Sample records for addition synchrotron radiation

  1. Medical Applications of Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Prezado, Yolanda; Martínez-Rovira, Immaculada

    This chapter describes the state-of-art of synchrotron radiation therapies in the treatment of radioresistant tumors. The tolerance of the surrounding healthy tissue severely limits the achievement of a curative treatment for some brain tumors, like gliomas. This restriction is especially important in children, due to the high risk of complications in the development of the central nervous system. In addition, the treatment of tumors close to an organ at risk, like the spinal cord, is also restrained. One possible solution is the development of new radiotherapy techniques would exploit radically different irradiation modes, as it is the case of synchrotron radiotherapies. Their distinct features allow to modify the biological equivalent doses. In this chapter the three new approaches under development at the European Synchrotron Radiation Facility (ESRF), in Grenoble (France), will be described, namely: stereotactic synchrotron radiation therapy, microbeam radiation therapy and minibeam radiation therapy. The promising results obtained in the treatment of high grade brain tumors in preclinical studies have paved the way to the forthcoming clinical trials, currently in preparation.

  2. Synchrotron Radiation Research--An Overview.

    ERIC Educational Resources Information Center

    Bienenstock, Arthur; Winick, Herman

    1983-01-01

    Discusses expanding user community seeking access to synchrotron radiation sources, properties/sources of synchrotron radiation, permanent-magnet technology and its impact on synchrotron radiation research, factors limiting power, the density of synchrotron radiation, and research results illustrating benefit of higher flux and brightness. Also…

  3. New theoretical results in synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bagrov, V. G.; Gitman, D. M.; Tlyachev, V. B.; Jarovoi, A. T.

    2005-11-01

    One of the remarkable features of the relativistic electron synchrotron radiation is its concentration in small angle Δ ≈ 1/γ (here γ-relativistic factor: γ = E/mc2, E energy, m electron rest mass, c light velocity) near rotation orbit plane [V.G. Bagrov, V.A. Bordovitsyn, V.G. Bulenok, V. Ya. Epp, Kinematical projection of pulsar synchrotron radiation profiles, in: Proceedings of IV ISTC Scientific Advisory Commitee Seminar on Basic Science in ISTC Aktivities, Akademgorodok, Novosibirsk, April 23 27, 2001, p. 293 300]. This theoretically predicted and experimentally confirmed feature is peculiar to total (spectrum summarized) radiating intensity. This angular distribution property has been supposed to be (at least qualitatively) conserved and for separate spectrum synchrotron radiation components. In the work of V.G. Bagrov, V.A. Bordovitsyn, V. Ch. Zhukovskii, Development of the theory of synchrotron radiation and related processes. Synchrotron source of JINR: the perspective of research, in: The Materials of the Second International Work Conference, Dubna, April 2 6, 2001, pp. 15 30 and in Angular dependence of synchrotron radiation intensity. http://lanl.arXiv.org/abs/physics/0209097, it is shown that the angular distribution of separate synchrotron radiation spectrum components demonstrates directly inverse tendency the angular distribution deconcentration relatively the orbit plane takes place with electron energy growth. The present work is devoted to detailed investigation of this situation. For exact quantitative estimation of angular concentration degree of synchrotron radiation the definition of radiation effective angle and deviation angle is proposed. For different polarization components of radiation the dependence of introduced characteristics was investigated as a functions of electron energy and number of spectrum component.

  4. Limitation of the synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Jialu; Yang, Jianming

    2001-06-01

    In recent years, owing to the great success of the synchrotron radiation in contemporary astrophysical research, the abusive use of synchrotron radiation has been emerged. In this paper, we show that the traditional idea, "electrons with a power-law energy distribution certainly yield a power-law radiation spectrum", should be changed. If the magnetic field of the radiation region is not flat and straight, the synchro-curvature radiation, instead of the synchrotron radiation, should be used to get a real description. In a curved magnetic field, the resulting spectrum of electrons could obviously distinct from a power-law one. This means that the way of only adding many other mechanisms to a pure power-law spectrum to get the expected spectrum might not be reasonable.

  5. Glycoscience@Synchrotron: Synchrotron radiation applied to structural glycoscience

    PubMed Central

    de Sanctis, Daniele

    2017-01-01

    Synchrotron radiation is the most versatile way to explore biological materials in different states: monocrystalline, polycrystalline, solution, colloids and multiscale architectures. Steady improvements in instrumentation have made synchrotrons the most flexible intense X-ray source. The wide range of applications of synchrotron radiation is commensurate with the structural diversity and complexity of the molecules and macromolecules that form the collection of substrates investigated by glycoscience. The present review illustrates how synchrotron-based experiments have contributed to our understanding in the field of structural glycobiology. Structural characterization of protein–carbohydrate interactions of the families of most glycan-interacting proteins (including glycosyl transferases and hydrolases, lectins, antibodies and GAG-binding proteins) are presented. Examples concerned with glycolipids and colloids are also covered as well as some dealing with the structures and multiscale architectures of polysaccharides. Insights into the kinetics of catalytic events observed in the crystalline state are also presented as well as some aspects of structure determination of protein in solution. PMID:28684994

  6. Synchrotron Radiation Workshop (SRW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubar, O.; Elleaume, P.

    2013-03-01

    "Synchrotron Radiation Workshop" (SRW) is a physical optics computer code for calculation of detailed characteristics of Synchrotron Radiation (SR) generated by relativistic electrons in magnetic fields of arbitrary configuration and for simulation of the radiation wavefront propagation through optical systems of beamlines. Frequency-domain near-field methods are used for the SR calculation, and the Fourier-optics based approach is generally used for the wavefront propagation simulation. The code enables both fully- and partially-coherent radiation propagation simulations in steady-state and in frequency-/time-dependent regimes. With these features, the code has already proven its utility for a large number of applications in infrared, UV, softmore » and hard X-ray spectral range, in such important areas as analysis of spectral performances of new synchrotron radiation sources, optimization of user beamlines, development of new optical elements, source and beamline diagnostics, and even complete simulation of SR based experiments. Besides the SR applications, the code can be efficiently used for various simulations involving conventional lasers and other sources. SRW versions interfaced to Python and to IGOR Pro (WaveMetrics), as well as cross-platform library with C API, are available.« less

  7. Synchrotron Radiation II.

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Synchrotron radiation is a unique form of radiation that spans the electro-magnetic spectrum from X-rays through the ultraviolet and visible into the infrared. Tunable monochromators enable scientists to select a narrow band of wavelengths at any point in the spectrum. (Author/BB)

  8. Medical Applications of Synchrotron Radiation

    DOE R&D Accomplishments Database

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  9. Industrial Use of Synchrotron Radiation:. Love at Second Sight

    NASA Astrophysics Data System (ADS)

    Hormes, Josef; Warner, Jeffrey

    2012-06-01

    Synchrotron radiation (SR) has become one of the most valuable tools for many areas of basic and applied research. In some cases, techniques have been developed that rely completely on the specific properties of synchrotron radiation; in many other cases, using synchrotron radiation has opened completely new and exciting opportunities for conventional techniques. In this chapter, the challenges, problems, and advantages of the industrial use of synchrotron radiation will be highlighted, in an admittedly subjective way, based on the experience of the authors at various synchrotron radiation facilities. "Typical" examples of industrial use of SR will be discussed for all areas of industrial activities, i.e., production, quality control and control of regulatory requirements, and research and development. Emphasis will be put on examples from R&D as this is the most intensively used area. Because this field is much too broad for a complete review here, examples will focus on applications from just three major sectors: biotechnology, pharmaceuticals and cosmetics, and automotive and mining. Environmental research is a fourth area that will be partly covered in the section on regulatory requirements.

  10. Invited Article: Refined analysis of synchrotron radiation for NIST's SURF III facility

    NASA Astrophysics Data System (ADS)

    Shirley, Eric L.; Furst, Mitchell; Arp, Uwe

    2018-04-01

    We have developed a new method for the exact calculation of synchrotron radiation for the National Institute of Standards and Technology Synchrotron Ultraviolet Radiation Facility, SURF III. Instead of using the Schwinger formula, which is only an approximation, we develop formulae based on Graf's addition theorem for Bessel functions and accurate asymptotic expansions for Hankel functions and Bessel functions. By measuring the radiation intensity profile at two distances from the storage ring, we also confirm an apparent vertical emittance that is consistent with the vertical betatron oscillations that are intentionally introduced to extend beam lifetime by spreading the electron beam spatially. Finally, we determine how much diffraction by beamline apertures enhances the spectral irradiance at an integrating sphere entrance port at the end station. This should eliminate small but treatable components of the uncertainty budget that one should consider when using SURF III or similar synchrotrons as standard, calculable sources of ultraviolet and other radiation.

  11. Synchrotron Radiation Therapy from a Medical Physics point of view

    NASA Astrophysics Data System (ADS)

    Prezado, Y.; Adam, J. F.; Berkvens, P.; Martinez-Rovira, I.; Fois, G.; Thengumpallil, S.; Edouard, M.; Vautrin, M.; Deman, P.; Bräuer-Krisch, E.; Renier, M.; Elleaume, H.; Estève, F.; Bravin, A.

    2010-07-01

    Synchrotron radiation (SR) therapy is a promising alternative to treat brain tumors, whose management is limited due to the high morbidity of the surrounding healthy tissues. Several approaches are being explored by using SR at the European Synchrotron Radiation Facility (ESRF), where three techniques are under development Synchrotron Stereotactic Radiation Therapy (SSRT), Microbeam Radiation Therapy (MRT) and Minibeam Radiation Therapy (MBRT). The sucess of the preclinical studies on SSRT and MRT has paved the way to clinical trials currently in preparation at the ESRF. With this aim, different dosimetric aspects from both theoretical and experimental points of view have been assessed. In particular, the definition of safe irradiation protocols, the beam energy providing the best balance between tumor treatment and healthy tissue sparing in MRT and MBRT, the special dosimetric considerations for small field dosimetry, etc will be described. In addition, for the clinical trials, the definition of appropiate dosimetry protocols for patients according to the well established European Medical Physics recommendations will be discussed. Finally, the state of the art of the MBRT technical developments at the ESRF will be presented. In 2006 A. Dilmanian and collaborators proposed the use of thicker microbeams (0.36-0.68 mm). This new type of radiotherapy is the most recently implemented technique at the ESRF and it has been called MBRT. The main advantage of MBRT with respect to MRT is that it does not require high dose rates. Therefore it can be more easily applied and extended outside synchrotron sources in the future.

  12. Phase contrast portal imaging using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Umetani, K.; Kondoh, T.

    2014-07-01

    Microbeam radiation therapy is an experimental form of radiation treatment with great potential to improve the treatment of many types of cancer. We applied a synchrotron radiation phase contrast technique to portal imaging to improve targeting accuracy for microbeam radiation therapy in experiments using small animals. An X-ray imaging detector was installed 6.0 m downstream from an object to produce a high-contrast edge enhancement effect in propagation-based phase contrast imaging. Images of a mouse head sample were obtained using therapeutic white synchrotron radiation with a mean beam energy of 130 keV. Compared to conventional portal images, remarkably clear images of bones surrounding the cerebrum were acquired in an air environment for positioning brain lesions with respect to the skull structure without confusion with overlapping surface structures.

  13. Fundamentals of Coherent Synchrotron Radiation in Storage Rings

    NASA Astrophysics Data System (ADS)

    Sannibale, F.; Byrd, J. M.; Loftsdottir, A.; Martin, M. C.; Venturini, M.

    2004-05-01

    We present the fundamental concepts for producing stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The analysis includes distortion of bunch shape from the synchrotron radiation (SR), enhancing higher frequency coherent emission and limits to stable emission due to a microbunching instability excited by the SR. We use these concepts to optimize the performance of a source for CSR emission.

  14. Updating the Synchrotron Radiation Monitor at TLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, C. H.; Hsu, S. Y.; Wang, C. J.

    2007-01-19

    The synchrotron radiation monitor provides useful information to support routine operation and physics experiments using the beam. Precisely knowing the profile of the beam helps to improve machine performance. The synchrotron radiation monitor at the Taiwan Light Source (TLS) was recently upgraded. The optics and modeling were improved to increase the accuracy of measurement in the small beam size. A high-performance IEEE-1394 digital CCD camera was used to improve the quality of images and extend the dynamic range of measurement. The image analysis is also improved. This report summarizes status and results.

  15. Chemical applications of synchrotron radiation: Workshop report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the fieldmore » of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.« less

  16. Synchrotron radiation laboratories at the Bonn electron accelerators. a status report

    NASA Astrophysics Data System (ADS)

    Hormes, J.

    1987-07-01

    At the Physikalisches Institut of the University in Bonn experiments with synchrotron radiation were carried out ever since 1962. At the moment (June 1986) all work takes place in the SR-laboratory at the 2.5 GeV synchrotron. A 3.5 GeV stretcher ring (ELSA) is under construction and will come into operation at the end of 1986. This accelerator will also run as a storage ring for synchrotron radiation experiments and a laboratory to be used at this machine is also under consideration. The SR experiments which are carried out in Bonn try to take advantage of the fact that we are still using a high energy synchrotron for our work. Besides basic research also applied work is done using synchrotron radiation even as a production tool for X-ray lithography.

  17. Status of the Siberian synchrotron radiation center

    NASA Astrophysics Data System (ADS)

    Ancharov, A. I.; Baryshev, V. B.; Chernov, V. A.; Gentselev, A. N.; Goldenberg, B. G.; Kochubei, D. I.; Korchuganov, V. N.; Kulipanov, G. N.; Kuzin, M. V.; Levichev, E. B.; Mezentsev, N. A.; Mishnev, S. I.; Nikolenko, A. D.; Pindyurin, V. F.; Sheromov, M. A.; Tolochko, B. P.; Sharafutdinov, M. R.; Shmakov, A. N.; Vinokurov, N. A.; Vobly, P. D.; Zolotarev, K. V.

    2005-05-01

    Synchrotron radiation (SR) experiments at the Budker Institute of Nuclear Physics had been started in 1973, and from 1981 the Siberian Synchrotron Radiation Center (SSRC) had an official status as Research Center of the Russian Academy of Sciences. SSRC is the research center, which is open and free of tax for the research teams from Russia and abroad. In this report some technical information about the storage rings—SR sources of the Budker INP, the main directions of activity of SSRC, experimental stations, experimental works and users—is given. Development of the free electron lasers, new SR sources and insertion devices is described.

  18. Angular behavior of synchrotron radiation harmonics.

    PubMed

    Bagrov, V G; Bulenok, V G; Gitman, D M; Jara, Jose Acosta; Tlyachev, V B; Jarovoi, A T

    2004-04-01

    The detailed analysis of angular dependence of the synchrotron radiation (SR) is presented. Angular distributions of linear and circular polarization integrated over all harmonics, well known for relativistic electron energies, are extended to include radiation from electrons that are not fully relativistic. In particular, we analyze the angular dependence of the integral SR intensity and peculiarities of the angular dependence of the first harmonics SR. Studying spectral SR intensities, we have discovered their unexpected angular behavior, completely different from that of the integral SR intensity; namely, for any given synchrotron frequency, maxima of the spectral SR intensities recede from the orbit plane with increasing particle energy. Thus, in contrast with the integral SR intensity, the spectral ones have the tendency to deconcentrate themselves on the orbit plane.

  19. The relativistic foundations of synchrotron radiation.

    PubMed

    Margaritondo, Giorgio; Rafelski, Johann

    2017-07-01

    Special relativity (SR) determines the properties of synchrotron radiation, but the corresponding mechanisms are frequently misunderstood. Time dilation is often invoked among the causes, whereas its role would violate the principles of SR. Here it is shown that the correct explanation of the synchrotron radiation properties is provided by a combination of the Doppler shift, not dependent on time dilation effects, contrary to a common belief, and of the Lorentz transformation into the particle reference frame of the electromagnetic field of the emission-inducing device, also with no contribution from time dilation. Concluding, the reader is reminded that much, if not all, of our argument has been available since the inception of SR, a research discipline of its own standing.

  20. X-ray absorption fine structure (XAFS) spectroscopy using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Shrivastava, B. D.

    2012-05-01

    The X-ray absorption fine structure (XAFS) spectra are best recorded when a highly intense beam of X-rays from a synchrotron is used along with a good resolution double crystal or curved crystal spectrometer and detectors like ionization chambers, scintillation counters, solid state detectors etc. Several synchrotrons around the world have X-ray beamlines dedicated specifically to XAFS spectroscopy. Fortunately, the Indian synchrotron (Indus-2) at Raja Ramanna Centre for Advanced Technology (RRCAT) at Indore has started operation. A dispersive type EXAFS beamline called BL-8 has been commissioned at this synchrotron and another beamline having double crystal monochromator (DCM) is going to be commissioned shortly. In Indian context, in order that more research workers use these beamlines, the study of XAFS spectroscopy using synchrotron radiation becomes important. In the present work some of the works done by our group on XAFS spectroscopy using synchrotron radiation have been described.

  1. Coherent synchrotron radiation for laminar flows

    NASA Astrophysics Data System (ADS)

    Schmekel, Bjoern S.; Lovelace, Richard V. E.

    2006-11-01

    We investigate the effect of shear in the flow of charged particle equilibria that are unstable to the coherent synchrotron radiation (CSR) instability. Shear may act to quench this instability because it acts to limit the size of the region with a fixed phase relation between emitters. The results are important for the understanding of astrophysical sources of coherent radiation where shear in the flow is likely.

  2. Relativistic MHD Turbulence with Synchrotron and Inverse-Compton Radiation Cooling

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri

    2017-10-01

    This work investigates the energetic aspects and observational appearance of driven relativistic MHD turbulence in an optically thin, relativistically hot plasma subject to strong synchrotron and synchrotron-self-Compton (SSC) radiative cooling. Steady-state balance between turbulent heating and radiative cooling is shown to lead, essentially independent of turbulent driving's strength, to a characteristic electron temperature of Te /mec2 τT- 1 / 2 , where τT << 1 is the system's Thomson optical depth. Furthermore, the SSC cooling power becomes automatically comparable to the synchrotron power. Under certain conditions, a few higher-order inverse-Compton components also become comparable to the synchrotron and SSC losses, and so the broad-band radiation spectrum of the system consists of several distinct peaks with gradually decreasing luminosity, separated by a factor of τT- 1 >> 1 from each other. The number of these spectral components is governed by synchrotron self-absorption and Klein-Nishina effects. These findings have important implications for several classes of high-energy astrophysical systems including pulsar wind nebulae and black-hole-driven accretion flows, jets, and radio-lobes. Work supported by NSF, DOE, NASA, IAS, and the Ambrose Monell Foundation.

  3. The uses of synchrotron radiation sources for elemental and chemical microanalysis

    USGS Publications Warehouse

    Chen, J.R.; Chao, E.C.T.; Minkin, J.A.; Back, J.M.; Jones, K.W.; Rivers, M.L.; Sutton, S.R.

    1990-01-01

    Synchrotron radiation sources offer important features for the analysis of a material. Among these features is the ability to determine both the elemental composition of the material and the chemical state of its elements. For microscopic analysis synchrotron X-ray fluorescence (SXRF) microprobes now offer spatial resolutions of 10 ??m with minimum detection limits in the 1-10 ppm range depending on the nature of the sample and the synchrotron source used. This paper describes the properties of synchrotron radiation and their importance for elemental analysis, existing synchrotron facilities and those under construction that are optimum for SXRF microanalysis, and a number of applications including the high energy excitation of the K lines of heavy elements, microtomography, and XANES and EXAFS spectroscopies. ?? 1990.

  4. Sirepo for Synchrotron Radiation Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagler, Robert; Moeller, Paul; Rakitin, Maksim

    Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jinja, which is a secure andmore » widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is the Synchrotron Radiation Workshop (SRW). SRW computes synchrotron radiation from relativistic electrons in arbitrary magnetic fields and propagates the radiation wavefronts through optical beamlines. SRW is open source and is primarily supported by Dr. Oleg Chubar of NSLS-II at Brookhaven National Laboratory.« less

  5. Simulating synchrotron radiation in accelerators including diffuse and specular reflections

    DOE PAGES

    Dugan, G.; Sagan, D.

    2017-02-24

    An accurate calculation of the synchrotron radiation flux within the vacuum chamber of an accelerator is needed for a number of applications. These include simulations of electron cloud effects and the design of radiation masking systems. To properly simulate the synchrotron radiation, it is important to include the scattering of the radiation at the vacuum chamber walls. To this end, a program called synrad3d has been developed which simulates the production and propagation of synchrotron radiation using a collection of photons. Photons generated by a charged particle beam are tracked from birth until they strike the vacuum chamber wall wheremore » the photon is either absorbed or scattered. Both specular and diffuse scattering is simulated. If a photon is scattered, it is further tracked through multiple encounters with the wall until it is finally absorbed. This paper describes the synrad3d program, with a focus on the details of its scattering model, and presents some examples of the program’s use.« less

  6. Synchrotron Radiation from Ultra-High Energy Protons and the Fermi Observations of GRB 080916C

    DTIC Science & Technology

    2010-01-01

    compared with keV – MeV radiation. Here we show that synchrotron radiation from cosmic ray protons accelerated in GRBs, delayed by the proton synchrotron... cosmic rays from sources within 100 Mpc for nano-Gauss intergalactic magnetic fields. The total energy requirements in a proton synchrotron model are...component arising from cosmic - ray proton synchrotron radiation explains the delayed onset of the LAT emission. If GRBs accelerate UHECRs, then the

  7. Time domain analysis of coherent terahertz synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Hübers, H.-W.; Semenov, A.; Holldack, K.; Schade, U.; Wüstefeld, G.; Gol'tsman, G.

    2005-10-01

    The time structure of coherent terahertz synchrotron radiation at the electron storage ring of the Berliner Elektronensynchrotron und Speicherring Gesellschaft has been analyzed with a fast superconducting hot-electron bolometer. The emission from a single bunch of electrons was found to last ˜1500ps at frequencies around 0.4THz, which is much longer than the length of an electron bunch in the time domain (˜5ps). It is suggested that this is caused by multiple reflections at the walls of the beam line. The quadratic increase of the power with the number of electrons in the bunch as predicted for coherent synchrotron radiation and the transition from stable to bursting radiation were determined from a single storage ring fill pattern of bunches with different populations.

  8. Fluorescence dynamics of biological systems using synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gratton, E.; Mantulin, W.W.; Weber, G.

    1996-09-01

    A beamline for time-resolved fluorescence spectroscopy of biological systems is under construction at the Synchrotron Radiation Center. The fluorometer, operating in the frequency domain, will take advantage of the time structure of the synchrotron radiation light pulses to determine fluorescence lifetimes. Using frequency-domain techniques, the instrument can achieve an ultimate time resolution on the order of picoseconds. Preliminary experiments have shown that reducing the intensity of one of the fifteen electron bunches in the storage ring allows measurement of harmonic frequencies equivalent to the single-bunch mode. This mode of operation of the synchrotron significantly extends the range of lifetimes thatmore » can be measured. The wavelength range (encompassing the visible and ultraviolet), the range of measurable lifetimes, and the stability and reproducibility of the storage ring pulses should make this beamline a versatile tool for the investigation of the complex fluorescence decay of biological systems. {copyright} {ital 1996 American Institute of Physics.}« less

  9. Microangiography in Living Mice Using Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Yuan, Falei; Wang, Yongting; Guan, Yongjing; Lu, Haiyan; Xie, Bohua; Tang, Yaohui; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Yang, Guo-Yuan

    2010-07-01

    Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD-1 mice weighing 35-40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent. The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X-ray energy of 33.3 keV was used to produce the highest contrast image. Images were acquired every 172 ms by a x-ray camera (Photonic-Science VHR 1.38) with a resolution of 13 μm/pixel. The optimal dose of contrast agent is 100 μl per injection and the injecting rate is 33 μl/sec. The best position for imaging is to have the mouse lay on its right or left side, with ventral side facing the X-ray source. We observed the lenticulostriate artery for the first time in living mice. Our result show that there are 4 to 5 lenticulostriate branches originating from the root of middle cerebral artery in each hemisphere. LSAs have an average diameter of 43±6.8 μm. There were no differences between LSAs from the left and right hemisphere (p<0.05). These results suggest that synchrotron radiation may provide a unique tool for experimental stroke research.

  10. Efficiency of Synchrotron Radiation from Rotation-powered Pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisaka, Shota; Tanaka, Shuta J., E-mail: kisaka@phys.aoyama.ac.jp, E-mail: sjtanaka@center.konan-u.ac.jp

    2017-03-01

    Synchrotron radiation is widely considered to be the origin of the pulsed non-thermal emissions from rotation-powered pulsars in optical and X-ray bands. In this paper, we study the synchrotron radiation emitted by the created electron and positron pairs in the pulsar magnetosphere to constrain the energy conversion efficiency from the Poynting flux to the particle energy flux. We model two pair creation processes, two-photon collision, which efficiently works in young γ -ray pulsars (≲10{sup 6} year), and magnetic pair creation, which is the dominant process to supply pairs in old pulsars (≳10{sup 6} year). Using the analytical model, we derivemore » the maximum synchrotron luminosity as a function of the energy conversion efficiency. From the comparison with observations, we find that the energy conversion efficiency to the accelerated particles should be an order of unity in the magnetosphere, even though we make a number of the optimistic assumptions to enlarge the synchrotron luminosity. In order to explain the luminosity of the non-thermal X-ray/optical emission from pulsars with low spin-down luminosity L {sub sd} ≲ 10{sup 34} erg s{sup −1}, non-dipole magnetic field components should be dominant at the emission region. For the γ -ray pulsars with L {sub sd} ≲ 10{sup 35} erg s{sup −1}, observed γ -ray to X-ray and optical flux ratios are much higher than the flux ratio between curvature and the synchrotron radiations. We discuss some possibilities such as the coexistence of multiple accelerators in the magnetosphere as suggested from the recent numerical simulation results. The obtained maximum luminosity would be useful to select observational targets in X-ray and optical bands.« less

  11. Impact of synchrotron radiation on macromolecular crystallography: a personal view

    PubMed Central

    Dauter, Zbigniew; Jaskolski, Mariusz; Wlodawer, Alexander

    2010-01-01

    The introduction of synchrotron radiation sources almost four decades ago has led to a revolutionary change in the way that diffraction data from macromolecular crystals are being collected. Here a brief history of the development of methodologies that took advantage of the availability of synchrotron sources are presented, and some personal experiences with the utilization of synchrotrons in the early days are recalled. PMID:20567074

  12. Medical imaging with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Rubenstein, Edward

    1984-05-01

    The present methods of detecting coronary artery disease before it causes serious heart damage or sudden death are unsatisfactory, because of the insensitivity of the screening tests and excessive risks and costs of the invasive coronary arteriographic technique. A number of other diagnostic approaches have been tried, but none has succeeded to date in providing the needed detailed information about the status of the coronary circulation. The intensity, monochromaticity and tunability of synchrotron radiation are well-suited for iodine K edge dichromographic angiography. In vivo images of the left anterior descending coronary artery of the dog have been recorded using synchrotron X-ray beams in this manner. Beams wide enough to record the image of the entire human heart in a single scanned swath are now under design.

  13. Cosmic rays, gamma rays and synchrotron radiation from the Galaxy

    DOE PAGES

    Orlando, Elena

    2012-07-30

    Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, thismore » paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.« less

  14. Observation of Multi-bunch Interference with Coherent Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, B. E.; May, T.; Bergstrom, J.; DeJong, M.; Dallin, L.

    2010-02-01

    The observation of Multi-bunch interference with coherent synchrotron radiation at the Canadian Light Source is discussed along with the possibility that some of the spectral features are driven by the radiation impedance of the vacuum chamber.

  15. Synchrotron radiation from a runaway electron distribution in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stahl, A.; Fülöp, T.; Landreman, M.

    2013-09-15

    The synchrotron radiation emitted by runaway electrons in a fusion plasma provides information regarding the particle momenta and pitch-angles of the runaway electron population through the strong dependence of the synchrotron spectrum on these parameters. Information about the runaway density and its spatial distribution, as well as the time evolution of the above quantities, can also be deduced. In this paper, we present the synchrotron radiation spectra for typical avalanching runaway electron distributions. Spectra obtained for a distribution of electrons are compared with the emission of mono-energetic electrons with a prescribed pitch-angle. We also examine the effects of magnetic fieldmore » curvature and analyse the sensitivity of the resulting spectrum to perturbations to the runaway distribution. The implications for the deduced runaway electron parameters are discussed. We compare our calculations to experimental data from DIII-D and estimate the maximum observed runaway energy.« less

  16. Compact synchrotron radiation depth lithography facility

    NASA Astrophysics Data System (ADS)

    Knüppel, O.; Kadereit, D.; Neff, B.; Hormes, J.

    1992-01-01

    X-ray depth lithography allows the fabrication of plastic microstructures with heights of up to 1 mm but with the smallest possible lateral dimensions of about 1 μm. A resist is irradiated with ``white'' synchrotron radiation through a mask that is partially covered with x-ray absorbing microstructures. The plastic microstructure is then obtained by a subsequent chemical development of the irradiated resist. In order to irradiate a reasonably large resist area, the mask and the resist have to be ``scanned'' across the vertically thin beam of the synchrotron radiation. A flexible, nonexpensive and compact scanner apparatus has been built for x-ray depth lithography at the beamline BN1 at ELSA (the 3.5 GeV Electron Stretcher and Accelerator at the Physikalisches Institut of Bonn University). Measurements with an electronic water level showed that the apparatus limits the scanner-induced structure precision to not more than 0.02 μm. The whole apparatus is installed in a vacuum chamber thus allowing lithography under different process gases and pressures.

  17. Observation of superradiant synchrotron radiation in the terahertz region

    NASA Astrophysics Data System (ADS)

    Billinghurst, B. E.; Bergstrom, J. C.; Dallin, L.; de Jong, M.; May, T. E.; Vogt, J. M.; Wurtz, W. A.

    2013-06-01

    We report the first high-resolution measurement of superradiance, using coherent synchrotron radiation in the terahertz region from the Canadian Light Source synchrotron and a Michelson interferometer with a nominal frequency resolution of 0.00096cm-1. Superradiance arises when a high degree of phase coherence exists between the radiation fields of the individual electron bunches, and manifests itself as a series of narrow spectral peaks at harmonics of the bunch frequency. We observe an enhancement factor of 16 at the spectral peaks, limited by the interferometer resolution. The spectral distribution and relative amplitudes of the superradiant peaks are modified by altering the pattern of bunches along the bunch train.

  18. A Model Describing Stable Coherent Synchrotron Radiation in Storage Rings

    NASA Astrophysics Data System (ADS)

    Sannibale, F.; Byrd, J. M.; Loftsdóttir, Á.; Venturini, M.; Abo-Bakr, M.; Feikes, J.; Holldack, K.; Kuske, P.; Wüstefeld, G.; Hübers, H.-W.; Warnock, R.

    2004-08-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSYII storage ring. We also use this model to optimize the performance of a source for stable CSR emission.

  19. The Jovian electron spectrum and synchrotron radiation at 375 cm

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.

    1975-01-01

    The synchrotron radiation expected at Earth from the region L=2.9-5 R sub J of Jupiter's magnetosphere is calculated using the Pioneer 10 electron model. The result is approximately 21 flux units (f.u.). This value is to be compared with 6.0 + or - 0.7 f.u., the flux density of synchrotron radiation measured from Jupiter's entire magnetosphere in ground-based radio observations. Most of the radiation at 375 cm is emitted by electrons in the 1 to 10 MeV range. If the electron model used for calculations is cut off below 10 MeV, the calculated flux is reduced to approximately 4 f.u., a level compatible with the radio observations.

  20. Examining Returned Samples in their Collection Tubes Using Synchrotron Radiation-Based Techniques

    NASA Astrophysics Data System (ADS)

    Schoonen, M. A.; Hurowitz, J. A.; Thieme, J.; Dooryhee, E.; Fogelqvist, E.; Gregerson, J.; Farley, K. A.; Sherman, S.; Hill, J.

    2018-04-01

    Synchrotron radiation-based techniques can be leveraged for triaging and analysis of returned samples before unsealing collection tubes. Proof-of-concept measurements conducted at Brookhaven National Lab's National Synchrotron Light Source-II.

  1. Exploring actinide materials through synchrotron radiation techniques.

    PubMed

    Shi, Wei-Qun; Yuan, Li-Yong; Wang, Cong-Zhi; Wang, Lin; Mei, Lei; Xiao, Cheng-Liang; Zhang, Li; Li, Zi-Jie; Zhao, Yu-Liang; Chai, Zhi-Fang

    2014-12-10

    Synchrotron radiation (SR) based techniques have been utilized with increasing frequency in the past decade to explore the brilliant and challenging sciences of actinide-based materials. This trend is partially driven by the basic needs for multi-scale actinide speciation and bonding information and also the realistic needs for nuclear energy research. In this review, recent research progresses on actinide related materials by means of various SR techniques were selectively highlighted and summarized, with the emphasis on X-ray absorption spectroscopy, X-ray diffraction and scattering spectroscopy, which are powerful tools to characterize actinide materials. In addition, advanced SR techniques for exploring future advanced nuclear fuel cycles dealing with actinides are illustrated as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Main functions, recent updates, and applications of Synchrotron Radiation Workshop code

    NASA Astrophysics Data System (ADS)

    Chubar, Oleg; Rakitin, Maksim; Chen-Wiegart, Yu-Chen Karen; Chu, Yong S.; Fluerasu, Andrei; Hidas, Dean; Wiegart, Lutz

    2017-08-01

    The paper presents an overview of the main functions and new application examples of the "Synchrotron Radiation Workshop" (SRW) code. SRW supports high-accuracy calculations of different types of synchrotron radiation, and simulations of propagation of fully-coherent radiation wavefronts, partially-coherent radiation from a finite-emittance electron beam of a storage ring source, and time-/frequency-dependent radiation pulses of a free-electron laser, through X-ray optical elements of a beamline. An extended library of physical-optics "propagators" for different types of reflective, refractive and diffractive X-ray optics with its typical imperfections, implemented in SRW, enable simulation of practically any X-ray beamline in a modern light source facility. The high accuracy of calculation methods used in SRW allows for multiple applications of this code, not only in the area of development of instruments and beamlines for new light source facilities, but also in areas such as electron beam diagnostics, commissioning and performance benchmarking of insertion devices and individual X-ray optical elements of beamlines. Applications of SRW in these areas, facilitating development and advanced commissioning of beamlines at the National Synchrotron Light Source II (NSLS-II), are described.

  3. Specific chemical and structural damage to proteins produced by synchrotron radiation.

    PubMed

    Weik, M; Ravelli, R B; Kryger, G; McSweeney, S; Raves, M L; Harel, M; Gros, P; Silman, I; Kroon, J; Sussman, J L

    2000-01-18

    Radiation damage is an inherent problem in x-ray crystallography. It usually is presumed to be nonspecific and manifested as a gradual decay in the overall quality of data obtained for a given crystal as data collection proceeds. Based on third-generation synchrotron x-ray data, collected at cryogenic temperatures, we show for the enzymes Torpedo californica acetylcholinesterase and hen egg white lysozyme that synchrotron radiation also can cause highly specific damage. Disulfide bridges break, and carboxyl groups of acidic residues lose their definition. Highly exposed carboxyls, and those in the active site of both enzymes, appear particularly susceptible. The catalytic triad residue, His-440, in acetylcholinesterase, also appears to be much more sensitive to radiation damage than other histidine residues. Our findings have direct practical implications for routine x-ray data collection at high-energy synchrotron sources. Furthermore, they provide a direct approach for studying the radiation chemistry of proteins and nucleic acids at a detailed, structural level and also may yield information concerning putative "weak links" in a given biological macromolecule, which may be of structural and functional significance.

  4. Lossy radial diffusion of relativistic Jovian electrons. [calculation of synchrotron radiation and electron radiation for Jupiter

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Coroniti, F. V.

    1976-01-01

    The radial diffusion equation with synchrotron losses was solved by the Laplace transform method for near-equatorially mirroring relativistic electrons. The evolution of a power law distribution function was found and the characteristics of synchrotron burn-off are stated in terms of explicit parameters for an arbitrary diffusion coefficient. Emissivity from the radiation belts of Jupiter was studied. Asymptotic forms for the distribution in the strong synchrotron loss regime are provided.

  5. Radiation reaction and pitch-angle changes for a charge undergoing synchrotron losses

    NASA Astrophysics Data System (ADS)

    Singal, Ashok K.

    2016-05-01

    In the derivation of synchrotron radiation formulae, it has been assumed that the pitch angle of a charge remains constant during the radiation process. However, from the radiation reaction formula, while the component of the velocity vector perpendicular to the magnetic field reduces in magnitude due to radiative losses, the parallel component does not undergo any change during radiation. Therefore, there is a change in the ratio of the two components, implying a change in the pitch angle. We derive the exact formula for the change in energy of radiating electrons by taking into account the change of the pitch angle due to radiative losses. From this, we derive the characteristic decay time of synchrotron electrons over which they turn from highly relativistic into mildly relativistic ones.

  6. Applications of synchrotron radiation to materials science: Diffraction imaging (topography) and microradiography

    NASA Technical Reports Server (NTRS)

    Kuriyama, Masao

    1988-01-01

    Synchrotron radiation sources are now available throughout the world. The use of hard X-ray radiation from these sources for materials science is described with emphasis on diffraction imaging for material characterization. With the availability of synchrotron radiation, real-time in situ measurements of dynamic microstructural phenomena have been started. This is a new area where traditional application of X-rays has been superseded. Examples are chosen from limited areas and are by no means exhaustive. The new emerging information will, no doubt, have great impact on materials science and engineering.

  7. Modeling challenges and approaches in simulating the Jovian synchrotron radiation belts from an in-situ perspective

    NASA Astrophysics Data System (ADS)

    Adumitroaie, V.; Oyafuso, F. A.; Levin, S.; Gulkis, S.; Janssen, M. A.; Santos-Costa, D.; Bolton, S. J.

    2017-12-01

    In order to obtain credible atmospheric composition retrieval values from Jupiter's observed radiative signature via Juno's MWR instrument, it is necessary to separate as robustly as possible the contributions from three emission sources: CMB, planet and synchrotron radiation belts. The numerical separation requires a refinement, based on the in-situ data, of a higher fidelity model for the synchrotron emission, namely the multi-parameter, multi-zonal model of Levin at al. (2001). This model employs an empirical electron energy distribution, which prior to the Juno mission, has been adjusted exclusively from VLA observations. At minimum 8 sets of perijove observations (i.e. by PJ9) have to be delivered to an inverse model for retrieval of the electron distribution parameters with the goal of matching the synchrotron emission observed along MWR's lines of sight. The challenges and approaches taken to perform this task are discussed here. The model will be continuously improved with the availability of additional information, both from the MWR and magnetometer instruments.

  8. MICROANALYSIS OF MATERIALS USING SYNCHROTRON RADIATION.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JONES,K.W.; FENG,H.

    2000-12-01

    High intensity synchrotron radiation produces photons with wavelengths that extend from the infrared to hard x rays with energies of hundreds of keV with uniquely high photon intensities that can be used to determine the composition and properties of materials using a variety of techniques. Most of these techniques represent extensions of earlier work performed with ordinary tube-type x-ray sources. The properties of the synchrotron source such as the continuous range of energy, high degree of photon polarization, pulsed beams, and photon flux many orders of magnitude higher than from x-ray tubes have made possible major advances in the possiblemore » chemical applications. We describe here ways that materials analyses can be made using the high intensity beams for measurements with small beam sizes and/or high detection sensitivity. The relevant characteristics of synchrotron x-ray sources are briefly summarized to give an idea of the x-ray parameters to be exploited. The experimental techniques considered include x-ray fluorescence, absorption, and diffraction. Examples of typical experimental apparatus used in these experiments are considered together with descriptions of actual applications.« less

  9. Evolution of synchrotron-radiation-based Mössbauer absorption spectroscopy for various isotopes

    NASA Astrophysics Data System (ADS)

    Seto, Makoto; Masuda, Ryo; Kobayashi, Yasuhiro; Kitao, Shinji; Kurokuzu, Masayuki; Saito, Makina; Hosokawa, Shuuich; Ishibashi, Hiroki; Mitsui, Takaya; Yoda, Yoshitaka; Mibu, Ko

    2017-11-01

    Synchrotron-radiation-based Mössbauer spectroscopy that yields absorption type Mössbauer spectra has been applied to various isotopes. This method enables the advanced measurement by using the excellent features of synchrotron radiation, such as Mössbauer spectroscopic measurement under high-pressures. Furthermore, energy selectivity of synchrotron radiation allows us to measure 40K Mössbauer spectra, of which observation is impossible by using ordinary radioactive sources because the first excited state of 40K is not populated by any radioactive parent nuclides. Moreover, this method has flexibility of the experimental setup that the measured sample can be used as a transmitter or a scatterer, depending on the sample conditions. To enhance the measurement efficiency of the spectroscopy, we developed a detection system in which a windowless avalanche photodiode (APD) detector is combined with a vacuum cryostat to detect internal conversion electrons adding to X-rays accompanied by nuclear de-excitation. In particular, by selecting the emission from the scatterer sample, depth selective synchrotron-radiation-based Mössbauer spectroscopy is possible. Furthermore, limitation of the time window in the delayed components enables us to obtain narrow linewidth in Mössbauer spectra. Measurement system that records velocity dependent time spectra and energy information simultaneously realizes the depth selective and narrow linewidth measurement.

  10. Crystal regularity with high-resolution synchrotron X-radiation diffraction imaging

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Dobbyn, Ronald C.

    1991-01-01

    New, high-resolution sources of X-radiation such as monochromatic synchrotron radiation beams with subarcsec divergence allow observation of regularities in a range of crystals with sufficient clarity for comprehensive analyses, whose results can deepen understanding of the nature of various crystal irregularities, their sources, and their effects on device performance. An account is presented of the results thus achievable with irregularities encountered in lattice orientation and strain, grain and subgrain boundaries, dislocations, domain boundaries, additional phases, and surface scratches. Significant achievements to date encompass the observation of critical anomalies in lead tin telluride, the reconciliation of disparate observations of GaAs, the determination of the performance effects of irregularities in mercuric iodide, and the characterization of the origins of crystal growth in bismuth silicon oxide.

  11. (abstract) Short Time Period Variations in Jupiter's Synchrotron Radiation

    NASA Technical Reports Server (NTRS)

    Bolton, S. J.; Klein, M. J.; Gulkis, S.; Foster, R.; Heiles, C.; Pater, I. de

    1994-01-01

    The long term time variability of Jupiter's synchrotron radiation on yearly time scales has been established for some time. For many years, theorists have speculated about the effects variations in the solar wind, solar flux, Io, the Io torus, and Jupiter's magnetic field have on the ultra-relativistic electron population responsible for the emission. Early observational results suggested the additional possibility of a short term time variability, on timescales of days to weeks. In 1989 a program designed to investigate the existence of short term time variability using the 85 foot Hat Creek radio telescope operating at 1400 MHz was initiated. The availability of a dedicated telescope provided the opportunity, for the first time, to obtain numerous observations over the full Jupiter rotation period. These and future observations will enable two important studies, characterization and confirmation of possible short term variations, and the investigation of the stability of Jupiter's synchrotron emission beaming curve. Analysis of Hat Creek observations and early results from the Maryland Point Naval research Laboratory will be presented.

  12. Perspectives of synchrotron radiation sources with superconductivity

    NASA Astrophysics Data System (ADS)

    Tanaka, Takashi

    2007-10-01

    The synchrotron radiation source is a magnetic device to generate a periodic magnetic field where a relativistic electron moves along a periodic trajectory and emits light called synchrotron radiation (SR), which has been used as a scientific probe for many years in various fields. Although permanent magnets (PMs) are usually used to generate the magnetic field in the SR source because of their cost-effectiveness and availability, a large number of SR sources with superconductors have been constructed for special uses, i.e., to obtain a strong magnetic field over 3 T, which cannot be achieved by using PMs alone. Most of these SR sources are composed of electromagnets with superconducting coils made of NbTi as in commercially available superconducting magnets. For stronger magnetic field, research on application of Nb3Sn is in progress. On the other hand, utilization of high Tc superconducting bulk magnets has been recently proposed and R&Ds toward realization are being carried out. This paper reviews the currents status of the SR sources with superconductivity and describes the future perspectives.

  13. Dynamical diffraction imaging (topography) with X-ray synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Kuriyama, M.; Steiner, B. W.; Dobbyn, R. C.

    1989-01-01

    By contrast to electron microscopy, which yields information on the location of features in small regions of materials, X-ray diffraction imaging can portray minute deviations from perfect crystalline order over larger areas. Synchrotron radiation-based X-ray optics technology uses a highly parallel incident beam to eliminate ambiguities in the interpretation of image details; scattering phenomena previously unobserved are now readily detected. Synchrotron diffraction imaging renders high-resolution, real-time, in situ observations of materials under pertinent environmental conditions possible.

  14. Scaling behavior of circular colliders dominated by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Talman, Richard

    2015-08-01

    The scaling formulas in this paper — many of which involve approximation — apply primarily to electron colliders like CEPC or FCC-ee. The more abstract “radiation dominated” phrase in the title is intended to encourage use of the formulas — though admittedly less precisely — to proton colliders like SPPC, for which synchrotron radiation begins to dominate the design in spite of the large proton mass. Optimizing a facility having an electron-positron Higgs factory, followed decades later by a p, p collider in the same tunnel, is a formidable task. The CEPC design study constitutes an initial “constrained parameter” collider design. Here the constrained parameters include tunnel circumference, cell lengths, phase advance per cell, etc. This approach is valuable, if the constrained parameters are self-consistent and close to optimal. Jumping directly to detailed design makes it possible to develop reliable, objective cost estimates on a rapid time scale. A scaling law formulation is intended to contribute to a “ground-up” stage in the design of future circular colliders. In this more abstract approach, scaling formulas can be used to investigate ways in which the design can be better optimized. Equally important, by solving the lattice matching equations in closed form, as contrasted with running computer programs such as MAD, one can obtain better intuition concerning the fundamental parametric dependencies. The ground-up approach is made especially appropriate by the seemingly impossible task of simultaneous optimization of tunnel circumference for both electrons and protons. The fact that both colliders will be radiation dominated actually simplifies the simultaneous optimization task. All GeV scale electron accelerators are “synchrotron radiation dominated”, meaning that all beam distributions evolve within a fraction of a second to an equilibrium state in which “heating” due to radiation fluctuations is canceled by the “cooling” in

  15. Analysis and calibration of stage axial vibration for synchrotron radiation nanoscale computed tomography.

    PubMed

    Fu, Jian; Li, Chen; Liu, Zhenzhong

    2015-10-01

    Synchrotron radiation nanoscale computed tomography (SR nano-CT) is a powerful analysis tool and can be used to perform chemical identification, mapping, or speciation of carbon and other elements together with X-ray fluorescence and X-ray absorption near edge structure (XANES) imaging. In practical applications, there are often challenges for SR nano-CT due to the misaligned geometry caused by the sample stage axial vibration. It occurs quite frequently because of experimental constraints from the mechanical error of manufacturing and assembly and the thermal expansion during the time-consuming scanning. The axial vibration will lead to the structure overlap among neighboring layers and degrade imaging results by imposing artifacts into the nano-CT images. It becomes worse for samples with complicated axial structure. In this work, we analyze the influence of axial vibration on nano-CT image by partial derivative. Then, an axial vibration calibration method for SR nano-CT is developed and investigated. It is based on the cross correlation of plane integral curves of the sample at different view angles. This work comprises a numerical study of the method and its experimental verification using a dataset measured with the full-field transmission X-ray microscope nano-CT setup at the beamline 4W1A of the Beijing Synchrotron Radiation Facility. The results demonstrate that the presented method can handle the stage axial vibration. It can work for random axial vibration and needs neither calibration phantom nor additional calibration scanning. It will be helpful for the development and application of synchrotron radiation nano-CT systems.

  16. Wakefields in Coherent Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, Brant E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; Dallin, L.; May, Tim E.; Vogt, J. M.; Wurtz, Ward A.; Warnock, Robert L.; Bizzozero, D. A.; Kramer, S.; Michaelian, K. H.

    2016-06-01

    When the electron bunches in a storage ring are sufficiently short the electrons act coherently producing radiation several orders of magnitude more intense than normal synchrotron radiation. This is referred to as Coherent Syncrotron Radiation (CSR). Due to the potential of CSR to provide a good source of Terahertz radiation for our users, the Canadian Light Source (CLS) has been researching the production and application of CSR. CSR has been produced at the CLS for many years, and has been used for a number of applications. However, resonances that permeate the spectrum at wavenumber intervals of 0.074 cm-1, and are highly stable under changes in the machine setup, have hampered some experiments. Analogous resonances were predicted long ago in an idealized theory. Through experiments and further calculations we elucidate the resonance and wakefield mechanisms in the CLS vacuum chamber. The wakefield is observed directly in the 30-110 GHz range by rf diodes. These results are consistent with observations made by the interferometer in the THz range. Also discussed will be some practical examples of the application of CSR for the study of condensed phase samples using both transmission and Photoacoustic techniques.

  17. Machine detector interface studies: Layout and synchrotron radiation estimate in the future circular collider interaction region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boscolo, Manuela; Burkhardt, Helmut; Sullivan, Michael

    The interaction region layout for the e +e – future circular collider FCC-ee is presented together with a preliminary estimate of synchrotron radiation that affects this region. We describe in this paper the main guidelines of this design and the estimate of synchrotron radiation coming from the last bending magnets and from the final focus quadrupoles, with the software tools developed for this purpose. Here, the design follows the asymmetric optics layout as far as incoming bend radiation is concerned with the maximum foreseen beam energy of 175 GeV and we present a feasible initial layout with an indication ofmore » tolerable synchrotron radiation.« less

  18. Machine detector interface studies: Layout and synchrotron radiation estimate in the future circular collider interaction region

    DOE PAGES

    Boscolo, Manuela; Burkhardt, Helmut; Sullivan, Michael

    2017-01-27

    The interaction region layout for the e +e – future circular collider FCC-ee is presented together with a preliminary estimate of synchrotron radiation that affects this region. We describe in this paper the main guidelines of this design and the estimate of synchrotron radiation coming from the last bending magnets and from the final focus quadrupoles, with the software tools developed for this purpose. Here, the design follows the asymmetric optics layout as far as incoming bend radiation is concerned with the maximum foreseen beam energy of 175 GeV and we present a feasible initial layout with an indication ofmore » tolerable synchrotron radiation.« less

  19. The time variability of Jupiter's synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bolton, Scott Jay

    1991-02-01

    The time variability of the Jovian synchrotron emission is investigated by analyzing radio observations of Jupiter at decimetric wavelengths. The observations are composed from two distinct sets of measurements addressing both short term (days to weeks) and long term (months to years) variability. The study of long term variations utilizes a set of measurements made several times each month with the NASA Deep Space Network (DNS) antennas operating at 2295 MHz (13.1 cm). The DSN data set, covering 1971 through 1985, is compared with a set of measurements of the solar wind from a number of Earth orbiting spacecraft. The analysis indicates a maximum correlation between the synchrotron emission and the solar wind ram pressure with a two year time lag. Physical mechanisms affecting the synchrotron emission are discussed with an emphasis on radial diffusion. Calculations are performed that suggest the correlation is consistent with inward adiabatic diffusion of solar wind particles driven by Brice's model of ionospheric neutral wind convection (Brice 1972). The implication is that the solar wind could be a source of particles of Jupiter's radiation belts. The investigation of short term variability focuses on a three year Jupiter observing program using the University of California's Hat Creek radio telescope operating at 1400 MHz (21 cm). Measurements are made every two days during the months surrounding opposition. Results from the three year program suggest short term variability near the 10-20 percent level but should be considered inconclusive due to scheduling and observational limitations. A discussion of magneto-spheric processes on short term timescales identifies wave-particle interactions as a candidate source. Further analysis finds that the short term variations could be related to whistler mode wave-particles interactions in the radiation belts associated with atmospheric lightning on Jupiter. However, theoretical calculations on wave particle interactions

  20. Proceedings of the XIII International School and Symposium on Synchrotron Radiation in Natural Science 2016, Ustroń-Jaszowiec, Poland

    NASA Astrophysics Data System (ADS)

    Kozak, Maciej; Kwiatek, Wojciech M.; Piszora, Paweł

    2017-11-01

    This special issue of Nuclear Instruments and Methods in Physics Research Section B of Nuclear Instruments and Methods in Physics Research was prepared to present recent achievements in synchrotron radiation science and mark the 25th anniversary of the Polish Synchrotron Radiation Society (PSRS) which fell in 2016. It presents selected papers submitted after the 13th International School and Symposium on Synchrotron Radiation in Natural Science (ISSRNS 2016) which was organized by PSRS in cooperation with the Adam Mickiewicz University. It is worth noting that PSRS is probably one of the earliest founded scientific societies focused on promoting the use of synchrotron radiation research (for details visit the PSRS home page: http://www.synchrotron.org.pl.

  1. Experimental studies on coherent synchrotron radiation at an emittance exchange beam line

    NASA Astrophysics Data System (ADS)

    Thangaraj, J. C. T.; Thurman-Keup, R.; Ruan, J.; Johnson, A. S.; Lumpkin, A. H.; Santucci, J.

    2012-11-01

    One of the goals of the Fermilab A0 photoinjector is to investigate experimentally the transverse to longitudinal emittance exchange (EEX) principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR) in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy-chirped beam.

  2. Three-dimensional monochromatic x-ray computed tomography using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Katsuyuki; Uyama, Chikao

    1998-08-01

    We describe a technique of 3D computed tomography (3D CT) using monochromatic x rays generated by synchrotron radiation, which performs a direct reconstruction of a 3D volume image of an object from its cone-beam projections. For the development, we propose a practical scanning orbit of the x-ray source to obtain complete 3D information on an object, and its corresponding 3D image reconstruction algorithm. The validity and usefulness of the proposed scanning orbit and reconstruction algorithm were confirmed by computer simulation studies. Based on these investigations, we have developed a prototype 3D monochromatic x-ray CT using synchrotron radiation, which provides exact 3D reconstruction and material-selective imaging by using the K-edge energy subtraction technique.

  3. Better Efficacy of Synchrotron Spatially Microfractionated Radiation Therapy Than Uniform Radiation Therapy on Glioma.

    PubMed

    Bouchet, Audrey; Bräuer-Krisch, Elke; Prezado, Yolanda; El Atifi, Michèle; Rogalev, Léonid; Le Clec'h, Céline; Laissue, Jean Albert; Pelletier, Laurent; Le Duc, Géraldine

    2016-08-01

    Synchrotron microbeam radiation therapy (MRT) is based on the spatial fractionation of the incident, highly focused synchrotron beam into arrays of parallel microbeams, typically a few tens of microns wide and depositing several hundred grays. This irradiation modality was shown to have a high therapeutic impact on tumors, especially in intracranial locations. However, mechanisms responsible for such a property are not fully understood. Thanks to recent progress in dosimetry, we compared the effect of MRT and synchrotron broad beam (BB) radiation therapy delivered at comparable doses (equivalent to MRT valley dose) on tumor growth control and on classical radiobiological functions by histologic evaluation and/or transcriptomic analysis. MRT significantly improved survival of rats bearing 9L intracranial glioma compared with BB radiation therapy delivered at a comparable dose (P<.001); the efficacy of MRT and BB radiation therapy was similar when the MRT dose was half that of BB. The greater efficacy of MRT was not correlated with a difference in cell proliferation (Mki67 and proliferating cell nuclear antigen) or in transcriptomic stimulation of angiogenesis (vascular endothelial growth factor A or tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 2) but was correlated with a higher cell death rate (factor for apoptosis signals) and higher recruitment of macrophages (tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 and CD68 transcripts) a few days after MRT. These results show the superiority of MRT over BB radiation therapy when applied at comparable doses, suggesting that spatial fractionation is responsible for a specific and particularly efficient tissue response. The higher induction of cell death and immune cell activation in brain tumors treated by MRT may be involved in such responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Better Efficacy of Synchrotron Spatially Microfractionated Radiation Therapy Than Uniform Radiation Therapy on Glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouchet, Audrey, E-mail: audrey.m.bouchet@gmail.com; Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble; Bräuer-Krisch, Elke

    Purpose: Synchrotron microbeam radiation therapy (MRT) is based on the spatial fractionation of the incident, highly focused synchrotron beam into arrays of parallel microbeams, typically a few tens of microns wide and depositing several hundred grays. This irradiation modality was shown to have a high therapeutic impact on tumors, especially in intracranial locations. However, mechanisms responsible for such a property are not fully understood. Methods and Materials: Thanks to recent progress in dosimetry, we compared the effect of MRT and synchrotron broad beam (BB) radiation therapy delivered at comparable doses (equivalent to MRT valley dose) on tumor growth control andmore » on classical radiobiological functions by histologic evaluation and/or transcriptomic analysis. Results: MRT significantly improved survival of rats bearing 9L intracranial glioma compared with BB radiation therapy delivered at a comparable dose (P<.001); the efficacy of MRT and BB radiation therapy was similar when the MRT dose was half that of BB. The greater efficacy of MRT was not correlated with a difference in cell proliferation (Mki67 and proliferating cell nuclear antigen) or in transcriptomic stimulation of angiogenesis (vascular endothelial growth factor A or tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 2) but was correlated with a higher cell death rate (factor for apoptosis signals) and higher recruitment of macrophages (tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 and CD68 transcripts) a few days after MRT. Conclusions: These results show the superiority of MRT over BB radiation therapy when applied at comparable doses, suggesting that spatial fractionation is responsible for a specific and particularly efficient tissue response. The higher induction of cell death and immune cell activation in brain tumors treated by MRT may be involved in such responses.« less

  5. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    DOE PAGES

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; ...

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transversemore » beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.« less

  6. Looking Back at International Synchrotron Radiation Instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Gwyn

    2012-03-01

    With the 11th International Synchrotron Radiation Instrumentation coming up in July 2012 in Lyons, France, we thought it might be of interest to our readers to review all the past meetings in this series. We thank Denny Mills of the APS, Argonne for putting the list together. Prior to these larger meetings, and in the early days, facilities held their own meetings similar to the user meetings of today. However, the meeting held at ACO in Orsay, France in 1977 was the first such meeting with an international flavor and so it is on the list. However it is notmore » counted as number 1 since it was agreed way back to start the numbering with the 1982 DESY meeting. The 2005 USA National Meeting scheduled at CAMD in Baton Rouge had to be canceled due to Hurricane Katrina. It was ultimately held in 2007, with the CLS hosted meeting the following year. And a personal note from the magazine - Synchrotron Radiation News was born at the 1987 meeting in Madison, Wisconsin with a proposal that was put to a special session of the meeting organized by Susan Lord. Initial proposals were to model it after the CERN Courier, but it soon adopted its own distinct flavor.« less

  7. Stanford Synchrotron Radiation Laboratory activity report for 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantwell, K.

    1987-12-31

    1986 was another year of major advances for SSRL as the ultimate capabilities of PEP as a synchrotron radiation source became more apparent and a second PEP beam line was initiated, while effective development and utilization of SPEAR proceeded. Given these various PEP developments, SSRL abandoned its plans for a separate diffraction limited ring, as they abandoned their plans for a 6--7 GeV ring of the APS type last year. It has become increasingly apparent that SSRL should concentrate on developing SPEAR and PEP as synchrotron radiation sources. Consequently, initial planning for a 3 GeV booster synchrotron injector for SPEARmore » was performed in 1986, with a proposal to the Department of Energy resulting. As described in Chapter 2, the New Rings Group and the Machine Physics Group were combined into one Accelerator Physics Group. This group is focusing mainly on the improvement of SPEAR`s operating conditions and on planning for the conversion of PEP into a fourth generation x-ray source. Considerable emphasis is also being given to the training of accelerator physics graduate students. At the same time, several improvements of SSRL`s existing facilities were made. These are described in Chapter 3. Chapter 4 describes new SSRL beam lines being commissioned. Chapter 5 discusses SSRL`s present construction projects. Chapter 6 discusses a number of projects presently underway in the engineering division. Chapter 7 describes SSRL`s advisory panels while Chapter 8 discusses SSRL`s overall organization. Chapter 9 describes the experimental progress reports.« less

  8. 3D printed polarizing grids for IR-THz synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Ryu, Meguya; Linklater, Denver; Hart, William; Balčytis, Armandas; Skliutas, Edvinas; Malinauskas, Mangirdas; Appadoo, Dominique; Tan, Yaw-Ren Eugene; Ivanova, Elena P.; Morikawa, Junko; Juodkazis, Saulius

    2018-03-01

    Grid polarisers 3D-printed out of commercial acrilic resin were tested for the polariser function and showed spectral regions where the dichroic ratio {D}R> 1 and < 1 implying importance of molecular and/or stress induced anisotropy. Metal-coated 3D-printed THz optical elements can find a range of applications in intensity and polarization control of IR-THz beams. The used 3D printing method allows for fabrication of an arbitrary high aspect ratio grid polarisers. Polarization analysis of synchrotron THz radiation was carried out with a standard stretched polyethylene polariser and revealed that the linearly polarized (horizontal) component contributes up to 22% ± 5% to the circular polarized synchrotron emission extracted by a gold-coated mirror with a horizontal slit inserted near the bending magnet edge. Comparison with theoretical predictions shows a qualitative match with dominance of the edge radiation.

  9. Multichannel FPGA-Based Data-Acquisition-System for Time-Resolved Synchrotron Radiation Experiments

    NASA Astrophysics Data System (ADS)

    Choe, Hyeokmin; Gorfman, Semen; Heidbrink, Stefan; Pietsch, Ullrich; Vogt, Marco; Winter, Jens; Ziolkowski, Michael

    2017-06-01

    The aim of this contribution is to describe our recent development of a novel compact field-programmable gatearray (FPGA)-based data acquisition (DAQ) system for use with multichannel X-ray detectors at synchrotron radiation facilities. The system is designed for time resolved counting of single photons arriving from several-currently 12-independent detector channels simultaneously. Detector signals of at least 2.8 ns duration are latched by asynchronous logic and then synchronized with the system clock of 100 MHz. The incoming signals are subsequently sorted out into 10 000 time-bins where they are counted. This occurs according to the arrival time of photons with respect to the trigger signal. Repeatable mode of triggered operation is used to achieve high statistic of accumulated counts. The time-bin width is adjustable from 10 ns to 1 ms. In addition, a special mode of operation with 2 ns time resolution is provided for two detector channels. The system is implemented in a pocketsize FPGA-based hardware of 10 cm × 10 cm × 3 cm and thus can easily be transported between synchrotron radiation facilities. For setup of operation and data read-out, the hardware is connected via USB interface to a portable control computer. DAQ applications are provided in both LabVIEW and MATLAB environments.

  10. Millimeter wave coherent synchrotron radiation in a compact electron storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, J.B.; Blum, E.; Heese, R.

    1998-01-01

    Installation of a 2,856 MHz RF system into the XLS compact electron storage ring would allow the generation of millimeter wave coherent synchrotron radiation. Operating at 150 MeV, one could produce bunches containing on the order of 2 {times} 10{sup 7} electrons with a bunch length {sigma}{sub L0} = 0.3 mm, resulting in coherent emission at wavelengths above 0.8 mm. The characteristics of the source and the emitted radiation are discussed. In the case of 100 mrad horizontal collection angle, the average power radiated in the wavelength band 1 mm {le} {lambda} {le} 2 mm is 0.3 mW for singlemore » bunch operation and 24 mW for 80 bunch operation. The peak power in a single pulse of a few picosecond duration is on the order of one watt. By reducing the momentum compaction, the bunch length could be reduced to {sigma}{sub L0} = 0.15 mm, resulting in coherent synchrotron radiation down to 500 {micro}m.« less

  11. UV-CD12: synchrotron radiation circular dichroism beamline at ANKA

    PubMed Central

    Bürck, Jochen; Roth, Siegmar; Windisch, Dirk; Wadhwani, Parvesh; Moss, David; Ulrich, Anne S.

    2015-01-01

    Synchrotron radiation circular dichroism (SRCD) is a rapidly growing technique for structure analysis of proteins and other chiral biomaterials. UV-CD12 is a high-flux SRCD beamline installed at the ANKA synchrotron, to which it had been transferred after the closure of the SRS Daresbury. The beamline covers an extended vacuum-UV to near-UV spectral range and has been open for users since October 2011. The current end-station allows for temperature-controlled steady-state SRCD spectroscopy, including routine automated thermal scans of microlitre volumes of water-soluble proteins down to 170 nm. It offers an excellent signal-to-noise ratio over the whole accessible spectral range. The technique of oriented circular dichroism (OCD) was recently implemented for determining the membrane alignment of α-helical peptides and proteins in macroscopically oriented lipid bilayers as mimics of cellular membranes. It offers improved spectral quality <200 nm compared with an OCD setup adapted to a bench-top instrument, and accelerated data collection by a factor of ∼3. In addition, it permits investigations of low hydrated protein films down to 130 nm using a rotatable sample cell that avoids linear dichroism artifacts. PMID:25931105

  12. Coronary angiography using synchrotron radiation (invited)

    NASA Astrophysics Data System (ADS)

    Thompson, A. C.; Rubenstein, E.; Zeman, H. D.; Hofstadter, R.; Otis, J. N.; Giacomini, J. C.; Gordon, H. J.; Brown, G. S.; Thomlinson, W.; Kernoff, R. S.

