Sample records for additional carbon atom

  1. Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms.

    PubMed

    Cui, Liu; Feng, Yanhui; Tan, Peng; Zhang, Xinxin

    2015-07-07

    Heat conduction of double-walled carbon nanotubes (DWCNTs) with intertube additional carbon atoms was investigated for the first time using a molecular dynamics method. By analyzing the phonon vibrational density of states (VDOS), we revealed that the intertube additional atoms weak the heat conduction along the tube axis. Moreover, the phonon participation ratio (PR) demonstrates that the heat transfer in DWCNTs is dominated by low frequency modes. The added atoms cause the mode weight factor (MWF) of the outer tube to decrease and that of the inner tube to increase, which implies a lower thermal conductivity. The effects of temperature, tube length, and the number and distribution of added atoms were studied. Furthermore, an orthogonal array testing strategy was designed to identify the most important structural factor. It is indicated that the tendencies of thermal conductivity of DWCNTs with added atoms change with temperature and length are similar to bare ones. In addition, thermal conductivity decreases with the increasing number of added atoms, more evidently for atom addition concentrated at some cross-sections rather than uniform addition along the tube length. Simultaneously, the number of added atoms at each cross-section has a considerably more remarkable impact, compared to the tube length and the density of chosen cross-sections to add atoms.

  2. From carbon nanotubes to carbon atomic chains

    NASA Astrophysics Data System (ADS)

    Casillas García, Gilberto; Zhang, Weijia; José-Yacamán, Miguel

    2010-10-01

    Carbyne is a linear allotrope of carbon. It is formed by a linear arrangement of carbon atoms with sp-hybridization. We present a reliable and reproducible experiment to obtain these carbon atomic chains using few-layer-graphene (FLG) sheets and a HRTEM. First the FLG sheets were synthesized from worm-like exfoliated graphite and then drop-casted on a lacey-carbon copper grid. Once in the TEM, two holes are opened near each other in a FLG sheet by focusing the electron beam into a small spot. Due to the radiation, the carbon atoms rearrange themselves between the two holes and form carbon fibers. The beam is concentrated on the carbon fibers in order excite the atoms and induce a tension until multi wall carbon nanotube (MWCNT) is formed. As the radiation continues the MWCNT breaks down until there is only a single wall carbon nanotube (SWCNT). Then, when the SWCNT breaks, an atomic carbon chain is formed, lasts for several seconds under the radiation and finally breaks. This demonstrates the stability of this carbon structure.

  3. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOEpatents

    Hartwig, John F.; Kawatsura, Motoi; Loeber, Oliver

    2002-01-01

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  4. IR investigation on silicon oxycarbide structure obtained from precursors with 1:1 silicon to carbon atoms ratio and various carbon atoms distribution

    NASA Astrophysics Data System (ADS)

    Niemiec, Wiktor; Szczygieł, Przemysław; Jeleń, Piotr; Handke, Mirosław

    2018-07-01

    Silicon oxycarbide is a material with a number of advantageous properties that strongly depend on its structure. The most common approach to its tailoring is based on varying the silicon to carbon atoms ratio in the preceramic polymeric precursor. This work is the first comparison of the materials obtained from precursors with the same Si to C atoms ratio, but with various distribution of these atoms in the preceramic polymer. In addition to standard mixtures of monomers containing single silicon atom, a number of monomers with high molar masses and well defined structure was used. The IR was used to investigate the structure of the precursors and materials obtained after their annealing in 800 °C. The results show, that not only the distribution of carbon containing groups among the monomers is important, but also the (in)ability of these groups to end up in each other vicinity in the precursor as well as the degree of condensation of each structural unit.

  5. Atom probe tomography (APT) of carbonate minerals.

    PubMed

    Pérez-Huerta, Alberto; Laiginhas, Fernando; Reinhard, David A; Prosa, Ty J; Martens, Rich L

    2016-01-01

    Atom probe tomography (APT) combines the highest spatial resolution with chemical data at atomic scale for the analysis of materials. For geological specimens, the process of field evaporation and molecular ion formation and interpretation is not yet entirely understood. The objective of this study is to determine the best conditions for the preparation and analysis by APT of carbonate minerals, of great importance in the interpretation of geological processes, focusing on the bulk chemical composition. Results show that the complexity of the mass spectrum is different for calcite and dolomite and relates to dissimilarities in crystalochemical parameters. In addition, APT bulk chemistry of calcite closely matches the expected stoichiometry but fails to provide accurate atomic percentages for elements in dolomite under the experimental conditions evaluated in this work. For both calcite and dolomite, APT underestimates the amount of oxygen based on their chemical formula, whereas it is able to detect small percentages of elemental substitutions in crystal lattices. Overall, our results demonstrate that APT of carbonate minerals is possible, but further optimization of the experimental parameters are required to improve the use of atom probe tomography for the correct interpretation of mineral geochemistry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Bias in bonding behavior among boron, carbon, and nitrogen atoms in ion implanted a-BN, a-BC, and diamond like carbon films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genisel, Mustafa Fatih; Uddin, Md. Nizam; Say, Zafer

    2011-10-01

    In this study, we implanted N{sup +} and N{sub 2}{sup +} ions into sputter deposited amorphous boron carbide (a-BC) and diamond like carbon (DLC) thin films in an effort to understand the chemical bonding involved and investigate possible phase separation routes in boron carbon nitride (BCN) films. In addition, we investigated the effect of implanted C{sup +} ions in sputter deposited amorphous boron nitride (a-BN) films. Implanted ion energies for all ion species were set at 40 KeV. Implanted films were then analyzed using x-ray photoelectron spectroscopy (XPS). The changes in the chemical composition and bonding chemistry due to ion-implantationmore » were examined at different depths of the films using sequential ion-beam etching and high resolution XPS analysis cycles. A comparative analysis has been made with the results from sputter deposited BCN films suggesting that implanted nitrogen and carbon atoms behaved very similar to nitrogen and carbon atoms in sputter deposited BCN films. We found that implanted nitrogen atoms would prefer bonding to carbon atoms in the films only if there is no boron atom in the vicinity or after all available boron atoms have been saturated with nitrogen. Implanted carbon atoms also preferred to either bond with available boron atoms or, more likely bonded with other implanted carbon atoms. These results were also supported by ab-initio density functional theory calculations which indicated that carbon-carbon bonds were energetically preferable to carbon-boron and carbon-nitrogen bonds.« less

  7. An important atomic process in the CVD growth of graphene: Sinking and up-floating of carbon atom on copper surface

    NASA Astrophysics Data System (ADS)

    Li, Yingfeng; Li, Meicheng; Gu, TianSheng; Bai, Fan; Yu, Yue; Trevor, Mwenya; Yu, Yangxin

    2013-11-01

    By density functional theory (DFT) calculations, the early stages of the growth of graphene on copper (1 1 1) surface are investigated. At the very first time of graphene growth, the carbon atom sinks into subsurface. As more carbon atoms are adsorbed nearby the site, the sunken carbon atom will spontaneously form a dimer with one of the newly adsorbed carbon atoms, and the formed dimer will up-float on the top of the surface. We emphasize the role of the co-operative relaxation of the co-adsorbed carbon atoms in facilitating the sinking and up-floating of carbon atoms. In detail: when two carbon atoms are co-adsorbed, their co-operative relaxation will result in different carbon-copper interactions for the co-adsorbed carbon atoms. This difference facilitates the sinking of a single carbon atom into the subsurface. As a third carbon atom is co-adsorbed nearby, it draws the sunken carbon atom on top of the surface, forming a dimer. Co-operative relaxations of the surface involving all adsorbed carbon atoms and their copper neighbors facilitate these sinking and up-floating processes. This investigation is helpful for the deeper understanding of graphene synthesis and the choosing of optimal carbon sources or process.

  8. Functionalization of Carbon Nanotubes using Atomic Hydrogen

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Cassell, Alan M.; Nguyen, Cattien V.; Meyyappan, M.; Han, Jie; Arnold, Jim (Technical Monitor)

    2001-01-01

    We have investigated the irradiation of multi walled and single walled carbon nanotubes (SWNTs) with atomic hydrogen. After irradiating the SWNT sample, a band at 2940/cm (3.4 microns) that is characteristic of the C-H stretching mode is observed using Fourier transform infrared (FTIR) spectroscopy. Additional confirmation of SWNT functionalization is tested by irradiating with atomic deuterium. A weak band in the region 1940/cm (5.2 micron) to 2450/cm (4.1 micron) corresponding to C-D stretching mode is also observed in the FTIR spectrum. This technique provides a clean gas phase process for the functionalization of SWNTs, which could lead to further chemical manipulation and/or the tuning of the electronic properties of SWNTs for nanodevice applications.

  9. Interaction of scandium and titanium atoms with a carbon surface containing five- and seven-membered rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnov, P. O., E-mail: kpo1980@gmail.com; Eliseeva, N. S.; Kuzubov, A. A., E-mail: alex_xx@rambler.ru

    2012-01-15

    The use of carbon nanotubes coated by atoms of transition metals to store molecular hydrogen is associated with the problem of the aggregation of these atoms, which leads to the formation of metal clusters. The quantum-chemical simulation of cluster models of the carbon surface of a graphene type with scandium and titanium atoms has been performed. It has been shown that the presence of five- and seven-membered rings, in addition to six-membered rings, in these structures makes it possible to strongly suppress the processes of the migration of metal atoms over the surface, preventing their clustering.

  10. Theoretical realization of cluster-assembled hydrogen storage materials based on terminated carbon atomic chains.

    PubMed

    Liu, Chun-Sheng; An, Hui; Guo, Ling-Ju; Zeng, Zhi; Ju, Xin

    2011-01-14

    The capacity of carbon atomic chains with different terminations for hydrogen storage is studied using first-principles density functional theory calculations. Unlike the physisorption of H(2) on the H-terminated chain, we show that two Li (Na) atoms each capping one end of the odd- or even-numbered carbon chain can hold ten H(2) molecules with optimal binding energies for room temperature storage. The hybridization of the Li 2p states with the H(2)σ orbitals contributes to the H(2) adsorption. However, the binding mechanism of the H(2) molecules on Na arises only from the polarization interaction between the charged Na atom and the H(2). Interestingly, additional H(2) molecules can be bound to the carbon atoms at the chain ends due to the charge transfer between Li 2s2p (Na 3s) and C 2p states. More importantly, dimerization of these isolated metal-capped chains does not affect the hydrogen binding energy significantly. In addition, a single chain can be stabilized effectively by the C(60) fullerenes termination. With a hydrogen uptake of ∼10 wt.% on Li-coated C(60)-C(n)-C(60) (n = 5, 8), the Li(12)C(60)-C(n)-Li(12)C(60) complex, keeping the number of adsorbed H(2) molecules per Li and stabilizing the dispersion of individual Li atoms, can serve as better building blocks of polymers than the (Li(12)C(60))(2) dimer. These findings suggest a new route to design cluster-assembled hydrogen storage materials based on terminated sp carbon chains.

  11. Texturing Carbon-carbon Composite Radiator Surfaces Utilizing Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Raack, Taylor

    2004-01-01

    Future space nuclear power systems will require radiator technology to dissipate excess heat created by a nuclear reactor. Large radiator fins with circulating coolant are in development for this purpose and an investigation of how to make them most efficient is underway. Maximizing the surface area while minimizing the mass of such radiator fins is critical for obtaining the highest efficiency in dissipating heat. Processes to develop surface roughness are under investigation to maximize the effective surface area of a radiator fin. Surface roughness is created through several methods including oxidation and texturing. The effects of atomic oxygen impingement on carbon-carbon surfaces are currently being investigated for texturing a radiator surface. Early studies of atomic oxygen impingement in low Earth orbit indicate significant texturing due to ram atomic oxygen. The surface morphology of the affected surfaces shows many microscopic cones and valleys which have been experimentally shown to increase radiation emittance. Further study of this morphology proceeded in the Long Duration Exposure Facility (LDEF). Atomic oxygen experiments on the LDEF successfully duplicated the results obtained from materials in spaceflight by subjecting samples to 4.5 eV atomic oxygen from a fixed ram angle. These experiments replicated the conical valley morphology that was seen on samples subjected to low Earth orbit.

  12. An atomic carbon source for high temperature molecular beam epitaxy of graphene.

    PubMed

    Albar, J D; Summerfield, A; Cheng, T S; Davies, A; Smith, E F; Khlobystov, A N; Mellor, C J; Taniguchi, T; Watanabe, K; Foxon, C T; Eaves, L; Beton, P H; Novikov, S V

    2017-07-26

    We report the use of a novel atomic carbon source for the molecular beam epitaxy (MBE) of graphene layers on hBN flakes and on sapphire wafers at substrate growth temperatures of ~1400 °C. The source produces a flux of predominantly atomic carbon, which diffuses through the walls of a Joule-heated tantalum tube filled with graphite powder. We demonstrate deposition of carbon on sapphire with carbon deposition rates up to 12 nm/h. Atomic force microscopy measurements reveal the formation of hexagonal moiré patterns when graphene monolayers are grown on hBN flakes. The Raman spectra of the graphene layers grown on hBN and sapphire with the sublimation carbon source and the atomic carbon source are similar, whilst the nature of the carbon aggregates is different - graphitic with the sublimation carbon source and amorphous with the atomic carbon source. At MBE growth temperatures we observe etching of the sapphire wafer surface by the flux from the atomic carbon source, which we have not observed in the MBE growth of graphene with the sublimation carbon source.

  13. Unexpected Huge Dimerization Ratio in One-Dimensional Carbon Atomic Chains.

    PubMed

    Lin, Yung-Chang; Morishita, Shigeyuki; Koshino, Masanori; Yeh, Chao-Hui; Teng, Po-Yuan; Chiu, Po-Wen; Sawada, Hidetaka; Suenaga, Kazutomo

    2017-01-11

    Peierls theory predicted atomic distortion in one-dimensional (1D) crystal due to its intrinsic instability in 1930. Free-standing carbon atomic chains created in situ in transmission electron microscope (TEM)1-3 are an ideal example to experimentally observe the dimerization behavior of carbon atomic chain within a finite length. We report here a surprisingly huge distortion found in the free-standing carbon atomic chains at 773 K, which is 10 times larger than the value expected in the system. Such an abnormally distorted phase only dominates at the elevated temperatures, while two distinct phases, distorted and undistorted, coexist at lower or ambient temperatures. Atom-by-atom spectroscopy indeed shows considerable variations in the carbon 1s spectra at each atomic site but commonly observes a slightly downshifted π* peak, which proves its sp 1 bonding feature. These results suggest that the simple model, relaxed and straight, is not fully adequate to describe the realistic 1D structure, which is extremely sensitive to perturbations such as external force or boundary conditions.

  14. Atomic migration of carbon in hard turned layers of carburized bearing steel

    DOE PAGES

    Bedekar, Vikram; Poplawsky, Jonathan D.; Guo, Wei; ...

    2016-01-01

    In grain finement and non-equilibrium there is carbon segregation within grain boundaries alters the mechanical performance of hard turning layers in carburized bearing steel. Moreover, an atom probe tomography (APT) study on the nanostructured hard turning layers reveals carbon migration to grain boundaries as a result of carbide decomposition during severe plastic deformation. In addition, samples exposed to different cutting speeds show that the carbon migration rate increases with the cutting speed. For these two effects lead to an ultrafine carbon network structure resulting in increased hardness and thermal stability in the severely deformed surface layer.

  15. Anomalous I-V curve for mono-atomic carbon chains

    NASA Astrophysics Data System (ADS)

    Song, Bo; Sanvito, Stefano; Fang, Haiping

    2010-10-01

    The electronic transport properties of mono-atomic carbon chains were studied theoretically using a combination of density functional theory and the non-equilibrium Green's functions method. The I-V curves for the chains composed of an even number of atoms and attached to gold electrodes through sulfur exhibit two plateaus where the current becomes bias independent. In contrast, when the number of carbon atoms in the chain is odd, the electric current simply increases monotonically with bias. This peculiar behavior is attributed to dimerization of the chains, directly resulting from their one-dimensional nature. The finding is expected to be helpful in designing molecular devices, such as carbon-chain-based transistors and sensors, for nanoscale and biological applications.

  16. The influence hydrogen atom addition has on charge switching during motion of the metal atom in endohedral Ca@C60H4 isomers

    PubMed Central

    Raggi, G.; Besley, E.; Stace, A. J.

    2016-01-01

    Density functional theory has been applied in a study of charge transfer between an endohedral calcium atom and the fullerene cage in Ca@C60H4 and [Ca@C60H4]+ isomers. Previous calculations on Ca@C60 have shown that the motion of calcium within a fullerene is accompanied by large changes in electron density on the carbon cage. Based on this observation, it has been proposed that a tethered endohedral fullerene might form the bases of a nanoswitch. Through the addition of hydrogen atoms to one hemisphere of the cage it is shown that, when compared with Ca@C60, asymmetric and significantly reduced energy barriers can be generated with respect to motion of the calcium atom. It is proposed that hydrogen atom addition to a fullerene might offer a route for creating a bi-stable nanoswitch that can be fine-tuned through the selection of an appropriate isomer and number of atoms attached to the cage of an endohedral fullerene. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’. PMID:27501967

  17. Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Harish; Gotsmann, Bernd; Sebastian, Abu; Drechsler, Ute; Lantz, Mark A.; Despont, Michel; Jaroenapibal, Papot; Carpick, Robert W.; Chen, Yun; Sridharan, Kumar

    2010-03-01

    Understanding friction and wear at the nanoscale is important for many applications that involve nanoscale components sliding on a surface, such as nanolithography, nanometrology and nanomanufacturing. Defects, cracks and other phenomena that influence material strength and wear at macroscopic scales are less important at the nanoscale, which is why nanowires can, for example, show higher strengths than bulk samples. The contact area between the materials must also be described differently at the nanoscale. Diamond-like carbon is routinely used as a surface coating in applications that require low friction and wear because it is resistant to wear at the macroscale, but there has been considerable debate about the wear mechanisms of diamond-like carbon at the nanoscale because it is difficult to fabricate diamond-like carbon structures with nanoscale fidelity. Here, we demonstrate the batch fabrication of ultrasharp diamond-like carbon tips that contain significant amounts of silicon on silicon microcantilevers for use in atomic force microscopy. This material is known to possess low friction in humid conditions, and we find that, at the nanoscale, it is three orders of magnitude more wear-resistant than silicon under ambient conditions. A wear rate of one atom per micrometre of sliding on SiO2 is demonstrated. We find that the classical wear law of Archard does not hold at the nanoscale; instead, atom-by-atom attrition dominates the wear mechanisms at these length scales. We estimate that the effective energy barrier for the removal of a single atom is ~1 eV, with an effective activation volume of ~1 × 10-28 m.

  18. Detection of gas atoms with carbon nanotubes

    PubMed Central

    Arash, B.; Wang, Q.

    2013-01-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  19. Thermogravimetric analysis of the interaction of ferromagnetic metal atom and multiwalled carbon nanotubes.

    PubMed

    Rawat, Naveen; Gudyaka, Russel; Kumar, Mohit; Joshi, Bharat; Santhanam, Kalathur S V

    2008-04-01

    This paper describes the thermal oxidative behavior of atomized iron or atomized cobalt in the presence of multiwalled carbon nanotubes (MWCNT). The thermogravimetric analysis shows the atomized iron thermal oxidation starts at about 500 degrees C that is absent when the atomized iron is sintered with multiwalled carbon naonotubes. The thermal oxidation of iron in the sintered samples requires the collapse of the multiwalled carbon nanotubes. A similar behavior is observed with atomized cobalt when its oxidation requires the collapse of the nanotubes. This thermal oxidative shift is interpreted as due to the atomized iron or atomized cobalt atom experiencing extensive overlap and confinement effect with multiwalled carbon nanotubes causing a spin transfer. This confinement effect is suggested to produce a transformation of iron from the outermost electronic distribution of 3d64s2 to an effective configuration of 3d84s0 and for cobalt 3d74s2 to 3d94s0 producing spintronics effect.

  20. Dynamics of carbon-hydrogen and carbon-methyl exchanges in the collision of 3P atomic carbon with propene

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Huang; Chen, Wei-Kan; Chin, Chih-Hao; Huang, Wen-Jian

    2013-11-01

    We investigated the dynamics of the reaction of 3P atomic carbon with propene (C3H6) at reactant collision energy 3.8 kcal mol-1 in a crossed molecular-beam apparatus using synchrotron vacuum-ultraviolet ionization. Products C4H5, C4H4, C3H3, and CH3 were observed and attributed to exit channels C4H5 + H, C4H4 + 2H, and C3H3 + CH3; their translational-energy distributions and angular distributions were derived from the measurements of product time-of-flight spectra. Following the addition of a 3P carbon atom to the C=C bond of propene, cyclic complex c-H2C(C)CHCH3 undergoes two separate stereoisomerization mechanisms to form intermediates E- and Z-H2CCCHCH3. Both the isomers of H2CCCHCH3 in turns decompose to C4H5 + H and C3H3 + CH3. A portion of C4H5 that has enough internal energy further decomposes to C4H4 + H. The three exit channels C4H5 + H, C4H4 + 2H, and C3H3 + CH3 have average translational energy releases 13.5, 3.2, and 15.2 kcal mol-1, respectively, corresponding to fractions 0.26, 0.41, and 0.26 of available energy deposited to the translational degrees of freedom. The H-loss and 2H-loss channels have nearly isotropic angular distributions with a slight preference at the forward direction particularly for the 2H-loss channel. In contrast, the CH3-loss channel has a forward and backward peaked angular distribution with an enhancement at the forward direction. Comparisons with reactions of 3P carbon atoms with ethene, vinyl fluoride, and vinyl chloride are stated.

  1. Energy of the Isolated Metastable Iron-Nickel FCC Nanocluster with a Carbon Atom in the Tetragonal Interstice.

    PubMed

    Bondarenko, Natalya V; Nedolya, Anatoliy V

    2017-12-01

    The energy of the isolated iron-nickel nanocluster was calculated by molecular mechanics method using Lennard-Jones potential. The cluster included a carbon atom that drifted from an inside octahedral interstice to a tetrahedral interstice in [Formula: see text] direction and after that in <222> direction to the surface. In addition, one of 14 iron atoms was replaced by a nickel atom, the position of which was changing during simulation.The energy of the nanocluster was estimated at the different interatomic distances. As a result of simulation, the optimal interatomic distances of Fe-Ni-C nanocluster was chosen for the simulation, in which height of the potential barrier was maximal and face-centered cubic (FCC) nanocluster was the most stable.It is shown that there were three main positions of a nickel atom that significantly affected nanocluster's energy.The calculation results indicated that position of the carbon atom in the octahedral interstice was more energetically favorable than tetrahedral interstice in the case of FCC nanocluster. On the other side, the potential barrier was smaller in the direction [Formula: see text] than in the direction <022>.This indicates that there are two ways for carbon atom to drift to the surface of the nanocluster.

  2. Voronoi analysis of the short–range atomic structure in iron and iron–carbon melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolev, Andrey; Mirzoev, Alexander

    2015-08-17

    In this work, we simulated the atomic structure of liquid iron and iron–carbon alloys by means of ab initio molecular dynamics. Voronoi analysis was used to highlight changes in the close environments of Fe atoms as carbon concentration in the melt increases. We have found, that even high concentrations of carbon do not affect short–range atomic order of iron atoms — it remains effectively the same as in pure iron melts.

  3. Tailoring Thermal Conductivity of Single-stranded Carbon-chain Polymers through Atomic Mass Modification

    PubMed Central

    Liao, Quanwen; Zeng, Lingping; Liu, Zhichun; Liu, Wei

    2016-01-01

    Tailoring the thermal conductivity of polymers is central to enlarge their applications in the thermal management of flexible integrated circuits. Progress has been made over the past decade by fabricating materials with various nanostructures, but a clear relationship between various functional groups and thermal properties of polymers remains to be established. Here, we numerically study the thermal conductivity of single-stranded carbon-chain polymers with multiple substituents of hydrogen atoms through atomic mass modification. We find that their thermal conductivity can be tuned by atomic mass modifications as revealed through molecular dynamics simulations. The simulation results suggest that heavy homogeneous substituents do not assist heat transport and trace amounts of heavy substituents can in fact hinder heat transport substantially. Our analysis indicates that carbon chain has the biggest contribution (over 80%) to the thermal conduction in single-stranded carbon-chain polymers. We further demonstrate that atomic mass modifications influence the phonon bands of bonding carbon atoms, and the discrepancies of phonon bands between carbon atoms are responsible for the remarkable drops in thermal conductivity and large thermal resistances in carbon chains. Our study provides fundamental insight into how to tailor the thermal conductivity of polymers through variable substituents. PMID:27713563

  4. Earthquake dating: an application of carbon-14 atom counting.

    PubMed

    Tucker, A B; Woefli, W; Bonani, G; Suter, M

    1983-03-18

    Milligram-sized specimens of detrital charcoal from soil layers associated with prehistoric earthquakes on the Wasatch fault in Utah have been dated by direct atom counting of carbon-14 with a tandem Van de Graaff accelerator. The measured ratios of carbon-14 to carbon-12 correspond to ages of 7800, 8800, and 9000 years with uncertainties of +/- 600 years.

  5. Carbon concentration measurements by atom probe tomography in the ferritic phase of high-silicon steels

    DOE PAGES

    Rementeria, Rosalia; Poplawsky, Jonathan D.; Aranda, Maria M.; ...

