The downscaling models were developed and validated using CMIP5 model out- put and observed monthly precipitation. We used GCMs experiments for the 20th century (RCP Historical; 1970-1999) and two scenarios (RCP 2.6 and 8.5; 2070-2100). The model test results indicate that the ANN significantly outperforms the MLR downscaling of monthly precipitation variability.
Soboyejo, W.O.; Soboyejo, A.B.O.; Ni, Y.; Mercer, C.
1997-12-31
In a recent paper, Mercer and Soboyejo demonstrated the Hall-Petch dependence of basic room- and elevated-temperature (815 C) mechanical properties (0.2% offset strength, ultimate tensile strength, plastic elongation to failure and fracture toughness) on the average equiaxed/lamellar grain size. Simple Hall-Petch behavior was shown to occur in a wide range of extruded duplex {alpha}{sub 2}+{gamma} alloys (Ti-48Al, Ti-48Al-1.4Mn Ti-48Al-2Mn and Ti-48Al-1.5Cr). As in steels and other materials, simple Hall-Petch equations were derived for the above properties. However, the Hall-Petch equations did not include the effect of other variables that can affect the basic mechanical properties of gamma alloys. Multiple linear regression equations for the prediction of the combined effects of several (alloying, microstructure and temperature) variables on basic mechanical properties temperature are presented in this paper.
Influence of Additive and Multiplicative Structure and Direction of Comparison on the Reversal Error
ERIC Educational Resources Information Center
González-Calero, José Antonio; Arnau, David; Laserna-Belenguer, Belén
2015-01-01
An empirical study has been carried out to evaluate the potential of word order matching and static comparison as explanatory models of reversal error. Data was collected from 214 undergraduate students who translated a set of additive and multiplicative comparisons expressed in Spanish into algebraic language. In these multiplicative comparisons…
Borquis, Rusbel Raul Aspilcueta; Neto, Francisco Ribeiro de Araujo; Baldi, Fernando; Hurtado-Lugo, Naudin; de Camargo, Gregório M F; Muñoz-Berrocal, Milthon; Tonhati, Humberto
2013-09-01
In this study, genetic parameters for test-day milk, fat, and protein yield were estimated for the first lactation. The data analyzed consisted of 1,433 first lactations of Murrah buffaloes, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, with calvings from 1985 to 2007. Ten-month classes of lactation days were considered for the test-day yields. The (co)variance components for the 3 traits were estimated using the regression analyses by Bayesian inference applying an animal model by Gibbs sampling. The contemporary groups were defined as herd-year-month of the test day. In the model, the random effects were additive genetic, permanent environment, and residual. The fixed effects were contemporary group and number of milkings (1 or 2), the linear and quadratic effects of the covariable age of the buffalo at calving, as well as the mean lactation curve of the population, which was modeled by orthogonal Legendre polynomials of fourth order. The random effects for the traits studied were modeled by Legendre polynomials of third and fourth order for additive genetic and permanent environment, respectively, the residual variances were modeled considering 4 residual classes. The heritability estimates for the traits were moderate (from 0.21-0.38), with higher estimates in the intermediate lactation phase. The genetic correlation estimates within and among the traits varied from 0.05 to 0.99. The results indicate that the selection for any trait test day will result in an indirect genetic gain for milk, fat, and protein yield in all periods of the lactation curve. The accuracy associated with estimated breeding values obtained using multi-trait random regression was slightly higher (around 8%) compared with single-trait random regression. This difference may be because to the greater amount of information available per animal. PMID:23831097
Lee, L.; Helsel, D.
2005-01-01
Trace contaminants in water, including metals and organics, often are measured at sufficiently low concentrations to be reported only as values below the instrument detection limit. Interpretation of these "less thans" is complicated when multiple detection limits occur. Statistical methods for multiply censored, or multiple-detection limit, datasets have been developed for medical and industrial statistics, and can be employed to estimate summary statistics or model the distributions of trace-level environmental data. We describe S-language-based software tools that perform robust linear regression on order statistics (ROS). The ROS method has been evaluated as one of the most reliable procedures for developing summary statistics of multiply censored data. It is applicable to any dataset that has 0 to 80% of its values censored. These tools are a part of a software library, or add-on package, for the R environment for statistical computing. This library can be used to generate ROS models and associated summary statistics, plot modeled distributions, and predict exceedance probabilities of water-quality standards. ?? 2005 Elsevier Ltd. All rights reserved.
Walker, Berkley J; Skabelund, Dane C; Busch, Florian A; Ort, Donald R
2016-06-01
Biochemical models of leaf photosynthesis, which are essential for understanding the impact of photosynthesis to changing environments, depend on accurate parameterizations. One such parameter, the photorespiratory CO2 compensation point can be measured from the intersection of several CO2 response curves measured under sub-saturating illumination. However, determining the actual intersection while accounting for experimental noise can be challenging. Additionally, leaf photosynthesis model outcomes are sensitive to the diffusion paths of CO2 released from the mitochondria. This diffusion path of CO2 includes both chloroplastic as well as cell wall resistances to CO2 , which are not readily measurable. Both the difficulties of determining the photorespiratory CO2 compensation point and the impact of multiple intercellular resistances to CO2 can be addressed through application of slope-intercept regression. This technical report summarizes an improved framework for implementing slope-intercept regression to evaluate measurements of the photorespiratory CO2 compensation point. This approach extends past work to include the cases of both Rubisco and Ribulose-1,5-bisphosphate (RuBP)-limited photosynthesis. This report further presents two interactive graphical applications and a spreadsheet-based tool to allow users to apply slope-intercept theory to their data. PMID:27103099
Jansson, Bruce S; Nyamathi, Adeline; Heidemann, Gretchen; Duan, Lei; Kaplan, Charles
2015-01-01
Although literature documents the need for hospital social workers, nurses, and medical residents to engage in patient advocacy, little information exists about what predicts the extent they do so. This study aims to identify predictors of health professionals' patient advocacy engagement with respect to a broad range of patients' problems. A cross-sectional research design was employed with a sample of 94 social workers, 97 nurses, and 104 medical residents recruited from eight hospitals in Los Angeles. Bivariate correlations explored whether seven scales (Patient Advocacy Eagerness, Ethical Commitment, Skills, Tangible Support, Organizational Receptivity, Belief Other Professionals Engage, and Belief the Hospital Empowers Patients) were associated with patient advocacy engagement, measured by the validated Patient Advocacy Engagement Scale. Regression analysis examined whether these scales, when controlling for sociodemographic and setting variables, predicted patient advocacy engagement. While all seven predictor scales were significantly associated with patient advocacy engagement in correlational analyses, only Eagerness, Skills, and Belief the Hospital Empowers Patients predicted patient advocacy engagement in regression analyses. Additionally, younger professionals engaged in higher levels of patient advocacy than older professionals, and social workers engaged in greater patient advocacy than nurses. Limitations and the utility of these findings for acute-care hospitals are discussed. PMID:26317762
Oliveira, H R; Silva, F F; Siqueira, O H G B D; Souza, N O; Junqueira, V S; Resende, M D V; Borquis, R R A; Rodrigues, M T
2016-05-01
We proposed multiple-trait random regression models (MTRRM) combining different functions to describe milk yield (MY) and fat (FP) and protein (PP) percentage in dairy goat genetic evaluation by using Bayesian inference. A total of 3,856 MY, FP, and PP test-day records, measured between 2000 and 2014, from 535 first lactations of Saanen and Alpine goats, including their cross, were used in this study. The initial analyses were performed using the following single-trait random regression models (STRRM): third- and fifth-order Legendre polynomials (Leg3 and Leg5), linear B-splines with 3 and 5 knots, the Ali and Schaeffer function (Ali), and Wilmink function. Heterogeneity of residual variances was modeled considering 3 classes. After the selection of the best STRRM to describe each trait on the basis of the deviance information criterion (DIC) and posterior model probabilities (PMP), the functions were combined to compose the MTRRM. All combined MTRRM presented lower DIC values and higher PMP, showing the superiority of these models when compared to other MTRRM based only on the same function assumed for all traits. Among the combined MTRRM, those considering Ali to describe MY and PP and Leg5 to describe FP (Ali_Leg5_Ali model) presented the best fit. From the Ali_Leg5_Ali model, heritability estimates over time for MY, FP. and PP ranged from 0.25 to 0.54, 0.27 to 0.48, and 0.35 to 0.51, respectively. Genetic correlation between MY and FP, MY and PP, and FP and PP ranged from -0.58 to 0.03, -0.46 to 0.12, and 0.37 to 0.64, respectively. We concluded that combining different functions under a MTRRM approach can be a plausible alternative for joint genetic evaluation of milk yield and milk constituents in goats. PMID:27285684
NASA Astrophysics Data System (ADS)
Grégoire, G.