    1989-07-01

    Imaging of coronary arteries using a venous instead of an arterial injection of contrast agent could provide a much safer method to diagnose heart disease. The tunability, intensity, and collimation of synchrotron radiation x-ray beams makes possible imaging systems with greatly improved imaging sensitivity. A pair of fan x-ray beams, a movable patient chair, and a multielement x-ray detector are used to acquire a pair of x-ray images above and below the iodine K edge. The logarithmic subtraction of these two images produces an image with excellent sensitivity to contrast agent and minimal sensitivity to bone and tissue. High-quality images from a dog and preliminary images from five humans have been obtained. Improvements are being made to the system to increase the effective radiation flux and to measure the position of both x-ray beams.

  13. Relativistic turbulence with strong synchrotron and synchrotron self-Compton cooling

    NASA Astrophysics Data System (ADS)

    Uzdensky, D. A.

    2018-07-01

    Many relativistic plasma environments in high-energy astrophysics, including pulsar wind nebulae (PWN), hot accretion flows on to black holes, relativistic jets in active galactic nuclei and gamma-ray bursts, and giant radio lobes, are naturally turbulent. The plasma in these environments is often so hot that synchrotron and inverse-Compton (IC) radiative cooling becomes important. In this paper, we investigate the general thermodynamic and radiative properties (and hence the observational appearance) of an optically thin relativistically hot plasma stirred by driven magnetohydrodynamic (MHD) turbulence and cooled by radiation. We find that if the system reaches a statistical equilibrium where turbulent heating is balanced by radiative cooling, the effective electron temperature tends to attain a universal value θ = kT_e/m_e c^2 ˜ 1/√{τ _T}, where τT = neσTL ≪ 1 is the system's Thomson optical depth, essentially independent of the strength of turbulent driving and hence of the magnetic field. This is because both MHD turbulent dissipation and synchrotron cooling are proportional to the magnetic energy density. We also find that synchrotron self-Compton (SSC) cooling and perhaps a few higher order IC components are automatically comparable to synchrotron in this regime. The overall broad-band radiation spectrum then consists of several distinct components (synchrotron, SSC, etc.), well separated in photon energy (by a factor ˜ τ_T^{-1}) and roughly equal in power. The number of IC peaks is checked by Klein-Nishina effects and depends logarithmically on τT and the magnetic field. We also examine the limitations due to synchrotron self-absorption, explore applications to Crab PWN and blazar jets, and discuss links to radiative magnetic reconnection.

  14. Variable-Period Undulators For Synchrotron Radiation

    DOEpatents

    Shenoy, Gopal; Lewellen, John; Shu, Deming; Vinokurov, Nikolai

    2005-02-22

    A new and improved undulator design is provided that enables a variable period length for the production of synchrotron radiation from both medium-energy and high-energy storage rings. The variable period length is achieved using a staggered array of pole pieces made up of high permeability material, permanent magnet material, or an electromagnetic structure. The pole pieces are separated by a variable width space. The sum of the variable width space and the pole width would therefore define the period of the undulator. Features and advantages of the invention include broad photon energy tunability, constant power operation and constant brilliance operation.

  15. Analysis of cortical bone porosity using synchrotron radiation microtomography to evaluate the effects of chemotherapy

    NASA Astrophysics Data System (ADS)

    Alessio, R.; Nogueira, L. P.; Salata, C.; Mantuano, A.; Almeida, A. P.; Braz, D.; de Almeida, C. E.; Tromba, G.; Barroso, R. C.

    2015-11-01

    Microporosities play important biologic and mechanical roles on health. One of the side effects caused by some chemotherapy drugs is the induction of amenorrhea, temporary or not, in premenopausal women, with a consequent decrease in estrogen production, which can lead to cortical bone changes. In the present work, the femur diaphysis of rats treated with chemotherapy drugs were evaluated by 3D morphometric parameters using synchrotron radiation microtomography. Control animals were also evaluated for comparison. The 3D tomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the ELETTRA Synchrotron Laboratory in Trieste, Italy. Results showed significant differences in morphometric parameters measured from the 3D images of femur diaphysis of rats.

  16. Numerical simulation of runaway electrons: 3-D effects on synchrotron radiation and impurity-based runaway current dissipation

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, D.; Carbajal, L.; Spong, D.; Izzo, V.

    2018-05-01

    Numerical simulations of runaway electrons (REs) with a particular emphasis on orbit dependent effects in 3-D magnetic fields are presented. The simulations were performed using the recently developed Kinetic Orbit Runaway electron Code (KORC) that computes the full-orbit relativistic dynamics in prescribed electric and magnetic fields including radiation damping and collisions. The two main problems of interest are synchrotron radiation and impurity-based RE dissipation. Synchrotron radiation is studied in axisymmetric fields and in 3-D magnetic configurations exhibiting magnetic islands and stochasticity. For passing particles in axisymmetric fields, neglecting orbit effects might underestimate or overestimate the total radiation power depending on the direction of the radial shift of the drift orbits. For trapped particles, the spatial distribution of synchrotron radiation exhibits localized "hot" spots at the tips of the banana orbits. In general, the radiation power per particle for trapped particles is higher than the power emitted by passing particles. The spatial distribution of synchrotron radiation in stochastic magnetic fields, obtained using the MHD code NIMROD, is strongly influenced by the presence of magnetic islands. 3-D magnetic fields also introduce a toroidal dependence on the synchrotron spectra, and neglecting orbit effects underestimates the total radiation power. In the presence of magnetic islands, the radiation damping of trapped particles is larger than the radiation damping of passing particles. Results modeling synchrotron emission by RE in DIII-D quiescent plasmas are also presented. The computation uses EFIT reconstructed magnetic fields and RE energy distributions fitted to the experimental measurements. Qualitative agreement is observed between the numerical simulations and the experiments for simplified RE pitch angle distributions. However, it is noted that to achieve quantitative agreement, it is necessary to use pitch angle

  17. Coherent synchrotron radiation by electrons moving on circular orbits

    DOE PAGES

    Cai, Yunhai

    2017-06-14

    Here, we study coherent synchrotron radiation by electrons in the Frenet-Serret coordinate system with a constant curvature 1/ρ. Based on the Hamiltonian in the Courant-Synder theory of particle accelerators, we find in general that the transverse force is essentially the Lorentz force but with a substitution of the transverse magnetic field B x,y → (1+x/ρ)B x,y, where x and y are the transverse positions. The curvature term provides us a key to derive the point-charge wakefield explicitly in terms of the incomplete elliptic integrals of the first and second kind, resulting in a steady-state theory of the coherent synchrotron radiationmore » in two-dimensional free space.« less

  18. ANKA, a customer-oriented synchrotron radiation facility for microfabrication and analytical services

    NASA Astrophysics Data System (ADS)

    Pea Anka Project Group; Buth, G.; Doyle, S.; Einfeld, D.; Hagelstein, M.; Hermle, S.; Huttel, E.; Krüssel, A.; Lange, M.; Mathis, Y.-L.; Mexner, W.; Moser, H. O.; Pellegrin, E.; Ristau, U.; Rossmanith, R.; Schaper, J.; Schieler, H.; Simon, R.; Steininger, R.; Voigt, S.; Walther, R.; Perez, F.; Pont, M.; Plesko, M.

    1998-03-01

    ANKA (Angströmquelle Karlsruhe) is a state-of-the-art synchrotron radiation facility under construction at the Forschungszentrum Karlsruhe. Based on a 2.5 GeV electron storage ring it will deliver photons predominantly in the hard X-ray range but it will also feature both XUV and infrared beamlines. In its first operational phase the radiation will be taken out of normal-conducting dipole bending magnets, while five free long straight sections are foreseen to accommodate insertion devices later on. ANKA has a novel mission, namely to provide synchrotron-radiation based services to industrial and other customers, in the fields of microfabrication and materials analysis. A limited liability company, ANKA GmbH, is being founded to operate the facility. Although commercial services to customers will represent more than half of the overall activity, these services will be complemented by providing beam time for research users.

  19. Time-resolved GRB spectra in the complex radiation of synchrotron and Compton processes

    NASA Astrophysics Data System (ADS)

    Jiang, Y. G.; Hu, S. M.; Chen, X.; Li, K.; Guo, D. F.; Li, Y. T.; Li, H. Z.; Zhao, Y. Y.; Lin, H. N.; Chang, Z.

    2016-03-01

    Under the steady-state condition, the spectrum of electrons is investigated by solving the continuity equation under the complex radiation of both the synchrotron and Compton processes. The resulted gamma-ray burst (GRB) spectrum is a broken power law in both the fast and slow cooling phases. On the basis of this electron spectrum, the spectral indices of the Band function in four different phases are presented. In the complex radiation frame, the detail investigation on physical parameters reveals that three models can answer the α ˜ -1 problem, which are the synchrotron plus synchrotron self-Compton in the internal and the external shock models, and the synchrotron plus the external Compton processes in the external shock model. A possible marginal to fast cooling phase transition in GRB 080916C is discussed. The time-resolved spectra in different main pulses of GRB 100724B, GRB 100826A and GRB 130606B are investigated. We found that the flux is proportional to the peak energy in almost all main pulses. A significant (5σ) correlation for Fp ˜ Ep is evident the first main pulse of GRB 100826A, and three marginally significant (3σ) correlations Fp ˜ Ep are found in main pulses of GRB 100826A and GRB 130606B. The correlation between spectral index and Ep at 3 ˜ 4σ level are observed in the first main pulse of GRB 100826A. Such correlations are possible explained in the complex radiation scenario.

  20. Examination for optimization of synchrotron radiation spectrum for the x ray depth lithography

    NASA Astrophysics Data System (ADS)

    Dany, Raimund

    1992-06-01

    The effect of reducing the vertical distribution of synchrotron radiation on its spectral distribution is examined through resin irradiation. The resulting filter effect is compared to that of absorption filters. Transmission coefficients of titanium, gold, and polyamide were calculated from linear absorption coefficients with the Beer law. The use of a diaphragm in X-ray depth lithography, which is the first step of the LIGA (Lithography Galvanoforming Molding) process, is discussed. A calorimetric device for determining the synchrotron radiation power and distribution was developed and tested. Measurements at the ELSA storage ring show a strong dependence of the vertical emittance on the electron current.

  1. Synchrotron radiation and diffusive shock acceleration - A short review and GRB perspective

    NASA Astrophysics Data System (ADS)

    Karlica, Mile

    2015-12-01

    In this talk we present the sponge" model and its possible implications on the GRB afterglow light curves. "Sponge" model describes source of GRB afterglow radiation as fragmented GRB ejecta where bubbles move through the rarefied medium. In the first part of the talk a short introduction to synchrotron radiation and Fermi acceleration was presented. In the assumption that X-ray luminosity of GRB afterglow phase comes from the kinetic energy losses of clouds in ejecta medium radiated as synchrotron radiation we solved currently very simple equation of motion to find which combination of cloud and medium regime describes the afterglow light curve the best. We proposed for the first step to watch simple combinations of expansion regimes for both bubbles and surrounding medium. The closest case to the numerical fit of GRB 150403A with time power law index k = 1.38 is the combination of constant bubbles and Sedov like expanding medium with time power law index k = 1.25. Of course the question of possible mixture of variuos regime combinations is still open within this model.

  2. Network-based real-time radiation monitoring system in Synchrotron Radiation Research Center.

    PubMed

    Sheu, R J; Wang, J P; Chen, C R; Liu, J; Chang, F D; Jiang, S H

    2003-10-01

    The real-time radiation monitoring system (RMS) in the Synchrotron Radiation Research Center (SRRC) has been upgraded significantly during the past years. The new framework of the RMS is built on the popular network technology, including Ethernet hardware connections and Web-based software interfaces. It features virtually no distance limitations, flexible and scalable equipment connections, faster response time, remote diagnosis, easy maintenance, as well as many graphic user interface software tools. This paper briefly describes the radiation environment in SRRC and presents the system configuration, basic functions, and some operational results of this real-time RMS. Besides the control of radiation exposures, it has been demonstrated that a variety of valuable information or correlations could be extracted from the measured radiation levels delivered by the RMS, including the changes of operating conditions, beam loss pattern, radiation skyshine, and so on. The real-time RMS can be conveniently accessed either using the dedicated client program or World Wide Web interface. The address of the Web site is http:// www-rms.srrc.gov.tw.

  3. Top-Off Injection and Higher Currents at the Stanford Synchrotron Radiation Lightsource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Johannes M.; Liu, James C.; Prinz, Alyssa A.

    2011-04-05

    The Stanford Synchrotron Radiation Lightsource (SSRL) at the SLAC National Accelerator Laboratory is a 234 m circumference storage ring for 3 GeV electrons with its synchrotron radiation serving currently 13 beamlines with about 27 experimental stations. It operated for long time with 100 mA peak current provided by usually three injections per day. In July 2009, the maximum beam current was raised to 200 mA. Over the period from June 2009 to March 2010, Top-Off operation started at every beamline. Top-Off, i.e., the injection of electrons into the storage ring with injection stoppers open, is necessary for SSRL to reachmore » its design current of 500 mA. In the future, the maximal power of the injection current will also soon be raised from currently 1.5 W to 5 W. The Radiation Protection Department at SLAC worked with SSRL on the specifications for the safety systems for operation with Top-Off injection and higher beam currents.« less

  4. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutton, R.D.

    1994-01-01

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of threemore » used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal`s photo multiplier tube (PMT).« less

  5. Investigation on corrosion behavior of Ni-based alloys in molten fluoride salt using synchrotron radiation techniques

    NASA Astrophysics Data System (ADS)

    Liu, Min; Zheng, Junyi; Lu, Yanling; Li, Zhijun; Zou, Yang; Yu, Xiaohan; Zhou, Xingtai

    2013-09-01

    Ni-based alloys have been selected as the structural materials in molten-salt reactors due to their high corrosion resistance and excellent mechanical properties. In this paper, the corrosion behavior of some Ni-based superalloys including Inconel 600, Hastelloy X and Hastelloy C-276 were investigated in molten fluoride salts at 750 °C. Morphology and microstructure of corroded samples were analyzed using scanning electron microscope (SEM), synchrotron radiation X-ray microbeam fluorescence (μ-XRF) and synchrotron radiation X-ray diffraction (SR-XRD) techniques. Results from μ-XRF and SR-XRD show that the main depleted alloying element of Ni-based alloys in molten fluoride salt is Cr. In addition, the results indicate that Mo can enhance the corrosion resistance in molten FLiNaK salts. Among the above three Ni-based alloys, Hastelloy C-276 exhibits the best corrosion resistance in molten fluoride salts 750 °C. Higher-content Mo and lower-content Cr in Hastelloy C-276 alloy were responsible for the better anti-corrosive performance, compared to the other two alloys.

  6. Structural anomalies in undoped Gallium Arsenide observed in high resolution diffraction imaging with monochromatic synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Steiner, B.; Kuriyama, M.; Dobbyn, R. C.; Laor, U.; Larson, D.; Brown, M.

    1988-01-01

    Novel, streak-like disruption features restricted to the plane of diffraction have recently been observed in images obtained by synchrotron radiation diffraction from undoped, semi-insulating gallium arsenide crystals. These features were identified as ensembles of very thin platelets or interfaces lying in (110) planes, and a structural model consisting of antiphase domain boundaries was proposed. We report here the other principal features observed in high resolution monochromatic synchrotron radiation diffraction images: (quasi) cellular structure; linear, very low-angle subgrain boundaries in (110) directions, and surface stripes in a (110) direction. In addition, we report systematic differences in the acceptance angle for images involving various diffraction vectors. When these observations are considered together, a unifying picture emerges. The presence of ensembles of thin (110) antiphase platelet regions or boundaries is generally consistent not only with the streak-like diffraction features but with the other features reported here as well. For the formation of such regions we propose two mechanisms, operating in parallel, that appear to be consistent with the various defect features observed by a variety of techniques.

  7. Structural anomalies in undoped gallium arsenide observed in high-resolution diffraction imaging with monochromatic synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Steiner, B.; Kuriyama, M.; Dobbyn, R. C.; Laor, U.; Larson, D.

    1989-01-01

    Novel, streak-like disruption features restricted to the plane of diffraction have recently been observed in images obtained by synchrotron radiation diffraction from undoped, semi-insulating gallium arsenide crystals. These features were identified as ensembles of very thin platelets or interfaces lying in (110) planes, and a structural model consisting of antiphase domain boundaries was proposed. We report here the other principal features observed in high resolution monochromatic synchrotron radiation diffraction images: (quasi) cellular structure; linear, very low-angle subgrain boundaries in (110) directions, and surface stripes in a (110) direction. In addition, we report systematic differences in the acceptance angle for images involving various diffraction vectors. When these observations are considered together, a unifying picture emerges. The presence of ensembles of thin (110) antiphase platelet regions or boundaries is generally consistent not only with the streak-like diffraction features but with the other features reported here as well. For the formation of such regions we propose two mechanisms, operating in parallel, that appear to be consistent with the various defect features observed by a variety of techniques.

  8. Simulation of emission and propagation of coherent synchrotron radiation wave fronts using the methods of wave optics

    NASA Astrophysics Data System (ADS)

    Chubar, O.

    2006-09-01

    The paper describes methods of efficient calculation of spontaneous synchrotron radiation (SR) by relativistic electrons in storage rings, and propagation of this radiation through optical elements and drift spaces of beamlines, using the principles of wave optics. In addition to the SR from one electron, incoherent and coherent synchrotron radiation (CSR) emitted by electron bunches is treated. CPU-efficient CSR calculation method taking into account 6D phase space distribution of electrons in a bunch is proposed. The properties of CSR emitted by electron bunches with small longitudinal and large transverse size are studied numerically (such situation can be realized in storage rings e.g. by transverse deflection of the electron bunches in special RF cavities). It is shown that if the transverse size of a bunch is much larger than the diffraction limit for single-electron SR at a given wavelength - it affects the angular distribution of the CSR at this wavelength and reduces the coherent flux. Nevertheless, for transverse bunch dimensions up to several millimeters and the longitudinal bunch size smaller than hundred micrometers, the resulting CSR flux in the far infrared spectral range is still many orders of magnitude higher than the flux of incoherent SR.

  9. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Study on the characteristics of linac based THz light source

    NASA Astrophysics Data System (ADS)

    Zhu, Xiong-Wei; Wang, Shu-Hong; Chen, Sen-Yu

    2009-10-01

    There are many methods based on linac for THz radiation production. As one of the options for the Beijing Advanced Light, an ERL test facility is proposed for THz radiation. In this test facility, there are 4 kinds of methods to produce THz radiation: coherent synchrotron radiation (CSR), synchrotron radiation (SR), low gain FEL oscillator, and high gain SASE FEL. In this paper, we study the characteristics of the 4 kinds of THz light sources.

  10. Is the GeV-TeV emission of PKS 0447-439 from the proton synchrotron radiation?

    NASA Astrophysics Data System (ADS)

    Gao, Quan-Gui; Lu, Fang-Wu; Ma, Ju; Ren, Ji-Yang; Li, Huai-Zhen

    2018-06-01

    We study the multi-wavelength emission features of PKS 0447-439 in the frame of the one-zone homogeneous lepto-hadronic model. In this model, we assumed that the steady power-laws with exponential cut-offs distributions of protons and electrons are injected into the source. The non-linear time-dependent kinematic equations, describing the evolution of protons, electrons and photons, are defined; these equations self-consistently involve synchrotron radiation of protons, photon-photon interaction, synchrotron radiation of electron/positron pairs, inverse Compton scattering and synchrotron self-absorption. The model is applied to reproduce the multi-wavelength spectrum of PKS 0447-439. Our results indicate that the spectral energy distribution (SED) of PKS 0447-439 can be reproduced well by the model. In particular, the GeV-TeV emission is produced by the synchrotron radiation of relativistic protons. The physically plausible solutions require the magnetic strength 10 G≲ B ≲ 100 G. We found that the observed spectrum of PKS 0447-439 can be reproduced well by the model whether z = 0.16 or z = 0.2, and the acceptable upper limit of redshift is z=0.343.

  11. Finite element analysis of osteoporosis models based on synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Xu, W.; Xu, J.; Zhao, J.; Sun, J.

    2016-04-01

    With growing pressure of social aging, China has to face the increasing population of osteoporosis patients as well as the whole world. Recently synchrotron radiation has become an essential tool for biomedical exploration with advantage of high resolution and high stability. In order to study characteristic changes in different stages of primary osteoporosis, this research focused on the different periods of osteoporosis of rats based on synchrotron radiation. Both bone histomorphometry analysis and finite element analysis were then carried on according to the reconstructed three dimensional models. Finally, the changes of bone tissue in different periods were compared quantitatively. Histomorphometry analysis showed that the structure of the trabecular in osteoporosis degraded as the bone volume decreased. For femurs, the bone volume fraction (Bone volume/ Total volume, BV/TV) decreased from 69% to 43%. That led to the increase of the thickness of trabecular separation (from 45.05μ m to 97.09μ m) and the reduction of the number of trabecular (from 7.99 mm-1 to 5.97mm-1). Simulation of various mechanical tests with finite element analysis (FEA) indicated that, with the exacerbation of osteoporosis, the bones' ability of resistance to compression, bending and torsion gradually became weaker. The compression stiffness of femurs decreased from 1770.96 Fμ m-1 to 697.41 Fμ m-1, the bending and torsion stiffness were from 1390.80 Fμ m-1 to 566.11 Fμ m-1 and from 2957.28N.m/o to 691.31 N.m/o respectively, indicated the decrease of bone strength, and it matched the histomorphometry analysis. This study suggested that FEA and synchrotron radiation were excellent methods for analysing bone strength conbined with histomorphometry analysis.

  12. Time-resolved experiments in the frequency domain using synchrotron radiation (invited)

    NASA Astrophysics Data System (ADS)

    De Stasio, Gelsomina; Giusti, A. M.; Parasassi, T.; Ravagnan, G.; Sapora, O.

    1992-01-01

    PLASTIQUE is the only synchrotron radiation beam line in the world that performs time-resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and the dynamics of molecules. This technique measures fluorescence lifetimes with picosecond resolution in the near UV spectral range. Such accurate measurements are rendered possible by taking phase and modulation data, and by the advantages of the cross-correlation technique. A successful experiment demonstrated the radiation damage induced by low doses of radiation on rabbit blood cell membranes.

  13. Calculation of the coherent synchrotron radiation impedance from a wiggler

    NASA Astrophysics Data System (ADS)

    Wu, Juhao; Raubenheimer, Tor O.; Stupakov, Gennady V.

    2003-04-01

    Most studies of coherent synchrotron radiation (CSR) have considered only the radiation from independent dipole magnets. However, in the damping rings of future linear colliders, a large fraction of the radiation power will be emitted in damping wigglers. In this paper, the longitudinal wakefield and impedance due to CSR in a wiggler are derived in the limit of a large wiggler parameter K. After an appropriate scaling, the results can be expressed in terms of universal functions, which are independent of K. Analytical asymptotic results are obtained for the wakefield in the limit of large and small distances, and for the impedance in the limit of small and high frequencies.

  14. Characterization of ion-induced radiation effects in nuclear materials using synchrotron x-ray techniques

    DOE PAGES

    Lang, Maik; Tracy, Cameron L.; Palomares, Raul I.; ...

    2015-05-01

    Recent efforts to characterize the nanoscale structural and chemical modifications induced by energetic ion irradiation in nuclear materials have greatly benefited from the application of synchrotron-based x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques. Key to the study of actinide-bearing materials has been the use of small sample volumes, which are particularly advantageous, as the small quantities minimize the level of radiation exposure at the ion-beam and synchrotron user facility. This approach utilizes energetic heavy ions (energy range: 100 MeV–3 GeV) that pass completely through the sample thickness and deposit an almost constant energy per unit length along theirmore » trajectory. High energy x-rays (25–65 keV) from intense synchrotron light sources are then used in transmission geometry to analyze ion-induced structural and chemical modifications throughout the ion tracks. We describe in detail the experimental approach for utilizing synchrotron radiation (SR) to study the radiation response of a range of nuclear materials (e.g., ThO 2 and Gd 2Ti xZr 2–xO 7). Also addressed is the use of high-pressure techniques, such as the heatable diamond anvil cell, as a new means to expose irradiated materials to well-controlled high-temperature (up to 1000 °C) and/or high-pressure (up to 50 GPa) conditions. Furthermore, this is particularly useful for characterizing the annealing kinetics of irradiation-induced material modifications.« less

  15. Thickness determination of thin solid films by angle-resolved X-ray fluorescence spectrometry using monochromatized synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Schmitt, W.; Drotbohm, P.; Rothe, J.; Hormes, J.; Ottermann, C. R.; Bange, K.

    1995-05-01

    Thickness measurements by the method of angle-resolved, self-ratio X-ray fluorescence spectrometry (AR/SR/XFS) have been carried out on thin solid films using monochromatized synchrotron radiation at the Bonn storage ring ELSA. Synchrotron radiation was monochromatized by means of a double-crystal monochromator and fluorescence radiation was detected by a Si(Li) semiconductor detector. The results for sample systems consisting of Au on Si, Cr on SiO2 and TiO2 on alkali-free glass are very satisfactory and agree well with results obtained by other methods.

  16. High-Resolution Synchrotron Radiation Imaging of Trace Metal Elemental Concentrations in Porites Coral

    NASA Astrophysics Data System (ADS)

    Cirino, M.; Dunbar, R. B.; Tangri, N.; Mehta, A.

    2014-12-01

    We investigated the use of synchrotron radiation for elemental imaging within the skeleton of a Porites coral from American Samoa to explore the fine-scale structure of strontium to calcium (Sr/Ca) variability. The use of a synchrotron for coral paleoclimate analysis is relatively new. The method provides a high resolution, two-dimensional elemental map of a coral surface. The aragonitic skeleton of Porites sp. colonies has been widely used for paleoclimate reconstruction as the oxygen isotope ratio (δ18O) signal varies with both sea surface temperature (SST) and sea surface salinity (SSS). Sr/Ca has been used in previous studies in conjunction with δ18O to deconvolve SST from SSS, as Sr/Ca in the coral skeleton varies with SST, but not SSS. However, recent studies suggest that in some cases Sr/Ca variability in coral does not reliably reflect changes in SST. We sought to address this puzzle by investigating Sr/Ca variability in Porites corals at a very fine spatial scale while also demonstrating the suitability of the synchrotron as a coral analysis tool. We also considered Sr/Ca variability as it pertains to the coral's structural elements. The Stanford Linear Accelerator Center synchrotron station generates collimated x-rays in the energy range of 4500-45000 eV with beam diameters as small as 20 μm. Synchrotron imaging allows faster and higher-resolution Sr/Ca analysis than does inductively coupled plasma mass spectrometry (ICP-MS). It also is capable of mapping spatial distributions of many elements, which aids in the development of a multiproxy approach to paleoclimate reconstruction. Imaging and analysis of the Porites coral using synchrotron radiation revealed an intricate sub-seasonal Sr/Ca signal, possibly correlating to a sub-monthly resolution. This signal, which seems unrelated to SST, dominates the annual signal.

  17. Synchrotron radiation imaging is a powerful tool to image brain microvasculature.

    PubMed

    Zhang, Mengqi; Peng, Guanyun; Sun, Danni; Xie, Yuanyuan; Xia, Jian; Long, Hongyu; Hu, Kai; Xiao, Bo

    2014-03-01

    Synchrotron radiation (SR) imaging is a powerful experimental tool for micrometer-scale imaging of microcirculation in vivo. This review discusses recent methodological advances and findings from morphological investigations of cerebral vascular networks during several neurovascular pathologies. In particular, it describes recent developments in SR microangiography for real-time assessment of the brain microvasculature under various pathological conditions in small animal models. It also covers studies that employed SR-based phase-contrast imaging to acquire 3D brain images and provide detailed maps of brain vasculature. In addition, a brief introduction of SR technology and current limitations of SR sources are described in this review. In the near future, SR imaging could transform into a common and informative imaging modality to resolve subtle details of cerebrovascular function.

  18. 6th International Conference on Biophysics & Synchrotron Radiation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moffat, Keith

    1999-08-03

    The 6th International Conference on Biophysics and Synchrotron Rdiation was held at the Advanced Photon Source, Argonne National Laboratory, from August 4-8, 1998, with pre-conference activities on August 3. Over 300 attendees and 65 presenters participated in the conference that was collaboratively hosted by the University of Chicago, Center for Advanced Radiation Sources and the Advanced Photon Source.

  19. Synchrotron radiation X-ray microtomography and histomorphometry for evaluation of chemotherapy effects in trabecular bone structure

    NASA Astrophysics Data System (ADS)

    Alessio, R.; Nogueira, L. P.; Almeida, A. P.; Colaço, M. V.; Braz, D.; Andrade, C. B. V.; Salata, C.; Ferreira-Machado, S. C.; de Almeida, C. E.; Tromba, G.; Barroso, R. C.

    2014-04-01

    Three-dimensional microtomography has the potential to examine complete bones of small laboratory animals with very high resolution in a non-invasive way. One of the side effects caused by some chemotherapy drugs is the induction of amenorrhea, temporary or not, in premenopausal women, with a consequent decrease in estrogen production, which can lead to bone changes. In the present work, the femur heads of rats treated with chemotherapy drugs were evaluated by 3D histomorphometry using synchrotron radiation microcomputed tomography. Control animals were also evaluated for comparison. The 3D tomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. Results showed significant differences in morphometric parameters measured from the 3D images of femur heads of rats in both analyzed groups.

  20. NONCOHERENT RADIATION DUE TO ELECTRONS IN A SYNCHROTRON AND SOME OF ITS APPLICATION (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ado, Yu.M.

    1963-01-01

    Experiments are described in which the properties ot noncoherent radiation due to electrons accelerated in a synchrotron are investigated. The experiments were performed at the 280-Mev electron synchrotron of the Lebedeff Institute for Physics. An apparatus was constructed for the determination of optical radiation spectra arising from monoenergetic electrons during the complete acceleration cycle. The energy distribution of the radiation was determined for three electron energies, 150, 225, and 250 Mev. The intensity of various wvavelength radiation was measured as a function of the electron energy from 70 to 280 Mev. The effect of the intensity on the number ofmore » electrons was found to be linear for 250-Mev electrons. Three applications are described for the electron optical radiation: the determination of the number of accelerated electrons, the measurement of the amount of electrons hitting a target during the acceleration process, and the determination of the azimuthal extent of the clots of accelerated electrons. (TTT)« less

  1. Longitudinal bunch dynamics study with coherent synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, B. E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; May, T. E.; Vogt, J. M.; Wurtz, W. A.

    2016-02-01

    An electron bunch circulating in a storage ring constitutes a dynamical system with both longitudinal and transverse degrees of freedom. Through a self-interaction with the wakefields created by the bunch, certain of these degrees may get excited, defining a set of eigenmodes analogous to a spectroscopic series. The present study focuses on the longitudinal modes of a single bunch. The excitation of a mode appears as an amplitude modulation at the mode frequency of the coherent synchrotron radiation (CSR) emitted by the bunch. The modulations are superimposed on a much larger continuum from CSR emission in the continuous mode. A given eigenmode is classified by the integer m which is the ratio of the mode frequency to the synchrotron frequency. The present measurements extend up to m =8 and focus on the region near the instability thresholds. At threshold the modes are excited sequentially, resembling a staircase when the mode frequencies are plotted as a function of bunch length or synchrotron frequency. Adjacent modes are observed to coexist at the boundaries between the modes. An energy-independent correlation is observed between the threshold current for an instability and the corresponding zero-current bunch length. Measurements were made at five beam energies between 1.0 and 2.9 GeV at the Canadian Light Source. The CSR was measured in the time domain using an unbiased Schottky diode spanning 50-75 GHz.

  2. 6th international conference on biophysics and synchrotron radiation. Program/Abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pittroff, Connie; Strasser, Susan Barr

    1999-08-03

    This STI product consists of the Program/Abstracts book that was prepared for the participants in the Sixth International Conference on Biophysics and Synchrotron Radiation that was held August 4-8, 1998, at the Advanced Photon Source, Argonne National Laboratory. This book contains the full conference program and abstracts of the scientific presentations.

  3. Synchrotron Radiation from Outer Space and the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.

    2006-01-01

    The universe provides numerous extremely interesting astrophysical sources of synchrotron X radiation. The Chandra X-ray Observatory and other X-ray missions provide powerful probes of these and other cosmic X-ray sources. Chandra is the X-ray component of NASA's Great Observatory Program which also includes the Hubble Space telescope, the Spitzer Infrared Telescope Facility, and the now defunct Compton Gamma-Ray Observatory. The Chandra X-Ray Observatory provides the best angular resolution (sub-arcsecond) of any previous, current, or planned (for the foreseeable near future) space-based X-ray instrumentation. We present here a brief overview of the technical capability of this X-Ray observatory and some of the remarkable discoveries involving cosmic synchrotron sources.

  4. Nuclear Bragg scattering studies in [sup 57]Fe with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haustein, P.E.

    1993-01-01

    Studies of nuclear Bragg x-ray scattering of synchrotron radiation, using crystals of [alpha]-[sup 57]Fe[sub 2]O[sub 3], have been carried out at the NSLS at Brookhaven National Laboratory and at the Cornell University CHESS facility. These studies have demonstrated that nuclear resonance states can be used to produce filtered x-ray beams which have extremely narrow bandwidth, small angular divergence and unique polarization and temporal properties. this combination of characteristics, unobtainable with radioactive sources, makes synchrotron-based Moessbauer spectroscopy feasible and is an important complement to existing methods. A review of the experimental methodology is presented. As well as come suggestions for fullermore » exploitation of this new technique.« less

  5. Nuclear Bragg scattering studies in {sup 57}Fe with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haustein, P.E.

    1993-03-01

    Studies of nuclear Bragg x-ray scattering of synchrotron radiation, using crystals of {alpha}-{sup 57}Fe{sub 2}O{sub 3}, have been carried out at the NSLS at Brookhaven National Laboratory and at the Cornell University CHESS facility. These studies have demonstrated that nuclear resonance states can be used to produce filtered x-ray beams which have extremely narrow bandwidth, small angular divergence and unique polarization and temporal properties. this combination of characteristics, unobtainable with radioactive sources, makes synchrotron-based Moessbauer spectroscopy feasible and is an important complement to existing methods. A review of the experimental methodology is presented. As well as come suggestions for fullermore » exploitation of this new technique.« less

  6. Focusing of white synchrotron radiation using large-acceptance cylindrical refractive lenses made of single – crystal diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polikarpov, M., E-mail: polikarpov.maxim@mail.ru; Snigireva, I.; Snigirev, A.

    2016-07-27

    Large-aperture cylindrical refractive lenses were manufactured by laser cutting of single-crystal diamond. Five linear single lenses with apertures of 1 mm and the depth of the structure of 1.2 mm were fabricated and tested at the ESRF ID06 beamline performing the focusing of white-beam synchrotron radiation. Uniform linear focus was stable during hours of exposure, representing such lenses as pre-focusing and collimating devices suitable for the front-end sections of today synchrotron radiation sources.

  7. Bio-metals imaging and speciation in cells using proton and synchrotron radiation X-ray microspectroscopy

    PubMed Central

    Ortega, Richard; Devès, Guillaume; Carmona, Asunción

    2009-01-01

    The direct detection of biologically relevant metals in single cells and of their speciation is a challenging task that requires sophisticated analytical developments. The aim of this article is to present the recent achievements in the field of cellular chemical element imaging, and direct speciation analysis, using proton and synchrotron radiation X-ray micro- and nano-analysis. The recent improvements in focusing optics for MeV-accelerated particles and keV X-rays allow application to chemical element analysis in subcellular compartments. The imaging and quantification of trace elements in single cells can be obtained using particle-induced X-ray emission (PIXE). The combination of PIXE with backscattering spectrometry and scanning transmission ion microscopy provides a high accuracy in elemental quantification of cellular organelles. On the other hand, synchrotron radiation X-ray fluorescence provides chemical element imaging with less than 100 nm spatial resolution. Moreover, synchrotron radiation offers the unique capability of spatially resolved chemical speciation using micro-X-ray absorption spectroscopy. The potential of these methods in biomedical investigations will be illustrated with examples of application in the fields of cellular toxicology, and pharmacology, bio-metals and metal-based nano-particles. PMID:19605403

  8. Synchrotron radiation imaging is a powerful tool to image brain microvasculature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Mengqi; Sun, Danni; Xie, Yuanyuan

    2014-03-15

    Synchrotron radiation (SR) imaging is a powerful experimental tool for micrometer-scale imaging of microcirculation in vivo. This review discusses recent methodological advances and findings from morphological investigations of cerebral vascular networks during several neurovascular pathologies. In particular, it describes recent developments in SR microangiography for real-time assessment of the brain microvasculature under various pathological conditions in small animal models. It also covers studies that employed SR-based phase-contrast imaging to acquire 3D brain images and provide detailed maps of brain vasculature. In addition, a brief introduction of SR technology and current limitations of SR sources are described in this review. Inmore » the near future, SR imaging could transform into a common and informative imaging modality to resolve subtle details of cerebrovascular function.« less

  9. Synchrotron Radiation X-ray Diffraction Techniques Applied to Insect Flight Muscle.

    PubMed

    Iwamoto, Hiroyuki

    2018-06-13

    X-ray fiber diffraction is a powerful tool used for investigating the molecular structure of muscle and its dynamics during contraction. This technique has been successfully applied not only to skeletal and cardiac muscles of vertebrates but also to insect flight muscle. Generally, insect flight muscle has a highly ordered structure and is often capable of high-frequency oscillations. The X-ray diffraction studies on muscle have been accelerated by the advent of 3rd-generation synchrotron radiation facilities, which can generate brilliant and highly oriented X-ray beams. This review focuses on some of the novel experiments done on insect flight muscle by using synchrotron radiation X-rays. These include diffraction recordings from single myofibrils within a flight muscle fiber by using X-ray microbeams and high-speed diffraction recordings from the flight muscle during the wing-beat of live insects. These experiments have provided information about the molecular structure and dynamic function of flight muscle in unprecedented detail. Future directions of X-ray diffraction studies on muscle are also discussed.

  10. Spherical quartz crystals investigated with synchrotron radiation

    DOE PAGES

    Pereira, N. R.; Macrander, A. T.; Hill, K. W.; ...

    2015-10-27

    The quality of x-ray spectra and images obtained from plasmas with spherically bent crystals depends in part on the crystal's x-ray diffraction across the entire crystal surface. We employ the energy selectivity and high intensity of synchrotron radiation to examine typical spherical crystals from alpha-quartz for their diffraction quality, in a perpendicular geometry that is particularly convenient to examine sagittal focusing. The crystal's local diffraction is not ideal: the most noticeable problems come from isolated regions that so far have failed to correlate with visible imperfections. In conclusion, excluding diffraction from such problem spots has little effect on the focusmore » beyond a decrease in background.« less

  11. Physics of compact nonthermal sources. III - Energetic considerations. [electron synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Burbidge, G. R.; Jones, T. W.; Odell, S. L.

    1974-01-01

    The energy content of the compact incoherent electron-synchrotron sources 3C 84, 3C 120, 3C 273, 3C 279, 3C 454.3, CTA 102, 3C 446, PKS 2134+004, VRO 42.22.01 and OJ 287 is calculated on the assumption that the low-frequency turnovers in the radio spectrum are due to self-absorption and that the electron distribution is isotropic. The dependence of the source parameters on various modifications of the standard assumptions is determined. These involve relativistic motions, alternate explanations for the low-frequency turnover, proton-synchrotron radiation, and distance to the source. The canonical interpretation is found to be accurate in many respects; some of the difficulties and ways of dealing with them are discussed in detail.

  12. Synchrotron Vacuum Ultraviolet Light and Soft X-Ray Radiation Effects on Aluminized Teflon FEP Investigated

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1999-01-01

    Since the Hubble Space Telescope (HST) was deployed in low Earth orbit in April 1990, two servicing missions have been conducted to upgrade its scientific capabilities. Minor cracking of second-surface metalized Teflon FEP (DuPont; fluorinated ethylene propylene) surfaces from multilayer insulation (MLI) was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission, which was conducted 3.6 years after deployment. During the second HST servicing mission, 6.8 years after deployment, astronaut observations and photographic documentation revealed significant cracks in the Teflon FEP layer of the MLI on both the solar- and anti-solar-facing surfaces of the telescope. NASA Goddard Space Flight Center directed the efforts of the Hubble Space Telescope MLI Failure Review Board, whose goals included identifying the low-Earth-orbit environmental constituent(s) responsible for the cracking and embrittling of Teflon FEP which was observed during the second servicing mission. The NASA Lewis Research Center provided significant support to this effort. Because soft x-ray radiation from solar flares had been considered as a possible cause for the degradation of the mechanical properties of Teflon FEP (ref. 1), the effects of soft xray radiation and vacuum ultraviolet light on Teflon FEP were investigated. In this Lewisled effort, samples of Teflon FEP with a 100-nm layer of vapor-deposited aluminum (VDA) on the backside were exposed to synchrotron radiation of various vacuum ultraviolet and soft x-ray wavelengths between 18 nm (69 eV) and 0.65 nm (1900 eV). Synchrotron radiation exposures were conducted using the National Synchrotron Light Source at Brookhaven National Laboratory. Samples of FEP/VDA were exposed with the FEP surface facing the synchrotron beam. Doses and fluences were compared with those estimated for the 20-yr Hubble Space Telescope mission.

  13. Plastique: A synchrotron radiation beamline for time resolved fluorescence in the frequency domain

    NASA Astrophysics Data System (ADS)

    De Stasio, Gelsomina; Zema, N.; Antonangeli, F.; Savoia, A.; Parasassi, T.; Rosato, N.

    1991-06-01

    PLASTIQUE is the only synchrotron radiation beamline in the world that performs time resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and dynamics of molecules. We describe the beamline and some initial data.

  14. SOFT: a synthetic synchrotron diagnostic for runaway electrons

    NASA Astrophysics Data System (ADS)

    Hoppe, M.; Embréus, O.; Tinguely, R. A.; Granetz, R. S.; Stahl, A.; Fülöp, T.

    2018-02-01

    Improved understanding of the dynamics of runaway electrons can be obtained by measurement and interpretation of their synchrotron radiation emission. Models for synchrotron radiation emitted by relativistic electrons are well established, but the question of how various geometric effects—such as magnetic field inhomogeneity and camera placement—influence the synchrotron measurements and their interpretation remains open. In this paper we address this issue by simulating synchrotron images and spectra using the new synthetic synchrotron diagnostic tool SOFT (Synchrotron-detecting Orbit Following Toolkit). We identify the key parameters influencing the synchrotron radiation spot and present scans in those parameters. Using a runaway electron distribution function obtained by Fokker-Planck simulations for parameters from an Alcator C-Mod discharge, we demonstrate that the corresponding synchrotron image is well-reproduced by SOFT simulations, and we explain how it can be understood in terms of the parameter scans. Geometric effects are shown to significantly influence the synchrotron spectrum, and we show that inherent inconsistencies in a simple emission model (i.e. not modeling detection) can lead to incorrect interpretation of the images.

  15. Simulations of Coherent Synchrotron Radiation Effects in Electron Machines

    NASA Astrophysics Data System (ADS)

    Migliorati, M.; Schiavi, A.; Dattoli, G.

    2007-09-01

    Coherent synchrotron radiation (CSR) generated by high intensity electron beams can be a source of undesirable effects limiting the performance of storage rings. The complexity of the physical mechanisms underlying the interplay between the electron beam and the CSR demands for reliable simulation codes. In the past, codes based on Lie algebraic techniques have been very efficient to treat transport problems in accelerators. The extension of these methods to the non linear case is ideally suited to treat wakefields - beam interaction. In this paper we report on the development of a numerical code, based on the solution of the Vlasov equation, which includes the non linear contribution due to wakefields. The proposed solution method exploits an algebraic technique that uses the exponential operators. We show that, in the case of CSR wakefields, the integration procedure is capable of reproducing the onset of an instability which leads to microbunching of the beam thus increasing the CSR at short wavelengths. In addition, considerations on the threshold of the instability for Gaussian bunches is also reported.

  16. Simulations of Coherent Synchrotron Radiation Effects in Electron Machines

    NASA Astrophysics Data System (ADS)

    Migliorati, M.; Schiavi, A.; Dattoli, G.

    Coherent synchrotron radiation (CSR) generated by high intensity electron beams can be a source of undesirable effects limiting the performance of storage rings. The complexity of the physical mechanisms underlying the interplay between the electron beam and the CSR demands for reliable simulation codes. In the past, codes based on Lie algebraic techniques have been very efficient to treat transport problems in accelerators. The extension of these methods to the non linear case is ideally suited to treat wakefields - beam interaction. In this paper we report on the development of a numerical code, based on the solution of the Vlasov equation, which includes the non linear contribution due to wakefields. The proposed solution method exploits an algebraic technique that uses the exponential operators. We show that, in the case of CSR wakefields, the integration procedure is capable of reproducing the onset of an instability which leads to microbunching of the beam thus increasing the CSR at short wavelengths. In addition, considerations on the threshold of the instability for Gaussian bunches is also reported.

  17. Multielemental analysis of samples from patients with dermatological pathologies using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Soares, J. C. A. C. R.; Canellas, C. G. L.; Anjos, M. J.; Lopes, R. T.

    2014-02-01

    Using synchrotron radiation total X-ray fluorescence (SRTXRF) technique, the concentrations of trace elements were measured in four skin lesions: seborrheic keratosis, fibroepithelial polyp, cherry angioma and dermatosis papulosa nigra. The concentrations of P, S, K, Ca, Fe, Cu, Zn and Rb were evaluated in 62 pairs of lesions and healthy samples, each one having been collected from the same patient. The results revealed significant differences of P, Ca, K, Fe and Cu levels as well as a common trend in their variations between lesion and control samples among the skin diseases. This study revealed a powerful tool that can be useful for skin disorders research. The measurements were conducted at Brazilian National Synchrotron Light Laboratory (LNLS).

  18. On the synchrotron radiation reaction in external magnetic field

    NASA Astrophysics Data System (ADS)

    Tursunov, Arman; Kološ, Martin

    2017-12-01

    We study the dynamics of point electric charges undergoing radiation reaction force due to synchrotron radiation in the presence of external uniform magnetic field. The radiation reaction force cannot be neglected in many physical situations and its presence modifies the equations of motion significantly. The exact form of the equation of motion known as the Lorentz-Dirac equation contains higher order Schott term which leads to the appearance of the runaway solutions. We demonstrate effective computational ways to avoid such unphysical solutions and perform numerical integration of the dynamical equations. We show that in the ultrarelativistic case the Schott term is small and does not have considerable effect to the trajectory of a particle. We compare results with the covariant Landau-Lifshitz equation which is the first iteration of the Lorentz-Dirac equation. Even though the Landau-Lifshitz equation is thought to be approximative solution, we show that in realistic scenarios both approaches lead to identical results.

  19. Formation of Relativistic Jets : Magnetohydrodynamics and Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Porth, Oliver J. G.

    2011-11-01

    In this thesis, the formation of relativistic jets is investigated by means of special relativistic magnetohydrodynamic simulations and synchrotron radiative transfer. Our results show that the magnetohydrodynamic jet self-collimation paradigm can also be applied to the relativistic case. In the first part, jets launched from rotating hot accretion disk coronae are explored, leading to well collimated, but only mildly relativistic flows. Beyond the light-cylinder, the electric charge separation force balances the classical trans-field Lorentz force almost entirely, resulting in a decreased efficiency of acceleration and collimation in comparison to non-relativistic disk winds. In the second part, we examine Poynting dominated flows of various electric current distributions. By following the outflow for over 3000 Schwarzschild radii, highly relativistic jets of Lorentz factor 8 and half-opening angles below 1 degree are obtained, providing dynamical models for the parsec scale jets of active galactic nuclei. Applying the magnetohydrodynamic structure of the quasi-stationary simulation models, we solve the relativistically beamed synchrotron radiation transport. This yields synthetic radiation maps and polarization patterns that can be used to confront high resolution radio and (sub-) mm observations of nearby active galactic nuclei. Relativistic motion together with the helical magnetic fields of the jet formation site imprint a clear signature on the observed polarization and Faraday rotation. In particular, asymmetries in the polarization direction across the jet can disclose the handedness of the magnetic helix and thus the spin direction of the central engine. Finally, we show first results from fully three-dimensional, high resolution adaptive mesh refinement simulations of jet formation from a rotating magnetosphere and examine the jet stability. Relativistic field-line rotation leads to an electric charge separation force that opposes the magnetic Lorentz

  20. Synchrotron radiation-based quasi-elastic scattering using time-domain interferometry with multi-line gamma rays.

    PubMed

    Saito, Makina; Masuda, Ryo; Yoda, Yoshitaka; Seto, Makoto

    2017-10-02

    We developed a multi-line time-domain interferometry (TDI) system using 14.4 keV Mössbauer gamma rays with natural energy widths of 4.66 neV from 57 Fe nuclei excited using synchrotron radiation. Electron density fluctuations can be detected at unique lengths ranging from 0.1 nm to a few nm on time scales from several nanoseconds to the sub-microsecond order by quasi-elastic gamma-ray scattering (QGS) experiments using multi-line TDI. In this report, we generalize the established expression for a time spectrum measured using an identical single-line gamma-ray emitter pair to the case of a nonidentical pair of multi-line gamma-ray emitters by considering the finite energy width of the incident synchrotron radiation. The expression obtained illustrates the unique characteristics of multi-line TDI systems, where the finite incident energy width and use of a nonidentical emitter pair produces further information on faster sub-picosecond-scale dynamics in addition to the nanosecond dynamics; this was demonstrated experimentally. A normalized intermediate scattering function was extracted from the spectrum and its relaxation form was determined for a relaxation time of the order of 1 μs, even for relatively large momentum transfer of ~31 nm -1 . The multi-line TDI method produces a microscopic relaxation picture more rapidly and accurately than conventional single-line TDI.

  1. Perspectives on micropole undulators in synchrotron radiation technology

    NASA Astrophysics Data System (ADS)

    Tatchyn, Roman; Csonka, Paul; Toor, Arthur

    1989-07-01

    Micropole undulators promise to advance synchrotron radiation (SR) technology in two distinct ways. The first is in the development of economical, low-energy storage rings, or linacs, as soft x-ray sources, and the second is in the opening up of gamma-ray spectral ranges on high-energy storage rings. In this paper the promise and current status of micropole undulator (MPU) technology are discussed, and a review of some practical obstacles to the implementation of MPU's on present-day storage rings is given. Some successful results of recent performance measurements of micropole undulators on the Lawrence Livermore National Laboratory linac are briefly summarized.

  2. The fundamental parameter method applied to X-ray fluorescence analysis with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Pantenburg, F. J.; Beier, T.; Hennrich, F.; Mommsen, H.

    1992-05-01

    Quantitative X-ray fluorescence analysis applying the fundamental parameter method is usually restricted to monochromatic excitation sources. It is shown here, that such analyses can be performed as well with a white synchrotron radiation spectrum. To determine absolute elemental concentration values it is necessary to know the spectral distribution of this spectrum. A newly designed and tested experimental setup, which uses the synchrotron radiation emitted from electrons in a bending magnet of ELSA (electron stretcher accelerator of the university of Bonn) is presented. The determination of the exciting spectrum, described by the given electron beam parameters, is limited due to uncertainties in the vertical electron beam size and divergence. We describe a method which allows us to determine the relative and absolute spectral distributions needed for accurate analysis. First test measurements of different alloys and standards of known composition demonstrate that it is possible to determine exact concentration values in bulk and trace element analysis.

  3. Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy.

    PubMed

    Hermann, Peter; Hoehl, Arne; Ulrich, Georg; Fleischmann, Claudia; Hermelink, Antje; Kästner, Bernd; Patoka, Piotr; Hornemann, Andrea; Beckhoff, Burkhard; Rühl, Eckart; Ulm, Gerhard

    2014-07-28

    We describe the application of scattering-type near-field optical microscopy to characterize various semiconducting materials using the electron storage ring Metrology Light Source (MLS) as a broadband synchrotron radiation source. For verifying high-resolution imaging and nano-FTIR spectroscopy we performed scans across nanoscale Si-based surface structures. The obtained results demonstrate that a spatial resolution below 40 nm can be achieved, despite the use of a radiation source with an extremely broad emission spectrum. This approach allows not only for the collection of optical information but also enables the acquisition of near-field spectral data in the mid-infrared range. The high sensitivity for spectroscopic material discrimination using synchrotron radiation is presented by recording near-field spectra from thin films composed of different materials used in semiconductor technology, such as SiO2, SiC, SixNy, and TiO2.

  4. Using Synchrotron Radiation Microtomography to Investigate Multi-scale Three-dimensional Microelectronic Packages

    DOE PAGES

    Carlton, Holly D.; Elmer, John W.; Li, Yan; ...

    2016-04-13

    For this study synchrotron radiation micro-­tomography, a non-destructive three-dimensional imaging technique, is employed to investigate an entire microelectronic package with a cross-sectional area of 16 x 16 mm. Due to the synchrotron’s high flux and brightness the sample was imaged in just 3 minutes with an 8.7 μm spatial resolution.

  5. 1994 activity report: Stanford Synchrotron Radiation Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantwell, K.; Dunn, L.

    1994-01-01

    The SSRL facility delivered 89% of the scheduled user beam to 25 experimental stations during 6.5 months of user running. Users from private industry were involved in 31% of these experiments. The SPEAR accelerator ran very well with no major component failures and an unscheduled down time of only 2.9%. In addition to this increased reliability, there was a significant improvement in the stability of the beam. The enhancements to the SPEAR orbit as part of a concerted three-year program were particularly noticeable to users. The standard deviation of beam movement (both planes) in the last part of the runmore » was 80 microns, major progress toward the ultimate goal of 50-micron stability. This was a significant improvement from the previous year when the movement was 400 microns in the horizontal and 200 microns in the vertical. A new accelerator Personal Protection System (PPS), built with full redundancy and providing protection from both radiation exposure and electrical hazards, was installed in 1994. It is not possible to describe in this summary all of the scientific experimentation which was performed during the run. However, the flavor of current research projects and the many significant accomplishments can be realized by the following highlights: A multinational collaboration performed several experiments involving x-ray scattering from nuclear resonances; Studies related to nuclear waste remediation by groups from Los Alamos National Laboratory and Pacific Northwest Laboratories continued in 1994; Diffraction data sets for a number of important protein crystals were obtained; During the past two years a collaboration consisting of groups from Hewlett Packard, Intel, Fisons Instruments and SSRL has been exploring the utility of synchrotron radiation for total reflection x-ray fluorescence (TRXRF); and High-resolution angle-resolved photoemission experiments have continued to generate exciting new results from highly correlated and magnetic materials.« less

  6. Bone regeneration assessment by optical coherence tomography and MicroCT synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Negrutiu, Meda L.; Sinescu, Cosmin; Canjau, Silvana; Manescu, Adrian; Topalá, Florin I.; Hoinoiu, Bogdan; Romînu, Mihai; Márcáuteanu, Corina; Duma, Virgil; Bradu, Adrian; Podoleanu, Adrian G.

    2013-06-01

    Bone grafting is a commonly performed surgical procedure to augment bone regeneration in a variety of orthopaedic and maxillofacial procedures, with autologous bone being considered as the "gold standard" bone-grafting material, as it combines all properties required in a bone-graft material: osteoinduction (bone morphogenetic proteins - BMPs - and other growth factors), osteogenesis (osteoprogenitor cells) and osteoconduction (scaffold). The problematic elements of bone regenerative materials are represented by their quality control methods, the adjustment of the initial bone regenerative material, the monitoring (noninvasive, if possible) during their osteoconduction and osteointegration period and biomedical evaluation of the new regenerated bone. One of the research directions was the interface investigation of the regenerative bone materials and their behavior at different time periods on the normal femoral rat bone. 12 rat femurs were used for this investigation. In each ones a 1 mm diameter hole were drilled and a bone grafting material was inserted in the artificial defect. The femurs were removed after one, three and six months. The defects repaired by bone grafting material were evaluated by optical coherence tomography working in Time Domain Mode at 1300 nm. Three dimensional reconstructions of the interfaces were generated. The validations of the results were evaluated by microCT. Synchrotron Radiation allows achieving high spatial resolution images to be generated with high signal-to-noise ratio. In addition, Synchrotron Radiation allows acquisition of volumes at different energies and volume subtraction to enhance contrast. Evaluation of the bone grafting material/bone interface with noninvasive methods such as optical coherence tomography could act as a valuable procedure that can be use in the future in the usual clinical techniques. The results were confirmed by microCT. Optical coherence tomography can be performed in vivo and can provide a

  7. Synchrotron Radiation Sheds Fresh Light on Plant Research: The Use of Powerful Techniques to Probe Structure and Composition of Plants.

    PubMed

    Vijayan, Permual; Willick, Ian R; Lahlali, Rachid; Karunakaran, Chithra; Tanino, Karen K

    2015-07-01

    While synchrotron radiation is a powerful tool in material and biomedical sciences, it is still underutilized in plant research. This mini review attempts to introduce the potential of synchrotron-based spectroscopic and imaging methods and their applications to plant sciences. Synchrotron-based Fourier transform infrared spectroscopy, X-ray absorption and fluorescence techniques, and two- and three-dimensional imaging techniques are examined. We also discuss the limitations of synchrotron-based research in plant sciences, specifically the types of plant samples that can be used. Despite limitations, the unique features of synchrotron radiation such as high brightness, polarization and pulse properties offer great advantages over conventional spectroscopic and imaging tools and enable the correlation of the structure and chemical composition of plants with biochemical function. Modern detector technologies and experimental methodologies are thus enabling plant scientists to investigate aspects of plant sciences such as ultrafast kinetics of biochemical reactions, mineral uptake, transport and accumulation, and dynamics of cell wall structure and composition during environmental stress in unprecedented ways using synchrotron beamlines. The potential for the automation of some of these synchrotron technologies and their application to plant phenotyping is also discussed. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Metrology laboratory requirements for third-generation synchrotron radiation sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takacs, P.Z.; Quian, Shinan

    1997-11-01

    New third-generation synchrotron radiation sources that are now, or will soon, come on line will need to decide how to handle the testing of optical components delivered for use in their beam lines. In many cases it is desirable to establish an in-house metrology laboratory to do the work. We review the history behind the formation of the Optical Metrology Laboratory at Brookhaven National Laboratory and the rationale for its continued existence. We offer suggestions to those who may be contemplating setting up similar facilities, based on our experiences over the past two decades.

  9. Development of Partially-Coherent Wavefront Propagation Simulation Methods for 3rd and 4th Generation Synchrotron Radiation Sources.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubar O.; Berman, L; Chu, Y.S.

    2012-04-04

    Partially-coherent wavefront propagation calculations have proven to be feasible and very beneficial in the design of beamlines for 3rd and 4th generation Synchrotron Radiation (SR) sources. These types of calculations use the framework of classical electrodynamics for the description, on the same accuracy level, of the emission by relativistic electrons moving in magnetic fields of accelerators, and the propagation of the emitted radiation wavefronts through beamline optical elements. This enables accurate prediction of performance characteristics for beamlines exploiting high SR brightness and/or high spectral flux. Detailed analysis of radiation degree of coherence, offered by the partially-coherent wavefront propagation method, ismore » of paramount importance for modern storage-ring based SR sources, which, thanks to extremely small sub-nanometer-level electron beam emittances, produce substantial portions of coherent flux in X-ray spectral range. We describe the general approach to partially-coherent SR wavefront propagation simulations and present examples of such simulations performed using 'Synchrotron Radiation Workshop' (SRW) code for the parameters of hard X-ray undulator based beamlines at the National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory. These examples illustrate general characteristics of partially-coherent undulator radiation beams in low-emittance SR sources, and demonstrate advantages of applying high-accuracy physical-optics simulations to the optimization and performance prediction of X-ray optical beamlines in these new sources.« less

  10. An angle-resolved, wavelength-dispersive x-ray fluorescence spectrometer for depth profile analysis of ion-implanted semiconductors using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Schmitt, W.; Hormes, J.; Kuetgens, U.; Gries, W. H.

    1992-01-01

    An apparatus for angle-resolved, wavelength-dispersive x-ray fluorescence spectroscopy with synchrotron radiation has been built and tested at the beam line BN2 of the Bonn electron stretcher and accelerator (ELSA). The apparatus is to be used for nondestructive depth profile analysis of ion-implanted semiconductors as part of the multinational Versailles Project of Advanced Materials and Standards (VAMAS) project on ion-implanted reference materials. In particular, the centroid depths of depth profiles of various implants is to be determined by use of the angle-resolved signal ratio technique. First results of measurements on implants of phosphorus (100 keV, 1016 cm-2) and sulfur (200 keV, 1014 cm-2) in silicon wafers using ``white'' synchrotron radiation are presented and suggest that it should be generally possible to measure the centroid depth of an implant at dose densities as low as 1014 cm-2. Some of the apparative and technical requirements are discussed which are peculiar to the use of synchrotron radiation in general and to the use of nonmonochromatized radiation in particular.

  11. PREFACE: 17th Pan-American Synchrotron Radiation Instrumentation Conference SRI2013

    NASA Astrophysics Data System (ADS)

    Williams, Gwyn P.; Revesz, Peter; Arp, Uwe

    2014-03-01

    These proceedings are a collection of the articles presented at the seventeenth Pan-American Synchrotron Radiation Instrumentation Conference SRI2013, held on the campus of the National Institute of Standards and Technology (NIST), located in Gaithersburg, Maryland, United States of America, 19-21 June, 2013. SRI2013 was jointly hosted by the Cornell University Cornell High Energy Synchrotron Source (CHESS), the Thomas Jefferson National Accelerator Facility (Jefferson Lab), and the Synchrotron Ultraviolet Radiation Facility (SURF III) at NIST. This meeting's focus was clearly on instrumentation, thus fulfilling the intent of this SRI meeting series, which was initiated at NIST, then the National Bureau of Standards (NBS), in 1979. SRI2013 hosted more than 150 delegates, despite the new US governmental travel restrictions. This proceedings series aims to be an essential reference work for practitioners in the field. It primarily documents the evolution and development of techniques, but also recent scientific advances, that were presented during the two and a half days of the conference. We are extremely thankful to all the authors who contributed to making these proceedings a volume of reference as well as to the reviewers for their careful reading and constructive recommendations for improving the articles. Great thanks go to Robert Dragoset at NIST, for creating and maintaining the conference website and generating the conference logo. We are also thankful for the excellent support we received from the Conference Program at NIST, especially Kathy Kilmer and Angela Ellis. And we would like to dedicate these proceedings to the memory of Kathy Kilmer, who passed away on 15 October, 2013. NIST will not be the same without her. The Co-Editors: Uwe Arp (SURF/NIST) Peter Reversz (CHESS) Gwyn P Williams (Jefferson Lab)

  12. Angiography by Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Rubenstein, E.; Brown, G. S.; Giacomini, J. C.; Gordon, H. J.; Hofstadter, R.; Kernoff, R. S.; Otis, J. N.; Thomlinson, W.; Thompson, A. C.; Zeman, H. D.

    1987-01-01

    Because coronary disease represents the principal health problem in the Western, industrialized world, and because of the risks and costs associated with conventional methods of visualizing the coronary arteries, an effort has been underway at the Stanford Synchrotron Radiation Laboratory to develop a less invasive coronary imaging procedure based on iodine K-edge dichromography. A pair of line images, recorded within a few milliseconds of each other, is taken with two monochromatic X-ray beams whose energy closely brackets the K-edge of iodine, 33.17 keV. The logarithmic subtraction of the images produced by these beams results in an image which greatly enhances signals arising from attenuation by iodine and almost totally suppresses signals arising from attenuation by soft tissue and bone. The high sensitivity to iodine allows the visualization of arterial structures after an intravenous injection of contrast agent and its subsequent 20-30 fold dilution. The experiments began in 1979, with initial studies done on phantoms and excised pig hearts. The first images of anesthetized dogs were taken in 1982. The results of experiments on dogs will be reviewed, showing the stepwise evolution of the imaging system, leading to the use of the system on human subjects in 1986. The images recorded on human subjects will be described and the remaining problems discussed.

  13. Theory of electromagnetic insertion devices and the corresponding synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumail, Muhammad; Tantawi, Sami G.

    Permanent magnet insertion devices (IDs), which are the main radiation generating devices in synchrotron light sources and free-electron lasers, use a time-invariant but space-periodic magnetic field to wiggle relativistic electrons for short-wavelength radiation generation. Recently, a high power microwave based undulator has also been successfully demonstrated at SLAC which promises the advantage of dynamic tunability of radiation spectrum and polarization. Such IDs employ transverse elecromagnetic fields which are periodic in both space and time to undulate the electrons. In this paper we develop a detailed theory of the principle of electromagnetic IDs from first principles for both linear and circularmore » polarization modes. The electromagnetic equivalent definitions of undulator period (λ u) and undulator deflection parameter (K) are derived. In the inertial frame where the average momentum of the electron is zero, we obtain the figure-8-like trajectory for the linear polarization mode and the circular trajectory for the circular polarization mode. As a result, the corresponding radiation spectra and the intensity of harmonics is also calculated.« less

  14. Theory of electromagnetic insertion devices and the corresponding synchrotron radiation

    DOE PAGES

    Shumail, Muhammad; Tantawi, Sami G.

    2016-07-27

    Permanent magnet insertion devices (IDs), which are the main radiation generating devices in synchrotron light sources and free-electron lasers, use a time-invariant but space-periodic magnetic field to wiggle relativistic electrons for short-wavelength radiation generation. Recently, a high power microwave based undulator has also been successfully demonstrated at SLAC which promises the advantage of dynamic tunability of radiation spectrum and polarization. Such IDs employ transverse elecromagnetic fields which are periodic in both space and time to undulate the electrons. In this paper we develop a detailed theory of the principle of electromagnetic IDs from first principles for both linear and circularmore » polarization modes. The electromagnetic equivalent definitions of undulator period (λ u) and undulator deflection parameter (K) are derived. In the inertial frame where the average momentum of the electron is zero, we obtain the figure-8-like trajectory for the linear polarization mode and the circular trajectory for the circular polarization mode. As a result, the corresponding radiation spectra and the intensity of harmonics is also calculated.« less

  15. Theory of electromagnetic insertion devices and the corresponding synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Shumail, Muhammad; Tantawi, Sami G.