    2016-12-19

    Current studies using atom probe tomography (APT) show that bainitic ferrite formed at low temperature contains more carbon than what is consistent with the paraequilibrium phase diagram. However, nanocrystalline bainitic ferrite exhibits a non-homogeneous distribution of carbon atoms in arrangements with specific compositions, i.e. Cottrell atmospheres, carbon clusters, and carbides, in most cases with a size of a few nanometers. The ferrite volume within a single platelet that is free of these carbon-enriched regions is extremely small. Proximity histograms can be compromised on the ferrite side, and a great deal of care should be taken to estimate the carbon contentmore » in regions of bainitic ferrite free from carbon agglomeration. For this purpose, APT measurements were first validated for the ferritic phase in a pearlitic sample and further performed for the bainitic ferrite matrix in high-silicon steels isothermally transformed between 200 °C and 350 °C. Additionally, results were compared with the carbon concentration values derived from X-ray diffraction (XRD) analyses considering a tetragonal lattice and previous APT studies. In conclusion, the present results reveal a strong disagreement between the carbon content values in the bainitic ferrite matrix as obtained by APT and those derived from XRD measurements. Those differences have been attributed to the development of carbon-clustered regions with an increased tetragonality in a carbon-depleted matrix.« less

  6. Coke formation and carbon atom economy of methanol-to-olefins reaction.

    PubMed

    Wei, Yingxu; Yuan, Cuiyu; Li, Jinzhe; Xu, Shutao; Zhou, You; Chen, Jingrun; Wang, Quanyi; Xu, Lei; Qi, Yue; Zhang, Qing; Liu, Zhongmin

    2012-05-01

    The methanol-to-olefins (MTO) process is becoming the most important non-petrochemical route for the production of light olefins from coal or natural gas. Maximizing the generation of the target products, ethene and propene, and minimizing the production of byproducts and coke, are major considerations in the efficient utilization of the carbon resource of methanol. In the present work, the heterogeneous catalytic conversion of methanol was evaluated by performing simultaneous measurements of the volatile products generated in the gas phase and the confined coke deposition in the catalyst phase. Real-time and complete reaction profiles were plotted to allow the comparison of carbon atom economy of methanol conversion over the catalyst SAPO-34 at varied reaction temperatures. The difference in carbon atom economy was closely related with the coke formation in the SAPO-34 catalyst. The confined coke compounds were determined. A new type of confined organics was found, and these accounted for the quick deactivation and low carbon atom economy under low-reaction-temperature conditions. Based on the carbon atom economy evaluation and coke species determination, optimized operating conditions for the MTO process are suggested; these conditions guarantee high conversion efficiency of methanol. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Carbon fiber CVD coating by carbon nanostructured for space materials protection against atomic oxygen

    NASA Astrophysics Data System (ADS)

    Pastore, Roberto; Bueno Morles, Ramon; Micheli, Davide

    2016-07-01

    adhesion and durability in the environment. Though these coatings are efficient in protecting polymer composites, their application imposes severe constraints. Their thermal expansion coefficients may differ markedly from those of polymer composite substrates: as a result, cracks develop in the coatings on thermal cycling and AO can penetrate through them to the substrate. In addition to the technicalities of forming an effective barrier, such factors as cost, convenience of application and ease of repair are important considerations in the selection of a coating for a particular application. The latter issues drive the aerospace research toward the development of novel light composite materials, like the so called polymer nanocomposites, which are materials with a polymer matrix and a filler with at least one dimension less than 100 nanometers. Current interest in nanocomposites has been generated and maintained because nanoparticle-filled polymers exhibit unique combinations of properties not achievable with traditional composites. These combinations of properties can be achieved because of the small size of the fillers, the large surface area the fillers provide, and in many cases the unique properties of the fillers themselves. In particular, the carbon fiber-based polymeric composite materials are the basic point of interest: the aim of the present study is to find new solution to produce carbon fiber-based composites with even more upgraded performances. One intriguing strategy to tackle such an issue has been picked out in the coupling between the carbon fibers and the carbon nanostructures. That for two main reasons: first, carbon nanostructures have shown fancy potentialities for any kind of technological applications since their discovery, second, the chemical affinity between fiber and nanostructure (made of the same element) should be a likely route to approach the typical problems due to thermo-mechanical compatibility. This work is joined in such framework

  8. Carbon Nanotube Devices Engineered by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Prisbrey, Landon

    This dissertation explores the engineering of carbon nanotube electronic devices using atomic force microscopy (AFM) based techniques. A possible application for such devices is an electronic interface with individual biological molecules. This single molecule biosensing application is explored both experimentally and with computational modeling. Scanning probe microscopy techniques, such as AFM, are ideal to study nanoscale electronics. These techniques employ a probe which is raster scanned above a sample while measuring probe-surface interactions as a function of position. In addition to topographical and electrostatic/magnetic surface characterization, the probe may also be used as a tool to manipulate and engineer at the nanoscale. Nanoelectronic devices built from carbon nanotubes exhibit many exciting properties including one-dimensional electron transport. A natural consequence of onedimensional transport is that a single perturbation along the conduction channel can have extremely large effects on the device's transport characteristics. This property may be exploited to produce electronic sensors with single-molecule resolution. Here we use AFM-based engineering to fabricate atomic-sized transistors from carbon nanotube network devices. This is done through the incorporation of point defects into the carbon nanotube sidewall using voltage pulses from an AFM probe. We find that the incorporation of an oxidative defect leads to a variety of possible electrical signatures including sudden switching events, resonant scattering, and breaking of the symmetry between electron and hole transport. We discuss the relationship between these different electronic signatures and the chemical structure/charge state of the defect. Tunneling through a defect-induced Coulomb barrier is modeled with numerical Verlet integration of Schrodinger's equation and compared with experimental results. Atomic-sized transistors are ideal for single-molecule applications due to their

  9. A Molecular Dynamics of Cold Neutral Atoms Captured by Carbon Nanotube Under Electric Field and Thermal Effect as a Selective Atoms Sensor.

    PubMed

    Santos, Elson C; Neto, Abel F G; Maneschy, Carlos E; Chen, James; Ramalho, Teodorico C; Neto, A M J C

    2015-05-01

    Here we analyzed several physical behaviors through computational simulation of systems consisting of a zig-zag type carbon nanotube and relaxed cold atoms (Rb, Au, Si and Ar). These atoms were chosen due to their different chemical properties. The atoms individually were relaxed on the outside of the nanotube during the simulations. Each system was found under the influence of a uniform electric field parallel to the carbon nanotube and under the thermal effect of the initial temperature at the simulations. Because of the electric field, the cold atoms orbited the carbon nanotube while increasing the initial temperature allowed the variation of the radius of the orbiting atoms. We calculated the following quantities: kinetic energy, potential energy and total energy and in situ temperature, molar entropy variation and average radius of the orbit of the atoms. Our data suggest that only the action of electric field is enough to generate the attractive potential and this system could be used as a selected atoms sensor.

  10. Simple method for determination of selenium in biological materials by flameless atomic-absorption spectrometry using a carbon-tube atomizer.

    PubMed

    Ishizaki, M

    1978-03-01

    A method for determination of selenium in biological materials by flameless atomic-absorption spectrometry using a carbon-tube atomizer is described. The sample is burned by an oxygen-flask combustion procedure, the resulting solution is treated with a cation-exchange resin to eliminate interfering cations, the selenium is extracted with dithizone in carbon tetrachloride and the resulting selenium dithizonate is combined with nickel nitrate in the carbon tube to enhance the sensitivity for selenium and avoid volatilization losses. The method measures selenium concentrations as low as 0.01 mug/g with a relative standard deviation of 8%.

  11. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction

    NASA Astrophysics Data System (ADS)

    Gao, Shan; Sun, Zhongti; Liu, Wei; Jiao, Xingchen; Zu, Xiaolong; Hu, Qitao; Sun, Yongfu; Yao, Tao; Zhang, Wenhua; Wei, Shiqiang; Xie, Yi

    2017-02-01

    The role of oxygen vacancies in carbon dioxide electroreduction remains somewhat unclear. Here we construct a model of oxygen vacancies confined in atomic layer, taking the synthetic oxygen-deficient cobalt oxide single-unit-cell layers as an example. Density functional theory calculations demonstrate the main defect is the oxygen(II) vacancy, while X-ray absorption fine structure spectroscopy reveals their distinct oxygen vacancy concentrations. Proton transfer is theoretically/experimentally demonstrated to be a rate-limiting step, while energy calculations unveil that the presence of oxygen(II) vacancies lower the rate-limiting activation barrier from 0.51 to 0.40 eV via stabilizing the formate anion radical intermediate, confirmed by the lowered onset potential from 0.81 to 0.78 V and decreased Tafel slope from 48 to 37 mV dec-1. Hence, vacancy-rich cobalt oxide single-unit-cell layers exhibit current densities of 2.7 mA cm-2 with ca. 85% formate selectivity during 40-h tests. This work establishes a clear atomic-level correlation between oxygen vacancies and carbon dioxide electroreduction.

  12. Comparison of carbon onions and carbon blacks as conductive additives for carbon supercapacitors in organic electrolytes

    NASA Astrophysics Data System (ADS)

    Jäckel, N.; Weingarth, D.; Zeiger, M.; Aslan, M.; Grobelsek, I.; Presser, V.

    2014-12-01

    This study investigates carbon onions (∼400 m2 g-1) as a conductive additive for supercapacitor electrodes of activated carbon and compares their performance with carbon black with high or low internal surface area. We provide a study of the electrical conductivity and electrochemical behavior between 2.5 and 20 mass% addition of each of these three additives to activated carbon. Structural characterization shows that the density of the resulting film electrodes depends on the degree of agglomeration and the amount of additive. Addition of low surface area carbon black (∼80 m2 g-1) enhances the power handling of carbon electrodes but significantly lowers the specific capacitance even when adding small amounts of carbon black. A much lower decrease in specific capacitance is observed for carbon onions and the best values are seen for carbon black with a high surface area (∼1390 m2 g-1). The overall performance benefits from the addition of any of the studied additives only at either high scan rates and/or electrolytes with high ion mobility. Normalization to the volume shows a severe decrease in volumetric capacitance and only at high current densities nearing 10 A g-1 we can see an improvement of the electrode capacitance.

  13. Atomic carbon emission from photodissociation of CO2. [planetary atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. R.; Phillips, E.; Lee, L. C.; Judge, D. L.

    1978-01-01

    Atomic carbon fluorescence, C I 1561, 1657, and 1931 A, has been observed from photodissociation of CO2, and the production cross sections have been measured. A line emission source provided the primary photons at wavelengths from threshold to 420 A. The present results suggest that the excited carbon atoms are produced by total dissociation of CO2 into three atoms. The cross sections for producing the O I 1304-A fluorescence through photodissociation of CO2 are found to be less than 0.01 Mb in the wavelength region from 420 to 835 A. The present data have implications with respect to photochemical processes in the atmospheres of Mars and Venus.

  14. Molybdenum and carbon atom and carbon cluster sputtering under low-energy noble gas plasma bombardment

    NASA Astrophysics Data System (ADS)

    Oyarzabal, Eider

    Exit-angle resolved Mo atom sputtering yield under Xe ion bombardment and carbon atom and cluster (C2 and C3) sputtering yields under Xe, Kr, Ar, Ne and He ion bombardment from a plasma are measured for low incident energies (75--225 eV). An energy-resolved quadrupole mass spectrometer (QMS) is used to detect the fraction of un-scattered sputtered neutrals that become ionized in the plasma; the angular distribution is obtained by changing the angle between the target and the QMS aperture. A one-dimensional Monte Carlo code is used to simulate the interaction of the plasma and the sputtered particles between the sample and the QMS. The elastic scattering cross-sections of C, C2 and C3 with the different bombarding gas neutrals is obtained by varying the distance between the sample and the QMS and by performing a best fit of the simulation results to the experimental results. Because the results obtained with the QMS are relative, the Mo atom sputtering results are normalized to the existing data in the literature and the total sputtering yield for carbon (C+C 2+C3) for each bombarding gas is obtained from weight loss measurements. The absolute sputtering yield for C, C2 and C 3 is then calculated from the integration of the measured angular distribution, taking into account the scattering and ionization of the sputtered particles between the sample and the QMS. The angular sputtering distribution for Mo has a maximum at theta=60°, and this maximum becomes less pronounced as the incident ion energy increases. The results of the Monte Carlo TRIDYN code simulation for the angular distribution of Mo atoms sputtered by Xe bombardment are in agreement with the experiments. For carbon sputtering under-cosine angular distributions of the sputtered atoms and clusters for all the studied bombarding gases are also observed. The C, C2 and C3 sputtering yield data shows a clear decrease of the atom to cluster (C/C2 and C/C3) sputtering ratio as the incident ion mass increases

  15. Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography.

    PubMed

    Marceau, R K W; Choi, P; Raabe, D

    2013-09-01

    A high-Mn TWIP steel having composition Fe-22Mn-0.6C (wt%) is considered in this study, where the need for accurate and quantitative analysis of clustering and short-range ordering by atom probe analysis requires a better understanding of the detection of carbon in this system. Experimental measurements reveal that a high percentage of carbon atoms are detected as molecular ion species and on multiple hit events, which is discussed with respect to issues such as optimal experimental parameters, correlated field evaporation and directional walk/migration of carbon atoms at the surface of the specimen tip during analysis. These phenomena impact the compositional and spatial accuracy of the atom probe measurement and thus require careful consideration for further cluster-finding analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Spatial Distributions of Metal Atoms During Carbon SWNTs Formation: Measurements and Modelling

    NASA Technical Reports Server (NTRS)

    Cau, M.; Dorval, N.; Attal-Tretout, B.; Cochon, J. L.; Loiseau, A.; Farhat, S.; Hinkov, I.; Scott, C. D.

    2004-01-01

    Experiments and modelling have been undertaken to clarify the role of metal catalysts during single-wall carbon nanotube formation. For instance, we wonder whether the metal catalyst is active as an atom, a cluster, a liquid or solid nanoparticle [1]. A reactor has been developed for synthesis by continuous CO2-laser vaporisation of a carbon-nickel-cobalt target in laminar helium flow. The laser induced fluorescence technique [2] is applied for local probing of gaseous Ni, Co and CZ species throughout the hot carbon flow of the target heated up to 3500 K. A rapid depletion of C2 in contrast to the spatial extent of metal atoms is observed in the plume (Fig. 1). This asserts that C2 condenses earlier than Ni and Co atoms.[3, 4]. The depletion is even faster when catalysts are present. It may indicate that an interaction between metal atoms and carbon dimers takes place in the gas as soon as they are expelled from the target surface. Two methods of modelling are used: a spatially I-D calculation developed originally for the arc process [5], and a zero-D time dependent calculation, solving the chemical kinetics along the streamlines [6]. The latter includes Ni cluster formation. The peak of C2 density is calculated close to the target surface where the temperature is the highest. In the hot region, C; is dominant. As the carbon products move away from the target and mix with the ambient helium, they recombine into larger clusters, as demonstrated by the peak of C5 density around 1 mm. The profile of Ni-atom density compares fairly well with the measured one (Fig. 2). The early increase is due to the drop of temperature, and the final decrease beyond 6 mm results from Ni cluster formation at the eutectic temperature (approx.1600 K).

  17. Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

    PubMed Central

    Milani, Alberto; Tommasini, Matteo; Russo, Valeria; Li Bassi, Andrea; Lucotti, Andrea; Cataldo, Franco

    2015-01-01

    Summary Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs) can be arranged in two possible structures: a sequence of double bonds (cumulenes), resulting in a 1D metal, or an alternating sequence of single–triple bonds (polyynes), expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms) and the type of termination (e.g., atom, molecular group or nanostructure). Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length). Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds. PMID:25821689

  18. Chemical control of electrical contact to sp² carbon atoms.

    PubMed

    Frederiksen, Thomas; Foti, Giuseppe; Scheurer, Fabrice; Speisser, Virginie; Schull, Guillaume

    2014-04-16

    Carbon-based nanostructures are attracting tremendous interest as components in ultrafast electronics and optoelectronics. The electrical interfaces to these structures play a crucial role for the electron transport, but the lack of control at the atomic scale can hamper device functionality and integration into operating circuitry. Here we study a prototype carbon-based molecular junction consisting of a single C60 molecule and probe how the electric current through the junction depends on the chemical nature of the foremost electrode atom in contact with the molecule. We find that the efficiency of charge injection to a C60 molecule varies substantially for the considered metallic species, and demonstrate that the relative strength of the metal-C bond can be extracted from our transport measurements. Our study further suggests that a single-C60 junction is a basic model to explore the properties of electrical contacts to meso- and macroscopic sp(2) carbon structures.

  19. Chemical control of electrical contact to sp2 carbon atoms

    NASA Astrophysics Data System (ADS)

    Frederiksen, Thomas; Foti, Giuseppe; Scheurer, Fabrice; Speisser, Virginie; Schull, Guillaume

    2014-04-01

    Carbon-based nanostructures are attracting tremendous interest as components in ultrafast electronics and optoelectronics. The electrical interfaces to these structures play a crucial role for the electron transport, but the lack of control at the atomic scale can hamper device functionality and integration into operating circuitry. Here we study a prototype carbon-based molecular junction consisting of a single C60 molecule and probe how the electric current through the junction depends on the chemical nature of the foremost electrode atom in contact with the molecule. We find that the efficiency of charge injection to a C60 molecule varies substantially for the considered metallic species, and demonstrate that the relative strength of the metal-C bond can be extracted from our transport measurements. Our study further suggests that a single-C60 junction is a basic model to explore the properties of electrical contacts to meso- and macroscopic sp2 carbon structures.

  20. 48 CFR 204.470 - U.S.-International Atomic Energy Agency Additional Protocol.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false U.S.-International Atomic Energy Agency Additional Protocol. 204.470 Section 204.470 Federal Acquisition Regulations System DEFENSE... Information Within Industry 204.470 U.S.-International Atomic Energy Agency Additional Protocol. ...

  1. 48 CFR 204.470 - U.S.-International Atomic Energy Agency Additional Protocol.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false U.S.-International Atomic Energy Agency Additional Protocol. 204.470 Section 204.470 Federal Acquisition Regulations System DEFENSE... Information Within Industry 204.470 U.S.-International Atomic Energy Agency Additional Protocol. ...

  2. 48 CFR 204.470 - U.S.-International Atomic Energy Agency Additional Protocol.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false U.S.-International Atomic Energy Agency Additional Protocol. 204.470 Section 204.470 Federal Acquisition Regulations System DEFENSE... Information Within Industry 204.470 U.S.-International Atomic Energy Agency Additional Protocol. ...

  3. 48 CFR 204.470 - U.S.-International Atomic Energy Agency Additional Protocol.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false U.S.-International Atomic Energy Agency Additional Protocol. 204.470 Section 204.470 Federal Acquisition Regulations System DEFENSE... Information Within Industry 204.470 U.S.-International Atomic Energy Agency Additional Protocol. ...

  4. 48 CFR 204.470 - U.S.-International Atomic Energy Agency Additional Protocol.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false U.S.-International Atomic Energy Agency Additional Protocol. 204.470 Section 204.470 Federal Acquisition Regulations System DEFENSE... Information Within Industry 204.470 U.S.-International Atomic Energy Agency Additional Protocol. ...

  5. Carbon-, sulfur-, and phosphorus-based charge transfer reactions in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Grindlay, Guillermo; Gras, Luis; Mora, Juan; de Loos-Vollebregt, Margaretha T. C.

    2016-01-01

    In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma-atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w- 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.

  6. Atomic scale observation of oxygen delivery during silver–oxygen nanoparticle catalysed oxidation of carbon nanotubes

    PubMed Central

    Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue

    2016-01-01

    To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars–van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes. PMID:27406595

  7. Effect of carbon and alloying solute atoms on helium behaviors in α-Fe

    NASA Astrophysics Data System (ADS)

    Zhang, Yange; You, Yu-Wei; Xu, Yichun; Liu, C. S.; Chen, J. L.; Luo, G.-N.

    2017-02-01

    Helium bubbles could strongly degrade the mechanical properties of ferritic steels in fission and fusion systems. The formation of helium bubble is directly affected by the interactions between helium and the compositions in steels, such as solute atoms, carbon and irradiation defects. We thereby performed systematical first-principles calculations to investigate the interactions of solute-helium and carbon-solute-helium. It is found that substitutional helium is more attractive than interstitial helium to all the considered 3p, 4p, 5p and 6p solutes. The attraction between carbon and substitutional helium suggests the carbon-solute-helium complex can be formed stably. By examining the charge density difference and thermal stability, it is found that the ternary complex shows stronger attraction with He than that of solute-helium pair for some solutes (S, Se, In, Te, Pb and Bi) and the complex could existed in iron stably at 700 K. The present theoretical results may be helpful for exploring alloy additions to mitigate the formation of large helium bubbles.

  8. Diagnostics of Carbon Nanotube Formation in a Laser Produced Plume: An Investigation of the Metal Catalyst by Laser Ablation Atomic Fluorescence Spectroscopy

    NASA Technical Reports Server (NTRS)

    deBoer, Gary; Scott, Carl

    2003-01-01

    atoms survive for several milliseconds while the gaseous carbon atoms and small molecules nucleate more rapidly. Additional experiments and the development of in situ methods for carbon nanotube detection would allow these results to be interpreted from the perspective of carbon nanotube formation.

  9. Monte Carlo Approach for Estimating Density and Atomic Number From Dual-Energy Computed Tomography Images of Carbonate Rocks

    NASA Astrophysics Data System (ADS)

    Victor, Rodolfo A.; Prodanović, Maša.; Torres-Verdín, Carlos

    2017-12-01

    We develop a new Monte Carlo-based inversion method for estimating electron density and effective atomic number from 3-D dual-energy computed tomography (CT) core scans. The method accounts for uncertainties in X-ray attenuation coefficients resulting from the polychromatic nature of X-ray beam sources of medical and industrial scanners, in addition to delivering uncertainty estimates of inversion products. Estimation of electron density and effective atomic number from CT core scans enables direct deterministic or statistical correlations with salient rock properties for improved petrophysical evaluation; this condition is specifically important in media such as vuggy carbonates where CT resolution better captures core heterogeneity that dominates fluid flow properties. Verification tests of the inversion method performed on a set of highly heterogeneous carbonate cores yield very good agreement with in situ borehole measurements of density and photoelectric factor.

  10. Carbon Displacement-Induced Single Carbon Atomic Chain Formation and its Effects on Sliding of SiC Fibers in SiC/graphene/SiC Composite

    DOE PAGES

    Wallace, Joseph B.; Chen, Di; Shao, Lin

    2015-11-03

    Understanding radiation effects on the mechanical properties of SiC composites is important to their application in advanced reactor designs. By means of molecular dynamics simulations, we found that due to strong interface bonding between the graphene layers and SiC, the sliding friction of SiC fibers is largely determined by the frictional behavior between graphene layers. Upon sliding, carbon displacements between graphene layers can act as seed atoms to induce the formation of single carbon atomic chains (SCACs) by pulling carbon atoms from the neighboring graphene planes. The formation, growth, and breaking of SCACs determine the frictional response to irradiation.

  11. Carbon nanotube-clamped metal atomic chain

    PubMed Central

    Tang, Dai-Ming; Yin, Li-Chang; Li, Feng; Liu, Chang; Yu, Wan-Jing; Hou, Peng-Xiang; Wu, Bo; Lee, Young-Hee; Ma, Xiu-Liang; Cheng, Hui-Ming

    2010-01-01

    Metal atomic chain (MAC) is an ultimate one-dimensional structure with unique physical properties, such as quantized conductance, colossal magnetic anisotropy, and quantized magnetoresistance. Therefore, MACs show great potential as possible components of nanoscale electronic and spintronic devices. However, MACs are usually suspended between two macroscale metallic electrodes; hence obvious technical barriers exist in the interconnection and integration of MACs. Here we report a carbon nanotube (CNT)-clamped MAC, where CNTs play the roles of both nanoconnector and electrodes. This nanostructure is prepared by in situ machining a metal-filled CNT, including peeling off carbon shells by spatially and elementally selective electron beam irradiation and further elongating the exposed metal nanorod. The microstructure and formation process of this CNT-clamped MAC are explored by both transmission electron microscopy observations and theoretical simulations. First-principles calculations indicate that strong covalent bonds are formed between the CNT and MAC. The electrical transport property of the CNT-clamped MAC was experimentally measured, and quantized conductance was observed. PMID:20427743

  12. Plasmon enhanced Raman scattering effect for an atom near a carbon nanotube

    DOE PAGES

    Bondarev, I. V.

    2015-01-01

    Quantum electrodynamics theory of the resonance Raman scattering is developed for an atom in a close proximity to a carbon nanotube. The theory predicts a dramatic enhancement of the Raman intensity in the strong atomic coupling regime to nanotube plasmon near-fields. This resonance scattering is a manifestation of the general electromagnetic surface enhanced Raman scattering effect, and can be used in designing efficient nanotube based optical sensing substrates for single atom detection, precision spontaneous emission control, and manipulation.

  13. Effects of Al addition on atomic structure of Cu-Zr metallic glass

    NASA Astrophysics Data System (ADS)

    Li, Feng; Zhang, Huajian; Liu, Xiongjun; Dong, Yuecheng; Yu, Chunyan; Lu, Zhaoping

    2018-02-01

    The atomic structures of Cu52Zr48 and Cu45Zr48Al7 metallic glasses (MGs) have been studied by molecular dynamic simulations. The results reveal that the molar volume of the Cu45Zr48Al7 MG is smaller than that of the Cu52Zr48 MG, although the size of the Al atom is larger than that of the Cu atom, implying an enhanced atomic packing density achieved by introducing Al into the ternary MG. Bond shortening in unlike atomic pairs Zr-Al and Cu-Al is observed in the Cu45Zr48Al7 MG, which is attributed to strong interactions between Al and (Zr, Cu) atoms. Meanwhile, the atomic packing efficiency is enhanced by the minor addition of Al. Compared with the Cu52Zr48 binary MG, the potential energy of the ternary MG decreases and the glass transition temperature increases. Structural analyses indicate that more Cu- and Al-centered full icosahedral clusters emerge in the Cu45Zr48Al7 MG as some Cu atoms are substituted by Al. Furthermore, the addition of Al leads to more icosahedral medium-range orders in the ternary MG. The increase of full icosahedral clusters and the enhancement of the packing density are responsible for the improved glass-forming ability of Cu45Zr48Al7.

  14. Atomic Layer Epitaxy of Aluminum Nitride: Unraveling the Connection between Hydrogen Plasma and Carbon Contamination.