2014-12-01
The logistic regression originally is intended to explain the relationship between the probability of an event and a set of covariables. The model's coefficients can be interpreted via the odds and odds ratio, which are presented in introduction of the chapter. The observations are possibly got individually, then we speak of binary logistic regression. When they are grouped, the logistic regression is said binomial. In our presentation we mainly focus on the binary case. For statistical inference the main tool is the maximum likelihood methodology: we present the Wald, Rao and likelihoods ratio results and their use to compare nested models. The problems we intend to deal with are essentially the same as in multiple linear regression: testing global effect, individual effect, selection of variables to build a model, measure of the fitness of the model, prediction of new values… . The methods are demonstrated on data sets using R. Finally we briefly consider the binomial case and the situation where we are interested in several events, that is the polytomous (multinomial) logistic regression and the particular case of ordinal logistic regression.
Lunøe, Kristoffer; Martínez-Sierra, Justo Giner; Gammelgaard, Bente; Alonso, J Ignacio García
2012-03-01
The analytical methodology for the in vivo study of selenium metabolism using two enriched selenium isotopes has been modified, allowing for the internal correction of spectral interferences and mass bias both for total selenium and speciation analysis. The method is based on the combination of an already described dual-isotope procedure with a new data treatment strategy based on multiple linear regression. A metabolic enriched isotope ((77)Se) is given orally to the test subject and a second isotope ((74)Se) is employed for quantification. In our approach, all possible polyatomic interferences occurring in the measurement of the isotope composition of selenium by collision cell quadrupole ICP-MS are taken into account and their relative contribution calculated by multiple linear regression after minimisation of the residuals. As a result, all spectral interferences and mass bias are corrected internally allowing the fast and independent quantification of natural abundance selenium ((nat)Se) and enriched (77)Se. In this sense, the calculation of the tracer/tracee ratio in each sample is straightforward. The method has been applied to study the time-related tissue incorporation of (77)Se in male Wistar rats while maintaining the (nat)Se steady-state conditions. Additionally, metabolically relevant information such as selenoprotein synthesis and selenium elimination in urine could be studied using the proposed methodology. In this case, serum proteins were separated by affinity chromatography while reverse phase was employed for urine metabolites. In both cases, (74)Se was used as a post-column isotope dilution spike. The application of multiple linear regression to the whole chromatogram allowed us to calculate the contribution of bromine hydride, selenium hydride, argon polyatomics and mass bias on the observed selenium isotope patterns. By minimising the square sum of residuals for the whole chromatogram, internal correction of spectral interferences and mass
Arandia-Romero, Iñigo; Tanabe, Seiji; Drugowitsch, Jan; Kohn, Adam; Moreno-Bote, Rubén
2016-03-16
Numerous studies have shown that neuronal responses are modulated by stimulus properties and also by the state of the local network. However, little is known about how activity fluctuations of neuronal populations modulate the sensory tuning of cells and affect their encoded information. We found that fluctuations in ongoing and stimulus-evoked population activity in primate visual cortex modulate the tuning of neurons in a multiplicative and additive manner. While distributed on a continuum, neurons with stronger multiplicative effects tended to have less additive modulation and vice versa. The information encoded by multiplicatively modulated neurons increased with greater population activity, while that of additively modulated neurons decreased. These effects offset each other so that population activity had little effect on total information. Our results thus suggest that intrinsic activity fluctuations may act as a "traffic light" that determines which subset of neurons is most informative. PMID:26924437
Effect of multiplicative and additive noise on genetic transcriptional regulatory mechanism
NASA Astrophysics Data System (ADS)
Liu, Xue-Mei; Xie, Hui-Zhang; Liu, Liang-Gang; Li, Zhi-Bing
2009-02-01
A multiplicative noise and an additive noise are introduced in the kinetic model of Smolen-Baxter-Byrne [P. Smolen, D.A. Baxter, J.H. Byrne, Amer. J. Physiol. Cell. Physiol. 274 (1998) 531], in which the expression of gene is controlled by protein concentration of transcriptional activator. The Fokker-Planck equation is solved and the steady-state probability distribution is obtained numerically. It is found that the multiplicative noise converts the bistability to monostability that can be regarded as a noise-induced transition. The additive noise reduces the transcription efficiency. The correlation between the multiplicative noise and the additive noise works as a genetic switch and regulates the gene transcription effectively.
Boulet, Sebastien; Boudot, Elsa; Houel, Nicolas
2016-05-01
Back pain is a common reason for consultation in primary healthcare clinical practice, and has effects on daily activities and posture. Relationships between the whole spine and upright posture, however, remain unknown. The aim of this study was to identify the relationship between each spinal curve and centre of pressure position as well as velocity for healthy subjects. Twenty-one male subjects performed quiet stance in natural position. Each upright posture was then recorded using an optoelectronics system (Vicon Nexus) synchronized with two force plates. At each moment, polynomial interpolations of markers attached on the spine segment were used to compute cervical lordosis, thoracic kyphosis and lumbar lordosis angle curves. Mean of centre of pressure position and velocity was then computed. Multiple stepwise linear regression analysis showed that the position and velocity of centre of pressure associated with each part of the spinal curves were defined as best predictors of the lumbar lordosis angle (R(2)=0.45; p=1.65*10-10) and the thoracic kyphosis angle (R(2)=0.54; p=4.89*10-13) of healthy subjects in quiet stance. This study showed the relationships between each of cervical, thoracic, lumbar curvatures, and centre of pressure's fluctuation during free quiet standing using non-invasive full spinal curve exploration. PMID:26970888
Tvete, Ingunn Fride; Natvig, Bent; Gåsemyr, Jørund; Meland, Nils; Røine, Marianne; Klemp, Marianne
2015-01-01
Rheumatoid arthritis patients have been treated with disease modifying anti-rheumatic drugs (DMARDs) and the newer biologic drugs. We sought to compare and rank the biologics with respect to efficacy. We performed a literature search identifying 54 publications encompassing 9 biologics. We conducted a multiple treatment comparison regression analysis letting the number experiencing a 50% improvement on the ACR score be dependent upon dose level and disease duration for assessing the comparable relative effect between biologics and placebo or DMARD. The analysis embraced all treatment and comparator arms over all publications. Hence, all measured effects of any biologic agent contributed to the comparison of all biologic agents relative to each other either given alone or combined with DMARD. We found the drug effect to be dependent on dose level, but not on disease duration, and the impact of a high versus low dose level was the same for all drugs (higher doses indicated a higher frequency of ACR50 scores). The ranking of the drugs when given without DMARD was certolizumab (ranked highest), etanercept, tocilizumab/ abatacept and adalimumab. The ranking of the drugs when given with DMARD was certolizumab (ranked highest), tocilizumab, anakinra, rituximab, golimumab/ infliximab/ abatacept, adalimumab/ etanercept. Still, all drugs were effective. All biologic agents were effective compared to placebo, with certolizumab the most effective and adalimumab (without DMARD treatment) and adalimumab/ etanercept (combined with DMARD treatment) the least effective. The drugs were in general more effective, except for etanercept, when given together with DMARDs. PMID:26356639
Linard, Joshua I.
2013-01-01
Mitigating the effects of salt and selenium on water quality in the Grand Valley and lower Gunnison River Basin in western Colorado is a major concern for land managers. Previous modeling indicated means to improve the models by including more detailed geospatial data and a more rigorous method for developing the models. After evaluating all possible combinations of geospatial variables, four multiple linear regression models resulted that could estimate irrigation-season salt yield, nonirrigation-season salt yield, irrigation-season selenium yield, and nonirrigation-season selenium yield. The adjusted r-squared and the residual standard error (in units of log-transformed yield) of the models were, respectively, 0.87 and 2.03 for the irrigation-season salt model, 0.90 and 1.25 for the nonirrigation-season salt model, 0.85 and 2.94 for the irrigation-season selenium model, and 0.93 and 1.75 for the nonirrigation-season selenium model. The four models were used to estimate yields and loads from contributing areas corresponding to 12-digit hydrologic unit codes in the lower Gunnison River Basin study area. Each of the 175 contributing areas was ranked according to its estimated mean seasonal yield of salt and selenium.