    2016-07-01

    Permanent magnet insertion devices (IDs), which are the main radiation generating devices in synchrotron light sources and free-electron lasers, use a time-invariant but space-periodic magnetic field to wiggle relativistic electrons for short-wavelength radiation generation. Recently, a high power microwave based undulator has also been successfully demonstrated at SLAC which promises the advantage of dynamic tunability of radiation spectrum and polarization. Such IDs employ transverse elecromagnetic fields which are periodic in both space and time to undulate the electrons. In this paper we develop a detailed theory of the principle of electromagnetic IDs from first principles for both linear and circular polarization modes. The electromagnetic equivalent definitions of undulator period (λu) and undulator deflection parameter (K ) are derived. In the inertial frame where the average momentum of the electron is zero, we obtain the figure-8-like trajectory for the linear polarization mode and the circular trajectory for the circular polarization mode. The corresponding radiation spectra and the intensity of harmonics is also calculated.

  16. Evaluation of CVD silicon carbide for synchrotron radiation mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takacs, P.Z.

    1981-07-01

    Chemical vapor deposited silicon carbide (CVD SiC) is a recent addition to the list of materials suitable for use in the harsh environment of synchrotron radiation (SR) beam lines. SR mirrors for use at normal incidence must be ultrahigh vacuum compatible, must withstand intense x-ray irradiation without surface damage, must be capable of being polished to an extremely smooth surface finish, and must maintain surface figure under thermal loading. CVD SiC exceeds the performance of conventional optical materials in all these areas. It is, however, a relatively new optical material. Few manufacturers have experience in producing optical quality material, andmore » few opticians have experience in figuring and polishing the material. The CVD material occurs in a variety of forms, sensitively dependent upon reaction chamber production conditions. We are evaluating samples of CVD SiC obtained commercially from various manufacturers, representing a range of deposition conditions, to determine which types of CVD material are most suitable for superpolishing. At the time of this writing, samples are being polished by several commercial vendors and surface finish characteristics are being evaluated by various analytical methods.« less

  17. Evaluation of CVD silicon carbide for synchrotron radiation mirrors

    NASA Astrophysics Data System (ADS)

    Takacs, Peter Z.

    1982-04-01

    Chemical vapor deposited silicon carbide (CVD SiC) is a recent addition to the list of materials suitable for use in the harsh environment of synchrotron radiation (SR) beam lines. SR mirrors for use at normal incidence must be ultrahigh vacuum compatible, must withstand intense X-ray irradiation without surface damage, must be capable of being polished to an extremely smooth surface finish, and must maintain surface figure under thermal loading. CVD SiC exceeds the performance of conventional optical materials in all these areas. It is, however, a relatively new optical material. Few manufacturers have experience in producing optical quality material, and few opticians have experience in figuring and polishing the material. The CVD material occurs in a variety of forms, sensitively dependent upon reaction chamber production conditions. We are evaluating samples of CVD SiC obtained commercially from various manufacturers, representing a range of deposition conditions, to determine which types of CVD material are most suitable for superpolishing. At the time of this writing, samples are being polished by several commercial vendors and surface finish characteristics are being evaluated by various analytical methods.

  18. Development of optical choppers for time-resolved measurements at soft X-ray synchrotron radiation beamlines

    PubMed Central

    Osawa, Hitoshi; Ohkochi, Takuo; Fujisawa, Masami; Kimura, Shigeru; Kinoshita, Toyohiko

    2017-01-01

    Two types of optical choppers for time-resolved measurements at synchrotron radiation soft X-ray beamlines have been developed. One type uses an air-spindle-type rotation mechanism with a two-stage differential pumping system to maintain the ultra-high vacuum of the X-ray beamline, and the other uses a magnetic bearing. Both can be installed at the soft X-ray beamlines at SPring-8, greatly improving the accessibility of pump-and-probe spectroscopy. The combination of X-ray chopper and pump-and-probe photoemission electron microscope at SPring-8 provides drastic improvements in signal-to-noise ratio and resolution compared with techniques using high-voltage gating of channel plate detectors. The choppers have the capability to be used not only at synchrotron radiation facilities but also at other types of soft X-ray and VUV beamlines. PMID:28452746

  19. Exploring synchrotron radiation capabilities: The ALS-Intel CRADA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gozzo, F.; Cossy-Favre, A; Trippleet, B.

    1997-04-01

    Synchrotron radiation spectroscopy and spectromicroscopy were applied, at the Advanced Light Source, to the analysis of materials and problems of interest to the commercial semiconductor industry. The authors discuss some of the results obtained at the ALS using existing capabilities, in particular the small spot ultra-ESCA instrument on beamline 7.0 and the AMS (Applied Material Science) endstation on beamline 9.3.2. The continuing trend towards smaller feature size and increased performance for semiconductor components has driven the semiconductor industry to invest in the development of sophisticated and complex instrumentation for the characterization of microstructures. Among the crucial milestones established by themore » Semiconductor Industry Association are the needs for high quality, defect free and extremely clean silicon wafers, very thin gate oxides, lithographies near 0.1 micron and advanced material interconnect structures. The requirements of future generations cannot be met with current industrial technologies. The purpose of the ALS-Intel CRADA (Cooperative Research And Development Agreement) is to explore, compare and improve the utility of synchrotron-based techniques for practical analysis of substrates of interest to semiconductor chip manufacturing. The first phase of the CRADA project consisted in exploring existing ALS capabilities and techniques on some problems of interest. Some of the preliminary results obtained on Intel samples are discussed here.« less

  20. Synchrotron radiation determination of elemental concentrations in coal

    USGS Publications Warehouse

    Chen, J.R.; Martys, N.; Chao, E.C.T.; Minkin, J.A.; Thompson, C.L.; Hanson, A.L.; Kraner, H.W.; Jones, K.W.; Gordon, B.M.; Mills, R.E.

    1984-01-01

    The variations with depth of the elemental concentrations in vitrinites in a series of vitrites have been determined using radiation from the Cornell high energy synchrotron source. All of the vitrites were selected from a single drill core sample of coal from the Emery coalfield, Utah. The results are compared with similar determinations using the Heidelberg proton microprobe. The advantages and disadvantages of the two techniques are discussed. Results are reported for S, Ca, Ti, Fe, Zn, Br, and Sr. For example, it is found that Fe increases from top to bottom of the coal bed in contrast to S, which decreases from top to bottom of the bed. Other features of the two data sets are also described. ?? 1984.

  1. Field transients of coherent terahertz synchrotron radiation accessed via time-resolving and correlation techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pohl, A.; Hübers, H.-W.; Institute of Optical Sensor Systems, German Aerospace Center

    2016-03-21

    Decaying oscillations of the electric field in repetitive pulses of coherent synchrotron radiation in the terahertz frequency range was evaluated by means of time-resolving and correlation techniques. Comparative analysis of real-time voltage transients of the electrical response and interferograms, which were obtained with an ultrafast zero-bias Schottky diode detector and a Martin-Puplett interferometer, delivers close values of the pulse duration. Consistent results were obtained via the correlation technique with a pair of Golay Cell detectors and a pair of resonant polarisation-sensitive superconducting detectors integrated on one chip. The duration of terahertz synchrotron pulses does not closely correlate with the durationmore » of single-cycle electric field expected for the varying size of electron bunches. We largely attribute the difference to the charge density oscillations in electron bunches and to the low-frequency spectral cut-off imposed by both the synchrotron beamline and the coupling optics of our detectors.« less

  2. Synchrotron X-ray emission from old pulsars

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Tanaka, Shuta J.

    2014-09-01

    We study the synchrotron radiation as the observed non-thermal emission by the X-ray satellites from old pulsars (≳1-10 Myr) to investigate the particle acceleration in their magnetospheres. We assume that the power-law component of the observed X-ray spectra is caused by the synchrotron radiation from electrons and positrons in the magnetosphere. We consider two pair-production mechanisms of X-ray emitting particles, the magnetic and the photon-photon pair productions. High-energy photons, which ignite the pair production, are emitted via the curvature radiation of the accelerated particles. We use the analytical description for the radiative transfer and estimate the luminosity of the synchrotron radiation. We find that for pulsars with the spin-down luminosity Lsd ≲ 1033 erg s-1, the locations of the particle acceleration and the non-thermal X-ray emission are within ≲107 cm from the centre of the neutron star, where the magnetic pair production occurs. For pulsars with the spin-down luminosity Lsd ≲ 1031 erg s-1 such as J0108-1431, the synchrotron radiation is difficult to explain the observed non-thermal component even if we consider the existence of the strong and small-scale surface magnetic field structures.

  3. Synchrotron radiation CT from the micro to nanoscale for the investigation of bone tissue

    NASA Astrophysics Data System (ADS)

    Peyrin, Francoise; Dong, Pei; Pacureanu, Alexandra; Zuluaga, Maria; Olivier, Cécile; Langer, Max; Cloetens, Peter

    2012-10-01

    During the last decade, X-ray micro Computerized Tomography (CT) has become a conventional technique for the three-dimensional (3D) investigation of trabecular bone micro-architecture. Coupling micro-CT to synchrotron sources possesses significant advantages in terms of image quality and gives access to information on bone mineralization which is an important factor of bone quality. We present an overview of the investigation of bone using Synchrotron Radiation (SR) CT from the micro to the nano scale. We introduce two synchrotron CT systems developed at the ESRF based on SR parallel-beam micro-CT and magnified phase CT respectively, achieving down to submicrometric and nanometric spatial resolution. In the latter, by using phase retrieval prior to tomographic reconstruction, the system provides maps of the 3D refractive index distribution. Parallel-beam SR micro-CT has extensively been used for the analysis of trabecular or cortical bone in human or small animals with spatial resolution in the range [3-10] μm. However, the characterization of the bone properties at the cellular scale is also of major interest. At the micrometric scale, the shape, density and morphology of osteocyte lacunae can be studied on statistically representative volumes. At the nanometric scale, unprecedented 3D displays of the canaliculi network have been obtained on fields of views including a large number of interconnected osteocyte lacunae. Finally SR magnified phase CT provides a detailed analysis of the lacuno-canalicular network and in addition information on the organization of the collagen fibers. These findings open new perspectives for three-dimensional quantitative assessment of bone tissue at the cellular scale.

  4. Updates on the African Synchrotron Light Source (AfLS) Project

    NASA Astrophysics Data System (ADS)

    Dobbins, Tabbetha; Mtingwa, Sekazi; Wague, Ahmadou; Connell, Simon; Masara, Brian; Ntsoane, Tshepo; Norris, Lawrence; Winick, Herman; Evans-Lutterodt, Kenneth; Hussein, Tarek; Maresha, Feene; McLaughlin, Krystle; Oladijo, Philip; Du Plessis, Esna; Murenzi, Romain; Reed, Kennedy; Sette, Francesco; Werin, Sverker; Dorfan, Jonathan; Yousef, Mohammad

    Africa is the only habitable continent without a synchrotron light source. A full steering committee was elected at the African Light Source (AfLS) conference on November 16-20, 2015 at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. The conference brought together African scientists, policy makers, and stakeholders to discuss a synchrotron light source in Africa. Firm outcomes of the Conference were a set of resolutions and a roadmap. Additionally, a collaborative proposal to promote Advanced Light Sources and crystallographic sciences in targeted regions of the world was submitted by the International Union of Pure and Applied Physics (IUPAP) and the International Union of Crystallography (IUCr) to the International Council for Science (ICSU). www.africanlightsource.org.

  5. A synchrotron radiation microtomography system for the analysis of trabecular bone samples.

    PubMed

    Salomé, M; Peyrin, F; Cloetens, P; Odet, C; Laval-Jeantet, A M; Baruchel, J; Spanne, P

    1999-10-01

    X-ray computed microtomography is particularly well suited for studying trabecular bone architecture, which requires three-dimensional (3-D) images with high spatial resolution. For this purpose, we describe a three-dimensional computed microtomography (microCT) system using synchrotron radiation, developed at ESRF. Since synchrotron radiation provides a monochromatic and high photon flux x-ray beam, it allows high resolution and a high signal-to-noise ratio imaging. The principle of the system is based on truly three-dimensional parallel tomographic acquisition. It uses a two-dimensional (2-D) CCD-based detector to record 2-D radiographs of the transmitted beam through the sample under different angles of view. The 3-D tomographic reconstruction, performed by an exact 3-D filtered backprojection algorithm, yields 3-D images with cubic voxels. The spatial resolution of the detector was experimentally measured. For the application to bone investigation, the voxel size was set to 6.65 microm, and the experimental spatial resolution was found to be 11 microm. The reconstructed linear attenuation coefficient was calibrated from hydroxyapatite phantoms. Image processing tools are being developed to extract structural parameters quantifying trabecular bone architecture from the 3-D microCT images. First results on human trabecular bone samples are presented.

  6. Stanford Synchrotron Radiation Laboratory. Activity report for 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-01

    The April, 1990 SPEAR synchrotron radiation run was one of the two or three best in SSRL`s history. High currents were accumulated, ramping went easily, lifetimes were long, beam dumps were infrequent and the average current was 42.9 milliamps. In the one month of operation, 63 different experiments involving 208 scientists from 50 institutions received beam. The end-of-run summary forms completed by the experimenters indicated high levels of user satisfaction with the beam quality and with the outstanding support received from the SSRL technical and scientific staffs. These fine experimental conditions result largely from the SPEAR repairs and improvements performedmore » during the past year and described in Section I. Also quite significant was Max Cornacchia`s leadership of the SLAG staff. SPEAR`s performance this past April stands in marked contrast to that of the January-March, 1989 run which is also described in Section I. It is, we hope, a harbinger of the operation which will be provided in FY `91, when the SPEAR injector project is completed and SPEAR is fully dedicated to synchrotron radiation research. Over the coming years, SSRL intends to give highest priority to increasing the effectiveness of SPEAR and its various beam lines. The beam line and facility improvements performed during 1989 are described in Section III. In order to concentrate effort on SSRL`s three highest priorities prior to the March-April run: (1) to have a successful run, (2) to complete and commission the injector, and (3) to prepare to operate, maintain and improve the SPEAR/injector system, SSRL was reorganized. In the new organization, all the technical staff is contained in three groups: Accelerator Research and Operations Division, Injector Project and Photon Research and Operations Division, as described in Section IV. In spite of the limited effectiveness of the January-March, 1989 run, SSRL`s users made significant scientific progress, as described in Section V of this

  7. A new XUV optical end-station to characterize compact and flexible photonic devices using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Marcelli, A.; Mazuritskiy, M. I.; Dabagov, S. B.; Hampai, D.; Lerer, A. M.; Izotova, E. A.; D'Elia, A.; Turchini, S.; Zema, N.; Zuccaro, F.; de Simone, M.; Javad Rezvani, S.; Coreno, M.

    2018-03-01

    In this contribution we present the new experimental end-station to characterize XUV diffractive optics, such as Micro Channel Plates (MCPs) and other polycapillary optics, presently under commission at the Elettra synchrotron radiation laboratory (Trieste, Italy). To show the opportunities offered by these new optical devices for 3rd and 4th generation radiation sources, in this work we present also some patterns collected at different energies of the primary XUV radiation transmitted by MCP optical devices working in the normal incidence geometry.

  8. Modular design of H - synchrotrons for radiation therapy

    NASA Astrophysics Data System (ADS)

    Martin, R. L.

    1989-04-01

    A modular synchrotron for accelerating H - ions and a proton beam delivery system are being developed for radiation therapy with protons under SBIR grants from the National Cancer Institute. The advantage proposed for accelerating H - ions and utilizing charge exchange as a slow extraction mechanism lies in enhanced control of the extracted beam current, important for beam delivery with raster scanning for 3D dose contouring of a tumor site. Under these grants prototype magnets and vacuum systems are being constructed, appropriate H - sources are being developed and beam experiments will be carried out to demonstrate some of the key issues of this concept. The status of this program is described along with a discussion of a relatively inexpensive beam delivery system and a proposed program for its development.

  9. Application of Synchrotron Radiation Imaging for Non-destructive Monitoring of Mouse Rheumatoid Arthritis Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Chang-Hyuk; Kim, Hong-Tae; Choe, Jung-Yoon

    This study was performed to observe microstructures of the rheumatoid arthritis induced mouse feet using a synchrotron radiation beam and to compare findings with histological observations. X-ray refraction images from ex-vivo rheumatoid arthritis induced mouse feet were obtained with an 8KeV white (unmonochromatic) beam and 20 micron thick CsI(Tl) scintillation crystal. The visual image was magnified using a x 10 microscope objective and captured using digital CCD camera. Experiments were performed at 1B2 bending magnet beamline of the Pohang Accelerator Laboratory (PAL) in Korea. Obtained images were compared with histopathologic findings from same sample. Cartilage destruction and thickened joint capsulemore » with joint space narrowing were clearly identified at each grade of rheumatoid model with spatial resolution of as much as 1.2 micron and these findings were directly correlated with histopathologic findings. The results suggest that x-ray microscopy study of the rheumatoid arthritis model using synchrotron radiation demonstrates the potential for clinically relevant micro structure of mouse feet without sectioning and fixation.« less

  10. Synchrotron-radiation based perturbed angular correlations from 119Sn

    NASA Astrophysics Data System (ADS)

    Strohm, C.; Sergueev, I.; van Bürck, U.

    2008-03-01

    We report the observation of γ-γ-correlations from 119Sn using nuclear resonant scattering of synchrotron radiation, extending nuclear resonant spectroscopy with 119Sn to vanishing recoilless fractions and new applications. The 23.87 keV M1 (+E2) Ig:1/2→Ie:3/2 Mössbauer transition was excited from the ground state, and the time differential correlations between the incident and the scattered photons were recorded for different angles in the plane perpendicular to the incident beam. The experiments were performed on samples of tributyltin-fluoride, which has a very low Lamb-Mössbauer factor at ambient temperature. In the time spectra we observed quantum beats from the static perturbation through electric quadrupole interaction.

  11. Optical substrate materials for synchrotron radiation beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howells, M.R.; Paquin, R.A.

    1997-06-01

    The authors consider the materials choices available for making optical substrates for synchrotron radiation beam lines. They find that currently the optical surfaces can only be polished to the required finish in fused silica and other glasses, silicon, CVD silicon carbide, electroless nickel and 17-4 PH stainless steel. Substrates must therefore be made of one of these materials or of a metal that can be coated with electroless nickel. In the context of material choices for mirrors they explore the issues of dimensional stability, polishing, bending, cooling, and manufacturing strategy. They conclude that metals are best from an engineering andmore » cost standpoint while the ceramics are best from a polishing standpoint. They then give discussions of specific materials as follows: silicon carbide, silicon, electroless nickel, Glidcop{trademark}, aluminum, precipitation-hardening stainless steel, mild steel, invar and superinvar. Finally they summarize conclusions and propose ideas for further research.« less

  12. High contrast computed tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Itai, Yuji; Takeda, Tohoru; Akatsuka, Takao; Maeda, Tomokazu; Hyodo, Kazuyuki; Uchida, Akira; Yuasa, Tetsuya; Kazama, Masahiro; Wu, Jin; Ando, Masami

    1995-02-01

    This article describes a new monochromatic x-ray CT system using synchrotron radiation with applications in biomedical diagnosis which is currently under development. The system is designed to provide clear images and to detect contrast materials at low concentration for the quantitative functional evaluation of organs in correspondence with their anatomical structures. In this system, with x-ray energy changing from 30 to 52 keV, images can be obtained to detect various contrast materials (iodine, barium, and gadolinium), and K-edge energy subtraction is applied. Herein, the features of the new system designed to enhance the advantages of SR are reported. With the introduction of a double-crystal monochromator, the high-order x-ray contamination is eliminated. The newly designed CCD detector with a wide dynamic range of 60 000:1 has a spatial resolution of 200 μm. The resulting image quality, which is expected to show improved contrast and spatial resolution, is currently under investigation.

  13. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part I. Morphology.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography has been applied to the study of titanium parts fabricated by additive manufacturing (AM). The AM method employed here was the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V), as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. Samples were chosen to examine the effect of build direction and complexity of design on the surface morphology and final dimensions of the piece.

  14. Evaluation of the UFXC32k photon-counting detector for pump-probe experiments using synchrotron radiation.

    PubMed

    Koziol, Anna; Bordessoule, Michel; Ciavardini, Alessandra; Dawiec, Arkadiusz; Da Silva, Paulo; Desjardins, Kewin; Grybos, Pawel; Kanoute, Brahim; Laulhe, Claire; Maj, Piotr; Menneglier, Claude; Mercere, Pascal; Orsini, Fabienne; Szczygiel, Robert

    2018-03-01

    This paper presents the performance of a single-photon-counting hybrid pixel X-ray detector with synchrotron radiation. The camera was evaluated with respect to time-resolved experiments, namely pump-probe-probe experiments held at SOLEIL. The UFXC camera shows very good energy resolution of around 1.5 keV and allows the minimum threshold setting to be as low as 3 keV keeping the high-count-rate capabilities. Measurements of a synchrotron characteristic filling mode prove the proper separation of an isolated bunch of photons and the usability of the detector in time-resolved experiments.

  15. Real time observation of mouse fetal skeleton using a high resolution X-ray synchrotron

    PubMed Central

    Chang, Dong Woo; Kim, Bora; Shin, Jae Hoon; Yun, Young Min; Je, Jung Ho; Hwu, Yeu kuang; Yoon, Jung Hee

    2011-01-01

    The X-ray synchrotron is quite different from conventional radiation sources. This technique may expand the capabilities of conventional radiology and be applied in novel manners for special cases. To evaluate the usefulness of X-ray synchrotron radiation systems for real time observations, mouse fetal skeleton development was monitored with a high resolution X-ray synchrotron. A non-monochromatized X-ray synchrotron (white beam, 5C1 beamline) was employed to observe the skeleton of mice under anesthesia at embryonic day (E)12, E14, E15, and E18. At the same time, conventional radiography and mammography were used to compare with X-ray synchrotron. After synchrotron radiation, each mouse was sacrificed and stained with Alizarin red S and Alcian blue to observe bony structures. Synchrotron radiation enabled us to view the mouse fetal skeleton beginning at gestation. Synchrotron radiation systems facilitate real time observations of the fetal skeleton with greater accuracy and magnification compared to mammography and conventional radiography. Our results show that X-ray synchrotron systems can be used to observe the fine structures of internal organs at high magnification. PMID:21586868

  16. Two-dimensional aortographic coronary angiography with synchrotron radiation at aortic regurgitation state

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Umetani, Keiji; Doi, Toshiki; Itai, Yuji; Yu, Quanwen; Akatsuka, Takao

    1999-10-01

    At aortic regurgitation state, 2D synchrotron radiation (SR) coronary arteriography (CAG) with aortographic contrast injection was examined theoretically and animal experiments were performed to confirm its diagnostic ability. This system consisted of a silicon monocrystal, fluorescent plate, avalanche-type pickup tube camera, and image acquisition system. The experiment was performed at synchrotron sources in the Photon Factory of Tsukuba. The x- ray energy was adjusted to just above the iodine K-edge. Theoretical calculation described that the coronary arteries overlapping on left ventricle could not be demonstrated well with a high signal-to-noise ratio by using the aortographic CAG with SR. The canine coronary arteries without overlap over the left ventricle were demonstrated clearly, however, the image quality appear to be reduced. The coronary artery overlapping over left ventricle could not be demonstrated well, however the transient reduction of left ventricular wall motion was revealed by transient stenotic procedure of left anterior descending coronary artery.

  17. Assessing noise sources at synchrotron infrared ports

    PubMed Central

    Lerch, Ph.; Dumas, P.; Schilcher, T.; Nadji, A.; Luedeke, A.; Hubert, N.; Cassinari, L.; Boege, M.; Denard, J.-C.; Stingelin, L.; Nadolski, L.; Garvey, T.; Albert, S.; Gough, Ch.; Quack, M.; Wambach, J.; Dehler, M.; Filhol, J.-M.

    2012-01-01

    Today, the vast majority of electron storage rings delivering synchrotron radiation for general user operation offer a dedicated infrared port. There is growing interest expressed by various scientific communities to exploit the mid-IR emission in microspectroscopy, as well as the far infrared (also called THz) range for spectroscopy. Compared with a thermal (laboratory-based source), IR synchrotron radiation sources offer enhanced brilliance of about two to three orders of magnitude in the mid-IR energy range, and enhanced flux and brilliance in the far-IR energy range. Synchrotron radiation also has a unique combination of a broad wavelength band together with a well defined time structure. Thermal sources (globar, mercury filament) have excellent stability. Because the sampling rate of a typical IR Fourier-transform spectroscopy experiment is in the kHz range (depending on the bandwidth of the detector), instabilities of various origins present in synchrotron radiation sources play a crucial role. Noise recordings at two different IR ports located at the Swiss Light Source and SOLEIL (France), under conditions relevant to real experiments, are discussed. The lowest electron beam fluctuations detectable in IR spectra have been quantified and are shown to be much smaller than what is routinely recorded by beam-position monitors. PMID:22186638

  18. Synchrotron-Radiation Photoemission Study of Electronic Structures of a Cs-Doped Rubrene Surface

    NASA Astrophysics Data System (ADS)

    Cheng, Chiu-Ping; Lu, Meng-Han; Chu, Yu-Ya; Pi, Tun-Wen

    Using synchrotron-radiation photoemission spectroscopy, we have studied the electronic structure of a cesium-doped rubrene thin film. The addition of cesium atoms causes the movement of the valence-band spectra and the change in line shapes at different concentration that can be separated into four different stages. In the first stage, the cesium atoms continuously diffuse into the substrate, and the Fermi level moves in the energy gap as a result of an electron transferred from the cesium to the rubrene. The second stage, in which the shifts of the spectra are interrupted, is characterized by the introduction of two in-gap states. When increasing doping of cesium into the third stage, the spectra move again; whereas, the line shapes maintain at the stoichiometric ratio of one. In the fourth stage, new in-gap states appear, which are the highest occupied molecular orbital (HOMO) and HOMO+1 states of (rubrene)2- anion.

  19. Translation of Atherosclerotic Plaque Phase-Contrast CT Imaging from Synchrotron Radiation to a Conventional Lab-Based X-Ray Source

    PubMed Central

    Saam, Tobias; Herzen, Julia; Hetterich, Holger; Fill, Sandra; Willner, Marian; Stockmar, Marco; Achterhold, Klaus; Zanette, Irene; Weitkamp, Timm; Schüller, Ulrich; Auweter, Sigrid; Adam-Neumair, Silvia; Nikolaou, Konstantin; Reiser, Maximilian F.; Pfeiffer, Franz; Bamberg, Fabian

    2013-01-01

    Objectives Phase-contrast imaging is a novel X-ray based technique that provides enhanced soft tissue contrast. The aim of this study was to evaluate the feasibility of visualizing human carotid arteries by grating-based phase-contrast tomography (PC-CT) at two different experimental set-ups: (i) applying synchrotron radiation and (ii) using a conventional X-ray tube. Materials and Methods Five ex-vivo carotid artery specimens were examined with PC-CT either at the European Synchrotron Radiation Facility using a monochromatic X-ray beam (2 specimens; 23 keV; pixel size 5.4 µm), or at a laboratory set-up on a conventional X-ray tube (3 specimens; 35-40 kVp; 70 mA; pixel size 100 µm). Tomographic images were reconstructed and compared to histopathology. Two independent readers determined vessel dimensions and one reader determined signal-to-noise ratios (SNR) between PC-CT and absorption images. Results In total, 51 sections were included in the analysis. Images from both set-ups provided sufficient contrast to differentiate individual vessel layers. All PCI-based measurements strongly predicted but significantly overestimated lumen, intima and vessel wall area for both the synchrotron and the laboratory-based measurements as compared with histology (all p<0.001 with slope >0.53 per mm2, 95%-CI: 0.35 to 0.70). Although synchrotron-based images were characterized by higher SNRs than laboratory-based images; both PC-CT set-ups had superior SNRs compared to corresponding conventional absorption-based images (p<0.001). Inter-reader reproducibility was excellent (ICCs >0.98 and >0.84 for synchrotron and for laboratory-based measurements; respectively). Conclusion Experimental PC-CT of carotid specimens is feasible with both synchrotron and conventional X-ray sources, producing high-resolution images suitable for vessel characterization and atherosclerosis research. PMID:24039969

  20. Single-crystal diffraction at megabar conditions by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Merlini, Marco; Hanfland, Michael

    2013-08-01

    Crystal structure determination at extreme pressures is currently possible at synchrotron beamlines optimized for such a purpose. We report the description of the experimental setup available at European Synchrotron Radiation Facility ID09 beamline (Grenoble, France) and, with two examples, we illustrate the state-of-the-art experiments currently performed at third-generation synchrotrons. The first example concerns the determination of the equation of state and the structural behavior of low-spin Fe-bearing siderite in the megabar pressure range. Siderite, in fact, undergoes a first-order isosymmetric transition at 45 GPa, and, above this pressure, it features Fe2+ in electronic low-spin configuration. The local configuration of Fe coordination polyhedra, determined by structural refinements, significantly deviates from a regular octahedron. Nevertheless, no further structural transition is detected up to the maximum pressure reached in our experiments, 135 GPa. The analysis of the Fe-O bond length extrapolated to ambient pressure, which indicates that the difference in ionic radii between the high- and the low-spin state of Fe2+ is 0.172 Å, in excellent agreement with the tabulated data by Shannon and Prewitt [Effective ionic radii in oxides and fluorides. Acta Crystallogr. 1969;B25:925-946]. The second example concerns the determination and refinement of the oP8 structure adopted by sodium in the pressure interval 118-125 GPa, using an experimental dataset collected at 118 GPa. The orthorhombic [a=4.7687(15) Å, b=3.0150(6) Å, c=5.2423(7) Å, V=75.4(3) Å3] oP8 structure is topologically related to the MnP structure, with two non-equivalent atoms in the unit cell. Despite the weak scattering factor of Na atoms, the quality of the data also allows meaningful displacement parameters refinements (R1=4.6%, 14 parameters, 190 diffractions, and 105 unique) demonstrating that the current accuracy of diffraction data at extreme pressures can be comparable with ambient

  1. Synchrotron radiation microtomography of Taylor bubbles in capillary two-phase flow

    NASA Astrophysics Data System (ADS)

    Boden, Stephan; dos Santos Rolo, Tomy; Baumbach, Tilo; Hampel, Uwe

    2014-07-01

    We report on a study to measure the three-dimensional shape of Taylor bubbles in capillaries using synchrotron radiation in conjunction with ultrafast radiographic imaging. Moving Taylor bubbles in 2-mm round and square capillaries were radiographically scanned with an ultrahigh frame rate of up to 36,000 fps and 5.6-µm pixel separation. Consecutive images were properly processed to yield 2D transmission radiographs of high contrast-to-noise ratio. Application of 3D tomographic image reconstruction disclosed the 3D bubble shape. The results provide a reference data base for development of sophisticated interface resolving CFD computations.

  2. Two dimensional model for coherent synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun; Kwan, Thomas J. T.; Carlsten, Bruce E.

    2013-01-01

    Understanding coherent synchrotron radiation (CSR) effects in a bunch compressor requires an accurate model accounting for the realistic beam shape and parameters. We extend the well-known 1D CSR analytic model into two dimensions and develop a simple numerical model based on the Liénard-Wiechert formula for the CSR field of a coasting beam. This CSR numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in the space charge field calculation present in a 1D model. Good agreement is obtained with 1D CSR analytic result for free electron laser (FEL) related beam parameters but it can also give a more accurate result for low-energy/large spot size beams and off-axis/transient fields. This 2D CSR model can be used for understanding the limitation of various 1D models and for benchmarking fully electromagnetic multidimensional particle-in-cell simulations for self-consistent CSR modeling.

  3. Circular polarization of synchrotron radiation in high magnetic fields

    NASA Astrophysics Data System (ADS)

    de Búrca, D.; Shearer, A.

    2015-06-01

    The general model for incoherent synchrotron radiation has long been known, with the first theory being published by Westfold in 1959 and continued by Westfold and Legg in 1968. When this model was first developed, it was applied to radiation from Jupiter, with a magnetic field of ≈1G. Pulsars have a magnetic field of ≈1012 G. The Westfold and Legg model predict a circular polarization which is proportional to the square root of the magnetic field, and consequently predicts greater than 100 per cent circular polarization at high magnetic fields. Here a new model is derived based upon a more detailed analysis of the pitch angle distribution. This model is concerned with the frequency range f_{B_0}/γ ≪ f≲ f_{B_0}, noting that f_{B_0} = 2.7× 10^7B, which for a relatively high magnetic field (˜106-108 G) leaves emission in the optical range. This is much lower than the expected frequency peak for a mono-energetic particle of 0.293eB/4π m_e cγ ^2. We predict the circular polarization peaks around 107G in the optical regime with the radiation almost 15 per cent circularly polarized. The linear polarization changes from about 60 to 80 per cent in the same regime. We examine implications of this for pulsar studies.

  4. Defect generation in silicon dioxide from synchrotron radiation below 41 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, C. K.; Reisman, A.; Bhattacharya, P.

    1989-07-01

    Generation of fixed positive charge, neutral electron traps, and fixednegative charge in SiO/sub 2/ due to exposure to x radiation in the photon energyrange below 41 eV from a synchrotron source is reported. For constant incidentx-radiation exposure levels of 120 mJ/cm/sup 2/ with both monochromatic andbroadband radiation, the number of defects generated in the monitoring deviceswas at or below the detection limit of the equipment. This is in sharp contrastwith the results obtained at photon energies above 300 eV reported earlier (C.K. Williams, A. Reisman, P. K. Bhattacharya, and W. Ng, J. Appl. Phys./bold 64/, 1145 (1988)) in which amore » large number of each of the three defectsmentioned above were generated. The lack of damage indicates that the problemsassociated with x-ray-induced insulator damage due to x-ray lithography may besolved by tailoring the photon energy, provided suitable mask and photoresistmaterials can be developed.« less

  5. THz near-field imaging of biological tissues employing synchrotron radiation (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried, Daniel

    2005-04-01

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking on to the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical waveguides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about λ/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 μm at about 12 wavenumbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06 and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin.

  6. γ-H2AX as a Marker for Dose Deposition in the Brain of Wistar Rats after Synchrotron Microbeam Radiation

    PubMed Central

    Fernandez-Palomo, Cristian; Mothersill, Carmel; Bräuer-Krisch, Elke; Laissue, Jean; Seymour, Colin; Schültke, Elisabeth

    2015-01-01

    Objective Synchrotron radiation has shown high therapeutic potential in small animal models of malignant brain tumours. However, more studies are needed to understand the radiobiological effects caused by the delivery of high doses of spatially fractionated x-rays in tissue. The purpose of this study was to explore the use of the γ-H2AX antibody as a marker for dose deposition in the brain of rats after synchrotron microbeam radiation therapy (MRT). Methods Normal and tumour-bearing Wistar rats were exposed to 35, 70 or 350 Gy of MRT to their right cerebral hemisphere. The brains were extracted either at 4 or 8 hours after irradiation and immediately placed in formalin. Sections of paraffin-embedded tissue were incubated with anti γ-H2AX primary antibody. Results While the presence of the C6 glioma does not seem to modulate the formation of γ-H2AX in normal tissue, the irradiation dose and the recovery versus time are the most important factors affecting the development of γ-H2AX foci. Our results also suggest that doses of 350 Gy can trigger the release of bystander signals that significantly amplify the DNA damage caused by radiation and that the γ-H2AX biomarker does not only represent DNA damage produced by radiation, but also damage caused by bystander effects. Conclusion In conclusion, we suggest that the γ-H2AX foci should be used as biomarker for targeted and non-targeted DNA damage after synchrotron radiation rather than a tool to measure the actual physical doses. PMID:25799425

  7. The structure study of thin semiconductor and dielectric films by diffraction of synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Yurjev, G. S.; Fainer, N. I.; Maximovskiy, E. A.; Kosinova, M. L.; Sheromov, M. A.; Rumyantsev, Yu. M.

    1998-02-01

    The structure of semiconductor and dielectric thin (100-300 nm) films was studied by diffraction of synchrotron radiation. The diffraction experiments were performed at both the station "Anomalous scattering" of the storage ring synchrotron facility VEPP-3 and DRON-4 diffractometer. The structure of CdS thin films grown on fused silica, single Si(100) and InP(100) substrates was investigated. The structure of Cu 2S thin films grown on fused silica, single Si(100) substrates and CdS/Si(100)-heterostructure was studied. The structure study was performed on Si 3N 4 films grown on GaAs(100) substrates. The structure of thin BN layers grown on single Si(100) substrates was studied. It was established that structural parameters of above-mentioned thin films coincide on the parameters of JCPDS International Centre for Diffraction Data.

  8. Atomic physics research with second and third generation synchrotron light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, B.M.

    1990-10-01

    This contribution to these proceedings is intended to provide an introduction and overview for other contributions on atomic (and related) physics research at existing and planned synchrotron light sources. The emphasis will be on research accomplishments and future opportunities, but a comparison will be given of operating characteristics for first, second, and third generation machines. First generation light sources were built to do research with the primary electron and positron beams, rather than with the synchrotron radiation itself. Second generation machines were specifically designed to be dedicated synchrotron-radiation facilities, with an emphasis on the use of bending-magnet radiation. The newmore » third generation light sources are being designed to optimize radiation from insertion devices, such as undulators and wigglers. Each generation of synchrotron light source offers useful capabilities for forefront research in atomic physics and many other disciplines. 27 refs., 1 fig., 3 tabs.« less

  9. Commissioning of the synchrotron radiation protection system and beamlines frontends at NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S., E-mail: seletskiy@bnl.gov; Amundsen, C.; Choi, J.

    2016-07-27

    The first eight insertion devices (IDs) at the NSLS-II were commissioned during the fall run of 2014. In this paper we discuss commissioning of the synchrotron radiation protection (SRP) system and beamline frontends (FE) for the respective IDs. We describe the diagnostics utilized if FE commissioning and a procedure that was used for the alignment of the photon beam from insertion devices in the beamline frontends. Then we discuss the current status of the SRP system and operation of the commissioned frontends.

  10. Synchrotron-radiation phase-contrast imaging of human stomach and gastric cancer: in vitro studies.

    PubMed

    Tang, Lei; Li, Gang; Sun, Ying-Shi; Li, Jie; Zhang, Xiao-Peng

    2012-05-01

    The electron density resolution of synchrotron-radiation phase-contrast imaging (SR-PCI) is 1000 times higher than that of conventional X-ray absorption imaging in light elements, through which high-resolution X-ray imaging of biological soft tissue can be achieved. For biological soft tissue, SR-PCI can give better imaging contrast than conventional X-ray absorption imaging. In this study, human resected stomach and gastric cancer were investigated using in-line holography and diffraction enhanced imaging at beamline 4W1A of the Beijing Synchrotron Radiation Facility. It was possible to depict gastric pits, measuring 50-70 µm, gastric grooves and tiny blood vessels in the submucosa layer by SR-PCI. The fine structure of a cancerous ulcer was displayed clearly on imaging the mucosa. The delamination of the gastric wall and infiltration of cancer in the submucosa layer were also demonstrated on cross-sectional imaging. In conclusion, SR-PCI can demonstrate the subtle structures of stomach and gastric cancer that cannot be detected by conventional X-ray absorption imaging, which prompt the X-ray diagnosis of gastric disease to the level of the gastric pit, and has the potential to provide new methods for the imageology of gastric cancer.

  11. Studies of the Si/SiO2 interface using synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Grunthaner, F. J.

    1985-01-01

    Synchrotron radiation photoemission spectroscopy (SRPS) in the 1-4 KeV photon energy range is a useful tool for interface characterization. Results are presented of a series of studies of the near-interface region of Si/SiO2 which confirm that a bond strain gradient exists in the oxide as a result of lattice mismatch. These experiments include measurement of photoemission lineshape changes as a function of photon energy, corresponding changes in the electron escape depth near the interface, and surface extended X-ray absorption fine structure (SEXAFS) measurements directly indicating the shortening of the Si-Si second nearest neighbor distance in the near-interface region of the oxide.

  12. Galactic synchrotron radiation from radio to microwaves, and its relation to cosmic-ray propagation models: past, present and future

    NASA Astrophysics Data System (ADS)

    Orlando, Elena

    2016-04-01

    Galactic synchrotron radiation observed from radio to microwaves is produced by cosmic-ray (CR) electrons propagating in magnetic fields (B-fields). The low-frequency foreground component separated maps by WMAP and Planck depend on the assumed synchrotron spectrum. The synchrotron spectrum varies for different line of sights as a result of changes on the CR spectrum due to propagation effects and source distributions. Our present knowledge of the CR spectrum at different locations in the Galaxy is not sufficient to distinguish various possibilities in the modeling. As a consequence uncertainties on synchrotron emission models complicate the foreground component separation analysis with Planck and future microwave telescopes. Hence, any advancement in synchrotron modeling is important for separating the different foreground components.The first step towards a more comprehensive understanding of degeneracy and correlation among the synchrotron model parameters is outlined in our Strong et al. 2011 and Orlando et al. 2013 papers. In the latter the conclusion was that CR spectrum, propagation models, B-fields, and foreground component separation analysis need to be studied simultaneously in order to properly obtain and interpret the synchrotron foreground. Indeed for the officially released Planck maps, we use only the best spectral model from our above paper for the component separation analysis.Here we present a collections of our latest results on synchrotron, CRs and B-fields in the context of CR propagation, showing also our recent work on B-fields within the Planck Collaboration. We underline also the importance of using the constraints on CRs that we obtain from gamma ray observations. Methods and perspectives for further studies on the synchrotron foreground will be addressed.

  13. Shielding calculations for the National Synchrotron Light Source-II experimental beamlines

    NASA Astrophysics Data System (ADS)

    Job, Panakkal K.; Casey, William R.

    2013-01-01

    Brookhaven National Laboratory is in the process of building a new Electron storage ring for scientific research using synchrotron radiation. This facility, called the "National Synchrotron Light Source II" (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors, and robotics, designed to maximize the scientific output of the facility. The project scope includes the design of an electron storage ring and the experimental beamlines, which stores a maximum of 500 mA electron beam current at an energy of 3.0 GeV. When fully built there will be at least 58 beamlines using synchrotron radiation for experimental programs. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in the synchrotron radiation flux to <1%. Because of the very demanding requirements for synchrotron radiation brilliance for the experiments, each of the 58 beamlines will be unique in terms of the source properties and experimental configuration. This makes the shielding configuration of each of the beamlines unique. The shielding calculation methodology and the results for five representative beamlines of NSLS-II, have been presented in this paper.

  14. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    NASA Astrophysics Data System (ADS)

    Stupakov, Gennady; Zhou, Demin

    2016-04-01

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.

  15. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupakov, Gennady; Zhou, Demin

    2016-04-21

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.

  16. 3D-analysis of plant microstructures: advantages and limitations of synchrotron X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Matsushima, U.; Graf, W.; Zabler, S.; Manke, I.; Dawson, M.; Choinka, G.; Hilger, A.; Herppich, W. B.

    2013-01-01

    Synchrotron X-ray computer microtomography was used to analyze the microstructure of rose peduncles. Samples from three rose cultivars, differing in anatomy, were scanned to study the relation between tissue structure and peduncles mechanical strength. Additionally, chlorophyll fluorescence imaging and conventional light microscopy was applied to quantify possible irradiation-induced damage to plant physiology and tissue structure. The spatial resolution of synchrotron X-ray computer microtomography was sufficiently high to investigate the complex tissues of intact rose peduncles without the necessity of any preparation. However, synchrotron X-radiation induces two different types of damage on irradiated tissues. First, within a few hours after first X-ray exposure, there is a direct physical destruction of cell walls. In addition, a slow and delayed destruction of chlorophyll and, consequently, of photosynthetic activity occurred within hours/ days after the exposure. The results indicate that synchrotron X-ray computer microtomography is well suited for three-dimensional visualization of the microstructure of rose peduncles. However, in its current technique, synchrotron X-ray computer microtomography is not really non-destructive but induce tissue damage. Hence, this technique needs further optimization before it can be applied for time-series investigations of living plant materials

  17. Experimental Study of Coherent Synchrotron Radiation in the Emittance Exchange Line at the A0-Photoinjector

    NASA Astrophysics Data System (ADS)

    Thangaraj, Jayakar C. T.; Thurman-Keup, R.; Johnson, A.; Lumpkin, A. H.; Edwards, H.; Ruan, J.; Santucci, J.; Sun, Y. E.; Church, M.; Piot, P.

    2010-11-01

    Next generation accelerators will require a high current, low emittance beam with a low energy spread. Such accelerators will employ advanced beam conditioning systems such as emittance exchangers to manipulate high brightness beams. One of the goals of the Fermilab A0 photoinjector is to investigate the transverse to longitudinal emittance exchange principle. Coherent synchrotron radiation could limit high current operation of the emittance exchanger. In this paper, we report on the preliminary experimental and simulation study of the coherent synchroton radiation (CSR) in the emittance exchange line at the A0 photoinjector.

  18. Experiences from First Top-Off Injection at the Stanford Synchrotron Radiation Lightsource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, J.M.; Liu, J.C.; Prinz, A.

    2009-12-11

    As the Stanford Synchrotron Radiation Lightsource (SSRL) of the SLAC National Accelerator Laboratory (SLAC) is moving toward Top-Off injection mode, SLAC's Radiation Protection Department is working with SSRL on minimizing the radiological hazards of this mode. One such hazard is radiation that is created inside the accelerator concrete enclosure by injected beam. Since during Top-Off injection the stoppers that would otherwise isolate the storage ring from the experimental area stay open, the stoppers no longer prevent such radiation from reaching the experimental area. The level of this stray radiation was measured in April 2008 during the first Top-Off injection tests.more » They revealed radiation dose rates of up to 18 microSv/h (1.8 millirem/h) outside the experimental hutches, significantly higher than our goal of 1 microSv/h (0.1 millirem/h). Non-optimal injection increased the measured dose rates by a factor two. Further tests in 2008 indicated that subsequent improvements by SSRL to the injection system have reduced the dose rates to acceptable levels. This presentation describes the studies performed before the Top-Off tests, the tests themselves and their major results (both under initial conditions and after improvements were implemented), and presents the controls being implemented for full and routine Top-Off injection.« less

  19. Application of synchrotron radiation computed microtomography for quantification of bone microstructure in human and rat bones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parreiras Nogueira, Liebert; Barroso, Regina Cely; Pereira de Almeida, Andre

    2012-05-17

    This work aims to evaluate histomorphometric quantification by synchrotron radiation computed microto-mography in bones of human and rat specimens. Bones specimens are classified as normal and pathological (for human samples) and irradiated and non-irradiated samples (for rat ones). Human bones are specimens which were affected by some injury, or not. Rat bones are specimens which were irradiated, simulating radiotherapy procedures, or not. Images were obtained on SYRMEP beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. The system generated 14 {mu}m tomographic images. The quantification of bone structures were performed directly by the 3D rendered images using a home-made software.more » Resolution yielded was excellent what facilitate quantification of bone microstructures.« less

  20. Fluorescence tomography using synchrotron radiation at the NSLS

    NASA Astrophysics Data System (ADS)

    Boisseau, P.; Grodzins, L.

    1987-03-01

    Fluorescence tomography utilizing focussed, tunable, monoenergetic X-rays from synchrotron light sources hold the promise of a non-invasive analytic tool for studying trace elements in specimens, particularly biological, at spatial resolutions of the order of micrometers. This note reports an early test at the National Synchrotron Light Source at Brookhaven National Laboratories in which fluorescence tomographic scans were successfully made of trace elements of iron and titanium in NBS standard glass and in a bee.

  1. Observation of divergent-beam X-ray diffraction from a crystal of diamond using synchrotron radiation.

    PubMed

    Glazer, A M; Collins, S P; Zekria, D; Liu, J; Golshan, M

    2004-03-01

    In 1947 Kathleen Lonsdale conducted a series of experiments on X-ray diffraction using a divergent beam external to a crystal sample. Unlike the Kossel technique, where divergent X-rays are excited by the presence of fluorescing atoms within the crystal, the use of an external divergent source made it possible to study non-fluorescing crystals. The resulting photographs not only illustrated the complexity of X-ray diffraction from crystals in a truly beautiful way, but also demonstrated unprecedented experimental precision. This long-forgotten work is repeated here using a synchrotron radiation source and, once again, considerable merit is found in Lonsdale's technique. The results of this experiment suggest that, through the use of modern 'third-generation' synchrotron sources, divergent-beam diffraction could soon enjoy a renaissance for high-precision lattice-parameter determination and the study of crystal perfection.

  2. Design of a triple-bend isochronous achromat with minimum coherent-synchrotron-radiation-induced emittance growth

    NASA Astrophysics Data System (ADS)

    Venturini, M.

    2016-06-01

    Using a 1D steady-state free-space coherent synchrotron radiation (CSR) model, we identify a special design setting for a triple-bend isochronous achromat that yields vanishing emittance growth from CSR. When a more refined CSR model with transient effects is included in the analysis, numerical simulations show that the main effect of the transients is to shift the emittance growth minimum slightly, with the minimum changing only modestly.

  3. Design of a triple-bend isochronous achromat with minimum coherent-synchrotron-radiation-induced emittance growth

    DOE PAGES

    Venturini, M.

    2016-06-09

    Using a 1D steady-state free-space coherent synchrotron radiation (CSR) model, we identify a special design setting for a triple-bend isochronous achromat that yields vanishing emittance growth from CSR. When a more refined CSR model with transient effects is included in the analysis, numerical simulations show that the main effect of the transients is to shift the emittance growth minimum slightly, with the minimum changing only modestly.

  4. Determination of Arsenic Poisoning and Metabolism in Hair by Synchrotron Radiation: The Case of Phar Lap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempson, Ivan M.; Henry, Dermot A.; U. South Australia)

    2010-08-26

    Fresh physical evidence about the demise of the racehorse Phar Lap (see photograph) has been gathered from the study of mane hair samples by synchrotron radiation analysis with high resolution X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) analyses. The results are indicative of arsenic ingestion and metabolism, and show that the racing champion died from arsenic poisoning.

  5. The attainment of large accelerating gradients using near field synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, G.

    1989-10-15

    Lienard-Wiechert potentials are used to find the electromagnetic field everywhere in free space resulting from a point charge moving on a helical trajectory. The total power emitted as synchrotron radiation from a particle on a circular path is calculated. The point charge results are generalized to the case of a line charge, and formulae are presented which can easily be evaluated numerically. A useful gradient of 80 MeV/m per kA of peak driving beam current over a distance of 1 cm is calculated using two 5 MeV driving beams moving on 1 cm radius helical orbits with bunch length 1more » mm. {copyright} 1989 American Institute of Physics« less

  6. The attainment of large accelerating gradients using near field synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, G.

    1989-01-01

    Lienard-Wiechert potentials are used to find the electromagnetic field everywhere in free space resulting from a point charge moving on a helical trajectory. The total power emitted as synchrotron radiation from a particle on a circular path is calculated. The point charge results are generalized to the case of a line charge, and formulae are presented which can easily be evaluated numerically. A useful gradient of 80 MeV/m per kA of peak driving beam current over a distance of 1 cm is calculated using two 5 MeV driving beams moving on 1 cm radius helical orbits with bunch length 1more » mm. 11 refs., 5 figs.« less

  7. Efficient computation of coherent synchrotron radiation in a rectangular chamber

    NASA Astrophysics Data System (ADS)

    Warnock, Robert L.; Bizzozero, David A.

    2016-09-01

    We study coherent synchrotron radiation (CSR) in a perfectly conducting vacuum chamber of rectangular cross section, in a formalism allowing an arbitrary sequence of bends and straight sections. We apply the paraxial method in the frequency domain, with a Fourier development in the vertical coordinate but with no other mode expansions. A line charge source is handled numerically by a new method that rids the equations of singularities through a change of dependent variable. The resulting algorithm is fast compared to earlier methods, works for short bunches with complicated structure, and yields all six field components at any space-time point. As an example we compute the tangential magnetic field at the walls. From that one can make a perturbative treatment of the Poynting flux to estimate the energy deposited in resistive walls. The calculation was motivated by a design issue for LCLS-II, the question of how much wall heating from CSR occurs in the last bend of a bunch compressor and the following straight section. Working with a realistic longitudinal bunch form of r.m.s. length 10.4 μ m and a charge of 100 pC we conclude that the radiated power is quite small (28 W at a 1 MHz repetition rate), and all radiated energy is absorbed in the walls within 7 m along the straight section.

  8. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupakov, Gennady; Zhou, Demin

    2016-04-21

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. Furthermore, all our formulas are benchmarked against numerical simulations with the CSRZ computermore » code.« less

  9. Investigation of internal structure of fine granules by microtomography using synchrotron X-ray radiation.

    PubMed

    Noguchi, Shuji; Kajihara, Ryusuke; Iwao, Yasunori; Fujinami, Yukari; Suzuki, Yoshio; Terada, Yasuko; Uesugi, Kentaro; Miura, Keiko; Itai, Shigeru

    2013-03-10

    Computed tomography (CT) using synchrotron X-ray radiation was evaluated as a non-destructive structural analysis method for fine granules. Two kinds of granules have been investigated: a bromhexine hydrochloride (BHX)-layered Celphere CP-102 granule coated with pH-sensitive polymer Kollicoat Smartseal 30-D, and a wax-matrix granule constructed from acetaminophen (APAP), dibasic calcium phosphate dehydrate, and aminoalkyl methacrylate copolymer E (AMCE) manufactured by melt granulation. The diameters of both granules were 200-300 μm. CT analysis of CP-102 granule could visualize the laminar structures of BHX and Kollicoat layers, and also visualize the high talc-content regions in the Kollicoat layer that could not be detected by scanning electron microscopy. Moreover, CT analysis using X-ray energies above the absorption edge of Br specifically enhanced the contrast in the BHX layer. As for granules manufactured by melt granulation, CT analysis revealed that they had a small inner void space due to a uniform distribution of APAP and other excipients. The distribution of AMCE revealed by CT analysis was also found to involve in the differences of drug dissolution from the granules as described previously. These observations demonstrate that CT analysis using synchrotron X-ray radiation is a powerful method for the detailed internal structure analysis of fine granules. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. NIKOS II - A System For Non-Invasive Imaging Of Coronary Arteries With Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Dix, Wolf-Rainer; Engelke, Klaus; Heuer, Joachim; Graeff, Walter; Kupper, Wolfram; Lohmann, Michael; Makin, I.; Moechel, Thomas; Reumann, Reinhold

    1989-10-01

    Aim of the work is the visualization of coronary arteries down to 1 mm diameter with an iodine mass density of 1 mg/cm , thus allowing non-invasive investigations by intravenous injection of the contrast agent. Digital Subtraction Angiography (DSA) in energy subtraction mode (dichromography) is employed for this purpose. The two images Cor subtraction are taken at photon energies just below and above the iodine K-edge (33.17 keV). After subtraction the background contrast - such as bone and soft tissue - is suppressed and the iodinated structures are strongly enhanced because of the abrupt change of absorption at the edge. The two monoenergetic beams (bandwidth about 250 eV) with high intensity (about 1011 photons/mm /s) are only available if synchrotron radiation is used. In HASYLAB at DESY (Hamburg, FRG) the system NIKOS was developed for dichromography. It consists of six main parts: A wiggler beam line, a monochromator which filters the two 12 cm wide beams out of the white synchrotron radiation beam, a fast scanning device, a fast low-noise two-line detector, a safety system and a computer system. At present, one scan (two images) lasts 1 s. The images from the in-vivo investigations of dogs have been promising. The right coronary artery (diameter 1.5 mm) was clearly visible.

  11. Protein Data Bank depositions from synchrotron sources.

    PubMed

    Jiang, Jiansheng; Sweet, Robert M

    2004-07-01

    A survey and analysis of Protein Data Bank (PDB) depositions from international synchrotron radiation facilities, based on the latest released PDB entries, are reported. The results (http://asdp.bnl.gov/asda/Libraries/) show that worldwide, every year since 1999, more than 50% of the deposited X-ray structures have used synchrotron facilities, reaching 75% by 2003. In this web-based database, all PDB entries among individual synchrotron beamlines are archived, synchronized with the weekly PDB release. Statistics regarding the quality of experimental data and the refined model for all structures are presented, and these are analysed to reflect the impact of synchrotron sources. The results confirm the common impression that synchrotron sources extend the size of structures that can be solved with equivalent or better quality than home sources.

  12. Magnetic x-ray scattering studies of holmium using synchro- tron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, D.; Moncton, D.E.; D'Amico, K.L.

    1985-07-08

    We present the results of magnetic x-ray scattering experiments on the rare-earth metal holmium using synchrotron radiation. Direct high-resolution measurements of the nominally incommensurate magnetic satellite reflections reveal new lock-in behavior which we explain within a simple spin-discommensuration model. As a result of magnetoelastic coupling, the spin-discommensuration array produces additional x-ray diffraction satellites. Their observation further substantiates the model and demonstrates additional advantages of synchrotron radiation for magnetic-structure studies.

  13. The recent development of an X-ray grating interferometer at Shanghai Synchrotron Radiation Facility

    NASA Astrophysics Data System (ADS)

    Sun, Haohua; Kou, Bingquan; Xi, Yan; Qi, Juncheng; Sun, Jianqi; Mohr, Jürgen; Börner, Martin; Zhao, Jun; Xu, Lisa X.; Xiao, Tiqiao; Wang, Yujie

    2012-07-01

    An X-ray grating interferometer has been installed at Shanghai Synchrotron Radiation Facility (SSRF). Three sets of phase gratings were designed to cover the wide X-ray energy range needed for biological and soft material imaging capabilities. The performance of the grating interferometer has been evaluated by a tomography study of a PMMA particle packing and a new born mouse chest. In the mouse chest study, the carotid artery and carotid vein inside the mouse can be identified in situ without contrast agents.

  14. Recent results of synchrotron radiation induced total reflection X-ray fluorescence analysis at HASYLAB, beamline L

    NASA Astrophysics Data System (ADS)

    Streli, C.; Pepponi, G.; Wobrauschek, P.; Jokubonis, C.; Falkenberg, G.; Záray, G.; Broekaert, J.; Fittschen, U.; Peschel, B.

    2006-11-01

    At the Hamburger Synchrotronstrahlungslabor (HASYLAB), Beamline L, a vacuum chamber for synchrotron radiation-induced total reflection X-ray fluorescence analysis, is now available which can easily be installed using the adjustment components for microanalysis present at this beamline. The detector is now in the final version of a Vortex silicon drift detector with 50-mm 2 active area from Radiant Detector Technologies. With the Ni/C multilayer monochromator set to 17 keV extrapolated detection limits of 8 fg were obtained using the 50-mm 2 silicon drift detector with 1000 s live time on a sample containing 100 pg of Ni. Various applications are presented, especially of samples which are available in very small amounts: As synchrotron radiation-induced total reflection X-ray fluorescence analysis is much more sensitive than tube-excited total reflection X-ray fluorescence analysis, the sampling time of aerosol samples can be diminished, resulting in a more precise time resolution of atmospheric events. Aerosols, directly sampled on Si reflectors in an impactor were investigated. A further application was the determination of contamination elements in a slurry of high-purity Al 2O 3. No digestion is required; the sample is pipetted and dried before analysis. A comparison with laboratory total reflection X-ray fluorescence analysis showed the higher sensitivity of synchrotron radiation-induced total reflection X-ray fluorescence analysis, more contamination elements could be detected. Using the Si-111 crystal monochromator also available at beamline L, XANES measurements to determine the chemical state were performed. This is only possible with lower sensitivity as the flux transmitted by the crystal monochromator is about a factor of 100 lower than that transmitted by the multilayer monochromator. Preliminary results of X-ray absorption near-edge structure measurements for As in xylem sap from cucumber plants fed with As(III) and As(V) are reported. Detection limits

  15. High density terahertz frequency comb produced by coherent synchrotron radiation

    PubMed Central

    Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-01-01

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10−10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile. PMID:26190043

  16. Thermodynamic Temperature of High-Temperature Fixed Points Traceable to Blackbody Radiation and Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Wähmer, M.; Anhalt, K.; Hollandt, J.; Klein, R.; Taubert, R. D.; Thornagel, R.; Ulm, G.; Gavrilov, V.; Grigoryeva, I.; Khlevnoy, B.; Sapritsky, V.

    2017-10-01

    Absolute spectral radiometry is currently the only established primary thermometric method for the temperature range above 1300 K. Up to now, the ongoing improvements of high-temperature fixed points and their formal implementation into an improved temperature scale with the mise en pratique for the definition of the kelvin, rely solely on single-wavelength absolute radiometry traceable to the cryogenic radiometer. Two alternative primary thermometric methods, yielding comparable or possibly even smaller uncertainties, have been proposed in the literature. They use ratios of irradiances to determine the thermodynamic temperature traceable to blackbody radiation and synchrotron radiation. At PTB, a project has been established in cooperation with VNIIOFI to use, for the first time, all three methods simultaneously for the determination of the phase transition temperatures of high-temperature fixed points. For this, a dedicated four-wavelengths ratio filter radiometer was developed. With all three thermometric methods performed independently and in parallel, we aim to compare the potential and practical limitations of all three methods, disclose possibly undetected systematic effects of each method and thereby confirm or improve the previous measurements traceable to the cryogenic radiometer. This will give further and independent confidence in the thermodynamic temperature determination of the high-temperature fixed point's phase transitions.

  17. Chromium mapping in male mice reproductive glands exposed to CrCl 3 using proton and X-ray synchrotron radiation microbeams

    NASA Astrophysics Data System (ADS)

    Ortega, R.; Devès, G.; Bonnin-Mosbah, M.; Salomé, M.; Susini, J.; Anderson, L. M.; Kasprzak, K. S.

    2001-07-01

    Preconception exposure to certain chemicals may increase risk of tumors in offspring, especially with regard to occupational metals such as chromium. However, the mechanism of chromium trans-generation carcinogenicity remains unknown. Using scanning proton X-ray microanalysis we have been able to detect chromium in testicular tissue sections from mice treated by intraperitoneal injection of 1 mmol/kg CrCl 3. Chromium concentration was about 5 μg/g dry mass in average, but higher concentrations were found within the limiting membrane of the testes, the tunica albuginea. In addition, synchrotron radiation X-ray fluorescence measurements, with microscopic resolution, clearly demonstrated the presence of chromium in the tunica albuginea but also within isolated cells from the interstitial connective tissue.

  18. Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation.

    PubMed

    Schroeder, J L; Thomson, W; Howard, B; Schell, N; Näslund, L-Å; Rogström, L; Johansson-Jõesaar, M P; Ghafoor, N; Odén, M; Nothnagel, E; Shepard, A; Greer, J; Birch, J

    2015-09-01

    We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (>50 keV), high photon flux (>10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (<1 s) two-dimensional (2D) detector, permits time-resolved in situ structural analysis of thin film formation processes. The high-energy synchrotron-radiation based x-rays result in small scattering angles (<11°), allowing large areas of reciprocal space to be imaged with a 2D detector. The system has been designed for use on the 1-tonne, ultra-high load, high-resolution hexapod at the P07 High Energy Materials Science beamline at PETRA III at the Deutsches Elektronen-Synchrotron in Hamburg, Germany. The deposition system includes standard features of a typical UHV deposition system plus a range of special features suited for synchrotron radiation studies and industry-relevant processes. We openly encourage the materials research community to contact us for collaborative opportunities using this unique and versatile scientific instrument.

  19. Multi-scale full-orbit analysis on phase-space behavior of runaway electrons in tokamak fields with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yulei; Liu, Jian, E-mail: jliuphy@ustc.edu.cn; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026

    In this paper, the secular full-orbit simulations of runaway electrons with synchrotron radiation in tokamak fields are carried out using a relativistic volume-preserving algorithm. Detailed phase-space behaviors of runaway electrons are investigated in different dynamical timescales spanning 11 orders. In the small timescale, i.e., the characteristic timescale imposed by Lorentz force, the severely deformed helical trajectory of energetic runaway electron is witnessed. A qualitative analysis of the neoclassical scattering, a kind of collisionless pitch-angle scattering phenomena, is provided when considering the coupling between the rotation of momentum vector and the background magnetic field. In large timescale up to 1 s,more » it is found that the initial condition of runaway electrons in phase space globally influences the pitch-angle scattering, the momentum evolution, and the loss-gain ratio of runaway energy evidently. However, the initial value has little impact on the synchrotron energy limit. It is also discovered that the parameters of tokamak device, such as the toroidal magnetic field, the loop voltage, the safety factor profile, and the major radius, can modify the synchrotron energy limit and the strength of neoclassical scattering. The maximum runaway energy is also proved to be lower than the synchrotron limit when the magnetic field ripple is considered.« less

  20. Time resolved analysis of Fermi gamma-ray bursts with fast-and slow-cooled synchrotron photon models

    DOE PAGES

    Burgess, J. M.; Preece, R. D.; Connaughton, V.; ...