    PubMed

    Erwin, Steven C; Lyons, John L

    2018-06-13

    Atomistic control over the growth of semiconductor thin films, such as aluminum nitride, is a long-sought goal in materials physics. One promising approach is plasma-assisted atomic layer epitaxy, in which separate reactant precursors are employed to grow the cation and anion layers in alternating deposition steps. The use of a plasma during the growth-most often a hydrogen plasma-is now routine and generally considered critical, but the precise role of the plasma is not well-understood. We propose a theoretical atomistic model and elucidate its consequences using analytical rate equations, density functional theory, and kinetic Monte Carlo statistical simulations. We show that using a plasma has two important consequences, one beneficial and one detrimental. The plasma produces atomic hydrogen in the gas phase, which is important for removing methyl radicals left over from the aluminum precursor molecules. However, atomic hydrogen also leads to atomic carbon on the surface and, moreover, opens a channel for trapping these carbon atoms as impurities in the subsurface region, where they remain as unwanted contaminants. Understanding this dual role leads us to propose a solution for the carbon contamination problem which leaves the main benefit of the plasma largely unaffected.

  15. Carbon nanomaterials used as conductive additives in lithium ion batteries.

    PubMed

    Zhang, Qingtang; Yu, Zuolong; Du, Ping; Su, Ce

    2010-06-01

    As the vital part of lithium ion batteries, conductive additives play important roles in the electrochemical performance of lithium ion batteries. They construct a conductive percolation network to increase and keep the electronic conductivity of electrode, enabling it charge and discharge faster. In addition, conductive additives absorb and retain electrolyte, allowing an intimate contact between the lithium ions and active materials. Carbon nanomaterials are carbon black, Super P, acetylene black, carbon nanofibers, and carbon nanotubes, which all have superior properties such as low weight, high chemical inertia and high specific surface area. They are the ideal conductive additives for lithium ion batteries. This review will discuss some registered patents and relevant papers about the carbon nanomaterials that are used as conductive additives in cathode or anode to improve the electrochemical performance of lithium ion batteries.

  16. Catalytic conversion of alcohols having at least three carbon atoms to hydrocarbon blendstock

    DOEpatents

    Narula, Chaitanya K.; Davison, Brian H.

    2018-04-17

    A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100.degree. C. and up to 550.degree. C., wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.

  17. Catalytic conversion of alcohols having at least three carbon atoms to hydrocarbon blendstock

    DOEpatents

    Narula, Chaitanya K.; Davison, Brian H.

    2015-11-13

    A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100°C and up to 550°C, wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.

  18. Smooth Scaling of Valence Electronic Properties in Fullerenes: From One Carbon Atom, to C60, to Graphene

    DTIC Science & Technology

    2012-09-18

    Smooth scaling of valence electronic properties in fullerenes: from one carbon atom , to C60, to graphene Greyson R. Lewis,1 William E. Bunting,1...pacitance scaling lines of the fullerenes. Lastly, it is found that points representing the carbon atom and the graphene limit lie on scaling lines for...icosahedral fullerenes, so their quantum capacitances and their detachment energies scale smoothly from one C atom , through C60, to graphene. I

  19. Polarizabilities and van der Waals C{sub 6} coefficients of fullerenes from an atomistic electrodynamics model: Anomalous scaling with number of carbon atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saidi, Wissam A., E-mail: alsaidi@pitt.edu; Norman, Patrick

    2016-07-14

    The van der Waals C{sub 6} coefficients of fullerenes are shown to exhibit an anomalous dependence on the number of carbon atoms N such that C{sub 6} ∝ N{sup 2.2} as predicted using state-of-the-art quantum mechanical calculations based on fullerenes with small sizes, and N{sup 2.75} as predicted using a classical-metallic spherical-shell approximation of the fullerenes. We use an atomistic electrodynamics model where each carbon atom is described by a polarizable object to extend the quantum mechanical calculations to larger fullerenes. The parameters of this model are optimized to describe accurately the static and complex polarizabilities of the fullerenes bymore » fitting against accurate ab initio calculations. This model shows that C{sub 6} ∝ N{sup 2.8}, which is supportive of the classical-metallic spherical-shell approximation. Additionally, we show that the anomalous dependence of the polarizability on N is attributed to the electric charge term, while the dipole–dipole term scales almost linearly with the number of carbon atoms.« less

  20. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface

    NASA Astrophysics Data System (ADS)

    Erikat, I. A.; Hamad, B. A.

    2013-11-01

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.

  1. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface.

    PubMed

    Erikat, I A; Hamad, B A

    2013-11-07

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.

  2. High performance current and spin diode of atomic carbon chain between transversely symmetric ribbon electrodes.

    PubMed

    Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei

    2014-08-21

    We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 10(4). When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 10(6).

  3. High performance current and spin diode of atomic carbon chain between transversely symmetric ribbon electrodes

    PubMed Central

    Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei

    2014-01-01

    We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 104. When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 106. PMID:25142376

  4. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    NASA Astrophysics Data System (ADS)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  5. Carbon-hydrogen defects with a neighboring oxygen atom in n-type Si

    NASA Astrophysics Data System (ADS)

    Gwozdz, K.; Stübner, R.; Kolkovsky, Vl.; Weber, J.

    2017-07-01

    We report on the electrical activation of neutral carbon-oxygen complexes in Si by wet-chemical etching at room temperature. Two deep levels, E65 and E75, are observed by deep level transient spectroscopy in n-type Czochralski Si. The activation enthalpies of E65 and E75 are obtained as EC-0.11 eV (E65) and EC-0.13 eV (E75). The electric field dependence of their emission rates relates both levels to single acceptor states. From the analysis of the depth profiles, we conclude that the levels belong to two different defects, which contain only one hydrogen atom. A configuration is proposed, where the CH1BC defect, with hydrogen in the bond-centered position between neighboring C and Si atoms, is disturbed by interstitial oxygen in the second nearest neighbor position to substitutional carbon. The significant reduction of the CH1BC concentration in samples with high oxygen concentrations limits the use of this defect for the determination of low concentrations of substitutional carbon in Si samples.

  6. Reactions of Atomic Carbon with Butene Isomers: Implications for Molecular Growth in Carbon-Rich Environments

    DOE PAGES

    Bourgalais, J.; Spencer, Michael; Osborn, David L.; ...

    2016-10-31

    We carried out the product detection studies of C( 3P) atom reactions with butene (C 4H 8) isomers (but-1-ene, cis-but-2-ene, trans-but-2-ene) in a flow tube reactor at 353 K and 4 Torr under multiple collision conditions. Ground state carbon atoms are generated by 248 nm laser photolysis of tetrabromomethane, CBr 4, in a buffer of helium. Thermalized reaction products are detected using synchrotron tunable VUV photoionization and time-of-flight mass spectrometry. The temporal profiles of the detected ions are used to discriminate products from side or secondary reactions. Furthermore, for the C( 3P) + trans-but-2-ene and C( 3P) + cis-but-2-ene reactions,more » various isomers of C 4H 5 and C 5H 7 are identified as reaction products formed via CH 3 and H elimination. Assuming equal ionization cross sections for all C 4H 5 and C 5H 7 isomers, C 4H 5:C 5H 7 branching ratios of 0.63:1 and 0.60:1 are derived for the C( 3P) + trans-but-2-ene and the C( 3P) + cis-but-2-ene reactions, respectively. For the C( 3P) + but-1-ene reaction, two reaction channels are observed: the H-elimination channel, leading to the formation of the ethylpropargyl isomer, and the C 3H 3 + C 2H 5 channel. Assuming equal ionization cross sections for ethylpropargyl and C 3H 3 radicals, a branching ratio of 1:0.95 for the C 3H 3 + C 2H 5 and H + ethylpropargyl channels is derived. Finally, the experimental results are compared to previous H atom branching ratios and used to propose the most likely mechanisms for the reaction of ground state carbon atoms with butene isomers.« less

  7. Transfer-free synthesis of graphene-like atomically thin carbon films on SiC by ion beam mixing technique

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Chen, Fenghua; Wang, Jinbin; Fu, Dejun

    2018-03-01

    Here we demonstrate the synthesis of graphene directly on SiC substrates at 900 °C using ion beam mixing technique with energetic carbon cluster ions on Ni/SiC structures. The thickness of 7-8 nm Ni films was evaporated on the SiC substrates, followed by C cluster ion bombarding. Carbon cluster ions C4 were bombarded at 16 keV with the dosage of 4 × 1016 atoms/cm2. After thermal annealing process Ni silicides were formed, whereas C atoms either from the decomposition of the SiC substrates or the implanted contributes to the graphene synthesis by segregating and precipitating process. The limited solubility of carbon atoms in silicides, involving SiC, Ni2Si, Ni5Si2, Ni3Si, resulted in diffusion and precipitation of carbon atoms to form graphene on top of Ni and the interface of Ni/SiC. The ion beam mixing technique provides an attractive production method of a transfer-free graphene growth on SiC and be compatible with current device fabrication.

  8. Performance of carbon material derived from starch mixed with flame retardant as electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Tsubota, Toshiki; Morita, Masaki; Murakami, Naoya; Ohno, Teruhisa

    2014-12-01

    Carbon materials derived from starch with an added flame retardant, such as melamine polyphosphate, melamine sulfate, guanylurea phosphate, or guanidine phosphate, were synthesized for investigating the performance as the electrode of an electrochemical capacitor. The yield after the heat treatment of the carbonization reaction increased by the addition of these flame retardants up to 800 °C. Although both the specific surface area and electrical resistivity are almost independent of the addition of the flame retardants, the capacitance values are improved with the addition of the flame retardants. The nitrogen atoms derived from the flame retardants are introduced to some extent into the synthesized carbon material. Moreover, the phosphorous atoms or the sulfur atoms derived from the flame retardants are doped into the synthesized carbon material. The method applied in this study, that is, the addition of flame retardants before the carbonization process can be used for the doping of the hetero atom such as N, P and S into the carbon material.

  9. Buckling behaviors of single-walled carbon nanotubes inserted with a linear carbon-atom chain.

    PubMed

    Zhu, Chunhua; Chen, Yinfeng; Liu, Rumeng; Zhao, Junhua

    2018-08-17

    Buckling behaviors of single-walled carbon nanotubes (SWCNTs) inserted with a linear carbon-atom chain (CAC) (the composite structures are also called carbon nanowires (CNWs)) under torsion and bending as well as compression are studied using molecular dynamics (MD) simulations, respectively. Our MD results show that the critical buckling angles (or strains) of CNWs under the three presented kinds of loading patterns can be two times those of corresponding independent SWCNTs for long CNWs, while the buckling improvement is not obvious for short ones. The main reason is that the radial van der Waals force between the CAC and the SWCNT is very small for a short CNW, while it increases with increasing length and then tends to a constant for a long CNW. The obtained MD results agree well with those from available theoretical models. These findings will be a great help towards understanding the stability and reliability of the special CNT structures, and designing flexible CNT-based devices.

  10. Adsorption Energies of Carbon, Nitrogen, and Oxygen Atoms on the Low-temperature Amorphous Water Ice: A Systematic Estimation from Quantum Chemistry Calculations

    NASA Astrophysics Data System (ADS)

    Shimonishi, Takashi; Nakatani, Naoki; Furuya, Kenji; Hama, Tetsuya

    2018-03-01

    We propose a new simple computational model to estimate the adsorption energies of atoms and molecules to low-temperature amorphous water ice, and we present the adsorption energies of carbon (3 P), nitrogen (4 S), and oxygen (3 P) atoms based on quantum chemistry calculations. The adsorption energies were estimated to be 14,100 ± 420 K for carbon, 400 ± 30 K for nitrogen, and 1440 ± 160 K for oxygen. The adsorption energy of oxygen is consistent with experimentally reported values. We found that the binding of a nitrogen atom is purely physisorption, while that of a carbon atom is chemisorption, in which a chemical bond to an O atom of a water molecule is formed. That of an oxygen atom has a dual character, with both physisorption and chemisorption. The chemisorption of atomic carbon also implies the possibility of further chemical reactions to produce molecules bearing a C–O bond, though this may hinder the formation of methane on water ice via sequential hydrogenation of carbon atoms. These properties would have a large impact on the chemical evolution of carbon species in interstellar environments. We also investigated the effects of newly calculated adsorption energies on the chemical compositions of cold dense molecular clouds with the aid of gas-ice astrochemical simulations. We found that abundances of major nitrogen-bearing molecules, such as N2 and NH3, are significantly altered by applying the calculated adsorption energy, because nitrogen atoms can thermally diffuse on surfaces, even at 10 K.

  11. Atoms in carbon cages as a source of interstellar diffuse lines

    NASA Technical Reports Server (NTRS)

    Ballester, J. L.; Antoniewicz, P. R.; Smoluchowski, R.

    1990-01-01

    A model to describe the resonance absorption lines of various atoms trapped in closed carbon cages is presented. These systems may be responsible for some of the as yet unexplained diffuse interstellar bands. Model potentials for possible atom-C60 systems are obtained and used to calculate the resonance lines. The trapped atoms considered are O, N, Si, Mg, Al, Na, and S, and in all cases the resonance lines are shifted toward the red as compared to the isolated atoms. The calculated wavelengths are compared to the range of wavelengths observed for the diffuse interstellar bands, and good agreement is found for Mg and Si resonance lines. Other lines may be caused by other than resonance transitions or by trapped molecules. The oscillator strengths and the abundances are evaluated and compared with observation. Mechanisms to explain the observed band width of the lines and the existence of certain correlated pairs of lines are discussed.

  12. Optimization of metal atomic ratio of PdxRuyNiz on carbon support for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Charoen, Kanin; Warakulwit, Chompunuch; Prapainainar, Chaiwat; Seubsai, Anusorn; Chareonpanich, Metta; Prapainainar, Paweena

    2017-11-01

    The catalytic activity of palladium (Pd) on an alloy catalyst on carbon supports with regards to ethanol oxidation was enhanced by systematically varying the atomic ratio of Pd, ruthenium (Ru), and nickel (Ni) alloy catalyst. Each atomic ratio catalyst was investigated so as to find the highest current density per mass of palladium. Functionalized carbon black (C) and reduced graphene oxide (rGO) were used as carbon supports. The PdxRuyNiz/carbon catalysts were prepared by impregnation and reduction method with sodium borohydride (NaBH4) being used as the reducing agent. Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) were used to characterize the functionalized carbon supports, and the synthesized PdxRuyNiz/carbon catalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and inductively coupled plasma (ICP). The electrical properties of catalyst were performed by cyclic voltammetry (CV), chronoamperometry (CA), and CO-stripping to investigate the catalytic activity compared to 20%wt synthesized Pd/C. The results showed that Pd:Ru:Ni = 60:0:40 on rGO (Pd60Ni40/rGO) had the best metal atomic ratio and support for the electro-oxidation of ethanol. The maximum current density and the electrochemical surface area were 11,074 mA cm-2 mg-1Pd and 55.6 m2 g-1Pd, which were 1.7 and 2.67 times the corresponding values of synthesized Pd/C, respectively.

  13. Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures.

    PubMed

    Siddiqui, Wei Gao Muhammad Kamran; Naeem, Muhammad; Rehman, Najma Abdul

    2017-09-07

    Graph theory is used for modeling, designing, analysis and understanding chemical structures or chemical networks and their properties. The molecular graph is a graph consisting of atoms called vertices and the chemical bond between atoms called edges. In this article, we study the chemical graphs of carbon graphite and crystal structure of cubic carbon. Moreover, we compute and give closed formulas of degree based additive topological indices, namely hyper-Zagreb index, first multiple and second multiple Zagreb indices, and first and second Zagreb polynomials.

  14. Effects of chemical states of carbon on deuterium retention in carbon-containing materials

    NASA Astrophysics Data System (ADS)

    Oyaidzu, Makoto; Kimura, Hiromi; Nakahata, Toshihiko; Nishikawa, Yusuke; Tokitani, Masayuki; Oya, Yasuhisa; Iwakiri, Hirotomo; Yoshida, Naoaki; Okuno, Kenji

    2007-08-01

    Deuterium retention behavior in highly oriented pyrolytic graphite (HOPG), poly-crystalline diamond, poly-crystalline SiC, sintered WC, and converted B 4C were investigated to reveal tritium behavior in re-deposition and co-deposition layers. Such layers would contain carbon, when the first wall and/or divertor were made of graphite or carbon-containing materials. Furthermore, the employment of other materials such as tungsten, and first wall conditioning such as boronization would complicate the layers. No different deuterium trapping sites due to carbon from those in HOPG were found in all the samples, where two deuterium trapping processes were observed: hot atom chemical trapping of energetic deuterium by a dangling bond of carbon and thermochemical trapping of thermalized deuterium in a constituent atom vacancy surrounded by carbons. Additionally, the latter reaction could be easily counteracted by or competed with the other deuterium trapping reactions by constituent atoms.

  15. Theoretical Kinetics Analysis for Ḣ Atom Addition to 1,3-Butadiene and Related Reactions on the Ċ4H7 Potential Energy Surface.

    PubMed

    Li, Yang; Klippenstein, Stephen J; Zhou, Chong-Wen; Curran, Henry J

    2017-10-12

    found that abstraction from the central carbon atoms is the dominant channel (>70%) at temperatures in the range of 298-2000 K. Finally, by incorporating our calculated rate constants for both Ḣ atom addition and abstraction into our recently developed 1,3-butadiene model, we show that laminar flame speed predictions are significantly improved, emphasizing the value of this study.

  16. Conductivity enhancement of carbon aerogel by modified gelation using self additive

    NASA Astrophysics Data System (ADS)

    Singh, Ashish; Kohli, D. K.; Bhartiya, Sushmita; Singh, Rashmi; Rajak, Gaurav; Singh, M. K.; Karnal, A. K.

    2018-04-01

    Carbon aerogels having high surface area and open pore structure are being studied for many electrochemical applications such as fuel cells and super capacitors. Moderate electrical conductivity of resorcinol - formaldehyde (R-F) derived carbon aerogel limits its utility in these applications. The current manuscript briefs about the synthesis of composite carbon aerogel using carbon aerogel itself as additive during gelation of water based carbon aerogel and study the effect on its conductivity and surface properties. The additive carbon aerogel was synthesized and pre-treated at higher temperature to achieve enhancement in conductivity. The composite carbon aerogel (CCA) samples were characterized for surface area properties, morphology, electrical conductivity and specific capacitance. The surface area properties of CCA showed improvement and specific surface area of ˜1798 m2/g with total pore volume of 1.7 cm3/g. was obtained. The electrical conductivity of the composite carbon aerogel with 5 wt % additive showed improvement over the plain carbon aerogel with respective values of 144 S/m and 128 S/m. The specific capacitance evaluated for CA and CCA are 102 and 118 F/g at scan rate of 10mV/s with improvement of ˜16%.

  17. Low-temperature Condensation of Carbon

    NASA Astrophysics Data System (ADS)

    Krasnokutski, S. A.; Goulart, M.; Gordon, E. B.; Ritsch, A.; Jäger, C.; Rastogi, M.; Salvenmoser, W.; Henning, Th.; Scheier, P.

    2017-10-01

    Two different types of experiments were performed. In the first experiment, we studied the low-temperature condensation of vaporized graphite inside bulk liquid helium, while in the second experiment, we studied the condensation of single carbon atoms together with H2, H2O, and CO molecules inside helium nanodroplets. The condensation of vaporized graphite leads to the formation of partially graphitized carbon, which indicates high temperatures, supposedly higher than 1000°C, during condensation. Possible underlying processes responsible for the instant rise in temperature during condensation are discussed. This suggests that such processes cause the presence of partially graphitized carbon dust formed by low-temperature condensation in the diffuse interstellar medium. Alternatively, in the denser regions of the ISM, the condensation of carbon atoms together with the most abundant interstellar molecules (H2, H2O, and CO), leads to the formation of complex organic molecules (COMs) and finally organic polymers. Water molecules were found not to be involved directly in the reaction network leading to the formation of COMs. It was proposed that COMs are formed via the addition of carbon atoms to H2 and CO molecules ({{C}}+{{{H}}}2\\to {HCH},{HCH}+{CO}\\to {{OCCH}}2). Due to the involvement of molecular hydrogen, the formation of COMs by carbon addition reactions should be more efficient at high extinctions compared with the previously proposed reaction scheme with atomic hydrogen.

  18. Atomic hydrogen cleaning of EUV multilayer optics

    NASA Astrophysics Data System (ADS)

    Graham, Samuel, Jr.; Steinhaus, Charles A.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa

    2003-06-01

    Recent studies have been conducted to investigate the use of atomic hydrogen as an in-situ contamination removal method for EUV optics. In these experiments, a commercial source was used to produce atomic hydrogen by thermal dissociation of molecular hydrogen using a hot filament. Samples for these experiments consisted of silicon wafers coated with sputtered carbon, Mo/Si optics with EUV-induced carbon, and bare Si-capped and Ru-B4C-capped Mo/Si optics. Samples were exposed to an atomic hydrogen source at a distance of 200 - 500 mm downstream and angles between 0-90° with respect to the source. Carbon removal rates and optic oxidation rates were measured using Auger electron spectroscopy depth profiling. In addition, at-wavelength peak reflectance (13.4 nm) was measured using the EUV reflectometer at the Advanced Light Source. Data from these experiments show carbon removal rates up to 20 Ê/hr for sputtered carbon and 40 Ê/hr for EUV deposited carbon at a distance of 200 mm downstream. The cleaning rate was also observed to be a strong function of distance and angular position. Experiments have also shown that the carbon etch rate can be increased by a factor of 4 by channeling atomic hydrogen through quartz tubes in order to direct the atomic hydrogen to the optic surface. Atomic hydrogen exposures of bare optic samples show a small risk in reflectivity degradation after extended periods. Extended exposures (up to 20 hours) of bare Si-capped Mo/Si optics show a 1.2% loss (absolute) in reflectivity while the Ru-B4C-capped Mo/Si optics show a loss on the order of 0.5%. In order to investigate the source of this reflectivity degradation, optic samples were exposed to atomic deuterium and analyzed using low energy ion scattering direct recoil spectroscopy to determine any reactions of the hydrogen with the multilayer stack. Overall, the results show that the risk of over-etching with atomic hydrogen is much less than previous studies using RF discharge cleaning

  19. Atomic hydrogen cleaning of EUV multilayer optics

    NASA Astrophysics Data System (ADS)

    Graham, Samuel, Jr.; Steinhaus, Charles A.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa

    2003-06-01

    Recent studies have been conducted to investigate the use of atomic hydrogen as an in-situ contamination removal method for EUV optics. In these experiments, a commercial source was used to produce atomic hydrogen by thermal dissociation of molecular hydrogen using a hot filament. Samples for these experiments consisted of silicon wafers coated with sputtered carbon, Mo/Si optics with EUV-induced carbon, and bare Si-capped and Ru-B4C-capped Mo/Si optics. Samples were exposed to an atomic hydrogen source at a distance of 200 - 500 mm downstream and angles between 0-90° with respect to the source. Carbon removal rates and optic oxidation rates were measured using Auger electron spectroscopy depth profiling. In addition, at-wavelength peak reflectance (13.4 nm) was measured using the EUV reflectometer at the Advanced Light Source. Data from these experiments show carbon removal rates up to 20 Å/hr for sputtered carbon and 40 Å/hr for EUV deposited carbon at a distance of 200 mm downstream. The cleaning rate was also observed to be a strong function of distance and angular position. Experiments have also shown that the carbon etch rate can be increased by a factor of 4 by channeling atomic hydrogen through quartz tubes in order to direct the atomic hydrogen to the optic surface. Atomic hydrogen exposures of bare optic samples show a small risk in reflectivity degradation after extended periods. Extended exposures (up to 20 hours) of bare Si-capped Mo/Si optics show a 1.2% loss (absolute) in reflectivity while the Ru-B4C-capped Mo/Si optics show a loss on the order of 0.5%. In order to investigate the source of this reflectivity degradation, optic samples were exposed to atomic deuterium and analyzed using low energy ion scattering direct recoil spectroscopy to determine any reactions of the hydrogen with the multilayer stack. Overall, the results show that the risk of over-etching with atomic hydrogen is much less than previous studies using RF discharge cleaning

  20. Atomic resolution Z-contrast imaging and energy loss spectroscopy of carbon nanotubes and bundles

    NASA Astrophysics Data System (ADS)

    Lupini, A. R.; Chisholm, M. F.; Puretzky, A. A.; Eres, G.; Melechko, A. V.; Schaaff, G.; Lowndes, D. H.; Geohegan, D. B.; Schittenhelm, H.; Pennycook, S. J.; Wang, Y.; Smalley, R. E.

    2002-03-01

    Single-wall carbon nanotubes and bundles were studied by a combination of techniques, including conventional imaging and diffraction, atomic resolution Z-contrast imaging in an aberration corrected STEM and electron energy loss spectroscopy (EELS). EELS is ideally suited for the analysis of carbon based structures because of the ability to distinguish between the different forms, specifically nanotubes, graphite, amorphous carbon and diamond. Numerous attempts were made to synthesize crystals of single walled carbon nanotubes, using both solution and vapor deposition of precursor structures directly onto TEM grids for in-situ annealing. The range of structures produced will be discussed.

  1. Functionalizing carbon nitride with heavy atom-free spin converters for enhanced 1 O 2 generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wenting; Han, Congcong; Zhang, Qinhua

    advanced photosensitizers for singlet oxygen (1O2) generation. However, the intersystem crossing (ISC) process is quite insufficient in carbon nitride, limiting the 1O2 generation. Here, we report a facile and general strategy to confined benzophenone as a heavy atom-free spin converter dopant in carbon nitride via the facile copolymerization. With proper energy level matching between the heavy atom-free spin converter and various ligands based on carbon nitride precursors, the proper combination can decrease the singlet-triplet energy gap (DEST) and hence generate 1O2 effectively. Due to its significant and selectivity for 1O2 generation, the as-prepared carbon nitride-based photosensitizer shows a high selectivemore » photooxidation activity for 1,5-dihydroxy-naphthalene (1,5-DHN). The product yield reached 71.8% after irradiation for 60 min, which was higher than that of cyclometalated PtII complexes (53.6%) in homogeneous photooxidation. This study can broaden the application of carbon nitride in the field of selective heterogeneous photooxidation due to simple operation, low cost, and high efficiency, making it a strong candidate for future industrialization.« less

  2. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

  3. Effect of carbon and nitrogen addition on nitrous oxide and carbon dioxide fluxes from thawing forest soils

    NASA Astrophysics Data System (ADS)

    Haohao, Wu; Xingkai, Xu; Cuntao, Duan; TuanSheng, Li; Weiguo, Cheng

    2017-07-01

    Packed soil-core incubation experiments were done to study the effects of carbon (glucose, 6.4 g C m-2) and nitrogen (NH4Cl and KNO3, 4.5 g N m-2) addition on nitrous oxide (N2O) and carbon dioxide (CO2) fluxes during thawing of frozen soils under two forest stands (broadleaf and Korean pine mixed forest and white birch forest) with two moisture levels (55 and 80% water-filled pore space). With increasing soil moisture, the magnitude and longevity of the flush N2O flux from forest soils was enhanced during the early period of thawing, which was accompanied by great NO3--N consumption. Without N addition, the glucose-induced cumulative CO2 fluxes ranged from 9.61 to 13.49 g CO2-C m-2, which was larger than the dose of carbon added as glucose. The single addition of glucose increased microbial biomass carbon but slightly affected soil dissolved organic carbon pool. Thus, the extra carbon released upon addition of glucose can result from the decomposition of soil native organic carbon. The glucose-induced N2O and CO2 fluxes were both significantly correlated to the glucose-induced total N and dissolved organic carbon pools and influenced singly and interactively by soil moisture and KNO3 addition. The interactive effects of glucose and nitrogen inputs on N2O and CO2 fluxes from forest soils after frost depended on N sources, soil moisture, and vegetation types.