Shabri, Ani; Samsudin, Ruhaidah
2014-01-01
Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series. PMID:24895666
Shabri, Ani; Samsudin, Ruhaidah
2014-01-01
Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series. PMID:24895666
Wadsworth, Sally J; Olson, Richard K; Willcutt, Erik G; DeFries, John C
2012-02-01
The augmented multiple regression model for the analysis of data from selected twin pairs was extended to facilitate analyses of data from twin pairs and nontwin siblings. Fitting this extended model to data from both selected twin pairs and siblings yields direct estimates of heritability (h2) and the difference between environmental influences shared by members of twin pairs and those of sib or twin-sib pairs (i.e., c2(t) - c2 (s)). When this model was fitted to reading performance data from 293 monozygotic and 436 dizygotic pairs selected for reading difficulties, and 291 of their nontwin siblings, h2 = .48 ± .22, p = .03, and c2 (t) - c2 (s) = .22 ± .12, p = .06. Although the test for differential shared environmental influences is only marginally significant, the results of this analysis suggest that environmental influences on reading performance that are shared by members of twin pairs (.36) may be substantially greater than those for less contemporaneous twin-sibling pairs (.14). PMID:22784461
Gregoretti, Francesco; Belcastro, Vincenzo; di Bernardo, Diego; Oliva, Gennaro
2010-01-01
The reverse engineering of gene regulatory networks using gene expression profile data has become crucial to gain novel biological knowledge. Large amounts of data that need to be analyzed are currently being produced due to advances in microarray technologies. Using current reverse engineering algorithms to analyze large data sets can be very computational-intensive. These emerging computational requirements can be met using parallel computing techniques. It has been shown that the Network Identification by multiple Regression (NIR) algorithm performs better than the other ready-to-use reverse engineering software. However it cannot be used with large networks with thousands of nodes--as is the case in biological networks--due to the high time and space complexity. In this work we overcome this limitation by designing and developing a parallel version of the NIR algorithm. The new implementation of the algorithm reaches a very good accuracy even for large gene networks, improving our understanding of the gene regulatory networks that is crucial for a wide range of biomedical applications. PMID:20422008
Jahandideh, Sepideh Jahandideh, Samad; Asadabadi, Ebrahim Barzegari; Askarian, Mehrdad; Movahedi, Mohammad Mehdi; Hosseini, Somayyeh; Jahandideh, Mina
2009-11-15
Prediction of the amount of hospital waste production will be helpful in the storage, transportation and disposal of hospital waste management. Based on this fact, two predictor models including artificial neural networks (ANNs) and multiple linear regression (MLR) were applied to predict the rate of medical waste generation totally and in different types of sharp, infectious and general. In this study, a 5-fold cross-validation procedure on a database containing total of 50 hospitals of Fars province (Iran) were used to verify the performance of the models. Three performance measures including MAR, RMSE and R{sup 2} were used to evaluate performance of models. The MLR as a conventional model obtained poor prediction performance measure values. However, MLR distinguished hospital capacity and bed occupancy as more significant parameters. On the other hand, ANNs as a more powerful model, which has not been introduced in predicting rate of medical waste generation, showed high performance measure values, especially 0.99 value of R{sup 2} confirming the good fit of the data. Such satisfactory results could be attributed to the non-linear nature of ANNs in problem solving which provides the opportunity for relating independent variables to dependent ones non-linearly. In conclusion, the obtained results showed that our ANN-based model approach is very promising and may play a useful role in developing a better cost-effective strategy for waste management in future.
Rafiei, Hamid; Khanzadeh, Marziyeh; Mozaffari, Shahla; Bostanifar, Mohammad Hassan; Avval, Zhila Mohajeri; Aalizadeh, Reza; Pourbasheer, Eslam
2016-01-01
Quantitative structure-activity relationship (QSAR) study has been employed for predicting the inhibitory activities of the Hepatitis C virus (HCV) NS5B polymerase inhibitors. A data set consisted of 72 compounds was selected, and then different types of molecular descriptors were calculated. The whole data set was split into a training set (80 % of the dataset) and a test set (20 % of the dataset) using principle component analysis. The stepwise (SW) and the genetic algorithm (GA) techniques were used as variable selection tools. Multiple linear regression method was then used to linearly correlate the selected descriptors with inhibitory activities. Several validation technique including leave-one-out and leave-group-out cross-validation, Y-randomization method were used to evaluate the internal capability of the derived models. The external prediction ability of the derived models was further analyzed using modified r2, concordance correlation coefficient values and Golbraikh and Tropsha acceptable model criteria's. Based on the derived results (GA-MLR), some new insights toward molecular structural requirements for obtaining better inhibitory activity were obtained. PMID:27065774
NASA Astrophysics Data System (ADS)
Ibanez, C. A. G.; Carcellar, B. G., III; Paringit, E. C.; Argamosa, R. J. L.; Faelga, R. A. G.; Posilero, M. A. V.; Zaragosa, G. P.; Dimayacyac, N. A.
2016-06-01
Diameter-at-Breast-Height Estimation is a prerequisite in various allometric equations estimating important forestry indices like stem volume, basal area, biomass and carbon stock. LiDAR Technology has a means of directly obtaining different forest parameters, except DBH, from the behavior and characteristics of point cloud unique in different forest classes. Extensive tree inventory was done on a two-hectare established sample plot in Mt. Makiling, Laguna for a natural growth forest. Coordinates, height, and canopy cover were measured and types of species were identified to compare to LiDAR derivatives. Multiple linear regression was used to get LiDAR-derived DBH by integrating field-derived DBH and 27 LiDAR-derived parameters at 20m, 10m, and 5m grid resolutions. To know the best combination of parameters in DBH Estimation, all possible combinations of parameters were generated and automated using python scripts and additional regression related libraries such as Numpy, Scipy, and Scikit learn were used. The combination that yields the highest r-squared or coefficient of determination and lowest AIC (Akaike's Information Criterion) and BIC (Bayesian Information Criterion) was determined to be the best equation. The equation is at its best using 11 parameters at 10mgrid size and at of 0.604 r-squared, 154.04 AIC and 175.08 BIC. Combination of parameters may differ among forest classes for further studies. Additional statistical tests can be supplemented to help determine the correlation among parameters such as Kaiser- Meyer-Olkin (KMO) Coefficient and the Barlett's Test for Spherecity (BTS).
Zhi, Shuai; Li, Qiaozhi; Yasui, Yutaka; Banting, Graham; Edge, Thomas A; Topp, Edward; McAllister, Tim A; Neumann, Norman F
2016-10-01
Several studies have demonstrated that E. coli appears to display some level of host adaptation and specificity. Recent studies in our laboratory support these findings as determined by logic regression modeling of single nucleotide polymorphisms (SNP) in intergenic regions (ITGRs). We sought to determine the degree of host-specific information encoded in various ITGRs across a library of animal E. coli isolates using both whole genome analysis and a targeted ITGR sequencing approach. Our findings demonstrated that ITGRs across the genome encode various degrees of host-specific information. Incorporating multiple ITGRs (i.e., concatenation) into logic regression model building resulted in greater host-specificity and sensitivity outcomes in biomarkers, but the overall level of polymorphism in an ITGR did not correlate with the degree of host-specificity encoded in the ITGR. This suggests that distinct SNPs in ITGRs may be more important in defining host-specificity than overall sequence variation, explaining why traditional unsupervised learning phylogenetic approaches may be less informative in terms of revealing host-specific information encoded in DNA sequence. In silico analysis of 80 candidate ITGRs from publically available E. coli genomes was performed as a tool for discovering highly host-specific ITGRs. In one ITGR (ydeR-yedS) we identified a SNP biomarker that was 98% specific for cattle and for which 92% of all E. coli isolates originating from cattle carried this unique biomarker. In the case of humans, a host-specific biomarker (98% specificity) was identified in the concatenated ITGR sequences of rcsD-ompC, ydeR-yedS, and rclR-ykgE, and for which 78% of E. coli originating from humans carried this biomarker. Interestingly, human-specific biomarkers were dominant in ITGRs regulating antibiotic resistance, whereas in cattle host-specific biomarkers were found in ITGRs involved in stress regulation. These data suggest that evolution towards host
NASA Technical Reports Server (NTRS)
Smalheer, C. V.