    2014-02-27

    Time-resolved spectroscopy is performed on eight bright, long gamma-ray bursts (GRBs) dominated by single emission pulses that were observed with the Fermi Gamma-Ray Space Telescope. Fitting the prompt radiation of GRBs by empirical spectral forms such as the Band function leads to ambiguous conclusions about the physical model for the prompt radiation. Moreover, the Band function is often inadequate to fit the data. Therefore, the GRB spectrum is modeled with two emission components consisting of optically thin non-thermal synchrotron radiation from relativistic electrons and, when significant, thermal emission from a jet photosphere, which is represented by a blackbody spectrum. Inmore » order to produce an acceptable fit, the addition of a blackbody component is required in five out of the eight cases. We also find that the low-energy spectral index α is consistent with a synchrotron component with α = –0.81 ± 0.1. This value lies between the limiting values of α = –2/3 and α = –3/2 for electrons in the slow- and fast-cooling regimes, respectively, suggesting ongoing acceleration at the emission site. The blackbody component can be more significant when using a physical synchrotron model instead of the Band function, illustrating that the Band function does not serve as a good proxy for a non-thermal synchrotron emission component. The temperature and characteristic emission-region size of the blackbody component are found to, respectively, decrease and increase as power laws with time during the prompt phase. Additionally, we find that the blackbody and non-thermal components have separate temporal behaviors as far as their respective flux and spectral evolutions.« less

  1. Synchrotron radiation and free-electron laser surface and interface spectroscopy and spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Margaritondo, G.

    1994-07-01

    Experimental breakthroughs are having a big impact on surface and interface science. We review two series of results: first, photoemission experiments performed with high (0.1 micron) lateral resolution on the scanning instrument MAXIMUM at Wisconsin. These experiments revealed, in particular, core-level shifts from place to place on cleaved semiconductor surfaces, raising serious questions about a whole class of interface formation experiments. The second series of results applied for the first time a free-electron laser (the world's brightest Vanderbilt University infrared facility) to surface and interface physics. Using the FELIPE (FEL Internal PhotoEmission) technique, we measured heterojunction band discontinuities with a few meV accuracy. Much of the progress in surface and interface research has been both stimulated and made possible by parallel progress in instrumentation. From this point of view, I believe that we are witnessing a truly extraordinary period. Many of the experimental techniques in this field are based on synchrotron radiation: and we are seeing an increase in brightness of 4-5 orders of magnitude in this kind of sources, over a period of a few years! In a different spectral range, the free-electron laser is finally finding its way to applications, and with its unmprecedented infrared intensity opens up new research oppurtunities, complementary to those of synchrotron radiation. These developments have been analyzed by several recent reviews as far as instrumentation and potential applications are concerned.[1-3] It is now time to show that one can go beyond promises; my short review concentrates on real results, to show that the promises of the past are fast becoming reality. This is important, in particular, in light of the recent initial commissioning of the Advanced Light Source (ALS) in Berkeley, and of the forthcoming commissioning of ELETTRA in Trieste.

  2. Using Synchrotron Radiation Microtomography to Investigate Multi-scale Three-dimensional Microelectronic Packages.

    PubMed

    Carlton, Holly D; Elmer, John W; Li, Yan; Pacheco, Mario; Goyal, Deepak; Parkinson, Dilworth Y; MacDowell, Alastair A

    2016-04-13

    Synchrotron radiation micro-tomography (SRµT) is a non-destructive three-dimensional (3D) imaging technique that offers high flux for fast data acquisition times with high spatial resolution. In the electronics industry there is serious interest in performing failure analysis on 3D microelectronic packages, many which contain multiple levels of high-density interconnections. Often in tomography there is a trade-off between image resolution and the volume of a sample that can be imaged. This inverse relationship limits the usefulness of conventional computed tomography (CT) systems since a microelectronic package is often large in cross sectional area 100-3,600 mm(2), but has important features on the micron scale. The micro-tomography beamline at the Advanced Light Source (ALS), in Berkeley, CA USA, has a setup which is adaptable and can be tailored to a sample's properties, i.e., density, thickness, etc., with a maximum allowable cross-section of 36 x 36 mm. This setup also has the option of being either monochromatic in the energy range ~7-43 keV or operating with maximum flux in white light mode using a polychromatic beam. Presented here are details of the experimental steps taken to image an entire 16 x 16 mm system within a package, in order to obtain 3D images of the system with a spatial resolution of 8.7 µm all within a scan time of less than 3 min. Also shown are results from packages scanned in different orientations and a sectioned package for higher resolution imaging. In contrast a conventional CT system would take hours to record data with potentially poorer resolution. Indeed, the ratio of field-of-view to throughput time is much higher when using the synchrotron radiation tomography setup. The description below of the experimental setup can be implemented and adapted for use with many other multi-materials.

  3. Even-parity resonances with synchrotron radiation from Laser Excited Lithium at 1s^22p State

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Tie; Wehlitz, Ralf

    2010-03-01

    Correlated many-body dynamics is still one of the unsolved fundamental problems in physics. Such correlation effects can be most clearly studied in processes involving single atoms for their simplicity.Lithium, being the simplest open shell atom, has been under a lot of study. Most of the studies focused on ground state lithium. However, only odd parity resonances can be populated through single photon (synchrotron radiation) absorption from ground state lithium (1s^22s). Lithium atoms, after being laser excited to the 1s^22p state, allow the study of even parity resonances. We have measured some of the even parity resonances of lithium for resonant energies below 64 eV. A single-mode diode laser is used to excite lithium from 1s^22s ground state to 1s^22p (^2P3/2) state. Photoions resulting from the interaction between the excited lithium and synchrotron radiation were analyzed and collected by an ion time-of-flight (TOF) spectrometer with a Z- stack channel plate detector. The Li^+ ion yield was recorded while scanning the undulator along with the monochromator. The energy scans have been analyzed regarding resonance energies and parameters of the Fano profiles. Our results for the observed resonances will be presented.

  4. Manufacturability of compact synchrotron mirrors

    NASA Astrophysics Data System (ADS)

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  5. Compensating effect of the coherent synchrotron radiation in bunch compressors

    NASA Astrophysics Data System (ADS)

    Jing, Yichao; Hao, Yue; Litvinenko, Vladimir N.

    2013-06-01

    Typical bunch compression for a high-gain free-electron laser (FEL) requires a large compression ratio. Frequently, this compression is distributed in multiple stages along the beam transport line. However, for a high-gain FEL driven by an energy recovery linac (ERL), compression must be accomplished in a single strong compressor located at the beam line’s end; otherwise the electron beam would be affected severely by coherent synchrotron radiation (CSR) in the ERL’s arcs. In such a scheme, the CSR originating from the strong compressors could greatly degrade the quality of the electron beam. In this paper, we present our design for a bunch compressor that will limit the effect of CSR on the e-beam’s quality. We discuss our findings from a study of such a compressor, and detail its potential for an FEL driven by a multipass ERL developed for the electron-Relativistic Heavy Ion Collider.

  6. Raster microdiffraction with synchrotron radiation of hydrated biopolymers with nanometre step-resolution: case study of starch granules

    PubMed Central

    Riekel, C.; Burghammer, M.; Davies, R. J.; Di Cola, E.; König, C.; Lemke, H.T.; Putaux, J.-L.; Schöder, S.

    2010-01-01

    X-ray radiation damage propagation is explored for hydrated starch granules in order to reduce the step resolution in raster-microdiffraction experiments to the nanometre range. Radiation damage was induced by synchrotron radiation microbeams of 5, 1 and 0.3 µm size with ∼0.1 nm wavelength in B-type potato, Canna edulis and Phajus grandifolius starch granules. A total loss of crystallinity of granules immersed in water was found at a dose of ∼1.3 photons nm−3. The temperature dependence of radiation damage suggests that primary radiation damage prevails up to about 120 K while secondary radiation damage becomes effective at higher temperatures. Primary radiation damage remains confined to the beam track at 100 K. Propagation of radiation damage beyond the beam track at room temperature is assumed to be due to reactive species generated principally by water radiolysis induced by photoelectrons. By careful dose selection during data collection, raster scans with 500 nm step-resolution could be performed for granules immersed in water. PMID:20975219

  7. PEP as a synchrotron radiation source (invited)

    NASA Astrophysics Data System (ADS)

    Bienenstock, A.; Brown, G.; Wiedemann, H.; Winick, H.

    1989-07-01

    The 16-GeV storage ring PEP has characteristics which enable it to operate in modes with very low emittance and to accommodate very long undulators, producing synchrotron radiation at x-ray wavelengths with extremely high brightness and coherent power. Two beamlines, each illuminated by a 2-m long, 77-mm period undulator magnet, are now operational and others are planned. In parasitic operation during colliding-beam runs at 14.5 GeV, these beamlines provide photons above 10 keV with a peak brightness of about 1016 photons/(s mm2 mrad2 ) within a 0.1% bandwidth. In low-emittance tests at 7.1 GeV, horizontal emittances of about 5 nm rad were measured, which is about the same as that planned for the new third-generation x-ray sources. With a current of 15 mA at 7.1 GeV, the present undulators deliver photon beams from 2.7 to 14 keV with a peak brightness of about 1017 . Higher performance levels are expected with the implementation of longer undulators and shorter period undulators. In the longer term, because of its large circumference and long straight sections, PEP could be further developed to achieve even higher performance levels with an emittance below 1 nm rad, very long undulators and picosecond bunches, resulting in one to two orders of magnitude higher brightness and coherent power.

  8. Image processing pipeline for synchrotron-radiation-based tomographic microscopy.

    PubMed

    Hintermüller, C; Marone, F; Isenegger, A; Stampanoni, M

    2010-07-01

    With synchrotron-radiation-based tomographic microscopy, three-dimensional structures down to the micrometer level can be visualized. Tomographic data sets typically consist of 1000 to 1500 projections of 1024 x 1024 to 2048 x 2048 pixels and are acquired in 5-15 min. A processing pipeline has been developed to handle this large amount of data efficiently and to reconstruct the tomographic volume within a few minutes after the end of a scan. Just a few seconds after the raw data have been acquired, a selection of reconstructed slices is accessible through a web interface for preview and to fine tune the reconstruction parameters. The same interface allows initiation and control of the reconstruction process on the computer cluster. By integrating all programs and tools, required for tomographic reconstruction into the pipeline, the necessary user interaction is reduced to a minimum. The modularity of the pipeline allows functionality for new scan protocols to be added, such as an extended field of view, or new physical signals such as phase-contrast or dark-field imaging etc.

  9. Geodesic synchrotron radiation in the Kerr geometry by the method of asymptotically factorized Green's functions

    NASA Technical Reports Server (NTRS)

    Chrzanowski, P. L.; Misner, C. W.

    1974-01-01

    The scalar, electromagnetic, and gravitational geodesic-synchrotron-radiation (GSR) spectra are determined for the case of a test particle moving on a highly relativistic circular orbit about a rotating (Kerr) black hole. It is found that the spectral shape depends only weakly on the value of the angular-momentum parameter (a/M) of the black hole, but the total radiated power drops unexpectedly for a value of at least 0.95 and vanishes as the value approaches unity. A spin-dependent factor (involving the inner product of the polarization of a radiated quantum with the source) is isolated to explain the dependence of the spectral shape on the spin of the radiated field. Although the scalar wave equation is solved by separation of variables, this procedure is avoided for the vector and tensor cases by postulating a sum-over-states expansion for the Green's function similar to that found to hold in the scalar case. The terms in this sum, significant for GSR, can then be evaluated in the geometric-optics approximation without requiring the use of vector or tensor spherical harmonics.

  10. Double Compton and Cyclo-Synchrotron in Super-Eddington Discs, Magnetized Coronae, and Jets

    NASA Astrophysics Data System (ADS)

    McKinney, Jonathan C.; Chluba, Jens; Wielgus, Maciek; Narayan, Ramesh; Sadowski, Aleksander

    2017-05-01

    Black hole accretion discs accreting near the Eddington rate are dominated by bremsstrahlung cooling, but above the Eddington rate, the double Compton process can dominate in radiation-dominated regions, while the cyclo-synchrotron can dominate in strongly magnetized regions like a corona or a jet. We present an extension to the general relativistic radiation magnetohydrodynamic code harmrad to account for emission and absorption by thermal cyclo-synchrotron, double Compton, bremsstrahlung, low-temperature opal opacities, as well as Thomson and Compton scattering. The harmrad code and associated analysis and visualization codes have been made open-source and are publicly available at the github repository website. We approximate the radiation field as a Bose-Einstein distribution and evolve it using the radiation number-energy-momentum conservation equations in order to track photon hardening. We perform various simulations to study how these extensions affect the radiative properties of magnetically arrested discs accreting at Eddington to super-Eddington rates. We find that double Compton dominates bremsstrahlung in the disc within a radius of r ˜ 15rg (gravitational radii) at hundred times the Eddington accretion rate, and within smaller radii at lower accretion rates. Double Compton and cyclo-synchrotron regulate radiation and gas temperatures in the corona, while cyclo-synchrotron regulates temperatures in the jet. Interestingly, as the accretion rate drops to Eddington, an optically thin corona develops whose gas temperature of T ˜ 109K is ˜100 times higher than the disc's blackbody temperature. Our results show the importance of double Compton and synchrotron in super-Eddington discs, magnetized coronae and jets.

  11. Review of third and next generation synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Bilderback, Donald H.; Elleaume, Pascal; Weckert, Edgar

    2005-05-01

    Synchrotron radiation (SR) is having a very large impact on interdisciplinary science and has been tremendously successful with the arrival of third generation synchrotron x-ray sources. But the revolution in x-ray science is still gaining momentum. Even though new storage rings are currently under construction, even more advanced rings are under design (PETRA III and the ultra high energy x-ray source) and the uses of linacs (energy recovery linac, x-ray free electron laser) can take us further into the future, to provide the unique synchrotron light that is so highly prized for today's studies in science in such fields as materials science, physics, chemistry and biology, for example. All these machines are highly reliant upon the consequences of Einstein's special theory of relativity. The consequences of relativity account for the small opening angle of synchrotron radiation in the forward direction and the increasing mass an electron gains as it is accelerated to high energy. These are familiar results to every synchrotron scientist. In this paper we outline not only the origins of SR but discuss how Einstein's strong character and his intuition and excellence have not only marked the physics of the 20th century but provide the foundation for continuing accelerator developments into the 21st century.

  12. Synthesis of nanoparticles through x-ray radiolysis using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, A.; Okada, I.; Fukuoka, T.; Ishihara, M.; Sakurai, I.; Utsumi, Y.

    2016-09-01

    The synthesis and deposition of nanoparticles consisting of Cu and Au in a CuSO4 solution with some kinds of alcohol and electroplating solution containing gold (I) trisodium disulphite under synchrotron X-ray radiation was investigated. The functional group of alcohol plays an important in nucleation, growth and aggregation process of copper and cupric oxide particles. We found that the laboratory X-ray source also enables us to synthesize the NPs from the metallic solution. As increasing X-ray exposure time, the full length at half width of particle size distribution is broader and higher-order nanostructure containing NPs clusters is formed. The surface-enhanced Raman scattering (SERS) of 4, 4'-bipyridine (4bpy) in aqueous solution was measured using higher-order nanostructure immobilized on silicon substrates under systematically-varied X-ray exposure. This demonstration provide a clue to develop a three-dimensional printing and sensor for environmental analyses and molecular detection through simple SERS measurements.

  13. Studies of Coherent Synchrotron Radiation with the Discontinuous Galerkin Method

    NASA Astrophysics Data System (ADS)

    Bizzozero, David A.

    In this thesis, we present methods for integrating Maxwell's equations in Frenet-Serret coordinates in several settings using discontinuous Galerkin (DG) finite element method codes in 1D, 2D, and 3D. We apply these routines to the study of coherent synchrotron radiation, an important topic in accelerator physics. We build upon the published computational work of T. Agoh and D. Zhou in solving Maxwell's equations in the frequency-domain using a paraxial approximation which reduces Maxwell's equations to a Schrodinger-like system. We also evolve Maxwell's equations in the time-domain using a Fourier series decomposition with 2D DG motivated by an experiment performed at the Canadian Light Source. A comparison between theory and experiment has been published (Phys. Rev. Lett. 114, 204801 (2015)). Lastly, we devise a novel approach to integrating Maxwell's equations with 3D DG using a Galilean transformation and demonstrate proof-of-concept. In the above studies, we examine the accuracy, efficiency, and convergence of DG.

  14. NSLS-II beamline scattered gas bremsstrahlung radiation shielding calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Razvan; Xia, Zhenghua, E-mail: xiazhenghuacn@hotmail.com; Job, Panakkal

    2016-07-27

    National Synchrotron Light Source II (NSLS-II) is a new state-of-the-art 3rd generation synchrotron. The NSLS-II facility is shielded up to 3 GeV electron beam energy at 500 mA. When the gas bremsstrahlung (GB) from the storage ring is scattered by the beamline components in the first optical enclosure (FOE), the scattered radiation will pose additional radiation hazard (bypassing primary GB collimators and stops) and challenge the FOE shielding. The scattered GB radiation hazard can be mitigated by supplementary shielding or with an exclusion zone downstream of the FOE.

  15. 3 GeV Booster Synchrotron Conceptual Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedemann, Helmut

    2009-06-02

    Synchrotron light cna be produced from a relativistic particle beam circulating in a storage ring at extremely high intensity and brilliance over a large spectral region reaching from the far infrared regime to hard x-rays. The particles, either electrons or positrons, radiate as they are deflected in the fields of the storage ring bending magnets or of magnets specially optimized for the production of synchrotron light. The synchrotron light being very intense and well collimated in the forward direction has become a major tool in a large variety of research fields in physics, chemistry, material science, biology, and medicine.

  16. Extraterrestrial Materials: The Role of Synchrotron Radiation Analyses in the Study of Our Solar System

    ScienceCinema

    Sutton, Stephen R. [University of Chicago, Chicago, Illinois, United States

    2017-12-09

    Sample-return missions and natural collection processes have provided us with a surprisingly extensive collection of matter from Solar System bodies other than the Earth. These collections include samples from the Moon, Mars, asteroids, interplanetary dust, and, recently, from the Sun (solar wind) and a comet. This presentation will describe some of these materials, how they were collected, and what we have learned from them. Synchrotron radiation analyses of these materials are playing an increasingly valuable role in unraveling the histories and properities of the parent Solar System bodies.

  17. A compact high brightness laser synchrotron light source for medical applications

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhisa

    1999-07-01

    The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.

  18. Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring

    DOEpatents

    Yu, David U. L.

    1990-01-01

    A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.

  19. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation

    PubMed Central

    Conrad, Chelsie E.; Nelson, Garrett; Stander, Natasha; Zatsepin, Nadia A.; Zook, James; Zhu, Lan; Geiger, James; Chun, Eugene; Kissick, David; Hilgart, Mark C.; Ogata, Craig; Ishchenko, Andrii; Nagaratnam, Nirupa; Roy-Chowdhury, Shatabdi; Coe, Jesse; Subramanian, Ganesh; Schaffer, Alexander; Ketwala, Gihan; Venugopalan, Nagarajan; Xu, Shenglan; Corcoran, Stephen; Ferguson, Dale; Weierstall, Uwe; Spence, John C. H.; Cherezov, Vadim; Fromme, Petra; Fischetti, Robert F.; Liu, Wei

    2017-01-01

    Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A2A adenosine receptor (A2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS

  20. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation.

    PubMed

    Martin-Garcia, Jose M; Conrad, Chelsie E; Nelson, Garrett; Stander, Natasha; Zatsepin, Nadia A; Zook, James; Zhu, Lan; Geiger, James; Chun, Eugene; Kissick, David; Hilgart, Mark C; Ogata, Craig; Ishchenko, Andrii; Nagaratnam, Nirupa; Roy-Chowdhury, Shatabdi; Coe, Jesse; Subramanian, Ganesh; Schaffer, Alexander; James, Daniel; Ketwala, Gihan; Venugopalan, Nagarajan; Xu, Shenglan; Corcoran, Stephen; Ferguson, Dale; Weierstall, Uwe; Spence, John C H; Cherezov, Vadim; Fromme, Petra; Fischetti, Robert F; Liu, Wei

    2017-07-01

    Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5-20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2A AR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2A AR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2A AR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5-20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS

  1. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation

    DOE PAGES

    Martin-Garcia, Jose M.; Conrad, Chelsie E.; Nelson, Garrett; ...

    2017-05-24

    Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advancedmore » Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS

  2. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin-Garcia, Jose M.; Conrad, Chelsie E.; Nelson, Garrett

    Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advancedmore » Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS

  3. Neutron and Synchrotron Radiation Studies for Designer Materials, Sustainable Energy and Healthy Lives

    NASA Astrophysics Data System (ADS)

    Gibson, J. Murray

    2009-05-01

    Probably the most prolific use of large accelerators today is in the creation of bright beams of x-ray photons or neutrons. The number of scientific users of such sources in the US alone is approaching 10,000. I will describe the some of the major applications of synchrotron and neutron radiation and their impact on society. If you have AIDS, need a better IPOD or a more efficient car, or want to clean up a superfund site, you are benefitting from these accelerators. The design of new materials is becoming more and more dependent on structural information from these sources. I will identify the trends in applications which are demanding new sources with greater capabilities.

  4. Hyperspectral Analyses of Wild 2 Grains Using Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Simionovici, A. S.; Lemelle, L.; Ferroir, T.; Gillet, P.; Borg, J.; Grossemy, F.; Djouadi, Z.; Bleuet, P.; Susini, J.

    2006-12-01

    This work is part of the Preliminary Examination Team (PET) on Bulk Chemistry investigation of Wild 2 cometary grains brought back to Earth by the NASA Stardust mission [1]. X-rays are among the least destructive yet sensitive micro-probes, capable of analysing minute samples embedded in low density collectors, so methods based on Synchrotron Radiation had access to Stardust samples in priority. The main goal of the PET was to produce a preliminary characterization of the abundance and nature of the elements present in the returned samples [2]. In this phase it was paramount to analyze the grains in-situ, in the aerogel foam of the collectors to record the total mass fragments and avoid extraction risks. We have performed measurements on beamlines ID22/ID21 of the ESRF synchrotron in Grenoble, France, devoted to high/low energy microspectroscopy and recorded results on a collection of 6 keystones. Terminal particles as well as fragmentation tracks in the aerogel were mapped out with micron resolution, recording total mass composition for elements of Z>15 by means of X-ray fluorescence [3], as well as structural information by X-ray diffraction. This allowed the direct identification of the mineralogy of some of the grains. Finally, we recorded the evolution of the charge states of S and Fe as a function of the position in the track by means of micro-Xanes measurements. All these analyses were combined to produce a description of the Wild 2 cometary grains [4], as well as a history of their formation and of the thermal interactions during their slowing down in the aerogel collectors. [1] Brownlee, D. E. et al., LPSC XXXVII, abstract nr. 2286, 2006. [2] G. J. Flynn et al., LPSC XXXVII, abstract nr. 1217, 2006. [3] A. Simionovici, P. Chevallier, Chap. 7, Handbook of Practical X-Ray Fluorescence Analysis, 66-83, Springer, 2006. [4] G. J. Flynn et al., Science, (submitted), 2006.

  5. Temporal properties of coherent synchrotron radiation produced by an electron bunch moving along an arc of a circle

    NASA Astrophysics Data System (ADS)

    Geloni, G.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    2004-08-01

    In the limit for a large distance between bunch and detector and under the assumption that the entire process, i.e. radiation and detection, happens in vacuum, one can use the well-known Schwinger formulas in order to describe the single-particle radiation in the case of circular motion. Nevertheless, these formulas cannot be applied for particles moving in an arc of a circle. In this paper, we present a characterization of coherent synchrotron radiation (CSR) pulses in the time-domain as they are emitted by an electron bunch moving in an arc of a circle. This can be used in order to give a quantitative estimation of the effects of a finite bending magnet extension on the characteristics of the CSR pulse.

  6. Current advances in synchrotron radiation instrumentation for MX experiments

    PubMed Central

    Owen, Robin L.; Juanhuix, Jordi; Fuchs, Martin

    2017-01-01

    Following pioneering work 40 years ago, synchrotron beamlines dedicated to macromolecular crystallography (MX) have improved in almost every aspect as instrumentation has evolved. Beam sizes and crystal dimensions are now on the single micron scale while data can be collected from proteins with molecular weights over 10 MDa and from crystals with unit cell dimensions over 1000 Å. Furthermore it is possible to collect a complete data set in seconds, and obtain the resulting structure in minutes. The impact of MX synchrotron beamlines and their evolution is reflected in their scientific output, and MX is now the method of choice for a variety of aims from ligand binding to structure determination of membrane proteins, viruses and ribosomes, resulting in a much deeper understanding of the machinery of life. A main driving force of beamline evolution have been advances in almost every aspect of the instrumentation comprising a synchrotron beamline. In this review we aim to provide an overview of the current status of instrumentation at modern MX experiments. The most critical optical components are discussed, as are aspects of endstation design, sample delivery, visualization and positioning, the sample environment, beam shaping, detectors and data acquisition and processing. PMID:27046341

  7. Optimization of air gap for two-dimensional imaging system using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Zeniya, Tsutomu; Takeda, Tohoru; Yu, Quanwen; Hyodo, Kazuyuki; Yuasa, Tetsuya; Aiyoshi, Yuji; Hiranaka, Yukio; Itai, Yuji; Akatsuka, Takao

    2000-11-01

    Since synchrotron radiation (SR) has several excellent properties such as high brilliance, broad continuous energy spectrum and small divergence, we can obtain x-ray images with high contrast and high spatial resolution by using of SR. In 2D imaging using SR, air gap method is very effective to reduce the scatter contamination. However, to use air gap method, the geometrical effect of finite source size of SR must be considered because spatial resolution of image is degraded by air gap. For 2D x-ray imaging with SR, x-ray mammography was chosen to examine the effect of air gap method. We theoretically discussed the optimization of air gap distance suing effective scatter point source model proposed by Muntz, and executed experiment with a newly manufactured monochromator with asymmetrical reflection and an imaging plate.

  8. High-speed X-ray microscopy by use of high-resolution zone plates and synchrotron radiation.

    PubMed

    Hou, Qiyue; Wang, Zhili; Gao, Kun; Pan, Zhiyun; Wang, Dajiang; Ge, Xin; Zhang, Kai; Hong, Youli; Zhu, Peiping; Wu, Ziyu

    2012-09-01

    X-ray microscopy based on synchrotron radiation has become a fundamental tool in biology and life sciences to visualize the morphology of a specimen. These studies have particular requirements in terms of radiation damage and the image exposure time, which directly determines the total acquisition speed. To monitor and improve these key parameters, we present a novel X-ray microscopy method using a high-resolution zone plate as the objective and the matching condenser. Numerical simulations based on the scalar wave field theory validate the feasibility of the method and also indicate the performance of X-ray microscopy is optimized most with sub-10-nm-resolution zone plates. The proposed method is compatible with conventional X-ray microscopy techniques, such as computed tomography, and will find wide applications in time-resolved and/or dose-sensitive studies such as living cell imaging.

  9. Cancellation of coherent synchrotron radiation kicks with optics balance.

    PubMed

    Di Mitri, S; Cornacchia, M; Spampinati, S

    2013-01-04

    Minimizing transverse emittance is essential in linear accelerators designed to deliver very high brightness electron beams. Emission of coherent synchrotron radiation (CSR), as a contributing factor to emittance degradation, is an important phenomenon to this respect. A manner in which to cancel this perturbation by imposing certain symmetric conditions on the electron transport system has been suggested.We first expand on this idea by quantitatively relating the beam Courant-Snyder parameters to the emittance growth and by providing a general scheme of CSR suppression with asymmetric optics, provided it is properly balanced along the line. We present the first experimental evidence of this cancellation with the resultant optics balance of multiple CSR kicks: the transverse emittance of a 500 pC, sub-picosecond, high brightness electron beam is being preserved after the passage through the achromatic transfer line of the FERMI@Elettra free electron laser, and emittance growth is observed when the optics balance is intentionally broken. We finally show the agreement between the theoretical model and the experimental results. This study holds the promise of compact dispersive lines with relatively large bending angles, thus reducing costs for future electron facilities.

  10. Radiological considerations for bulk shielding calculations of national synchrotron light source-II

    NASA Astrophysics Data System (ADS)

    Job, Panakkal K.; Casey, William R.

    2011-12-01

    Brookhaven National Laboratory is designing a new electron synchrotron for scientific research using synchrotron radiation. This facility, called the “National Synchrotron Light Source II” (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. The project scope includes the design, construction, installation, and commissioning of the following accelerators: a 200 MeV linac, a booster synchrotron operating from 200 MeV to 3.0 GeV, and the storage ring which stores a maximum of 500 mA current of electrons at an energy of 3.0 GeV. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in stored beam current to <1%. Because of the very demanding requirements for beam emittance and synchrotron radiation brilliance, the beam life-time is expected to be quite low, on the order of 2 h. Analysis of the bulk shielding for operating this facility and the input parameters used for this analysis have been discussed in this paper. The characteristics of each of the accelerators and their operating modes have been summarized with the input assumptions for the bulk shielding analysis.

  11. Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Zeniya, T.; Takeda, T.; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T.

    2001-07-01

    We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.

  12. A synchrotron study of microstructure gradient in laser additively formed epitaxial Ni-based superalloy

    DOE PAGES

    Xue, Jiawei; Zhang, Anfeng; Li, Yao; ...

    2015-10-08

    Laser additive forming is considered to be one of the promising techniques to repair single crystal Ni-based superalloy parts to extend their life and reduce the cost. Preservation of the single crystalline nature and prevention of thermal mechanical failure are two of the most essential issues for the application of this technique. Here we employ synchrotron X-ray microdiffraction to evaluate the quality in terms of crystal orientation and defect distribution of a Ni-based superalloy DZ125L directly formed by a laser additive process rooted from a single crystalline substrate of the same material. We show that a disorientation gradient caused bymore » a high density of geometrically necessary dislocations and resultant subgrains exists in the interfacial region between the epitaxial and stray grains. This creates a potential relationship of stray grain formation and defect accumulation. In conclusion, the observation offers new directions on the study of performance control and reliability of the laser additive manufactured superalloys.« less

  13. A synchrotron study of microstructure gradient in laser additively formed epitaxial Ni-based superalloy.

    PubMed

    Xue, Jiawei; Zhang, Anfeng; Li, Yao; Qian, Dan; Wan, Jingchun; Qi, Baolu; Tamura, Nobumichi; Song, Zhongxiao; Chen, Kai

    2015-10-08

    Laser additive forming is considered to be one of the promising techniques to repair single crystal Ni-based superalloy parts to extend their life and reduce the cost. Preservation of the single crystalline nature and prevention of thermal mechanical failure are two of the most essential issues for the application of this technique. Here we employ synchrotron X-ray microdiffraction to evaluate the quality in terms of crystal orientation and defect distribution of a Ni-based superalloy DZ125L directly formed by a laser additive process rooted from a single crystalline substrate of the same material. We show that a disorientation gradient caused by a high density of geometrically necessary dislocations and resultant subgrains exists in the interfacial region between the epitaxial and stray grains. This creates a potential relationship of stray grain formation and defect accumulation. The observation offers new directions on the study of performance control and reliability of the laser additive manufactured superalloys.

  14. A synchrotron study of microstructure gradient in laser additively formed epitaxial Ni-based superalloy

    PubMed Central

    Xue, Jiawei; Zhang, Anfeng; Li, Yao; Qian, Dan; Wan, Jingchun; Qi, Baolu; Tamura, Nobumichi; Song, Zhongxiao; Chen, Kai

    2015-01-01

    Laser additive forming is considered to be one of the promising techniques to repair single crystal Ni-based superalloy parts to extend their life and reduce the cost. Preservation of the single crystalline nature and prevention of thermal mechanical failure are two of the most essential issues for the application of this technique. Here we employ synchrotron X-ray microdiffraction to evaluate the quality in terms of crystal orientation and defect distribution of a Ni-based superalloy DZ125L directly formed by a laser additive process rooted from a single crystalline substrate of the same material. We show that a disorientation gradient caused by a high density of geometrically necessary dislocations and resultant subgrains exists in the interfacial region between the epitaxial and stray grains. This creates a potential relationship of stray grain formation and defect accumulation. The observation offers new directions on the study of performance control and reliability of the laser additive manufactured superalloys. PMID:26446425

  15. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    NASA Astrophysics Data System (ADS)

    Sei, Norihiro; Zen, Heishun; Ohgaki, Hideaki

    2016-10-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR.

  16. Current advances in synchrotron radiation instrumentation for MX experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, Robin L.; Juanhuix, Jordi; Fuchs, Martin

    2016-07-01

    Following pioneering work 40 years ago, synchrotron beamlines dedicated to macromolecular crystallography (MX) have improved in almost every aspect as instrumentation has evolved. Beam sizes and crystal dimensions are now on the single micron scale while data can be collected from proteins with molecular weights over 10 MDa and from crystals with unit cell dimensions over 1000 Å. Furthermore it is possible to collect a complete data set in seconds, and obtain the resulting structure in minutes. The impact of MX synchrotron beamlines and their evolution is reflected in their scientific output, and MX is now the method of choicemore » for a variety of aims from ligand binding to structure determination of membrane proteins, viruses and ribosomes, resulting in a much deeper understanding of the machinery of life. A main driving force of beamline evolution have been advances in almost every aspect of the instrumentation comprising a synchrotron beamline. In this review we aim to provide an overview of the current status of instrumentation at modern MX experiments. The most critical optical components are discussed, as are aspects of endstation design, sample delivery, visualisation and positioning, the sample environment, beam shaping, detectors and data acquisition and processing.« less

  17. Current advances in synchrotron radiation instrumentation for MX experiments.

    PubMed

    Owen, Robin L; Juanhuix, Jordi; Fuchs, Martin

    2016-07-15

    Following pioneering work 40 years ago, synchrotron beamlines dedicated to macromolecular crystallography (MX) have improved in almost every aspect as instrumentation has evolved. Beam sizes and crystal dimensions are now on the single micron scale while data can be collected from proteins with molecular weights over 10 MDa and from crystals with unit cell dimensions over 1000 Å. Furthermore it is possible to collect a complete data set in seconds, and obtain the resulting structure in minutes. The impact of MX synchrotron beamlines and their evolution is reflected in their scientific output, and MX is now the method of choice for a variety of aims from ligand binding to structure determination of membrane proteins, viruses and ribosomes, resulting in a much deeper understanding of the machinery of life. A main driving force of beamline evolution have been advances in almost every aspect of the instrumentation comprising a synchrotron beamline. In this review we aim to provide an overview of the current status of instrumentation at modern MX experiments. The most critical optical components are discussed, as are aspects of endstation design, sample delivery, visualisation and positioning, the sample environment, beam shaping, detectors and data acquisition and processing. Copyright © 2016. Published by Elsevier Inc.

  18. Current advances in synchrotron radiation instrumentation for MX experiments

    DOE PAGES

    Owen, Robin L.; Juanhuix, Jordi; Fuchs, Martin

    2016-04-01

    Following pioneering work 40 years ago, synchrotron beamlines dedicated to macromolecular crystallography (MX) have improved in almost every aspect as instrumentation has evolved. Beam sizes and crystal dimensions are now on the single micron scale while data can be collected from proteins with molecular weights over 10 MDa and from crystals with unit cell dimensions over 1000 Å. Moreover, it is possible to collect a complete data set in seconds, and obtain the resulting structure in minutes. The impact of MX synchrotron beamlines and their evolution is reflected in their scientific output, and MX is now the method of choicemore » for a variety of aims from ligand binding to structure determination of membrane proteins, viruses and ribosomes, resulting in a much deeper understanding of the machinery of life. One main driving force of beamline evolution have been advances in almost every aspect of the instrumentation comprising a synchrotron beamline. In this review we aim to provide an overview of the current status of instrumentation at modern MX experiments. Furthermore, we discuss the most critical optical components, aspects of endstation design, sample delivery, visualisation and positioning, the sample environment, beam shaping, detectors and data acquisition and processing.« less

  19. Nuclear resonance scattering of synchrotron radiation as a unique electronic, structural and thermodynamic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alp, E. Ercan; Sturhahn, Wolfgang; Toellner, Thomas S.

    2012-05-09

    Discovery of Moessbauer effect in a nuclear transition was a remarkable development. It revealed how long-lived nuclear states with relatively low energies in the kiloelectron volt (keV) region can be excited without recoil. This new effect had a unique feature involving a coupling between nuclear physics and solid-state physics, both in terms of physics and sociology. Physics coupling originates from the fact that recoilless emission and absorption or resonance is only possible if the requirement that nuclei have to be bound in a lattice with quantized vibrational states is fulfilled, and that the finite electron density on the nucleus couplesmore » to nuclear degrees of freedom leading to hyperfine interactions. thus, Moessbauer spectroscopy allows peering into solid-state effects using unique nuclear transitions. Sociological aspects of this coupling had been equally startling and fruitful. The interaction between diverse scientific communities, who learned to use Moessbauer spectroscopy proved to be very valuable. For example, biologists, geologists, chemists, physics, materials scientists, and archeologists, all sharing a common spectroscopic technique, also learned to appreciate the beauty and intricacies of each other's fields. As a laboratory-based technique, Moessbauer spectroscopy matured by the end of the 1970s. Further exciting developments took place when accelerator-based techniques were employed, like synchrotron radiation or 'in-beam'Moessbauer experiments with implanted radioactive ions. More recently, two Moessbauer spectrometers on the surface of the Mars kept the technique vibrant and viable up until present time. In this chapter, the authors look into some of the unique aspects of nuclear resonance excited with synchrotron radiation as a probe of condensed matter, including magnetism, valence, vibrations, and lattice dynamics, and review the development of nuclear resonance inelastic x-ray scattering (NRIXS) and synchrotron Moessbauer

  20. Studies Of Coherent Synchrotron Radiation And Longitudinal Space Charge In The Jefferson Lab FEL Driver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tennant, Christopher D.; Douglas, David R.; Li, Rui

    2014-12-01

    The Jefferson Laboratory IR FEL Driver provides an ideal test bed for studying a variety of beam dynamical effects. Recent studies focused on characterizing the impact of coherent synchrotron radiation (CSR) with the goal of benchmarking measurements with simulation. Following measurements to characterize the beam, we quantitatively characterized energy extraction via CSR by measuring beam position at a dispersed location as a function of bunch compression. In addition to operating with the beam on the rising part of the linac RF waveform, measurements were also made while accelerating on the falling part. For each, the full compression point was movedmore » along the backleg of the machine and the response of the beam (distribution, extracted energy) measured. Initial results of start-to-end simulations using a 1D CSR algorithm show remarkably good agreement with measurements. A subsequent experiment established lasing with the beam accelerated on the falling side of the RF waveform in conjunction with positive momentum compaction (R56) to compress the bunch. The success of this experiment motivated the design of a modified CEBAF-style arc with control of CSR and microbunching effects.« less

  1. High speed systems for time-resolved experiments with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Koziol, Anna; Maj, Piotr

    2018-02-01

    The UFXC32k is a single photon counting hybrid pixel detector with 75 μm pixel pitch. It was designed to cope with high X-ray intensities and therefore it is a very good candiate for synchrotron applications. In order to use this detector in an application, a dedicated setup must be designed and built allowing proper operation of the detector within the experiment. The paper presents two setups built for the purpose of Pump-Probe-Probe experiments at the Synchrotron SOLEIL and XPCS experiments at the APS.

  2. Ten Thousand Years of Environment Assessment Using Synchrotron Radiation Micro Beam

    NASA Astrophysics Data System (ADS)

    Shirasawa, K.; Ide-Ektessabi, A.; Koizumi, A.; Azechi, M.

    2003-08-01

    The environment surrounding human has changed through civilization and industrialization, and through these developments, problems including the pollution from heavy metals such as lead and mercury have arisen. In this study, we analyzed major and trace elements in modern and prehistoric teeth by x-ray fluorescence (XRF) analysis using synchrotron radiation micro beam, in order to assess the changes of the environment through the civilization and the industrialization and their affects to the human. It is suggested that teeth accumulate elements in the mineral phase, hydroxiapatite, during their formation, and because there are no significant turnovers, teeth are concerned to be indicators of the environment of the donor. We first analyzed the elements on the surface of tooth from modern individual and tooth from human remains of Jomon period to assess the heavy metal concentration and effect of the diagenesis. The adhering ground elements on the prehistoric teeth showed high amount of Ti, Fe, Mn and other metallic elements.

  3. Synchrotron Self-Compton Emission from the Crab and Other Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Kalapotharakos, Konstantinos

    2015-01-01

    Results of a simulation of synchrotron-self Compton (SSC) emission from a rotation-powered pulsar are presented. The radiating particles are assumed to be both accelerated primary electrons and a spectrum of electron-positron pairs produced in cascades near the polar cap. They follow trajectories in a slot gap using 3D force-free magnetic field geometry, gaining pitch angles through resonant cyclotron absorption of radio photons, radiating and scattering synchrotron emission at high altitudes out to and beyond the light cylinder. Full angular dependence of the synchrotron photon density is simulated in the scattering and all processes are treated in the inertial observer frame. Spectra for the Crab and Vela pulsars as well as two energetic millisecond pulsars, B1821-24 and B1937+21 are simulated using this model. The simulation of the Crab pulsar radiation can reproduce both the flux level and the shape of the observed optical to hard X-ray emission assuming a pair multiplicity of M+ = 3x10(exp 5), as well as the very-high- energy emission above 50 GeV detected by MAGIC and VERITAS, with both the synchrotron and SSC components reflecting the shape of the pair spectrum. Simulations of Vela, B1821-24 and B1937+21, for M+ up to 10(exp 5), do not produce pair SSC emission that is detectable by current telescopes, indicating that only Crab-like pulsars produce significant SSC components. The pair synchrotron emission matches the observed X-ray spectrum of the millisecond pulsars and the predicted peak of this emission at 1-10 MeV would be detectable with planned Compton telescopes.

  4. Synchrotron Self-Compton Emission from the Crab and Other Pulsars

    NASA Astrophysics Data System (ADS)

    Harding, Alice K.; Kalapotharakos, Constantinos

    2015-09-01

    Results of a simulation of synchrotron self-Compton (SSC) emission from a rotation-powered pulsar are presented. The radiating particles are assumed to be both accelerated primary electrons and a spectrum of electron-positron pairs produced in cascades near the polar cap. They follow trajectories in a slot gap using 3D force-free magnetic field geometry, gaining pitch angles through resonant cyclotron absorption of radio photons, radiating and scattering synchrotron emission at high altitudes out to and beyond the light cylinder. Full angular dependence of the synchrotron photon density is simulated in the scattering and all processes are treated in the inertial observer frame. Spectra for the Crab and Vela pulsars as well as two energetic millisecond pulsars, B1821-24 and B1937+21, are simulated using this model. The simulation of the Crab pulsar radiation can reproduce both the flux level and the shape of the observed optical to hard X-ray emission assuming a pair multiplicity of {M}+=3× {10}5, as well as the very-high-energy emission above 50 GeV detected by MAGIC and VERITAS, with both the synchrotron and SSC components reflecting the shape of the pair spectrum. Simulations of Vela, B1821-24, and B1937+21, for {M}+ up to 105, do not produce pair SSC emission that is detectable by current telescopes, indicating that only Crab-like pulsars produce significant SSC components. The pair synchrotron emission matches the observed X-ray spectrum of the millisecond pulsars, and the predicted peak of this emission at 1-10 MeV would be detectable with planned Compton telescopes.

  5. Detection of microvasculature alterations by synchrotron radiation in murine with delayed jellyfish envenomation syndrome.

    PubMed

    Wang, Beilei; Zhang, Bo; Huo, Hua; Wang, Tao; Wang, Qianqian; Wu, Yuanlin; Xiao, Liang; Ren, Yuqi; Zhang, Liming

    2014-04-01

    Using the tentacle extract (TE) from the jellyfish Cyanea capillata, we have previously established a delayed jellyfish envenomation syndrome (DJES) model, which is meaningful for clinical interventions against jellyfish stings. However, the mechanism of DJES still remains unclear. Thus, this study aimed to explore its potential mechanism by detecting TE-induced microvasculature alterations in vivo and ex vivo. Using a third-generation synchrotron radiation facility, we, for the first time, directly observed the blood vessel alterations induced by jellyfish venom in vivo and ex vivo. Firstly, microvasculature imaging of whole-body mouse in vivo indicated that the small blood vessel branches in the liver and kidney in the TE-treated group, seemed much thinner than those in the control group. Secondly, 3D imaging of kidney ex vivo showed that the kidneys in the TE-treated group had incomplete vascular trees where distal vessel branches were partly missing and disorderly disturbed. Finally, histopathological analysis found that obvious morphological changes, especially hemorrhagic effects, were also present in the TE-treated kidney. Thus, TE-induced microvasculature changes might be one of the important mechanisms of multiple organ dysfunctions in DJES. In addition, the methods we employed here will probably facilitate further studies on developing effective intervention strategies against DJES. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Signatures of Synchrotron: Low-cutoff X-ray emission and the hard X-ray spectrum of Cas A

    NASA Astrophysics Data System (ADS)

    Stage, Michael D.; Fedor, Emily Elizabeth; Martina-Hood, Hyourin

    2018-06-01

    In soft X-rays, bright, young Galactic remnants (Cas A, Kepler, Tycho, etc.) present thermal line emission and bremsstrahlung from ejecta, and synchrotron radiation from the shocks. Their hard X-ray spectra tend to be dominated by power-law sources. However, it can be non-trivial to discriminate between contributions from processes such as synchrotron and bremsstrahlung from nonthermally accelerated electrons, even though the energies of the electrons producing this radiation may be very different. Spatially-resolved spectroscopic analysis of 0.5-10 keV observations with, e.g., Chandracan provide leverage in identifying the processes and their locations. Previously, Stage & Allen (2006), Allen & Stage (2007) and Stage & Allen (2011) identified regions characterized by high-cutoff synchrotron radiation. Extrapolating synchrotron model fits to the emission in the Chandra band, they estimated the synchrotron contribution to the hard X-ray spectrum at about one-third the observed flux, fitting the balance with nonthermal bremsstrahlung emission produced by nonthermal electrons in the ejecta. Although it is unlikely this analysis missed regions of the highest-cutoff synchrotron emission, which supplies the bulk of the synchrotron above 15 keV, it may have missed regions of lower-cutoff emission, especially if they are near bright ejecta and the reverse shock. These regions cannot explain the emission at the highest energies (~50 keV), but may make significant contributions to the hard spectrum at lower energies (~10 keV). Using the technique described in Fedor, Martina-Hood & Stage (this meeting), we revisit the analysis to include regions that may be dominated by low-cutoff synchrotron, located in the interior of the remnant, and/or correlated with the reverse shock. Identifying X-ray emission from accelerated electrons associated with the reverse-shock would have important implications for synchrotron and non-thermal bremsstrahlung radiation above the 10 keV.

  7. Distribution of lead in the brain tissues from DNTC patients using synchrotron radiation microbeams

    NASA Astrophysics Data System (ADS)

    Ide-Ektessabi, Ari; Ota, Yukihide; Ishihara, Ryoko; Mizuno, Yutaka; Takeuchi, Tohru

    2005-12-01

    Diffuse neurofibrillary tangles with calcification (DNTC) is a form of dementia with certain characteristics. Its pathology is characterized by cerebrum atrophy, calcification on globus pallidus and dentate nucleus and diffuse neurofibrillary tangles without senile plaques. In the present study brain tissues were prepared from patients with patients DNTC, calcified and non-calcified Alzheimer's disease (AD) patients. The brain tissues were examined non-destructively by X-ray fluorescence (XRF) spectroscopy using synchrotron radiation (SR) microbeams for trace metallic elements Ca, Fe, Cu, Zn and Pb. The XRF analysis showed that there were Pb concentrations in the calcified areas in the brain tissues with both DNTC and AD but there was none in those with non-calcified AD.

  8. Optimizing a synchrotron based x-ray lithography system for IC manufacturing

    NASA Astrophysics Data System (ADS)

    Kovacs, Stephen; Speiser, Kenneth; Thaw, Winston; Heese, Richard N.

    1990-05-01

    The electron storage ring is a realistic solution as a radiation source for production grade, industrial X-ray lithography system. Today several large scale plans are in motion to design and implement synchrotron storage rings of different types for this purpose in the USA and abroad. Most of the scientific and technological problems related to the physics, design and manufacturing engineering, and commissioning of these systems for microlithography have been resolved or are under extensive study. However, investigation on issues connected to application of Synchrotron Orbit Radiation (SOR ) in chip production environment has been somewhat neglected. In this paper we have filled this gap pointing out direct effects of some basic synchrotron design parameters and associated subsystems (injector, X-ray beam line) on the operation and cost of lithography in production. The following factors were considered: synchrotron configuration, injection energy, beam intensity variability, number of beam lines and wafer exposure concept. A cost model has been worked out and applied to three different X-ray Lithography Source (XLS) systems. The results of these applications are compared and conclusions drawn.

  9. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries Using Synchrotron Radiation Techniques

    PubMed Central

    Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas

    2013-01-01

    Intercalation compounds such as transition metal oxides or phosphates are the most commonly used electrode materials in Li-ion and Na-ion batteries. During insertion or removal of alkali metal ions, the redox states of transition metals in the compounds change and structural transformations such as phase transitions and/or lattice parameter increases or decreases occur. These behaviors in turn determine important characteristics of the batteries such as the potential profiles, rate capabilities, and cycle lives. The extremely bright and tunable x-rays produced by synchrotron radiation allow rapid acquisition of high-resolution data that provide information about these processes. Transformations in the bulk materials, such as phase transitions, can be directly observed using X-ray diffraction (XRD), while X-ray absorption spectroscopy (XAS) gives information about the local electronic and geometric structures (e.g. changes in redox states and bond lengths). In situ experiments carried out on operating cells are particularly useful because they allow direct correlation between the electrochemical and structural properties of the materials. These experiments are time-consuming and can be challenging to design due to the reactivity and air-sensitivity of the alkali metal anodes used in the half-cell configurations, and/or the possibility of signal interference from other cell components and hardware. For these reasons, it is appropriate to carry out ex situ experiments (e.g. on electrodes harvested from partially charged or cycled cells) in some cases. Here, we present detailed protocols for the preparation of both ex situ and in situ samples for experiments involving synchrotron radiation and demonstrate how these experiments are done. PMID:24300777

  10. Characterization of electrode materials for lithium ion and sodium ion batteries using synchrotron radiation techniques.

    PubMed

    Doeff, Marca M; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C; Conry, Thomas

    2013-11-11

    Intercalation compounds such as transition metal oxides or phosphates are the most commonly used electrode materials in Li-ion and Na-ion batteries. During insertion or removal of alkali metal ions, the redox states of transition metals in the compounds change and structural transformations such as phase transitions and/or lattice parameter increases or decreases occur. These behaviors in turn determine important characteristics of the batteries such as the potential profiles, rate capabilities, and cycle lives. The extremely bright and tunable x-rays produced by synchrotron radiation allow rapid acquisition of high-resolution data that provide information about these processes. Transformations in the bulk materials, such as phase transitions, can be directly observed using X-ray diffraction (XRD), while X-ray absorption spectroscopy (XAS) gives information about the local electronic and geometric structures (e.g. changes in redox states and bond lengths). In situ experiments carried out on operating cells are particularly useful because they allow direct correlation between the electrochemical and structural properties of the materials. These experiments are time-consuming and can be challenging to design due to the reactivity and air-sensitivity of the alkali metal anodes used in the half-cell configurations, and/or the possibility of signal interference from other cell components and hardware. For these reasons, it is appropriate to carry out ex situ experiments (e.g. on electrodes harvested from partially charged or cycled cells) in some cases. Here, we present detailed protocols for the preparation of both ex situ and in situ samples for experiments involving synchrotron radiation and demonstrate how these experiments are done.

  11. MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments

    PubMed Central

    Gabadinho, José; Beteva, Antonia; Guijarro, Matias; Rey-Bakaikoa, Vicente; Spruce, Darren; Bowler, Matthew W.; Brockhauser, Sandor; Flot, David; Gordon, Elspeth J.; Hall, David R.; Lavault, Bernard; McCarthy, Andrew A.; McCarthy, Joanne; Mitchell, Edward; Monaco, Stéphanie; Mueller-Dieckmann, Christoph; Nurizzo, Didier; Ravelli, Raimond B. G.; Thibault, Xavier; Walsh, Martin A.; Leonard, Gordon A.; McSweeney, Sean M.

    2010-01-01

    The design and features of a beamline control software system for macromolecular crystallography (MX) experiments developed at the European Synchrotron Radiation Facility (ESRF) are described. This system, MxCuBE, allows users to easily and simply interact with beamline hardware components and provides automated routines for common tasks in the operation of a synchrotron beamline dedicated to experiments in MX. Additional functionality is provided through intuitive interfaces that enable the assessment of the diffraction characteristics of samples, experiment planning, automatic data collection and the on-line collection and analysis of X-ray emission spectra. The software can be run in a tandem client-server mode that allows for remote control and relevant experimental parameters and results are automatically logged in a relational database, ISPyB. MxCuBE is modular, flexible and extensible and is currently deployed on eight macromolecular crystallography beamlines at the ESRF. Additionally, the software is installed at MAX-lab beamline I911-3 and at BESSY beamline BL14.1. PMID:20724792

  12. Synchrotron cooling and annihilation of an e/+/-e/-/ plasma - The radiation mechanism for the 5 March, 1979 transient

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Bussard, R. W.; Lingenfelter, R. E.

    1981-01-01

    Positron-electron pair radiation is examined as a mechanism that could be responsible for the impulsive phase emission of the 5 March, 1979 transient. Synchrotron cooling and subsequent annihilation of the pairs can account for the energy spectrum, the very high brightness, and the 0.4 MeV feature observed from this transient, whose source is likely to be a neutron star in the supernova remnant N49 in the Large Magellanic Cloud. In this model, the observed radiation is produced in the skin layer of a hot, radiation-dominated pair atmosphere, probably confined to the vicinity of the neutron star by a strong magnetic field. In this layer, about 10 to the 12th generations of pairs are formed (by photon-photon collisions), cooled and annihilated during the 0.15 s duration of the impulsive phase.

  13. Investigation of high-energy ion-irradiated MA957 using synchrotron radiation under in-situ tension

    DOE PAGES

    Mo, Kun; Yun, Di; Miao, Yinbin; ...

    2016-01-02

    In this paper, an MA957 oxide dispersion-strengthened (ODS) alloy was irradiated with high-energy ions in the Argonne Tandem Linac Accelerator System. Fe ions at an energy of 84 MeV bombarded MA957 tensile specimens, creating a damage region similar to 7.5 μm in depth; the peak damage (similar to 40 dpa) was estimated to be at similar to 7 μm from the surface. Following the irradiation, in-situ high-energy X-ray diffraction measurements were performed at the Advanced Photon Source in order to study the dynamic deformation behavior of the specimens after ion irradiation damage. In-situ X-ray measurements taken during tensile testing ofmore » the ion-irradiated MA957 revealed a difference in loading behavior between the irradiated and un-irradiated regions of the specimen. At equivalent applied stresses, lower lattice strains were found in the radiation-damaged region than those in the un-irradiated region. This might be associated with a higher level of Type II stresses as a result of radiation hardening. The study has demonstrated the feasibility of combining high-energy ion radiation and high-energy synchrotron X-ray diffraction to study materials' radiation damage in a dynamic manner.« less

  14. Unexpected methyl migrations of ethanol dimer under synchrotron VUV radiation

    NASA Astrophysics Data System (ADS)

    Xiao, Weizhan; Hu, Yongjun; Li, Weixing; Guan, Jiwen; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi

    2015-01-01

    While methyl transfer is well known to occur in the enzyme- and metal-catalyzed reactions, the methyl transfer in the metal-free organic molecules induced by the photon ionization has been less concerned. Herein, vacuum ultraviolet single photon ionization and dissociation of ethanol dimer are investigated with synchrotron radiation photoionization mass spectroscopy and theoretical methods. Besides the protonated clusters cation (C2H5OH) ṡ H+ (m/z = 47) and the β-carbon-carbon bond cleavage fragment CH2O ṡ (C2H5OH)H+ (m/z = 77), the measured mass spectra revealed that a new fragment (C2H5OH) ṡ (CH3)+ (m/z = 61) appeared at the photon energy of 12.1 and 15.0 eV, where the neutral dimer could be vertically ionized to higher ionic state. Thereafter, the generated carbonium ions are followed by a Wagner-Meerwein rearrangement and then dissociate to produce this new fragment, which is considered to generate after surmounting a few barriers including intra- and inter-molecular methyl migrations by the aid of theoretical calculations. The appearance energy of this new fragment is measured as 11.55 ± 0.05 eV by scanning photoionization efficiency curve. While the signal intensity of fragment m/z = 61 starts to increase, the fragments m/z = 47 and 77 tend to slowly incline around 11.55 eV photon energy. This suggests that the additional fragment channels other than (C2H5OH) ṡ H+ and CH2O ṡ (C2H5OH)H+ have also been opened, which consume some dimer cations. The present report provides a clear description of the photoionization and dissociation processes of the ethanol dimer in the range of the photon energy 12-15 eV.

  15. Calibration of AXAF Mirrors Using Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Graessle, D. E.; Fitch, J.; Harris, B.; Hsieh, P.; Nguyen, D.; Hughes, J.; Schwartz, D.; Blake, R.

    1995-12-01

    Over the past five years, the SAO AXAF Mission Support Team has been developing methods and systems to provide a tunable, narrow-energy-bandwidth calibration of the reflecting efficiency of the AXAF High Resolution Mirror Assembly. A group of synchrotron beamlines at the National Synchrotron Light Source was selected for this calibration. Measurements and analysis are now available for the 2-12 keV energy range. An X-ray beam with energy purity E/Delta E ~ 5000 has been used to calibrate several witness flats which were coated simultaneously with elements of the flight mirror. In the iridium-edge range, (2010-3200 eV), these may be the first measurements ever to be reported. Optical constants for the iridium have been derived from a fit of reflectance versus grazing angle to a Fresnel equation model for the 2-12 keV energy range. The eight AXAF HRMA elements are being coated individually; however reflectance results are quite consistent from coating run to coating run for the first few pieces. The measurement precision is approximately 0.2%-0.4%. Residuals of the fit are nearly always within 1.0% of the data values, in the angle ranges of interest to AXAF.

  16. Wavelength dispersive analysis with the synchrotron x ray fluorescence microprobe

    NASA Technical Reports Server (NTRS)

    Rivers, M. L.; Thorn, K. S.; Sutton, S. R.; Jones, K. W.; Bajt, S.

    1993-01-01

    A wavelength dispersive spectrometer (WDS) was tested on the synchrotron x ray fluorescence microprobe at Brookhaven National Laboratory. Compared to WDS spectra using an electron microprobe, the synchrotron WDS spectra have much better sensitivity and, due to the absence of bremsstrahlung radiation, lower backgrounds. The WDS spectrometer was successfully used to resolve REE L fluorescence spectra from standard glasses and transition metal K fluorescence spectra from kamacite.

  17. Molecular Beam Mass Spectrometry With Tunable Vacuum Ultraviolet (VUV) Synchrotron Radiation

    PubMed Central

    Golan, Amir; Ahmed, Musahid

    2012-01-01

    Tunable soft ionization coupled to mass spectroscopy is a powerful method to investigate isolated molecules, complexes and clusters and their spectroscopy and dynamics1-4. Fundamental studies of photoionization processes of biomolecules provide information about the electronic structure of these systems. Furthermore determinations of ionization energies and other properties of biomolecules in the gas phase are not trivial, and these experiments provide a platform to generate these data. We have developed a thermal vaporization technique coupled with supersonic molecular beams that provides a gentle way to transport these species into the gas phase. Judicious combination of source gas and temperature allows for formation of dimers and higher clusters of the DNA bases. The focus of this particular work is on the effects of non-covalent interactions, i.e., hydrogen bonding, stacking, and electrostatic interactions, on the ionization energies and proton transfer of individual biomolecules, their complexes and upon micro-hydration by water1, 5-9. We have performed experimental and theoretical characterization of the photoionization dynamics of gas-phase uracil and 1,3-dimethyluracil dimers using molecular beams coupled with synchrotron radiation at the Chemical Dynamics Beamline10 located at the Advanced Light Source and the experimental details are visualized here. This allowed us to observe the proton transfer in 1,3-dimethyluracil dimers, a system with pi stacking geometry and with no hydrogen bonds1. Molecular beams provide a very convenient and efficient way to isolate the sample of interest from environmental perturbations which in return allows accurate comparison with electronic structure calculations11, 12. By tuning the photon energy from the synchrotron, a photoionization efficiency (PIE) curve can be plotted which informs us about the cationic electronic states. These values can then be compared to theoretical models and calculations and in turn, explain in

  18. Temperature Dependence of Power Reflectivity of the First-Wall Materials in the Synchrotron Radiation Range

    NASA Astrophysics Data System (ADS)

    Takada, Noriharu; Nagatsu, Masaaki; Shimada, Michiya

    1995-07-01

    The temperature dependence of power reflectivity in the synchrotron radiation range was measured for candidate first-wall materials of the fusion reactor, such as B4C-coated isotropic graphite, C/C composite material, silicon carbide (SiC), tungsten (W), molybdenum (Mo) and SUS-316. The measurements were carried out using a vacuum vessel with a pressure of about 3 mTorr to avoid oxidation. Distinct temperature dependence of reflectivity was observed only for B4C-coated isotropic graphite. For the other materials, power reflectivities were insensitive to temperature in the range from 300 K to ˜900 K. Theoretical analysis of the results is also presented.

  19. Understanding Why Researchers Should Use Synchrotron-Enhanced FTIR Instead of Traditional FTIR

    ERIC Educational Resources Information Center

    Stem, Michelle R.

    2008-01-01

    A synchrotron-enhanced Fourier transform infrared (SR-FTIR) specializes in combining the tremendous power, brightness, intensity, focusability, and tunability of the photons radiated by a synchrotron with FTIR ability to research the vibrational properties of the lighter elements (i.e., C, N, O, etc.). Infrared (IR) wavelengths correspond to the…

  20. High-energy-resolution monochromator for nuclear resonant scattering of synchrotron radiation by Te-125 at 35.49 keV

    NASA Astrophysics Data System (ADS)

    Imai, Yasuhiko; Yoda, Yoshitaka; Kitao, Shinji; Masuda, Ryo; Higashitaniguchi, Satoshi; Inaba, Chika; Seto, Makoto

    2007-09-01

    We have developed a high-resolution monochromator (HRM) for the measurement of nuclear resonant scattering (NRS) of synchrotron radiation by Te-125 at 35.49 keV using the backscattering of sapphire (9 1 -10 68). HRMs for nuclei with excitation energies less than 30 keV have been successfully developed using high angle diffractions by silicon crystals. Nearly perfect silicon crystal, however, is not suitable for high efficient HRMs at higher energy regions because the symmetry of the crystal structure is high and the Debye-temperature is low. Therefore, we used high quality synthetic sapphire crystal, which has low symmetry of crystal structure and high Debye-temperature. The temperature of the crystal was precisely controlled around 218 K to diffract synchrotron radiation with a Bragg angle of π/2 - 0.52 mrad. Energy was tuned by changing the crystal temperature under the condition of constant diffraction angle. Energy resolution was measured by detecting nuclear forward scattering by Te-125 in enriched TeO II. The relative energy resolution of 2.1×10 -7 is achieved, that is 7.5 meV in energy bandwidth. This HRM opens studies on element-specific dynamics and electronic state of substances containing Te-125.

  1. Physical properties and biocompatibility of UHMWPE-derived materials modified by synchrotron radiation.

    PubMed

    Bykova, Iu; Weinhardt, V; Kashkarova, A; Lebedev, S; Baumbach, T; Pichugin, V; Zaitsev, K; Khlusov, I

    2014-08-01

    The applications of synchrotron radiation (SR) in medical imaging have become of great use, particularly in angiography, bronchography, mammography, computed tomography, and X-ray microscopy. Thanks to recently developed phase contrast imaging techniques non-destructive preclinical testing of low absorbing materials such as polymers has become possible. The focus of the present work is characterization and examination of UHMWPE-derived materials widely used in medicine, before and after their exposure to SR during such testing. Physical properties, such as wettability, surface energy, IR-spectroscopy, roughness, optical microscopy, microhardness measurements of UHMWPE samples were studied before and after SR. The relationship between a growth of UHMWPE surface hydrophilicity after SR and surface colonization by stromal cells was studied in vitro. Obtained results demonstrate that SR may be used as prospective direction to examine bulk (porous) structure of polymer materials and/or to modify polymer surface and volume for tissue engineering.

  2. Synchrotron Radiation XRD Analysis of Indialite in Y-82094 Ungrouped Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Hagiya, K.; Sawa, N.; Kimura, M.; Ohsumi, K.; Komatsu, M.; Zolensky, M.

    2016-01-01

    Y-82094 is an ungrouped type 3.2 carbonaceous chondrite, with abundant chondrules making 78 vol.% of the rock. Among these chondrules, an unusual porphyritic Al-rich magnesian chondrule is reported that consists of a cordierite-like phase, Al-rich orthopyroxene, cristobalite, and spinel surrounded by an anorthitic mesostasis. The reported chemical formula of the cordierite-like phase is Na(0.19)Mg(1.95)Fe(0.02)Al(3.66)Si(5.19)O18, which is close to stoichiometric cordierite (Mg2Al3[AlSi5O18]). Although cordierite can be present in Al-rich chondrules, it has a high temperature polymorph (indialite) and it is therefore necessary to determine whether it is cordierite or indialite in order to better constrain its formation conditions. In this abstract we report on our synchrotron radiation X-ray diffraction (SR-XRD) study of the cordierite-like phase in Y-82094.

  3. Saturation of the laser-induced narrowband coherent synchrotron radiation process: Experimental observation at a storage ring

    NASA Astrophysics Data System (ADS)

    Hosaka, M.; Yamamoto, N.; Takashima, Y.; Szwaj, C.; Le Parquier, M.; Evain, C.; Bielawski, S.; Adachi, M.; Zen, H.; Tanikawa, T.; Kimura, S.; Katoh, M.; Shimada, M.; Takahashi, T.