  4. The atomic scale structure of CXV carbon: wide-angle x-ray scattering and modeling studies.

    PubMed

    Hawelek, L; Brodka, A; Dore, J C; Honkimaki, V; Burian, A

    2013-11-13

    The disordered structure of commercially available CXV activated carbon produced from finely powdered wood-based carbon has been studied using the wide-angle x-ray scattering technique, molecular dynamics and density functional theory simulations. The x-ray scattering data has been converted to the real space representation in the form of the pair correlation function via the Fourier transform. Geometry optimizations using classical molecular dynamics based on the reactive empirical bond order potential and density functional theory at the B3LYP/6-31g* level have been performed to generate nanoscale models of CXV carbon consistent with the experimental data. The final model of the structure comprises four chain-like and buckled graphitic layers containing a small percentage of four-fold coordinated atoms (sp(3) defects) in each layer. The presence of non-hexagonal rings in the atomic arrangement has been also considered.

  5. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

  6. Quantum decoherence in electronic current flowing through carbon nanotubes induced by thermal atomic vibrations

    NASA Astrophysics Data System (ADS)

    Ishizeki, Keisuke; Sasaoka, Kenji; Konabe, Satoru; Souma, Satofumi; Yamamoto, Takahiro

    2018-06-01

    We theoretically investigate quantum decoherence in electronic currents flowing through metallic carbon nanotubes caused by thermal atomic vibrations using the time-dependent Schrödinger equation for an open system. We reveal that the quantum coherence of conduction electrons decays exponentially with tube length at a fixed temperature, and that the decay rate increases with temperature. We also find that the phase relaxation length due to the thermal atomic vibrations is inversely proportional to temperature.

  7. Self-assembly of endohedral metallofullerenes: a decisive role of cooling gas and metal–carbon bonding† †Electronic supplementary information (ESI) available: Additional information on metal–carbon bonding and MD simulations. See DOI: 10.1039/c5nr08645k Click here for additional data file.

    PubMed Central

    Deng, Qingming; Heine, Thomas

    2016-01-01

    The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc–C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-T d and Ti@C30-C 2v(3). PMID:26815243

  8. Activation of extended red emission photoluminescence in carbon solids by exposure to atomic hydrogen and UV radiation

    NASA Technical Reports Server (NTRS)

    Furton, Douglas G.; Witt, Adolf N.

    1993-01-01

    We report on new laboratory results which relate directly to the observation of strongly enhanced extended red emission (ERE) by interstellar dust in H2 photodissociation zones. The ERE has been attributed to photoluminescence by hydrogenated amorphous carbon (HAC). We are demonstrating that exposure to thermally dissociated atomic hydrogen will restore the photoluminescence efficiency of previously annealed HAC. Also, pure amorphous carbon (AC), not previously photoluminescent, can be induced to photoluminesce by exposure to atomic hydrogen. This conversion of AC into HAC is greatly enhanced by the presence of UV irradiation. The presence of dense, warm atomic hydrogen and a strong UV radiation field are characteristic environmental properties of H2 dissociation zones. Our results lend strong support to the HAC photoluminescence explanation for ERE.

  9. Small angle neutron and X-ray studies of carbon structures with metal atoms

    NASA Astrophysics Data System (ADS)

    Lebedev, V. T.; Szhogina, A. A.; Bairamukov, V. Yu

    2017-05-01

    Encapsulation of metal atoms inside carbon single-wall cages or within multi-layer cells has been realized using molecular precursors and high temperature processes transforming them into desirable structures. Endohedral fullerenols Fe@C60(OH)X with 3d-metal (iron) have been studied by SANS in aqueous solutions where they form stable globular clusters with radii R C ∼ 10-12 nm and aggregation numbers N C ∼ 104. This self-assembly is a crucial feature of paramagnetic fullerenols as perspective contrast agents for Magneto-Resonance Imaging in medicine. Cellular carbon-metal structures have been created by the pyrolysis of diphthalocyanines of lanthanides and actinides. It was established that these ultra porous matrices consist of globular cells of molecular precursor size (∼ 1 nm) which are aggregated into superstructures. This provides retain of metal atoms inside matrices which may serve for safety storage of spent fuel of nuclear power plants.

  10. The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation.

    PubMed

    Ali, Sajjad; Fu Liu, Tian; Lian, Zan; Li, Bo; Sheng Su, Dang

    2017-08-23

    The mechanism of CO oxidation by O 2 on a single Au atom supported on pristine, mono atom vacancy (m), di atom vacancy (di) and the Stone Wales defect (SW) on single walled carbon nanotube (SWCNT) surface is systematically investigated theoretically using density functional theory. We determine that single Au atoms can be trapped effectively by the defects on SWCNTs. The defects on SWCNTs can enhance both the binding strength and catalytic activity of the supported single Au atom. Fundamental aspects such as adsorption energy and charge transfer are elucidated to analyze the adsorption properties of CO and O 2 and co-adsorption of CO and O 2 molecules. It is found that CO binds stronger than O 2 on Au supported SWCNT. We clearly demonstrate that the defected SWCNT surface promotes electron transfer from the supported single Au atom to O 2 molecules. On the other hand, this effect is weaker for pristine SWCNTs. It is observed that the high density of spin-polarized states are localized in the region of the Fermi level due to the strong interactions between Au (5d orbital) and the adjacent carbon (2p orbital) atoms, which influence the catalytic performance. In addition, we elucidate both the Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms of CO oxidation by O 2 . For the LH pathway, the barriers of the rate-limiting step are calculated to be 0.02 eV and 0.05 eV for Au/m-SWCNT and Au/di-SWCNT, respectively. To regenerate the active sites, an ER-like reaction occurs to form a second CO 2 molecule. The ER pathway is observed on Au/m-SWCNT, Au/SW-SWCNT and Au/SWCNT in which the Au/m-SWCNT has a smaller barrier. The comparison with a previous study (Lu et al., J. Phys. Chem. C, 2009, 113, 20156-20160.) indicates that the curvature effect of SWCNTs is important for the catalytic property of the supported single Au. Overall, Au/m-SWCNT is identified as the most active catalyst for CO oxidation compared to pristine SWCNT, SW-SWCNT and di-SWCNT. Our findings give a

  11. Carbon based thirty six atom spheres

    DOEpatents

    Piskoti, Charles R.; Zettl, Alex K.; Cohen, Marvin L.; Cote, Michel; Grossman, Jeffrey C.; Louie, Steven G.

    2005-09-06

    A solid phase or form of carbon is based on fullerenes with thirty six carbon atoms (C.sub.36). The C.sub.36 structure with D.sub.6h symmetry is one of the two most energetically favorable, and is conducive to forming a periodic system. The lowest energy crystal is a highly bonded network of hexagonal planes of C.sub.36 subunits with AB stacking. The C.sub.36 solid is not a purely van der Waals solid, but has covalent-like bonding, leading to a solid with enhanced structural rigidity. The solid C.sub.36 material is made by synthesizing and selecting out C.sub.36 fullerenes in relatively large quantities. A C.sub.36 rich fullerene soot is produced in a helium environment arc discharge chamber by operating at an optimum helium pressure (400 torr). The C.sub.36 is separated from the soot by a two step process. The soot is first treated with a first solvent, e.g. toluene, to remove the higher order fullerenes but leave the C.sub.36. The soot is then treated with a second solvent, e.g. pyridine, which is more polarizable than the first solvent used for the larger fullerenes. The second solvent extracts the C.sub.36 from the soot. Thin films and powders can then be produced from the extracted C.sub.36. Other materials are based on C.sub.36 fullerenes, providing for different properties.

  12. The interaction of a gold atom with carbon nanohorn and carbon nanotube tips and their complexes with a CO molecule: A first principle calculation

    NASA Astrophysics Data System (ADS)

    Khongpracha, P.; Probst, M.; Limtrakul, J.

    2008-07-01

    The interactions of a gold atom with: (a) a single-wall carbon nanohorn (SWNH) conic tip; (b) with a single-wall carbon nanotube (SWNT) tip; and (c) their complexes with a CO molecule were studied using first-principle calculations based on density functional theory. The analysis of the pyramidalization angle (θp) as well as the π-orbital misalignment angles indicate that there should be many reactive carbon sites on the tips of SWNH and SWNT. It was found that SWNH provides reactive sites that can more selectively interact with the target atom. We identified five sites on both the SWNT tip and the nanohorn where attachment of a gold atom leads to a stable complex. This metal is found to be bi-coordinated with the tip of SWNH, while it is mono-coordinated with the SWNT tip. The largest interaction energies are -10.75 kcal/mol and -16.17 kcal/mol, respectively. The CO probe molecule binds to Au on the Au/SWNH or Au/SWNT tips with interaction energies of -22.34 and -18.29 kcal/mol, respectively. The main contributions of the interaction with both carbon nanostructures stems from σ-donation and π-backbonding. The results suggest that SWNHs could be one of the promising candidates for the development of high-specifity nanosensors.

  13. Carbon atom and cluster sputtering under low-energy noble gas plasma bombardment

    NASA Astrophysics Data System (ADS)

    Oyarzabal, E.; Doerner, R. P.; Shimada, M.; Tynan, G. R.

    2008-08-01

    Exit-angle resolved carbon atom and cluster (C2 and C3) sputtering yields are measured during different noble gas (Xe, Kr, Ar, Ne, and He) ion bombardments from a plasma, for low incident energies (75-225 eV). A quadrupole mass spectrometer (QMS) is used to detect the fraction of sputtered neutrals that is ionized in the plasma and to obtain the angular distribution by changing the angle between the target normal and the QMS aperture. A one-dimensional Monte Carlo code is used to simulate the interaction of the plasma and the sputtered particles in the region between the sample and the QMS. The effective elastic scattering cross sections of C, C2, and C3 with the different bombarding gas neutrals are obtained by varying the distance between the sample and the QMS and by performing a best fit of the simulation results to the experimental results. The total sputtering yield (C+C2+C3) for each bombarding gas is obtained from weight-loss measurements and the sputtering yield for C, C2, and C3 is then calculated from the integration of the measured angular distribution, taking into account the scattering and ionization of the sputtered particles between the sample and the QMS. We observe undercosine angular distributions of the sputtered atoms and clusters for all the studied bombarding gases and a clear decrease of the atom to cluster (C2 and C3) sputtering ratio as the incident ion mass increases, changing from a carbon atom preferential erosion for the lower incident ion masses (He, Ne, and Ar) to a cluster preferential erosion for the higher incident ion masses (Kr and Xe).

  14. Theoretical Kinetics Analysis for $$\\dot{H}$$ Atom Addition to 1,3-Butadiene and Related Reactions on the $$\\dot{C}$$ 4H 7 Potential Energy Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Klippenstein, Stephen J.; Zhou, Chong-Wen

    abstraction by $$\\dot{H}$$ atoms have also been calculated, and it is found that abstraction from the central carbon atoms is the dominant channel (> 70%) at temperatures in the range 298 – 2000 K. Lastly, by incorporating our calculated rate constants for both H-atom addition and abstraction into our recently developed 1,3-butadiene model, we show that laminar flame speed predictions are significantly improved, emphasizing the value of this study.« less

  15. Self-Assembled Fe-N-Doped Carbon Nanotube Aerogels with Single-Atom Catalyst Feature as High-Efficiency Oxygen Reduction Electrocatalysts

    DOE PAGES

    Zhu, Chengzhou; Fu, Shaofang; Song, Junhua; ...

    2017-02-06

    In this study, self-assembled M–N-doped carbon nanotube aerogels with single-atom catalyst feature are for the first time reported through one-step hydrothermal route and subsequent facile annealing treatment. By taking advantage of the porous nanostructures, 1D nanotubes as well as single-atom catalyst feature, the resultant Fe–N-doped carbon nanotube aerogels exhibit excellent oxygen reduction reaction electrocatalytic performance even better than commercial Pt/C in alkaline solution.

  16. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Addition of Hydrogen Atoms.

    PubMed

    Lindquist, Beth A; Takeshita, Tyler Y; Dunning, Thom H

    2016-05-05

    Ozone (O3) and sulfur dioxide (SO2) are valence isoelectronic species, yet their properties and reactivities differ dramatically. In particular, O3 is highly reactive, whereas SO2 is chemically relatively stable. In this paper, we investigate serial addition of hydrogen atoms to both the terminal atoms of O3 and SO2 and to the central atom of these species. It is well-known that the terminal atoms of O3 are much more amenable to bond formation than those of SO2. We show that the differences in the electronic structure of the π systems in the parent triatomic species account for the differences in the addition of hydrogen atoms to the terminal atoms of O3 and SO2. Further, we find that the π system in SO2, which is a recoupled pair bond dyad, facilitates the addition of hydrogen atoms to the sulfur atom, resulting in stable HSO2 and H2SO2 species.

  17. Gas-phase reactions of carbon dioxide with atomic transition-metal and main-group cations: room-temperature kinetics and periodicities in reactivity.

    PubMed

    Koyanagi, Gregory K; Bohme, Diethard K

    2006-02-02

    The chemistry of carbon dioxide has been surveyed systematically with 46 atomic cations at room temperature using an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. The atomic cations were produced at ca. 5500 K in an ICP source and allowed to cool radiatively and to thermalize by collisions with Ar and He atoms prior to reaction downstream in a flow tube in helium buffer gas at 0.35 +/- 0.01 Torr and 295 +/- 2 K. Rate coefficients and products were measured for the reactions of first-row atomic ions from K(+) to Se(+), of second-row atomic ions from Rb(+) to Te(+) (excluding Tc(+)), and of third-row atomic ions from Cs(+) to Bi(+). CO(2) was found to react in a bimolecular fashion by O atom transfer only with 9 early transition-metal cations: the group 3 cations Sc(+), Y(+), and La(+), the group 4 cations Ti(+), Zr(+), and Hf(+), the group 5 cations Nb(+) and Ta(+), and the group 6 cation W(+). Electron spin conservation was observed to control the kinetics of O atom transfer. Addition of CO(2) was observed for the remaining 37 cations. While the rate of addition was not measurable some insight was obtained into the standard free energy change, DeltaG(o), for CO(2) ligation from equilibrium constant measurements. A periodic variation in DeltaG(o) was observed for first row cations that is consistent with previous calculations of bond energies D(0)(M(+)-CO(2)). The observed trends in D(0) and DeltaG(o) are expected from the variation in electrostatic attraction between M(+) and CO(2) which follows the trend in atomic-ion size and the trend in repulsion between the orbitals of the atomic cations and the occupied orbitals of CO(2). Higher-order CO(2) cluster ions with up to four CO(2) ligands also were observed for 24 of the atomic cations while MO(2)(+) dioxide formation by sequential O atom transfer was seen only with Hf(+), Nb(+), Ta(+), and W(+).

  18. Development of carbon electrodes for electrochemistry, solid-state electronics and multimodal atomic force microscopy imaging

    NASA Astrophysics Data System (ADS)

    Morton, Kirstin Claire

    Carbon is one of the most remarkable elements due to its wide abundance on Earth and its many allotropes, which include diamond and graphite. Many carbon allotropes are conductive and in recent decades scientists have discovered and synthesized many new forms of carbon, including graphene and carbon nanotubes. The work in this thesis specifically focuses on the fabrication and characterization of pyrolyzed parylene C (PPC), a conductive pyrocarbon, as an electrode material for diodes, as a conductive coating for atomic force microscopy (AFM) probes and as an ultramicroelectrode (UME) for the electrochemical interrogation of cellular systems in vitro. Herein, planar and three-dimensional (3D) PPC electrodes were microscopically, spectroscopically and electrochemically characterized. First, planar PPC films and PPC-coated nanopipettes were utilized to detect a model redox species, Ru(NH3) 6Cl3. Then, free-standing PPC thin films were chemically doped, with hydrazine and concentrated nitric acid, to yield p- and n-type carbon films. Doped PPC thin films were positioned in conjunction with doped silicon to create Schottky and p-n junction diodes for use in an alternating current half-wave rectifier circuit. Pyrolyzed parylene C has found particular merit as a 3D electrode coating of AFM probes. Current sensing-atomic force microscopy imaging in air of nanoscale metallic features was undertaken to demonstrate the electronic imaging applicability of PPC AFM probes. Upon further insulation with parylene C and modification with a focused ion beam, a PPC UME was microfabricated near the AFM probe apex and utilized for electrochemical imaging. Subsequently, scanning electrochemical microscopy-atomic force microscopy imaging was undertaken to electrochemically quantify and image the spatial location of dopamine exocytotic release, elicited mechanically via the AFM probe itself, from differentiated pheochromocytoma 12 cells in vitro.

  19. Unraveling the formation of HCPH(X2A') molecules in extraterrestrial environments: crossed molecular beam study of the reaction of carbon atoms, C(3Pj), with phosphine, PH3(X1A1).

    PubMed

    Guo, Y; Gu, X; Zhang, F; Sun, B J; Tsai, M F; Chang, A H H; Kaiser, R I

    2007-05-03

    The reaction between ground state carbon atoms, C(3P(j)), and phosphine, PH3(X(1)A1), was investigated at two collision energies of 21.1 and 42.5 kJ mol(-1) using the crossed molecular beam technique. The chemical dynamics extracted from the time-of-flight spectra and laboratory angular distributions combined with ab initio calculations propose that the reaction proceeds on the triplet surface via an addition of atomic carbon to the phosphorus atom. This leads to a triplet CPH3 complex. A successive hydrogen shift forms an HCPH2 intermediate. The latter was found to decompose through atomic hydrogen emission leading to the cis/trans-HCPH(X(2)A') reaction products. The identification of cis/trans-HCPH(X(2)A') molecules under single collision conditions presents a potential pathway to form the very first carbon-phosphorus bond in extraterrestrial environments like molecular clouds and circumstellar envelopes, and even in the postplume chemistry of the collision of comet Shoemaker-Levy 9 with Jupiter.

  20. Revisit of the Saito-Dresselhaus-Dresselhaus C2 ingestion model: on the mechanism of atomic-carbon-participated fullerene growth.

    PubMed

    Wang, Wei-Wei; Dang, Jing-Shuang; Zhao, Xiang; Nagase, Shigeru

    2017-11-09

    We introduce a mechanistic study based on a controversial fullerene bottom-up growth model proposed by R. Saito, G. Dresselhaus, and M. S. Dresselhaus. The so-called SDD C 2 addition model has been dismissed as chemically inadmissible but here we prove that it is feasible via successive atomic-carbon-participated addition and migration reactions. Kinetic calculations on the formation of isolated pentagon rule (IPR)-obeying C 70 and Y 3 N@C 80 are carried out by employing the SDD model for the first time. A stepwise mechanism is proposed with a considerably low barrier of ca. 2 eV which is about 3 eV lower than a conventional isomerization-containing fullerene growth pathway.

  1. PROGEN: An automated modelling algorithm for the generation of complete protein structures from the α-carbon atomic coordinates

    NASA Astrophysics Data System (ADS)

    Mandal, Chhabinath; Linthicum, D. Scott

    1993-04-01

    A modelling algorithm (PROGEN) for the generation of complete protein atomic coordinates from only the α-carbon coordinates is described. PROGEN utilizes an optimal geometry parameter (OGP) database for the positioning of atoms for each amino acid of the polypeptide model. The OGP database was established by examining the statistical correlations between 23 different intra-peptide and inter-peptide geometric parameters relative to the α-carbon distances for each amino acid in a library of 19 known proteins from the Brookhaven Protein Database (BPDB). The OGP files for specific amino acids and peptides were used to generate the atomic positions, with respect to α-carbons, for main-chain and side-chain atoms in the modelled structure. Refinement of the initial model was accomplished using energy minimization (EM) and molecular dynamics techniques. PROGEN was tested using 60 known proteins in the BPDB, representing a wide spectrum of primary and secondary structures. Comparison between PROGEN models and BPDB crystal reference structures gave r.m.s.d. values for peptide main-chain atoms between 0.29 and 0.76 Å, with a grand average of 0.53 Å for all 60 models. The r.m.s.d. for all non-hydrogen atoms ranged between 1.44 and 1.93 Å for the 60 polypeptide models. PROGEN was also able to make the correct assignment of cis- or trans-proline configurations in the protein structures examined. PROGEN offers a fully automatic building and refinement procedure and requires no special or specific structural considerations for the protein to be modelled.

  2. Core-shell carbon nanosphere-TiO2 composite and hollow TiO2 nanospheres prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Bakos, L. P.; Justh, N.; Hernádi, K.; Kiss, G.; Réti, B.; Erdélyi, Z.; Parditka, B.; Szilágyi, I. M.

    2016-10-01

    Core-shell carbon-TiO2 composite and hollow TiO2 nanospheres were prepared using carbon nanospheres as hard-templates, coating them with TiO2 using atomic layer deposition, and subsequent burning out of the carbon cores. The bare carbon, the composite carbon-TiO2 and the hollow TiO2 nanospheres were characterized with TG/DTA-MS, FTIR, XRD and SEM-EDX.

  3. Angular distribution of photoelectrons from atomic oxygen, nitrogen and carbon. [in upper atmosphere

    NASA Technical Reports Server (NTRS)

    Manson, S. J.; Kennedy, D. J.; Starace, A. F.; Dill, D.

    1974-01-01

    The angular distributions of photoelectrons from atomic oxygen, nitrogen, and carbon are calculated. Both Hartree-Fock and Hartree-Slater (Herman-Skillman) wave functions are used for oxygen, and the agreement is excellent; thus only Hartree-Slater functions are used for carbon and nitrogen. The pitch-angle distribution of photoelectrons is discussed, and it is shown that previous approximations of energy-independent isotropic or sin squared theta distributions are at odds with the authors' results, which vary with energy. This variation with energy is discussed, as is the reliability of these calculations.

  4. The Reception of J. H. van't Hoff's Theory of the Asymmetric Carbon Atom

    ERIC Educational Resources Information Center

    Snelders, H. A. M.

    1974-01-01

    Discusses Jacobus Henricus van't Hoff's revolutionary theory of the asymmetric carbon atom and its early reception among his contemporaries in the Netherlands. Indicates that the extension of the new idea to practical problems gives the impetus to the development of stereochemistry. (CC)

  5. Atomic Layer Deposition on Gram Quantities of Multi-Walled Carbon Nanotubes

    DTIC Science & Technology

    2009-06-03

    the amount of reactant that is lost to the vacuum pump . Recent work has demonstrated the feasibility of ALD on gram quantities of nanopowders in a...and left to outgas under vacuum for 24 h. Vacuum was obtained using a dual-stage rotary vane pump . Pressure was monitored with a Baratron capacitance...Atomic layer deposition on gram quantities of multi-walled carbon nanotubes This article has been downloaded from IOPscience. Please scroll down to

  6. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges

    PubMed Central

    Zhao, Jiong; Deng, Qingming; Avdoshenko, Stanislav M.; Fu, Lei; Eckert, Jürgen; Rümmeli, Mark H.

    2014-01-01

    Single-atom catalysts are of great interest because of their high efficiency. In the case of chemically deposited sp2 carbon, the implementation of a single transition metal atom for growth can provide crucial insight into the formation mechanisms of graphene and carbon nanotubes. This knowledge is particularly important if we are to overcome fabrication difficulties in these materials and fully take advantage of their distinct band structures and physical properties. In this work, we present atomically resolved transmission EM in situ investigations of single Fe atoms at graphene edges. Our in situ observations show individual iron atoms diffusing along an edge either removing or adding carbon atoms (viz., catalytic action). The experimental observations of the catalytic behavior of a single Fe atom are in excellent agreement with supporting theoretical studies. In addition, the kinetics of Fe atoms at graphene edges are shown to exhibit anomalous diffusion, which again, is in agreement with our theoretical investigations. PMID:25331874

  7. Decomposition of the fluoroethylene carbonate additive and the glue effect of lithium fluoride products for the solid electrolyte interphase: an ab initio study.

    PubMed

    Okuno, Yukihiro; Ushirogata, Keisuke; Sodeyama, Keitaro; Tateyama, Yoshitaka

    2016-03-28

    Additives in the electrolyte solution of lithium-ion batteries (LIBs) have a large impact on the performance of the solid electrolyte interphase (SEI) that forms on the anode and is a key to the stability and durability of LIBs. We theoretically investigated effects of fluoroethylene carbonate (FEC), a representative additive, that has recently attracted considerable attention for the enhancement of cycling stability of silicon electrodes and the improvement of reversibility of sodium-ion batteries. First, we intensively examined the reductive decompositions by ring-opening, hydrogen fluoride (HF) elimination to form a vinylene carbonate (VC) additive and intermolecular chemical reactions of FEC in the ethylene carbonate (EC) electrolyte, by using density functional theory (DFT) based molecular dynamics and the blue-moon ensemble technique for the free energy profile. The results show that the most plausible product of the FEC reductive decomposition is lithium fluoride (LiF), and that the reactivity of FEC to anion radicals is found to be inert compared to the VC additive. We also investigated the effects of the generated LiF on the SEI by using two model systems; (1) LiF molecules distributed in a model aggregate of organic SEI film components (SFCs) and (2) a LiF aggregate interfaced with the SFC aggregate. DFT calculations of the former system show that F atoms form strong bindings with the Li atoms of multiple organic SFC molecules and play as a joint connecting them. In the latter interface system, the LiF aggregate adsorbs the organic SFCs through the F-Li bindings. These results suggest that LiF moieties play the role of glue in the organic SFC within the SEI film. We also examined the interface structure between a LiF aggregate and a lithiated silicon anode, and found that they are strongly bound. This strong binding is likely to be related to the effectiveness of the FEC additive in the electrolyte for the silicon anode.