1973-01-01
The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.
Aguilar, I; Tsuruta, S; Misztal, I
2010-06-01
Data included 90,242,799 test day records from first, second and third parities of 5,402,484 Holstein cows and 9,326,754 animals in the pedigree. Additionally, daily temperature humidity indexes (THI) from 202 weather stations were available. The fixed effects included herd test day, age at calving, milking frequency and days in milk classes (DIM). Random effects were additive genetic, permanent environment and herd-year and were fit as random regressions. Covariates included linear splines with four knots at 5, 50, 200 and 305 DIM and a function of THI. Mixed model equations were solved using an iteration on data program with a preconditioned conjugate gradient algorithm. Preconditioners used were diagonal (D), block diagonal due to traits (BT) and block diagonal due to traits and correlated effects (BTCORR). One run included BT with a 'diagonalized' model in which the random effects were reparameterized for diagonal (co)variance matrices among traits (BTDIAG). Memory requirements were 8.7 Gb for D, 10.4 Gb for BT and BTDIAG, and 24.3 Gb for BTCORR. Computing times (rounds) were 14 days (952) for D, 10.7 days (706) for BT, 7.7 days (494) for BTDIAG and 4.6 days (289) for BTCORR. The convergence pattern was strongly influenced by the choice of fixed effects. When sufficient memory is available, the option BTCORR is the fastest and simplest to implement; the next efficient method, BTDIAG, requires additional steps for diagonalization and back-diagonalization. PMID:20536641
Stoichev, T; Tessier, E; Amouroux, D; Almeida, C M; Basto, M C P; Vasconcelos, V M
2016-11-15
Spatial and seasonal variation of mercury species aqueous concentrations and distributions was carried out during six sampling campaigns at four locations within Laranjo Bay, the most mercury-contaminated area of the Aveiro Lagoon (Portugal). Inorganic mercury (IHg(II)) and methylmercury (MeHg) were determined in filter-retained (IHgPART, MeHgPART) and filtered (<0.45μm) fractions (IHg(II)DISS, MeHgDISS). The concentrations of IHgPART depended on site and on dilution with downstream particles. Similar processes were evidenced for MeHgPART, however, its concentrations increased for particles rich in phaeophytin (Pha). The concentrations of MeHgDISS, and especially those of IHg(II)DISS, increased with Pha concentrations in the water. Multiple regression models are able to depict MeHgPART, IHg(II)DISS and MeHgDISS concentrations with salinity and Pha concentrations exhibiting additive statistical effects and allowing separation of possible addition and removal processes. A link between phytoplankton/algae and consumers' grazing pressure in the contaminated area can be involved to increase concentrations of IHg(II)DISS and MeHgPART. These processes could lead to suspended particles enriched with MeHg and to the enhancement of IHg(II) and MeHg availability in surface waters and higher transfer to the food web. PMID:27484944
Kokaly, R.F.; Clark, R.N.
1999-01-01
We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using
Mehta, Neil; Preston, Samuel
2016-04-01
All individuals are subject to multiple risk factors for mortality. In this paper, we consider the nature of interactions between certain major sociodemographic and behavioral risk factors associated with all-cause mortality in the United States. We develop the formal logic pertaining to two forms of interaction between risk factors, additive and multiplicative relations. We then consider the general circumstances in which additive or multiplicative relations might be expected. We argue that expectations about interactions among socio-demographic variables, and their relation to behavioral variables, have been stated in terms of additivity. However, the statistical models typically used to estimate the relation between risk factors and mortality assume that risk factors act multiplicatively. We examine empirically the nature of interactions among five major risk factors associated with all-cause mortality: smoking, obesity, race, sex, and educational attainment. Data were drawn from the cross-sectional NHANES III (1988-1994) and NHANES 1999-2010 surveys, linked to death records through December 31, 2011. Our analytic sample comprised 35,604 respondents and 5369 deaths. We find that obesity is additive with each of the remaining four variables. We speculate that its additivity is a reflection of the fact that obese status is generally achieved later in life. For all pairings of socio-demographic variables, risks are multiplicative. For survival chances, it is much more dangerous to be poorly educated if you are black or if you are male. And it is much riskier to be a male if you are black. These traits, established at birth or during childhood, literally result in deadly combinations. We conclude that the identification of interactions among risk factors can cast valuable light on the nature of the process being studied. It also has public health implications by identifying especially vulnerable groups and by properly identifying the proportion of deaths
Loturco, Irineu; Artioli, Guilherme Giannini; Kobal, Ronaldo; Gil, Saulo; Franchini, Emerson
2014-07-01
This study investigated the relationship between punching acceleration and selected strength and power variables in 19 professional karate athletes from the Brazilian National Team (9 men and 10 women; age, 23 ± 3 years; height, 1.71 ± 0.09 m; and body mass [BM], 67.34 ± 13.44 kg). Punching acceleration was assessed under 4 different conditions in a randomized order: (a) fixed distance aiming to attain maximum speed (FS), (b) fixed distance aiming to attain maximum impact (FI), (c) self-selected distance aiming to attain maximum speed, and (d) self-selected distance aiming to attain maximum impact. The selected strength and power variables were as follows: maximal dynamic strength in bench press and squat-machine, squat and countermovement jump height, mean propulsive power in bench throw and jump squat, and mean propulsive velocity in jump squat with 40% of BM. Upper- and lower-body power and maximal dynamic strength variables were positively correlated to punch acceleration in all conditions. Multiple regression analysis also revealed predictive variables: relative mean propulsive power in squat jump (W·kg-1), and maximal dynamic strength 1 repetition maximum in both bench press and squat-machine exercises. An impact-oriented instruction and a self-selected distance to start the movement seem to be crucial to reach the highest acceleration during punching execution. This investigation, while demonstrating strong correlations between punching acceleration and strength-power variables, also provides important information for coaches, especially for designing better training strategies to improve punching speed. PMID:24276310
Rousselot, J M; Peslin, R; Duvivier, C
1992-07-01
A potentially useful method to monitor respiratory mechanics in artificially ventilated patients consists of analyzing the relationship between tracheal pressure (P), lung volume (V), and gas flow (V) by multiple linear regression (MLR) using a suitable model. Contrary to other methods, it does not require any particular flow waveform and, therefore, may be used with any ventilator. This approach was evaluated in three neonates and seven young children admitted into an intensive care unit for respiratory disorders of various etiologies. P and V were measured and digitized at a sampling rate of 40 Hz for periods of 20-48 s. After correction of P for the non-linear resistance of the endotracheal tube, the data were first analyzed with the usual linear monoalveolar model: P = PO + E.V + R.V where E and R are total respiratory elastance and resistance, and PO is the static recoil pressure at end-expiration. A good fit of the model to the data was seen in five of ten children. PO, E, and R were reproducible within cycles, and consistent with the patient's age and condition; the data obtained with two ventilatory modes were highly correlated. In the five instances in which the simple model did not fit the data well, they were reanalyzed with more sophisticated models allowing for mechanical non-homogeneity or for non-linearity of R or E. While several models substantially improved the fit, physiologically meaningful results were only obtained when R was allowed to change with lung volume. We conclude that the MLR method is adequate to monitor respiratory mechanics, even when the usual model is inadequate. PMID:1437330
NASA Astrophysics Data System (ADS)
Lee, C. Y.; Tippett, M. K.; Sobel, A. H.; Camargo, S. J.