    2013-02-01

    We study the efficiency limitation affecting laser-induced coherent synchrotron radiation (CSR) at high laser power. Experiments are made on the UVSOR-II storage ring in conditions of narrowband terahertz CSR emission. While, at moderate power, CSR power increases quadratically with laser power, a noticeable decrease in efficiency and eventually a decrease in CSR power is observed experimentally at high power. Details of the underlying process are analyzed numerically. As the saturation effect depends almost instantaneously on the laser intensity, the saturation occurs locally in longitudinal space. This has important consequences on the modulation pattern induced on the electron bunch.

  4. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    PubMed Central

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; Tan, Li Huey

    2014-01-01

    In this review, we summarize recent progresses in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed. PMID:25205057

  5. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    DOE PAGES

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; ...

    2014-09-10

    In this paper, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insightsmore » gained from these studies are described and future directions of this field are also discussed.« less

  6. Using new hetero-spectral two-dimensional correlation analyses and synchrotron-radiation-based spectromicroscopy to characterize binding of Cu to soil dissolved organic matter.

    PubMed

    Sun, Fusheng; Li, Yaqing; Wang, Xiang; Chi, Zhilai; Yu, Guanghui

    2017-04-01

    Understanding the binding characteristics of copper (Cu) to different functional groups in soil dissolved organic matter (DOM) is important to explore Cu toxicity, bioavailability and ultimate fate in the environment. However, the methods used to explore such binding characteristics are still limited. Here, two-dimensional correlation spectroscopy (2DCOS) integrated with Fourier transform infrared (FTIR), 29 Si nuclear magnetic resonance (NMR), 27 Al NMR, and synchrotron-radiation-based FTIR spectromicroscopy were used to explore the binding characteristics of Cu to soil DOM as part of a long-term (23 years) fertilization experiment. Compared with no fertilization and inorganic fertilization (NPK), long-term pig manure fertilization (M) treatment significantly increased the concentration of total and bioavailable Cu in soils. Furthermore, hetero-spectral 2DCOS analyses demonstrated that the binding characteristics of Cu onto functional groups in soil DOM were modified by fertilization regimes. In the NPK treatment, Cu was bound to aliphatic C, whereas in the manure treatment SiO groups had higher affinity toward Cu than aliphatic C. Also, the sequence of binding of functional groups to Cu was modified by the fertilization treatments. Moreover, synchrotron-radiation-based FTIR spectromicroscopy showed that Cu, clay minerals and sesquioxides, and C functional groups were heterogeneously distributed at the micro-scale. Specifically, clay-OH as well as mineral elements had a distribution pattern similar to Cu, but certain (but not all) C forms showed a distribution pattern inconsistent with that of Cu. The combination of synchrotron radiation spectromicroscopy and 2DCOS is a useful tool in exploring the interactions among heavy metals, minerals and organic components in soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Scale hierarchy in Hořava-Lifshitz gravity: strong constraint from synchrotron radiation in the Crab Nebula.

    PubMed

    Liberati, Stefano; Maccione, Luca; Sotiriou, Thomas P

    2012-10-12

    Hořava-Lifshitz gravity models contain higher-order operators suppressed by a characteristic scale, which is required to be parametrically smaller than the Planck scale. We show that recomputed synchrotron radiation constraints from the Crab Nebula suffice to exclude the possibility that this scale is of the same order of magnitude as the Lorentz breaking scale in the matter sector. This highlights the need for a mechanism that suppresses the percolation of Lorentz violation in the matter sector and is effective for higher-order operators as well.

  8. Comparison of diffraction-enhanced computed tomography and monochromatic synchrotron radiation computed tomography of human trabecular bone.

    PubMed

    Connor, D M; Hallen, H D; Lalush, D S; Sumner, D R; Zhong, Z

    2009-10-21

    Diffraction-enhanced imaging (DEI) is an x-ray-based medical imaging modality that, when used in tomography mode (DECT), can generate a three-dimensional map of both the apparent absorption coefficient and the out-of-plane gradient of the index of refraction of the sample. DECT is known to have contrast gains over monochromatic synchrotron radiation CT (SRCT) for soft tissue structures. The goal of this experiment was to compare contrast-to-noise ratio (CNR) and resolution in images of human trabecular bone acquired using SRCT with images acquired using DECT. All images were acquired at the National Synchrotron Light Source (Upton, NY, USA) at beamline X15 A at an x-ray energy of 40 keV and the silicon [3 3 3] reflection. SRCT, apparent absorption DECT and refraction DECT slice images of the trabecular bone were created. The apparent absorption DECT images have significantly higher spatial resolution and CNR than the corresponding SRCT images. Thus, DECT will prove to be a useful tool for imaging applications in which high contrast and high spatial resolution are required for both soft tissue features and bone.

  9. Vlasov Treatment of Coherent Synchrotron Radiation from Arbitrary Planar Orbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warnock, R

    2004-09-22

    We study the influence of coherent synchrotron radiation (CSR) on particle bunches traveling on arbitrary planar orbits between parallel conducting plates. The plates represent shielding due to the vacuum chamber. The vertical distribution of charge is an arbitrary fixed function. Our goal is to follow the time evolution of the phase space distribution by solving the Vlasov-Maxwell equations in the time domain. This provides simulations with lower numerical noise than the macroparticle method, and allows one to study such issues as emittance degradation and microbunching due to CSR in bunch compressors. The fields excited by the bunch are computed inmore » the laboratory frame from a new formula that leads to much simpler computations than the usual retarded potentials or Lienard-Wiechert potentials. The nonlinear Vlasov equation, formulated in the interaction picture, is integrated in the beam frame by approximating the Perron-Frobenius operator. The distribution function is represented by B-splines, in a scheme preserving positivity and normalization of the distribution. For application to a chicane bunch compressor we take steps to deal with energy chirp, an initial near-perfect correlation of energy with position in the bunch.« less

  10. In situ Biological Dose Mapping Estimates the Radiation Burden Delivered to ‘Spared’ Tissue between Synchrotron X-Ray Microbeam Radiotherapy Tracks

    PubMed Central

    Rothkamm, Kai; Crosbie, Jeffrey C.; Daley, Frances; Bourne, Sarah; Barber, Paul R.; Vojnovic, Borivoj; Cann, Leonie; Rogers, Peter A. W.

    2012-01-01

    Microbeam radiation therapy (MRT) using high doses of synchrotron X-rays can destroy tumours in animal models whilst causing little damage to normal tissues. Determining the spatial distribution of radiation doses delivered during MRT at a microscopic scale is a major challenge. Film and semiconductor dosimetry as well as Monte Carlo methods struggle to provide accurate estimates of dose profiles and peak-to-valley dose ratios at the position of the targeted and traversed tissues whose biological responses determine treatment outcome. The purpose of this study was to utilise γ-H2AX immunostaining as a biodosimetric tool that enables in situ biological dose mapping within an irradiated tissue to provide direct biological evidence for the scale of the radiation burden to ‘spared’ tissue regions between MRT tracks. Γ-H2AX analysis allowed microbeams to be traced and DNA damage foci to be quantified in valleys between beams following MRT treatment of fibroblast cultures and murine skin where foci yields per unit dose were approximately five-fold lower than in fibroblast cultures. Foci levels in cells located in valleys were compared with calibration curves using known broadbeam synchrotron X-ray doses to generate spatial dose profiles and calculate peak-to-valley dose ratios of 30–40 for cell cultures and approximately 60 for murine skin, consistent with the range obtained with conventional dosimetry methods. This biological dose mapping approach could find several applications both in optimising MRT or other radiotherapeutic treatments and in estimating localised doses following accidental radiation exposure using skin punch biopsies. PMID:22238667

  11. Diffraction imaging (topography) with monochromatic synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Kuriyama, Masao; Dobbyn, Ronald C.; Laor, Uri

    1988-01-01

    Structural information of special interest to crystal growers and device physicists is now available from high resolution monochromatic synchrotron diffraction imaging (topography). In the review, the importance of superior resolution in momentum transfer and in space is described, and illustrations are taken from a variety of crystals: gallium arsenide, cadmium telluride, mercuric iodide, bismuth silicon oxide, and lithium niobate. The identification and understanding of local variations in crystal growth processes are shown. Finally, new experimental opportunities now available for exploitation are indicated.

  12. Synchrotron Photoionization Investigation of the Oxidation of Ethyl tert-Butyl Ether.

    PubMed

    Winfough, Matthew; Yao, Rong; Ng, Martin; Catani, Katherine; Meloni, Giovanni

    2017-02-23

    The oxidation of ethyl tert-butyl ether (ETBE), a widely used fuel oxygenated additive, is investigated using Cl atoms as initiators in the presence of oxygen. The reaction is carried out at 293, 550, and 700 K. Reaction products are probed by a multiplexed chemical kinetics photoionization mass spectrometer coupled with the synchrotron radiation produced at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory. Products are identified on the basis of mass-to-charge ratio, ionization energies, and shape of photoionization spectra. Reaction pathways are proposed together with detected primary products.

  13. Broadband near-field infrared spectromicroscopy using photothermal probes and synchrotron radiation.

    PubMed

    Donaldson, Paul M; Kelley, Chris S; Frogley, Mark D; Filik, Jacob; Wehbe, Katia; Cinque, Gianfelice

    2016-02-08

    In this paper, we experimentally demonstrate the use of infrared synchrotron radiation (IR-SR) as a broadband source for photothermal near-field infrared spectroscopy. We assess two methods of signal transduction; cantilever resonant thermal expansion and scanning thermal microscopy. By means of rapid mechanical chopping (50-150 kHz), we modulate the IR-SR at rates matching the contact resonance frequencies of atomic force microscope (AFM) cantilevers, allowing us to record interferograms yielding Fourier transform infrared (FT-IR) photothermal absorption spectra of polystyrene and cyanoacrylate films. Complementary offline measurements using a mechanically chopped CW IR laser confirmed that the resonant thermal expansion IR-SR measurements were below the diffraction limit, with a spatial resolution better than 500 nm achieved at a wavelength of 6 μm, i.e. λ/12 for the samples studied. Despite achieving the highest signal to noise so far for a scanning thermal microscopy measurement under conditions approaching near-field (dictated by thermal diffusion), the IR-SR resonant photothermal expansion FT-IR spectra measured were significantly higher in signal to noise in comparison with the scanning thermal data.

  14. Probing polymer crystallization at processing-relevant cooling rates with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavallo, Dario, E-mail: Dario.cavallo@unige.it; Portale, Giuseppe; Androsch, René

    2015-12-17

    Processing of polymeric materials to produce any kind of goods, from films to complex objects, involves application of flow fields on the polymer melt, accompanied or followed by its rapid cooling. Typically, polymers solidify at cooling rates which span over a wide range, from a few to hundreds of °C/s. A novel method to probe polymer crystallization at processing-relevant cooling rates is proposed. Using a custom-built quenching device, thin polymer films are ballistically cooled from the melt at rates between approximately 10 and 200 °C/s. Thanks to highly brilliant synchrotron radiation and to state-of-the-art X-ray detectors, the crystallization process ismore » followed in real-time, recording about 20 wide angle X-ray diffraction patterns per second while monitoring the instantaneous sample temperature. The method is applied to a series of industrially relevant polymers, such as isotactic polypropylene, its copolymers and virgin and nucleated polyamide-6. Their crystallization behaviour during rapid cooling is discussed, with particular attention to the occurrence of polymorphism, which deeply impact material’s properties.« less

  15. Synchrotron Radiation and Neutrons in Art and Archaeology (SR2A) Conference 2016

    DOE PAGES

    Pouyet, Emeline; Rose, Volker; Soriano, Carmen; ...

    2017-01-25

    Here, the seventh edition of the international conference on Synchrotron Radiation and Neutrons in Art and Archaeology (SR2A 2016) was held September 6–8, 2016, at the Stock Exchange Room of The Art Institute of Chicago, USA. The conference was jointly organized by seven research laboratories and museums; more precisely, the Center for Scientific Studies in the Arts (NU-ACCESS) of Northwestern University, the Art Institute of Chicago, the Field Museum Chicago, the Advanced Photon Source (APS), the Oriental Institute Chicago, the Detroit Institute of Arts, and the Indianapolis Museum of Art, in close interaction with the SR2A International Committee. Nine yearsmore » after the organization of the first SR2A conference in Grenoble, the Art Institute hosted the second biennial interdisciplinary meeting in the US.« less

  16. Synchrotron Radiation and Neutrons in Art and Archaeology (SR2A) Conference 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pouyet, Emeline; Rose, Volker; Soriano, Carmen

    Here, the seventh edition of the international conference on Synchrotron Radiation and Neutrons in Art and Archaeology (SR2A 2016) was held September 6–8, 2016, at the Stock Exchange Room of The Art Institute of Chicago, USA. The conference was jointly organized by seven research laboratories and museums; more precisely, the Center for Scientific Studies in the Arts (NU-ACCESS) of Northwestern University, the Art Institute of Chicago, the Field Museum Chicago, the Advanced Photon Source (APS), the Oriental Institute Chicago, the Detroit Institute of Arts, and the Indianapolis Museum of Art, in close interaction with the SR2A International Committee. Nine yearsmore » after the organization of the first SR2A conference in Grenoble, the Art Institute hosted the second biennial interdisciplinary meeting in the US.« less

  17. Radiological implications of top-off operation at national synchrotron light source-II

    NASA Astrophysics Data System (ADS)

    Job, P. K.; Casey, W. R.

    2011-08-01

    High current and low emittance have been specified to achieve ultra high brightness in the third generation medium energy Synchrotron Radiation Sources. This leads to the electron beam lifetime limited by Touschek scattering, and after commissioning may settle in at as low as ∼3 h. It may well be less in the early days of operation. At the same time, the intensity stability specified by the user community for the synchrotron beam is 1% or better. Given the anticipated lifetime of the beam, incremental filling called top-off injection at intervals on the order of ∼1 min will be required to maintain this beam stability. It is judged to be impractical to make these incremental fills by closing the beam shutters at each injection. In addition, closing the front end beam shutters during each injection will adversely affect the stability of beamline optics due to thermal cycling. Hence the radiological consequences of injection with front end beam shutters open must be evaluated. This paper summarizes results of radiological analysis carried out for the proposed top-off injection at National Synchrotron Light Source-II (NSLS-II) with beam shutters open.

  18. Application of white beam synchrotron radiation topography to the analysis of twins

    NASA Astrophysics Data System (ADS)

    Yao, G.-D.; Dudley, M.; Hou, S.-Y.; DiSalvo, R.

    1991-05-01

    White beam synchrotron X-ray topography (WBSXRT) has been used to characterize room temperature twinning structures in lanthanum gallate and P-terphenyl single crystals. Both Laue and Bragg geometries are utilized to reveal the nature of twinning in LaGaO 3. The geometric relationships between the twin related domains and the directions of the corresponding diffracted beams are used to establish the presence of reflection twins on (11¯2) orth, (11¯2¯) orth and (11¯0) orth planes. Also described is the application of WBSXRT to reveal the twin law in the solution grown organic crystal p-terphenyl. The active twin plane was unambiguously determined to be (201) by determination of the orientation relationship between parent and twinned structures through Laue pattern analysis. Twin lamellae with the same twin plane were also observed. For both materials, no radiation damage was observed throughout the experiments. These results demonstrate the usefulness of WBSXRT for the study of twins.

  19. Determination of surface morphology of TiO2 nanostructure using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Das, Gangadhar; Kumar, Manoj; Biswas, A. K.; Khooha, Ajay; Mondal, Puspen; Tiwari, M. K.

    2017-05-01

    Nanostructures of Titanium oxide (TiO2) are being studied for many promising applications, e.g., solar photovoltaics, solar water splitting for H2 fuel generation etc., due to their excellent photo-catalytic properties. We have synthesized low-dimensional TiO2 nanoparticles by gas phase CW CO2 laser pyrolysis. The laser synthesis process has been optimized for the deposition of highly pure, nearly mono-dispersed TiO2 nanoparticles on silicon substrates. Hard x-ray standing wave-field (XSW) measurements in total reflection geometry were carried out on the BL-16 beamline of Indus-2 synchrotron radiation facility in combination with x-ray reflectivity and grazing incidence x-ray fluorescence measurements for the determination of surface morphology of the deposited TiO2 nanostructures. The average particle size of TiO2 nanostructure estimated using transmission electron microscopy (TEM) was found to closely agree with the XSW and grazing incidence x-ray diffraction (GIXRD) results.

  20. Analysis of rapidly synthesized guest-filled porous complexes with synchrotron radiation: Practical guidelines for the crystalline sponge method

    DOE PAGES

    Ramadhar, Timothy R.; Zheng, Shao -Liang; Chen, Yu -Sheng; ...

    2015-01-01

    A detailed set of synthetic and crystallographic guidelines for the crystalline sponge method based upon the analysis of expediently synthesized crystal sponges using third-generation synchrotron radiation are reported. The procedure for the synthesis of the zinc-based metal–organic framework used in initial crystal sponge reports has been modified to yield competent crystals in 3 days instead of 2 weeks. These crystal sponges were tested on some small molecules, with two being unexpectedly difficult cases for analysis with in-house diffractometers in regard to data quality and proper space-group determination. These issues were easily resolved by the use of synchrotron radiation using data-collectionmore » times of less than an hour. One of these guests induced a single-crystal-to-single-crystal transformation to create a larger unit cell with over 500 non-H atoms in the asymmetric unit. This led to a non-trivial refinement scenario that afforded the best Flack x absolute stereochemical determination parameter to date for these systems. The structures did not require the use of PLATON/SQUEEZE or other solvent-masking programs, and are the highest-quality crystalline sponge systems reported to date where the results are strongly supported by the data. A set of guidelines for the entire crystallographic process were developed through these studies. In particular, the refinement guidelines include strategies to refine the host framework, locate guests and determine occupancies, discussion of the proper use of geometric and anisotropic displacement parameter restraints and constraints, and whether to perform solvent squeezing/masking. The single-crystal-to-single-crystal transformation process for the crystal sponges is also discussed. The presented general guidelines will be invaluable for researchers interested in using the crystalline sponge method at in-house diffraction or synchrotron facilities, will facilitate the collection and analysis of reliable high

  1. Automated segmentation of synchrotron radiation micro-computed tomography biomedical images using Graph Cuts and neural networks

    NASA Astrophysics Data System (ADS)

    Alvarenga de Moura Meneses, Anderson; Giusti, Alessandro; de Almeida, André Pereira; Parreira Nogueira, Liebert; Braz, Delson; Cely Barroso, Regina; deAlmeida, Carlos Eduardo

    2011-12-01

    Synchrotron Radiation (SR) X-ray micro-Computed Tomography (μCT) enables magnified images to be used as a non-invasive and non-destructive technique with a high space resolution for the qualitative and quantitative analyses of biomedical samples. The research on applications of segmentation algorithms to SR-μCT is an open problem, due to the interesting and well-known characteristics of SR images for visualization, such as the high resolution and the phase contrast effect. In this article, we describe and assess the application of the Energy Minimization via Graph Cuts (EMvGC) algorithm for the segmentation of SR-μCT biomedical images acquired at the Synchrotron Radiation for MEdical Physics (SYRMEP) beam line at the Elettra Laboratory (Trieste, Italy). We also propose a method using EMvGC with Artificial Neural Networks (EMANNs) for correcting misclassifications due to intensity variation of phase contrast, which are important effects and sometimes indispensable in certain biomedical applications, although they impair the segmentation provided by conventional techniques. Results demonstrate considerable success in the segmentation of SR-μCT biomedical images, with average Dice Similarity Coefficient 99.88% for bony tissue in Wistar Rats rib samples (EMvGC), as well as 98.95% and 98.02% for scans of Rhodnius prolixus insect samples (Chagas's disease vector) with EMANNs, in relation to manual segmentation. The techniques EMvGC and EMANNs cope with the task of performing segmentation in images with the intensity variation due to phase contrast effects, presenting a superior performance in comparison to conventional segmentation techniques based on thresholding and linear/nonlinear image filtering, which is also discussed in the present article.

  2. Radiation damages during synchrotron X-ray micro-analyses of Prussian blue and zinc white historic paintings: detection, mitigation and integration

    NASA Astrophysics Data System (ADS)

    Gervais, Claire; Thoury, Mathieu; Réguer, Solenn; Gueriau, Pierre; Mass, Jennifer

    2015-11-01

    High-flux synchrotron techniques allow microspectroscopic analyses of artworks that were not feasible even a few years ago, allowing for a more detailed characterization of their constituent materials and a better understanding of their chemistry. However, interaction between high-flux photons and matter at the sub-microscale can generate damages which are not visually detectable. We show here different methodologies allowing to evidence the damages induced by microscopic X-ray absorption near-edge structure spectroscopy analysis (μXANES) at the Fe and Zn K-edges of a painting dating from the turn of the twentieth century containing Prussian blue and zinc white. No significant degradation of the pigments was noticed, in agreement with the excellent condition of the painting. However, synchrotron radiation damages occurred at several levels, from chemical changes of the binder, modification of crystal defects in zinc oxide, to Prussian blue photoreduction. They could be identified by using both the μXANES signal during analysis and with photoluminescence imaging in the deep ultraviolet and visible ranges after analysis. We show that recording accurately damaged areas is a key step to prevent misinterpretation of results during future re-examination of the sample. We conclude by proposing good practices that could help in integrating radiation damage avoidance into the analytical pathway.

  3. Quantitative analysis of biomedical samples using synchrotron radiation microbeams

    NASA Astrophysics Data System (ADS)

    Ektessabi, Ali; Shikine, Shunsuke; Yoshida, Sohei

    2001-07-01

    X-ray fluorescence (XRF) using a synchrotron radiation (SR) microbeam was applied to investigate distributions and concentrations of elements in single neurons of patients with neurodegenerative diseases. In this paper we introduce a computer code that has been developed to quantify the trace elements and matrix elements at the single cell level. This computer code has been used in studies of several important neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and parkinsonism-dementia complex (PDC), as well as in basic biological experiments to determine the elemental changes in cells due to incorporation of foreign metal elements. The substantial nigra (SN) tissue obtained from the autopsy specimens of patients with Guamanian parkinsonism-dementia complex (PDC) and control cases were examined. Quantitative XRF analysis showed that neuromelanin granules of Parkinsonian SN contained higher levels of Fe than those of the control. The concentrations were in the ranges of 2300-3100 ppm and 2000-2400 ppm respectively. On the contrary, Zn and Ni in neuromelanin granules of SN tissue from the PDC case were lower than those of the control. Especially Zn was less than 40 ppm in SN tissue from the PDC case while it was 560-810 ppm in the control. These changes are considered to be closely related to the neuro-degeneration and cell death.

  4. Characterization of metal additive manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling

    NASA Astrophysics Data System (ADS)

    Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.

    2018-05-01

    Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.

  5. Characterization of metal additive manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling

    NASA Astrophysics Data System (ADS)

    Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.

    2017-12-01

    Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT ) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.

  6. a Study of the Synchrotron Laue Method for Quantitative Crystal Structure Analysis.

    NASA Astrophysics Data System (ADS)

    Gomez de Anderez, Dora M.

    1990-01-01

    Available from UMI in association with The British Library. Quantitative crystal structure analyses have been carried out on small molecule crystals using synchrotron radiation and the Laue method. A variety of single crystal structure determinations and associated refinements are used and compared with the monochromatic analyses. The new molecular structure of 7-amino-5-bromo -4-methyl-2-oxo-1,2,3,4-tetrahidro-1, 6 -naphthyridine-8-carbonitrile (C_{10 }H_9ON_4 Br.H_2O) has been determined, first using monochromatic Mo Kalpha radiation and a four-circle diffractometer, then using synchrotron Laue diffraction photography. The structure refinements showed a R-factor of 4.97 and 14.0% for the Mo Kalpha and Laue data respectively. The molecular structure of (S)-2-chloro-2-fluoro-N-((S)-1-phenylethyl) ethanamide, (C_{10}H _{11}ClFNO), has been determined using the same crystal throughout for X-ray monochromatic analyses (Mo Kalpha and Cu K alpha) followed by synchrotron Laue data collection. The Laue and monochromatic data compare favourably. The R -factors (on F) were 6.23, 6.45 and 8.19% for the Mo K alpha, Cu Kalpha and Laue data sets respectively. The molecular structure of 3-(5-hydroxy-3-methyl-1-phenylpyrazol-4-yl)-1,3-diphenyl -prop- 2-en-1-one, (C_{25 }H_{20}N _2O_2) has been determined using the synchrotron Laue method. The results compare very well with Mo Kalpha monochromatic data. The R-factors (on F) were 4.60 and 5.29% for Mo Kalpha and Laue analysis respectively. The Laue method is assessed in locating the 20 hydrogen atoms in this structure. The structure analysis of the benzil compound ((C_6H_5 O.CO_2)) is carried out using the synchrotron Laue method firstly at room temperature and secondly at low temperature -114 ^circC. The structure shows an R-factor (on F) of 13.06% and 6.85% for each data set respectively. The synchrotron Laue method was used to collect data for ergocalciferol (Vitamin D_2). The same crystal was also used to record oscillation

  7. A Study of the Synchrotron Laue Method for Quantitative Crystal Structure Analysis

    NASA Astrophysics Data System (ADS)

    Gomez de Anderez, Dora M.

    1990-01-01

    Quantitative crystal structure analyses have been carried out on small molecule crystals using synchrotron radiation and the Laue method. A variety of single crystal structure determinations and associated refinements are used and compared with the monochromatic analyses. The new molecular structure of 7-amino-5-bromo -4-methyl-2-oxo-1,2,3,4 -tetrahidro-1,6 -naphthyridine-8-carbonitrile (C_{10 }H_9ON_4 BrcdotH_2O) has been determined, first using monochromatic Mo K alpha radiation and a four-circle diffractometer, then using synchrotron Laue diffraction photography. The structure refinements showed an R-factor of 4.97 and 14.0% for the Mo Kalpha and Laue data respectively. The molecular structure of (S)-2-chloro-2-fluoro-N-((S)-1-phenylethyl) ethanamide, (C_{10}H _{11}ClFNO), has been determined using the same crystal throughout for X-ray monochromatic analyses (Mo Kalpha and Cu K alpha) followed by synchrotron Laue data collection. The Laue and monochromatic data compare favourably. The R -factors (on F) were 6.23, 6.45 and 8.19% for the Mo K alpha, Cu Kalpha and Laue data sets respectively. The molecular structure of 3-(5-hydroxy-3-methyl-1-phenylpyrazol-4-yl)-1,3-diphenyl -prop-2-en-1-one, (C_{25}H _{20}N_2 O_2) has been determined using the synchrotron Laue method. The results compare very well with Mo Kalpha monochromatic data. The R-factors (on F) were 4.60 and 5.29% for Mo Kalpha and Laue analyses respectively. The Laue method is assessed in locating the 20 hydrogen atoms in this structure. The structure analyses of the benzil compound ((C_6H_5 OcdotCO_2)) is carried out using the synchrotron Laue method firstly at room temperature and secondly at low temperature. The structure shows an R-factor (on F) of 13.06% and 6.85% for each data set respectively. The synchrotron Laue method was used to collect data for ergocalciferol (Vitamin D_2). The same crystal was also used to record oscillation data with the synchrotron radiation monochromatic beam. A new

  8. GeoSoilEnviroCARS: A National User Facility for Synchrotron Radiation Research

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.; Sutton, S. R.

    2002-12-01

    GeoSoilEnviroCARS (GSECARS) is a national user facility for frontier research in the earth sciences using synchrotron radiation at the Advanced Photon Source, Argonne National Laboratory. GSECARS provides earth scientists with access to the high-brilliance hard x-rays from this third-generation synchrotron light source. Both an undulator and a bending magnet beamline are available. All principal synchrotron-based analytical techniques in demand by earth scientists are being brought to bear on earth science problems: (1) high-pressure/high-temperature crystallography and spectroscopy using the diamond anvil cell; (2) high-pressure/high-temperature crystallography using the large-volume press; (3) powder, single crystal and interface diffraction; (4) inelastic x-ray scattering; (5) x-ray absorption fine structure (XAFS) spectroscopy; (6) x-ray fluorescence microprobe analysis; and (7) microtomography. The major instrumentation includes 250 and 1000 MN multianvil presses, a double-sided laser heating system, a large general-purpose 5-circle diffractometer, a focused microprobe, and a Raman laboratory. A proposal-based system for beamtime allocation, open to all earth scientists, has been in place since Fall, 1998. Since then, over 450 beamtime proposals have been received and more than 320 outside users have conducted experiments at GSECARS. The research conducted by these investigators has resulted in more than 170 publications. The unique capabilities of the APS and GSECARS have allowed groundbreaking experiments to be conducted. These include: (1) phase transformations in the Mg-Si-O system at mantle conditions; (2) structure of hydrated a-Al2O3 surfaces; (3) alloying properties of silicon in the Earth's core; (4) dynamics of iron-rich melt segregation from silicates during core formation; (5) electronic spin state of FeO at high pressure and temperature; (6) elastic wave velocities of mantle minerals at lower mantle conditions; (7) copper partitioning and

  9. Using of Synchrotron radiation for study of multielement composition of the small mammals diet and tissues

    NASA Astrophysics Data System (ADS)

    Bezel, V. S.; Koutzenogii, K. P.; Mukhacheva, S. V.; Chankina, O. V.; Savchenko, T. I.

    2007-05-01

    The Synchrotron radiation X-ray Fluorescence analysis (SRXRF) was used for estimation of "geochemical selection" of elements by small mammals, which belong to different trophic groups and inhabit polluted and background areas (the Middle Ural). The concentrations of K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Y, Cd, Pb in the diet and into hepar of a herbivorous ( bank vole) and carnivorous ( Laxmann's shrew) small mammals were compared. Herbivores play a particular role in chemical elements translocation between trophic levels, limiting element transition to consumers of the consequent levels. Whereas, insectivores concentrate most elements in their tissues under the same conditions.

  10. Strong coupling between adenine nucleobases in DNA single strands revealed by circular dichroism using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Kadhane, Umesh; Holm, Anne I. S.; Hoffmann, Søren Vrønning; Nielsen, Steen Brøndsted

    2008-02-01

    Circular dichroism (CD) experiments on DNA single strands (dAn) at the ASTRID synchrotron radiation facility reveal that eight adenine (A) bases electronically couple upon 190nm excitation. After n=8 , the CD signal increases linearly with n with a slope equal to the sum of the coupling terms. Nearest neighbor interactions account for only 24% of the CD signal whereas electronic communication is limited to nearest neighbors for two other exciton bands observed at 218 and 251nm (i.e., dimer excited states). Electronic coupling between bases in DNA is important for nonradiative deexcitation of electronically excited states since the hazardous energy is spread over a larger spatial region.

  11. Source identification of PM10, collected at a heavy-traffic roadside, by analyzing individual particles using synchrotron radiation.

    PubMed

    Yue, Weisheng; Li, Yan; Li, Xiaolin; Yu, Xiaohan; Deng, Biao; Liu, Jiangfeng; Wan, Tianmin; Zhang, Guilin; Huang, Yuying; He, Wei; Hua, Wei

    2004-09-01

    Synchrotron radiation microbeam X-ray fluorescence (micro-SXRF) was used to analyze individual aerosol particles collected at a height of 2 m above a heavy-traffic roadside in a heavy-industrial area of Shanghai. A pattern recognition technique, which took micro-SXRF spectra of single aerosol particles as its fingerprint, was used to identify the origins of the particles. The particles collected from the environmental monitoring site are mainly from metallurgic industry (26%), unleaded gasoline automobile exhaust (15%), coal combustion (10%), cement dust (10%) and motorcycle exhaust (8%).

  12. Bunch Length Measurements at the JLab FEL Using Coherent Transition and Synchrotron Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavel Evtushenko; James Coleman; Kevin Jordan

    2006-05-01

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years [1]. This diagnostic can be used only in the pulsed beam mode. It is our goal to run the FEL with CW beam and a 74.85 MHz micropulse repetition rate, which, with the 135 pC nominal bunch charge corresponds to the beam average current of 10 mA. Hence it is very desirable to have the possibility of making bunch length measurements when running CW beammore » with any micropulse frequency. We use a Fourier transform infrared (FTIR) interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with data obtained using the Martin-Puplett interferometer [1]. Results of the two diagnostics agree within 15 %. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less

  13. Bunch Length Measurements at the JLab FEL Using Coherent Transition and Synchrotron Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, P.; Coleman, J.; Jordan, K.

    2006-11-20

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years. This diagnostic can be used only in the pulsed beam mode. It is our goal to run the FEL with CW beam and a 74.85 MHz micropulse repetition rate, which, with the 135 pC nominal bunch charge corresponds to the beam average current of 10 mA, Hence it is very desirable to have the possibility of making bunch length measurements when running CW beam withmore » any micropulse frequency. We use a Fourier transform infrared (FTIR) interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with data obtained using the Martin-Puplett interferometer. Results of the two diagnostics agree within 15 %. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less

  14. Synchrotron Radiation Damage Mechanism of X-Ray Mask Membranes Irradiated in Helium Environment

    NASA Astrophysics Data System (ADS)

    Arakawa, Tomiyuki; Okuyama, Hiroshi; Okada, Koichi; Nagasawa, Hiroyuki; Syoki, Tsutomu; Yamaguchi, Yoh-ichi

    1992-12-01

    The mechanism of X-ray mask membrane displacement induced by synchrotron radiation (SR) has been discussed. Silicon nitride (SiN) and silicon carbide (SiC) membranes were irradiated by SR in a 1 atm helium ambient. SR-induced displacement for both membranes was 25-97 nm (σ). Oxygen concentration in both SiN and SiC was below 0.01 in O/Si atomic ratio. Although an increase in dangling bond density of SiN was observed, no remarkable increase in spin density was detected in SiC. Moreover, the most important finding was that thin oxides were grown on the membrane surface after SR irradiation. From these results, it is considered that the oxide growth on SiC membrane surfaces, and both the oxide growth and the increase of dangling bond density in SiN play an important role in the SR-induced displacement for the X-ray mask membranes.

  15. Three Dimensional Visualization of Human Cardiac Conduction Tissue in Whole Heart Specimens by High-Resolution Phase-Contrast CT Imaging Using Synchrotron Radiation.

    PubMed

    Shinohara, Gen; Morita, Kiyozo; Hoshino, Masato; Ko, Yoshihiro; Tsukube, Takuro; Kaneko, Yukihiro; Morishita, Hiroyuki; Oshima, Yoshihiro; Matsuhisa, Hironori; Iwaki, Ryuma; Takahashi, Masashi; Matsuyama, Takaaki; Hashimoto, Kazuhiro; Yagi, Naoto

    2016-11-01

    The feasibility of synchrotron radiation-based phase-contrast computed tomography (PCCT) for visualization of the atrioventricular (AV) conduction axis in human whole heart specimens was tested using four postmortem structurally normal newborn hearts obtained at autopsy. A PCCT imaging system at the beamline BL20B2 in a SPring-8 synchrotron radiation facility was used. The PCCT imaging of the conduction system was performed with "virtual" slicing of the three-dimensional reconstructed images. For histological verification, specimens were cut into planes similar to the PCCT images, then cut into 5-μm serial sections and stained with Masson's trichrome. In PCCT images of all four of the whole hearts of newborns, the AV conduction axis was distinguished as a low-density structure, which was serially traceable from the compact node to the penetrating bundle within the central fibrous body, and to the branching bundle into the left and right bundle branches. This was verified by histological serial sectioning. This is the first demonstration that visualization of the AV conduction axis within human whole heart specimens is feasible with PCCT. © The Author(s) 2016.

  16. Synchrotron Radiation μ-X Ray Fluorescence on Multicellular Tumor Spheroids

    NASA Astrophysics Data System (ADS)

    Burattini, E.; Cinque, G.; Bellisola, G.; Fracasso, G.; Monti, F.; Colombatti, M.

    2003-01-01

    Synchrotron Radiation micro X-Ray Fluorescence (SR μ-XRF) was applied for the first time to map the trace element content on Multicellular Tumor Spheroids (MTS), i.e. human cell clusters used as an in vitro model for testing micrometastases responses to antitumoral drugs. In particular, immunotoxin molecules composed of a carrier protein (Transferrin) bound to a powerful cytotoxin (Ricin A), were here considered as representatives of a class of therapheutic macromolecules used in cancer theraphy. Spheroids included in polyacrylamide gel and placed inside quartz capillaries were studied at the ESRF ID22 beamline using a 15 keV monochromatic photon microbeam. Elemental maps (of Fe, Cu, Zn and Pb) on four groups of spheroids grown under different conditions were studied: untreated, treated only with the carrier molecule or with the toxin alone, and with the complete immunotoxin molecule (carrier+toxin). The results indicate that the distribution of Zn and, to some extent, Cu in the spheroid cells is homogeneous and independent of the treatment type. Total Reflection X-Ray Fluorescence (TR-XRF) was also applied to quantify the average trace element content in the spheroids. Future developments of the technique are finally outlined on the basis of these preliminary results.

  17. Geological applications of synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Henderson, C. M. B.; Cressey, G.; Redfern, S. A. T.

    1995-03-01

    Synchrotron-based, Earth sciences research carried out over the last 5 years is reviewed with special attention being given to X-ray absorption studies; X-ray diffraction and X-ray fluorescence microprobe applications are considered more briefly. A comprehensive bibliography is included. The main part of the paper summarizes recent work carried out at the Daresbury SRS. K-edge XAS studies of glasses as models for silicate melts provide information on the local structural environments of Si, Fe 2+ and Fe 3+. By analogy with synthetic "leucites" which contain Fe 2+ and Fe 3+ in tetrahedral framework sites, it seems that many model glasses also contain both oxidation states of Fe in the network, rather than as network modifiers. The structural sites occupied by the minor elements Mn, Zn and Ti in staurolite have been identified using XAFS; Mn and Zn substitute for Fe 2+ in the tetrahedral T2 site, while Ti occupies the distorted M2 octahedral site. L-edge spectroscopy is used to identify the valencies and electronic structures of Mn and Fe in minerals and the Fe 2+:Fe 3+ ratio in a natural spinel is determined. The polarized nature of the synchrotron beam is exploited in determining the Fe X-ray absorption anisotropy in single crystal tourmaline and epidote. XRD powder studies include Rietveld-refinement structure determination and compressibility studies. Synthetic "leucites" having the stoichiometry K 2MgSi 5O 12 have distinctly different structures. The dry-synthesized form is cubic Ia3d with Si and Mg fully disordered on tetrahedral framework sites, while the hydrothermally-synthesized polymorph is monoclinic P2 1/c with Si and Mg fully disordered on, respectively, 10 and 2 tetrahedral sites. The reversible tetragonal to orthorhombic phase transition in gillespite (BaFeSi 4O 10) has been studied in a diamond anvil cell using ED detection and found to occur at 1.2 ± 0.1 GPa. The anomalous compressibility observed has been interpreted in terms of ferroelastic and

  18. Investigation of the microstructure and mineralogical composition of urinary calculi fragments by synchrotron radiation X-ray microtomography: a feasibility study.

    PubMed

    Kaiser, Jozef; Holá, Markéta; Galiová, Michaela; Novotný, Karel; Kanický, Viktor; Martinec, Petr; Sčučka, Jiří; Brun, Francesco; Sodini, Nicola; Tromba, Giuliana; Mancini, Lucia; Kořistková, Tamara

    2011-08-01

    The outcomes from the feasibility study on utilization of synchrotron radiation X-ray microtomography (SR-μCT) to investigate the texture and the quantitative mineralogical composition of selected calcium oxalate-based urinary calculi fragments are presented. The comparison of the results obtained by SR-μCT analysis with those derived from current standard analytical approaches is provided. SR-μCT is proved as a potential effective technique for determination of texture, 3D microstructure, and composition of kidney stones.

  19. Impact of cardiosynchronous brain pulsations on Monte Carlo calculated doses for synchrotron micro- and minibeam radiation therapy.

    PubMed

    Manchado de Sola, Francisco; Vilches, Manuel; Prezado, Yolanda; Lallena, Antonio M

    2018-05-15

    The purpose of this study was to assess the effects of brain movements induced by heartbeat on dose distributions in synchrotron micro- and minibeam radiation therapy and to develop a model to help guide decisions and planning for future clinical trials. The Monte Carlo code PENELOPE was used to simulate the irradiation of a human head phantom with a variety of micro- and minibeam arrays, with beams narrower than 100 μm and above 500 μm, respectively, and with radiation fields of 1 × 2 cm and 2 × 2 cm. The dose in the phantom due to these beams was calculated by superposing the dose profiles obtained for a single beam of 1 μm × 2 cm. A parameter δ, accounting for the total displacement of the brain during the irradiation and due to the cardiosynchronous pulsation, was used to quantify the impact on peak-to-valley dose ratios and the full width at half maximum. The difference between the maximum (at the phantom entrance) and the minimum (at the phantom exit) values of the peak-to-valley dose ratio reduces when the parameter δ increases. The full width at half maximum remains almost constant with depth for any δ value. Sudden changes in the two quantities are observed at the interfaces between the various tissues (brain, skull, and skin) present in the head phantom. The peak-to-valley dose ratio at the center of the head phantom reduces when δ increases, remaining above 70% of the static value only for minibeams and δ smaller than ∼200 μm. Optimal setups for brain treatments with synchrotron radiation micro- and minibeam combs depend on the brain displacement due to cardiosynchronous pulsation. Peak-to-valley dose ratios larger than 90% of the maximum values obtained in the static case occur only for minibeams and relatively large dose rates. © 2018 American Association of Physicists in Medicine.

  20. Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung; Cho, J.

    2017-06-01

    On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magnetic field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.

  1. Monitoring of the environmental pollution by trace element analysis in tree-rings using synchrotron radiation total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    de Vives, Ana Elisa Sirito; Moreira, Silvana; Brienza, Sandra Maria Boscolo; Medeiros, Jean Gabriel Silva; Filho, Mário Tomazello; Zucchi, Orghêda Luíza Araújo Domingues; Filho, Virgílio Franco do Nascimento

    2006-11-01

    This paper aims to study the environmental pollution in the tree development, in order to evaluate its use as bioindicator in urban and country sides. The sample collection was carried out in Piracicaba city, São Paulo State, which presents high level of environmental contamination in water, soil and air, due to industrial activities, vehicles combustion, sugar-cane leaves burning in the harvesting, etc. The species Caesalpinia peltophoroides ("Sibipiruna") was selected because it is widely used in urban forestation. Synchrotron Radiation Total Reflection X-ray Fluorescence technique (SR-TXRF) was employed to identify and quantify the elements and metals of nutritional and toxicological importance in the wood samples. The analysis was performed in the Brazilian Synchrotron Light Source Laboratory, using a white beam for excitation and a Si(Li) detector for X-ray detection. In several samples, P, K, Ca, Ti, Fe, Sr, Ba and Pb were quantified. The K/Ca, K/P and Pb/Ca ratios were found to decrease towards the bark.

  2. Rapid time-resolved diffraction studies of protein structures using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bartunik, Hans D.; Bartunik, Lesley J.

    1992-07-01

    The crystal structure of intermediate states in biological reactions of proteins of multi-protein complexes may be studied by time-resolved X-ray diffraction techniques which make use of the high spectral brilliance, continuous wavelength distribution and pulsed time structure of synchrotron radiation. Laue diffraction methods provide a means of investigating intermediate structures with lifetimes in the millisecond time range at presently operational facilities. Third-generation storage rings which are under construction may permit one to reach a time resolution of one microsecond for non-cyclic and one nanosecond for cyclic reactions. The number of individual exposures required for exploring reciprocal space and hence the total time scale strongly depend on the lattice order that may be affected, e.g., by conformational changes. Time-resolved experiments require high population of a specific intermediate which has to be homogeneous over the crystal volume. A number of external excitation techniques have been developed including in situ liberation of active metabolites by laser pulse photolysis of photolabile inactive precursors. First applications to crystal structure analysis of catalytic intermediates of enzymes demonstrate the potential of time-resolved protein crystallography.

  3. Cleaning up the Legacy of the Cold War: Plutonium Oxides and the Role of Synchrotron Radiation Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, David Lewis

    2015-01-21

    The deceptively simple binary formula of AnO 2 belies an incredibly complex structural nature, and propensity to form mixed-valent, nonstoichiometric phases of composition AnO 2±x. For plutonium, the very formation of PuO 2+x has challenged a long-established dogma, and raised fundamental questions for long-term storage and environmental migration. This presentation covers two aspects of Los Alamos synchrotron radiation studies of plutonium oxides: (1) the structural chemistry of laboratory-prepared AnO 2+x systems (An = U, Pu; 0 ≤ x ≤ 0.25) determined through a combination of x-ray absorption fine structure spectroscopy (XAFS) and x-ray scattering of laboratory prepared samples; and (2)more » the application of synchrotron radiation towards the decontamination and decommissioning of the Rocky Flats Environmental Technology Site. Making the case for particle transport mechanisms as the basis of plutonium and americium mobility, rather than aqueous sorption-desorption processes, established a successful scientific basis for the dominance of physical transport processes by wind and water. The scientific basis was successful because it was in agreement with general theory on insolubility of PuO 2 in oxidation state IV, results of ultrafiltration analyses of field water/sediment samples, XAFS analyses of soil, sediment, and concrete samples, and was also in general agreement with on-site monitoring data. This understanding allowed Site contractors to rapidly move to application of soil erosion and sediment transport models as the means of predicting plutonium and americium transport, which led to design and application of site-wide soil erosion control technology to help control downstream concentrations of plutonium and americium in streamflow.« less

  4. Melatonin mitigate cerebral vasospasm after experimental subarachnoid hemorrhage: a study of synchrotron radiation angiography

    NASA Astrophysics Data System (ADS)

    Cai, J.; He, C.; Chen, L.; Han, T.; Huang, S.; Huang, Y.; Bai, Y.; Bao, Y.; Zhang, H.; Ling, F.

    2013-06-01

    Cerebral vasospasm (CV) after subarachnoid hemorrhage (SAH) is a devastating and unsolved clinical issue. In this study, the rat models, which had been induced SAH by prechiasmatic cistern injection, were treated with melatonin. Synchrotron radiation angiography (SRA) was employed to detect and evaluate CV of animal models. Neurological scoring and histological examinations were used to assess the neurological deficits and CV as well. Using SRA techniques and histological analyses, the anterior cerebral artery diameters of SAH rats with melatonin administration were larger than those without melatonin treatment (p < 0.05). The neurological deficits of SAH rats treated with melatonin were less than those without melatonin treatment (p < 0.05). We concluded that SRA was a precise and in vivo tool to observe and evaluate CV of SAH rats; intraperitoneally administration of melatonin could mitigate CV after experimental SAH.

  5. Holographic illuminator for synchrotron-based projection lithography systems

    DOEpatents

    Naulleau, Patrick P.

    2005-08-09

    The effective coherence of a synchrotron beam line can be tailored to projection lithography requirements by employing a moving holographic diffuser and a stationary low-cost spherical mirror. The invention is particularly suited for use in an illuminator device for an optical image processing system requiring partially coherent illumination. The illuminator includes: (1) a synchrotron source of coherent or partially coherent radiation which has an intrinsic coherence that is higher than the desired coherence, (2) a holographic diffuser having a surface that receives incident radiation from said source, (3) means for translating the surface of the holographic diffuser in two dimensions along a plane that is parallel to the surface of the holographic diffuser wherein the rate of the motion is fast relative to integration time of said image processing system; and (4) a condenser optic that re-images the surface of the holographic diffuser to the entrance plane of said image processing system.

  6. Coherent Synchrotron Radiation for Rotational Spectroscopy: Application to the Rotational Spectrum of Propynal in the 200-750 GHz Range

    NASA Astrophysics Data System (ADS)

    Barros, J.; Roy, P.; Appadoo, D.; Naughton, D. Mc; Robertson, E.; Manceron, L.

    2013-06-01

    In storage rings, short electron bunches can produce an intense THz radiation called Coherent Synchrotron Radiation (CSR). The flux of this emission between 250 and 750 GHz (in the mW range, up the 10000 times the regular synchrotron emission) is very advantageous for broad band absorption spectroscopy, using interferometric techniques. This source is, however, inherently difficult to stabilize, and intensity fluctuations lead to artifacts on the FT-based measurements, which strongly limit the use of CSR in particular for high-resolution measurements. At SOLEIL however, by screening different currents and bunch lengths, we defined stable CSR conditions for which the signal-to-noise ratio (S/N) allows for measurements at high resolution. Moreover, we developed an artifact correction system, based on a simultaneous detection of the input and the output signals of the interferometer, which allows to further improve the S/N. For this purpose, the optics and electronics of two bolometers were matched. The stable CSR combined with this ingenious technique allowed us to record for the first time high-resolution FT spectra in the sub-THz range, with a S/N of 100 in a few hours. This enables many applications such as broadband rotational spectra in the THz range, studies of molecules with low frequency torsional modes, absolute intensities determinations, or studies of unstable species. Results obtained on Propynal illustrate these possibilities and enabled to improve significantly the ground state spectroscopic constants.

  7. On the distribution of uranium in hair: Non-destructive analysis using synchrotron radiation induced X-ray fluorescence microprobe techniques

    NASA Astrophysics Data System (ADS)

    Israelsson, A.; Eriksson, M.; Pettersson, H. B. L.

    2015-06-01

    In the present study the distribution of uranium in single human hair shafts has been evaluated using two synchrotron radiation (SR) based micro X-ray fluorescence techniques; SR μ-XRF and confocal SR μ-XRF. The hair shafts originated from persons that have been exposed to elevated uranium concentrations. Two different groups have been studied, i) workers at a nuclear fuel fabrication factory, exposed mainly by inhalation and ii) owners of drilled bedrock wells exposed by ingestion of water. The measurements were carried out on the FLUO beamline at the synchrotron radiation facility ANKA, Karlsruhe. The experiment was optimized to detect U with a beam size of 6.8 μm × 3 μm beam focus allowing detection down to ppb levels of U in 10 s (SR μ-XRF setup) and 70 s (SR confocal μ-XRF setup) measurements. It was found that the uranium was present in a 10-15 μm peripheral layer of the hair shafts for both groups studied. Furthermore, potential external hair contamination was studied by scanning of unwashed hair shafts from the workers. Sites of very high uranium signal were identified as particles containing uranium. Such particles, were also seen in complementary analyses using variable pressure electron microscope coupled with energy dispersive X-ray analyzer (ESEM-EDX). However, the particles were not visible in washed hair shafts. These findings can further increase the understanding of uranium excretion in hair and its potential use as a biomonitor.

  8. Application of high resolution synchrotron micro-CT radiation in dental implant osseointegration.

    PubMed

    Neldam, Camilla Albeck; Lauridsen, Torsten; Rack, Alexander; Lefolii, Tore Tranberg; Jørgensen, Niklas Rye; Feidenhans'l, Robert; Pinholt, Else Marie

    2015-06-01

    The purpose of this study was to describe a refined method using high-resolution synchrotron radiation microtomography (SRmicro-CT) to evaluate osseointegration and peri-implant bone volume fraction after titanium dental implant insertion. SRmicro-CT is considered gold standard evaluating bone microarchitecture. Its high resolution, high contrast, and excellent high signal-to-noise-ratio all contribute to the highest spatial resolutions achievable today. Using SRmicro-CT at a voxel size of 5 μm in an experimental goat mandible model, the peri-implant bone volume fraction was found to quickly increase to 50% as the radial distance from the implant surface increased, and levelled out to approximately 80% at a distance of 400 μm. This method has been successful in depicting the bone and cavities in three dimensions thereby enabling us to give a more precise answer to the fraction of the bone-to-implant contact compared to previous methods. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  9. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    PubMed

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  10. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    PubMed Central

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits). PMID:27140147

  11. Note: Voltage and intensity dependence of the saturation curves of free-air ionization chambers irradiated with chopped synchrotron radiation beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nariyama, Nobuteru

    2012-01-15

    Current saturation characteristics of free-air ionization chambers with electrode gaps of 4.2 and 8.4 mm were investigated using pulsed photon beam obtained by periodically interrupting synchrotron radiation beams with a chopper. Pulsed photon beams of 10 and 15 keV with pulse duration of 2.5 {mu}s and a frequency of 230 Hz were produced by chopping the beam. The measured recombination rate was found to be proportional to the intensity and inversely proportional to the applied voltage.

  12. A smog chamber study coupling a photoionization aerosol electron/ion spectrometer to VUV synchrotron radiation: organic and inorganic-organic mixed aerosol analysis

    NASA Astrophysics Data System (ADS)

    Baeza-Romero, María Teresa; Gaie-Levrel, Francois; Mahjoub, Ahmed; López-Arza, Vicente; Garcia, Gustavo A.; Nahon, Laurent

    2016-07-01

    A reaction chamber was coupled to a photoionization aerosol time-of-flight mass spectrometer based on an electron/ion coincidence scheme and applied for on-line analysis of organic and inorganic-organic mixed aerosols using synchrotron tunable vacuum ultraviolet (VUV) photons as the ionization source. In this proof of principle study, both aerosol and gas phase were detected simultaneously but could be differentiated. Present results and perspectives for improvement for this set-up are shown in the study of ozonolysis ([O3] = 0.13-3 ppm) of α-pinene (2-3 ppm), and the uptake of glyoxal upon ammonium sulphate. In this work the ozone concentration was monitored in real time, together with the particle size distributions and chemical composition, the latter taking advantage of the coincidence spectrometer and the tuneability of the synchrotron radiation as a soft VUV ionization source.

  13. Ultra-spatial synchrotron radiation for imaging molecular chemical structure: Applications in plant and animal studies

    DOE PAGES

    Yu, Peiqiang

    2007-01-01

    Synchrotron-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical features and make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced synchrotron technique to the study of plant and animal tissues' inherent structure at a cellular or subcellular level. In this article, a novel approach was introduced to show the potential of themore » newly developed, advanced synchrotron-based analytical technology, which can be used to reveal molecular structural-chemical features of various plant and animal tissues.« less

  14. Synchrotron Radiation Circular Dichroism (SRCD) Spectroscopy - An Enhanced Method for Examining Protein Conformations and Protein Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B Wallace; R Janes

    CD (circular dichroism) spectroscopy is a well-established technique in structural biology. SRCD (synchrotron radiation circular dichroism) spectroscopy extends the utility and applications of conventional CD spectroscopy (using laboratory-based instruments) because the high flux of a synchrotron enables collection of data at lower wavelengths (resulting in higher information content), detection of spectra with higher signal-to-noise levels and measurements in the presence of absorbing components (buffers, salts, lipids and detergents). SRCD spectroscopy can provide important static and dynamic structural information on proteins in solution, including secondary structures of intact proteins and their domains, protein stability, the differences between wild-type and mutant proteins,more » the identification of natively disordered regions in proteins, and the dynamic processes of protein folding and membrane insertion and the kinetics of enzyme reactions. It has also been used to effectively study protein interactions, including protein-protein complex formation involving either induced-fit or rigid-body mechanisms, and protein-lipid complexes. A new web-based bioinformatics resource, the Protein Circular Dichroism Data Bank (PCDDB), has been created which enables archiving, access and analyses of CD and SRCD spectra and supporting metadata, now making this information publicly available. To summarize, the developing method of SRCD spectroscopy has the potential for playing an important role in new types of studies of protein conformations and their complexes.« less

  15. Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates

    NASA Astrophysics Data System (ADS)

    Fournier, P.; Crosbie, J. C.; Cornelius, I.; Berkvens, P.; Donzelli, M.; Clavel, A. H.; Rosenfeld, A. B.; Petasecca, M.; Lerch, M. L. F.; Bräuer-Krisch, E.

    2016-07-01

    Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency’s TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called ‘current ramping’ method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials.

  16. Rainwater analysis by synchrotron radiation-total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    López, María L.; Ceppi, Sergio A.; Asar, María L.; Bürgesser, Rodrigo E.; Ávila, Eldo E.

    2015-11-01

    Total reflection X-ray fluorescence analysis excited with synchrotron radiation was used to quantify the elemental concentration of rainwater in Córdoba, Argentina. Standard solutions with gallium as internal standard were prepared for the calibration curves. Rainwater samples of 5 μl were added to an acrylic reflector, allowed to dry, and analyzed for 200 s measuring time. The elemental concentrations of As, Ca, Co, Cr, Cu, Fe, K, Mn, Ni, Pb, S, Sr, V, and Zn were determined. The electrical conductivity, pH, and elemental concentrations were compared to data previously reported for the soluble fraction of rainwater at different sites. A factor analysis was performed in order to determine the sources that contributed to the elemental concentration in rainwater. Anthropogenic sources were identified as traffic pollution, vehicular emissions, and metallurgical factories. The quality of rainwater was analyzed by comparing the concentrations of all the elements in rainwater samples with the WHO guideline values for drinking water. The results show the need to control the atmospheric emissions in order to preserve the quality of rainwater. SR-TXRF analysis of chemical composition of rainwater in Córdoba represents the very first contribution in the region to the knowledge of the concentration of trace metals in the soluble fraction of rainwater. These data are scarce, especially in the Southern Hemisphere.

  17. Advanced Structural Analyses by Third Generation Synchrotron Radiation Powder Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakata, M.; Aoyagi, S.; Ogura, T.

    2007-01-19

    Since the advent of the 3rd generation Synchrotron Radiation (SR) sources, such as SPring-8, the capabilities of SR powder diffraction increased greatly not only in an accurate structure refinement but also ab initio structure determination. In this study, advanced structural analyses by 3rd generation SR powder diffraction based on the Large Debye-Scherrer camera installed at BL02B2, SPring-8 is described. Because of high angular resolution and high counting statistics powder data collected at BL02B2, SPring-8, ab initio structure determination can cope with a molecular crystals with 65 atoms including H atoms. For the structure refinements, it is found that a kindmore » of Maximum Entropy Method in which several atoms are omitted in phase calculation become very important to refine structural details of fairy large molecule in a crystal. It should be emphasized that until the unknown structure is refined very precisely, the obtained structure by Genetic Algorithm (GA) or some other ab initio structure determination method using real space structural knowledge, it is not possible to tell whether the structure obtained by the method is correct or not. In order to determine and/or refine crystal structure of rather complicated molecules, we cannot overemphasize the importance of the 3rd generation SR sources.« less

  18. Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung

    On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magneticmore » field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.« less

  19. The study of efficiency of endogenous and exogenous preventive methods of tooth enamel remineralisation by FTIR microscopy using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Goloshchapov, D. L.; Kashkarov, V. M.; Seredin, P. V.; Ippolitov, Y. A.; Plotnikova, Y. A.; Bambery, K.

    2016-08-01

    The efficiency carious preventive methods was detected with the use of equipment for IR-spectromicroscopy and high-intensive synchrotron radiation. The results of the experiment are indicative of the use of exogenous caries prevention alone (use of a toothpaste) being inadequate in saturating hard dental tissues by mineral groups and, thus, keeping teeth healthy, as this method is only short-lived. The use of endogenous methods (mineral tablets based on calcium glycerophosphate) in combination with exogenous prevention enhances prevention as part of remineralisation of dental tissues.

  20. Probing Intracellular Element Concentration Changes during Neutrophil Extracellular Trap Formation Using Synchrotron Radiation Based X-Ray Fluorescence

    PubMed Central

    Niemiec, Maria J.; Laforce, Brecht; Garrevoet, Jan; Vergucht, Eva; De Rycke, Riet; Cloetens, Peter; Urban, Constantin F.; Vincze, Laszlo

    2016-01-01

    High pressure frozen (HPF), cryo-substituted microtome sections of 2 μm thickness containing human neutrophils (white blood cells) were analyzed using synchrotron radiation based X-ray fluorescence (SR nano-XRF) at a spatial resolution of 50 nm. Besides neutrophils from a control culture, we also analyzed neutrophils stimulated for 1–2 h with phorbol myristate acetate (PMA), a substance inducing the formation of so-called Neutrophil Extracellular Traps (or NETs), a defense system again pathogens possibly involving proteins with metal chelating properties. In order to gain insight in metal transport during this process, precise local evaluation of elemental content was performed reaching limits of detection (LODs) of 1 ppb. Mean weight fractions within entire neutrophils, their nuclei and cytoplasms were determined for the three main elements P, S and Cl, but also for the 12 following trace elements: K, Ca, Mn, Fe, Co, Ni, Cu, Zn, Se, Br, Sr and Pb. Statistical analysis, including linear regression provided objective analysis and a measure for concentration changes. The nearly linear Ca and Cl concentration changes in neutrophils could be explained by already known phenomena such as the induction of Ca channels and the uptake of Cl under activation of NET forming neutrophils. Linear concentration changes were also found for P, S, K, Mn, Fe, Co and Se. The observed linear concentration increase for Mn could be related to scavenging of this metal from the pathogen by means of the neutrophil protein calprotectin, whereas the concentration increase of Se may be related to its antioxidant function protecting neutrophils from the reactive oxygen species they produce against pathogens. We emphasize synchrotron radiation based nanoscopic X-ray fluorescence as an enabling analytical technique to study changing (trace) element concentrations throughout cellular processes, provided accurate sample preparation and data-analysis. PMID:27812122

  1. Understanding space charge and controlling beam loss in high intensity synchrotrons

    NASA Astrophysics Data System (ADS)

    Cousineau, Sarah M.

    Future high intensity synchrotrons will require unprecedented control of beam loss in order to comply with radiation safety regulations and to allow for safe, hands-on maintenance of machine hardware. A major cause of beam loss in high intensity synchrotrons is the space charge force of the beam, which can lead to beam halo and emittance dilution. This dissertation presents a comprehensive study of space charge effects in high intensity synchrotron beams. Experimental measurements taken at the Proton Storage Ring (PSR) in Los Alamos National Laboratory and detailed simulations of the experiments are used to identify and characterize resonances that affect these beams. The collective motion of the beam is extensively studied and is shown to be more relevant than the single particle dynamics in describing the resonance response. The emittance evolution of the PSR beam and methods for reducing the space-charge-induced emittance growth are addressed. In a separate study, the emittance evolution of an intense space charge beam is experimentally measured at the Cooler Injector Synchrotron (CIS) at Indiana University. This dissertation also investigates the sophisticated two-stage collimation system of the future Spallation Neutron Source (SNS) high intensity accumulator ring. A realistic Monte-Carlo collimation simulation is developed and used to optimize the SNS ring collimation system parameters. The finalized parameters and predicted beam loss distribution around the ring are presented. The collimators will additionally be used in conjunction with a set of fast kickers to remove the beam from the gap region before the rise of the extraction magnets. The gap cleaning process is optimized and the cleaning efficiency versus momentum spread of the beam is examined.

  2. Synchrotron radiation external beam rotational radiotherapy of breast cancer: proof of principle.

    PubMed

    Di Lillo, Francesca; Mettivier, Giovanni; Castriconi, Roberta; Sarno, Antonio; Stevenson, Andrew W; Hall, Chris J; Häusermann, Daniel; Russo, Paolo

    2018-05-01

    The principle of rotational summation of the absorbed dose for breast cancer treatment with orthovoltage X-ray beams was proposed by J. Boone in 2012. Here, use of X-ray synchrotron radiation for image guided external beam rotational radiotherapy treatment of breast cancer is proposed. Tumor irradiation occurs with the patient in the prone position hosted on a rotating bed, with her breast hanging from a hole in the bed, which rotates around a vertical axis passing through the tumor site. Horizontal collimation of the X-ray beam provides for whole breast or partial breast irradiation, while vertical translation of the bed and successive rotations allow for irradiation of the full tumor volume, with dose rates which permit also hypofractionated treatments. In this work, which follows a previous preliminary report, results are shown of a full series of measurements on polyethylene and acrylic cylindrical phantoms carried out at the Australian Synchrotron, confirmed by Geant4 Monte Carlo simulations, intended to demonstrate the proof of principle of the technique. Dose measurements were carried out with calibrated ion chambers, radiochromic films and thermoluminescence dosimeters. The photon energy investigated was 60 keV. Image guidance may occur with the transmitted beam for contrast-enhanced breast computed tomography. For a horizontal beam collimation of 1.5 cm and rotation around the central axis of a 14 cm-diameter polyethylene phantom, a periphery-to-center dose ratio of 14% was measured. The simulations showed that under the same conditions the dose ratio decreases with increasing photon energy down to 10% at 175 keV. These values are comparable with those achievable with conventional megavoltage radiotherapy of breast cancer with a medical linear accelerator. Dose painting was demonstrated with two off-center `cancer foci' with 1.3 Gy and 0.6 Gy target doses. The use of a radiosensitizing agent for dose enhancement is foreseen.

  3. Observation of Wakefields and Resonances in Coherent Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, B. E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; Dallin, L.; May, T. E.; Vogt, J. M.; Wurtz, W. A.; Warnock, R.; Bizzozero, D. A.; Kramer, S.

    2015-05-01

    We report on high resolution measurements of resonances in the spectrum of coherent synchrotron radiation (CSR) at the Canadian Light Source (CLS). The resonances permeate the spectrum at wave number intervals of 0.074 cm-1 , and are highly stable under changes in the machine setup (energy, bucket filling pattern, CSR in bursting or continuous mode). Analogous resonances were predicted long ago in an idealized theory as eigenmodes of a smooth toroidal vacuum chamber driven by a bunched beam moving on a circular orbit. A corollary of peaks in the spectrum is the presence of pulses in the wakefield of the bunch at well-defined spatial intervals. Through experiments and further calculations we elucidate the resonance and wakefield mechanisms in the CLS vacuum chamber, which has a fluted form much different from a smooth torus. The wakefield is observed directly in the 30-110 GHz range by rf diodes, and indirectly by an interferometer in the THz range. The wake pulse sequence found by diodes is less regular than in the toroidal model, and depends on the point of observation, but is accounted for in a simulation of fields in the fluted chamber. Attention is paid to polarization of the observed fields, and possible coherence of fields produced in adjacent bending magnets. Low frequency wakefield production appears to be mainly local in a single bend, but multibend effects cannot be excluded entirely, and could play a role in high frequency resonances. New simulation techniques have been developed, which should be invaluable in further work.