  8. Diamond like carbon coatings: Categorization by atomic number density

    NASA Technical Reports Server (NTRS)

    Angus, John C.

    1986-01-01

    Dense diamond-like hydrocarbon films grown at the NASA Lewis Research Center by radio frequency self bias discharge and by direct ion beam deposition were studied. A new method for categorizing hydrocarbons based on their atomic number density and elemental composition was developed and applied to the diamond-like hydrocarbon films. It was shown that the diamond-like hydrocarbon films are an entirely new class of hydrocarbons with atomic number densities lying between those of single crystal diamond and adamantanes. In addition, a major review article on these new materials was completed in cooperation with NASA Lewis Research Center personnel.

  9. Ionized Carbon Atoms in Orion

    NASA Image and Video Library

    2016-10-12

    The dusty side of the Sword of Orion is illuminated in this striking infrared image from the European Space Agency's Hershel Space Observatory. This immense nebula is the closest large region of star formation, situated about 1,500 light years away in the constellation of Orion. The parts that are easily observed in visible light, known alternatively as the Orion Nebula or Messier 42, correspond to the light blue regions. This is the glow from the warmest dust, illuminated by clusters of hot stars that have only recently been born in this chaotic region. The red spine of material running from corner to corner reveals colder, denser filaments of dust and gas that are scattered throughout the Orion nebula. In visible light this would be a dark, opaque feature, hiding the reservoir of material from which stars have recently formed and will continue to form in the future. Herschel data from the PACS instrument observations, at wavelengths of 100 and 160 microns, is displayed in blue and green, respectively, while SPIRE 250-micron data is shown in red. Within the inset image, the emission from ionized carbon atoms (C+), overlaid in yellow, was isolated and mapped out from spectrographic data obtained by the HIFI instrument. http://photojournal.jpl.nasa.gov/catalog/PIA21073

  10. Influence of carbon conductive additives on electrochemical double-layer supercapacitor parameters

    NASA Astrophysics Data System (ADS)

    Kiseleva, E. A.; Zhurilova, M. A.; Kochanova, S. A.; Shkolnikov, E. J.; Tarasenko, A. B.; Zaitseva, O. V.; Uryupina, O. V.; Valyano, G. V.

    2018-01-01

    Electrochemical double-layer capacitors (EDLC) offer energy storage technology, highly demanded for rapid transition processes in transport and stationary applications, concerned with fast power fluctuations. Rough structure of activated carbon, widely used as electrode material because of its high specific area, leads to poor electrode conductivity. Therefore there is the need for conductive additive to decrease internal resistance and to achieve high specific power and high specific energy. Usually carbon blacks are widely used as conductive additive. In this paper electrodes with different conductive additives—two types of carbon blacks and single-walled carbon nanotubes—were prepared and characterized in organic electrolyte-based EDLC cells. Electrodes are based on original wood derived activated carbon produced by potassium hydroxide high-temperature activation at Joint Institute for High Temperatures RAS. Electrodes were prepared from slurry by cold-rolling. For electrode characterization cyclic voltammetry, impedance spectra analysis, equivalent series resistance measurements and galvanostatic charge-discharge were used.

  11. The Kinetics of Oxygen Atom Recombination in the Presence of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Jamieson, C. S.; Garcia, R. M.; Pejakovic, D.; Kalogerakis, K.

    2009-12-01

    Understanding processes involving atomic oxygen is crucial for the study and modeling of composition, energy transfer, airglow, and transport dynamics in planetary atmospheres. Significant gaps and uncertainties exist in the understanding of these processes and often the relevant input from laboratory measurements is missing or outdated. We are conducting laboratory experiments to measure the rate coefficient for O + O + CO2 recombination and investigating the O2 excited states produced following the recombination. These measurements will provide key input for a quantitative understanding and reliable modeling of the atmospheres of the CO2 planets and their airglow. An excimer laser providing pulsed output at either 193 nm or 248 nm is employed to produce O atoms by dissociating carbon dioxide, nitrous oxide, or ozone. In an ambient-pressure background of CO2, O atoms recombine in a time scale of a few milliseconds. Detection of laser-induced fluorescence at 845 nm following two-photon excitation near 226 nm monitors the decay of the oxygen atom population. From the temporal evolution of the signal the recombination rate coefficient is extracted. Fluorescence spectroscopy is used to detect the products of O-atom recombination and subsequent relaxation in CO2. This work is supported by the US National Science Foundation’s (NSF) Planetary Astronomy Program. Rosanne Garcia’s participation was funded by the NSF Research Experiences for Undergraduates (REU) Program.

  12. Rational Design of Single Molybdenum Atoms Anchored on N-Doped Carbon for Effective Hydrogen Evolution Reaction.

    PubMed

    Chen, Wenxing; Pei, Jiajing; He, Chun-Ting; Wan, Jiawei; Ren, Hanlin; Zhu, Youqi; Wang, Yu; Dong, Juncai; Tian, Shubo; Cheong, Weng-Chon; Lu, Siqi; Zheng, Lirong; Zheng, Xusheng; Yan, Wensheng; Zhuang, Zhongbin; Chen, Chen; Peng, Qing; Wang, Dingsheng; Li, Yadong

    2017-12-11

    The highly efficient electrochemical hydrogen evolution reaction (HER) provides a promising pathway to resolve energy and environment problems. An electrocatalyst was designed with single Mo atoms (Mo-SAs) supported on N-doped carbon having outstanding HER performance. The structure of the catalyst was probed by aberration-corrected scanning transmission electron microscopy (AC-STEM) and X-ray absorption fine structure (XAFS) spectroscopy, indicating the formation of Mo-SAs anchored with one nitrogen atom and two carbon atoms (Mo 1 N 1 C 2 ). Importantly, the Mo 1 N 1 C 2 catalyst displayed much more excellent activity compared with Mo 2 C and MoN, and better stability than commercial Pt/C. Density functional theory (DFT) calculation revealed that the unique structure of Mo 1 N 1 C 2 moiety played a crucial effect to improve the HER performance. This work opens up new opportunities for the preparation and application of highly active and stable Mo-based HER catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Direct assessment of the metabolic origin of carbon atoms in glutamate from illuminated leaves using 13 C-NMR.

    PubMed

    Abadie, Cyril; Lothier, Jérémy; Boex-Fontvieille, Edouard; Carroll, Adam; Tcherkez, Guillaume

    2017-12-01

    Glutamate (Glu) is the cornerstone of nitrogen assimilation and photorespiration in illuminated leaves. Despite this crucial role, our knowledge of the flux to Glu de novo synthesis is rather limited. Here, we used isotopic labelling with 13 CO 2 and 13 C-NMR analyses to examine the labelling pattern and the appearance of multi-labelled species of Glu molecules to trace the origin of C-atoms found in Glu. We also compared this with 13 C-labelling patterns in Ala and Asp, which reflect citrate (and thus Glu) precursors, that is, pyruvate and oxaloacetate. Glu appeared to be less 13 C-labelled than Asp and Ala, showing that the Glu pool was mostly formed by 'old' carbon atoms. There were modest differences in intramolecular 13 C- 13 C couplings between Glu C-2 and Asp C-3, showing that oxaloacetate metabolism to Glu biosynthesis did not involve C-atom redistribution by the Krebs cycle. The apparent carbon allocation increased with carbon net photosynthesis. However, when expressed relative to CO 2 fixation, it was clearly higher at low CO 2 while it did not change in 2% O 2 , as compared to standard conditions. We conclude that Glu production from current photosynthetic carbon represents a small flux that is controlled by the gaseous environment, typically upregulated at low CO 2 . © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Hydrogen atom addition to the surface of graphene nanoflakes: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs) provide a 2-dimensional (2D) reaction surface in 3-dimensional (3D) interstellar space and have been utilized as a model of graphene surfaces. In the present study, the reaction of PAHs with atomic hydrogen was investigated by means of density functional theory (DFT) to systematically elucidate the binding nature of atomic hydrogen to graphene nanoflakes. PAHs with n = 4-37 were chosen, where n indicates the number of benzene rings. Activation energies of hydrogen addition to the graphene surface were calculated to be 5.2-7.0 kcal/mol at the CAM-B3LYP/6-311G(d,p) level, which is almost constant for all PAHs. The binding energies of hydrogen atom were slightly dependent on the size (n): 14.8-28.5 kcal/mol. The absorption spectra showed that a long tail is generated at the low-energy region after hydrogen addition to the graphene surface. The electronic states of hydrogenated graphenes were discussed on the basis of theoretical results.

  15. Photochemical Escape of Atomic Carbon from Mars

    NASA Astrophysics Data System (ADS)

    Fox, J. L.; Hac, A. B.

    2009-12-01

    Determining the escape rate of C over time is necessary to reconstructing the time-dependent history of volatiles on Mars. We report initial results from a one-dimensional spherical Monte Carlo calculation of photochemical escape fluxes and rates of atomic carbon from the Martian atmosphere. This model has recently been used to estimate the photochemical escape flux of O from Mars. We include as sources photodissociation of CO, dissociative recombination of CO+, photoelectron-impact dissociation of CO, photodissociative ionization and photoelectron impact dissociative ionization. Dissociative recombination of CO2+ has been suggested as a source of C (in the channel that produces C + O2) but later studies have found that the yield of this channel is negligible. We test the potential importance of this reaction by comparing the final results produced by including it and excluding it. Finally we compare the range of the escape rate to that of C in ions that have been modeled or measured by ASPERA instruments on MEX and Phobos.

  16. Adsorption properties of carbon dioxide enchanced oil recovery additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, J.T.; Holbrook, S.T.

    1990-01-01

    The selection of the optimum foaming agent (surfactant) for enhancing oil production by carbon dioxide flooding is based on foamability and adsorption. Measurements of adsorption on carbonate cores from New Mexico reservoirs showed large adsorption differences between three commercial, high-foaming surfactants. An ethoxylated alcohol structure was at least adsorbed, 0.64 mg/cc pore volume; an ethoxylated alcohol sulfate was next, 0.74 mg/cc pore volume; the highest adsorbed was a glyceryl sulfonate, 2.30 mg/cc pore volume. Commercial application of the foaming additive involves injecting alternate slugs of surfactant solution and carbon dioxide. Surfactant concentration should be determined to allow for the adsorptionmore » above. 9 refs., 27 figs., 6 tabs.« less

  17. Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iver; Siemon, John

    The initial three atomization attempts resulted in “freeze-outs” within the pour tubes in the pilot-scale system and yielded no powder. Re-evaluation of the alloy liquidus temperatures and melting characteristics, in collaboration with Alcoa, showed further superheat to be necessary to allow the liquid metal to flow through the pour tube to the atomization nozzle. A subsequent smaller run on the experimental atomization system verified these parameters and was successful, as were all successive runs on the larger pilot scale system. One alloy composition froze-out part way through the atomization on both pilot scale runs. SEM images showed needle formation andmore » phase segregations within the microstructure. Analysis of the pour tube freeze-out microstructures showed that large needles formed within the pour tube during the atomization experiment, which eventually blocked the melt stream. Alcoa verified the needle formation in this alloy using theoretical modeling of phase solidification. Sufficient powder of this composition was still generated to allow powder characterization and additive manufacturing trials at Alcoa.« less

  18. Enhancement of neutron radiation dose by the addition of sulphur-33 atoms.

    PubMed

    Porras, I

    2008-04-07

    The use of neutrons in radiotherapy allows the possibility of producing nuclear reactions in a specific target inserted in the medium. (10)B is being used to induce reactions (n, alpha), a technique called boron neutron capture therapy. I have studied the possibility of inducing a similar reaction using the nucleus of (33)S, for which the reaction cross section presents resonances for keV neutrons, the highest peak occurring at 13.5 keV. Here shown, by means of Monte Carlo simulation of point-like sources of neutrons in this energy range, is an enhancement effect on the absorbed dose in water by the addition of (33)S atoms. In addition to this, as the range of the alpha particle is of the order of a mammalian cell size, the energy deposition via this reaction results mainly inside the cells adjacent to the interaction site. The main conclusion of the present work is that the insertion of these sulphur atoms in tumoral cells would enhance the effect of neutron irradiation in the keV range.

  19. Fullerene-like chemistry at the interior carbon atoms of an alkene-centered C26H12 geodesic polyarene.

    PubMed

    Bronstein, Hindy E; Scott, Lawrence T

    2008-01-04

    The title compound (1) undergoes 1,2-addition reactions of both electrophilic and nucleophilic reagents preferentially at the "interior" carbon atoms of the central 6:6-bond to give fullerene-type adducts 2, 3, 4, and 5. Such fullerene-like chemistry is unprecedented for a topologically 2-dimensional polycyclic aromatic hydrocarbon and qualifies this geodesic polyarene as a "bridge" between the old flat world of polycyclic aromatic hydrocarbons (PAHs) and the new round world of fullerenes. The relief of pyramidalization strain, as in the addition reactions of fullerenes, presumably contributes to the atypical mode of reactivity seen in 1. Molecular orbital calculations, however, reveal features of the nonalternant pi system in 1 that may also play an important role. Thus, the fullerene-like chemistry of 1 may be driven by two or more factors, the relative importances of which are difficult to discern.

  20. Roles of additives and surface control in slurry atomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, S.C.

    1990-01-01

    This report focuses on the effects of interparticle forces on the rheology and airblast atomization of micronized coal water slurry (CWS). We found that the CWS flow behavior index is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The former intensifies as the Hamaker constant increases and the interparticle distance reduces while the latter increases as the particle surface charge density increases. The interparticle attraction causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior. In contrast, the interparticle repulsion prevents particle aggregation andmore » thus leads to Newtonian behavior. Both atomized at low atomizing air pressures (less than 270 kPa) using twin-fluid jet atomizers of various distributor designs. We found that the atomized drop sizes of micronized coal water slurries substantially decrease as the atomizing air pressure exceeds a threshold value. The effects of coal volume fraction, coal particle surface charge, liquid composition and liquid viscosity on slurry atomization can be accounted for by their effects on slurry rheology. 26 refs.« less

  1. Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iver; Siemon, John

    The charge for each gas atomization experiment was provided by Alcoa and consisted of cast blocks cut into 1 inch by 1 inch square rods of the chosen aluminum alloys. The atmosphere in the melting chamber and connected atomization system was evacuated with a mechanical pump prior to backfilling with ultrahigh purity (UHP grade) Ar. The melt was contained in a bottom tapped alumina crucible with an alumina stopper rod to seal the exit while heating to a pouring temperature of 1000 – 1400°C. When the desired superheat was reached, the stopper rod was lifted and melt flowed through pourmore » tube and was atomized with Ar from a 45-22-052-409 gas atomization nozzle (or atomization die), having a jet apex angle of 45 degrees with 22 cylindrical gas jets (each with diameter of 1.32 mm or 0.052 inches) arrayed around the axis of a 10.4 mm central bore. The Ar atomization gas supply regulator pressure was set to produce nozzle manifold pressures for the series of runs at pressures of 250-650 psi. Secondary gas halos of Ar+O 2 and He also were added to the interior of the spray chamber at various downstream locations for additional cooling of the atomized droplets, surface passivation, and to prevent coalescence of the resulting powder.« less

  2. Carbon Nanotube Chopped Fiber for Enhanced Properties in Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menchhofer, Paul A.; Johnson, Joseph E.; Lindahl, John M.

    2016-06-06

    Nanocomp Technologies, Inc. is working with Oak Ridge National Laboratory to develop carbon nanotube (CNT) composite materials and evaluate their use in additive manufacturing (3D printing). The first phase demonstrated feasibility and improvements for carbon nanotube (CNT)- acrylonitrile butadiene styrene (ABS) composite filaments use in additive manufacturing, with potential future work centering on further improvements. By focusing the initial phase on standard processing methods (developed mainly for the incorporation of carbon fibers in ABS) and characterization techniques, a basis of knowledge for the incorporation of CNTs in ABS was learned. The ability to understand the various processing variables is criticalmore » to the successful development of these composites. From the degradation effects on ABS (caused by excessive temperatures), to the length of time the ABS is in the melt state, to the order of addition of constituents, and also to the many possible mixing approaches, a workable flow sequence that addresses each processing step is critical to the final material properties. Although this initial phase could not deal with each of these variables in-depth, a future study is recommended that will build on the lessons learned for this effort.« less

  3. Understanding Function and Performance of Carbon Additives in Lead-Acid Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enos, D. G.; Ferreira, S. R.; Barkholtz, H. M.

    While the low cost and strong safety record of lead-acid batteries make them an appealing option compared to lithium-ion technologies for stationary storage, they can be rapidly degraded by the extended periods of high rate, partial state-of-charge operation required in such applications. Degradation occurs primarily through a process called hard sulfation, where large PbSO 4 crystals are formed on the negative battery plates, hindering charge acceptance and reducing battery capacity. Various researchers have found that the addition of some forms of excess carbon to the negative active mass in lead-acid batteries can mitigate hard sulfation, but the mechanism through whichmore » this is accomplished is unclear. In this work, the effect of carbon composition and morphology was explored by characterizing four discrete types of carbon additives, then evaluating their effect when added to the negative electrodes within a traditional valve-regulated lead-acid battery design. The cycle life for the carbon modified cells was significantly larger than an unmodified control, with cells containing a mixture of graphitic carbon and carbon black yielding the greatest improvement. The carbons also impacted other electrochemical aspects of the battery (e.g., float current, capacity, etc.) as well as physical characteristics of the negative active mass, such as the specific surface area.« less

  4. Understanding Function and Performance of Carbon Additives in Lead-Acid Batteries

    DOE PAGES

    Enos, D. G.; Ferreira, S. R.; Barkholtz, H. M.; ...

    2017-10-31

    While the low cost and strong safety record of lead-acid batteries make them an appealing option compared to lithium-ion technologies for stationary storage, they can be rapidly degraded by the extended periods of high rate, partial state-of-charge operation required in such applications. Degradation occurs primarily through a process called hard sulfation, where large PbSO 4 crystals are formed on the negative battery plates, hindering charge acceptance and reducing battery capacity. Various researchers have found that the addition of some forms of excess carbon to the negative active mass in lead-acid batteries can mitigate hard sulfation, but the mechanism through whichmore » this is accomplished is unclear. In this work, the effect of carbon composition and morphology was explored by characterizing four discrete types of carbon additives, then evaluating their effect when added to the negative electrodes within a traditional valve-regulated lead-acid battery design. The cycle life for the carbon modified cells was significantly larger than an unmodified control, with cells containing a mixture of graphitic carbon and carbon black yielding the greatest improvement. The carbons also impacted other electrochemical aspects of the battery (e.g., float current, capacity, etc.) as well as physical characteristics of the negative active mass, such as the specific surface area.« less

  5. Performance evaluation of different diamond-like carbon samples as charge state conversion surfaces for neutral atom imaging detectors in space applications

    NASA Astrophysics Data System (ADS)

    Brigitte Neuland, Maike; Allenbach, Marc; Föhn, Martina; Wurz, Peter

    2017-04-01

    sample [6] to our latest measurements of a Boron-doped CVD diamond sample. We additionally measured the B-concentration in the sample to prove our predictions of the B-concentration needed to reach sufficient conductibility for the sample not getting electrostatically charged during instrument operation. The results of narrower scattering cones and higher ionisation efficiency show that diamond-like carbon still is the preferred material for charge state conversion surfaces and that new surface technologies offer improved diamond conversion surfaces with different properties and hence the possibility for improvement of the performance of neutral atom imaging instruments. References: [1] P. Wurz, Detection of Energetic Neutral Atoms, in The Outer Heliosphere: Beyond the Planets, Copernicus Gesellschaft e.V., Katlenburg-Lindau, Germany, 2000, p. 251-288. [2] P. Wurz, R. Schletti, M.R. Aellig, Surf. Sci. 373(1997), 56-66. [3] D.J. McComas et al., Geophys. Res. Lett. 38(2011), L18101. [4] N.A. Schwadron et al., J. of Phys.. Conf. Series 767(2016): 012025 [5] P. Wahlström, J.A. Scheer, A. Riedo, P. Wurz and M. Wieser, J. Spacecr. Rockets 50 (2013): 402-410. [6] M.B. Neuland, J.A. Scheer, A. Riedo and P. Wurz, Appl. Surf. Sci. 313(2014):293-303.

  6. Model studies of hydrogen atom addition and abstraction processes involving ortho-, meta-, and para-benzynes.

    PubMed

    Clark, A E; Davidson, E R

    2001-10-31

    H-atom addition and abstraction processes involving ortho-, meta-, and para-benzyne have been investigated by multiconfigurational self-consistent field methods. The H(A) + H(B)...H(C) reaction (where r(BC) is adjusted to mimic the appropriate singlet-triplet energy gap) is shown to effectively model H-atom addition to benzyne. The doublet multiconfiguration wave functions are shown to mix the "singlet" and "triplet" valence bond structures of H(B)...H(C) along the reaction coordinate; however, the extent of mixing is dependent on the singlet-triplet energy gap (DeltaE(ST)) of the H(B)...H(C) diradical. Early in the reaction, the ground-state wave function is essentially the "singlet" VB function, yet it gains significant "triplet" VB character along the reaction coordinate that allows H(A)-H(B) bond formation. Conversely, the wave function of the first excited state is predominantly the "triplet" VB configuration early in the reaction coordinate, but gains "singlet" VB character when the H-atom is close to a radical center. As a result, the potential energy surface (PES) for H-atom addition to triplet H(B)...H(C) diradical is repulsive! The H3 model predicts, in agreement with the actual calculations on benzyne, that the singlet diradical electrons are not coupled strongly enough to give rise to an activation barrier associated with C-H bond formation. Moreover, this model predicts that the PES for H-atom addition to triplet benzyne will be characterized by a repulsive curve early in the reaction coordinate, followed by a potential avoided crossing with the (pi)1(sigma*)1 state of the phenyl radical. In contrast to H-atom addition, large activation barriers characterize the abstraction process in both the singlet ground state and first triplet state. In the ground state, this barrier results from the weakly avoided crossing of the dominant VB configurations in the ground-state singlet (S0) and first excited singlet (S1) because of the large energy gap between S0

  7. Chemical and biological consequences of using carbon dioxide versus acid additions in ocean acidification experiments

    USGS Publications Warehouse

    Yates, Kimberly K.; DuFore, Christopher M.; Robbins, Lisa L.

    2013-01-01

    Use of different approaches for manipulating seawater chemistry during ocean acidification experiments has confounded comparison of results from various experimental studies. Some of these discrepancies have been attributed to whether addition of acid (such as hydrochloric acid, HCl) or carbon dioxide (CO2) gas has been used to adjust carbonate system parameters. Experimental simulations of carbonate system parameter scenarios for the years 1766, 2007, and 2100 were performed using the carbonate speciation program CO2SYS to demonstrate the variation in seawater chemistry that can result from use of these approaches. Results showed that carbonate system parameters were 3 percent and 8 percent lower than target values in closed-system acid additions, and 1 percent and 5 percent higher in closed-system CO2 additions for the 2007 and 2100 simulations, respectively. Open-system simulations showed that carbonate system parameters can deviate by up to 52 percent to 70 percent from target values in both acid addition and CO2 addition experiments. Results from simulations for the year 2100 were applied to empirically derived equations that relate biogenic calcification to carbonate system parameters for calcifying marine organisms including coccolithophores, corals, and foraminifera. Calculated calcification rates for coccolithophores, corals, and foraminifera differed from rates at target conditions by 0.5 percent to 2.5 percent in closed-system CO2 gas additions, from 0.8 percent to 15 percent in the closed-system acid additions, from 4.8 percent to 94 percent in open-system acid additions, and from 7 percent to 142 percent in open-system CO2 additions.

  8. Intramolecular addition of benzylic radicals onto ketenimines. Synthesis of 2-alkylindoles.

    PubMed

    Alajarín, Mateo; Vidal, Angel; Ortín, María-Mar

    2003-12-07

    The inter- and intramolecular addition of free radicals onto ketenimines is studied. All the attempts to add intermolecularly several silicon, oxygen or carbon centered radicals to N-(4-methylphenyl)-C,C-diphenyl ketenimine were unsuccessful. In contrast, the intramolecular addition of benzylic radicals, generated from xanthates, onto the central carbon of a ketenimine function with its N atom linked to the ortho position of the aromatic ring occurred under a variety of reaction conditions. These intramolecular cyclizations provide a novel radical-mediated synthesis of 2-alkylindoles.

  9. Structural modifications of graphyne layers consisting of carbon atoms in the sp- and sp{sup 2}-hybridized states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belenkov, E. A., E-mail: belenkov@csu.ru; Mavrinskii, V. V.; Belenkova, T. E.

    2015-05-15

    A model scheme is proposed for obtaining layered compounds consisting of carbon atoms in the sp- and (vnsp){sup 2}-hybridized states. This model is used to find the possibility of existing the following seven basic structural modifications of graphyne: α-, β1-, β2-, β3-, γ1-, γ2-, and γ3-graphyne. Polymorphic modifications β3 graphyne and γ3 graphyne are described. The basic structural modifications of graphyne contain diatomic polyyne chains and consist only of carbon atoms in two different crystallographically equivalent states. Other nonbasic structural modifications of graphyne can be formed via the elongation of the carbyne chains that connect three-coordinated carbon atoms and viamore » the formation of graphyne layers with a mixed structure consisting of basic layer fragments, such as α-β-graphyne, α-γ-graphyne, and β-γ-graphyne. The semiempirical quantum-mechanical MNDO, AM1, and PM3 methods and ab initio STO6-31G basis calculations are used to find geometrically optimized structures of the basic graphyne layers, their structural parameters, and energies of their sublimation. The energy of sublimation is found to be maximal for γ2-graphyne, which should be the most stable structural modification of graphyne.« less

  10. Direct determination and speciation of mercury compounds in environmental and biological samples by carbon bed atomic absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skelly, E.M.