2014-12-01
We are working towards the development of a new statistical-dynamical downscaling system to study the influence of climate on tropical cyclones (TCs). The first step is development of an appropriate model for TC intensity as a function of environmental variables. We approach this issue with a stochastic model consisting of a multiple linear regression model (MLR) for 12-hour intensity forecasts as a deterministic component, and a random error generator as a stochastic component. Similar to the operational Statistical Hurricane Intensity Prediction Scheme (SHIPS), MLR relates the surrounding environment to storm intensity, but with only essential predictors calculated from monthly-mean NCEP reanalysis fields (potential intensity, shear, etc.) and from persistence. The deterministic MLR is developed with data from 1981-1999 and tested with data from 2000-2012 for the Atlantic, Eastern North Pacific, Western North Pacific, Indian Ocean, and Southern Hemisphere basins. While the global MLR's skill is comparable to that of the operational statistical models (e.g., SHIPS), the distribution of the predicted maximum intensity from deterministic results has a systematic low bias compared to observations; the deterministic MLR creates almost no storms with intensities greater than 100 kt. The deterministic MLR can be significantly improved by adding the stochastic component, based on the distribution of random forecasting errors from the deterministic model compared to the training data. This stochastic component may be thought of as representing the component of TC intensification that is not linearly related to the environmental variables. We find that in order for the stochastic model to accurately capture the observed distribution of maximum storm intensities, the stochastic component must be auto-correlated across 12-hour time steps. This presentation also includes a detailed discussion of the distributions of other TC-intensity related quantities, as well as the inter
Martin, L; Mezcua, M; Ferrer, C; Gil Garcia, M D; Malato, O; Fernandez-Alba, A R
2013-01-01
The main objective of this work was to establish a mathematical function that correlates pesticide residue levels in apple juice with the levels of the pesticides applied on the raw fruit, taking into account some of their physicochemical properties such as water solubility, the octanol/water partition coefficient, the organic carbon partition coefficient, vapour pressure and density. A mixture of 12 pesticides was applied to an apple tree; apples were collected after 10 days of application. After harvest, apples were treated with a mixture of three post-harvest pesticides and the fruits were then processed in order to obtain apple juice following a routine industrial process. The pesticide residue levels in the apple samples were analysed using two multi-residue methods based on LC-MS/MS and GC-MS/MS. The concentration of pesticides was determined in samples derived from the different steps of processing. The processing factors (the coefficient between residue level in the processed commodity and the residue level in the commodity to be processed) obtained for the full juicing process were found to vary among the different pesticides studied. In order to investigate the relationships between the levels of pesticide residue found in apple juice samples and their physicochemical properties, principal component analysis (PCA) was performed using two sets of samples (one of them using experimental data obtained in this work and the other including the data taken from the literature). In both cases the correlation was found between processing factors of pesticides in the apple juice and the negative logarithms (base 10) of the water solubility, octanol/water partition coefficient and organic carbon partition coefficient. The linear correlation between these physicochemical properties and the processing factor were established using a multiple linear regression technique. PMID:23281800
Rainfall estimation by rain gauge-radar combination: A concurrent multiplicative-additive approach
NASA Astrophysics Data System (ADS)
GarcíA-Pintado, Javier; Barberá, Gonzalo G.; Erena, Manuel; Castillo, Victor M.
2009-01-01
A procedure (concurrent multiplicative-additive objective analysis scheme [CMA-OAS]) is proposed for operational rainfall estimation using rain gauges and radar data. On the basis of a concurrent multiplicative-additive (CMA) decomposition of the spatially nonuniform radar bias, within-storm variability of rainfall and fractional coverage of rainfall are taken into account. Thus both spatially nonuniform radar bias, given that rainfall is detected, and bias in radar detection of rainfall are handled. The interpolation procedure of CMA-OAS is built on Barnes' objective analysis scheme (OAS), whose purpose is to estimate a filtered spatial field of the variable of interest through a successive correction of residuals resulting from a Gaussian kernel smoother applied on spatial samples. The CMA-OAS, first, poses an optimization problem at each gauge-radar support point to obtain both a local multiplicative-additive radar bias decomposition and a regionalization parameter. Second, local biases and regionalization parameters are integrated into an OAS to estimate the multisensor rainfall at the ground level. The procedure is suited to relatively sparse rain gauge networks. To show the procedure, six storms are analyzed at hourly steps over 10,663 km2. Results generally indicated an improved quality with respect to other methods evaluated: a standard mean-field bias adjustment, a spatially variable adjustment with multiplicative factors, and ordinary cokriging.
Quantification of Treatment Effect Modification on Both an Additive and Multiplicative Scale
Girerd, Nicolas; Rabilloud, Muriel; Pibarot, Philippe; Mathieu, Patrick; Roy, Pascal
2016-01-01
Background In both observational and randomized studies, associations with overall survival are by and large assessed on a multiplicative scale using the Cox model. However, clinicians and clinical researchers have an ardent interest in assessing absolute benefit associated with treatments. In older patients, some studies have reported lower relative treatment effect, which might translate into similar or even greater absolute treatment effect given their high baseline hazard for clinical events. Methods The effect of treatment and the effect modification of treatment were respectively assessed using a multiplicative and an additive hazard model in an analysis adjusted for propensity score in the context of coronary surgery. Results The multiplicative model yielded a lower relative hazard reduction with bilateral internal thoracic artery grafting in older patients (Hazard ratio for interaction/year = 1.03, 95%CI: 1.00 to 1.06, p = 0.05) whereas the additive model reported a similar absolute hazard reduction with increasing age (Delta for interaction/year = 0.10, 95%CI: -0.27 to 0.46, p = 0.61). The number needed to treat derived from the propensity score-adjusted multiplicative model was remarkably similar at the end of the follow-up in patients aged < = 60 and in patients >70. Conclusions The present example demonstrates that a lower treatment effect in older patients on a relative scale can conversely translate into a similar treatment effect on an additive scale due to large baseline hazard differences. Importantly, absolute risk reduction, either crude or adjusted, can be calculated from multiplicative survival models. We advocate for a wider use of the absolute scale, especially using additive hazard models, to assess treatment effect and treatment effect modification. PMID:27045168
UEDA, KOSUKE; SUEKANE, SHIGETAKA; MITANI, TOMOTARO; CHIKUI, KATSUAKI; EJIMA, KAZUHISA; SUYAMA, SHUNSUKE; NAKIRI, MAKOTO; NISHIHARA, KIYOAKI; MATSUO, MITSUNORI; IGAWA, TSUKASA
2016-01-01
Spontaneous regression of metastatic renal cell carcinoma (RCC) is rare, but well-documented in clear cell RCC. However, there are no reports on spontaneous regression of unclassified RCC. Since the radiological findings of pulmonary infarcts and inflammatory pseudotumors are similar to those of metastases from RCC, a definitive diagnosis is difficult without performing a histological examination. A 56-year-old woman underwent medical examination by a physician. An abdominal computed tomography (CT) scan revealed a 22-mm mass with a cystic area in the right kidney, as well as multiple enlarged lymph nodes in the common iliac, external iliac and groin areas, bilaterally. A chest CT revealed multiple pulmonary nodules bilaterally, the largest measuring 15 mm. Since the right renal tumor was suspected to be an RCC, laparoscopic partial nephrectomy was performed. The final pathological diagnosis of the renal tumor was unclassified RCC. One month following surgery, a CT scan revealed spontaneous regression of the pulmonary nodules. We herein present a rare case of spontaneous regression of pulmonary nodules in a patient with unclassified RCC following laparoscopic partial nephrectomy. To the best of our knowledge, this is the first case of spontaneous regression in unclassified RCC. PMID:27330764
NASA Astrophysics Data System (ADS)
Lu, Lin; Chang, Yunlong; Li, Yingmin; He, Youyou
2013-05-01
A transverse magnetic field was introduced to the arc plasma in the process of welding stainless steel tubes by high-speed Tungsten Inert Gas Arc Welding (TIG for short) without filler wire. The influence of external magnetic field on welding quality was investigated. 9 sets of parameters were designed by the means of orthogonal experiment. The welding joint tensile strength and form factor of weld were regarded as the main standards of welding quality. A binary quadratic nonlinear regression equation was established with the conditions of magnetic induction and flow rate of Ar gas. The residual standard deviation was calculated to adjust the accuracy of regression model. The results showed that, the regression model was correct and effective in calculating the tensile strength and aspect ratio of weld. Two 3D regression models were designed respectively, and then the impact law of magnetic induction on welding quality was researched.