  4. Results of a Direct Search Using Synchrotron Radiation for the Low-Energy 229Th Nuclear Isomeric Transition

    NASA Astrophysics Data System (ADS)

    Jeet, Justin; Schneider, Christian; Sullivan, Scott T.; Rellergert, Wade G.; Mirzadeh, Saed; Cassanho, A.; Jenssen, H. P.; Tkalya, Eugene V.; Hudson, Eric R.

    2015-06-01

    We report the results of a direct search for the 229Th (Iπ=3 /2+←5 /2+ ) nuclear isomeric transition, performed by exposing 229Th -doped LiSrAlF6 crystals to tunable vacuum-ultraviolet synchrotron radiation and observing any resulting fluorescence. We also use existing nuclear physics data to establish a range of possible transition strengths for the isomeric transition. We find no evidence for the thorium nuclear transition between 7.3 eV and 8.8 eV with transition lifetime (1-2) s ≲τ ≲(2000 - 5600 ) s . This measurement excludes roughly half of the favored transition search area and can be used to direct future searches.

  5. Results of a Direct Search Using Synchrotron Radiation for the Low-Energy Th 229 Nuclear Isomeric Transition

    DOE PAGES

    Jeet, Justin; Schneider, Christian; Sullivan, Scott T.; ...

    2015-06-23

    We report the results of a direct search for the 229Tn (I π = 3/2 + ← 5/2 +) nuclear isomeric transition, performed by exposing 229Tn-doped LiSrAlF 6 crystals to tunable vacuum-ultraviolet synchrotron radiation and observing any resulting fluorescence. We also use existing nuclear physics data to establish a range of possible transition strengths for the isomeric transition. We find no evidence for the thorium nuclear transition between 7.3 eV and 8.8 eV with transition lifetime (1–2) s≲τ≲ (2000-5600) s. Lastly, this measurement excludes roughly half of the favored transition search area and can be used to direct future searches.

  6. Results of a Direct Search Using Synchrotron Radiation for the Low-Energy (229)Th Nuclear Isomeric Transition.

    PubMed

    Jeet, Justin; Schneider, Christian; Sullivan, Scott T; Rellergert, Wade G; Mirzadeh, Saed; Cassanho, A; Jenssen, H P; Tkalya, Eugene V; Hudson, Eric R

    2015-06-26

    We report the results of a direct search for the (229)Th (I(π)=3/2(+)←5/2(+)) nuclear isomeric transition, performed by exposing (229)Th-doped LiSrAlF(6) crystals to tunable vacuum-ultraviolet synchrotron radiation and observing any resulting fluorescence. We also use existing nuclear physics data to establish a range of possible transition strengths for the isomeric transition. We find no evidence for the thorium nuclear transition between 7.3 eV and 8.8 eV with transition lifetime (1-2) s≲τ≲(2000-5600)  s. This measurement excludes roughly half of the favored transition search area and can be used to direct future searches.

  7. Quantifying Morphological Parameters of the Terminal Branching Units in a Mouse Lung by Phase Contrast Synchrotron Radiation Computed Tomography

    PubMed Central

    Hwang, Jeongeun; Kim, Miju; Kim, Seunghwan; Lee, Jinwon

    2013-01-01

    An effective technique of phase contrast synchrotron radiation computed tomography was established for the quantitative analysis of the microstructures in the respiratory zone of a mouse lung. Heitzman’s method was adopted for the whole-lung sample preparation, and Canny’s edge detector was used for locating the air-tissue boundaries. This technique revealed detailed morphology of the respiratory zone components, including terminal bronchioles and alveolar sacs, with sufficiently high resolution of 1.74 µm isotropic voxel size. The technique enabled visual inspection of the respiratory zone components and comprehension of their relative positions in three dimensions. To check the method’s feasibility for quantitative imaging, morphological parameters such as diameter, surface area and volume were measured and analyzed for sixteen randomly selected terminal branching units, each consisting of a terminal bronchiole and a pair of succeeding alveolar sacs. The four types of asymmetry ratios concerning alveolar sac mouth diameter, alveolar sac surface area, and alveolar sac volume are measured. This is the first ever finding of the asymmetry ratio for the terminal bronchioles and alveolar sacs, and it is noteworthy that an appreciable degree of branching asymmetry was observed among the alveolar sacs at the terminal end of the airway tree, despite the number of samples was small yet. The series of efficient techniques developed and confirmed in this study, from sample preparation to quantification, is expected to contribute to a wider and exacter application of phase contrast synchrotron radiation computed tomography to a variety of studies. PMID:23704918

  8. Apparatus for time-resolved and energy-resolved measurement of internal conversion electron emission induced by nuclear resonant excitation with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawauchi, Taizo; Matsumoto, Masuaki; Fukutani, Katsuyuki

    2007-01-15

    A high-energy and large-object-spot type cylindrical mirror analyzer (CMA) was constructed with the aid of electron trajectory simulations. By adopting a particular shape for the outer cylinder, an energy resolution of 7% was achieved without guide rings as used in conventional CMAs. Combined with an avalanche photodiode as an electron detector, the K-shell internal conversion electrons were successfully measured under irradiation of synchrotron radiation at 14.4 keV in an energy-resolved and time-resolved manner.

  9. Considerations for NSLS-II Synchrotron Radiation Protection When Operating Damping Wigglers at Low Machine Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S.; Podobedov, B.

    2015-12-30

    The NSLS-II storage ring vacuum chamber, including frontends (FE) and beamlines (BL), is protected from possible damage from synchrotron radiation (SR) emitted from insertion devices (IDs) by a dedicated active interlock system (AIS). The system monitors electron beam position and angle and triggers a beam dump if the beam orbit is outside of the active interlock envelope (AIE). The AIE was calculated under the assumptions of 3 GeV beam energy and ID gaps set to their minimum operating values (i.e. “fully closed”). Recently it was proposed to perform machine studies that would ramp the stored beam energy significantly below themore » nominal operational value of 3 GeV. These studies may potentially include the use of NSLS-II damping wigglers (DWs) for electron beam emittance reduction and control.« less

  10. Note: Measurement of synchrotron radiation phase-space beam properties to verify astigmatism compensation in Fresnel zone plate focusing optics

    NASA Astrophysics Data System (ADS)

    Kagoshima, Yasushi; Miyagawa, Takamasa; Kagawa, Saki; Takeda, Shingo; Takano, Hidekazu

    2017-08-01

    The intensity distribution in phase space of an X-ray synchrotron radiation beamline was measured using a pinhole camera method, in order to verify astigmatism compensation by a Fresnel zone plate focusing optical system. The beamline is equipped with a silicon double crystal monochromator. The beam size and divergence at an arbitrary distance were estimated. It was found that the virtual source point was largely different between the vertical and horizontal directions, which is probably caused by thermal distortion of the monochromator crystal. The result is consistent with our astigmatism compensation by inclining a Fresnel zone plate.

  11. Understanding Microbe-Mineral Reactions Using Synchrotron Radiation Fourier Transform Infrared Spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Kauffman, M. E.; Lehman, R. M.; Martin, M. C.; Bauer, W. F.

    2002-12-01

    Microorganisms are able to alter their surrounding microenvironment to an extent not predicted by the thermodynamics of the macro-environment chemistry. Microbially induced environmental alterations include weathering, biomineralization and mobilization or immobilization of authegenic metals or contaminants. Microbial colonization of surfaces, followed by biofilm formation, are the first steps in alteration processes. With the exception of iron oxides and iron-reducing bacteria, the fundamentals of how microbes react with various mineral surfaces is not well understood. Synchrotron radiation Fourier transform infrared spectromicroscopy (SR-FTIR) is a non-destructive analytical technique capable of probing, in situ, the microbe-mineral interface. The SR-FTIR beamline 1.4.3, at the Advanced Light Source, Berkeley, CA, has a diffraction-limited spatial resolution of 10 um, is 2-3 orders of magnitude brighter than traditional FTIR, and is not harmful to living samples. Aliquots of pure cultures of Burkholderia cepacia G4 were deposited on four individual mineral surfaces (plagioclase, ilmenite, augite and olivine) and spectra were collected within 20-40 min. Reference spectra were collected from the same pure cultures deposited on gold-coated glass slides. Additionally, reference spectra were collected of commercially available biomolecules deposited on the four individual mineral specimens. The spectra of the bacterial cells on gold and the spectra of the separate biomolecules contained all the relevant peaks documented in the literature. However, the spectra collected from the microbe-mineral interfaces were markedly different from the reference spectra and varied between the four mineral surfaces. Bacterial cells in contact with plagioclase exhibited predominantly absorption bands associated with phosphate groups, while the spectra of olivine and bacterial cells were limited to absorption bands associated with bacterial proteins. Spectra of the same bacterial cells

  12. Synchrotron radiation microimaging in rabbit models of cancer for preclinical testing

    NASA Astrophysics Data System (ADS)

    Umetani, Keiji; Uesugi, Kentaro; Kobatake, Makito; Yamamoto, Akira; Yamashita, Takenori; Imai, Shigeki

    2009-10-01

    Preclinical laboratory animal imaging modalities such as microangiography and micro-computed tomography (micro-CT) have been developed at the SPring-8 BL20B2 bending magnet beamline. The objective of this paper is to demonstrate the usefulness of microangiography systems for physiological examinations of live animals and micro-CT systems for postmortem morphological examinations. Synchrotron radiation microangiography and micro-CT with contrast agents present the main advantageous capability of depicting the anatomy of small blood vessels with tens of micrometers' diameter. This paper reports two imaging instrument types and their respective applications to preclinical imaging of tumor angiogenic blood vessels in tumor-bearing rabbits, where tumor angiogenesis is characterized morphologically by an increased number of blood vessels. A microangiography system with spatial resolution around 10 μm has been used for therapeutically evaluating angiogenic vessels in a rabbit model of cancer for evaluating embolization materials in transcatheter arterial embolization and for radiation therapy. After an iodine contrast agent was injected into an artery, in vivo imaging was carried out using a high-resolution real-time detector incorporating an X-ray direct-conversion-type SATICON pickup tube. On the other hand, a micro-CT system capably performed three-dimensional visualization of tumor angiogenic blood vessels using tumor-transplanted rabbit specimens with a barium sulfate contrast agent injected into the blood vessels. For specimen imaging, a large-field high-resolution micro-CT system based on a 10-megapixel CCD camera was developed to study tumor-associated alterations in angioarchitecture. Evidence of increased vascularity by tumor angiogenesis and decreased vascularity by tumor treatments was achieved by physiological evaluation of angiogenic small blood vessels in microangiographic imaging and by morphological assessment in micro-CT imaging. These results

  13. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use.

    PubMed

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale; Manceron, Laurent

    2016-06-01

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6-20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.

  14. Characterization of GaAs:Cr-based Timepix detector using synchrotron radiation and charged particles

    NASA Astrophysics Data System (ADS)

    Smolyanskiy, P.; Chelkov, G.; Guskov, A.; Dedovich, D.; Kozhevnikov, D.; Kruchonak, U.; Leyva Fabelo, A.; Zhemchugov, A.

    2016-12-01

    The interest in the use of high resistivity gallium arsenide compensated by chromium (GaAs:Cr) for photon detection has been growing steadily due to its numerous advantages over silicon. At the same time, the prospects of this material as a sensor for pixel detectors in nuclear and high energy physics are much less studied. In this paper we report the results of characterization of the Timepix detectors hybridized with GaAs:Cr sensors of various thickness using synchrotron radiation and various charged particles, including alphas and heavy ions. The energy and spatial resolution have been determined. Interesting features of GaAs:Cr specific to the detector response to an extremely dense energy deposit by heavy ions have been observed for the first time. The long-term stability of the detector has been evaluated based on the measurements performed over one year. Possible limitation of GaAs:Cr as a sensor for high flux X-ray imaging is discussed.

  15. Synchrotron Spectra of Short-Period Pulsars

    NASA Astrophysics Data System (ADS)

    Malov, I. F.

    2001-02-01

    A model with synchrotron radiation near the light cylinder is proposed to explain the observed spectra of short-period pulsars (P≤0.1 s). These spectra can be described if a power-law energy distribution of the emitting electrons with exponent γ=2 8 is assumed. For most pulsars, the peak frequency νm is below 10 MHz. The νm(γ) dependence is derived, and shows that the peak frequencies for pulsars with spectral indices α<1.5 may fall in the observable range. In particular, νm may be νm ˜ 100 MHz for PSR J0751 + 1807 and PSR J1640 + 2224. The observed radio spectrum of Geminga (PSR J0633 + 1746) can be described by a synchrotron model with a monoenergetic or Maxwellian distribution of relativistic electrons and a small angle β between the spin axis and magnetic moment (β ˜ 10°).

  16. Studies of LSO:Tb radio-luminescence properties using white beam hard X-ray synchrotron irradiation

    NASA Astrophysics Data System (ADS)

    Cecilia, A.; Rack, A.; Pelliccia, D.; Douissard, P.-A.; Martin, T.; Couchaud, M.; Dupré, K.; Baumbach, T.

    A radio-luminescence set-up was installed at the synchrotron light source ANKA to characterise scintillators under the high X-ray photon flux density of white beam synchrotron radiation. The system allows for investigating the radio-luminescence spectrum of the material under study as well as analysing in situ changes of its scintillation behaviour (e.g. under heat load and/or intensive ionising radiation). In this work we applied the radio-luminescence set-up for investigating the radiation damage effects on the luminescence properties of a new kind of thin single crystal scintillator for high resolution X-ray imaging based on a layer of modified Lu2SiO5 grown by liquid phase epitaxy on a dedicated substrate within the framework of an EC project (SCINTAX).

  17. High Fluence Synchrotron Radiation Microprobe Effects on Stardust Interstellar Dust Candidates

    NASA Astrophysics Data System (ADS)

    Simionovici, A.; Allen, C.; Bajt, S.; Bastien, R.; Bechtel, H.; Borg, J.; Brenker, F. E.; Bridges, J. C.; Brownlee, D. E.; Burchell, M. J.; Burghammer, M.; Butterworth, A.; Cloetens, P.; Davis, A. M.; Floss, C.; Flynn, G.; Frank, D.; Gainsforth, Z.; Grün, E.; Heck, P. R.; Hillier, J.; Hoppe, P.; Howard, L.; Huss, G. R.; Huth, J.; Kearsley, A. T.; King, A. J.; Lai, B.; Leitner, J.; Lemelle, L.; Leroux, H.; Lettieri, R.; Marchant, W.; Nittler, L.; Ogliore, R.; Postberg, F.; Sandford, S.; Sans Tresseras, J. A.; Schoonjans, T.; Schmitz, S.; Silversmit, G.; Srama, R.; Stadermann, F. J.; Stephan, T.; Stodolna, J.; Stroud, R. M.; Sutton, S.; Tucoulou, R.; Trieloff, M.; Tsou, P.; Tsuchiyama, A.; Tyliczszak, T.; Vekemans, B.; Vincze, L.; Westphal, A. J.; Zevin, D.; Zolensky, M. E.; 29,000 Stardust@Home Dusters

    2011-03-01

    We are presenting for the first time damage effects produced by focused high-fluence synchrotron beams on Stardust interstellar dust candidates. The damage produced on submicrometer grains shows up as particle smearing. We attribute this mainly to charging effects.

  18. Next-generation materials for future synchrotron and free-electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assoufid, Lahsen; Graafsma, Heinz

    We show that the development of new materials and improvements of existing ones are at the root of the spectacular recent developments of new technologies for synchrotron storage rings and free-electron laser sources. This holds true for all relevant application areas, from electron guns to undulators, x-ray optics, and detectors. As demand grows for more powerful and efficient light sources, efficient optics, and high-speed detectors, an overview of ongoing materials research for these applications is timely. In this article, we focus on the most exciting and demanding areas of materials research and development for synchrotron radiation optics and detectors. Materialsmore » issues of components for synchrotron and free-electron laser accelerators are briefly discussed. Lastly, the articles in this issue expand on these topics.« less

  19. Next-generation materials for future synchrotron and free-electron laser sources

    DOE PAGES

    Assoufid, Lahsen; Graafsma, Heinz

    2017-06-09

    We show that the development of new materials and improvements of existing ones are at the root of the spectacular recent developments of new technologies for synchrotron storage rings and free-electron laser sources. This holds true for all relevant application areas, from electron guns to undulators, x-ray optics, and detectors. As demand grows for more powerful and efficient light sources, efficient optics, and high-speed detectors, an overview of ongoing materials research for these applications is timely. In this article, we focus on the most exciting and demanding areas of materials research and development for synchrotron radiation optics and detectors. Materialsmore » issues of components for synchrotron and free-electron laser accelerators are briefly discussed. Lastly, the articles in this issue expand on these topics.« less

  20. X-ray diffraction imaging (topography) of electroopticcrystals by synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Kuriyama, Masao; Dobbyn, Ronald C.; Laor, Uri

    1988-01-01

    Information of special interest to crystal growers and device physicists now available from monochromatic synchrotron diffraction imaging (topography) is reviewed. Illustrations are taken from a variety of electro-optic crystals. Aspects of the detailed understanding of crystal growth processes obtainable from carefully selected samples are described. Finally, new experimental opportunities now available for exploitation are indicated.

  1. Synchrotron Radiation X-Ray Microfluorescence Reveals Polarized Distribution of Atomic Elements during Differentiation of Pluripotent Stem Cells

    PubMed Central

    Paulsen, Bruna S.; Rehen, Stevens K.

    2011-01-01

    The mechanisms underlying pluripotency and differentiation in embryonic and reprogrammed stem cells are unclear. In this work, we characterized the pluripotent state towards neural differentiated state through analysis of trace elements distribution using the Synchrotron Radiation X-ray Fluorescence Spectroscopy. Naive and neural-stimulated embryoid bodies (EB) derived from embryonic and induced pluripotent stem (ES and iPS) cells were irradiated with a spatial resolution of 20 µm to make elemental maps and qualitative chemical analyses. Results show that these embryo-like aggregates exhibit self-organization at the atomic level. Metallic elements content rises and consistent elemental polarization pattern of P and S in both mouse and human pluripotent stem cells were observed, indicating that neural differentiation and elemental polarization are strongly correlated. PMID:22195032

  2. Use of synchrotron radiation to characterize metals in plants: the case of Cd in the hyperacumulator Arabidopsis halleri

    NASA Astrophysics Data System (ADS)

    Isaure, M.; Sarret, G.; Verbruggen, N.

    2010-12-01

    Phytoremediation uses plants to extract (phytoextraction) or stabilize (phytostabilization) metals accumulated in soils, and can be an alternative to invasive physico-chemical remediation techniques. Its development requires the knowledge of the mechanisms involved in metal tolerance and accumulation in plants, and particularly the way that plants transfer and store metals. In that context, synchrotron radiation based techniques such as micro-focused X-Ray Fluorescence (µXRF), and micro-focused X-ray Absorption Spectroscopy, including Extended X-ray Absorption Fine Structure and X-ray Absorption Near Edge Structure, are particularly suited to determine the localization and the chemical forms of metals in the different tissues, cells and sub-cellular compartments. Arabidopsis halleri is a Zn, Cd hyperaccumulating plant, naturally growing on contaminated sites, and is a model plant to investigate metal hyperaccumulation. This work presents the application of µXRF and Cd µXANES to determine the distribution and speciation of Cd in this species. Results showed that Cd was mainly located in the mesophyll and veins of leaves. It is bound to S ligands in some leaves and to O/N ligands in other ones, and the observed variations may be related to the age of the leaves. Cd speciation seems to differ from other metals, and particularly Zn, generally encountered in hyperaccumulators. High local Cd concentrations were also detected at the base of trichomes, epidermal hairs of leaves, associated to O/N ligands, probably to the cell wall. This phenomenon was also observed on non-hyperaccumulators and is clearly not the major sink for Cd, but trichomes might play a role in the detoxification process. This study illustrates the suitability of synchrotron radiation based techniques to investigate metal distribution and speciation in plants.

  3. Synchrotron-based X-ray computed tomography during compression loading of cellular materials

    DOE PAGES

    Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; ...

    2015-04-29

    Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.

  4. Roles of oxidative stress in synchrotron radiation X-ray-induced testicular damage of rodents

    PubMed Central

    Ma, Yingxin; Nie, Hui; Sheng, Caibin; Chen, Heyu; Wang, Ban; Liu, Tengyuan; Shao, Jiaxiang; He, Xin; Zhang, Tingting; Zheng, Chaobo; Xia, Weiliang; Ying, Weihai

    2012-01-01

    Synchrotron radiation (SR) X-ray has characteristic properties such as coherence and high photon flux, which has excellent potential for its applications in medical imaging and cancer treatment. However, there is little information regarding the mechanisms underlying the damaging effects of SR X-ray on biological tissues. Oxidative stress plays an important role in the tissue damage induced by conventional X-ray, while the role of oxidative stress in the tissue injury induced by SR X-ray remains unknown. In this study we used the male gonads of rats as a model to study the roles of oxidative stress in SR X-ray-induced tissue damage. Exposures of the testes to SR X-ray at various radiation doses did not significantly increase the lipid peroxidation of the tissues, assessed at one day after the irradiation. No significant decreases in the levels of GSH or total antioxidation capacity were found in the SR X-ray-irradiated testes. However, the SR X-ray at 40 Gy induced a marked increase in phosphorylated H2AX – a marker of double-strand DNA damage, which was significantly decreased by the antioxidant N-acetyl cysteine (NAC). NAC also attenuated the SR X-ray-induced decreases in the cell layer number of seminiferous tubules. Collectively, our observations have provided the first characterization of SR X-ray-induced oxidative damage of biological tissues: SR X-ray at high doses can induce DNA damage and certain tissue damage during the acute phase of the irradiation, at least partially by generating oxidative stress. However, SR X-ray of various radiation doses did not increase lipid peroxidation. PMID:22837810

  5. Current-horn suppression for reduced coherent-synchrotron-radiation-induced emittance growth in strong bunch compression

    NASA Astrophysics Data System (ADS)

    Charles, T. K.; Paganin, D. M.; Latina, A.; Boland, M. J.; Dowd, R. T.

    2017-03-01

    Control of coherent synchrotron radiation (CSR)-induced emittance growth is essential in linear accelerators designed to deliver very high brightness electron beams. Extreme current values at the head and tail of the electron bunch, resulting from strong bunch compression, are responsible for large CSR production leading to significant transverse projected emittance growth. The Linac Coherent Light Source (LCLS) truncates the head and tail current spikes which greatly improves free electron laser (FEL) performance. Here we consider the underlying dynamics that lead to formation of current spikes (also referred to as current horns), which has been identified as caustics forming in electron trajectories. We present a method to analytically determine conditions required to avoid the caustic formation and therefore prevent the current spikes from forming. These required conditions can be easily met, without increasing the transverse slice emittance, through inclusion of an octupole magnet in the middle of a bunch compressor.

  6. Luminescent properties of Al2O3:Ce single crystalline films under synchrotron radiation excitation

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu.; Zorenko, T.; Gorbenko, V.; Savchyn, V.; Voznyak, T.; Fabisiak, K.; Zhusupkalieva, G.; Fedorov, A.

    2016-09-01

    The paper is dedicated to study the luminescent and scintillation properties of the Al2O3:Ce single crystalline films (SCF) grown by LPE method onto saphire substrates from PbO based flux. The structural quality of SCF samples was investigated by XRD method. For characterization of luminescent properties of Al2O3:Ce SCFs the cathodoluminescence spectra, scintillation light yield (LY) and decay kinetics under excitation by α-particles of Pu239 source were used. We have found that the scintillation LY of Al2O3:Ce SCF samples is relatively large and can reach up to 50% of the value realized in the reference YAG:Ce SCF. Using the synchrotron radiation excitation in the 3.7-25 eV range at 10 K we have also determined the basic parameters of the Ce3+ luminescence in Al2O3 host.

  7. Recording the synchrotron radiation by a picosecond streak camera for bunch diagnostics in cyclic accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vereshchagin, A K; Vorob'ev, N S; Gornostaev, P B

    2016-02-28

    A PS-1/S1 picosecond streak camera with a linear sweep is used to measure temporal characteristics of synchrotron radiation pulses on a damping ring (DR) at the Budker Institute of Nuclear Physics (BINP) of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk). The data obtained allow a conclusion as to the formation processes of electron bunches and their 'quality' in the DR after injection from the linear accelerator. The expediency of employing the streak camera as a part of an optical diagnostic accelerator complex for adjusting the injection from a linear accelerator is shown. Discussed is the issue ofmore » designing a new-generation dissector with a time resolution up to a few picoseconds, which would allow implementation of a continuous bunch monitoring in the DR during mutual work with the electron-positron colliders at the BINP. (acoustooptics)« less

  8. Characterization and quantification of cerebral edema induced by synchrotron x-ray microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Serduc, Raphaël; van de Looij, Yohan; Francony, Gilles; Verdonck, Olivier; van der Sanden, Boudewijn; Laissue, Jean; Farion, Régine; Bräuer-Krisch, Elke; Siegbahn, Erik Albert; Bravin, Alberto; Prezado, Yolanda; Segebarth, Christoph; Rémy, Chantal; Lahrech, Hana

    2008-03-01

    Cerebral edema is one of the main acute complications arising after irradiation of brain tumors. Microbeam radiation therapy (MRT), an innovative experimental radiotherapy technique using spatially fractionated synchrotron x-rays, has been shown to spare radiosensitive tissues such as mammal brains. The aim of this study was to determine if cerebral edema occurs after MRT using diffusion-weighted MRI and microgravimetry. Prone Swiss nude mice's heads were positioned horizontally in the synchrotron x-ray beam and the upper part of the left hemisphere was irradiated in the antero-posterior direction by an array of 18 planar microbeams (25 mm wide, on-center spacing 211 mm, height 4 mm, entrance dose 312 Gy or 1000 Gy). An apparent diffusion coefficient (ADC) was measured at 7 T 1, 7, 14, 21 and 28 days after irradiation. Eventually, the cerebral water content (CWC) was determined by microgravimetry. The ADC and CWC in the irradiated (312 Gy or 1000 Gy) and in the contralateral non-irradiated hemispheres were not significantly different at all measurement times, with two exceptions: (1) a 9% ADC decrease (p < 0.05) was observed in the irradiated cortex 1 day after exposure to 312 Gy, (2) a 0.7% increase (p < 0.05) in the CWC was measured in the irradiated hemispheres 1 day after exposure to 1000 Gy. The results demonstrate the presence of a minor and transient cellular edema (ADC decrease) at 1 day after a 312 Gy exposure, without a significant CWC increase. One day after a 1000 Gy exposure, the CWC increased, while the ADC remained unchanged and may reflect the simultaneous presence of cellular and vasogenic edema. Both types of edema disappear within a week after microbeam exposure which may confirm the normal tissue sparing effect of MRT. For more information on this article, see medicalphysicsweb.org

  9. Synchrotron x-ray modification of nanoparticle superlattice formation

    NASA Astrophysics Data System (ADS)

    Lu, Chenguang; Akey, Austin J.; Herman, Irving P.

    2012-09-01

    The synchrotron x-ray radiation used to perform small angle x-ray scattering (SAXS) during the formation of three-dimensional nanoparticle superlattices by drop casting nanoparticle solutions affects the structure and the local crystalline order of the resulting films. The domain size decreases due to the real-time SAXS analysis during drying and more macroscopic changes are visible to the eye.

  10. Variable Magnification With Kirkpatrick-Baez Optics for Synchrotron X-Ray Microscopy

    PubMed Central

    Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; Pedulla, Joseph; Macrander, Albert

    2006-01-01

    We describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Köhler illumination). We demonstrate the distinction with a Kirkpatrick-Baez microscope consisting of short focal length multilayer mirrors operating at an energy of 8 keV. In addition to realizing improvements in the resolution of the optics, the synchrotron radiation microscope is not limited to the usual single magnification at a fixed image plane. Higher magnification images are produced by projection in the limit of geometrical optics with a collimated beam. However, in distinction to the common method of placing the sample behind the optical source of a diverging beam, we describe the situation in which the sample is located in the collimated beam before the optical element. The ultimate limits of this magnification result from diffraction by the specimen and are determined by the sample position relative to the focal point of the optic. We present criteria by which the diffraction is minimized. PMID:27274930

  11. Isolation of Coherent Synchrotron Emission During Relativistic Laser Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Dromey, B.; Rykovanov, S. G.; Lewis, C. L. S.; Zepf, M.

    Coherent Synchrotron Emission (CSE) from relativistic laser plasmas (Pukhov et al., Plas Phys Control Fusion 52:124039, 2010; Dromey et al., Nat Phys 8:804-808, 2012; Dromey et al., New J Phys 15:015025, 2013) has recently been identified as a unique platform for the generation of coherent extreme ultraviolet (XUV) and X-Ray radiation with clear potential for bright attosecond pulse production. Exploiting this potential requires careful selection of interaction geometry, spectral wavelength range and target characteristics to allow the generation of high fidelity single attosecond pulses. In the laboratory the first step on this road is to study the individual mechanisms driving the emission of coherent extreme ultraviolet and X-Ray radiation during laser solid interactions in isolation. Here we show how interactions can be tailored to permit the unambiguous observation of coherent synchrotron emission (CSE) and the implications of this geometry for the resulting harmonic spectrum over the duration of the interaction.

  12. Synchrotron radiation-induced contamination on LiF window: Characterization by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yadav, P. K.; Swami, M. K.

    2016-05-01

    Characterization of synchrotron induced contamination on optical elements and their cleaning are serious issues in beam lines. We used Raman spectroscopy for characterization of synchrotron induced contamination layer on LiF window (used in high resolution vacuum ultra violet beam line). Three peaks at 1035 cm-1 (corresponding to C-C sp3 vibrations), 1563 cm-1 and 1375 cm-1 (corresponding to G and D bands of carbon) are observed. By data fitting I(D)/I(G) ratio (0.84) and FWHM(G)=124 cm-1 was obtained. Comparison with available literature indicates that the carbon might be present in the form of rings of hydrogenated amorphous carbon a-C:H (GLHC) with atomic hydrogen concentration about 15% with both sp2 and sp3 hybridization.

  13. Development of an X-ray imaging system to prevent scintillator degradation for white synchrotron radiation.

    PubMed

    Zhou, Tunhe; Wang, Hongchang; Connolley, Thomas; Scott, Steward; Baker, Nick; Sawhney, Kawal

    2018-05-01

    The high flux of the white X-ray beams from third-generation synchrotron light sources can significantly benefit the development of high-speed X-ray imaging, but can also bring technical challenges to existing X-ray imaging systems. One prevalent problem is that the image quality deteriorates because of dust particles accumulating on the scintillator screen during exposure to intense X-ray radiation. Here, this problem has been solved by embedding the scintillator in a flowing inert-gas environment. It is also shown that the detector maintains the quality of the captured images even after days of X-ray exposure. This modification is cost-efficient and easy to implement. Representative examples of applications using the X-ray imaging system are also provided, including fast tomography and multimodal phase-contrast imaging for biomedical and geological samples. open access.

  14. Development of an X-ray imaging system to prevent scintillator degradation for white synchrotron radiation

    PubMed Central

    Zhou, Tunhe; Wang, Hongchang; Scott, Steward

    2018-01-01

    The high flux of the white X-ray beams from third-generation synchrotron light sources can significantly benefit the development of high-speed X-ray imaging, but can also bring technical challenges to existing X-ray imaging systems. One prevalent problem is that the image quality deteriorates because of dust particles accumulating on the scintillator screen during exposure to intense X-ray radiation. Here, this problem has been solved by embedding the scintillator in a flowing inert-gas environment. It is also shown that the detector maintains the quality of the captured images even after days of X-ray exposure. This modification is cost-efficient and easy to implement. Representative examples of applications using the X-ray imaging system are also provided, including fast tomography and multimodal phase-contrast imaging for biomedical and geological samples. PMID:29714191

  15. Diffusion studies with synchrotron Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Jackson, J. M.

    2011-12-01

    Knowledge of diffusion properties is critical for understanding many physical and chemical processes in planetary interiors. For example, diffusion behavior provides constraints on chemical exchange and viscosity. Nuclear resonances open the window for observing diffusion properties under the extreme conditions that exist deep inside the Earth. Synchrotron Mössbauer spectroscopy (viz. nuclear forward scattering) makes use of synchrotron radiation coherently scattered in the forward direction after nuclear resonant excitation. The decay of the forward-scattered radiation is faster when atoms move on the time scale of the excited-state lifetime because of a loss of coherence. Such diffusion-activated processes lead to accelerated decay and line broadening in the measured signal. In the case of the Mössbauer active isotope 57Fe, the nuclear resonance at 14.4 keV has a natural lifetime of 141 ns. Therefore, one can observe diffusion events ranging from approximately one-sixth to 100 times the natural lifetime of 57Fe, which corresponds to diffusion coefficients of 10-16 and 10-13 m2/s, respectively and a two to three order of magnitude range of suitability. In this contribution, we will describe such measurements that access the microscopic details of the diffusion process for iron-bearing phases.

  16. The Discrete Nature of the Coherent Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Tammaro, Stefano; Pirali, Olivier; Roy, P.; Lampin, Jean François; Ducourneau, Gaël; Cuisset, Arnaud; Hindle, Francis; Mouret, Gaël

    2015-06-01

    Frequency Combs (FC) have radically changed the landscape of frequency metrology and high-resolution spectroscopy investigations extending tremendously the achievable resolution while increasing signal to noise ratio. Initially developed in the visible and near-IR spectral regions, the use of FC has been expanded to mid-IR, extreme ultra-violet and X-ray. Significant effort is presently dedicated to the generation of FC at THz frequencies. One solution based on converting a stabilized optical frequency comb using a photoconductive terahertz emitter, remains hampered by the low available THz power. Another approach is based on active mode locked THz quantum-cascade-lasers providing intense FC over a relatively limited spectral extension. Alternatively, we show that dense powerful THz FC is generated over one decade of frequency by coherent synchrotron radiation (CSR). In this mode, the entire ring behaves in a similar fashion to a THz resonator wherein electron bunches emit powerful THz pulses quasi-synchronously. The observed FC has been fully characterized and is demonstrated to be offset free. Based on these recorded specifications and a complete review of existing THz frequency comb, a special attention will be paid onto similarities and differences between them. Udem, Th., Holzwarth, H., Hänsch, T. W., Optical frequency metrology. Nature 416, 233-237 (2002) Schliesser, A., Picqué, N., Hänsch, T. W., Mid-infrared frequency combs. Nature Photon. 6, 440 (2012) Zinkstok, R. Th., Witte, S., Ubachs, W., Hogervorst, W., Eikema, K. S. E., Frequency comb laser spectroscopy in the vacuum-ultraviolet region. Physical Review A 73, 061801 (2006) Cavaletto, S. M. et al. Broadband high-resolution X-ray frequency combs. Nature Photon. 8, 520-523 (2014) Tani, M., Matsuura, S., Sakai, K., Nakashima, S. I., Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. Applied Optics 36, 7853-7859 (1997) Burghoff, D. et al

  17. Trends in the precipitation and crystallization behavior of supersaturated aqueous solutions of poorly water-soluble drugs assessed using synchrotron radiation.

    PubMed

    Raina, Shweta A; Van Eerdenbrugh, Bernard; Alonzo, David E; Mo, Huaping; Zhang, Geoff G Z; Gao, Yi; Taylor, Lynne S

    2015-06-01

    Amorphous materials are high-energy solids that can potentially enhance the bioavailability of poorly soluble compounds. A major impediment to their widespread use as a formulation platform is the tendency of amorphous materials to crystallize. The aim of this study was to evaluate the relative crystallization tendency of six structural analogues belonging to the dihydropyridine class, in an aqueous environment in the absence and presence of polymers, using wide-angle X-ray scattering synchrotron radiation and polarized light microscopy. The crystallization behavior of precipitates generated from supersaturated solutions of the active pharmaceutical ingredients was found to be highly variable ranging from immediate to several hours in the absence of polymers. Polymers with intermediate hydrophilicity/hydrophobicity were found to substantially delay crystallization, whereas strongly hydrophilic or hydrophobic polymers were largely ineffective. Nuclear magnetic resonance spectroscopy experiments supported the supposition that polymers need to have affinity for both the drug-rich precipitate and the aqueous phase in order to be effective crystallization inhibitors. This study highlights the variability in the crystallization tendency of different compounds and provides insight into the mechanism of inhibition by polymeric additives. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. High-resolution three-dimensional visualization of the rat spinal cord microvasculature by synchrotron radiation micro-CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jianzhong; Cao, Yong; Wu, Tianding

    2014-10-15

    Purpose: Understanding the three-dimensional (3D) morphology of the spinal cord microvasculature has been limited by the lack of an effective high-resolution imaging technique. In this study, synchrotron radiation microcomputed tomography (SRµCT), a novel imaging technique based on absorption imaging, was evaluated with regard to the detection of the 3D morphology of the rat spinal cord microvasculature. Methods: Ten Sprague-Dawley rats were used in this ex vivo study. After contrast agent perfusion, their spinal cords were isolated and scanned using conventional x-rays, conventional micro-CT (CµCT), and SRµCT. Results: Based on contrast agent perfusion, the microvasculature of the rat spinal cord wasmore » clearly visualized for the first time ex vivo in 3D by means of SRµCT scanning. Compared to conventional imaging techniques, SRµCT achieved higher resolution 3D vascular imaging, with the smallest vessel that could be distinguished approximately 7.4 μm in diameter. Additionally, a 3D pseudocolored image of the spinal cord microvasculature was generated in a single session of SRµCT imaging, which was conducive to detailed observation of the vessel morphology. Conclusions: The results of this study indicated that SRµCT scanning could provide higher resolution images of the vascular network of the spinal cord. This modality also has the potential to serve as a powerful imaging tool for the investigation of morphology changes in the 3D angioarchitecture of the neurovasculature in preclinical research.« less

  19. Evaluation of zirconium as a permanent chemical modifier using synchrotron radiation and imaging techniques for lithium determination in sediment slurry samples by ET AAS.

    PubMed

    Flores, Araceli V; Pérez, Carlos A; Arruda, Marco A Z

    2004-02-27

    In the present paper, lithium was determined in river sediment using slurry sampling and electrothermal atomic absorption spectrometry (ET AAS) after L'vov platform coating with zirconium (as a permanent chemical modifier). The performance of this modifier and its distribution on the L'vov platform after different heating cycles were evaluated using synchrotron radiation X-ray fluorescence (SRXRF) and imaging scanning electron microscopy (SEM) techniques. The analytical conditions for lithium determination in river sediment slurries were also investigated and the best conditions were obtained employing 1300 and 2300 degrees C for pyrolysis and atomization temperatures, respectively. In addition, 100mg of sediment samples were prepared using 4.0moll(-1) HNO(3). The Zr-coating permitted lithium determination with good precision and accuracy after 480 heating cycles using the same platform for slurry samples. The sediment samples were collected from five different points of the Cachoeira river, São Paulo, Brazil. The detection and quantification limits were, respectively, 0.07 and 0.23mugl(-1).

  20. Studies of beam injection with a compensated bump and uncompensated bump in a synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbar Fakhri, Ali; Prajapati, S. K.; Ghodke, A. D.

    2013-08-15

    Synchrotron radiation sources Indus-1 and Indus-2 have a synchrotron as the common injector. A three kicker compensated bump injection scheme was employed for beam injection into this synchrotron. The stored beam current in the synchrotron is higher, when all the three kickers are operated at the same current than when kickers are operated at currents required to generate compensated bump. Beam dynamics studies have been done to understand why this happens. Theoretical studies indicate that higher stored current in the later case is attributed to smaller residual oscillations of injected beam. These studies also reveal that if the angle ofmore » the injected beam during beam injection is kept varying, the performance could be further improved. This is experimentally confirmed by injecting the beam on rising part of the injection septum magnet current pulse.« less

  1. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation.

    PubMed

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F H; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibilities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  2. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F. H.; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V.

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  3. X-ray tomography of powder injection moulded micro parts using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Heldele, R.; Rath, S.; Merz, L.; Butzbach, R.; Hagelstein, M.; Haußelt, J.

    2006-05-01

    Powder injection moulding is one of the most promising replication methods for the mass production of metal and ceramic micro parts. The material for injection moulding, a so-called feedstock, consists of thermoplastic binder components and inorganic filler with approximately equal volume fractions. Injection moulding of the feedstock leads to a green part that can be processed to a dense metal or ceramic micro part by debinding and sintering. During the injection moulding process extremely high shear rates are applied. This promotes the separation of powder and binder leading to a particle density variation in the green part causing anisotropic shrinkage during post-processing. The knowledge of introducing density gradients and defects would consequently allow the optimization of the feedstock, the moulding parameters and the validation of a simulation tool based on the Dissipative Particle Dynamics which is currently under development, as well. To determine the particle density and defect distribution in micro parts synchrotron radiation tomography in absorption mode was used. Due to its parallel and monochromatic character a quantitative reconstruction, free of beam hardening artifacts, is possible. For the measurement, bending bars consisting of dispersed fused silica particles in a polymeric matrix were used. The presented results using this set-up show that crucial defects and density variations can be detected.

  4. Advantages of synchrotron radiation circular dichroism spectroscopy to study intrinsically disordered proteins.

    PubMed

    Kumagai, Patricia S; DeMarco, Ricardo; Lopes, Jose L S

    2017-10-01

    The unordered secondary structural content of an intrinsically disordered protein (IDP) is susceptible to conformational changes induced by many different external factors, such as the presence of organic solvents, removal of water, changes in temperature, binding to partner molecules, and interaction with lipids and/or other ligands. In order to characterize the high-flexibility nature of an IDP, circular dichroism (CD) spectroscopy is a particularly useful method due to its capability of monitoring both subtle and remarkable changes in different environments, relative ease in obtaining measurements, the small amount of sample required, and the capability for sample recovery (sample not damaged) and others. Using synchrotron radiation as the light source for CD spectroscopy represents the state-of-the-art version of this technique with feasibility of accessing the lower wavelength UV region, and therefore presenting a series of advantages over conventional circular dichroism (cCD) to monitor a protein conformational behavior, check protein stability, detect ligand binding, and many others. In this paper, we have performed a comparative study using cCD and SRCD methods for investigating the secondary structure and the conformational behavior of natively unfolded proteins: MEG-14 and soybean trypsin inhibitor. We show that the SRCD technique greatly improves the analysis and accuracy of the studies on the conformations of IDPs.

  5. Soft X-Ray Microscopy Radiation Damage On Fixed Cells Investigated With Synchrotron Radiation FTIR Microscopy.

    PubMed

    Gianoncelli, A; Vaccari, L; Kourousias, G; Cassese, D; Bedolla, D E; Kenig, S; Storici, P; Lazzarino, M; Kiskinova, M

    2015-05-14

    Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies.

  6. Soft X-Ray Microscopy Radiation Damage On Fixed Cells Investigated With Synchrotron Radiation FTIR Microscopy

    PubMed Central

    Gianoncelli, A.; Vaccari, L.; Kourousias, G.; Cassese, D.; Bedolla, D. E.; Kenig, S.; Storici, P.; Lazzarino, M.; Kiskinova, M.

    2015-01-01

    Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies. PMID:25974639

  7. Bone Implant Interface Investigation by Synchrotron Radiation X-Ray Microfluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calasans-Maia, M.; Sales, E.; Lopes, R. T.

    2010-04-06

    Zinc is known to play a relevant role in growth and development; it has stimulatory effects on in vitro and in vivo bone formation and an inhibitory effect on in vitro osteoclastic bone resorption. The inorganic component of the bone tissue is nonstoichiometric apatite; changes in the composition of hidroxyapatite are subject of studies in order to improve the tissue response after implantation. The objective of this study was to investigate the effect of 0.5% zinc-containing hydroxyapatite in comparison to hydroxyapatite on osseous repair of rabbit's tibia. Cylinders (2x6 mm) of both materials were produced according to the specification ofmore » the International Organization for Standardization. Ethics Commission on Teaching and Research in Animals approved this project (HUAP-195/06). Fifteen White New Zealand rabbits were submitted to general anesthesia and two perforations (2 mm) were made in each tibia for implantation of zinc-containing hydroxyapatite cylinders (left tibia) and hydroxyapatite cylinders (right tibia). After 1, 2 and 4 weeks, the animals were killed and one fragment of each tibia with the cylinder was collected and embedded in a methacrylate-based resin and cut into slices (approx200 {mu}m thickness), parallel to the implant's long axis with a precision diamond saw for Synchrotron Radiation X-ray Microfluorescence investigation. The accomplishment of the standard procedures helped the planning, execution and the comparative analysis of the results. The chemical and physical properties of the biomaterials were modified after its implantation and the incorporation of zinc. Both materials are biocompatible and promote osteoconduction and favored bone repair.« less

  8. Photodiode array for position-sensitive detection using high X-ray flux provided by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Jucha, A.; Bonin, D.; Dartyge, E.; Flank, A. M.; Fontaine, A.; Raoux, D.

    1984-09-01

    Synchrotron radiation provides a high intensity source over a large range of wavelengths. This is the prominent quality that has laid the foundations of the EXAFS development (Extended X-ray Absorption Fine Structure). EXAFS data can be collected in different ways. A full scan requires 5 to 10 min, compared to the one-day data collection of a conventional Bremsstrahlung X-ray tube. Recently, by using the new photodiode array (R 1024 SFX) manufactured by Reticon, it has been possible to reduce the data collection time to less than 100 ms. The key elements of this new EXAFS method are a dispersive optics combined with a position sensitive detector able to work under very high flux conditions. The total aperture of 2500 μm × 25 μm for each pixel is well suited to spectroscopic applications. Besides its high dynamic range (> 10 4) and its linearity, the rapidity of the readout allows a flux of 10 9-10 10 photons/s over the 1024 sensing elements.

  9. The Pr 2O 3/Si(0 0 1) interface studied by synchrotron radiation photo-electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Schmeißer, D.; Müssig, H.-J.

    2003-10-01

    Pr 2O 3 is currently under consideration as a potential replacement for SiO 2 as the gate-dielectric material for sub-0.1 μm complementary metal-oxide-semiconductor (CMOS) technology. We studied the Pr 2O 3/Si(0 0 1) interface by a non-destructive depth profiling using synchrotron radiation photoelectron spectroscopy. Our data suggests that there is no silicide formation at the interface. Based on reported results, a chemical reactive interface exists, consisting of a mixed Si-Pr oxide such as (Pr 2O 3) x(SiO 2) 1- x, i.e. as a silicate phase with variable silicon content. This pseudo-binary alloy at the interface offers large flexibility toward successful integration of Pr 2O 3 into future CMOS technologies.

  10. Synchrotron radiation study on the phase relations of KAlSi3O8

    NASA Astrophysics Data System (ADS)

    Urakawa, Satoru; Ohno, Hideo; Igawa, Naoki; Kondo, Tadashi; Shimomura, Osamu

    1994-07-01

    The equilibrium phase relations of KAlSi3O8 have been determined by in situ X-ray diffraction method using synchrotron radiation at Photon Factory, Natl. Lab. for High Energy Physics. Experiments were conducted by using the cubic type high pressure apparatus, MAX90, equipped with sintered diamond anvils. The temperature region was extended to 2000 °C up to 10 GPa in this study. Sanidine, the low pressure phase of KAlSi3O8, decomposes into three phases, the wadeite-type K2Si4O9+kyanite (Al2SiO5)+coesite (SiO2), at 6.5 GPa and 1200˜1300 °C. The hollandite-type KAlSi3O8 is made up of three phases at 9.2 GPa and 1300˜1400 °C. The melting points of sanidine and the hollandite-type KAlSi3O8 are 1600 °C at 6.7 GPa and 1800 °C at 11.2 GPa, respectively. In three phases coexisting field, wadeite-type K2Si4O9 first melts at the temperature between 1400 °C and 1500 °C.

  11. A fresh look at Jupiter's synchrotron from the Cassini RADAR flyby

    NASA Astrophysics Data System (ADS)

    Moeckel, Chris; Janssen, Michael A.; de Pater, Imke

    2017-10-01

    The temporal variability is one of the big remaining questions in synchrotron radiation. Most known processes affect the radiation belts on time scales of month and years, whereas variations on shorter time scales are still a subject of scientific debate. In this light, the extreme depletion of energetic electrons as revealed by the 2001 Cassini radio measurements during its flyby of Jupiter is very surprising. The obtained estimate of the ultra-relativistic electron number density is considerably lower when compared to model calculations and similar observation. It has long been suspected that the measurements suffered from large systematic uncertainties. The uncertainties were reduced by recalibrating the raw data the Cassini RADAR measurements based on an improved understanding of the instrument after a decade of operation at Titan. The uncertainties pertaining to spacecraft pointing and the Jovian thermal radiation were solved for by applying a Markov-Chain Monte-Carlo optimization to the full set of 20 Jupiter scans. The synchrotron radiation was then recovered by subtracting the thermal radiation extending from Jupiter’s upper atmosphere, which comprises up to 97% of the total signal strength in the Cassini frequency band. The excellent knowledge of the instrument allows for constraining the disk-averaged brightness temperature of 158.6K ± 2.4K and can be used to improve the calibration of radio telescope such as the Very Large Array. The new retrieval confirmed that systematic artifacts propagated into the initial analysis. The synchrotron radio flux was revised upwards to agree with model predictions of a depleted magnetosphere. Radio maps indicated an enhancement at higher latitudes of electrons, requiring processes to scatter particles to higher latitudes. Comparison with other radio maps demonstrated a positive correlation between the energy of the electrons and the scattering they experienced. This behavior is indicative of wave-particle interactions

  12. Compression-induced texture change in NiMnGa-polymer composites observed by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Scheerbaum, Nils; Hinz, Dietrich; Gutfleisch, Oliver; Skrotzki, Werner; Schultz, Ludwig

    2007-05-01

    Composites consisting of magnetic shape memory (MSM) particles embedded in a polyester matrix were prepared. Single-crystalline MSM particles were obtained by mortar grinding of melt-extracted and subsequently annealed Ni50.9Mn27.1Ga22.0 (at. %) fibers. The crystal structure of the martensite is tetragonal (5M) with c synchrotron radiation. In the initial state, the MSM particles in the composite have a random texture, i.e., there is no preferred orientation of the c axis. After a 30% compression (height reduction), the MSM particles have a (004)-fiber texture in the direction of compression. This is unambiguous evidence for stress induced twin boundary motion within the MSM particles.

  13. New synchrotron powder diffraction facility for long-duration experiments

    PubMed Central

    Murray, Claire A.; Potter, Jonathan; Day, Sarah J.; Baker, Annabelle R.; Thompson, Stephen P.; Kelly, Jon; Morris, Christopher G.; Tang, Chiu C.

    2017-01-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world’s first dedicated facility for long-term studies (weeks to years) using synchrotron radiation. PMID:28190992

  14. Investigation of Essential Element Distribution in the Equine Metacarpophalangeal Joint using a Synchrotron Radiation Micro X-Ray Fluorescence Technique

    NASA Astrophysics Data System (ADS)

    Kaabar, Wejdan; Gundogdu, O.; Tzaphlidou, M.; Janousch, M.; Attenburrow, D.; Bradley, D. A.

    2008-05-01

    In articular cartilage, Ca, P, K and S are among some of the well known co-factors of the metalloproteinases enzymatic family, the latter playing a pivotal role in the growth and degeneration of the collagenous bone-cartilage interface of articulating joints. Current study forms part of a larger investigation concerning the distribution of these and other key elements in such media. For the purpose of evaluating these low atomic number elements (Z⩽20), use was made of the capabilities of the LUCIA Station, located at the synchrotron facility of the Paul Scherrer Institute (PSI). Using an incident radiation energy of 4.06 keV, a synchrotron radiation micro x-ray fluorescence (SR-μXRF) technique was applied in examining the distribution of the essential elements Ca, P, K and S in the bone-cartilage interface of both healthy and diseased (osteoarthritic) areas of an equine metacarpophalangeal joint. The SR-μXRF mappings and line profile patterns have revealed remarkable changes in both the pattern and absolute distributions of these elements, agreeing with the findings of others. The elemental presence shown in the individual area scans encompassing the lesion each reflect the visibly abraded outer surface of the cartilage and change in shape of the bone surface. One of the area scans for the bone-cartilage interface shows a marked change in both the pattern and absolute elemental presence for all three elements compared to that observed at two other scan sites. The observation of change in bone cartilage composition around the surface of the articulating joint is thought to be novel, the variation being almost certainly due to the differing weight-bearing role of the subchondral bone at each location.

  15. Investigation of Essential Element Distribution in the Equine Metacarpophalangeal Joint using a Synchrotron Radiation Micro X-Ray Fluorescence Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaabar, Wejdan; Gundogdu, O.; Attenburrow, D.

    2008-05-20

    In articular cartilage, Ca, P, K and S are among some of the well known co-factors of the metalloproteinases enzymatic family, the latter playing a pivotal role in the growth and degeneration of the collagenous bone-cartilage interface of articulating joints. Current study forms part of a larger investigation concerning the distribution of these and other key elements in such media. For the purpose of evaluating these low atomic number elements (Z{<=}20), use was made of the capabilities of the LUCIA Station, located at the synchrotron facility of the Paul Scherrer Institute (PSI). Using an incident radiation energy of 4.06 keV,more » a synchrotron radiation micro x-ray fluorescence (SR-{mu}XRF) technique was applied in examining the distribution of the essential elements Ca, P, K and S in the bone-cartilage interface of both healthy and diseased (osteoarthritic) areas of an equine metacarpophalangeal joint. The SR-{mu}XRF mappings and line profile patterns have revealed remarkable changes in both the pattern and absolute distributions of these elements, agreeing with the findings of others. The elemental presence shown in the individual area scans encompassing the lesion each reflect the visibly abraded outer surface of the cartilage and change in shape of the bone surface. One of the area scans for the bone-cartilage interface shows a marked change in both the pattern and absolute elemental presence for all three elements compared to that observed at two other scan sites. The observation of change in bone cartilage composition around the surface of the articulating joint is thought to be novel, the variation being almost certainly due to the differing weight-bearing role of the subchondral bone at each locati0008.« less

  16. In situ SAXS study on cationic and non-ionic surfactant liquid crystals using synchrotron radiation.

    PubMed

    Fritscher, C; Hüsing, N; Bernstorff, S; Brandhuber, D; Koch, T; Seidler, S; Lichtenegger, H C

    2005-11-01

    In situ synchrotron small-angle X-ray scattering was used to investigate various surfactant/water systems with hexagonal and lamellar structures regarding their structural behaviour upon heating and cooling. Measurements of the non-ionic surfactant Triton X-45 (polyethylene glycol 4-tert-octylphenyl ether) at different surfactant concentrations show an alignment of the lamellar liquid-crystalline structure close to the wall of the glass capillaries and also a decrease in d-spacing following subsequent heating/cooling cycles. Additionally, samples were subjected to a weak magnetic field (0.3-0.7 T) during heating and cooling, but no influence of the magnetic field was observed.

  17. SYNCHROTRON ORIGIN OF THE TYPICAL GRB BAND FUNCTION—A CASE STUDY OF GRB 130606B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bin-Bin; Briggs, Michael S.; Uhm, Z. Lucas

    2016-01-10

    We perform a time-resolved spectral analysis of GRB 130606B within the framework of a fast-cooling synchrotron radiation model with magnetic field strength in the emission region decaying with time, as proposed by Uhm and Zhang. The data from all time intervals can be successfully fit by the model. The same data can be equally well fit by the empirical Band function with typical parameter values. Our results, which involve only minimal physical assumptions, offer one natural solution to the origin of the observed GRB spectra and imply that, at least some, if not all, Band-like GRB spectra with typical Bandmore » parameter values can indeed be explained by synchrotron radiation.« less

  18. Using synchrotron radiation angiography with a highly sensitive detector to identify impaired peripheral perfusion in rat pulmonary emphysema

    PubMed Central

    Ito, Hiromichi; Matsushita, Shonosuke; Hyodo, Kazuyuki; Sato, Yukio; Sakakibara, Yuzuru

    2013-01-01

    Owing to limitations in spatial resolution and sensitivity, it is difficult for conventional angiography to detect minute changes of perfusion in diffuse lung diseases, including pulmonary emphysema (PE). However, a high-gain avalanche rushing amorphous photoconductor (HARP) detector can give high sensitivity to synchrotron radiation (SR) angiography. SR angiography with a HARP detector provides high spatial resolution and sensitivity in addition to time resolution owing to its angiographic nature. The purpose of this study was to investigate whether this SR angiography with a HARP detector could evaluate altered microcirculation in PE. Two groups of rats were used: group PE and group C (control). Transvenous SR angiography with a HARP detector was performed and histopathological findings were compared. Peak density of contrast material in peripheral lung was lower in group PE than group C (p < 0.01). The slope of the linear regression line in scattering diagrams was also lower in group PE than C (p < 0.05). The correlation between the slope and extent of PE in histopathology showed significant negative correlation (p < 0.05, r = 0.61). SR angiography with a HARP detector made it possible to identify impaired microcirculation in PE by means of its high spatial resolution and sensitivity. PMID:23412496

  19. Pump-probe experiments at the TEMPO beamline using the low-α operation mode of Synchrotron SOLEIL.

    PubMed

    Silly, Mathieu G; Ferté, Tom; Tordeux, Marie Agnes; Pierucci, Debora; Beaulieu, Nathan; Chauvet, Christian; Pressacco, Federico; Sirotti, Fausto; Popescu, Horia; Lopez-Flores, Victor; Tortarolo, Marina; Sacchi, Maurizio; Jaouen, Nicolas; Hollander, Philippe; Ricaud, Jean Paul; Bergeard, Nicolas; Boeglin, Christine; Tudu, Bharati; Delaunay, Renaud; Luning, Jan; Malinowski, Gregory; Hehn, Michel; Baumier, Cédric; Fortuna, Franck; Krizmancic, Damjan; Stebel, Luigi; Sergo, Rudi; Cautero, Giuseppe

    2017-07-01

    The SOLEIL synchrotron radiation source is regularly operated in special filling modes dedicated to pump-probe experiments. Among others, the low-α mode operation is characterized by shorter pulse duration and represents the natural bridge between 50 ps synchrotron pulses and femtosecond experiments. Here, the capabilities in low-α mode of the experimental set-ups developed at the TEMPO beamline to perform pump-probe experiments with soft X-rays based on photoelectron or photon detection are presented. A 282 kHz repetition-rate femtosecond laser is synchronized with the synchrotron radiation time structure to induce fast electronic and/or magnetic excitations. Detection is performed using a two-dimensional space resolution plus time resolution detector based on microchannel plates equipped with a delay line. Results of time-resolved photoelectron spectroscopy, circular dichroism and magnetic scattering experiments are reported, and their respective advantages and limitations in the framework of high-time-resolution pump-probe experiments compared and discussed.

  20. Rising dough and baking bread at the Australian synchrotron

    NASA Astrophysics Data System (ADS)

    Mayo, S. C.; McCann, T.; Day, L.; Favaro, J.; Tuhumury, H.; Thompson, D.; Maksimenko, A.

    2016-01-01

    Wheat protein quality and the amount of common salt added in dough formulation can have a significant effect on the microstructure and loaf volume of bread. High-speed synchrotron micro-CT provides an ideal tool for observing the three dimensional structure of bread dough in situ during proving (rising) and baking. In this work, the synchrotron micro-CT technique was used to observe the structure and time evolution of doughs made from high and low protein flour and three different salt additives. These experiments showed that, as expected, high protein flour produces a higher volume loaf compared to low protein flour regardless of salt additives. Furthermore the results show that KCl in particular has a very negative effect on dough properties resulting in much reduced porosity. The hundreds of datasets produced and analysed during this experiment also provided a valuable test case for handling large quantities of data using tools on the Australian Synchrotron's MASSIVE cluster.

  1. Synchrotron radiation x-ray topography and defect selective etching analysis of threading dislocations in GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sintonen, Sakari, E-mail: sakari.sintonen@aalto.fi; Suihkonen, Sami; Jussila, Henri

    2014-08-28

    The crystal quality of bulk GaN crystals is continuously improving due to advances in GaN growth techniques. Defect characterization of the GaN substrates by conventional methods is impeded by the very low dislocation density and a large scale defect analysis method is needed. White beam synchrotron radiation x-ray topography (SR-XRT) is a rapid and non-destructive technique for dislocation analysis on a large scale. In this study, the defect structure of an ammonothermal c-plane GaN substrate was recorded using SR-XRT and the image contrast caused by the dislocation induced microstrain was simulated. The simulations and experimental observations agree excellently and themore » SR-XRT image contrasts of mixed and screw dislocations were determined. Apart from a few exceptions, defect selective etching measurements were shown to correspond one to one with the SR-XRT results.« less

  2. VUV photodynamics of free tholins nanoparticles investigated by imaging Angle-Resolved Photoemission with the Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Tigrine, Sarah; Nahon, Laurent; Carrasco, Nathalie; Garcia-Macias, Gustavo

    2016-06-01

    Thanks to the Cassini Huygens mission, it is now established that the aerosols appear from an altitude of 1,000 km in Titan's atmosphere. Once they are formed and through their descent towards the surface, those grains will still interact with persistent UV/VUV radiations, at different energies, that can reach lower atmospheric layers. This interaction has some impact, for example on the radiative transfer or on the ionization yield of the atmospheric compounds. Models are a good way to study those processes, but the lack of data on the refractive index or the absolute absorption/ionization cross subsections of the aerosols can be an obstacle. In order to shed some light and quantify those processes, we ionize analogs of aerosols produced with the PAMPRE experiment (LATMOS) on the SAPHIRS platform from the DESIRS VUV beamline at the synchrotron SOLEIL, equipped with an aerodynamic lens. The aerosols are injected directly under vacuum as isolated free nanoparticles and do not need to take the form of a film deposited on a substrate. The generated photoelectrons are then collected with a Velocity Map Imaging detector and their energetic and angular signatures are analyzed using the ARPES method (Angle-Resolved PhotoElectron Spectroscopy). Both the nanoparticles size distribution and the incident wavelength determine the parameters governing the photoemission process (intra-particles electron mean free path, photon penetration depth) as revealed by the angular distribution of the photoelectron showing in same cases a marked forward/backward asymmetry with respect to the photon axis. Those parameters may provide us with information on the optical behavior of the aerosols. In addition we can extract the ionization potential in direct connection with the absorption cross subsections of the aerosol, from which altitude dependent photodynamics can be unraveled. We will present here the experiments performed, at different VUV energies, on Titan's aerosol analogs with the

  3. The charged particle veto system of the cosmic ray electron synchrotron telescope

    NASA Astrophysics Data System (ADS)

    Geske, Matthew T.

    The Cosmic Ray Electron Synchrotron Telescope is a balloon-borne detector designed to measure cosmic electrons at energies from 2 to 50 TeV. CREST completed a successful 10-day Antarctic flight which launched on December 25, 2011. CREST utilizes a novel detection method, searching for the synchrotron radiation emitted by the interaction of TeV-energy electrons with the geomagnetic field. The main detector component for CREST is a 32 x 32 square array of BaF 2 crystal detectors coupled to photomultiplier tubes, with an inter-crystal spacing of 7.5 cm. This document describes the design, construction and flight of the CREST experiment. A special focus is put upon the charged particle veto system, and its use in the analysis of the CREST results. The veto system, consisting of a series of 27 large slabs of organic plastic scintillator read out through photomultiplier tubes, is designed as a passive mechanism for rejecting charged particle events that could contaminate the X-ray signal from synchrotron radiation. The CREST veto system has 99.15% geometric coverage, with individual detector components exhibiting a mean detection efficiency of 99.7%. In whole, the veto system provides a charged particle rejection factor of better than 7 x 103.

  4. Synchrotron FTIR Imaging For The Identification Of Cell Types Within Human Tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Michael J.; Pounder, F. Nell; Nasse, Michael J.

    2010-02-03

    The use of synchrotron Fourier Transform Infrared spectroscopy (S-FTIR) has been shown to be a very promising tool for biomedical research. S-FTIR spectroscopy allows for the fast acquisition of infrared (IR) spectra at a spatial resolution approaching the IR diffraction limit. The development of the Infrared Environmental Imaging (IRENI) beamline at the Synchrotron Radiation Center (SRC) at the University of Wisconsin-Madison has allowed for diffraction limited imaging measurements of cells in human prostate and breast tissues. This has allowed for the identification of cell types within tissues that would otherwise not have been resolvable using conventional FTIR sources.

  5. Synchrotron X-ray topography of electronic materials.

    PubMed

    Tuomi, T

    2002-05-01

    Large-area transmission, transmission section, large-area back-reflection, back-reflection section and grazing-incidence topography are the geometries used when recording high-resolution X-ray diffraction images with synchrotron radiation from a bending magnet, a wiggler or an undulator of an electron or a positron storage ring. Defect contrast can be kinematical, dynamical or orientational even in the topographs recorded on the same film at the same time. In this review article limited to static topography experiments, examples of defect studies on electronic materials cover the range from voids and precipitates in almost perfect float-zone and Czochralski silicon, dislocations in gallium arsenide grown by the liquid-encapsulated Czochralski technique, the vapour-pressure controlled Czochralski technique and the vertical-gradient freeze technique, stacking faults and micropipes in silicon carbide to misfit dislocations in epitaxic heterostructures. It is shown how synchrotron X-ray topographs of epitaxic laterally overgrown gallium arsenide layer structures are successfully explained by orientational contrast.