    A method was developed for the direct determination of mercury in water and biological samples using a unique carbon bed atomizer for atomic absorption spectroscopy. The method avoided sources of error such as loss of volatile mercury during sample digestion and contamination of samples through added reagents by eliminating sample pretreatment steps. The design of the atomizer allowed use of the 184.9 nm mercury resonance line in the vacuum ultraviolet region, which increased sensitivity over the commonly used spin-forbidden 253.7 nm line. The carbon bed atomizer method was applied to a study of mercury concentrations in water, hair, sweat, urine,more » blood, breath and saliva samples from a non-occupationally exposed population. Data were collected on the average concentration, the range and distribution of mercury in the samples. Data were also collected illustrating individual variations in mercury concentrations with time. Concentrations of mercury found were significantly higher than values reported in the literature for a ''normal'' population. This is attributed to the increased accuracy gained by eliminating pretreatment steps and increasing atomization efficiency. Absorption traces were obtained for various solutions of pure and complexed mercury compounds. Absorption traces of biological fluids were also obtained. Differences were observed in the absorption-temperatures traces of various compounds. The utility of this technique for studying complexation was demonstrated.« less

  11. Additive manufacturing of magnetic shielding and ultra-high vacuum flange for cold atom sensors.

    PubMed

    Vovrosh, Jamie; Voulazeris, Georgios; Petrov, Plamen G; Zou, Ji; Gaber, Youssef; Benn, Laura; Woolger, David; Attallah, Moataz M; Boyer, Vincent; Bongs, Kai; Holynski, Michael

    2018-01-31

    Recent advances in the understanding and control of quantum technologies, such as those based on cold atoms, have resulted in devices with extraordinary metrological performance. To realise this potential outside of a lab environment the size, weight and power consumption need to be reduced. Here we demonstrate the use of laser powder bed fusion, an additive manufacturing technique, as a production technique relevant to the manufacture of quantum sensors. As a demonstration we have constructed two key components using additive manufacturing, namely magnetic shielding and vacuum chambers. The initial prototypes for magnetic shields show shielding factors within a factor of 3 of conventional approaches. The vacuum demonstrator device shows that 3D-printed titanium structures are suitable for use as vacuum chambers, with the test system reaching base pressures of 5 ± 0.5 × 10 -10 mbar. These demonstrations show considerable promise for the use of additive manufacturing for cold atom based quantum technologies, in future enabling improved integrated structures, allowing for the reduction in size, weight and assembly complexity.

  12. The effects of atomic oxygen on the thermal emittance of high temperature radiator surfaces

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Hotes, Deborah L.; Paulsen, Phillip E.

    1989-01-01

    Radiator surfaces on high temperature space power systems such as SP-100 space nuclear power system must maintain a high emittance level in order to reject waste heat effectively. One of the primary materials under consideration for the radiators is carbon-carbon composite. Since carbon is susceptible to attack by atomic oxygen in the low earth orbital environment, it is important to determine the durability of carbon composites in this environment as well as the effect atomic oxygen has on the thermal emittance of the surface if it is to be considered for use as a radiator. Results indicate that the thermal emittance of carbon-carbon composite (as low as 0.42) can be enhanced by exposure to a directed beam of atomic oxygen to levels above 0.85 at 800 K. This emittance enhancement is due to a change in the surface morphology as a result of oxidation. High aspect ratio cones are formed on the surface which allow more efficient trapping of incident radiation. Erosion of the surface due to oxidation is similar to that for carbon, so that at altitudes less than approximately 600 km, thickness loss of the radiator could be significant (as much as 0.1 cm/year). A protective coating or oxidation barrier forming additive may be needed to prevent atomic oxygen attack after the initial high emittance surface is formed. Textured surfaces can be formed in ground based facilities or possibly in space if emittance is not sensitive to the orientation of the atomic oxygen arrival that forms the texture.

  13. Selective determination of arsenic(III) and arsenic(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone by means of flameless atomic-absorption spectrophotometry with a carbon-tube atomizer.

    PubMed

    Kamada, T

    The extraction behaviour of arsenic(III) and arsenic(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of nameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of arsenic(III) and differential determination of arsenic(III) and arsenic(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone or nitrobenzene, when the aqueous phase/solvent volume ratio is 5 and the injection volume in the carbon tube is 20 mul, the sensitivities for 1% absorption are 0.4 and 0.5 part per milliard of arsenic, respectively. The relative standard deviations are ca. 3%. Interference by many metal ions can be prevented by masking with EDTA. The proposed methods are applied satisfactorily for determination of As(III) and As(V) in various types of water.

  14. Interaction between single gold atom and the graphene edge: A study via aberration-corrected transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Hongtao; Li, Kun; Cheng, Yingchun; Wang, Qingxiao; Yao, Yingbang; Schwingenschlögl, Udo; Zhang, Xixiang; Yang, Wei

    2012-04-01

    Interaction between single noble metal atoms and graphene edges has been investigated via aberration-corrected and monochromated transmission electron microscopy. A collective motion of the Au atom and the nearby carbon atoms is observed in transition between energy-favorable configurations. Most trapping and detrapping processes are assisted by the dangling carbon atoms, which are more susceptible to knock-on displacements by electron irradiation. Thermal energy is lower than the activation barriers in transition among different energy-favorable configurations, which suggests electron-beam irradiation can be an efficient way of engineering the graphene edge with metal atoms.Interaction between single noble metal atoms and graphene edges has been investigated via aberration-corrected and monochromated transmission electron microscopy. A collective motion of the Au atom and the nearby carbon atoms is observed in transition between energy-favorable configurations. Most trapping and detrapping processes are assisted by the dangling carbon atoms, which are more susceptible to knock-on displacements by electron irradiation. Thermal energy is lower than the activation barriers in transition among different energy-favorable configurations, which suggests electron-beam irradiation can be an efficient way of engineering the graphene edge with metal atoms. Electronic supplementary information (ESI) available: Additional Figures for characterization of mono-layer CVD graphene samples with free edges and Pt atoms decorations and analysis of the effect of electron irradiation; supporting movie on edge evolution. See DOI: 10.1039/c2nr00059h

  15. Effects of labile carbon addition on a headwater stream food web

    Treesearch

    Heidi S. Wilcox; J. Bruce Wallace; Judy L. Meyer; Jonathan P. Benstead

    2005-01-01

    We added dextrose for two 8-week periods (summer and autumn) to a highly heterotrophic headwater stream in North Carolina, U.S.A., to examine the responses of its benthic food web to increased labile carbon. We hypothesized that addition of labile carbon would elevate microbial abundance and activity, resulting in greater resource availability and higher...

  16. Atomic Covalent Functionalization of Graphene

    PubMed Central

    Johns, James E.; Hersam, Mark C.

    2012-01-01

    Conspectus Although graphene’s physical structure is a single atom thick, two-dimensional, hexagonal crystal of sp2 bonded carbon, this simple description belies the myriad interesting and complex physical properties attributed to this fascinating material. Because of its unusual electronic structure and superlative properties, graphene serves as a leading candidate for many next generation technologies including high frequency electronics, broadband photodetectors, biological and gas sensors, and transparent conductive coatings. Despite this promise, researchers could apply graphene more routinely in real-world technologies if they could chemically adjust graphene’s electronic properties. For example, the covalent modification of graphene to create a band gap comparable to silicon (~1 eV) would enable its use in digital electronics, and larger band gaps would provide new opportunities for graphene-based photonics. Towards this end, researchers have focused considerable effort on the chemical functionalization of graphene. Due to its high thermodynamic stability and chemical inertness, new methods and techniques are required to create covalent bonds without promoting undesirable side reactions or irreversible damage to the underlying carbon lattice. In this Account, we review and discuss recent theoretical and experimental work studying covalent modifications to graphene using gas phase atomic radicals. Atomic radicals have sufficient energy to overcome the kinetic and thermodynamic barriers associated with covalent reactions on the basal plane of graphene but lack the energy required to break the C-C sigma bonds that would destroy the carbon lattice. Furthermore, because they are atomic species, radicals substantially reduce the likelihood of unwanted side reactions that confound other covalent chemistries. Overall, these methods based on atomic radicals show promise for the homogeneous functionalization of graphene and the production of new classes of two

  17. Initial evaluation and comparison of plasma damage to atomic layer carbon materials using conventional and low T{sub e} plasma sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagtiani, Ashish V.; Miyazoe, Hiroyuki; Chang, Josephine

    2016-01-15

    The ability to achieve atomic layer precision is the utmost goal in the implementation of atomic layer etch technology. Carbon-based materials such as carbon nanotubes (CNTs) and graphene are single atomic layers of carbon with unique properties and, as such, represent the ultimate candidates to study the ability to process with atomic layer precision and assess impact of plasma damage to atomic layer materials. In this work, the authors use these materials to evaluate the atomic layer processing capabilities of electron beam generated plasmas. First, the authors evaluate damage to semiconducting CNTs when exposed to beam-generated plasmas and compare thesemore » results against the results using typical plasma used in semiconductor processing. The authors find that the beam generated plasma resulted in significantly lower current degradation in comparison to typical plasmas. Next, the authors evaluated the use of electron beam generated plasmas to process graphene-based devices by functionalizing graphene with fluorine, nitrogen, or oxygen to facilitate atomic layer deposition (ALD). The authors found that all adsorbed species resulted in successful ALD with varying impact on the transconductance of the graphene. Furthermore, the authors compare the ability of both beam generated plasma as well as a conventional low ion energy inductively coupled plasma (ICP) to remove silicon nitride (SiN) deposited on top of the graphene films. Our results indicate that, while both systems can remove SiN, an increase in the D/G ratio from 0.08 for unprocessed graphene to 0.22 to 0.26 for the beam generated plasma, while the ICP yielded values from 0.52 to 1.78. Generally, while some plasma-induced damage was seen for both plasma sources, a much wider process window as well as far less damage to CNTs and graphene was observed when using electron beam generated plasmas.« less

  18. The Formation of Formaldehyde on Interstellar Carbonaceous Grain Analogs by O/H Atom Addition

    NASA Astrophysics Data System (ADS)

    Potapov, Alexey; Jäger, Cornelia; Henning, Thomas; Jonusas, Mindaugas; Krim, Lahouari

    2017-09-01

    An understanding of possible scenarios for the formation of astrophysically relevant molecules, particularly complex organic molecules, will bring us one step closer to the understanding of our astrochemical heritage. In this context, formaldehyde is an important molecule as a precursor of methanol, which in turn is a starting point for the formation of more complex organic species. In the present experiments, for the first time, following the synthesis of CO, formaldehyde has been produced on the surface of interstellar grain analogs, hydrogenated fullerene-like carbon grains, by O and H atom bombardment. The formation of H2CO is an indication for a possible methanol formation route in such systems.

  19. Embedding Carbon Fibre Structures in Metal Matrixes for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Frostevarg, Jan; Robertson, Stephanie; Benavides, Vicente; Soldatov, Alexander

    It is possible to reinforce structures and components using carbon fibres for applications in electronics and medicine, but most commonly used in reinforcing resin fibre composites for personal protection equipment and light weight constructions. Carbon fibres act as stress redistributors while having increased electrical and thermal conductivities. These properties could also be utilized in metal matrixes, if the fibres are properly fused to the metal and the structure remains intact. Another recently developed high potential carbon structure, carbon nanotube- (CNT) yarns, has similar but even greater mechanical properties than common carbon fibres. Via laser cladding, these reinforcing materials could be used in a plethora of applications, either locally (or globally) as surface treatments or as structural reinforcements using multi-layer laser cladding (additive manufacturing). The challenges of embedding carbon fibres or CNT-yarns in a CuAl mixture and SnPb solder wire using lasers are here investigated using high speed imaging and SEM. It is revealed that the carbon fibres have very high buoyancy in the molten metal and quickly degrades when irradiated by the laser. Wetting of the fibres is shown to be improved by a Tungsten coating and embedding of the structures after processing are evaluated using SEM and Raman spectroscopy.

  20. Roles of additives and surface control in slurry atomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, S.C.

    1992-01-01

    This project studies the rheology and airblast atomization of micronized coal slurries. Its major objectives are (1) to promote further understanding of the mechanisms and the roles of additives in airblast atomization of coal water slurry (CWS), and (2) to investigate the impacts of coal particle surface properties and interparticle forces on CWS rheology. We have found that the flow behavior index (n) of a suspension (or slurry) is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The interparticle attraction, measured by the Hamaker constant scaled to the thermal energy atmore » 25[degrees]C (A/kT), causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior (n< 1). At a constant particle volume fraction and surface charge density (qualitatively measured by the zeta potential in deionized water), n decreases linearly as A/kT increases. The relative viscosity of the pseudoplastic suspension with respect to that of the suspending liquid is found to be independent of particle density and correlate well with the particle Peclet number which equals the particle diffusional relaxation time multiplied by shear rate. Specifically, the relative viscosities of the pseudoplastic glycerol/water coal slurry and the ethylene glycol/glycerol sand slurry, at same volume fractions as well as similar particle size distributions and liquid viscosities, as functions of the particle Peclet number fall along the same line.« less

  1. Effects of Atomic-Scale Structure on the Fracture Properties of Amorphous Carbon - Carbon Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    The fracture of carbon materials is a complex process, the understanding of which is critical to the development of next generation high performance materials. While quantum mechanical (QM) calculations are the most accurate way to model fracture, the fracture behavior of many carbon-based composite engineering materials, such as carbon nanotube (CNT) composites, is a multi-scale process that occurs on time and length scales beyond the practical limitations of QM methods. The Reax Force Field (ReaxFF) is capable of predicting mechanical properties involving strong deformation, bond breaking and bond formation in the classical molecular dynamics framework. This has been achieved by adding to the potential energy function a bond-order term that varies continuously with distance. The use of an empirical bond order potential, such as ReaxFF, enables the simulation of failure in molecular systems that are several orders of magnitude larger than would be possible in QM techniques. In this work, the fracture behavior of an amorphous carbon (AC) matrix reinforced with CNTs was modeled using molecular dynamics with the ReaxFF reactive forcefield. Care was taken to select the appropriate simulation parameters, which can be different from those required when using traditional fixed-bond force fields. The effect of CNT arrangement was investigated with three systems: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. For each arrangement, covalent bonds are added between the CNTs and AC, with crosslink fractions ranging from 0-25% of the interfacial CNT atoms. The SWNT and MWNT array systems represent ideal cases with evenly spaced CNTs; the SWNT bundle system represents a more realistic case because, in practice, van der Waals interactions lead to the agglomeration of CNTs into bundles. The simulation results will serve as guidance in setting experimental processing conditions to optimize the mechanical properties of CNT

  2. Single-Atom Catalysts of Precious Metals for Electrochemical Reactions.

    PubMed

    Kim, Jiwhan; Kim, Hee-Eun; Lee, Hyunjoo

    2018-01-10

    Single-atom catalysts (SACs), in which metal atoms are dispersed on the support without forming nanoparticles, have been used for various heterogeneous reactions and most recently for electrochemical reactions. In this Minireview, recent examples of single-atom electrocatalysts used for the oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), hydrogen evolution reaction (HER), formic acid oxidation reaction (FAOR), and methanol oxidation reaction (MOR) are introduced. Many density functional theory (DFT) simulations have predicted that SACs may be effective for CO 2 reduction to methane or methanol production while suppressing H 2 evolution, and those cases are introduced here as well. Single atoms, mainly Pt single atoms, have been deposited on TiN or TiC nanoparticles, defective graphene nanosheets, N-doped covalent triazine frameworks, graphitic carbon nitride, S-doped zeolite-templated carbon, and Sb-doped SnO 2 surfaces. Scanning transmission electron microscopy, extended X-ray absorption fine structure measurement, and in situ infrared spectroscopy have been used to detect the single-atom structure and confirm the absence of nanoparticles. SACs have shown high mass activity, minimizing the use of precious metal, and unique selectivity distinct from nanoparticle catalysts owing to the absence of ensemble sites. Additional features that SACs should possess for effective electrochemical applications were also suggested. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    NASA Astrophysics Data System (ADS)

    Xue, Kuan-Hong; Liu, Jia-Mei; Wei, Ri-Bing; Chen, Shao-Peng

    2006-09-01

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2SO 4, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials Epa and Epc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  4. The Formation of Formaldehyde on Interstellar Carbonaceous Grain Analogs by O/H Atom Addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potapov, Alexey; Jäger, Cornelia; Henning, Thomas

    An understanding of possible scenarios for the formation of astrophysically relevant molecules, particularly complex organic molecules, will bring us one step closer to the understanding of our astrochemical heritage. In this context, formaldehyde is an important molecule as a precursor of methanol, which in turn is a starting point for the formation of more complex organic species. In the present experiments, for the first time, following the synthesis of CO, formaldehyde has been produced on the surface of interstellar grain analogs, hydrogenated fullerene-like carbon grains, by O and H atom bombardment. The formation of H{sub 2}CO is an indication formore » a possible methanol formation route in such systems.« less

  5. Rotational Spectrum and Carbon Atom Structure of Dihydroartemisinic Acid

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks

    2016-06-01

    Dihydroartemisinic acid (DHAA, C15H24O2, five chiral centers) is a precursor in proposed low-cost synthetic routes to the antimalarial drug artemisinin. In one reaction process being considered in pharmaceutical production, DHAA is formed from an enantiopure sample of artemisinic acid through hydrogenation of the alkene. This reaction needs to properly set the stereochemistry of the asymmetric carbon for the synthesis to produce artemisinin. A recrystallization process can purify the diastereomer mixture of the hydrogenation reaction if the unwanted epimer is produced in less than 10% abundance. There is a need in the process analytical chemistry to rapidly (less than 1 min) measure the diastereomer excess and current solutions, such a HPLC, lack the needed measurement speed. The rotational spectrum of DHAA has been measured at 300:1 signal-to-noise ratio in a chirped-pulsed Fourier transform microwave spectrometer operating from 2-8 GHz using simple heating of the compound. The 13C isotope analysis provides a carbon atom structure that confirms the diastereomer. This structure is in excellent agreement with quantum chemistry calculations at the B2PLYPD3/ 6-311++G** level of theory. The DHAA spectrum is expected to be fully resolved from the unwanted diastereomer raising the potential for fast diastereomer excess measurement by rotational spectroscopy in the pharmaceutical production process.

  6. Density-functional theory study of dimethyl carbonate synthesis by methanol oxidative carbonylation on single-atom Cu1/graphene catalyst

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Shi, Ruina; Wang, Xuhui; Liu, Shusen; Han, Xiaoxia; Zhao, Chaofan; Li, Zhong; Ren, Jun

    2017-12-01

    The mechanism for dimethyl carbonate (DMC) synthesis by oxidation carbonylation of methanol on a single-atom Cu1/graphene catalyst was investigated by density-functional theory calculations. Carbon vacancies in graphene can significantly enhance the interaction between Cu atoms and graphene supports, and provide an increased transfer of electrons from Cu atoms to the graphene sheet. Compared with Cu-doped divacancy graphene (Cu/DG), Cu-doped monovacancy graphene (Cu/MG) provides a stronger interaction between adsorbents and the catalyst surface. Among the reaction processes over Cu1/graphene catalysts, CO insertion into methoxide was more favorable than dimethoxide. The rate-limiting step on the Cu/DG surface is the carbomethoxide reaction with methoxide, which is exothermic by 164.6 kJ mol-1 and has an activation barrier of 190.9 kJ mol-1 energy. Compared with that on the Cu crystal surface, Cu4 and Cu3Rh clusters, and the Cu2O(111) surface, the rate-determining step for DMC formation on Cu/MG, which is CO insertion into methoxide, needs to overcome the lowest barrier of 73.5 kJ mol-1 and is exothermic by 44.6 kJ mol-1. Therefore, Cu/MG was beneficial to the formation of DMC as a single-atom catalyst.

  7. Additive-free carbon nanotube dispersions, pastes, gels, and doughs in cresols.

    PubMed

    Chiou, Kevin; Byun, Segi; Kim, Jaemyung; Huang, Jiaxing

    2018-05-29

    Cresols are a group of naturally occurring and massively produced methylphenols with broad use in the chemical industry. Here, we report that m -cresol and its liquid mixtures with other isomers are surprisingly good solvents for processing carbon nanotubes. They can disperse carbon nanotubes of various types at unprecedentedly high concentrations of tens of weight percent, without the need for any dispersing agent or additive. Cresols interact with carbon nanotubes by charge transfer through the phenolic hydroxyl proton and can be removed after processing by evaporation or washing, without altering the surface of carbon nanotubes. Cresol solvents render carbon nanotubes polymer-like rheological and viscoelastic properties and processability. As the concentration of nanotubes increases, a continuous transition of four states can be observed, including dilute dispersion, thick paste, free-standing gel, and eventually a kneadable, playdough-like material. As demonstrated with a few proofs of concept, cresols make powders of agglomerated carbon nanotubes immediately usable by a broad array of material-processing techniques to create desirable structures and form factors and make their polymer composites.

  8. Potential energy surfaces for atomic oxygen reactions: Formation of singlet and triplet biradicals as primary reaction products with unsaturated organic molecules

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.

    1987-01-01

    The experimental study of the interaction of atomic oxygen with organic polymer films under LEO conditions has been hampered by the inability to conduct detailed experiments in situ. As a result, studies of the mechanism of oxygen atom reactions have relied on laboratory O-atom sources that do not fully reproduce the orbital environment. For example, it is well established that only ground electronic state O atoms are present at LEO, yet most ground-based sources are known to produce singlet O atoms and molecules and ions in addition to O(3P). Engineers should not rely on such facilities unless it can be demonstrated either that these different O species are inert or that they react in the same fashion as ground state atoms. Ab initio quantum chemical calculations have been aimed at elucidating the biradical intermediates formed during the electrophilic addition of ground and excited-state O atoms to carbon-carbon double bonds in small olefins and aromatic molecules. These biradicals are critical intermediates in any possible insertion, addition and elimination reaction mechanisms. Through these calculations, we will be able to comment on the relative importance of these pathways for O(3P) and O(1D) reactions. The reactions of O atoms with ethylene and benzene are used to illustrate the important features of the mechanisms of atomic oxygen reaction with unsaturated organic compounds and polymeric materials.

  9. The long-range non-additive three-body dispersion interactions for the rare gases, alkali, and alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun; Babb, James F.; Mitroy, J.

    2012-03-01

    The long-range non-additive three-body dispersion interaction coefficients Z111, Z112, Z113, and Z122 are computed for many atomic combinations using standard expressions. The atoms considered include hydrogen, the rare gases, the alkali atoms (up to Rb), and the alkaline-earth atoms (up to Sr). The term Z111 arising from three mutual dipole interactions is known as the Axilrod-Teller-Muto coefficient or the DDD (dipole-dipole-dipole) coefficient. Similarly, the terms Z112, Z113, and Z122 arise from the mutual combinations of dipole (1), quadrupole (2), and octupole (3) interactions between atoms and they are sometimes known, respectively, as dipole-dipole-quadrupole, dipole-dipole-octupole, and dipole-quadrupole-quadrupole coefficients. Results for the four Z coefficients are given for the homonuclear trimers, for the trimers involving two like-rare-gas atoms, and for the trimers with all combinations of the H, He, and Li atoms. An exhaustive compilation of all coefficients between all possible atomic combinations is presented as supplementary data.

  10. Large-Area Atomic Oxygen Facility Used to Clean Fire-Damaged Artwork

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.; Steuber, Thomas J.; Sechkar, Edward A.

    2000-01-01

    In addition to completely destroying artwork, fires in museums and public buildings can soil a displayed artwork with so much accumulated soot that it can no longer be used for study or be enjoyed by the public. In situations where the surface has not undergone extensive charring or melting, restoration can be attempted. However, soot deposits can be very difficult to remove from some types of painted surfaces, particularly when the paint is fragile or flaking or when the top surface of the paint binder has been damaged. Restoration typically involves the use of organic solvents to clean the surface, but these solvents may cause the paint layers to swell or leach out. Also, immersion of the surface or swabbing during solvent cleaning may move or remove pigment through mechanical contact, especially if the fire damage extends into the paint binder. A noncontact technique of removing organic deposits from surfaces was developed out of NASA research on the effects of oxygen atoms on various materials. Atomic oxygen is present in the atmosphere surrounding the Earth at the altitudes where satellites typically orbit. It can react chemically with surface coatings or deposits that contain carbon. In the reaction, the carbon is converted to carbon monoxide and some carbon dioxide. Water vapor is also a byproduct of the reaction if the surface contains carbon-hydrogen bonds. To study this reaction, NASA developed Earth-based facilities to produce atomic oxygen for material exposure and testing. A vacuum facility designed and built by the Electro-Physics Branch of the NASA Glenn Research Center at Lewis Field to provide atomic oxygen over a large area for studying reactions in low Earth orbit has been used to successfully clean several full-size paintings. (This facility can accommodate paintings up to 1.5 by 2.1 m. The atomic oxygen plasma is produced between two large parallel aluminum plates using a radiofrequency power source operating at roughly 400 W. Atomic oxygen is

  11. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    PubMed

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.

  12. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.

    2016-05-01

    during the initial phase of graphene growth simulation using a carbon trimer beam is captured. An initially sp hybridized carbon atom (red colored) becomes sp2 hybridized as a result of additional covalent bonding with the impinging carbon trimer. As the bond angle around the red carbon changes from 180 degree (sp) to 120 degree (sp2), nearby carbon atoms enclose to form a hexagon structure composed of 6 carbon atoms. See DOI: 10.1039/c6nr01396a

  13. High-pressure combustor exhaust emissions with improved air-atomizing and conventional pressure-atomizing fuel nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1973-01-01

    A high-pressure combustor segment 0.456 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was tested with specially designed air-atomizing and conventional pressure-atomizing fuel nozzles at inlet-air temperatures of 340 to 755 k (610 deg to 1360 R), reference velocities of 12.4 to 26.1 meters per second (41 to 86 ft/sec), and fuel-air ratios of 0.008 to 0.020. Increasing inlet-air pressure from 4 to 20 atmospheres generally increased smoke number and nitric oxide, but decreased carbon monoxide and unburned hydrocarbon concentrations with air-atomizing and pressure-atomizing nozzles. Emission indexes for carbon monoxide and unburned hydrocarbons were lower at 4, 10, and 20 atmospheres, and nitric oxide emission indexes were lower at 10 and 20 atmospheres with air-atomizing than with pressure-atomizing nozzles.