Recent advances in the gold-catalyzed additions to C–C multiple bonds
Huang, He; Zhou, Yu
2011-01-01
Summary C–O, C–N and C–C bonds are the most widespread types of bonds in nature, and are the cornerstone of most organic compounds, ranging from pharmaceuticals and agrochemicals to advanced materials and polymers. Cationic gold acts as a soft and carbophilic Lewis acid and is considered one of the most powerful activators of C–C multiple bonds. Consequently, gold-catalysis plays an important role in the development of new strategies to form these bonds in more convenient ways. In this review, we highlight recent advances in the gold-catalyzed chemistry of addition of X–H (X = O, N, C) bonds to C–C multiple bonds, tandem reactions, and asymmetric additions. This review covers gold-catalyzed organic reactions published from 2008 to the present. PMID:21804887
Multiplicative noise effects on electroconvection in controlling additive noise by a magnetic field
NASA Astrophysics Data System (ADS)
Huh, Jong-Hoon
2015-12-01
We report multiplicative noise-induced threshold shift of electroconvection (EC) in the presence of a magnetic field H . Controlling the thermal fluctuation (i.e., additive noise) of the rodlike molecules of nematic liquid crystals by H , the EC threshold is examined at various noise levels [characterized by their intensity and cutoff frequency (fc) ]. For a sufficiently strong H (i.e., ignorable additive noise), a modified noise sensitivity characterizing the shift problem is in good agreement with experimental results for colored as well as white noise (fc→∞ ) ; until now, there was a large deviation for (sufficiently) colored noises. The present study shows that H provides us with ideal conditions for studying the corresponding Carr-Helfrich theory considering pure multiplicative noise.
Multiplicative noise effects on electroconvection in controlling additive noise by a magnetic field.
Huh, Jong-Hoon
2015-12-01
We report multiplicative noise-induced threshold shift of electroconvection (EC) in the presence of a magnetic field H. Controlling the thermal fluctuation (i.e., additive noise) of the rodlike molecules of nematic liquid crystals by H, the EC threshold is examined at various noise levels [characterized by their intensity and cutoff frequency (f(c))]. For a sufficiently strong H (i.e., ignorable additive noise), a modified noise sensitivity characterizing the shift problem is in good agreement with experimental results for colored as well as white noise (f(c)→∞); until now, there was a large deviation for (sufficiently) colored noises. The present study shows that H provides us with ideal conditions for studying the corresponding Carr-Helfrich theory considering pure multiplicative noise. PMID:26764708
Additivity of Feature-Based and Symmetry-Based Grouping Effects in Multiple Object Tracking
Wang, Chundi; Zhang, Xuemin; Li, Yongna; Lyu, Chuang
2016-01-01
Multiple object tracking (MOT) is an attentional process wherein people track several moving targets among several distractors. Symmetry, an important indicator of regularity, is a general spatial pattern observed in natural and artificial scenes. According to the “laws of perceptual organization” proposed by Gestalt psychologists, regularity is a principle of perceptual grouping, such as similarity and closure. A great deal of research reported that feature-based similarity grouping (e.g., grouping based on color, size, or shape) among targets in MOT tasks can improve tracking performance. However, no additive feature-based grouping effects have been reported where the tracking objects had two or more features. “Additive effect” refers to a greater grouping effect produced by grouping based on multiple cues instead of one cue. Can spatial symmetry produce a similar grouping effect similar to that of feature similarity in MOT tasks? Are the grouping effects based on symmetry and feature similarity additive? This study includes four experiments to address these questions. The results of Experiments 1 and 2 demonstrated the automatic symmetry-based grouping effects. More importantly, an additive grouping effect of symmetry and feature similarity was observed in Experiments 3 and 4. Our findings indicate that symmetry can produce an enhanced grouping effect in MOT and facilitate the grouping effect based on color or shape similarity. The “where” and “what” pathways might have played an important role in the additive grouping effect. PMID:27199875
Additivity of Feature-Based and Symmetry-Based Grouping Effects in Multiple Object Tracking.
Wang, Chundi; Zhang, Xuemin; Li, Yongna; Lyu, Chuang
2016-01-01
Multiple object tracking (MOT) is an attentional process wherein people track several moving targets among several distractors. Symmetry, an important indicator of regularity, is a general spatial pattern observed in natural and artificial scenes. According to the "laws of perceptual organization" proposed by Gestalt psychologists, regularity is a principle of perceptual grouping, such as similarity and closure. A great deal of research reported that feature-based similarity grouping (e.g., grouping based on color, size, or shape) among targets in MOT tasks can improve tracking performance. However, no additive feature-based grouping effects have been reported where the tracking objects had two or more features. "Additive effect" refers to a greater grouping effect produced by grouping based on multiple cues instead of one cue. Can spatial symmetry produce a similar grouping effect similar to that of feature similarity in MOT tasks? Are the grouping effects based on symmetry and feature similarity additive? This study includes four experiments to address these questions. The results of Experiments 1 and 2 demonstrated the automatic symmetry-based grouping effects. More importantly, an additive grouping effect of symmetry and feature similarity was observed in Experiments 3 and 4. Our findings indicate that symmetry can produce an enhanced grouping effect in MOT and facilitate the grouping effect based on color or shape similarity. The "where" and "what" pathways might have played an important role in the additive grouping effect. PMID:27199875
Herrig, Ilona M; Böer, Simone I; Brennholt, Nicole; Manz, Werner
2015-11-15
Since rivers are typically subject to rapid changes in microbiological water quality, tools are needed to allow timely water quality assessment. A promising approach is the application of predictive models. In our study, we developed multiple linear regression (MLR) models in order to predict the abundance of the fecal indicator organisms Escherichia coli (EC), intestinal enterococci (IE) and somatic coliphages (SC) in the Lahn River, Germany. The models were developed on the basis of an extensive set of environmental parameters collected during a 12-months monitoring period. Two models were developed for each type of indicator: 1) an extended model including the maximum number of variables significantly explaining variations in indicator abundance and 2) a simplified model reduced to the three most influential explanatory variables, thus obtaining a model which is less resource-intensive with regard to required data. Both approaches have the ability to model multiple sites within one river stretch. The three most important predictive variables in the optimized models for the bacterial indicators were NH4-N, turbidity and global solar irradiance, whereas chlorophyll a content, discharge and NH4-N were reliable model variables for somatic coliphages. Depending on indicator type, the extended mode models also included the additional variables rainfall, O2 content, pH and chlorophyll a. The extended mode models could explain 69% (EC), 74% (IE) and 72% (SC) of the observed variance in fecal indicator concentrations. The optimized models explained the observed variance in fecal indicator concentrations to 65% (EC), 70% (IE) and 68% (SC). Site-specific efficiencies ranged up to 82% (EC) and 81% (IE, SC). Our results suggest that MLR models are a promising tool for a timely water quality assessment in the Lahn area. PMID:26318647
Libiger, Ondrej; Schork, Nicholas J.
2015-01-01
It is now feasible to examine the composition and diversity of microbial communities (i.e., “microbiomes”) that populate different human organs and orifices using DNA sequencing and related technologies. To explore the potential links between changes in microbial communities and various diseases in the human body, it is essential to test associations involving different species within and across microbiomes, environmental settings and disease states. Although a number of statistical techniques exist for carrying out relevant analyses, it is unclear which of these techniques exhibit the greatest statistical power to detect associations given the complexity of most microbiome datasets. We compared the statistical power of principal component regression, partial least squares regression, regularized regression, distance-based regression, Hill's diversity measures, and a modified test implemented in the popular and widely used microbiome analysis methodology “Metastats” across a wide range of simulated scenarios involving changes in feature abundance between two sets of metagenomic samples. For this purpose, simulation studies were used to change the abundance of microbial species in a real dataset from a published study examining human hands. Each technique was applied to the same data, and its ability to detect the simulated change in abundance was assessed. We hypothesized that a small subset of methods would outperform the rest in terms of the statistical power. Indeed, we found that the Metastats technique modified to accommodate multivariate analysis and partial least squares regression yielded high power under the models and data sets we studied. The statistical power of diversity measure-based tests, distance-based regression and regularized regression was significantly lower. Our results provide insight into powerful analysis strategies that utilize information on species counts from large microbiome data sets exhibiting skewed frequency distributions
Libiger, Ondrej; Schork, Nicholas J
2015-01-01
It is now feasible to examine the composition and diversity of microbial communities (i.e., "microbiomes") that populate different human organs and orifices using DNA sequencing and related technologies. To explore the potential links between changes in microbial communities and various diseases in the human body, it is essential to test associations involving different species within and across microbiomes, environmental settings and disease states. Although a number of statistical techniques exist for carrying out relevant analyses, it is unclear which of these techniques exhibit the greatest statistical power to detect associations given the complexity of most microbiome datasets. We compared the statistical power of principal component regression, partial least squares regression, regularized regression, distance-based regression, Hill's diversity measures, and a modified test implemented in the popular and widely used microbiome analysis methodology "Metastats" across a wide range of simulated scenarios involving changes in feature abundance between two sets of metagenomic samples. For this purpose, simulation studies were used to change the abundance of microbial species in a real dataset from a published study examining human hands. Each technique was applied to the same data, and its ability to detect the simulated change in abundance was assessed. We hypothesized that a small subset of methods would outperform the rest in terms of the statistical power. Indeed, we found that the Metastats technique modified to accommodate multivariate analysis and partial least squares regression yielded high power under the models and data sets we studied. The statistical power of diversity measure-based tests, distance-based regression and regularized regression was significantly lower. Our results provide insight into powerful analysis strategies that utilize information on species counts from large microbiome data sets exhibiting skewed frequency distributions obtained
Mackley, Rob D.; Spane, Frank A.; Pulsipher, Trenton C.; Allwardt, Craig H.