  6. Individual Human Cell Responses to Low Doses of Chemicals and Radiation Studied by Synchrotron Infrared Spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Michael C.; Holman, Hoi-Ying N.; Blakely, Eleanor A.; Goth-Goldstein, Regine; McKinney, Wayne R.

    2000-03-01

    Vibrational spectroscopy, when combined with synchrotron radiation-based (SR) microscopy, is a powerful new analytical tool with high spatial resolution for detecting biochemical changes in individual living cells. In contrast to other microscopy methods that require fixing, drying, staining or labeling, SR FTIR microscopy probes intact living cells providing a composite view of all of the molecular responses and the ability to monitor the responses over time in the same cell. Observed spectral changes include all types of lesions induced in that cell as well as cellular responses to external and internal stresses. These spectral changes combined with other analytical tools may provide a fundamental understanding of the key molecular mechanisms induced in response to stresses created by low-doses of radiation and chemicals. In this study we used high spatial-resolution SR FTIR vibrational spectromicroscopy at ALS Beamline 1.4.3 as a sensitive analytical tool to detect chemical- and radiation-induced changes in individual human cells. Our preliminary spectral measurements indicate that this technique is sensitive enough to detect changes in nucleic acids and proteins of cells treated with environmentally relevant concentrations of oxidative stresses: bleomycin, hydrogen peroxide, and X-rays. We observe spectral changes that are unique to each exogenous stressor. This technique has the potential to distinguish changes from exogenous or endogenous oxidative processes. Future development of this technique will allow rapid monitoring of cellular processes such as drug metabolism, early detection of disease, bio-compatibility of implant materials, cellular repair mechanisms, self assembly of cellular apparatus, cell differentiation and fetal development.

  7. In-situ Diffraction Study of Magnetite at Simultaneous High Pressure and High Temperature Using Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Wang, L.; Zhang, J.; Wang, S.; Chen, H.; Zhao, Y.

    2014-12-01

    Magnetite intertwined with the evolution of human civilizations, and remains so today. It is technologically and scientifically important by virtue of its unique magnetic and electrical properties. Magnetite is a common mineral found in a variety of geologic environments, and plays an important role in deciphering the oxygen evolution in the Earth's atmosphere and its deep interiors. The latter application asks for the knowledge of the thermal and elastic properties of magnetite at high pressures and temperatures, which is currently not available in literature. We have carried out a few in-situ diffraction experiments on magnetite using white synchrotron radiation at beamline X17B2 of National Synchrotron Light Source (NSLS). A DIA module in an 1100-ton press and WC anvils were employed for compression, and diffraction spectra were collected at simultaneous high pressures (P) and temperatures (T) (up to 9 GPa and 900 oC). Mixture of amorphous boron and epoxy resin was used as pressure medium, and NaCl as pressure marker. Temperature was recorded by W-Re thermocouples. Commercially purchased magnetite powder and a mixture of the said powder and NaCl (1:1) were used as starting material in separate experiments. Preliminary data analyses have yielded following observations: (1) Charge disordering seen at ambient pressure remains active in current experiments, especially at lower pressures (< 6 GPa); (2) Though at each condition potentially complicated by charge disordering process, isothermal compression curves remains simple and reproducible; (3) During cooling, the reversibility and degree of cation disordering depend on the starting material and/or experimental P-T path; and (4) cation disordering notably reduces the apparent bulk moduli of magnetite.

  8. Microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Laissue, Jean A.; Lyubimova, Nadia; Wagner, Hans-Peter; Archer, David W.; Slatkin, Daniel N.; Di Michiel, Marco; Nemoz, Christian; Renier, Michel; Brauer, Elke; Spanne, Per O.; Gebbers, Jan-Olef; Dixon, Keith; Blattmann, Hans

    1999-10-01

    The central nervous system of vertebrates, even when immature, displays extraordinary resistance to damage by microscopically narrow, multiple, parallel, planar beams of x rays. Imminently lethal gliosarcomas in the brains of mature rats can be inhibited and ablated by such microbeams with little or no harm to mature brain tissues and neurological function. Potentially palliative, conventional wide-beam radiotherapy of malignant brain tumors in human infants under three years of age is so fraught with the danger of disrupting the functional maturation of immature brain tissues around the targeted tumor that it is implemented infrequently. Other kinds of therapy for such tumors are often inadequate. We suggest that microbeam radiation therapy (MRT) might help to alleviate the situation. Wiggler-generated synchrotron x-rays were first used for experimental microplanar beam (microbeam) radiation therapy (MRT) at Brookhaven National Laboratory's National Synchrotron Light Source in the early 1990s. We now describe the progress achieved in MRT research to date using immature and adult rats irradiated at the European Synchrotron Radiation Facility in Grenoble, France, and investigated thereafter at the Institute of Pathology of the University of Bern.

  9. Multi-level synchrotron radiation-based microtomography of the dental alveolus and its consequences for orthodontics.

    PubMed

    Dalstra, M; Cattaneo, P M; Laursen, M G; Beckmann, F; Melsen, B

    2015-03-18

    Multilevel synchrotron radiation-based microtomography has been performed on a human jaw segment obtained at autopsy by cutting increasingly smaller samples from the original segment. The focus of this study lay on the microstructure of the interface between root, periodontal ligament (PDL) and alveolar bone in order to find an answer to the question why alveolar bone remodels during orthodontic loading, when the associated stress and strain levels calculated with finite element analyses are well below the established threshold levels for bone remodeling. While the inner surface of the alveolus appears to be rather smooth on the lower resolution scans, detailed scans of the root-PDL-bone interface reveal that on a microscopical scale it is actually quite rough and uneven with bony spiculae protruding into the PDL space. Any external (orthodontic) loading applied to the root, when transferred through the PDL to the alveolar bone, will cause stress concentrations in these spiculae, rather than be distributed over a "smooth surface". As osteocyte lacunae are shown to be present in these spiculae, the local amplified stresses and strain can well be registered by the mechano-sensory network of osteocytes. In addition, a second stress amplification mechanism, due to the very presence of the lacunae themselves, is evidence that stresses and strains calculated with FE analyses, based on macroscopical scale models of teeth and their supporting structures, grossly underestimate the actual mechanical loading of alveolar bone at tissue level. It is therefore hypothesized that remodeling of alveolar bone is subject to the same biological regulatory process as remodeling in other bones. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Synchrotron cooling and annihilation of an E(+)-E(-) plasma: The radiation mechanism for the March 5, 1979 transient

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.; Bussard, R. W.

    1980-01-01

    Positron-electron pair radiation is examined as a mechanism that could be responsible for the impulsive phase emission of the March 5, 1979 transient. Synchrotron cooling and subsequent annihilation of the pairs can account for the energy spectrum, the very high brightness, and the approximately 0.4 MeV feature observed from this transient, whose source is likely to be a neutron star in the supernova remnant N49 in the Large Magellanic Cloud. In this model, the observed radiation is produced in the skin layer of a hot, radiation dominated pair atmosphere, probably confined to the vicinity of the neutron star by a strong magnetic field. The width of this layer is only about 0.1 mm. In this layer, approximately 10 to the 12th power generations of pairs are formed (by photon-photon collisions), cooled and annihilated during the approximately 0.15 sec duration of the impulsive phase. The very large burst energy implied by the distance of the Large Magellanic Cloud, and its very rapid release, are unsolved problems. Nonetheless, the possibility of neutron star vibrations, which could transport the energy coherently to the surface, heat the atmosphere mechanically to a hot, pair-producing temperature, and have a characteristic damping time roughly equal to the duration of the impulsive phase are addressed.

  11. Hard X-ray Sources for the Mexican Synchrotron Project

    NASA Astrophysics Data System (ADS)

    Reyes-Herrera, Juan

    2016-10-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).

  12. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part II. Defects.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography (SXRT) has been applied to the study of defects within three-dimensional printed titanium parts. These parts were made using the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V) as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. The samples represent a selection of complex shapes with a variety of internal morphologies. Inspection via SXRT has revealed a number of defects which may not otherwise have been seen. The location and nature of such defects combined with detailed knowledge of the process conditions can contribute to understanding the interplay between design and manufacturing strategy. This fundamental understanding may subsequently be incorporated into process modelling, prediction of properties and the development of robust methodologies for the production of defect-free parts.

  13. Forecasting Juno Microwave Radiometer Observations of Jupiter's Synchrotron Emission from Data Reconstruction Methods and Theoretical Model

    NASA Astrophysics Data System (ADS)

    Santos-Costa, D.; Bolton, S. J.; Adumitroaie, V.; Janssen, M.; Levin, S.; Sault, R. J.; De Pater, I.; Tao, C.

    2015-12-01

    The Juno spacecraft will go into polar orbit after it arrives at Jupiter in mid-2016. Between November 2016 and March 2017, six MicroWave Radiometers will collect information on Jupiter's atmosphere and electron belt. Here we present simulations of MWR observations of the electron belt synchrotron emission, and discuss the features and dynamical behavior of this emission when observations are carried out from inside the radiation zone. We first present our computation method. We combine a three-dimensional tomographic reconstruction method of Earth-based observations and a theoretical model of Jupiter's electron belt to constrain the calculations of the volume emissivity of the synchrotron radiation for any frequency, location in the Jovian inner magnetosphere (radial distance < 4 Rj), and observational direction. Values of the computed emissivity are incorporated into a synchrotron simulator to predict Juno MWR measurements (full sky maps and temperatures) at any time of the mission. Samples of simulated MWR observations are presented and examined for different segments of Juno trajectory. We also present results of our ongoing investigation of the radiation zone distribution around the planet and the sources of variation on different time-scales. We show that a better understanding of the spatial distribution and variability of the electron belt is key to realistically forecast Juno MWR measurements.

  14. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Measurement of radiation dose at the north interaction point of BEPC II

    NASA Astrophysics Data System (ADS)

    Mo, Xiao-Hu; Zhang, Jian-Yong; Zhang, Tian-Bao; Zhang, Qing-Jiang; Achasov, Mikhail; Fu, Cheng-Dong; Muchnoi, Nikolay; Qin, Qing; Qu, Hua-Min; Wang, Yi-Fang; Wu, Jing-Min; Xu, Jin-Qiang; Yu, Bo-Xiang

    2009-10-01

    The technique details for measuring radiation dose are expounded. The results of gamma and neutron radiation levels are presented and the corresponding radiation shielding is discussed based on the simplified estimation. In addition, the photon radiation level move as background for future experiments is measured by a NaI(Tl) detector.

  15. Dose-rate plays a significant role in synchrotron radiation X-ray-induced damage of rodent testes.

    PubMed

    Chen, Heyu; Wang, Ban; Wang, Caixia; Cao, Wei; Zhang, Jie; Ma, Yingxin; Hong, Yunyi; Fu, Shen; Wu, Fan; Ying, Weihai

    2016-01-01

    Synchrotron radiation (SR) X-ray has significant potential for applications in medical imaging and cancer treatment. However, the mechanisms underlying SR X-ray-induced tissue damage remain unclear. Previous studies on regular X-ray-induced tissue damage have suggested that dose-rate could affect radiation damage. Because SR X-ray has exceedingly high dose-rate compared to regular X-ray, it remains to be determined if dose-rate may affect SR X-ray-induced tissue damage. We used rodent testes as a model to investigate the role of dose-rate in SR X-ray-induced tissue damage. One day after SR X-ray irradiation, we determined the effects of the irradiation of the same dosage at two different dose-rates, 0.11 Gy/s and 1.1 Gy/s, on TUNEL signals, caspase-3 activation and DNA double-strand breaks (DSBs) of the testes. Compared to those produced by the irradiation at 0.11 Gy/s, irradiation at 1.1 Gy/s produced higher levels of DSBs, TUNEL signals, and caspase-3 activation in the testes. Our study has provided the first evidence suggesting that dose-rate could be a significant factor in SR X-ray-induced tissue damage, which may establish a valuable base for utilizing this factor to manipulate the tissue damage in SR X-ray-based medical applications.

  16. Dose-rate plays a significant role in synchrotron radiation X-ray-induced damage of rodent testes

    PubMed Central

    Chen, Heyu; Wang, Ban; Wang, Caixia; Cao, Wei; Zhang, Jie; Ma, Yingxin; Hong, Yunyi; Fu, Shen; Wu, Fan; Ying, Weihai

    2016-01-01

    Synchrotron radiation (SR) X-ray has significant potential for applications in medical imaging and cancer treatment. However, the mechanisms underlying SR X-ray-induced tissue damage remain unclear. Previous studies on regular X-ray-induced tissue damage have suggested that dose-rate could affect radiation damage. Because SR X-ray has exceedingly high dose-rate compared to regular X-ray, it remains to be determined if dose-rate may affect SR X-ray-induced tissue damage. We used rodent testes as a model to investigate the role of dose-rate in SR X-ray-induced tissue damage. One day after SR X-ray irradiation, we determined the effects of the irradiation of the same dosage at two different dose-rates, 0.11 Gy/s and 1.1 Gy/s, on TUNEL signals, caspase-3 activation and DNA double-strand breaks (DSBs) of the testes. Compared to those produced by the irradiation at 0.11 Gy/s, irradiation at 1.1 Gy/s produced higher levels of DSBs, TUNEL signals, and caspase-3 activation in the testes. Our study has provided the first evidence suggesting that dose-rate could be a significant factor in SR X-ray-induced tissue damage, which may establish a valuable base for utilizing this factor to manipulate the tissue damage in SR X-ray-based medical applications. PMID:28078052

  17. PTB’s radiometric scales for UV and VUV source calibration based on synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Klein, Roman; Kroth, Simone; Paustian, Wolfgang; Richter, Mathias; Thornagel, Reiner

    2018-06-01

    The radiant intensity of synchrotron radiation can be accurately calculated with classical electrodynamics. This primary realization of the spectral radiant intensity has been used by PTB at several electron storage rings which have been optimized to be operated as primary source standards for the calibration of transfer sources in the spectral range of UV and VUV for almost 30 years. The transfer sources are compared to the primary source standard by means of suitable wavelength-dispersive transfer stations. The spectral range covered by deuterium lamps, which represent transfer sources that are easy to handle, is of particular relevance in practice. Here, we report on developments in the realization and preservation of the radiometric scales for spectral radiant intensity and spectral radiance in the wavelength region from 116 nm to 400 nm, based on a set of deuterium reference lamps, over the last few decades. An inside view and recommendations on the operation of the D2 lamps used for the realization of the radiometric scale are presented. The data has been recently compiled to illustrate the chronological behaviour at various wavelengths. Moreover, an overview of the internal and external validation measurements and intercomparisons is given.

  18. Spatially resolved synchrotron radiation induced X-ray fluorescence analyses of rare Rembrandt silverpoint drawings

    NASA Astrophysics Data System (ADS)

    Reiche, I.; Radtke, M.; Berger, A.; Görner, W.; Merchel, S.; Riesemeier, H.; Bevers, H.

    2006-05-01

    New analyses of a series of very rare silverpoint drawings that were executed by Rembrandt Harmensz. van Rijn (1606 1669) which are kept today in the Kupferstichkabinett (Museum of Prints and Drawings) of the State Museums of Berlin are reported here. Analysis of these drawings requires particular attention because the study has to be fully non-destructive and extremely sensitive. The metal alloy on the paper does not exceed some hundreds of μg/cm2. Therefore, synchrotron radiation induced X-ray fluorescence (SR-XRF) is together with external micro-proton-induced X-ray emission the only well-suited method for the analyses of metalpoint drawings. In some primary work, about 25 German and Flemish metalpoint drawings were investigated using spatially resolved SR-XRF analysis at the BAMline at BESSY. This study enlarges the existing French German database of metalpoint drawings dating from the 15th and 16th centuries, as these Rembrandt drawings originate from the 17th century where this graphical technique was even rarer and already obsolete. It also illustrates how SR-XRF analysis can reinforce art historical assumptions on the dating of drawings and their connection.

  19. Suppression of the emittance growth induced by coherent synchrotron radiation in triple-bend achromats

    NASA Astrophysics Data System (ADS)

    Huang, Xi-Yang; Jiao, Yi; Xu, Gang; Cui, Xiao-Hao

    2015-05-01

    The coherent synchrotron radiation (CSR) effect in a bending path plays an important role in transverse emittance dilution in high-brightness light sources and linear colliders, where the electron beams are of short bunch length and high peak current. Suppression of the emittance growth induced by CSR is critical to preserve the beam quality and help improve the machine performance. It has been shown that the CSR effect in a double-bend achromat (DBA) can be analyzed with the two-dimensional point-kick analysis method. In this paper, this method is applied to analyze the CSR effect in a triple-bend achromat (TBA) with symmetric layout, which is commonly used in the optics designs of energy recovery linacs (ERLs). A condition of cancelling the CSR linear effect in such a TBA is obtained, and is verified through numerical simulations. It is demonstrated that emittance preservation can be achieved with this condition, and to a large extent, has a high tolerance to the fluctuation of the initial transverse phase space distribution of the beam. Supported by National Natural Science Foundation of China (11475202, 11405187) and Youth Innovation Promotion Association of Chinese Academy of Sciences (2015009)

  20. Dynamic full-field infrared imaging with multiple synchrotron beams

    PubMed Central

    Stavitski, Eli; Smith, Randy J.; Bourassa, Megan W.; Acerbo, Alvin S.; Carr, G. L.; Miller, Lisa M.

    2013-01-01

    Microspectroscopic imaging in the infrared (IR) spectral region allows for the examination of spatially resolved chemical composition on the microscale. More than a decade ago, it was demonstrated that diffraction limited spatial resolution can be achieved when an apertured, single pixel IR microscope is coupled to the high brightness of a synchrotron light source. Nowadays, many IR microscopes are equipped with multi-pixel Focal Plane Array (FPA) detectors, which dramatically improve data acquisition times for imaging large areas. Recently, progress been made toward efficiently coupling synchrotron IR beamlines to multi-pixel detectors, but they utilize expensive and highly customized optical schemes. Here we demonstrate the development and application of a simple optical configuration that can be implemented on most existing synchrotron IR beamlines in order to achieve full-field IR imaging with diffraction-limited spatial resolution. Specifically, the synchrotron radiation fan is extracted from the bending magnet and split into four beams that are combined on the sample, allowing it to fill a large section of the FPA. With this optical configuration, we are able to oversample an image by more than a factor of two, even at the shortest wavelengths, making image restoration through deconvolution algorithms possible. High chemical sensitivity, rapid acquisition times, and superior signal-to-noise characteristics of the instrument are demonstrated. The unique characteristics of this setup enabled the real time study of heterogeneous chemical dynamics with diffraction-limited spatial resolution for the first time. PMID:23458231

  1. Optical radiation from the Crab pulsar

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Petrosian, V.; Turk, J. S.

    1974-01-01

    Possible mechanisms for producing the optical radiation from the Crab pulsar are proposed and discussed. There are severe difficulties in interpreting the radiation as being produced by an incoherent process, whether it be synchrotron radiation, inverse-Compton radiation or curvature radiation. It is proposed therefore that radiation in the optical part of the spectrum is coherent. In the polar cap model, a small bunch of electrons and positrons forms near each primary electron as a result of the pair-production cascade process. Ambient electric fields give rise to energy separation, as a result of which either the electrons or positrons will dominate the radiation from each bunch. The roll-off in the infrared is ascribed to synchrotron absorption by electrons and positrons located between the surface of the star and the force-balance radius. Various consequences of this model, which may be subjected to observational test, are discussed.

  2. On limitations of Schwinger formulae for coherent synchrotron radiation produced by an electron bunch moving along an arc of a circle

    NASA Astrophysics Data System (ADS)

    Geloni, G.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    2004-08-01

    Re-examination of dogmatic "truths" can sometimes yield surprises. For years we were led to believe that famous Schwinger's formulas are directly applicable to describe synchrotron radiation from dipole magnet and even now no attention is usually paid to the region of applicability of these expressions. While such formulas are valid in order to describe radiation from a dipole in the X-ray range, their long-wavelength asymptote are not valid, in general. In the long-wavelength region, Schwinger's formulas must be analyzed from a critical viewpoint, and corrections must be discussed when one is looking for an application to CSR-based diagnostics. In this paper, we perform such a task by means of a consistent use of similarity techniques, discussing the limits of validity of Schwinger's formulas which arise from a finite magnet length, from a finite distance of the detector to the sources and from diffraction effects (due to the presence of vacuum pipe and aperture limitations).

  3. National Synchrotron Light Source II storage ring vacuum systems

    DOE PAGES

    Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; ...

    2016-04-05

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, thismore » paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  4. Application of X-ray synchrotron microscopy instrumentation in biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasperini, F. M.; Pereira, G. R.; Granjeiro, J. M.

    2011-07-01

    X-ray micro-fluorescence imaging technique has been used as a significant tool in order to investigate minerals contents in some kinds of materials. The aim of this study was to evaluate the elemental distribution of calcium and zinc in bone substitute materials (nano-hydroxyapatite spheres) and cortical bones through X-Ray Micro-fluorescence analysis with the increment of Synchrotron Radiation in order to evaluate the characteristics of the newly formed bone and its interface, the preexisting bone and biomaterials by the arrangement of collagen fibers and its birefringence. The elemental mapping was carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo, Brazilmore » working at D09-XRF beam line. Based on this study, the results suggest that hydroxyapatite-based biomaterials are biocompatible, promote osteo-conduction and favored bone repair. (authors)« less

  5. National Synchrotron Light Source II storage ring vacuum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hseuh, Hsiao-Chaun, E-mail: hseuh@bnl.gov; Hetzel, Charles; Leng, Shuwei

    2016-05-15

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. The majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. This paper presents themore » design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  6. Low-temperature photoluminescence of CoO excited by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Sokolov, V. I.; Pustovarov, V. A.; Gruzdev, N. B.; Sokolov, P. S.; Baranov, A. N.

    2014-05-01

    We report the first observation of low-temperature luminescence of CoO crystals under synchrotron irradiation. At 8 K, the photoluminescence of CoO is characterized by smaller bandwidth and higher intensity relative to the corresponding photoluminescence band of NiO. The photoluminescence excitation spectra of CoO and NiO are similar. Position of the band related to charge transfer from oxygen ions to 3 d-shell of cobalt ions is determined. The excitation energy is found to be 3.5 eV.

  7. Modeling and parameterization of photoelectrons emitted in condensed matter by linearly polarized synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Jablonski, A.

    2018-01-01

    Growing availability of synchrotron facilities stimulates an interest in quantitative applications of hard X-ray photoemission spectroscopy (HAXPES) using linearly polarized radiation. An advantage of this approach is the possibility of continuous variation of radiation energy that makes it possible to control the sampling depth for a measurement. Quantitative applications are based on accurate and reliable theory relating the measured spectral features to needed characteristics of the surface region of solids. A major complication in the case of polarized radiation is an involved structure of the photoemission cross-section for hard X-rays. In the present work, details of the relevant formalism are described and algorithms implementing this formalism for different experimental configurations are proposed. The photoelectron signal intensity may be considerably affected by variation in the positioning of the polarization vector with respect to the surface plane. This information is critical for any quantitative application of HAXPES by polarized X-rays. Different quantitative applications based on photoelectrons with energies up to 10 keV are considered here: (i) determination of surface composition, (ii) estimation of sampling depth, and (iii) measurements of an overlayer thickness. Parameters facilitating these applications (mean escape depths, information depths, effective attenuation lengths) were calculated for a number of photoelectron lines in four elemental solids (Si, Cu, Ag and Au) in different experimental configurations and locations of the polarization vector. One of the considered configurations, with polarization vector located in a plane perpendicular to the surface, was recommended for quantitative applications of HAXPES. In this configurations, it was found that the considered parameters vary weakly in the range of photoelectron emission angles from normal emission to about 50° with respect to the surface normal. The averaged values of the mean

  8. The behavior of beams of relativistic non-thermal electrons under the influence of collisions and synchrotron losses

    NASA Technical Reports Server (NTRS)

    Mctiernan, James M.; Petrosian, Vahe

    1989-01-01

    For many astrophysical situations, such as in solar flares or cosmic gamma-ray bursts, continuum gamma rays with energies up to hundreds of MeV were observed, and can be interpreted to be due to bremsstrahlung radiation by relativistic electrons. The region of acceleration for these particles is not necessarily the same as the region in which the radiation is produced, and the effects of the transport of the electrons must be included in the general problem. Hence it is necessary to solve the kinetic equation for relativistic electrons, including all the interactions and loss mechanisms relevant at such energies. The resulting kinetic equation for non-thermal electrons, including the effects of Coulomb collisions and losses due to synchrotron emission, was solved analytically in some simple limiting cases, and numerically for the general cases including constant and varying background plasma density and magnetic field. New approximate analytic solutions are presented for collision dominated cases, for small pitch angles and all energies, synchrotron dominated cases, both steady-state and time dependent, for all pitch angles and energies, and for cases when both synchrotron and collisional energy losses are important, but for relativistic electrons. These analytic solutions are compared to the full numerical results in the proper limits. These results will be useful for calculation of spectra and angular distribution of the radiation (x rays, gamma-rays, and microwaves) emitted via synchrotron or bremsstrahlung processes by the electrons. These properties and their relevance to observations will be observed in subsequent papers.

  9. Synchrotron and Synchrotron Self-Compton Spectral Signatures and Blazar Emission Models

    NASA Technical Reports Server (NTRS)

    Chiang, James; Boettcher, Markus; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We find that energy losses due to synchrotron self-Compton (BBC) emission in Blazar jets can produce distinctive signatures in the time-averaged synchrotron and SSC spectra of these objects. For a fairly broad range of particle injection distributions, SSC-loss-dominated synchrotron emission exhibits a spectral dependence Fv approximately v (exp -3/2). The presence or absence of this dependence in the optical and ultraviolet spectra of flat-spectrum radio quasars such as PC 279 and in the soft X-ray spectra of high-frequency BL Lac objects such as Mark 501 gives a robust measure of the importance of SSC losses. Furthermore, for partially cooled particle distributions, spectral breaks of varying sizes can appear in the synchrotron and SSC spectra and will be related to the spectral indices of the emission below the break. These spectral signatures place constraints on the size scale and the nonthermal particle content of the emitting plasma, as well as the observer orientation relative to the jet axis.

  10. Synchrotron radiation μCT and histology evaluation of bone-to-implant contact.

    PubMed

    Neldam, Camilla Albeck; Sporring, Jon; Rack, Alexander; Lauridsen, Torsten; Hauge, Ellen-Margrethe; Jørgensen, Henrik L; Jørgensen, Niklas Rye; Feidenhansl, Robert; Pinholt, Else Marie

    2017-09-01

    The purpose of this study was to evaluate bone-to-implant contact (BIC) in two-dimensional (2D) histology compared to high-resolution three-dimensional (3D) synchrotron radiation micro computed tomography (SR micro-CT). High spatial resolution, excellent signal-to-noise ratio, and contrast establish SR micro-CT as the leading imaging modality for hard X-ray microtomography. Using SR micro-CT at voxel size 5 μm in an experimental goat mandible model, no statistically significant difference was found between the different treatment modalities nor between recipient and reconstructed bone. The histological evaluation showed a statistically significant difference between BIC in reconstructed and recipient bone (p < 0.0001). Further, no statistically significant difference was found between the different treatment modalities which we found was due to large variation and subsequently due to low power. Comparing histology and SR micro-CT evaluation a bias of 5.2% was found in reconstructed area, and 15.3% in recipient bone. We conclude that for evaluation of BIC with histology and SR micro-CT, SR micro-CT cannot be proven more precise than histology for evaluation of BIC, however, with this SR micro-CT method, one histologic bone section is comparable to the 3D evaluation. Further, the two methods complement each other with knowledge on BIC in 2D and 3D. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  11. Single-bunch synchrotron shutter

    DOEpatents

    Norris, James R.; Tang, Jau-Huei; Chen, Lin; Thurnauer, Marion

    1993-01-01

    An apparatus for selecting a single synchrotron pulse from the millions of pulses provided per second from a synchrotron source includes a rotating spindle located in the path of the synchrotron pulses. The spindle has multiple faces of a highly reflective surface, and having a frequency of rotation f. A shutter is spaced from the spindle by a radius r, and has an open position and a closed position. The pulses from the synchrotron are reflected off the spindle to the shutter such that the speed s of the pulses at the shutter is governed by: s=4.times..pi..times.r.times.f. such that a single pulse is selected for transmission through an open position of the shutter.

  12. Cytotoxic Effects of Temozolomide and Radiation are Additive- and Schedule-Dependent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chalmers, Anthony J., E-mail: a.j.chalmers@sussex.ac.u; Genome Damage and Stability Centre, University of Sussex, Falmer; Ruff, Elliot M.

    2009-12-01

    Purpose: Despite aggressive therapy comprising radical radiation and temozolomide (TMZ) chemotherapy, the prognosis for patients with glioblastoma multiforme (GBM) remains poor, particularly if tumors express O{sup 6}-methylguanine-DNA-methyltransferase (MGMT). The interactions between radiation and TMZ remain unclear and have important implications for scheduling and for developing strategies to improve outcomes. Methods and Materials: Factors determining the effects of combination therapy on clonogenic survival, cell-cycle checkpoint signaling and DNA repair were investigated in four human glioma cell lines (T98G, U373-MG, UVW, U87-MG). Results: Combining TMZ and radiation yielded additive cytotoxicity, but only when TMZ was delivered 72 h before radiation. Radiosensitization wasmore » not observed. TMZ induced G2/M cell-cycle arrest at 48-72 h, coincident with phosphorylation of Chk1 and Chk2. Additive G2/M arrest and Chk1/Chk2 phosphorylation was only observed when TMZ preceded radiation by 72 h. The ataxia-telangiectasia mutated (ATM) inhibitor KU-55933 increased radiation sensitivity and delayed repair of radiation-induced DNA breaks, but did not influence TMZ effects. The multiple kinase inhibitor caffeine enhanced the cytotoxicity of chemoradiation and exacerbated DNA damage. Conclusions: TMZ is not a radiosensitizing agent but yields additive cytotoxicity in combination with radiation. Our data indicate that TMZ treatment should commence at least 3 days before radiation to achieve maximum benefit. Activation of G2/M checkpoint signaling by TMZ and radiation has a cytoprotective effect that can be overcome by dual inhibition of ATM and ATR. More specific inhibition of checkpoint signaling will be required to increase treatment efficacy without exacerbating toxicity.« less

  13. A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy.

    PubMed

    Hoesch, M; Kim, T K; Dudin, P; Wang, H; Scott, S; Harris, P; Patel, S; Matthews, M; Hawkins, D; Alcock, S G; Richter, T; Mudd, J J; Basham, M; Pratt, L; Leicester, P; Longhi, E C; Tamai, A; Baumberger, F

    2017-01-01

    A synchrotron radiation beamline in the photon energy range of 18-240 eV and an electron spectroscopy end station have been constructed at the 3 GeV Diamond Light Source storage ring. The instrument features a variable polarisation undulator, a high resolution monochromator, a re-focussing system to form a beam spot of 50 × 50 μm 2 , and an end station for angle-resolved photoelectron spectroscopy (ARPES) including a 6-degrees-of-freedom cryogenic sample manipulator. The beamline design and its performance allow for a highly productive and precise use of the ARPES technique at an energy resolution of 10-15 meV for fast k-space mapping studies with a photon flux up to 2 ⋅ 10 13 ph/s and well below 3 meV for high resolution spectra.

  14. Concept of a staged FEL enabled by fast synchrotron radiation cooling of laser-plasma accelerated beam by solenoidal magnetic fields in plasma bubble

    NASA Astrophysics Data System (ADS)

    Seryi, Andrei; Lesz, Zsolt; Andreev, Alexander; Konoplev, Ivan

    2017-03-01

    A novel method for generating GigaGauss solenoidal fields in a laser-plasma bubble, using screw-shaped laser pulses, has been recently presented. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper, we present an outline of what a staged plasma-acceleration FEL could look like, and discuss further studies needed to investigate the feasibility of the concept in detail.

  15. Resonant nuclear scattering of synchrotron radiation: Detector development and specular scattering from a thin layer of {sup 57}Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baron, A.Q.R.

    1995-04-01

    This thesis explores resonant nudear scattering of synchrotron radiation. An introductory chapter describes some useful concepts, such as speedup and coherent enhancement, in the context of some basic physical principles. Methods of producing highly monochromatic synchrotron beams usmg either electronic or nuclear scattering are also discussed. The body of the thesis concentrates on detector development and specular scattering from iynthetic layered materials. A detector employing n-dcrochannel plate electron multipliers is shown to have good ({approximately}50%) effidency for detecting 14.4 key x-rays incident at small ({approximately}0.5 degree) grazing angles onto Au or CsI photocathodes. However, being complicated to use, it wasmore » replaced with a large area (>=lan2) avalanche photodiode (APD) detector. The APD`s are simpler to use and have comparable (30--70%) efficiencies at 14.4 key, subnanosecond time resolution, large dynan-dc range (usable at rates up to {approximately}10{sup 8} photons/second) and low (<{approximately}0.01 cts/sec) background rates. Maxwell`s equations are used to derive the specular x-ray reflectivity of layered materials with resonant transitions and complex polarization dependencies. The effects of interfadal roughness are treated with some care, and the distorted wave Born approximation (DWBA) used to describe electronic scattering is generalized to the nuclear case. The implications of the theory are discussed in the context of grazing incidence measurements with emphasis on the kinematic and dynamical aspects of the scattering.« less

  16. Bringing Physics, Synchrotron Light and Probing Neutrons to the Public: A Collaborative Outreach

    ERIC Educational Resources Information Center

    Micklavzina, Stanley; Almqvist, Monica; Sörensen, Stacey L.

    2014-01-01

    Stanley Micklavzina, a US physics educator on sabbatical, teams up with a Swedish national research laboratory, a synchrotron radiation experimental group and a university science centre to develop and create educational and public outreach projects. Descriptions of the physics, science centre displays and public demonstrations covering the…

  17. Generic conditions for suppressing the coherent synchrotron radiation induced emittance growth in a two-dipole achromat

    NASA Astrophysics Data System (ADS)

    Jiao, Yi; Cui, Xiaohao; Huang, Xiyang; Xu, Gang

    2014-06-01

    The effect of the coherent synchrotron radiation (CSR) becomes evident, and leads to increased beam energy spread and transverse emittance dilution, as both the emittance and bunch length of the electron beams are continuously pushed down in present and forthcoming high-brightness light sources and linear colliders. Suppressing this effect is important to preserve the expected machine performance. Methods of the R-matrix analysis and the Courant-Snyder formalism analysis have been proposed to evaluate and to suppress the emittance growth due to CSR in achromatic cells. In this paper a few important modifications are made on these two methods, which enable us to prove that these two methods are equivalent to each other. With the modified analysis, we obtain explicit and generic conditions of cancelling the CSR-driven emittance excitation in a single achromat consisting of two dipoles of arbitrary bending angles. In spite of the fact that the analysis constrains itself in a linear regime, based on the assumption that CSR-induced particle energy deviation is proportional to both θ and ρ1/3, with θ being the bending angle and ρ the bending radius, it is demonstrated through ELEGANT simulations that the conditions derived from this analysis are still effective in suppressing the emittance growth when a more detailed one-dimensional CSR model is considered. In addition, it illustrates that the emittance growth can be reduced to a lower level with the proposed conditions than with the other two approaches, such as matching the beam envelope to the CSR kick and setting the cell-to-cell betatron phase advance to an appropriate value.

  18. Plant-based Food and Feed Protein Structure Changes Induced by Gene-transformation heating and bio-ethanol processing: A Synchrotron-based Molecular Structure and Nutrition Research Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P Yu

    Unlike traditional 'wet' analytical methods which during processing for analysis often result in destruction or alteration of the intrinsic protein structures, advanced synchrotron radiation-based Fourier transform infrared microspectroscopy has been developed as a rapid and nondestructive and bioanalytical technique. This cutting-edge synchrotron-based bioanalytical technology, taking advantages of synchrotron light brightness (million times brighter than sun), is capable of exploring the molecular chemistry or structure of a biological tissue without destruction inherent structures at ultra-spatial resolutions. In this article, a novel approach is introduced to show the potential of the advanced synchrotron-based analytical technology, which can be used to study plant-basedmore » food or feed protein molecular structure in relation to nutrient utilization and availability. Recent progress was reported on using synchrotron-based bioanalytical technique synchrotron radiation-based Fourier transform infrared microspectroscopy and diffused reflectance infrared Fourier transform spectroscopy to detect the effects of gene-transformation (Application 1), autoclaving (Application 2), and bio-ethanol processing (Application 3) on plant-based food and feed protein structure changes on a molecular basis. The synchrotron-based technology provides a new approach for plant-based protein structure research at ultra-spatial resolutions at cellular and molecular levels.« less

  19. Synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy of n-ZnO:Al/p-GaN:Mg heterojunction

    NASA Astrophysics Data System (ADS)

    Lee, Kai-Hsuan; Chang, Ping-Chuan; Chen, Tse-Pu; Chang, Sheng-Po; Shiu, Hung-Wei; Chang, Lo-Yueh; Chen, Chia-Hao; Chang, Shoou-Jinn

    2013-02-01

    Al-doped ZnO (AZO) deposited by radio frequency co-sputtering is formed on epitaxial Mg-doped GaN template at room temperature to achieve n-AZO/p-GaN heterojunction. Alignment of AZO and GaN bands is investigated using synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy on the nonpolar side-facet of a vertically c-axis aligned heterostructure. It shows type-II band configuration with valence band offset of 1.63 ± 0.1 eV and conduction band offset of 1.61 ± 0.1 eV, respectively. Rectification behavior is clearly observed, with a ratio of forward-to-reverse current up to six orders of magnitude when the bias is applied across the p-n junction.

  20. Synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy of n-ZnO:Al/p-GaN:Mg heterojunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kai-Hsuan; Chen, Chia-Hao; Chang, Ping-Chuan

    2013-02-18

    Al-doped ZnO (AZO) deposited by radio frequency co-sputtering is formed on epitaxial Mg-doped GaN template at room temperature to achieve n-AZO/p-GaN heterojunction. Alignment of AZO and GaN bands is investigated using synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy on the nonpolar side-facet of a vertically c-axis aligned heterostructure. It shows type-II band configuration with valence band offset of 1.63 {+-} 0.1 eV and conduction band offset of 1.61 {+-} 0.1 eV, respectively. Rectification behavior is clearly observed, with a ratio of forward-to-reverse current up to six orders of magnitude when the bias is applied across the p-n junction.

  1. Epitaxial Ge2Sb2Te5 probed by single cycle THz pulses of coherent synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bragaglia, V.; Schnegg, A.; Calarco, R.; Holldack, K.

    2016-10-01

    A THz-probe spectroscopy scheme with laser-induced single cycle pulses of coherent synchrotron radiation is devised and adapted to reveal the dynamic THz transmittance response in epitaxially grown phase change materials upon 800 nm fs-laser excitation. Amorphous (a-) and crystalline (c-) films of the prototypical Ge2Sb2Te5 (GST) alloy are probed with single cycle THz pulses tuned to the spectral range of the highest absorption contrast at 2 THz. After an initial instantaneous sub-picosecond (ps) dynamic THz transmittance drop, the response of a-GST in that range is dominated only by a short recovery time τshort = 2 ps of the excited carriers. On the contrary, the behavior of the c-GST response displays a short decay of 0.85 ps followed by a long one τlong = 90 ps, suggesting that vacancy layers in an ordered c-GST play a role as dissipation channel for photo-induced free carriers.

  2. Comparison of conventional and synchrotron-radiation-based microtomography of bone around dental implants

    NASA Astrophysics Data System (ADS)

    Cattaneo, Paolo M.; Dalstra, Michel; Beckmann, Felix; Donath, Tilman; Melsen, Birte

    2004-10-01

    This study explores the application of conventional micro tomography (μCT) and synchrotron radiation (SR) based μCT to evaluate the bone around titanium dental implants. The SR experiment was performed at beamline W2 of HASYLAB at DESY using a monochromatic X-ray beam of 50 keV. The testing material consisted of undecalcified bone segments harvested from the upper jaw of a macaca fascicularis monkey each containing a titanium dental implant. The results from the two different techniques were qualitatively compared with conventional histological sections examined under light microscopy. The SR-based μCT produced images that, especially at the bone-implant interface, are less noisy and sharper than the ones obtained with conventional μCT. For the proper evaluation of the implant-bone interface, only the SR-based μCT technique is able to display the areas of bony contact and visualize the true 3D structure of bone around dental implants correctly. This investigation shows that both conventional and SR-based μCT scanning techniques are non-destructive methods, which provide detailed images of bone. However with SR-based μCT it is possible to obtain an improved image quality of the bone surrounding dental implants, which display a level of detail comparable to histological sections. Therefore, SR-based μCT scanning could represent a valid, unbiased three-dimensional alternative to evaluate osseointegration of dental implants

  3. Methodological challenges of optical tweezers-based X-ray fluorescence imaging of biological model organisms at synchrotron facilities.

    PubMed

    Vergucht, Eva; Brans, Toon; Beunis, Filip; Garrevoet, Jan; Bauters, Stephen; De Rijcke, Maarten; Deruytter, David; Janssen, Colin; Riekel, Christian; Burghammer, Manfred; Vincze, Laszlo

    2015-07-01

    Recently, a radically new synchrotron radiation-based elemental imaging approach for the analysis of biological model organisms and single cells in their natural in vivo state was introduced. The methodology combines optical tweezers (OT) technology for non-contact laser-based sample manipulation with synchrotron radiation confocal X-ray fluorescence (XRF) microimaging for the first time at ESRF-ID13. The optical manipulation possibilities and limitations of biological model organisms, the OT setup developments for XRF imaging and the confocal XRF-related challenges are reported. In general, the applicability of the OT-based setup is extended with the aim of introducing the OT XRF methodology in all research fields where highly sensitive in vivo multi-elemental analysis is of relevance at the (sub)micrometre spatial resolution level.

  4. Diffraction-Enhanced Computed Tomographic Imaging of Growing Piglet Joints by Using a Synchrotron Light Source

    PubMed Central

    Rhoades, Glendon W; Belev, George S; Chapman, L Dean; Wiebe, Sheldon P; Cooper, David M; Wong, Adelaine TF; Rosenberg, Alan M

    2015-01-01

    The objective of this project was to develop and test a new technology for imaging growing joints by means of diffraction-enhanced imaging (DEI) combined with CT and using a synchrotron radiation source. DEI–CT images of an explanted 4-wk-old piglet stifle joint were acquired by using a 40-keV beam. The series of scanned slices was later ‘stitched’ together, forming a 3D dataset. High-resolution DEI-CT images demonstrated fine detail within all joint structures and tissues. Striking detail of vasculature traversing between bone and cartilage, a characteristic of growing but not mature joints, was demonstrated. This report documents for the first time that DEI combined with CT and a synchrotron radiation source can generate more detailed images of intact, growing joints than can currently available conventional imaging modalities. PMID:26310464

  5. ALICE—An advanced reflectometer for static and dynamic experiments in magnetism at synchrotron radiation facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrudan, R.; Helmholtz-Zentrum-Berlin for Materials and Energy, 12489 Berlin; Brüssing, F.

    2015-06-15

    We report on significant developments of a high vacuum reflectometer (diffractometer) and spectrometer for soft x-ray synchrotron experiments which allows conducting a wide range of static and dynamic experiments. Although the chamber named ALICE was designed for the analysis of magnetic hetero- and nanostructures via resonant magnetic x-ray scattering, the instrument is not limited to this technique. The versatility of the instrument was testified by a series of pilot experiments. Static measurements involve the possibility to use scattering and spectroscopy synchrotron based techniques (photon-in photon-out, photon-in electron-out, and coherent scattering). Dynamic experiments require either laser or magnetic field pulses tomore » excite the spin system followed by x-ray probe in the time domain from nano- to femtosecond delay times. In this temporal range, the demagnetization/remagnetization dynamics and magnetization precession in a number of magnetic materials (metals, alloys, and magnetic multilayers) can be probed in an element specific manner. We demonstrate here the capabilities of the system to host a variety of experiments, featuring ALICE as one of the most versatile and demanded instruments at the Helmholtz Center in Berlin-BESSY II synchrotron center in Berlin, Germany.« less

  6. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy

    PubMed Central

    Withers, P. J.

    2015-01-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  7. Assessment of Mechanisms for Jovian Synchrotron Variability Associated with Comet SL-9

    NASA Technical Reports Server (NTRS)

    Bolton, S. J.; Thorne, R. M.

    1995-01-01

    The impact comet SL-9 with Jupiter induced a number of variations in Jupiter's synchrotron radiation, including an increase in emission intensity, spectral changes, and a possible broadening in the latitudinal distribution of the emission. Considered are three potential mechanisms for inducing such effects (electron acceleration, radial diffusion, and pitch-angle scattering), and their consequences.

  8. Microanalysis (micro-XRF, micro-XANES, and micro-XRD) of a tertiary sediment using microfocused synchrotron radiation.

    PubMed

    Denecke, Melissa A; Somogyi, Andrea; Janssens, Koen; Simon, Rolf; Dardenne, Kathy; Noseck, Ulrich

    2007-06-01

    Micro-focused synchrotron radiation techniques to investigate actinide elements in geological samples are becoming an increasingly used tool in nuclear waste disposal research. In this article, results using mu-focus techniques are presented from a bore core section of a U-rich tertiary sediment collected from Ruprechtov, Czech Republic, a natural analog to nuclear waste repository scenarios in deep geological formations. Different methods are applied to obtain various, complementary information. Elemental and element chemical state distributions are obtained from micro-XRF measurements, oxidation states of As determined from micro-XANES, and the crystalline structure of selected regions are studied by means of micro-XRD. We find that preparation of the thin section created an As oxidation state artifact; it apparently changed the As valence in some regions of the sample. Results support our previously proposed hypothesis of the mechanism for U-enrichment in the sediment. AsFeS coating on framboid Fe nodules in the sediment reduced mobile groundwater-dissolved U(VI) to less-soluble U(IV), thereby immobilizing the uranium in the sediment.

  9. High resolution microdiffraction studies using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Spolenak, R.; Tamura, N.; Valek, B. C.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Brown, W. L.; Marieb, T.; Batterman, B. W.; Patel, J. R.

    2002-04-01

    The advent of third generation synchrotron light sources in combination with x-ray focusing devices such as Kirkpatrick-Baez mirrors make Laue diffraction on a submicron length scale possible. Analysis of Laue images enables us to determine the deviatoric part of the 3D strain tensor to an accuracy of 2×10-4 in strain with a spatial resolution comparable to the grain size in our thin films. In this paper the application of x-ray microdiffraction to the temperature dependence of the mechanical behavior of a sputtered blanket Cu film and of electroplated damascene Cu lines will be presented. Microdiffraction reveals very large variations in the strain of a film or line from grain to grain. When the strain is averaged over a macroscopic region the results are in good agreement with direct macroscopic stress measurements. However, the strain variations are so large that in some cases in which the average stress is tensile there are some grains actually under compression. The full implications of these observations are still being considered, but it is clear that the mechanical properties of thin film materials are now accessible with new visibility.

  10. SYNCHROTRON HEATING BY A FAST RADIO BURST IN A SELF-ABSORBED SYNCHROTRON NEBULA AND ITS OBSERVATIONAL SIGNATURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuan-Pei; Dai, Zi-Gao; Zhang, Bing, E-mail: zhang@physics.unlv.edu

    Fast radio bursts (FRBs) are mysterious transient sources. If extragalactic, as suggested by their relative large dispersion measures, their brightness temperatures must be extremely high. Some FRB models (e.g., young pulsar model, magnetar giant flare model, or supra-massive neutron star collapse model) suggest that they may be associated with a synchrotron nebula. Here we study a synchrotron-heating process by an FRB in a self-absorbed synchrotron nebula. If the FRB frequency is below the synchrotron self-absorption frequency of the nebula, electrons in the nebula would absorb FRB photons, leading to a harder electron spectrum and enhanced self-absorbed synchrotron emission. In themore » meantime, the FRB flux is absorbed by the nebula electrons. We calculate the spectra of FRB-heated synchrotron nebulae, and show that the nebula spectra would show a significant hump in several decades near the self-absorption frequency. Identifying such a spectral feature would reveal an embedded FRB in a synchrotron nebula.« less

  11. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  12. Polarized vacuum ultraviolet and X-radiation

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.

    1978-01-01

    The most intense source of polarized vacuum UV and X radiation is synchrotron radiation, which exhibits a degree of partially polarized light between about 80-100%. However, the radiation transmitted by vacuum UV monochromators can also be highly polarized. The Seya-Namioka type of monochromator can produce partially polarized radiation between 50-80%. For certain experiments it is necessary to know the degree of polarization of the radiation being used. Also, when synchrotron radiation and a monochromator are combined the polarization characteristic of both should be known in order to make full use of these polarization properties. The polarizing effect of monochromators (i.e., diffraction gratings) have been measured at the Seya angle and at grazing angles for various spectral orders. Experimental evidence is presented which shows that the reciprocity law holds for polarization by reflection where the angle of incidence and diffraction are unequal. These results are reviewed along with the techniques for measuring the degree of polarization.

  13. Synchrotron radiation-based x-ray analysis of bronze artifacts from an Iron Age site in the Judean hills.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, E. S.; Brody, A. J.; Young, M. L.

    Seven bronze bangles from Tell en-Nasbeh, northern Judah, were investigated to understand the phase composition and manufacturing process of the artifacts, and possibly suggest a provenance for their origin. Synchrotron x-ray radiation diffraction (XRD) and fluorescence (XRF) were used in the analysis to avoid any destructive sampling and at the same time penetrate through the surface into the core metal. These techniques enabled us to determine that the bangles were not just tin bronze, but leaded tin bronze. Based on excavation reports, it is unlikely that the metal objects were manufactured locally at Tell en-Nasbeh; rather, preliminary XRD and XRFmore » data point towards the neighboring region of Edom as their origin. Despite their political enmity during the Iron Age II, the data suggest that Judahite social demands for bronze may have fostered a strong economic relationship between these two polities.« less

  14. High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation

    NASA Technical Reports Server (NTRS)

    Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.

  15. Development of functional in vivo imaging of cerebral lenticulostriate artery using novel synchrotron radiation angiography

    NASA Astrophysics Data System (ADS)

    Lin, Xiaojie; Miao, Peng; Mu, Zhihao; Jiang, Zhen; Lu, Yifan; Guan, Yongjing; Chen, Xiaoyan; Xiao, Tiqiao; Wang, Yongting; Yang, Guo-Yuan

    2015-02-01

    The lenticulostriate artery plays a vital role in the onset and development of cerebral ischemia. However, current imaging techniques cannot assess the in vivo functioning of small arteries such as the lenticulostriate artery in the brain of rats. Here, we report a novel method to achieve a high resolution multi-functional imaging of the cerebrovascular system using synchrotron radiation angiography, which is based on spatio-temporal analysis of contrast density in the arterial cross section. This method provides a unique tool for studying the sub-cortical vascular elasticity after cerebral ischemia in rats. Using this technique, we demonstrated that the vascular elasticity of the lenticulostriate artery decreased from day 1 to day 7 after transient middle cerebral artery occlusion in rats and recovered from day 7 to day 28 compared to the controls (p < 0.001), which paralleled with brain edema formation and inversely correlated with blood flow velocity (p < 0.05). Our results demonstrated that the change of vascular elasticity was related to the levels of brain edema and the velocity of focal blood flow, suggesting that reducing brain edema is important for the improvement of the function of the lenticulostriate artery in the ischemic brain.

  16. Optical imaging of oral pathological tissue using optical coherence tomography and synchrotron radiation computed microtomography

    NASA Astrophysics Data System (ADS)

    Cânjǎu, Silvana; Todea, Carmen; Sinescu, Cosmin; Negrutiu, Meda L.; Duma, Virgil; Mǎnescu, Adrian; Topalǎ, Florin I.; Podoleanu, Adrian Gh.

    2013-06-01

    The efforts aimed at early diagnosis of oral cancer should be prioritized towards developing a new screening instrument, based on optical coherence tomography (OCT), to be used directly intraorally, able to perform a fast, real time, 3D and non-invasive diagnosis of oral malignancies. The first step in this direction would be to optimize the OCT image interpretation of oral tissues. Therefore we propose plastination as a tissue preparation method that better preserves three-dimensional structure for study by new optical imaging techniques. The OCT and the synchrotron radiation computed microtomography (micro-CT) were employed for tissue sample analyze. For validating the OCT results we used the gold standard diagnostic procedure for any suspicious lesion - histopathology. This is a preliminary study of comparing features provided by OCT and Micro-CT. In the conditions of the present study, OCT proves to be a highly promising imaging modality. The use of x-ray based topographic imaging of small biological samples has been limited by the low intrinsic x-ray absorption of non-mineralized tissue and the lack of established contrast agents. Plastination can be used to enhance optical imagies of oral soft tissue samples.

  17. Equally sloped tomography based X-ray full-field nano-CT at Shanghai Synchrotron Radiation Facility

    NASA Astrophysics Data System (ADS)

    Wang, Yudan; Ren, Yuqi; Zhou, Guangzhao; Du, Guohao; Xie, Honglan; Deng, Biao; Xiao, Tiqiao

    2018-07-01

    X-ray full-field nano-computed tomography (nano-CT) has non-destructive three-dimensional imaging capabilities with high spatial resolution, and has been widely applied to investigate morphology and structures in various areas. Conventional tomography reconstructs a 3D object from a large number of equal-angle projections. For nano-CT, it takes long collecting time due to the large projection numbers and long exposure time. Here, equally-sloped tomography (EST) based nano-CT was implemented and constructed on X-ray imaging beamline at the Shanghai Synchrotron Radiation Facility (SSRF) to overcome or alleviate these difficulties. Preliminary results show that hard TXM with the spatial resolution of 100 nm and the EST-based nano-CT with the ability of 3D nano non-destructive characterization have been realized. This technique promotes hard X-ray imaging capability to nano scales at SSRF and could have applications in many fields including nanomaterials, new energy and life sciences. The study will be helpful for the construction of the new full field X-ray nano-imaging beamline with the spatial resolution of 20 nm at SSRF phase II project.

  18. Properties of an ultrarelativistic charged particle radiation in a constant homogeneous crossed electromagnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanov, O.V., E-mail: bov@tpu.ru; Department of Higher Mathematics and Mathematical Physics, Tomsk Polytechnic University, Tomsk, 634050; Kazinski, P.O., E-mail: kpo@phys.tsu.ru

    The properties of radiation created by a classical ultrarelativistic scalar charged particle in a constant homogeneous crossed electromagnetic field are described both analytically and numerically with radiation reaction taken into account in the form of the Landau–Lifshitz equation. The total radiation naturally falls into two parts: the radiation formed at the entrance point of a particle into the crossed field (the synchrotron entrance radiation), and the radiation coming from the late-time asymptotics of a particle motion (the de-excited radiation). The synchrotron entrance radiation resembles, although does not coincide with, the ultrarelativistic limit of the synchrotron radiation: its distribution over energiesmore » and angles possesses almost the same properties. The de-excited radiation is soft, not concentrated in the plane of motion of a charged particle, and almost completely circularly polarized. The photon energy delivering the maximum to its spectral angular distribution decreases with increasing the initial energy of a charged particle, while the maximum value of this distribution remains the same at the fixed photon observation angle and entrance angle of a charged particle. The ultraviolet and infrared asymptotics of the total radiation are also described. - Highlights: • Properties of an electron radiation in a crossed electromagnetic field are studied. • Spectral angular distribution of the synchrotron entrance radiation is described. • Spectral angular distribution of the de-excited radiation is described. • De-excited radiation is almost completely circularly polarized. • Photon energy at the maximum of the de-excited radiation decreases with increasing the initial energy of an electron.« less

  19. Toxicological study of injuries of rat’s hippocampus after lead poisoning by synchrotron microradiography and elemental mapping

    NASA Astrophysics Data System (ADS)

    Liang, Feng; Zhang, Guilin; Xiao, Xianghui; Cai, Zhonghou; Lai, Barry; Hwu, Yeukuang; Yan, Chonghuai; Xu, Jian; Li, Yulan; Tan, Mingguang; Zhang, Chuanfu; Li, Yan

    2010-09-01

    The hippocampus, a major component of the brain, is one of the target nervous organs in lead poisoning. In this work, a rat's hippocampal injury caused by lead was studied. The lead concentrations in blood, bone and hippocampus collected from rats subject to lead poisoning were quantified by Inductively Coupled Plasma Mass Spectrometry while morphological information and elemental distributions in the hippocampus were obtained with synchrotron radiation X-ray phase contrast imaging and synchrotron radiation micro-beam X-ray fluorescence, respectively. For comparison, identical characterization of the specimens from the rats in the control group was done in parallel. Results show that the ratios between the lead content in the treated group and that in the control group of the hippocampus, bone, and blood are about 2.66, 236, and 39.6, respectively. Analysis also revealed that some health elements such as S, K, Cl and P increase in the regions with high lead content in the treated hippocampus. Morphological differences between the normal and lead-exposed hippocampus specimens in some local areas were observed. Explicitly, the structure of the lead-exposed hippocampus was tortuous and irregular, and the density of the neurons in the Dentate Gyrus was significantly lower than that from the control group. The study shows that the synchrotron radiation methods are very powerful for investigating structural injury caused by heavy metals in the nervous system.

  20. Estimation of soft X-ray and EUV transition radiation power emitted from the MIRRORCLE-type tabletop synchrotron.

    PubMed

    Toyosugi, N; Yamada, H; Minkov, D; Morita, M; Yamaguchi, T; Imai, S

    2007-03-01

    The tabletop synchrotron light sources MIRRORCLE-6X and MIRRORCLE-20SX, operating at electron energies E(el) = 6 MeV and E(el) = 20 MeV, respectively, can emit powerful transition radiation (TR) in the extreme ultraviolet (EUV) and the soft X-ray regions. To clarify the applicability of these soft X-ray and EUV sources, the total TR power has been determined. A TR experiment was performed using a 385 nm-thick Al foil target in MIRRORCLE-6X. The angular distribution of the emitted power was measured using a detector assembly based on an NE102 scintillator, an optical bundle and a photomultiplier. The maximal measured total TR power for MIRRORCLE-6X is P(max) approximately equal 2.95 mW at full power operation. Introduction of an analytical expression for the lifetime of the electron beam allows calculation of the emitted TR power by a tabletop synchrotron light source. Using the above measurement result, and the theoretically determined ratio between the TR power for MIRRORCLE-6X and MIRRORCLE-20SX, the total TR power for MIRRORCLE-20SX can be obtained. The one-foil TR target thickness is optimized for the 20 MeV electron energy. P(max) approximately equal 810 mW for MIRRORCLE-20SX is obtained with a single foil of 240 nm-thick Be target. The emitted bremsstrahlung is negligible with respect to the emitted TR for optimized TR targets. From a theoretically known TR spectrum it is concluded that MIRRORCLE-20SX can emit 150 mW of photons with E > 500 eV, which makes it applicable as a source for performing X-ray lithography. The average wavelength, \\overline\\lambda = 13.6 nm, of the TR emission of MIRRORCLE-20SX, with a 200 nm Al target, could provide of the order of 1 W EUV.

  1. Protein-ligand complex structure from serial femtosecond crystallography using soaked thermolysin microcrystals and comparison with structures from synchrotron radiation.

    PubMed

    Naitow, Hisashi; Matsuura, Yoshinori; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Tanaka, Rie; Tanaka, Tomoyuki; Sugahara, Michihiro; Kobayashi, Jun; Nango, Eriko; Iwata, So; Kunishima, Naoki

    2017-08-01

    Serial femtosecond crystallography (SFX) with an X-ray free-electron laser is used for the structural determination of proteins from a large number of microcrystals at room temperature. To examine the feasibility of pharmaceutical applications of SFX, a ligand-soaking experiment using thermolysin microcrystals has been performed using SFX. The results were compared with those from a conventional experiment with synchrotron radiation (SR) at 100 K. A protein-ligand complex structure was successfully obtained from an SFX experiment using microcrystals soaked with a small-molecule ligand; both oil-based and water-based crystal carriers gave essentially the same results. In a comparison of the SFX and SR structures, clear differences were observed in the unit-cell parameters, in the alternate conformation of side chains, in the degree of water coordination and in the ligand-binding mode.

  2. The angular power spectrum measurement of the Galactic synchrotron emission using the TGSS survey

    NASA Astrophysics Data System (ADS)

    Choudhuri, Samir; Bharadwaj, Somnath; Ali, Sk. Saiyad; Roy, Nirupam; Intema, H. T.; Ghosh, Abhik

    2018-05-01

    Characterizing the diffuse Galactic synchrotron emission (DGSE) at arcminute angular scales is needed to remove this foregrounds in cosmological 21-cm measurements. Here, we present the angular power spectrum (Cl) measurement of the diffuse Galactic synchrotron emission using two fields observed by the TIFR GMRT Sky Survey (TGSS). We apply 2D Tapered Gridded Estimator (TGE) to estimate the Cl from the visibilities. We find that the residual data after subtracting the point sources is likely dominated by the diffuse Galactic synchrotron radiation across the angular multipole range 240 <= l <~ 500. We fit a power law to the measured Cl over this l range. We find that the slopes in both fields are consistent with earlier measurements. For the second field, however, we interpret the measured Cl as an upper limit for the DGSE as there is an indication of a significant residual point source contribution.

  3. Radio synchrotron spectra of star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Klein, U.; Lisenfeld, U.; Verley, S.

    2018-03-01

    We investigated the radio continuum spectra of 14 star-forming galaxies by fitting nonthermal (synchrotron) and thermal (free-free) radiation laws. The underlying radio continuum measurements cover a frequency range of 325 MHz to 24.5 GHz (32 GHz in case of M 82). It turns out that most of these synchrotron spectra are not simple power-laws, but are best represented by a low-frequency spectrum with a mean slope αnth = 0.59 ± 0.20 (Sν ∝ ν-α), and by a break or an exponential decline in the frequency range of 1-12 GHz. Simple power-laws or mildly curved synchrotron spectra lead to unrealistically low thermal flux densities, and/or to strong deviations from the expected optically thin free-free spectra with slope αth = 0.10 in the fits. The break or cutoff energies are in the range of 1.5-7 GeV. We briefly discuss the possible origin of such a cutoff or break. If the low-frequency spectra obtained here reflect the injection spectrum of cosmic-ray electrons, they comply with the mean spectral index of Galactic supernova remnants. A comparison of the fitted thermal flux densities with the (foreground-corrected) Hα fluxes yields the extinction, which increases with metallicity. The fraction of thermal emission is higher than believed hitherto, especially at high frequencies, and is highest in the dwarf galaxies of our sample, which we interpret in terms of a lack of containment in these low-mass systems, or a time effect caused by a very young starburst.

  4. Using Synchrotron Radiation and Electron Microscopy to Map the Huge Structural Changes that Occur in Viruses During Their Life Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossman, Michael

    2011-09-07

    The crystallographic techniques for structure determination of proteins and neucleic acids at near atomic resolution using synchrotron X-radiation has become almost automatic. However the limits of this procedure are determined by the availability of crystals. As the size and complexity of the molecular assemblies being studied increases, the likelihood of growing useful crystals diminishes. Cryo electron microscopy and tomography have extended the range of biological objects that can be determined at near atomic resolution. Furthermore it is now becoming apparent that the function of the molecular assemblies most often requires very large conformational changes that could never be contained withinmore » a crystal, Examples will be presented of the structural changes that occur in viruses as they assembly and prepare to infect new cells.« less

  5. Synchrotron radiation circular dichroism spectroscopy study of recombinant T β4 folding

    NASA Astrophysics Data System (ADS)

    Huang, Yung-Chin; Chu, Hsueh-Liang; Chen, Peng-Jen; Chang, Chia-Ching

    Thymosin beta 4 (T β4) is a 43-amino acid small peptide, has been demonstrated that it can promote cardiac repair, wound repair, tissue protection, and involve in the proliferation of blood cell precursor stem cells of bone marrow. Moreover, T β4 has been identified as a multifunction intrinsically disordered protein, which is lacking the stable tertiary structure. Owing to the small size and disordered character, the T β4 protein degrades rapidly and the storage condition is critical. Therefore, it is not easy to reveal its folding mechanism of native T β4. However, recombinant T β4 protein (rT β4), which fused with a 5-kDa peptide in its amino-terminal, is stable and possesses identical function of T β4. Therefore, rT β4 can be used to study its folding mechanism. By using over-critical folding process, stable folding intermediates of rT β4 can be obtained. Structure analysis of folding intermediates by synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies indicate that rT β4 is a random coli major protein and its hydrophobic region becomes compact gradually. Moreover, the rT β4 folding is a two state transition. Thermal denaturation analysis indicates that rT β4 lacks stable tertiary structure. These results indicated that rT β4, similar to T β4, is an intrinsically disordered protein. Research is supported by MOST, Taiwan. MOST 103-2112-M-009-011-MY3. Corresponding author: Chia-Ching Chang; ccchang01@faculty.nctu.edu.tw.

  6. Development of picosecond time-resolved X-ray absorption spectroscopy by high-repetition-rate laser pump/X-ray probe at Beijing Synchrotron Radiation Facility.