  14. Nonlinear tapping dynamics of multi-walled carbon nanotube tipped atomic force microcantilevers

    NASA Astrophysics Data System (ADS)

    Lee, S. I.; Howell, S. W.; Raman, A.; Reifenberger, R.; Nguyen, C. V.; Meyyappan, M.

    2004-05-01

    The nonlinear dynamics of an atomic force microcantilever (AFM) with an attached multi-walled carbon nanotube (MWCNT) tip is investigated experimentally and theoretically. We present the experimental nonlinear frequency response of a MWCNT tipped microcantilever in the tapping mode. Several unusual features in the response distinguish it from those traditionally observed for conventional tips. The MWCNT tipped AFM probe is apparently immune to conventional imaging instabilities related to the coexistence of attractive and repulsive tapping regimes. A theoretical interaction model for the system using an Euler elastica MWCNT model is developed and found to predict several unusual features of the measured nonlinear response.

  15. Results of industrial tests of carbonate additive to fuel oil

    NASA Astrophysics Data System (ADS)

    Zvereva, E. R.; Dmitriev, A. V.; Shageev, M. F.; Akhmetvalieva, G. R.

    2017-08-01

    Fuel oil plays an important role in the energy balance of our country. The quality of fuel oil significantly affects the conditions of its transport, storage, and combustion; release of contaminants to atmosphere; and the operation of main and auxiliary facilities of HPPs. According to the Energy Strategy of Russia for the Period until 2030, the oil-refining ratio gradually increases; as a result, the fraction of straight-run fuel oil in heavy fuel oils consistently decreases, which leads to the worsening of performance characteristics of fuel oil. Consequently, the problem of the increase in the quality of residual fuel oil is quite topical. In this paper, it is suggested to treat fuel oil by additives during its combustion, which would provide the improvement of ecological and economic indicators of oil-fired HPPs. Advantages of this method include simplicity of implementation, low energy and capital expenses, and the possibility to use production waste as additives. In the paper, the results are presented of industrial tests of the combustion of fuel oil with the additive of dewatered carbonate sludge, which is formed during coagulation and lime treatment of environmental waters on HPPs. The design of a volume delivery device is developed for the steady additive input to the boiler air duct. The values are given for the main parameters of the condition of a TGM-84B boiler plant. The mechanism of action of dewatered carbonate sludge on sulfur oxides, which are formed during fuel oil combustion, is considered. Results of industrial tests indicate the decrease in the mass fraction of discharged sulfur oxides by 36.5%. Evaluation of the prevented damage from sulfur oxide discharged into atmospheric air shows that the combustion of the fuel oil of 100 brand using carbonate sludge as an additive (0.1 wt %) saves nearly 6 million rubles a year during environmental actions at the consumption of fuel oil of 138240 t/year.

  16. Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe

    NASA Astrophysics Data System (ADS)

    Kageshima, Masami; Jensenius, Henriette; Dienwiebel, Martin; Nakayama, Yoshikazu; Tokumoto, Hiroshi; Jarvis, Suzanne P.; Oosterkamp, Tjerk H.

    2002-03-01

    A force sensor for noncontact atomic force microscopy in liquid environment was developed by combining a multiwalled carbon nanotube (MWNT) probe with a quartz tuning fork. Solvation shells of octamethylcyclotetrasiloxane on a graphite surface were detected both in the frequency shift and dissipation. Due to the high aspect ratio of the CNT probe, the long-range background force was barely detectable in the solvation region.

  17. A square-wave wavelength modulation system for automatic background correction in carbon furnace atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Bezur, L.; Marshall, J.; Ottaway, J. M.

    A square-wave wavelength modulation system, based on a rotating quartz chopper with four quadrants of different thicknesses, has been developed and evaluated as a method for automatic background correction in carbon furnace atomic emission spectrometry. Accurate background correction is achieved for the residual black body radiation (Rayleigh scatter) from the tube wall and Mie scatter from particles generated by a sample matrix and formed by condensation of atoms in the optical path. Intensity modulation caused by overlap at the edges of the quartz plates and by the divergence of the optical beam at the position of the modulation chopper has been investigated and is likely to be small.

  18. Molecular Modeling of an Electrophilic Addition Reaction with "Unexpected" Regiochemistry

    ERIC Educational Resources Information Center

    Best, Katherine T.; Li, Diana; Helms, Eric D.

    2017-01-01

    The electrophilic addition of a hydrohalic acid (HX) to an alkene is often one of the first reactions learned in second-year undergraduate organic chemistry classes. During the ensuing discussion of the mechanism, it is shown that this reaction follows Markovnikov's rule, which states that the hydrogen atom will attach to the carbon with fewer…

  19. Tribological properties of graphene oxide and carbon spheres as lubricating additives

    NASA Astrophysics Data System (ADS)

    Song, Haojie; Wang, Zhiqiang; Yang, Jin

    2016-10-01

    The purpose of this paper was to investigate the tribological properties of carbon materials with various morphologies [i.e., graphene oxide (GO) and carbon spheres (CSs)] utilized as lubricating additives on a ball-plate tribotester. The morphology and spectroscopy characterization of GO and CSs were investigated by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectrometry, and thermogravimetric analysis. Friction and wear properties of the sunflower seed oil filled with GO and CSs were investigated by using a MS-T3000 ball-on-disk apparatus. Results show that the sunflower seed oil containing 0.3 wt% GO nanosheets exhibited a substantial diminution in friction and wear compared with the 3.0 wt% CSs as sunflower seed oil additives. Formation of low-shear strength tribofilms containing GO and its self-lubricating behavior was the key factor in reduction of the friction and prevention from wear and deformation. In addition, friction mechanism of CSs was also discussed.

  20. Additives to reduce susceptibility of thermosets and thermoplastics to erosion from atomic oxygen

    NASA Technical Reports Server (NTRS)

    Orwoll, Robert A.

    1990-01-01

    Polymeric materials have many attractive features such as light weight, high strength, and broad applicability in the form of films, fibers, and molded objects. In low earth orbit (LEO), these materials, when exposed on the exterior of the spacecraft, have the serious disadvantage of being susceptible to erosion by atomic oxygen (AO). AO is the most common chemical species at LEO altitudes. AO can be an extremely efficient oxidizing agent as was apparent from the extensive erosion of organic films exposed in STS missions. The mechanism for erosion involves the reaction of oxygen atoms at the surface of the substrate to form small molecular species. The susceptibility of polymeric materials varies with their chemical composition. Films with silicon atoms incorporated in the molecular structures have large coefficients of thermal expansion. This limits their utility. In an alternative approach additives were sought that mix physically and form a protective oxide layer when the film is exposed to AO. A large number of organic compounds containing silicon, germanium, or tin atoms were screened. Most were found to have very limited solubility in the polyetherimide (Ultem) films that were being protected from AO. However, one, bis(triphenyl tin) oxide, (BTO), is miscible in Ultem up to about 25 percent. Films of Ultem polyimide containing up to 25 wt percent BTO were prepared by evaporation of solvent from a solution of Ultem and BTO. The effects of AO on these films were simulated in the oxygen atmosphere of a radio frequency glow-discharge chamber. In the second part of this study, atoms were incorporated in epoxy resins. Experiments are in progress to measure the resistance of films of the cured epoxy to AO in the discharge chamber.

  1. Cyanide Ligand Assembly by Carbon Atom Transfer to an Iron Nitride

    DOE PAGES

    Martinez, Jorge L.; Lin, Hsiu-Jung; Lee, Wei-Tsung; ...

    2017-09-21

    The new iron(IV) nitride complex PhB( iPr 2Im) 3Fe≡N reacts with two equivalents of bis(diisopropylamino)cyclopropenylidene (BAC) to provide PhB( iPr 2Im) 3Fe(CN)(N 2)(BAC). This unusual example of a four-electron reaction involves carbon atom transfer from BAC to create a cyanide ligand along with the alkyne iPr 2N-C≡C-N iPr 2. The iron complex is in equilibrium with an N 2- free species. Further reaction with CO leads to formation of a CO analogue, which can be independently prepared using NaCN as the cyanide source, while reaction with B(C 6F 5) 3 provides the cyanoborane derivative.

  2. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation.

    PubMed

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-09

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  3. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    NASA Astrophysics Data System (ADS)

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  4. THE DYNAMICS OF HYDROGEN ATOM ABSTRACTION FROM POLYATOMIC MOLECULES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LIU,X.; SUITS,A.G.

    2002-11-21

    The hydrogen atom abstraction reaction is an important fundamental process that is extensively involved in atmospheric and combustion chemistry. The practical significance of this type of reaction with polyatomic hydrocarbons is manifest, which has led to many kinetics studies. The detailed understanding of these reactions requires corresponding dynamics studies. However, in comparison to the A + HX {radical} AH + X reactions, the study of the dynamics of A + HR {yields} AH + R reactions is much more difficult, both experimentally and theoretically (here and in the following, A stands for an atom, X stands for a halogen atom,more » and R stands for a polyatomic hydrocarbon radical). The complication stems from the structured R, in contrast to the structureless X. First of all, there are many internal degrees of freedom in R that can participate in the reaction. In addition, there are different carbon sites from which an H atom can be abstracted, and the dynamics are correspondingly different; there are also multiple identical carbon sites in HR and in the picture of a local reaction, there exist competitions between neighboring H atoms, and so on. Despite this complexity, there have been continuing efforts to obtain insight into the dynamics of these reactions. In this chapter, some examples are presented, including the reactions of ground state H, Cl, and O atoms, with particular focus on our recent work using imaging to obtain the differential cross sections for these reactions.« less

  5. Addition of Carbon to the Culture Medium Improves the Detection Efficiency of Aflatoxin Synthetic Fungi

    PubMed Central

    Suzuki, Tadahiro; Iwahashi, Yumiko

    2016-01-01

    Aflatoxin (AF) is a harmful secondary metabolite that is synthesized by the Aspergillus species. Although AF detection techniques have been developed, techniques for detection of AF synthetic fungi are still required. Techniques such as plate culture methods are continually being modified for this purpose. However, plate culture methods require refinement because they suffer from several issues. In this study, activated charcoal powder (carbon) was added to a culture medium containing cyclodextrin (CD) to enhance the contrast of fluorescence and improve the detection efficiency for AF synthetic fungi. Two culture media, potato dextrose agar and yeast extract sucrose agar, were investigated using both plate and liquid cultures. The final concentrations of CD and carbon in the media were 3 mg/mL and 0.3 mg/mL, respectively. Addition of carbon improved the visibility of fluorescence by attenuating approximately 30% of light scattering. Several fungi that could not be detected with only CD in the medium were detected with carbon addition. The carbon also facilitated fungal growth in the potato dextrose liquid medium. The results suggest that addition of carbon to media can enhance the observation of AF-derived fluorescence. PMID:27854283

  6. Additive Mixing and Conformal Coating of Noniridescent Structural Colors with Robust Mechanical Properties Fabricated by Atomization Deposition.

    PubMed

    Li, Qingsong; Zhang, Yafeng; Shi, Lei; Qiu, Huihui; Zhang, Suming; Qi, Ning; Hu, Jianchen; Yuan, Wei; Zhang, Xiaohua; Zhang, Ke-Qin

    2018-04-24

    Artificial structural colors based on short-range-ordered amorphous photonic structures (APSs) have attracted great scientific and industrial interest in recent years. However, the previously reported methods of self-assembling colloidal nanoparticles lack fine control of the APS coating and fixation on substrates and poorly realize three-dimensional (3D) conformal coatings for objects with irregular or highly curved surfaces. In this paper, atomization deposition of silica colloidal nanoparticles with poly(vinyl alcohol) as the additive is proposed to solve the above problems. By finely controlling the thicknesses of APS coatings, additive mixing of noniridescent structural colors is easily realized. Based on the intrinsic omnidirectional feature of atomization, a one-step 3D homogeneous conformal coating is also readily realized on various irregular or highly curved surfaces, including papers, resins, metal plates, ceramics, and flexible silk fabrics. The vivid coatings on silk fabrics by atomization deposition possess robust mechanical properties, which are confirmed by rubbing and laundering tests, showing great potential in developing an environmentally friendly coloring technique in the textile industry.

  7. Carbon Materials Research

    DTIC Science & Technology

    2006-08-01

    carbon would be highly oriented pyrolytic graphite ( HOPG ), which is formed by depositing one atom at a time on a surface utilizing the pyrolysis of a... of the crystallites, and baking to 2800 K produces a polycrystalline graphite part that has high strength and conductivity. To make isotropic...pitch fibers) or flexible (Graphoil®), as well as anisotropic ( HOPG ) or isotropic ( polycrystalline graphite ). In addition, porosity, lubricity

  8. Simple-Cubic Carbon Frameworks with Atomically Dispersed Iron Dopants toward High-Efficiency Oxygen Reduction.

    PubMed

    Wang, Biwei; Wang, Xinxia; Zou, Jinxiang; Yan, Yancui; Xie, Songhai; Hu, Guangzhi; Li, Yanguang; Dong, Angang

    2017-03-08

    Iron and nitrogen codoped carbons (Fe-N-C) have attracted increasingly greater attention as electrocatalysts for oxygen reduction reaction (ORR). Although challenging, the synthesis of Fe-N-C catalysts with highly dispersed and fully exposed active sites is of critical importance for improving the ORR activity. Here, we report a new type of graphitic Fe-N-C catalysts featuring numerous Fe single atoms anchored on a three-dimensional simple-cubic carbon framework. The Fe-N-C catalyst, derived from self-assembled Fe 3 O 4 nanocube superlattices, was prepared by in situ ligand carbonization followed by acid etching and ammonia activation. Benefiting from its homogeneously dispersed and fully accessible active sites, highly graphitic nature, and enhanced mass transport, our Fe-N-C catalyst outperformed Pt/C and many previously reported Fe-N-C catalysts for ORR. Furthermore, when used for constructing the cathode for zinc-air batteries, our Fe-N-C catalyst exhibited current and power densities comparable to those of the state-of-the-art Pt/C catalyst.

  9. Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization

    PubMed Central

    Kim, Min-A; Jang, Dawon; Tejima, Syogo; Cruz-Silva, Rodolfo; Joh, Han-Ik; Kim, Hwan Chul; Lee, Sungho; Endo, Morinobu

    2016-01-01

    Large efforts have been made over the last 40 years to increase the mechanical strength of polyacrylonitrile (PAN)-based carbon fibers (CFs) using a variety of chemical or physical protocols. In this paper, we report a new method to increase CFs mechanical strength using a slow heating rate during the carbonization process. This new approach increases both the carbon sp3 bonding and the number of nitrogen atoms with quaternary bonding in the hexagonal carbon network. Theoretical calculations support a crosslinking model promoted by the interstitial carbon atoms located in the graphitic interlayer spaces. The improvement in mechanical performance by a controlled crosslinking between the carbon hexagonal layers of the PAN based CFs is a new concept that can contribute further in the tailoring of CFs performance based on the understanding of their microstructure down to the atomic scale. PMID:27004752

  10. Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization.

    PubMed

    Kim, Min-A; Jang, Dawon; Tejima, Syogo; Cruz-Silva, Rodolfo; Joh, Han-Ik; Kim, Hwan Chul; Lee, Sungho; Endo, Morinobu

    2016-03-23

    Large efforts have been made over the last 40 years to increase the mechanical strength of polyacrylonitrile (PAN)-based carbon fibers (CFs) using a variety of chemical or physical protocols. In this paper, we report a new method to increase CFs mechanical strength using a slow heating rate during the carbonization process. This new approach increases both the carbon sp(3) bonding and the number of nitrogen atoms with quaternary bonding in the hexagonal carbon network. Theoretical calculations support a crosslinking model promoted by the interstitial carbon atoms located in the graphitic interlayer spaces. The improvement in mechanical performance by a controlled crosslinking between the carbon hexagonal layers of the PAN based CFs is a new concept that can contribute further in the tailoring of CFs performance based on the understanding of their microstructure down to the atomic scale.

  11. Clarifying atomic weights: A 2016 four-figure table of standard and conventional atomic weights

    USGS Publications Warehouse

    Coplen, Tyler B.; Meyers, Fabienne; Holden, Norman E.

    2017-01-01

    To indicate that atomic weights of many elements are not constants of nature, in 2009 and 2011 the Commission on Isotopic Abundances and Atomic Weights (CIAAW) of the International Union of Pure and Applied Chemistry (IUPAC) replaced single-value standard atomic weight values with atomic weight intervals for 12 elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, magnesium, silicon, sulfur, chlorine, bromine, and thallium); for example, the standard atomic weight of nitrogen became the interval [14.00643, 14.00728]. CIAAW recognized that some users of atomic weight data only need representative values for these 12 elements, such as for trade and commerce. For this purpose, CIAAW provided conventional atomic weight values, such as 14.007 for nitrogen, and these values can serve in education when a single representative value is needed, such as for molecular weight calculations. Because atomic weight values abridged to four figures are preferred by many educational users and are no longer provided by CIAAW as of 2015, we provide a table containing both standard atomic weight values and conventional atomic weight values abridged to four figures for the chemical elements. A retrospective review of changes in four-digit atomic weights since 1961 indicates that changes in these values are due to more accurate measurements over time or to the recognition of the impact of natural isotopic fractionation in normal terrestrial materials upon atomic weight values of many elements. Use of the unit “u” (unified atomic mass unit on the carbon mass scale) with atomic weight is incorrect because the quantity atomic weight is dimensionless, and the unit “amu” (atomic mass unit on the oxygen scale) is an obsolete term: Both should be avoided.

  12. Investigation of lithium ion battery electrolytes containing flame retardants in combination with the film forming electrolyte additives vinylene carbonate, vinyl ethylene carbonate and fluoroethylene carbonate

    NASA Astrophysics Data System (ADS)

    Dagger, Tim; Grützke, Martin; Reichert, Matthias; Haetge, Jan; Nowak, Sascha; Winter, Martin; Schappacher, Falko M.

    2017-12-01

    In order to address the trade-off between the safety lithium ion battery (LIB) electrolytes and their electrochemical performance, synergetic effects of flame retardant additives (FRs) in combination with film forming additives (FFAs) are investigated. Triphenyl phosphate (TPP) and a silicon-containing additive (WA) are applied as FRs to improve the onset temperature of the thermal runaway of a LIB standard electrolyte (LP57: 1 M LiPF6 in EC:EMC 3:7) about 15 K and 28 K, respectively. The application of the FRs in MCMB graphite/lithium metal and NMC111/lithium metal three-electrode cells induces insufficiencies in terms of charge/discharge cycling stability and rate capability. It is investigated if the addition of FFAs can degrade the insufficiencies that are induced by the FRs. Vinylene carbonate, vinyl ethylene carbonate and fluoroethylene carbonate are added to a mixture of LP57 with 10% FR to enhance the cycling performance via improved interphase formation. Results reveal, that the rate capability of cells containing TPP or WA is especially improved by addition of 2% or 5% FEC, respectively. Postmortem analyses of the electrodes by SEM and of the electrolyte by GC-MS are performed. Direct correlations between the cycling behavior during the C-rate study and the electrolyte decomposition products are drawn.

  13. Investigation of diamond-like carbon samples as a charge state conversion surface for neutral atom imaging detectors in space applications

    NASA Astrophysics Data System (ADS)

    Brigitte Neuland, Maike; Riedo, Andreas; Scheer, Jürgen; Wurz, Peter

    2014-05-01

    The detection of energetic neutral atoms is a substantial requirement on every space mission mapping particle populations of a planetary magnetosphere or plasma of the interstellar medium. For imaging neutrals, these first have to be ionized. Regarding the constraints of weight, volume and power consumption, the technique of surface ionization complies with all specifications of a space mission. Particularly low energy neutral atoms, which cannot be ionized by passing through a foil, are ionized by scattering on a charge state conversion surface. Since more than 30 years intense research work is done to find suitable materials for use as charge state conversion surfaces. Crucial parameters are the ionisation efficiency of the surface material and the scattering properties. Against all expectations, insulators showed very promising characteristics for serving as conversion surfaces. Particularly diamond-like carbon was proven advantageously: While efficiently ionising incoming neutral atoms, diamond stands out by its durability and chemical inertness. In the IBEX-Lo sensor, a diamond-like carbon surface is used for ionisation of neutral atoms. Energy resolved maps of neutral atoms from the IBEX mission revealed phenomena of the interaction between heliosphere and local interstellar medium (LISM) that demand for new theory and explanations [McComas et al., 2011]. Building on the successes of the IBEX mission, a follow up mission concept to further explore the boundaries of the heliosphere already exists. The Interstellar MApping Probe (IMAP) is planned to map neutral atoms in a larger energy range and with a distinct better angular resolution and sensitivity than IBEX [McComas et al.]. The aspired performance of the IMAP sensors implies also for charge state conversion surfaces with improved characteristics. We investigated samples of diamond-like carbon, manufactured by the chemical vapour and pulsed laser deposition method, regarding their ionisation efficiency

  14. Reactive pathways of hydrogen and carbon removal from organosilicate glass low- κ films by F atoms

    NASA Astrophysics Data System (ADS)

    Voronina, Ekaterina N.; Mankelevich, Yuri A.; Rakhimova, Tatyana V.

    2017-07-01

    Direct molecular dynamic simulation on the base of the density functional theory (DFT) method is used to study some critical reactions of F atoms with organosilicate glass (OSG) low-κ films. Here static and dynamic DFT-based approaches are applied for a variety of reactive pathways of hydrogen and carbon removal in the form of volatile products (HF, CF2 and CF3 molecules) from initial SiCH3 surface groups. These reactions constitute an important part of the proposed multi-step mechanism of OSG films damage and etching by thermal F atoms. Two models (POSS and TMCTS macromolecules and their modifications) are used to illustrate the peculiarities and dynamics of the successive reactions of F atoms with the initial SiCH3 and appeared SiCHxFy (x + y ≤ 3) surface groups. Contribution to the Topical Issue "Dynamics of Molecular Systems (MOLEC 2016)", edited by Alberto Garcia-Vela, Luis Banares and Maria Luisa Senent.

  15. Eutectic Formation During Solidification of Ni-Based Single-Crystal Superalloys with Additional Carbon

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Ma, Dexin; Bührig-Polaczek, Andreas

    2017-11-01

    γ/ γ' eutectics' nucleation behavior during the solidification of a single-crystal superalloy with additional carbon was investigated by using directional solidification quenching method. The results show that the nucleation of the γ/ γ' eutectics can directly occur on the existing γ dendrites, directly in the remaining liquid, or on the primary MC-type carbides. The γ/γ' eutectics formed through the latter two mechanisms have different crystal orientations than that of the γ matrix. This suggests that the conventional Ni-based single-crystal superalloy castings with additional carbon only guarantee the monocrystallinity of the γ matrix and some γ/ γ' eutectics and, in addition to the carbides, there are other misoriented polycrystalline microstructures existing in macroscopically considered "single-crystal" superalloy castings.

  16. SEPARATION OF PLUTONIUM FROM ELEMENTS HAVING AN ATOMIC NUMBER NOT LESS THAN 92

    DOEpatents

    Fitch, F.T.; Russell, D.S.

    1958-09-16

    other elements having atomic numbers nnt less than 92, It has been proposed in the past to so separate plutonium by solvent extraction iato an organic solvent using triglycoldichlcride as the organic solvent. The improvement lies in the discovery that triglycoldichloride performs far more efflciently as an extractant, wher certain second organie compounds are added to it. Mentioned as satisfactory additive compounds are benzaldehyde, saturated aliphatic aldehydes containtng at least twc carbon atoms, and certain polyhydric phenols.

  17. Toward the Atomic-Level Mass Analysis of Biomolecules by the Scanning Atom Probe.

    PubMed

    Nishikawa, Osamu; Taniguchi, Masahiro

    2017-04-01

    In 1994, a new type of atom probe instrument, named the scanning atom probe (SAP), was proposed. The unique feature of the SAP is the introduction of a small extraction electrode, which scans over a specimen surface and confines the high field, required for field evaporation of surface atoms in a small space, between the specimen and the electrode. Thus, the SAP does not require a sharp specimen tip. This indicates that the SAP can mass analyze the specimens which are difficult to form in a sharp tip, such as organic materials and biomolecules. Clean single wall carbon nanotubes (CNT), made by high-pressure carbon monoxide process are found to be the best substrates for biomolecules. Various amino acids and dipeptide biomolecules were successfully mass analyzed, revealing characteristic clusters formed by strongly bound atoms in the specimens. The mass analysis indicates that SAP analysis of biomolecules is not only qualitative, but also quantitative.

  18. ALMA observations of atomic carbon in z ˜ 4 dusty star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Bothwell, M. S.; Aguirre, J. E.; Aravena, M.; Bethermin, M.; Bisbas, T. G.; Chapman, S. C.; De Breuck, C.; Gonzalez, A. H.; Greve, T. R.; Hezaveh, Y.; Ma, J.; Malkan, M.; Marrone, D. P.; Murphy, E. J.; Spilker, J. S.; Strandet, M.; Vieira, J. D.; Weiß, A.