2010-09-01
A software tool was created in Fiscal Year 2010 (FY11) that enables multiple-regression correction of well water levels for river-stage effects. This task was conducted as part of the Remediation Science and Technology project of CH2MHILL Plateau Remediation Company (CHPRC). This document contains an overview of the correction methodology and a user’s manual for Multiple Regression in Excel (MRCX) v.1.1. It also contains a step-by-step tutorial that shows users how to use MRCX to correct river effects in two different wells. This report is accompanied by an enclosed CD that contains the MRCX installer application and files used in the tutorial exercises.
NASA Astrophysics Data System (ADS)
Daibog, E. I.; Kurt, V. G.; Logachev, Iu. I.; Stolpovskii, V. G.; Mel'Nikov, V. F.
1988-12-01
The relationship between microwave bursts and solar-cosmic-ray (SCR) events is investigated on the basis of multiple correlation and regression analysis. Prognoz 5 and 6 and Venera 11 and 14 data are used in the investigation. It is shown that the main features of this relationship can be understood by taking into account differences in the dynamics of electrons and protons in flare arches, without assuming SCR particle acceleration in the second flare phase.
NASA Astrophysics Data System (ADS)
Denli, H. H.; Koc, Z.
2015-12-01
Estimation of real properties depending on standards is difficult to apply in time and location. Regression analysis construct mathematical models which describe or explain relationships that may exist between variables. The problem of identifying price differences of properties to obtain a price index can be converted into a regression problem, and standard techniques of regression analysis can be used to estimate the index. Considering regression analysis for real estate valuation, which are presented in real marketing process with its current characteristics and quantifiers, the method will help us to find the effective factors or variables in the formation of the value. In this study, prices of housing for sale in Zeytinburnu, a district in Istanbul, are associated with its characteristics to find a price index, based on information received from a real estate web page. The associated variables used for the analysis are age, size in m2, number of floors having the house, floor number of the estate and number of rooms. The price of the estate represents the dependent variable, whereas the rest are independent variables. Prices from 60 real estates have been used for the analysis. Same price valued locations have been found and plotted on the map and equivalence curves have been drawn identifying the same valued zones as lines.
Brasquet, C.; Bourges, B.; Le Cloirec, P.
1999-12-01
The adsorption of 55 organic compounds is carried out onto a recently discovered adsorbent, activated carbon cloth. Isotherms are modeled using the Freundlich classical model, and the large database generated allows qualitative assumptions about the adsorption mechanism. However, to confirm these assumptions, a quantitative structure-property relationship methodology is used to assess the correlations between an adsorbability parameter (expressed using the Freundlich parameter K) and topological indices related to the compounds molecular structure (molecular connectivity indices, MCI). This correlation is set up by mean of two different statistical tools, multiple linear regression (MLR) and neural network (NN). A principal component analysis is carried out to generate new and uncorrelated variables. It enables the relations between the MCI to be analyzed, but the multiple linear regression assessed using the principal components (PCs) has a poor statistical quality and introduces high order PCs, too inaccurate for an explanation of the adsorption mechanism. The correlations are thus set up using the original variables (MCI), and both statistical tools, multiple linear regression and neutral network, are compared from a descriptive and predictive point of view. To compare the predictive ability of both methods, a test database of 10 organic compounds is used.
Photocatalyzed multiple additions of amines to {alpha}, {beta}-unsaturated esters and nitriles
Das, S.; Kumar, J.S.D.; Thomas, K.G.; Shivaramayya, K.; George, M.V. |
1994-02-11
Photoelectron-transfer-catalyzed intermolecular carbon-carbon bond formation of primary, secondary, and tertiary amines with {alpha}, {beta}-unsaturated esters and nitriles using photosensitizers such as anthraquinone, acridone, and dicyanoanthracene has been investigated. The addition of {alpha}-aminoalkyl radicals, generated via photoelectron-transfer processes, to olefinic substrates and the subsequent 1,5-hydrogen abstraction reactions of the amine-olefin adduct radicals lead to a number of interesting multiple-olefin-added products. The adducts of the primary and secondary amines with {alpha}, {beta}-unsaturated esters undergo further cyclizations to give spiro and cyclic lactams, respectively.
NASA Technical Reports Server (NTRS)
Painter, J. H.; Gupta, S. C.
1973-01-01
This paper presents the derivation of the recursive algorithms necessary for real-time digital detection of M-ary known signals that are subject to independent multiplicative and additive Gaussian noises. The motivating application is minimum probability of error detection of digital data-link messages aboard civil aircraft in the earth reflection multipath environment. For each known signal, the detector contains one Kalman filter and one probability computer. The filters estimate the multipath disturbance. The estimates and the received signal drive the probability computers. Outputs of all the computers are compared in amplitude to give the signal decision. The practicality and usefulness of the detector are extensively discussed.
NASA Astrophysics Data System (ADS)
Simunovic, K.; Simunovic, G.; Saric, T.
2013-10-01
The surface roughness is a very significant indicator of surface quality. It represents an essential exploitation requirement and influences technological time and costs, i.e. productivity. For that reason, the main objective of this paper is to analyse the influence of face milling cutting parameters (number of revolution, feed rate and depth of cut) on the surface roughness of aluminium alloy. Hence, a statistical (regression) model has been developed to predict the surface roughness by using the methodology of experimental design. Central composite design is chosen for fitting response surface. Also, numerical optimization considering two goals simultaneously (minimum propagation of error and minimum roughness) was performed throughout the experimental region. In this way, the settings of cutting parameters causing the minimum variability in response were determined for the estimated variations of the significant regression factors.
NASA Astrophysics Data System (ADS)
Garcia-Pintado, J.; Barberá, G. G.; Erena Arrabal, M.; Castillo, V. M.