    PubMed

    Wang, Hao; Yu, Can; Wei, Xu; Gao, Zhenhua; Xu, Guang Lei; Sun, Da Rui; Li, Zhenjie; Zhou, Yangfan; Li, Qiu Ju; Zhang, Bing Bing; Xu, Jin Qiang; Wang, Lin; Zhang, Yan; Tan, Ying Lei; Tao, Ye

    2017-05-01

    A new setup and commissioning of transient X-ray absorption spectroscopy are described, based on the high-repetition-rate laser pump/X-ray probe method, at the 1W2B wiggler beamline at the Beijing Synchrotron Radiation Facility. A high-repetition-rate and high-power laser is incorporated into the setup with in-house-built avalanche photodiodes as detectors. A simple acquisition scheme was applied to obtain laser-on and laser-off signals simultaneously. The capability of picosecond transient X-ray absorption spectroscopy measurement was demonstrated for a photo-induced spin-crossover iron complex in 6 mM solution with 155 kHz repetition rate.

  7. Synchrotron radiation microbeam X-ray diffraction for nondestructive assessments of local structural properties of faceted InGaN/GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Sakaki, Atsushi; Funato, Mitsuru; Kawamura, Tomoaki; Araki, Jun; Kawakami, Yoichi

    2018-03-01

    Synchrotron radiation (SR) X-ray diffraction with a sub-µm spatial resolution is used to nondestructively evaluate the local thickness and alloy composition of three-dimensionally faceted InGaN/GaN quantum wells (QWs). The (0001) facet QW on a trapezoidal structure composed of (0001), \\{ 11\\bar{2}2\\} , and \\{ 11\\bar{2}0\\} facets is nonuniform, most likely owing to the migration of adatoms between facets. The thickness and composition markedly vary within a short distance for the \\{ 11\\bar{2}2\\} facet QW of another pyramidal structure. The QW parameters acquired by SR microbeam X-ray diffraction reproduce the local emission property assessed by cathodoluminescence, thereby indicating the high reliability of this method.

  8. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    PubMed

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  9. Study of coherent synchrotron radiation effects by means of a new simulation code based on the non-linear extension of the operator splitting method

    NASA Astrophysics Data System (ADS)

    Dattoli, G.; Migliorati, M.; Schiavi, A.

    2007-05-01

    The coherent synchrotron radiation (CSR) is one of the main problems limiting the performance of high-intensity electron accelerators. The complexity of the physical mechanisms underlying the onset of instabilities due to CSR demands for accurate descriptions, capable of including the large number of features of an actual accelerating device. A code devoted to the analysis of these types of problems should be fast and reliable, conditions that are usually hardly achieved at the same time. In the past, codes based on Lie algebraic techniques have been very efficient to treat transport problems in accelerators. The extension of these methods to the non-linear case is ideally suited to treat CSR instability problems. We report on the development of a numerical code, based on the solution of the Vlasov equation, with the inclusion of non-linear contribution due to wake field effects. The proposed solution method exploits an algebraic technique that uses the exponential operators. We show that the integration procedure is capable of reproducing the onset of instability and the effects associated with bunching mechanisms leading to the growth of the instability itself. In addition, considerations on the threshold of the instability are also developed.

  10. Method and devices for performing stereotactic microbeam radiation therapy

    DOEpatents

    Dilmanian, F. Avraham

    2010-01-05

    A radiation delivery system generally includes either a synchrotron source or a support frame and a plurality of microbeam delivery devices supported on the support frame, both to deliver a beam in a hemispherical arrangement. Each of the microbeam delivery devices or synchrotron irradiation ports is adapted to deliver at least one microbeam of radiation along a microbeam delivery axis, wherein the microbeam delivery axes of the plurality of microbeam delivery devices cross within a common target volume.

  11. Taxon-specific responses of Southern Ocean diatoms to Fe enrichment revealed by synchrotron radiation FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Sackett, O.; Armand, L.; Beardall, J.; Hill, R.; Doblin, M.; Connelly, C.; Howes, J.; Stuart, B.; Ralph, P.; Heraud, P.

    2014-05-01

    Photosynthesis by marine diatoms contributes substantially to global biogeochemical cycling and ecosystem productivity. It is widely accepted that diatoms are extremely sensitive to changes in Fe availability, with numerous in situ experiments demonstrating rapid growth and increased export of elements (e.g. C, Si and Fe) from surface waters as a result of Fe addition. Less is known about the effects of Fe enrichment on the phenotypes of diatoms, such as associated changes in nutritional value, furthermore data on taxon-specific responses is almost non-existent. Enhanced supply of nutrient-rich waters along the coast of the subantarctic Kerguelen Island provide a valuable opportunity to examine the responses of phytoplankton to natural Fe enrichment. Here we demonstrate the use of synchrotron radiation Fourier Transform Infrared (SR-FTIR) microspectroscopy to analyse changes in the macromolecular composition of diatoms collected along the coast and plateau of Kerguelen Island, Southern Ocean. SR-FTIR microspectroscopy enabled the analysis of individual diatom cells from mixed communities of field-collected samples, thereby providing insight into in situ taxon-specific responses in relation to changes in Fe availability. Phenotypic responses were taxon-specific in terms of intraspecific variability and changes in proteins, amino acids, phosphorylated molecules, silicate and carbohydrates. In contrast to some previous studies, silicate levels increased under Fe enrichment, in conjunction with increases in carbohydrate stores. The highly abundant taxon Fragilariopsis kerguelensis displayed a higher level of phenotypic plasticity than Pseudo-nitzschia spp., while analysis of the data pooled across all measured taxa showed different patterns in macromolecular composition compared to those for individual taxon. This study demonstrates that taxon-specific responses to Fe enrichment may not always be accurately reflected by bulk community measurements, highlighting the

  12. Taxon-specific responses of Southern Ocean diatoms to Fe enrichment revealed by synchrotron radiation FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Sackett, O.; Armand, L.; Beardall, J.; Hill, R.; Doblin, M.; Connelly, C.; Howes, J.; Stuart, B.; Ralph, P.; Heraud, P.

    2014-10-01

    Photosynthesis by marine diatoms contributes substantially to global biogeochemical cycling and ecosystem productivity. It is widely accepted that diatoms are extremely sensitive to changes in Fe availability, with numerous in situ experiments demonstrating rapid growth and increased export of elements (e.g. C, Si and Fe) from surface waters as a result of Fe addition. Less is known about the effects of Fe enrichment on the phenotypes of diatoms, such as associated changes in nutritional value - furthermore, data on taxon-specific responses are almost non-existent. Enhanced supply of nutrient-rich waters along the coast of the subantarctic Kerguelen Island provide a valuable opportunity to examine the responses of phytoplankton to natural Fe enrichment. Here we demonstrate the use of synchrotron radiation Fourier Transform Infrared (SR-FTIR) microspectroscopy to analyse changes in the macromolecular composition of diatoms collected along the coast and plateau of Kerguelen Island, Southern Ocean. SR-FTIR microspectroscopy enabled the analysis of individual diatom cells from mixed communities of field-collected samples, thereby providing insight into in situ taxon-specific responses in relation to changes in Fe availability. Phenotypic responses were taxon-specific in terms of intraspecific variability and changes in proteins, amino acids, phosphorylated molecules, silicate/silicic acid and carbohydrates. In contrast to some previous studies, silicate/silicic acid levels increased under Fe enrichment, in conjunction with increases in carbohydrate stores. The highly abundant taxon Fragilariopsis kerguelensis displayed a higher level of phenotypic plasticity than Pseudo-nitzschia spp., while analysis of the data pooled across all measured taxa showed different patterns in macromolecular composition compared to those for individual taxon. This study demonstrates that taxon-specific responses to Fe enrichment may not always be accurately reflected by bulk community

  13. Far Infrared Synchrotron Near-Field Nanoimaging and Nanospectroscopy

    DOE PAGES

    Khatib, Omar; Bechtel, Hans A.; Martin, Michael C.; ...

    2018-05-11

    Here, scattering scanning near-field optical microscopy (s-SNOM) has emerged as a powerful imaging and spectroscopic tool for investigating nanoscale heterogeneities in biology, quantum matter, and electronic and photonic devices. However, many materials are defined by a wide range of fundamental molecular and quantum states at far-infrared (FIR) resonant frequencies currently not accessible by s-SNOM. Here we show ultrabroadband FIR s-SNOM nanoimaging and spectroscopy by combining synchrotron infrared radiation with a novel fast and low-noise copper-doped germanium (Ge:Cu) photoconductive detector. This approach of FIR synchrotron infrared nanospectroscopy (SINS) extends the wavelength range of s-SNOM to 31 μm (320 cm –1, 9.7more » THz), exceeding conventional limits by an octave to lower energies. We demonstrate this new nanospectroscopic window by measuring elementary excitations of exemplary functional materials, including surface phonon polariton waves and optical phonons in oxides and layered ultrathin van der Waals materials, skeletal and conformational vibrations in molecular systems, and the highly tunable plasmonic response of graphene.« less

  14. Far Infrared Synchrotron Near-Field Nanoimaging and Nanospectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatib, Omar; Bechtel, Hans A.; Martin, Michael C.

    Here, scattering scanning near-field optical microscopy (s-SNOM) has emerged as a powerful imaging and spectroscopic tool for investigating nanoscale heterogeneities in biology, quantum matter, and electronic and photonic devices. However, many materials are defined by a wide range of fundamental molecular and quantum states at far-infrared (FIR) resonant frequencies currently not accessible by s-SNOM. Here we show ultrabroadband FIR s-SNOM nanoimaging and spectroscopy by combining synchrotron infrared radiation with a novel fast and low-noise copper-doped germanium (Ge:Cu) photoconductive detector. This approach of FIR synchrotron infrared nanospectroscopy (SINS) extends the wavelength range of s-SNOM to 31 μm (320 cm –1, 9.7more » THz), exceeding conventional limits by an octave to lower energies. We demonstrate this new nanospectroscopic window by measuring elementary excitations of exemplary functional materials, including surface phonon polariton waves and optical phonons in oxides and layered ultrathin van der Waals materials, skeletal and conformational vibrations in molecular systems, and the highly tunable plasmonic response of graphene.« less

  15. Probing the self-assembled nanostructures of functional polymers with synchrotron grazing incidence X-ray scattering.

    PubMed

    Ree, Moonhor

    2014-05-01

    For advanced functional polymers such as biopolymers, biomimic polymers, brush polymers, star polymers, dendritic polymers, and block copolymers, information about their surface structures, morphologies, and atomic structures is essential for understanding their properties and investigating their potential applications. Grazing incidence X-ray scattering (GIXS) is established for the last 15 years as the most powerful, versatile, and nondestructive tool for determining these structural details when performed with the aid of an advanced third-generation synchrotron radiation source with high flux, high energy resolution, energy tunability, and small beam size. One particular merit of this technique is that GIXS data can be obtained facilely for material specimens of any size, type, or shape. However, GIXS data analysis requires an understanding of GIXS theory and of refraction and reflection effects, and for any given material specimen, the best methods for extracting the form factor and the structure factor from the data need to be established. GIXS theory is reviewed here from the perspective of practical GIXS measurements and quantitative data analysis. In addition, schemes are discussed for the detailed analysis of GIXS data for the various self-assembled nanostructures of functional homopolymers, brush, star, and dendritic polymers, and block copolymers. Moreover, enhancements to the GIXS technique are discussed that can significantly improve its structure analysis by using the new synchrotron radiation sources such as third-generation X-ray sources with picosecond pulses and partial coherence and fourth-generation X-ray laser sources with femtosecond pulses and full coherence. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. WIFIP: a web-based user interface for automated synchrotron beamlines.

    PubMed

    Sallaz-Damaz, Yoann; Ferrer, Jean Luc

    2017-09-01

    The beamline control software, through the associated graphical user interface (GUI), is the user access point to the experiment, interacting with synchrotron beamline components and providing automated routines. FIP, the French beamline for the Investigation of Proteins, is a highly automatized macromolecular crystallography (MX) beamline at the European Synchrotron Radiation Facility. On such a beamline, a significant number of users choose to control their experiment remotely. This is often performed with a limited bandwidth and from a large choice of computers and operating systems. Furthermore, this has to be possible in a rapidly evolving experimental environment, where new developments have to be easily integrated. To face these challenges, a light, platform-independent, control software and associated GUI are required. Here, WIFIP, a web-based user interface developed at FIP, is described. Further than being the present FIP control interface, WIFIP is also a proof of concept for future MX control software.

  17. Challenges for Synchrotron X-Ray Optics

    NASA Astrophysics Data System (ADS)

    Freund, Andreas K.

    2002-12-01

    It is the task of x-ray optics to adapt the raw beam generated by modern sources such as synchrotron storage rings to a great variety of experimental requirements in terms of intensity, spot size, polarization and other parameters. The very high quality of synchrotron radiation (source size of a few microns and beam divergence of a few micro-radians) and the extreme x-ray flux (power of several hundred Watts in a few square mm) make this task quite difficult. In particular the heat load aspect is very important in the conditioning process of the brute x-ray power to make it suitable for being used on the experimental stations. Cryogenically cooled silicon crystals and water-cooled diamond crystals can presently fulfill this task, but limits will soon be reached and new schemes and materials must be envisioned. A major tendency of instrument improvement has always been to concentrate more photons into a smaller spot utilizing a whole variety of focusing devices such as Fresnel zone plates, refractive lenses and systems based on bent surfaces, for example, Kirkpatrick-Baez systems. Apart from the resistance of the sample, the ultimate limits are determined by the source size and strength on one side, by materials properties, cooling, mounting and bending schemes on the other side, and fundamentally by the diffraction process. There is also the important aspect of coherence that can be both a nuisance and a blessing for the experiments, in particular for imaging techniques. Its conservation puts additional constraints on the quality of the optical elements. The overview of the present challenges includes the properties of present and also mentions aspects of future x-ray sources such as the "ultimate" storage ring and free electron lasers. These challenges range from the thermal performances of monochromators to the surface quality of mirrors, from coherence preservation of modern multilayers to short pulse preservation by crystals, and from micro- and nano

  18. Nuclear resonant forward scattering of synchrotron radiation by randomly oriented iron complexes which exhibit nuclear Zeeman interaction

    NASA Astrophysics Data System (ADS)

    Haas, M.; Realo, E.; Winkler, H.; Meyer-Klaucke, W.; Trautwein, A. X.; Leupold, O.; Rüter, H. D.

    1997-12-01

    An expression for the amplitude of a pulse of synchrotron radiation (SR) coherently scattered in forward direction by a randomly oriented Mössbauer absorber is derived from the theory of γ optics. It is assumed that the hyperfine splittings present in the Mössbauer nuclei can be described in the framework of the spin-Hamiltonian formalism. In the general case of a thick Mössbauer sample, which consists of randomly oriented paramagnetic iron-containing molecules (for example, a frozen solution of a 57Fe protein) in an applied magnetic field, the response of this sample on an incident monochromatic and fully polarized SR beam cannot be given analytically because of the integrations involved. The way to evaluate nuclear forward-scattering spectra for this general case numerically is outlined and results of calculations with a corresponding program package called SYNFOS are shown and compared with experimental results obtained by measurements of the high-spin iron (II) ``picket-fence'' porphyrin [Fe(CH3COO)TPpivP]- in an applied field of 6 T.

  19. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation

    PubMed Central

    Nogly, Przemyslaw; James, Daniel; Wang, Dingjie; White, Thomas A.; Zatsepin, Nadia; Shilova, Anastasya; Nelson, Garrett; Liu, Haiguang; Johansson, Linda; Heymann, Michael; Jaeger, Kathrin; Metz, Markus; Wickstrand, Cecilia; Wu, Wenting; Båth, Petra; Berntsen, Peter; Oberthuer, Dominik; Panneels, Valerie; Cherezov, Vadim; Chapman, Henry; Schertler, Gebhard; Neutze, Richard; Spence, John; Moraes, Isabel; Burghammer, Manfred; Standfuss, Joerg; Weierstall, Uwe

    2015-01-01

    Lipidic cubic phases (LCPs) have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs). Here, the adaptation of this technology to perform serial millisecond crystallography (SMX) at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR) at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway. PMID:25866654

  20. X-ray Synchrotron Radiation in a Plasma Wiggler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shuoquin; /UCLA /SLAC, SSRL

    2005-09-27

    A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is importantmore » for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.« less

  1. Crystal structures of carbonates up to Mbar pressures determined by single crystal synchrotron radiation diffraction

    NASA Astrophysics Data System (ADS)

    Merlini, M.

    2013-12-01

    -bearing magnesite, which spontaneously oxidises at HP/HT, forming Fe3+ carbonates, Fe3+ oxides and reduced carbon (diamonds). Single crystal diffraction approach allowed full structure determination of these phases, yielding to the discovery of few unpredicted structures, such as Mg2Fe2C4O13 and Fe13O19, which can be well reproduced in different experiments. Mg2Fe2C4O13 carbonate present truncated chain C4O13 groups, and Fe13O19 oxide, whose stoichiometry is intermediate between magnetite and hematite, is a one-layer structure, with features encountered in superconducting materials. The results fully support the ideas of unexpected complexities in the mineralogy of the lowermost mantle, and single crystal technique, once properly optimized in ad-hoc synchrotron beamlines, is fundamental for extracting accurate structural information, otherwise rarely accessible with other experimental techniques. References: [1] Merlini M., Hanfland M. (2013). Single crystal diffraction at Mbar conditions by synchrotron radiation. High Pressure Research, in press. [2] Dubrovinsky et al., (2010). High Pressure Research, 30, 620-633. [3] Arapan et al. (1997). Phys. Rev. Lett., 98, 268501. [4] Oganov et al. (2008) EPSL, 273, 38-47. [5] Boulard et al. (2011) PNAS, 108, 5184-5187.

  2. Detection of microscopic particles present as contaminants in latent fingerprints by means of synchrotron radiation-based Fourier transform infra-red micro-imaging.

    PubMed

    Banas, A; Banas, K; Breese, M B H; Loke, J; Heng Teo, B; Lim, S K

    2012-08-07

    Synchrotron radiation-based Fourier transform infra-red (SR-FTIR) micro-imaging has been developed as a rapid, direct and non-destructive technique. This method, taking advantage of the high brightness and small effective source size of synchrotron light, is capable of exploring the molecular chemistry within the microstructures of microscopic particles without their destruction at high spatial resolutions. This is in contrast to traditional "wet" chemical methods, which, during processing for analysis, often caused destruction of the original samples. In the present study, we demonstrate the potential of SR-FTIR micro-imaging as an effective way to accurately identify microscopic particles deposited within latent fingerprints. These particles are present from residual amounts of materials left on a person's fingers after handling such materials. Fingerprints contaminated with various types of powders, creams, medications and high explosive materials (3-nitrooxy-2,2-bis(nitrooxymethyl)propyl nitrate (PETN), 1,3,5-trinitro-1,3,5-triazinane (RDX), 2-methyl-1,3,5-trinitrobenzene (TNT)) deposited on various - daily used - substrates have been analysed herein without any further sample preparation. A non-destructive method for the transfer of contaminated fingerprints from hard-to-reach areas of the substrates to the place of analysis is also presented. This method could have a significant impact on forensic science and could dramatically enhance the amount of information that can be obtained from the study of fingerprints.

  3. Direct observation of X-ray induced atomic motion using scanning tunneling microscope combined with synchrotron radiation.

    PubMed

    Saito, Akira; Tanaka, Takehiro; Takagi, Yasumasa; Hosokawa, Hiromasa; Notsu, Hiroshi; Ohzeki, Gozo; Tanaka, Yoshihito; Kohmura, Yoshiki; Akai-Kasaya, Megumi; Ishikawa, Tetsuya; Kuwahara, Yuji; Kikuta, Seishi; Aono, Masakazu

    2011-04-01

    X-ray induced atomic motion on a Ge(111)-c(2 x 8) clean surface at room temperature was directly observed with atomic resolution using a synchrotron radiation (SR)-based scanning tunneling microscope (STM) system under ultra high vacuum condition. The atomic motion was visualized as a tracking image by developing a method to merge the STM images before and after X-ray irradiation. Using the tracking image, the atomic mobility was found to be strongly affected by defects on the surface, but was not dependent on the incident X-ray energy, although it was clearly dependent on the photon density. The atomic motion can be attributed to surface diffusion, which might not be due to core-excitation accompanied with electronic transition, but a thermal effect by X-ray irradiation. The crystal surface structure was possible to break even at a lower photon density than the conventionally known barrier. These results can alert X-ray studies in the near future about sample damage during measurements, while suggesting the possibility of new applications. Also the obtained results show a new availability of the in-situ SR-STM system.

  4. High spatial resolution dosimetric response maps for radiotherapy ionization chambers measured using kilovoltage synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Butler, D. J.; Stevenson, A. W.; Wright, T. E.; Harty, P. D.; Lehmann, J.; Livingstone, J.; Crosbie, J. C.

    2015-11-01

    Small circular beams of synchrotron radiation (0.1 mm and 0.4 mm in diameter) were used to irradiate ionization chambers of the types commonly used in radiotherapy. By scanning the chamber through the beam and measuring the ionization current, a spatial map of the dosimetric response of the chamber was recorded. The technique is able to distinguish contributions to the large-field ionization current from the chamber walls, central electrode and chamber stem. Scans were recorded for the NE 2571 Farmer chamber, the PTW 30013, IBA FC65-G Farmer-type chambers, the NE 2611A and IBA CC13 thimble chambers, the PTW 31006 and 31014 pinpoint chambers, the PTW Roos and Advanced Markus plane-parallel chambers, and the PTW 23342 thin-window soft x-ray chamber. In all cases, large contributions to the response arise from areas where the incident beam grazes the cavity surfaces. Quantitative as well as qualitative information about the relative chamber response was extracted from the maps, including the relative contribution of the central electrode. Line scans using monochromatic beams show the effect of the photon energy on the chamber response. For Farmer-type chambers, a simple Monte Carlo model was in good agreement with the measured response.

  5. A seven-crystal Johann-type hard x-ray spectrometer at the Stanford Synchrotron Radiation Lightsource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokaras, D.; Weng, T.-C.; Nordlund, D.

    2013-05-15

    We present a multicrystal Johann-type hard x-ray spectrometer ({approx}5-18 keV) recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The instrument is set at the wiggler beamline 6-2 equipped with two liquid nitrogen cooled monochromators - Si(111) and Si(311) - as well as collimating and focusing optics. The spectrometer consists of seven spherically bent crystal analyzers placed on intersecting vertical Rowland circles of 1 m of diameter. The spectrometer is scanned vertically capturing an extended backscattering Bragg angular range (88 Degree-Sign -74 Degree-Sign ) while maintaining all crystals on the Rowland circle trace. The instrument operates in atmosphericmore » pressure by means of a helium bag and when all the seven crystals are used (100 mm of projected diameter each), has a solid angle of about 0.45% of 4{pi} sr. The typical resolving power is in the order of (E/{Delta}E){approx}10 000. The spectrometer's high detection efficiency combined with the beamline 6-2 characteristics permits routine studies of x-ray emission, high energy resolution fluorescence detected x-ray absorption and resonant inelastic x-ray scattering of very diluted samples as well as implementation of demanding in situ environments.« less

  6. 61Ni synchrotron radiation-based Mössbauer spectroscopy of nickel-based nanoparticles with hexagonal structure

    PubMed Central

    Masuda, Ryo; Kobayashi, Yasuhiro; Kitao, Shinji; Kurokuzu, Masayuki; Saito, Makina; Yoda, Yoshitaka; Mitsui, Takaya; Hosoi, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi; Seto, Makoto

    2016-01-01

    We measured the synchrotron-radiation (SR)-based Mössbauer spectra of Ni-based nanoparticles with a hexagonal structure that were synthesised by chemical reduction. To obtain Mössbauer spectra of the nanoparticles without 61Ni enrichment, we developed a measurement system for 61Ni SR-based Mössbauer absorption spectroscopy without X-ray windows between the 61Ni84V16 standard energy alloy and detector. The counting rate of the 61Ni nuclear resonant scattering in the system was enhanced by the detection of internal conversion electrons and the close proximity between the energy standard and the detector. The spectrum measured at 4 K revealed the internal magnetic field of the nanoparticles was 3.4 ± 0.9 T, corresponding to a Ni atomic magnetic moment of 0.3 Bohr magneton. This differs from the value of Ni3C and the theoretically predicted value of hexagonal-close-packed (hcp)-Ni and suggested the nanoparticle possessed intermediate carbon content between hcp-Ni and Ni3C of approximately 10 atomic % of Ni. The improved 61Ni Mössbauer absorption measurement system is also applicable to various Ni materials without 61Ni enrichment, such as Ni hydride nanoparticles. PMID:26883185

  7. In Situ Synchrotron Radiation X-ray Diffraction Study on Phase and Oxide Growth during a High Temperature Cycle of a NiTi-20 at.% Zr High Temperature Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Carl, Matthew; Van Doren, Brian; Young, Marcus L.

    2018-03-01

    Ternary additions to binary NiTi shape memory alloys are known to significantly affect the characteristic martensite-to-austenite phase transformation, i.e., decrease or increase transformation temperatures. High temperature shape memory alloys can be created by adding Au, Pt, Pd, Hf, or Zr to binary NiTi in appropriate amounts; however, the majority of these ternary additions are exceedingly expensive, unfortunately making them impractical for most commercial applications. Zr is the exception of the group, but it is often disregarded because of its poor workability and thermal stability. In an effort to find a temperature range that allows for the potential workability of NiTiZr alloys in normal atmosphere environments and to gain understanding as to the cause of failure during processing, a NiTi-20 at.% Zr was subjected to a thermal cycle ranging from RT to 1000 °C with short 15 min holds at select temperatures during both heating and cooling while simultaneously collecting high-energy synchrotron radiation X-ray diffraction measurements. This study provides valuable insight into the kinetics of precipitation and oxide formation and its relationship to processing. In addition, scanning electron microscopy was performed on five samples, each isothermally held to examine precipitation and oxide structure and growth.

  8. In Situ Synchrotron Radiation X-ray Diffraction Study on Phase and Oxide Growth during a High Temperature Cycle of a NiTi-20 at.% Zr High Temperature Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Carl, Matthew; Van Doren, Brian; Young, Marcus L.

    2018-02-01

    Ternary additions to binary NiTi shape memory alloys are known to significantly affect the characteristic martensite-to-austenite phase transformation, i.e., decrease or increase transformation temperatures. High temperature shape memory alloys can be created by adding Au, Pt, Pd, Hf, or Zr to binary NiTi in appropriate amounts; however, the majority of these ternary additions are exceedingly expensive, unfortunately making them impractical for most commercial applications. Zr is the exception of the group, but it is often disregarded because of its poor workability and thermal stability. In an effort to find a temperature range that allows for the potential workability of NiTiZr alloys in normal atmosphere environments and to gain understanding as to the cause of failure during processing, a NiTi-20 at.% Zr was subjected to a thermal cycle ranging from RT to 1000 °C with short 15 min holds at select temperatures during both heating and cooling while simultaneously collecting high-energy synchrotron radiation X-ray diffraction measurements. This study provides valuable insight into the kinetics of precipitation and oxide formation and its relationship to processing. In addition, scanning electron microscopy was performed on five samples, each isothermally held to examine precipitation and oxide structure and growth.

  9. Synchrotron X-ray powder diffraction data of LASSBio-1515: A new N-acylhydrazone derivative compound

    NASA Astrophysics Data System (ADS)

    Costa, F. N.; Braz, D.; Ferreira, F. F.; da Silva, T. F.; Barreiro, E. J.; Lima, L. M.; Colaço, M. V.; Kuplich, L.; Barroso, R. C.

    2014-02-01

    In this work, synchrotron X-ray powder diffraction data allowed for a successful indexing of LASSBio-1515 compound, candidate to analgesic and anti-inflammatory activity. X-ray powder diffraction data collected in transmission and high-throughput geometries were used to analyze this compound. The X-ray wavelength of the synchrotron radiation used in this study was determined to be λ=1.55054 Å. LASSBio-1515 was found to be monoclinic with space group P21/c and unit cell parameters a=11.26255(16) Å, b=12.59785(16) Å, c=8.8540(1) Å, β=90.5972(7)° and V=1256.17(3) Å3.

  10. Synchrotron based planar imaging and digital tomosynthesis of breast and biopsy phantoms using a CMOS active pixel sensor.

    PubMed

    Szafraniec, Magdalena B; Konstantinidis, Anastasios C; Tromba, Giuliana; Dreossi, Diego; Vecchio, Sara; Rigon, Luigi; Sodini, Nicola; Naday, Steve; Gunn, Spencer; McArthur, Alan; Olivo, Alessandro

    2015-03-01

    The SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at Elettra is performing the first mammography study on human patients using free-space propagation phase contrast imaging. The stricter spatial resolution requirements of this method currently force the use of conventional films or specialized computed radiography (CR) systems. This also prevents the implementation of three-dimensional (3D) approaches. This paper explores the use of an X-ray detector based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology as a possible alternative, for acquisitions both in planar and tomosynthesis geometry. Results indicate higher quality of the images acquired with the synchrotron set-up in both geometries. This improvement can be partly ascribed to the use of parallel, collimated and monochromatic synchrotron radiation (resulting in scatter rejection, no penumbra-induced blurring and optimized X-ray energy), and partly to phase contrast effects. Even though the pixel size of the used detector is still too large - and thus suboptimal - for free-space propagation phase contrast imaging, a degree of phase-induced edge enhancement can clearly be observed in the images. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Optical Synchrotron Precursors of Radio Hypernovae

    NASA Astrophysics Data System (ADS)

    Nakauchi, Daisuke; Kashiyama, Kazumi; Nagakura, Hiroki; Suwa, Yudai; Nakamura, Takashi

    2015-06-01

    We examine the bright radio synchrotron counterparts of low-luminosity gamma-ray bursts and relativistic supernovae (SNe) and find that they can be powered by spherical hypernova (HN) explosions. Our results imply that radio-bright HNe are driven by relativistic jets that are choked deep inside the progenitor stars or quasi-spherical magnetized winds from fast-rotating magnetars. We also consider the optical synchrotron counterparts of radio-bright HNe and show that they can be observed as precursors several days before the SN peak with an r-band absolute magnitude of {{M}r}∼ -14 mag. While previous studies suggested that additional trans-relativistic components are required to power the bright radio emission, we find that they overestimated the energy budget of the trans-relativistic component by overlooking some factors related to the minimum energy of non-thermal electrons. If an additional trans-relativistic component exists, then a much brighter optical precursor with {{M}r}∼ -20 mag can be expected. Thus, the scenarios of radio-bright HNe can be distinguished by using optical precursors, which can be detectable from ≲ 100 Mpc by current SN surveys like the Kiso SN Survey, Palomar Transient Factory, and Panoramic Survey Telescope & Rapid Response System.

  12. Elemental Composition of Mars Return Samples Using X-Ray Fluorescence Imaging at the National Synchrotron Light Source II

    NASA Astrophysics Data System (ADS)

    Thieme, J.; Hurowitz, J. A.; Schoonen, M. A.; Fogelqvist, E.; Gregerson, J.; Farley, K. A.; Sherman, S.; Hill, J.

    2018-04-01

    NSLS-II at BNL provides a unique and critical capability to perform assessments of the elemental composition and the chemical state of Mars returned samples using synchrotron radiation X-ray fluorescence imaging and X-ray absorption spectroscopy.

  13. Facilities for small-molecule crystallography at synchrotron sources.

    PubMed

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  14. Time-resolved measurements of supersonic fuel sprays using synchrotron X-rays.

    PubMed

    Powell, C F; Yue, Y; Poola, R; Wang, J

    2000-11-01

    A time-resolved radiographic technique has been developed for probing the fuel distribution close to the nozzle of a high-pressure single-hole diesel injector. The measurement was made using X-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution of better than 1 micros. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date.

  15. High peak current operation of x-ray free-electron laser multiple beam lines by suppressing coherent synchrotron radiation effects

    NASA Astrophysics Data System (ADS)

    Hara, Toru; Kondo, Chikara; Inagaki, Takahiro; Togawa, Kazuaki; Fukami, Kenji; Nakazawa, Shingo; Hasegawa, Taichi; Morimoto, Osamu; Yoshioka, Masamichi; Maesaka, Hirokazu; Otake, Yuji; Tanaka, Hitoshi

    2018-04-01

    The parallel operation of multiple beam lines is an important means to expand the opportunity of user experiments at x-ray free-electron laser (XFEL) facilities. At SPring-8 Angstrom free-electron laser (SACLA), the multi-beam-line operation had been tested using two beam lines, but transverse coherent synchrotron radiation (CSR) effects at a dogleg beam transport severely limited the laser performance. To suppress the CSR effects, a new beam optics based on two double bend achromat (DBA) structures was introduced for the dogleg. After the replacement of the beam optics, high peak current bunches of more than 10 kA are now stably transported through the dogleg and the laser pulse output is increased by a factor of 2-3. In the multi-beam-line operation of SACLA, the electron beam parameters, such as the beam energy and peak current, can be adjusted independently for each beam line. Thus the laser output can be optimized and wide spectral tunability is ensured for all beam lines.

  16. Measurement and simulation of the impact of coherent synchrotron radiation on the Jefferson Laboratory energy recovery linac electron beam

    NASA Astrophysics Data System (ADS)

    Hall, C. C.; Biedron, S. G.; Edelen, A. L.; Milton, S. V.; Benson, S.; Douglas, D.; Li, R.; Tennant, C. D.; Carlsten, B. E.

    2015-03-01

    In an experiment conducted on the Jefferson Laboratory IR free-electron laser driver, the effects of coherent synchrotron radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR recirculator. Here we examine the impact of CSR on the average energy loss as a function of bunch compression as well as the impact of CSR on the energy spectrum of the bunch. Simulation of beam dynamics in the machine, including the one-dimensional CSR model, shows very good agreement with the measured effect of CSR on the average energy loss as a function of compression. Finally, a well-defined structure is observed in the energy spectrum with a feature in the spectrum that varies as a function of the compression. This effect is examined in simulations, as well, and a simple explanation for the variation is proposed.

  17. Measurement and simulation of the impact of coherent synchrotron radiation on the Jefferson Laboratory energy recovery linac electron beam

    DOE PAGES

    Hall, C C.; Biedron, S G.; Edelen, A L.; ...

    2015-03-09

    In an experiment conducted on the Jefferson Laboratory IR free-electron laser driver, the effects of coherent synchrotron radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR recirculator. Here we examine the impact of CSR on the average energy loss as a function of bunch compression as well as the impact of CSR on the energy spectrum of the bunch. Simulation of beam dynamics in the machine, including the one-dimensional CSR model, shows very good agreement with themore » measured effect of CSR on the average energy loss as a function of compression. Finally, a well-defined structure is observed in the energy spectrum with a feature in the spectrum that varies as a function of the compression. This effect is examined in simulations, as well, and a simple explanation for the variation is proposed.« less

  18. PROCEEDINGS ON SYNCHROTRON RADIATION: Transfer characterization of sulfur from coal-burning emission to plant leaves by PIXE and XANES

    NASA Astrophysics Data System (ADS)

    Bao, Liang-Man; Zhang, Gui-Lin; Zhang, Yuan-Xim; Li, Yan; Lin, Jun; Liu, Wei; Cao, Qing-Chen; Zhao, Yi-Dong; Ma, Chen-Yan; Han, Yong

    2009-11-01

    The impact of coal-burning emission on sulfur in camphor leaves was investigated using Proton Induced X-ray Emission (PIXE) and synchrotron radiation technique X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The PIXE results show that the sulfur concentrations in the leaves collected at the polluted site are significantly higher than those in controls. The Sulfur XANES spectra show the presence of organic (disulfides, thiols, thioethers, sulfonates and sulfoxides) and inorganic sulfur (sulfates) in the leaves. The inorganic sulfur in the leaves of camphor tree polluted by coal combustion is 15% more than that of the control site. The results suggest that the long-term coal-burning pollution resulted in an enhanced content of the total sulfur and sulfate in the leaves, and the uptake of sulfur by leaves had exceeded the metabolic requirement of plants and the excess of sulfur was stored as SO2-4. It can monitor the sulfur pollution in atmosphere.

  19. High-resolution synchrotron radiation-based phase tomography of the healthy and epileptic brain

    NASA Astrophysics Data System (ADS)

    Bikis, Christos; Janz, Philipp; Schulz, Georg; Schweighauser, Gabriel; Hench, Jürgen; Thalmann, Peter; Deyhle, Hans; Chicherova, Natalia; Rack, Alexander; Khimchenko, Anna; Hieber, Simone E.; Mariani, Luigi; Haas, Carola A.; Müller, Bert

    2016-10-01

    Phase-contrast micro-tomography using synchrotron radiation has yielded superior soft tissue visualization down to the sub-cellular level. The isotropic spatial resolution down to about one micron is comparable to the one of histology. The methods, however, provide different physical quantities and are thus complementary, also allowing for the extension of histology into the third dimension. To prepare for cross-sectional animal studies on epilepsy, we have standardized the specimen's preparation and scanning procedure for mouse brains, so that subsequent histology remains entirely unaffected and scanning of all samples (n = 28) is possible in a realistic time frame. For that, we have scanned five healthy and epileptic mouse brains at the ID19 beamline, ESRF, Grenoble, France, using grating- and propagation-based phase contrast micro-tomography. The resulting datasets clearly show the cortex, ventricular system, thalamus, hypothalamus, and hippocampus. Our focus is on the latter, having planned kainate-induced epilepsy experiments. The cell density and organization in the dentate gyrus and Ammon's horn region were clearly visualized in control animals. This proof of principle was required to initiate experiment. The resulting three-dimensional data have been correlated to histology. The goal is a brain-wide quantification of cell death or structural reorganization associated with epilepsy as opposed to histology alone that represents small volumes of the total brain only. Thus, the proposed technique bears the potential to correlate the gold standard in analysis with independently obtained data sets. Such an achievement also fuels interest for other groups in neuroscience research to closely collaborate with experts in phase micro-tomography.

  20. Animals In Synchrotrons: Overcoming Challenges For High-Resolution, Live, Small-Animal Imaging

    NASA Astrophysics Data System (ADS)

    Donnelley, Martin; Parsons, David; Morgan, Kaye; Siu, Karen

    2010-07-01

    Physiological studies in small animals can be complicated, but the complexity is increased dramatically when performing live-animal synchrotron X-ray imaging studies. Our group has extensive experience in high-resolution live-animal imaging at the Japanese SPring-8 synchrotron, primarily examining airways in two-dimensions. These experiments normally image an area of 1.8 mm×1.2 mm at a pixel resolution of 0.45 μm and are performed with live, intact, anaesthetized mice. There are unique challenges in this experimental setting. Importantly, experiments must be performed in an isolated imaging hutch not specifically designed for small-animal imaging. This requires equipment adapted to remotely monitor animals, maintain their anesthesia, and deliver test substances while collecting images. The horizontal synchrotron X-ray beam has a fixed location and orientation that limits experimental flexibility. The extremely high resolution makes locating anatomical regions-of-interest slow and can result in a high radiation dose, and at this level of magnification small animal movements produce motion-artifacts that can render acquired images unusable. Here we describe our experimental techniques and how we have overcome several challenges involved in performing live mouse synchrotron imaging. Experiments have tested different mouse strains, with hairless strains minimizing overlying skin and hair artifacts. Different anesthetics have also be trialed due to the limited choices available at SPring-8. Tracheal-intubation methods have been refined and controlled-ventilation is now possible using a specialized small-animal ventilator. With appropriate animal restraint and respiratory-gating, motion-artifacts have been minimized. The animal orientation (supine vs. head-high) also appears to affect animal physiology, and can alter image quality. Our techniques and image quality at SPring-8 have dramatically improved and in the near future we plan to translate this experience to the

  1. Animals In Synchrotrons: Overcoming Challenges For High-Resolution, Live, Small-Animal Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelley, Martin; Parsons, David; Women's and Children's Health Research Institute, Adelaide, South Australia

    Physiological studies in small animals can be complicated, but the complexity is increased dramatically when performing live-animal synchrotron X-ray imaging studies. Our group has extensive experience in high-resolution live-animal imaging at the Japanese SPring-8 synchrotron, primarily examining airways in two-dimensions. These experiments normally image an area of 1.8 mmx1.2 mm at a pixel resolution of 0.45 {mu}m and are performed with live, intact, anaesthetized mice.There are unique challenges in this experimental setting. Importantly, experiments must be performed in an isolated imaging hutch not specifically designed for small-animal imaging. This requires equipment adapted to remotely monitor animals, maintain their anesthesia, andmore » deliver test substances while collecting images. The horizontal synchrotron X-ray beam has a fixed location and orientation that limits experimental flexibility. The extremely high resolution makes locating anatomical regions-of-interest slow and can result in a high radiation dose, and at this level of magnification small animal movements produce motion-artifacts that can render acquired images unusable. Here we describe our experimental techniques and how we have overcome several challenges involved in performing live mouse synchrotron imaging.Experiments have tested different mouse strains, with hairless strains minimizing overlying skin and hair artifacts. Different anesthetics have also be trialed due to the limited choices available at SPring-8. Tracheal-intubation methods have been refined and controlled-ventilation is now possible using a specialized small-animal ventilator. With appropriate animal restraint and respiratory-gating, motion-artifacts have been minimized. The animal orientation (supine vs. head-high) also appears to affect animal physiology, and can alter image quality. Our techniques and image quality at SPring-8 have dramatically improved and in the near future we plan to translate this experience

  2. Additional Spitzer IRS Spectroscopy of Three Intermediate Polars: The Detection of a Mid-infrared Synchrotron Flare from V1223 Sagittarii

    NASA Astrophysics Data System (ADS)

    Harrison, Thomas E.; Bornak, Jillian; Rupen, Michael P.; Howell, Steve B.

    2010-02-01

    We present new Spitzer Infrared Spectrograph (IRS) observations of three intermediate polars: V1223 Sgr, EX Hya, and V603 Aql. We detected a strong, fading flare event from V1223 Sgr. During this event, the flux declined by a factor of 13 in 30 minutes. Given the similarity in the slope of its mid-infrared spectrum during this event to that of AE Aqr, we suggest that this event was caused by transient synchrotron emission. Thus, V1223 Sgr becomes the third cataclysmic variable known to be a synchrotron source. We were unable to confirm the mid-infrared excess noted by Harrison et al. (Paper I) for EX Hya, suggesting that this object is either not a synchrotron source, or is slightly variable. Due to a very high background, V603 Aql was not detected in the long-wavelength regions accessible to the IRS. Given the recent detection of SS Cygni at radio wavelengths during outburst, we extract archival Spitzer IRS spectra for this source obtained during two successive maxima. These spectra do not show a strong excess, but without simultaneous data at shorter wavelengths, it is not possible to determine whether there is any contribution to the mid-infrared fluxes from a synchrotron jet. Includes observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  3. ASTRORAY: General relativistic polarized radiative transfer code

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Roman V.

    2014-07-01

    ASTRORAY employs a method of ray tracing and performs polarized radiative transfer of (cyclo-)synchrotron radiation. The radiative transfer is conducted in curved space-time near rotating black holes described by Kerr-Schild metric. Three-dimensional general relativistic magneto hydrodynamic (3D GRMHD) simulations, in particular performed with variations of the HARM code, serve as an input to ASTRORAY. The code has been applied to reproduce the sub-mm synchrotron bump in the spectrum of Sgr A*, and to test the detectability of quasi-periodic oscillations in its light curve. ASTRORAY can be readily applied to model radio/sub-mm polarized spectra of jets and cores of other low-luminosity active galactic nuclei. For example, ASTRORAY is uniquely suitable to self-consistently model Faraday rotation measure and circular polarization fraction in jets.

  4. Synchrotron radiation study on the high-pressure and high-temperature phase relations of KAlSi3O8

    NASA Astrophysics Data System (ADS)

    Urakawa, S.; Kondo, T.; Igawa, N.; Shimomura, O.; Ohno, H.

    1994-10-01

    In situ X-ray diffraction study on KAlSi3O8 has been performed using the cubic type high pressure apparatus, MAX90, combined with synchrotron radiation. We determined the phase relations of sanidine, the wadeite-type K2Si4O9+kyanite (Al2SiO5)+coesite (SiO2) assemblage, and hollandite-type KAlSi3O8, including melting temperatures of potassic phases, up to 11 GPa. Our data on subsolidus phase boundaries are close to the recent data of Yagi and Akaogi (1991). Melting relations of sanidine are consistent with the low pressure data of Lindsley (1966). The breakdown of sanidine into three phases reduces melting temperature, and wadeite-type K2Si4O9 melts first around 1500° C in three phase coexisting region. Melting point of hollandite-type KAlSi3O8 is between 1700° C and 1800° C at 11 GPa. If these potassic phases host potassium in the earth's mantle, the true mantle solidus temperature will be much lower than the reported dry solidus temperature of peridotite.

  5. μX-ray fluorescence analysis of traces and calcium phosphate phases on tooth tartar interfaces using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Abraham, J. A.; Grenón, M. S.; Sánchez, H. J.; Valentinuzzi, M. C.; Perez, C. A.

    2007-07-01

    Hard dental tissues like dentine and cementum with calcified deposits (dental calculi) were studied in several human dental pieces of adult individuals from the same geographic region. A couple of cross cuts were performed at dental root level resulting in a planar slice with calculus and dental tissue exposed for analysis. The elemental content along a linear path crossing the dentine-cementum-tartar interfaces and also all over a surface was measured by X-ray fluorescence microanalysis using synchrotron radiation (μSRXRF). The concentration of elemental traces like K, V, Cu, Zn, As, Br and Sr showed different features on the analyzed regions. The possible connections with the dynamic of mineralization and biological implications are discussed. The concentrations of major elements Ca and P were also determined and the measured Ca/P molar ratio was used to estimate the average composition of calcium phosphate phases in the measured points. A deeper knowledge of the variations of the elemental compositions and the changes of the different phases will help to a better understanding of the scarcely known mechanism of calculus growing.

  6. Nanoscale spatial analysis of clay minerals containing cesium by synchrotron radiation photoemission electron microscopy

    NASA Astrophysics Data System (ADS)

    Yoshigoe, Akitaka; Shiwaku, Hideaki; Kobayashi, Toru; Shimoyama, Iwao; Matsumura, Daiju; Tsuji, Takuya; Nishihata, Yasuo; Kogure, Toshihiro; Ohkochi, Takuo; Yasui, Akira; Yaita, Tsuyoshi

    2018-01-01

    A synchrotron radiation photoemission electron microscope (SR-PEEM) was applied to demonstrate the pinpoint analysis of micrometer-sized weathered biotite clay particles with artificially adsorbed cesium (Cs) atoms. Despite the insulating properties of the clay, we observed the spatial distributions of constituent elements (Si, Al, Cs, Mg, and Fe) without charging issues and clarified reciprocal site-correlations among these elements with nanometer resolution. We found that Cs atoms were likely to be adsorbed evenly over the entire particle; however, we identified an occupational conflict between Cs and Mg atoms, implying that Cs sorption involves ion exchange processes. Spatially resolved X-ray absorption spectra (XAS) of the Cs4,5 M-edge region showed Cs to be present in a monocation state (Cs+) as typically observed for Cs compounds. Further pinpoint XAS measurements were also performed at the Fe L2,3-edge to determine the chemical valence of the Fe atoms. The shapes of the spectra were similar to those for Fe2O3, indicating that Fe in the clay was in a 3+ oxidation state. From these observations, we infer that charge compensation facilitates Cs adsorption in the vicinity of a substitution site where Si4+ ions are replaced by Fe3+ ions in SiO4 tetrahedral sheets. Our results demonstrate the utility of SR-PEEM as a tool for spatially resolved chemical analyses of various environmental substances, which is not limited by the poor conductivity of samples.

  7. Valence fluctuating compound α-YbAlB4 studied by 174Yb Mössbauer spectroscopy and X-ray diffraction using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Oura, Momoko; Ikeda, Shugo; Masuda, Ryo; Kobayashi, Yasuhiro; Seto, Makoto; Yoda, Yoshitaka; Hirao, Naohisa; Kawaguchi, Saori I.; Ohishi, Yasuo; Suzuki, Shintaro; Kuga, Kentaro; Nakatsuji, Satoru; Kobayashi, Hisao

    2018-05-01

    The structural properties and the Yb 4 f electronic state of the valence fluctuating α-YbAlB4 have been investigated by powder X-ray diffraction under pressure and 174Yb Mössbauer spectroscopy with magnetic fields at low temperature, respectively, using synchrotron radiation. Powder X-ray diffraction patterns showed that the crystal structure does not change up to p ∼ 18 GPa at 8 K and the volume decreases smoothly. However, the pressure dependence of the difference in the structure factor between the (060) and (061) diffraction lines changes at ∼ 3.4 GPa, indicating the change of atomic coordination parameters. The 174Yb Mössbauer spectroscopy measurements at 2 K with 10 and 50 kOe suggest that the electrical quadrupole interaction changes by applied magnetic fields.

  8. Antioxidant protects blood-testis barrier against synchrotron radiation X-ray-induced disruption

    PubMed Central

    Zhang, Tingting; Liu, Tengyuan; Shao, Jiaxiang; Sheng, Caibin; Hong, Yunyi; Ying, Weihai; Xia, Weiliang

    2015-01-01

    Synchrotron radiation (SR) X-ray has wide biomedical applications including high resolution imaging and brain tumor therapy due to its special properties of high coherence, monochromaticity and high intensity. However, its interaction with biological tissues remains poorly understood. In this study, we used the rat testis as a model to investigate how SR X-ray would induce tissue responses, especially the blood-testis barrier (BTB) because BTB dynamics are critical for spermatogenesis. We irradiated the male gonad with increasing doses of SR X-ray and obtained the testicles 1, 10 and 20 d after the exposures. The testicle weight and seminiferous tubule diameter reduced in a dose- and time-dependent manner. Cryosections of testes were stained with tight junction (TJ) component proteins such as occludin, claudin-11, JAM-A and ZO-1. Morphologically, increasing doses of SR X-ray consistently induced developing germ cell sloughing from the seminiferous tubules, accompanied by shrinkage of the tubules. Interestingly, TJ constituent proteins appeared to be induced by the increasing doses of SR X-ray. Up to 20 d after SR X-ray irradiation, there also appeared to be time-dependent changes on the steady-state level of these protein exhibiting differential patterns at 20-day after exposure, with JAM-A/claudin-11 still being up-regulated whereas occludin/ZO-1 being down-regulated. More importantly, the BTB damage induced by 40 Gy of SR X-ray could be significantly attenuated by antioxidant N-Acetyl-L-Cysteine (NAC) at a dose of 125 mg/kg. Taken together, our studies characterized the changes of TJ component proteins after SR X-ray irradiation, illustrating the possible protective effects of antioxidant NAC to BTB integrity. PMID:26413412

  9. Synchrotron radiation topography studies of the phase transition in LaGaO 3 crystals

    NASA Astrophysics Data System (ADS)

    Yao, G.-D.; Dudley, M.; Wang, Y.; Liu, X.; Liebermann, R. C.

    1991-05-01

    An investigation of the orthorhombic to rhombohedral phase transformation occurring at 145°C in lanthanum gallate has been conducted using white beam synchrotron X-ray topography (WBSXRT). The existence of the first order transition was confirmed by differential thermal analysis and X-ray diffractometer powder analysis. Subsequent to this, synchrotron white beam Laue patterns were recorded in situ as a function of temperature, during the transition. Before the transition point was reached, (112) orth type reflection twinning was found to be dominant although a small amount of (110) orth type twinning was also observed in the same crystal. Beyond the transition point, not only did the structural change become evident but also reflection twinning on the (110) rhom planes was observed. The scale of this twinning became finer as the temperature was increased beyond the transition temperature. The twinning observed in both the low and high temperature phases gives rise to deformation of the (011) rhom surface plane which creates problems for the potential use of this material as a substrate for growing high Tc superconducting epitaxial layers.

  10. A compact radiation source for digital subtractive angiography

    NASA Astrophysics Data System (ADS)

    Wiedemann, H.; Baltay, M.; Carr, R.; Hernandez, M.; Lavender, W.

    1994-08-01

    Beam requirements for 33 keV radiation used in digital subtraction angiography have been established through extended experimentation first at Stanford and later at the National Synchrotron Light Source in Brookhaven. So far research and development of this medical procedure to image coronary blood vessels have been undertaken on large high energy electron storage rings. With progress in this diagnostic procedure, it is interesting to look for an optimum concept for providing a 33 keV radiation source which would fit into the environment of a hospital. A variety of competing effects and technologies to produce 33 keV radiation are available, but none of these processes provides the combination of sufficient photon flux and monochromaticity except for synchrotron radiation from an electron storage ring. The conceptual design of a compact storage ring optimized to fit into a hospital environment and producing sufficient 33 keV radiation for digital subtraction radiography will be discussed.

  11. High-spatial-resolution mapping of superhydrophobic cicada wing surface chemistry using infrared microspectroscopy and infrared imaging at two synchrotron beamlines.

    PubMed

    Tobin, Mark J; Puskar, Ljiljana; Hasan, Jafar; Webb, Hayden K; Hirschmugl, Carol J; Nasse, Michael J; Gervinskas, Gediminas; Juodkazis, Saulius; Watson, Gregory S; Watson, Jolanta A; Crawford, Russell J; Ivanova, Elena P

    2013-05-01

    The wings of some insects, such as cicadae, have been reported to possess a number of interesting and unusual qualities such as superhydrophobicity, anisotropic wetting and antibacterial properties. Here, the chemical composition of the wings of the Clanger cicada (Psaltoda claripennis) were characterized using infrared (IR) microspectroscopy. In addition, the data generated from two separate synchrotron IR facilities, the Australian Synchrotron Infrared Microspectroscopy beamline (AS-IRM) and the Synchrotron Radiation Center (SRC), University of Wisconsin-Madison, IRENI beamline, were analysed and compared. Characteristic peaks in the IR spectra of the wings were assigned primarily to aliphatic hydrocarbon and amide functionalities, which were considered to be an indication of the presence of waxy and proteinaceous components, respectively, in good agreement with the literature. Chemical distribution maps showed that, while the protein component was homogeneously distributed, a significant degree of heterogeneity was observed in the distribution of the waxy component, which may contribute to the self-cleaning and aerodynamic properties of the cicada wing. When comparing the data generated from the two beamlines, it was determined that the SRC IRENI beamline was capable of producing higher-spatial-resolution distribution images in a shorter time than was achievable at the AS-IRM beamline, but that spectral noise levels per pixel were considerably lower on the AS-IRM beamline, resulting in more favourable data where the detection of weak absorbances is required. The data generated by the two complementary synchrotron IR methods on the chemical composition of cicada wings will be immensely useful in understanding their unusual properties with a view to reproducing their characteristics in, for example, industry applications.

  12. Support for Synchrotron Access by Environmental Scientists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, Michael; Madden, Andrew; Palumbo, Anthony

    2006-06-01

    To support ERSP-funded scientists in all aspects of synchrotron-based research at the Advanced Photon Source (APS). This support comes in one or more of the following forms: (1) writing proposals to the APS General User (GU) program, (2) providing time at MRCAT/EnviroCAT beamlines via the membership of the Molecular Environmental Science (MES) Group in MRCAT/EnviroCAT, (3) assistance in experimental design and sample preparation, (4) support at the beamline during the synchrotron experiment, (5) analysis and interpretation of the synchrotron data, and (6) integration of synchrotron experimental results into manuscripts.

  13. Synchrotron vacuum ultraviolet radiation studies of the D 1Πu state of H2

    NASA Astrophysics Data System (ADS)

    Dickenson, G. D.; Ivanov, T. I.; Roudjane, M.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Tchang-Brillet, W.-Ü. L.; Glass-Maujean, M.; Haar, I.; Ehresmann, A.; Ubachs, W.

    2010-10-01

    The 3pπD Π1u state of the H2 molecule was reinvestigated with different techniques at two synchrotron installations. The Fourier transform spectrometer in the vacuum ultraviolet wavelength range of the DESIRS beamline at the SOLEIL synchrotron was used for recording absorption spectra of the D Π1u state at high resolution and high absolute accuracy, limited only by the Doppler contribution at 100 K. From these measurements, line positions were extracted, in particular, for the narrow resonances involving Π1u - states, with an accuracy estimated at 0.06 cm-1. The new data also closely match multichannel quantum defect calculations performed for the Π- components observed via the narrow Q-lines. The Λ-doubling in the D Π1u state was determined up to v =17. The 10 m normal incidence scanning monochromator at the beamline U125/2 of the BESSY II synchrotron, combined with a home-built target chamber and equipped with a variety of detectors, was used to unravel information on ionization, dissociation, and intramolecular fluorescence decay for the D Π1u vibrational series. The combined results yield accurate information on the characteristic Beutler-Fano profiles associated with the strongly predissociated Πu+ parity components of the D Π1u levels. Values for the parameters describing the predissociation width as well as the Fano-q line shape parameters for the J =1 and J =2 rotational states were determined for the sequence of vibrational quantum numbers up to v =17.

  14. Efficient Computation of Coherent Synchrotron Radiation Taking into Account 6D Phase Space Distribution of Emitting Electrons

    NASA Astrophysics Data System (ADS)

    Chubar, O.; Couprie, M.-E.

    2007-01-01

    CPU-efficient method for calculation of the frequency domain electric field of Coherent Synchrotron Radiation (CSR) taking into account 6D phase space distribution of electrons in a bunch is proposed. As an application example, calculation results of the CSR emitted by an electron bunch with small longitudinal and large transverse sizes are presented. Such situation can be realized in storage rings or ERLs by transverse deflection of the electron bunches in special crab-type RF cavities, i.e. using the technique proposed for the generation of femtosecond X-ray pulses (A. Zholents et. al., 1999). The computation, performed for the parameters of the SOLEIL storage ring, shows that if the transverse size of electron bunch is larger than the diffraction limit for single-electron SR at a given wavelength — this affects the angular distribution of the CSR at this wavelength and reduces the coherent flux. Nevertheless, for transverse bunch dimensions up to several millimeters and a longitudinal bunch size smaller than hundred micrometers, the resulting CSR flux in the far infrared spectral range is still many orders of magnitude higher than the flux of incoherent SR, and therefore can be considered for practical use.

  15. Deformation Behavior of Cementite in Deformed High Carbon Steel Observed by X-ray Diffraction with Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Taniyama, Akira; Takayama, Toru; Arai, Masahiro; Hamada, Takanari

    2017-10-01

    The deformation behavior of cementite in drawn pearlitic steel and spheroidal cementite steel, which have hypereutectoid composition, was investigated by X-ray diffraction using synchrotron radiation. A detailed analysis of diffraction peak profiles reveals that the deformation behavior strongly depends on the shape of cementite in steel. The unit cell volume of the cementite in the drawn pearlitic steel compressively and elastically deforms by 1.5 to 2 pct of the initial volume at the early stage of drawing, whereas that in the drawn spheroidal cementite steel is compressed by 1 pct of the initial volume even at a large true strain. The cementite in the drawn pearlitic steel fragments into small pieces with increasing the true strain, and these pieces change to amorphous cementite. The dislocation densities of the cementite in the drawn pearlitic steel and in the drawn spheroidal cementite steel are estimated to be 1013/m2 before drawing and 1014/m2 after drawing. Although the large strain is induced in the cementite by drawing, the maximum strain energy in the cementite is too small to contribute to the dissolution of the cementite.

  16. Characterization of a human tooth with carious lesions using conventional and synchrotron radiation-based micro computed tomography

    NASA Astrophysics Data System (ADS)

    Dziadowiec, Iwona; Beckmann, Felix; Schulz, Georg; Deyhle, Hans; Müller, Bert

    2014-09-01

    In a dental office, every day X rays of teeth within the oral cavity are obtained. Caries induces a mineral loss and, therefore, becomes visible by reduced X-ray absorption. The detailed spatial distribution of the mineral loss, however, is inaccessible in conventional dental radiology, since the dose for such studies is intolerable. As a consequence, such measurements can only be performed after tooth extraction. We have taken advantage of synchrotron radiation-based micro computed tomography to characterize a human tooth with a rather small, natural caries lesion and an artificially induced lesion provoked by acidic etching. Both halves of the tooth were separately visualized from 2400 radiographs recorded at the beam line P07 / PETRA III (HASYLAB at DESY, Hamburg, Germany) with an asymmetric rotation axis at photon energy of 45 keV. Because of the setup, one finds an energy shift in the horizontal plane, to be corrected. After the appropriate three-dimensional registration of the data with the ones of the same crown using the better accessible phoenix nanotom® m of General Electric, Wunstorf, Germany, one can determine the joint histogram, which enable to calibrate the system with the conventional X-ray source.

  17. Exceptionally Preserved Cambrian Trilobite Digestive System Revealed in 3D by Synchrotron-Radiation X-Ray Tomographic Microscopy

    PubMed Central

    Eriksson, Mats E.; Terfelt, Fredrik

    2012-01-01

    The Cambrian ‘Orsten’ fauna comprises exceptionally preserved and phosphatised microscopic arthropods. The external morphology of these fossils is well known, but their internal soft-tissue anatomy has remained virtually unknown. Here, we report the first non-biomineralised tissues from a juvenile polymerid trilobite, represented by digestive structures, glands, and connective strands harboured in a hypostome from the Swedish ‘Orsten’ fauna. Synchrotron-radiation X-ray tomographic microscopy enabled three-dimensional internal recordings at sub-micrometre resolution. The specimen provides the first unambiguous evidence for a J-shaped anterior gut and the presence of a crop with a constricted alimentary tract in the Trilobita. Moreover, the gut is Y-shaped in cross section, probably due to a collapsed lumen of that shape, another feature which has not previously been observed in trilobites. The combination of anatomical features suggests that the trilobite hypostome is functionally analogous to the labrum of euarthropods and that it was a sophisticated element closely integrated with the digestive system. This study also briefly addresses the preservational bias of the ‘Orsten’ fauna, particularly the near-absence of polymerid trilobites, and the taphonomy of the soft-tissue-harbouring hypostome. PMID:22558180

  18. Exceptionally preserved Cambrian trilobite digestive system revealed in 3D by synchrotron-radiation X-ray tomographic microscopy.

    PubMed

    Eriksson, Mats E; Terfelt, Fredrik

    2012-01-01

    The Cambrian 'Orsten' fauna comprises exceptionally preserved and phosphatised microscopic arthropods. The external morphology of these fossils is well known, but their internal soft-tissue anatomy has remained virtually unknown. Here, we report the first non-biomineralised tissues from a juvenile polymerid trilobite, represented by digestive structures, glands, and connective strands harboured in a hypostome from the Swedish 'Orsten' fauna. Synchrotron-radiation X-ray tomographic microscopy enabled three-dimensional internal recordings at sub-micrometre resolution. The specimen provides the first unambiguous evidence for a J-shaped anterior gut and the presence of a crop with a constricted alimentary tract in the Trilobita. Moreover, the gut is Y-shaped in cross section, probably due to a collapsed lumen of that shape, another feature which has not previously been observed in trilobites. The combination of anatomical features suggests that the trilobite hypostome is functionally analogous to the labrum of euarthropods and that it was a sophisticated element closely integrated with the digestive system. This study also briefly addresses the preservational bias of the 'Orsten' fauna, particularly the near-absence of polymerid trilobites, and the taphonomy of the soft-tissue-harbouring hypostome.

  19. The protein crystallography beamline at LNLS, the Brazilian National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Polikarpov, I.; Oliva, G.; Castellano, E. E.; Garratt, R. C.; Arruda, P.; Leite, A.; Craievich, A.

    1998-02-01

    The Brazilian National Synchrotron Light Laboratory - LNLS, will have a dedicated protein crystallography beamline. The beamline under construction includes cylindrical mirror and bent crystal monochromator focusing the high flux of synchrotron radiation in the horizontal plane at the position of the sample. The monochromatic radiation will be tuneable between 2.0 and 1.0 Å with the optimum wavelength at 1.3-1.6 Å, chosen with the aim of maximizing the photon flux from the bending magnets of the storage ring (1.37 GeV). Diffraction images will be recorded on a commercial image plate detector system with on-line readout. The beamline set-up will include cooler/chiller for the samples and biochemical lab for crystallization, heavy-metal soaks, crystal storage and mounting at 22°C and 4°C, will also be available. The facility, intended to serve the national and international community, is planned to be brought into operation in the second half of 1997. It is foreseen that the commissioning of the first protein crystallography beamline in Latin America will boost the number of protein structures determined locally and will increase the general interest of the molecular biology and biochemical research community of Brazil in this area.

  20. Microstructural investigation using synchrotron radiation X-ray microtomography reveals taste-masking mechanism of acetaminophen microspheres.

    PubMed

    Guo, Zhen; Yin, Xianzhen; Liu, Congbiao; Wu, Li; Zhu, Weifeng; Shao, Qun; York, Peter; Patterson, Laurence; Zhang, Jiwen

    2016-02-29

    The structure of solid drug delivery systems has considerable influence on drug release behaviors from particles and granules and also impacts other properties relevant to release characteristics such as taste. In this study, lipid-based microspheres of acetaminophen were prepared to mask the undesirable taste of drug and therefore to identify the optimal formulation for drug release. Synchrotron radiation X-ray computed microtomography (SR-μCT) was used to investigate the fine structural architectures of microspheres non-destructively at different sampling times during drug release test, which were simultaneously determined to quantitatively correlate the structural data with drug release behaviors. The results demonstrated that the polymeric formulation component, namely, cationic polymethacrylate (Eudragit E100), was the key factor to mask the bitter taste of acetaminophen by inhibiting immediate drug release thereby reducing the interaction intensity of the bitter material with the oral cavity taste buds. The structure and morphology of the microspheres were found to be influenced by the shape and particle size of the drug, which was also an important factor for taste-masking performance. The quantitative analysis generated detailed structural information which was correlated well with drug release behaviors. Thus, SR-μCT has been proved as a powerful tool to investigate the fine microstructure of particles and provides a new approach in the design of particles for taste masking. Copyright © 2015 Elsevier B.V. All rights reserved.