2010-12-01
Objective analysis schemes (OAS), also called ``succesive correction methods'' or ``observation nudging'', have been proposed for multisensor precipitation estimation combining remote sensing data (meteorological radar or satellite) with data from ground-based raingauge networks. However, opposite to the more complex geostatistical approaches, the OAS techniques for this use are not optimized. On the other hand, geostatistical techniques ideally require, at the least, modelling the covariance from the rain gauge data at every time step evaluated, which commonly cannot be soundly done. Here, we propose a new procedure (concurrent multiplicative-additive objective analysis scheme [CMA-OAS]) for operational rainfall estimation using rain gauges and meteorological radar, which does not require explicit modelling of spatial covariances. On the basis of a concurrent multiplicative-additive (CMA) decomposition of the spatially nonuniform radar bias, within-storm variability of rainfall and fractional coverage of rainfall are taken into account. Thus both spatially nonuniform radar bias, given that rainfall is detected, and bias in radar detection of rainfall are handled. The interpolation procedure of CMA-OAS is built on the OAS, whose purpose is to estimate a filtered spatial field of the variable of interest through a successive correction of residuals resulting from a Gaussian kernel smoother applied on spatial samples. The CMA-OAS, first, poses an optimization problem at each gauge-radar support point to obtain both a local multiplicative-additive radar bias decomposition and a regionalization parameter. Second, local biases and regionalization parameters are integrated into an OAS to estimate the multisensor rainfall at the ground level. The approach considers radar estimates as background a priori information (first guess), so that nudging to observations (gauges) may be relaxed smoothly to the first guess, and the relaxation shape is obtained from the sequential
Zhang, Yan-Feng; Zhang, Li; Gao, Zhi-Xian; Dai, Shu-Gui
2012-01-01
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants found in the environment. Immunoassays represent useful analytical methods to complement traditional analytical procedures for PAHs. Cross-reactivity (CR) is a very useful character to evaluate the extent of cross-reaction of a cross-reactant in immunoreactions and immunoassays. The quantitative relationships between the molecular properties and the CR of PAHs were established by stepwise multiple linear regression, principal component regression and partial least square regression, using the data of two commercial enzyme-linked immunosorbent assay (ELISA) kits. The objective is to find the most important molecular properties that affect the CR, and predict the CR by multiple regression methods. The results show that the physicochemical, electronic and topological properties of the PAH molecules have an integrated effect on the CR properties for the two ELISAs, among which molar solubility (Sm) and valence molecular connectivity index (3χv) are the most important factors. The obtained regression equations for RisC kit are all statistically significant (p < 0.005) and show satisfactory ability for predicting CR values, while equations for RaPID kit are all not significant (p > 0.05) and not suitable for predicting. It is probably because that the RisC immunoassay employs a monoclonal antibody, while the RaPID kit is based on polyclonal antibody. Considering the important effect of solubility on the CR values, cross-reaction potential (CRP) is calculated and used as a complement of CR for evaluation of cross-reactions in immunoassays. Only the compounds with both high CR and high CRP can cause intense cross-reactions in immunoassays. PMID:23012547
Modulation of orientation-selective neurons by motion: when additive, when multiplicative?
Lüdge, Torsten; Urbanczik, Robert; Senn, Walter
2014-01-01
The recurrent interaction among orientation-selective neurons in the primary visual cortex (V1) is suited to enhance contours in a noisy visual scene. Motion is known to have a strong pop-up effect in perceiving contours, but how motion-sensitive neurons in V1 support contour detection remains vastly elusive. Here we suggest how the various types of motion-sensitive neurons observed in V1 should be wired together in a micro-circuitry to optimally extract contours in the visual scene. Motion-sensitive neurons can be selective about the direction of motion occurring at some spot or respond equally to all directions (pandirectional). We show that, in the light of figure-ground segregation, direction-selective motion neurons should additively modulate the corresponding orientation-selective neurons with preferred orientation orthogonal to the motion direction. In turn, to maximally enhance contours, pandirectional motion neurons should multiplicatively modulate all orientation-selective neurons with co-localized receptive fields. This multiplicative modulation amplifies the local V1-circuitry among co-aligned orientation-selective neurons for detecting elongated contours. We suggest that the additive modulation by direction-specific motion neurons is achieved through synaptic projections to the somatic region, and the multiplicative modulation by pandirectional motion neurons through projections to the apical region of orientation-specific pyramidal neurons. For the purpose of contour detection, the V1-intrinsic integration of motion information is advantageous over a downstream integration as it exploits the recurrent V1-circuitry designed for that task. PMID:24999328
Caballero, Julio; Fernández, Michael
2006-01-01
Antifungal activity was modeled for a set of 96 heterocyclic ring derivatives (2,5,6-trisubstituted benzoxazoles, 2,5-disubstituted benzimidazoles, 2-substituted benzothiazoles and 2-substituted oxazolo(4,5-b)pyridines) using multiple linear regression (MLR) and Bayesian-regularized artificial neural network (BRANN) techniques. Inhibitory activity against Candida albicans (log(1/C)) was correlated with 3D descriptors encoding the chemical structures of the heterocyclic compounds. Training and test sets were chosen by means of k-Means Clustering. The most appropriate variables for linear and nonlinear modeling were selected using a genetic algorithm (GA) approach. In addition to the MLR equation (MLR-GA), two nonlinear models were built, model BRANN employing the linear variable subset and an optimum model BRANN-GA obtained by a hybrid method that combined BRANN and GA approaches (BRANN-GA). The linear model fit the training set (n = 80) with r2 = 0.746, while BRANN and BRANN-GA gave higher values of r2 = 0.889 and r2 = 0.937, respectively. Beyond the improvement of training set fitting, the BRANN-GA model was superior to the others by being able to describe 87% of test set (n = 16) variance in comparison with 78 and 81% the MLR-GA and BRANN models, respectively. Our quantitative structure-activity relationship study suggests that the distributions of atomic mass, volume and polarizability have relevant relationships with the antifungal potency of the compounds studied. Furthermore, the ability of the six variables selected nonlinearly to differentiate the data was demonstrated when the total data set was well distributed in a Kohonen self-organizing neural network (KNN). PMID:16205958
Brown, C. Erwin
1993-01-01
Correlation analysis in conjunction with principal-component and multiple-regression analyses were applied to laboratory chemical and petrographic data to assess the usefulness of these techniques in evaluating selected physical and hydraulic properties of carbonate-rock aquifers in central Pennsylvania. Correlation and principal-component analyses were used to establish relations and associations among variables, to determine dimensions of property variation of samples, and to filter the variables containing similar information. Principal-component and correlation analyses showed that porosity is related to other measured variables and that permeability is most related to porosity and grain size. Four principal components are found to be significant in explaining the variance of data. Stepwise multiple-regression analysis was used to see how well the measured variables could predict porosity and (or) permeability for this suite of rocks. The variation in permeability and porosity is not totally predicted by the other variables, but the regression is significant at the 5% significance level. ?? 1993.
Ghaedi, M; Rahimi, Mahmoud Reza; Ghaedi, A M; Tyagi, Inderjeet; Agarwal, Shilpi; Gupta, Vinod Kumar
2016-01-01
Two novel and eco friendly adsorbents namely tin oxide nanoparticles loaded on activated carbon (SnO2-NP-AC) and activated carbon prepared from wood tree Pistacia atlantica (AC-PAW) were used for the rapid removal and fast adsorption of methyl orange (MO) from the aqueous phase. The dependency of MO removal with various adsorption influential parameters was well modeled and optimized using multiple linear regressions (MLR) and least squares support vector regression (LSSVR). The optimal parameters for the LSSVR model were found based on γ value of 0.76 and σ(2) of 0.15. For testing the data set, the mean square error (MSE) values of 0.0010 and the coefficient of determination (R(2)) values of 0.976 were obtained for LSSVR model, and the MSE value of 0.0037 and the R(2) value of 0.897 were obtained for the MLR model. The adsorption equilibrium and kinetic data was found to be well fitted and in good agreement with Langmuir isotherm model and second-order equation and intra-particle diffusion models respectively. The small amount of the proposed SnO2-NP-AC and AC-PAW (0.015 g and 0.08 g) is applicable for successful rapid removal of methyl orange (>95%). The maximum adsorption capacity for SnO2-NP-AC and AC-PAW was 250 mg g(-1) and 125 mg g(-1) respectively. PMID:26414425
NASA Astrophysics Data System (ADS)
Liu, Bilan; Qiu, Xing; Zhu, Tong; Tian, Wei; Hu, Rui; Ekholm, Sven; Schifitto, Giovanni; Zhong, Jianhui
2016-03-01
Subject-specific longitudinal DTI study is vital for investigation of pathological changes of lesions and disease evolution. Spatial Regression Analysis of Diffusion tensor imaging (SPREAD) is a non-parametric permutation-based statistical framework that combines spatial regression and resampling techniques to achieve effective detection of localized longitudinal diffusion changes within the whole brain at individual level without a priori hypotheses. However, boundary blurring and dislocation limit its sensitivity, especially towards detecting lesions of irregular shapes. In the present study, we propose an improved SPREAD (dubbed improved SPREAD, or iSPREAD) method by incorporating a three-dimensional (3D) nonlinear anisotropic diffusion filtering method, which provides edge-preserving image smoothing through a nonlinear scale space approach. The statistical inference based on iSPREAD was evaluated and compared with the original SPREAD method using both simulated and in vivo human brain data. Results demonstrated that the sensitivity and accuracy of the SPREAD method has been improved substantially by adapting nonlinear anisotropic filtering. iSPREAD identifies subject-specific longitudinal changes in the brain with improved sensitivity, accuracy, and enhanced statistical power, especially when the spatial correlation is heterogeneous among neighboring image pixels in DTI.