    2017-04-01

    We present Atacama Large Millimeter Array [C I](1 - 0) (rest frequency 492 GHz) observations for a sample of 13 strongly lensed dusty star-forming galaxies (DSFGs) originally discovered at 1.4 mm in a blank-field survey by the South Pole Telescope (SPT). We compare these new data with available [C I] observations from the literature, allowing a study of the interstellar medium (ISM) properties of ˜30 extreme DSFGs spanning a redshift range 2 < z < 5. Using the [C I] line as a tracer of the molecular ISM, we find a mean molecular gas mass for SPT-DSFGs of 6.6 × 1010 M⊙. This is in tension with gas masses derived via low-J 12CO and dust masses; bringing the estimates into accordance requires either (a) an elevated CO-to-H2 conversion factor for our sample of αCO ˜ 2.5 and a gas-to-dust ratio ˜200, or (b) an high carbon abundance X_{C I} ˜ 7× 10^{-5}. Using observations of a range of additional atomic and molecular lines (including [C I], [C II]and multiple transitions of CO), we use a modern photodissociation region code (3D-PDR) to assess the physical conditions (including the density, UV radiation field strength and gas temperature) within the ISM of the DSFGs in our sample. We find that the ISM within our DSFGs is characterized by dense gas permeated by strong UV fields. We note that previous efforts to characterize photodissociation region regions in DSFGs may have significantly under-estimated the density of the ISM. Combined, our analysis suggests that the ISM of extreme dusty starbursts at high redshift consists of dense, carbon-rich gas not directly comparable to the ISM of starbursts in the local Universe.

  19. Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems

    Treesearch

    Amy D. Rosemond; Jonathan P. Benstead; Phillip M. Bumpers; Vladislav Gulis; John S. Kominoski; David W.P. Manning; Keller Suberkropp; J. Bruce Wallace

    2015-01-01

    Nutrient pollution of freshwater ecosystems results in predictable increases in carbon (C) sequestration by algae. Tests of nutrient enrichment on the fates of terrestrial organic C, which supports riverine food webs and is a source of CO2, are lacking. Using whole-stream nitrogen (N) and phosphorus (P) additions spanning the equivalent of 27 years, we found that...

  20. Simple and efficient LCAO basis sets for the diffuse states in carbon nanostructures.

    PubMed

    Papior, Nick R; Calogero, Gaetano; Brandbyge, Mads

    2018-06-27

    We present a simple way to describe the lowest unoccupied diffuse states in carbon nanostructures in density functional theory calculations using a minimal LCAO (linear combination of atomic orbitals) basis set. By comparing plane wave basis calculations, we show how these states can be captured by adding long-range orbitals to the standard LCAO basis sets for the extreme cases of planar sp 2 (graphene) and curved carbon (C 60 ). In particular, using Bessel functions with a long range as additional basis functions retain a minimal basis size. This provides a smaller and simpler atom-centered basis set compared to the standard pseudo-atomic orbitals (PAOs) with multiple polarization orbitals or by adding non-atom-centered states to the basis.

  1. Simple and efficient LCAO basis sets for the diffuse states in carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Papior, Nick R.; Calogero, Gaetano; Brandbyge, Mads

    2018-06-01

    We present a simple way to describe the lowest unoccupied diffuse states in carbon nanostructures in density functional theory calculations using a minimal LCAO (linear combination of atomic orbitals) basis set. By comparing plane wave basis calculations, we show how these states can be captured by adding long-range orbitals to the standard LCAO basis sets for the extreme cases of planar sp 2 (graphene) and curved carbon (C60). In particular, using Bessel functions with a long range as additional basis functions retain a minimal basis size. This provides a smaller and simpler atom-centered basis set compared to the standard pseudo-atomic orbitals (PAOs) with multiple polarization orbitals or by adding non-atom-centered states to the basis.

  2. Launch Vehicle Performance for Bipropellant Propulsion Using Atomic Propellants With Oxygen

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2000-01-01

    Atomic propellants for bipropellant launch vehicles using atomic boron, carbon, and hydrogen were analyzed. The gross liftoff weights (GLOW) and dry masses of the vehicles were estimated, and the 'best' design points for atomic propellants were identified. Engine performance was estimated for a wide range of oxidizer to fuel (O/F) ratios, atom loadings in the solid hydrogen particles, and amounts of helium carrier fluid. Rocket vehicle GLOW was minimized by operating at an O/F ratio of 1.0 to 3.0 for the atomic boron and carbon cases. For the atomic hydrogen cases, a minimum GLOW occurred when using the fuel as a monopropellant (O/F = 0.0). The atomic vehicle dry masses are also presented, and these data exhibit minimum values at the same or similar O/F ratios as those for the vehicle GLOW. A technology assessment of atomic propellants has shown that atomic boron and carbon rocket analyses are considered to be much more near term options than the atomic hydrogen rockets. The technology for storing atomic boron and carbon has shown significant progress, while atomic hydrogen is not able to be stored at the high densities needed for effective propulsion. The GLOW and dry mass data can be used to estimate the cost of future vehicles and their atomic propellant production facilities. The lower the propellant's mass, the lower the overall investment for the specially manufactured atomic propellants.

  3. Effects of irrigation and addition of nitrogen fertiliser on net ecosystem carbon balance for a grassland.

    PubMed

    Moinet, Gabriel Y K; Cieraad, Ellen; Turnbull, Matthew H; Whitehead, David

    2017-02-01

    The ability to quantify the impacts of changing management practices on the components of net ecosystem carbon balance (N B ) is required to forecast future changes in soil carbon stocks and potential feedbacks on atmospheric CO 2 concentrations. In this study we investigated seasonal changes on the components of net ecosystem carbon balance resulting from the application of irrigation and nitrogen fertiliser to a temperate grassland in New Zealand where we simulated grazing events. We made seasonal measurements of the components of N B using chamber measurements in field plots with and without irrigation and addition of nitrogen fertiliser. We developed models to determine the physiological responses of gross canopy photosynthesis (A), leaf respiration (R L ) and soil respiration (R S ) to soil and air temperature, soil water content and irradiance and we estimated annual N B for the first year after treatments were applied. Overall, irrigation and nitrogen addition had a synergistic effect to increase annual estimates of above-ground components of carbon balance (A, R L and carbon exported through simulated grazing, F export ), but there was no effect from adding nitrogen alone. Annual R S remained unchanged between treatments. The treatments resulted in increases in above-ground biomass production, but, with the high intensity of simulated grazing, these were not sufficient to offset ecosystem carbon losses, so all treatments remained a net source of carbon. There were no significant differences between treatments and annual N B ranged from -540gCm -2 y -1 for the treatment with no irrigation and no nitrogen addition and -284gCm -2 y -1 for the treatment with irrigation and nitrogen addition. Our findings from the first year of the treatments quantify the net benefits of addition of irrigation and nitrogen on increasing above-ground production for animal feed but show that this did not lead to a net increase carbon input to the soil. Copyright © 2016 Elsevier B

  4. Ethers as Oxygen Donor and Carbon Source in Non-hydrolytic Sol-Gel: One-Pot, Atom-Economic Synthesis of Mesoporous TiO2 -Carbon Nanocomposites.

    PubMed

    Escamilla-Pérez, Angel Manuel; Louvain, Nicolas; Boury, Bruno; Brun, Nicolas; Mutin, P Hubert

    2018-04-03

    Mesoporous TiO 2 -carbon nanocomposites were synthesized using an original non-hydrolytic sol-gel (NHSG) route, based on the reaction of simple ethers (diisopropyl ether or tetrahydrofuran) with titanium tetrachloride. In this atom-economic, solvent-free process, the ether acts not only as an oxygen donor but also as the sole carbon source. Increasing the reaction temperature to 180 °C leads to the decomposition of the alkyl chloride by-product and to the formation of hydrocarbon polymers, which are converted to carbon by pyrolysis under argon. The carbon-TiO 2 nanocomposites and their TiO 2 counterparts (obtained by calcination) were characterized by nitrogen physisorption, XRD, solid state 13 C NMR and Raman spectroscopies, SEM, and TEM. The nanocomposites are mesoporous with surface areas of up to 75 m 2  g -1 and pore sizes around 10 nm. They are composed of aggregated anatase nanocrystals coated by an amorphous carbon film. Playing on the nature of the ether and on the reaction temperature allows control over the carbon content in the nanocomposites. The nature of the ether also influences the size of the TiO 2 crystallites and the morphology of the nanocomposite. To further characterize the carbon coating, the behavior of the carbon-TiO 2 nanocomposites and bare TiO 2 samples toward lithium insertion-deinsertion was investigated in half-cells. This simple NHSG approach should provide a general method for the synthesis of a wide range of carbon-metal oxide nanocomposites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The atomic arrangement of iimoriite-(Y), Y2(SiO4)(CO3)

    USGS Publications Warehouse

    Hughes, J.M.; Foord, E.E.; Jai-Nhuknan, J.; Bell, J.M.

    1996-01-01

    Iimoriite-(Y) from Bokan Mountain, Prince of Wales Island, Alaska has been studied using single-crystal X-ray-diffraction techniques. The mineral, ideally Y2(SiO4)(CO3), crystallizes in space group P1, with a 6.5495(13), b 6.6291(14), c 6.4395(11)A??, ?? 116.364(15), ?? 92.556(15) and ?? 95.506(17)??. The atomic arrangement has been solved and refined to an R value of 0.019. The arrangement of atoms consists of alternating (011) slabs of orthosilicate groups and carbonate groups, with no sharing of oxygen atoms between anionic complexes in adjacent slabs. Y1 atoms separate adjacent tetrahedra along [100] within the orthosilicate slab, and Y2 atoms separate adjacent carbonate groups along [100] within the carbonate slab. Adjacent orthosilicate and carbonate slabs are linked in (100) by bonding Y atoms from each slab to oxygen atoms of adjacent slabs, in the form of YO8 polyhedra. The Y1 atoms exist in Y12O14 dimers in the orthosilicate slab, and the Y2 atoms exist in continuous [011] ribbons of edge-sharing Y2O8 polyhedra in the carbonate slab.

  6. Tunneling in hydrogen and deuterium atom addition to CO at low temperatures

    NASA Astrophysics Data System (ADS)

    Andersson, Stefan; Goumans, T. P. M.; Arnaldsson, Andri

    2011-09-01

    The hydrogen and deuterium atom addition reactions of CO to form HCO and DCO are addressed by Harmonic Quantum Transition State Theory calculations. Special attention is paid to the reactions at very low temperatures (5-20 K) where it is found that quantum tunneling leads to substantial rates of reaction. This supports experiments in the solid phase, which conclude that these reactions are driven by tunneling at low temperatures. The calculated kinetic isotope effect of kD/ kH = 1/250 is found to be lower than the experimentally deduced value of 0.08 for the surface reaction. Possible reasons for this discrepancy are discussed.

  7. Study of additive manufactured microwave cavities for pulsed optically pumped atomic clock applications

    NASA Astrophysics Data System (ADS)

    Affolderbach, C.; Moreno, W.; Ivanov, A. E.; Debogovic, T.; Pellaton, M.; Skrivervik, A. K.; de Rijk, E.; Mileti, G.

    2018-03-01

    Additive manufacturing (AM) of passive microwave components is of high interest for the cost-effective and rapid prototyping or manufacture of devices with complex geometries. Here, we present an experimental study on the properties of recently demonstrated microwave resonator cavities manufactured by AM, in view of their applications to high-performance compact atomic clocks. The microwave cavities employ a loop-gap geometry using six electrodes. The critical electrode structures were manufactured monolithically using two different approaches: Stereolithography (SLA) of a polymer followed by metal coating and Selective Laser Melting (SLM) of aluminum. The tested microwave cavities show the desired TE011-like resonant mode at the Rb clock frequency of ≈6.835 GHz, with a microwave magnetic field highly parallel to the quantization axis across the vapor cell. When operated in an atomic clock setup, the measured atomic Rabi oscillations are comparable to those observed for conventionally manufactured cavities and indicate a good uniformity of the field amplitude across the vapor cell. Employing a time-domain Ramsey scheme on one of the SLA cavities, high-contrast (34%) Ramsey fringes are observed for the Rb clock transition, along with a narrow (166 Hz linewidth) central fringe. The measured clock stability of 2.2 × 10-13 τ-1/2 up to the integration time of 30 s is comparable to the current state-of-the-art stabilities of compact vapor-cell clocks based on conventional microwave cavities and thus demonstrates the feasibility of the approach.

  8. Reinforcement of single-walled carbon nanotube bundles by intertube bridging

    NASA Astrophysics Data System (ADS)

    Kis, A.; Csányi, G.; Salvetat, J.-P.; Lee, Thien-Nga; Couteau, E.; Kulik, A. J.; Benoit, W.; Brugger, J.; Forró, L.

    2004-03-01

    During their production, single-walled carbon nanotubes form bundles. Owing to the weak van der Waals interaction that holds them together in the bundle, the tubes can easily slide on each other, resulting in a shear modulus comparable to that of graphite. This low shear modulus is also a major obstacle in the fabrication of macroscopic fibres composed of carbon nanotubes. Here, we have introduced stable links between neighbouring carbon nanotubes within bundles, using moderate electron-beam irradiation inside a transmission electron microscope. Concurrent measurements of the mechanical properties using an atomic force microscope show a 30-fold increase of the bending modulus, due to the formation of stable crosslinks that effectively eliminate sliding between the nanotubes. Crosslinks were modelled using first-principles calculations, showing that interstitial carbon atoms formed during irradiation in addition to carboxyl groups, can independently lead to bridge formation between neighbouring nanotubes.

  9. Binding of dinitrogen to an iron-sulfur-carbon site

    NASA Astrophysics Data System (ADS)

    Čorić, Ilija; Mercado, Brandon Q.; Bill, Eckhard; Vinyard, David J.; Holland, Patrick L.

    2015-10-01

    Nitrogenases are the enzymes by which certain microorganisms convert atmospheric dinitrogen (N2) to ammonia, thereby providing essential nitrogen atoms for higher organisms. The most common nitrogenases reduce atmospheric N2 at the FeMo cofactor, a sulfur-rich iron-molybdenum cluster (FeMoco). The central iron sites that are coordinated to sulfur and carbon atoms in FeMoco have been proposed to be the substrate binding sites, on the basis of kinetic and spectroscopic studies. In the resting state, the central iron sites each have bonds to three sulfur atoms and one carbon atom. Addition of electrons to the resting state causes the FeMoco to react with N2, but the geometry and bonding environment of N2-bound species remain unknown. Here we describe a synthetic complex with a sulfur-rich coordination sphere that, upon reduction, breaks an Fe-S bond and binds N2. The product is the first synthetic Fe-N2 complex in which iron has bonds to sulfur and carbon atoms, providing a model for N2 coordination in the FeMoco. Our results demonstrate that breaking an Fe-S bond is a chemically reasonable route to N2 binding in the FeMoco, and show structural and spectroscopic details for weakened N2 on a sulfur-rich iron site.

  10. Single-walled carbon nanotubes coated with ZnO by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Pal, Partha P.; Gilshteyn, Evgenia; Jiang, Hua; Timmermans, Marina; Kaskela, Antti; Tolochko, Oleg V.; Kurochkin, Alexey V.; Karppinen, Maarit; Nisula, Mikko; Kauppinen, Esko I.; Nasibulin, Albert G.

    2016-12-01

    The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere. The uniformly ZnO coated SWCNTs were used to fabricate UV sensing devices. An UV irradiation of the ZnO coated samples turned them from hydrophobic to hydrophilic behaviour. Furthermore, thin films of the ZnO coated SWCNTs allowed us switch p-type field effect transistors made of pristine SWCNTs to have ambipolar characteristics.

  11. Single-walled carbon nanotubes coated with ZnO by atomic layer deposition.

    PubMed

    Pal, Partha P; Gilshteyn, Evgenia; Jiang, Hua; Timmermans, Marina; Kaskela, Antti; Tolochko, Oleg V; Karppinen, Maarit; Nisula, Mikko; Kauppinen, Esko I; Nasibulin, Albert G

    2016-12-02

    The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere. The uniformly ZnO coated SWCNTs were used to fabricate UV sensing devices. An UV irradiation of the ZnO coated samples turned them from hydrophobic to hydrophilic behaviour. Furthermore, thin films of the ZnO coated SWCNTs allowed us switch p-type field effect transistors made of pristine SWCNTs to have ambipolar characteristics.

  12. Thermal characteristics of carbon fiber reinforced epoxy containing multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lee, Jin-woo; Park, Soo-Jeong; Kim, Yun-hae; Riichi-Murakami

    2018-06-01

    The material with irregular atomic structures such as polymer material exhibits low thermal conductivity because of the complex structural properties. Even materials with same atomic configurations, thermal conductivity may be different based on their structural properties. It is expected that nanoparticles with conductivity will change non-conductive polymer base materials to electrical conductors, and improve the thermal conductivity even with extremely small filling amount. Nano-composite materials contain nanoparticles with a higher surface ratio which makes the higher interface percentage to the total surface of nanoparticles. Therefore, thermal resistance of the interface becomes a dominating factor determines the effective thermal conductivity in nano-composite materials. Carbon fiber has characteristic of resistance or magnetic induction and Also, Carbon nanotube (CNT) has electronic and thermal property. It can be applied for heating system. These characteristic are used as heating composite. In this research, the exothermic characteristics of Carbon fiber reinforced composite added CNT were evaluated depend on CNT length and particle size. It was found that the CNT dispersed in the resin reduces the resistance between the interfaces due to the decrease in the total resistance of the heating element due to the addition of CNTs. It is expected to improve the life and performance of the carbon fiber composite material as a result of the heating element resulting from this paper.

  13. Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction.

    PubMed

    Li, Qiheng; Chen, Wenxing; Xiao, Hai; Gong, Yue; Li, Zhi; Zheng, Lirong; Zheng, Xusheng; Yan, Wensheng; Cheong, Weng-Chon; Shen, Rongan; Fu, Ninghua; Gu, Lin; Zhuang, Zhongbin; Chen, Chen; Wang, Dingsheng; Peng, Qing; Li, Jun; Li, Yadong

    2018-06-01

    Heteroatom-doped Fe-NC catalyst has emerged as one of the most promising candidates to replace noble metal-based catalysts for highly efficient oxygen reduction reaction (ORR). However, delicate controls over their structure parameters to optimize the catalytic efficiency and molecular-level understandings of the catalytic mechanism are still challenging. Herein, a novel pyrrole-thiophene copolymer pyrolysis strategy to synthesize Fe-isolated single atoms on sulfur and nitrogen-codoped carbon (Fe-ISA/SNC) with controllable S, N doping is rationally designed. The catalytic efficiency of Fe-ISA/SNC shows a volcano-type curve with the increase of sulfur doping. The optimized Fe-ISA/SNC exhibits a half-wave potential of 0.896 V (vs reversible hydrogen electrode (RHE)), which is more positive than those of Fe-isolated single atoms on nitrogen codoped carbon (Fe-ISA/NC, 0.839 V), commercial Pt/C (0.841 V), and most reported nonprecious metal catalysts. Fe-ISA/SNC is methanol tolerable and shows negligible activity decay in alkaline condition during 15 000 voltage cycles. X-ray absorption fine structure analysis and density functional theory calculations reveal that the incorporated sulfur engineers the charges on N atoms surrounding the Fe reactive center. The enriched charge facilitates the rate-limiting reductive release of OH* and therefore improved the overall ORR efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Inorganic carbon addition stimulates snow algae primary productivity

    NASA Astrophysics Data System (ADS)

    Hamilton, T. L.; Havig, J. R.

    2017-12-01

    Earth has experienced glacial/interglacial oscillations throughout its history. Today over 15 million square kilometers (5.8 million square miles) of Earth's land surface is covered in ice including glaciers, ice caps, and the ice sheets of Greenland and Antarctica, most of which are retreating as a consequence of increased atmospheric CO2. Glaciers are teeming with life and supraglacial snow and ice surfaces are often red due to blooms of photoautotrophic algae. Recent evidence suggests the red pigmentation, secondary carotenoids produced in part to thrive under high irradiation, lowers albedo and accelerates melt. However, there are relatively few studies that report the productivity of snow algae communities and the parameters that constrain their growth on snow and ice surfaces. Here, we demonstrate that snow algae primary productivity can be stimulated by the addition of inorganic carbon. We found an increase in light-dependent carbon assimilation in snow algae microcosms amended with increasing amounts of inorganic carbon. Our snow algae communities were dominated by typical cosmopolitan snow algae species recovered from Alpine and Arctic environments. The climate feedbacks necessary to enter and exit glacial/interglacial oscillations are poorly understood. Evidence and models agree that global Snowball events are accompanied by changes in atmospheric CO2 with increasing CO2 necessary for entering periods of interglacial time. Our results demonstrate a positive feedback between increased CO2 and snow algal productivity and presumably growth. With the recent call for bio-albedo effects to be considered in climate models, our results underscore the need for robust climate models to include feedbacks between supraglacial primary productivity, albedo, and atmospheric CO2.

  15. Carbonyl Activation by Borane Lewis Acid Complexation: Transition States of H2 Splitting at the Activated Carbonyl Carbon Atom in a Lewis Basic Solvent and the Proton-Transfer Dynamics of the Boroalkoxide Intermediate.

    PubMed

    Heshmat, Mojgan; Privalov, Timofei

    2017-07-06

    By using transition-state (TS) calculations, we examined how Lewis acid (LA) complexation activates carbonyl compounds in the context of hydrogenation of carbonyl compounds by H 2 in Lewis basic (ethereal) solvents containing borane LAs of the type (C 6 F 5 ) 3 B. According to our calculations, LA complexation does not activate a ketone sufficiently enough for the direct addition of H 2 to the O=C unsaturated bond; but, calculations indicate a possibly facile heterolytic cleavage of H 2 at the activated and thus sufficiently Lewis acidic carbonyl carbon atom with the assistance of the Lewis basic solvent (i.e., 1,4-dioxane or THF). For the solvent-assisted H 2 splitting at the carbonyl carbon atom of (C 6 F 5 ) 3 B adducts with different ketones, a number of TSs are computed and the obtained results are related to insights from experiment. By using the Born-Oppenheimer molecular dynamics with the DFT for electronic structure calculations, the evolution of the (C 6 F 5 ) 3 B-alkoxide ionic intermediate and the proton transfer to the alkoxide oxygen atom were investigated. The results indicate a plausible hydrogenation mechanism with a LA, that is, (C 6 F 5 ) 3 B, as a catalyst, namely, 1) the step of H 2 cleavage that involves a Lewis basic solvent molecule plus the carbonyl carbon atom of thermodynamically stable and experimentally identifiable (C 6 F 5 ) 3 B-ketone adducts in which (C 6 F 5 ) 3 B is the "Lewis acid promoter", 2) the transfer of the solvent-bound proton to the oxygen atom of the (C 6 F 5 ) 3 B-alkoxide intermediate giving the (C 6 F 5 ) 3 B-alcohol adduct, and 3) the S N 2-style displacement of the alcohol by a ketone or a Lewis basic solvent molecule. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of additional elements on compositional modulated atomic layered structure of hexagonal Co{sub 80}Pt{sub 20} alloy films with superlattice diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinata, Shintaro; Research Fellowship Division Japan Society for the Promotion of Science; Yamane, Akira

    2016-05-15

    The effect of additional element on compositionally modulated atomic layered structure of hexagonal Co{sub 80}Pt{sub 20} alloy films with superlattice diffraction was investigated. In this study it is found that the addition of Cr or W element to Co{sub 80}Pt{sub 20} alloy film shows less deterioration of hcp stacking structure and compositionally modulated atomic layer stacking structure as compared to Si or Zr or Ti with K{sub u} of around 1.4 or 1.0 × 10{sup 7} erg/cm{sup 3} at 5 at.% addition. Furthermore, for O{sub 2} addition of O{sub 2} ≥ 5.0 × 10{sup −3} Pa to CoPt alloy, compositionallymore » modulated atomic layer stacking structure will be deteriorated with enhancement of formation of hcp stacking structure which leads higher K{sub u} of 1.0 × 10{sup 7} erg/cm{sup 3}.« less

  17. New method for binder and carbon black detection at nanometer scale in carbon electrodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Pfaffmann, Lukas; Jaiser, Stefan; Müller, Marcus; Scharfer, Philip; Schabel, Wilhelm; Bauer, Werner; Scheiba, Frieder; Ehrenberg, Helmut

    2017-09-01

    In the current work, graphite electrodes comprising PVDF binder and carbon black are subjected to characterization. An energy selective backscatter detector is used to localize carbon black and fluorine of PVDF. Therefore, it is necessary to distinguish between graphite, amorphous carbon and fluorine rich regions. Typically, an angular selective backscatter detector is employed to obtain an image providing the material contrast of the sample. Suitable materials for that detector are e.g. alloys to observe intermetallic phases, semiconductor for ;channeling contrast;, or imaging SiO2 and Au nanoparticles in biological cells. However, this detector cannot be used to distinguish between light elements with low atomic numbers, such as C to P. In addition, the contrast of fluorine rich regions and graphite is poor in normal in-lens images due to the low difference of the atomic mass between C and F. The aim of this study is to enhance the contrast of fluorine rich regions to graphite to carbon black. Therefore, the energy selective backscatter detector is used and its advantages and setup is described. Finally this technique is applied to investigate 400 μm thick cross-sections of graphite electrodes dried at different temperatures and obtain the carbon black distribution.

  18. Influence of Si addition on the carbon partitioning process in martensitic-austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Volkova, O.; De Cooman, BC; Biermann, H.; Mola, J.

    2018-06-01

    The effect of Si on the efficiency of carbon partitioning during quenching and partitioning (Q&P) processing of stainless steels was studied. For this purpose, 2 mass-% Si was added to a Fe-13Cr-0.47C reference steel. The Si-free (reference) and Si-added steels were subjected to Q&P cycles in dilatometer. The carbon enrichment of austenite in both steels was evaluated by determining the temperature interval between the quench temperature and the martensite start temperature of secondary martensite formed during final cooling to room temperature. In Q&P cycles with comparable martensite fractions at the quench temperature, the carbon enrichment of austenite after partitioning was similar for both steels. To compare the mechanical stability of austenite, Q&P-processed specimens of both steels were tensile tested in the temperature range 20-200 °C. The quench and partitioning temperatures were room temperature and 450 °C, respectively. Si addition had no meaningful influence on mechanical stability of austenite. The results indicate that the suppression of cementite formation by Si addition to stainless steels, as confirmed by transmission electron microscopy examinations, has no noticeable influence on the carbon enrichment of austenite in the partitioning step.

  19. Boosting Bifunctional Oxygen Electrolysis for N-Doped Carbon via Bimetal Addition.

    PubMed

    Wang, Jian; Ciucci, Francesco

    2017-04-01

    The addition of transition metals, even in a trace amount, into heteroatom-doped carbon (M-N/C) is intensively investigated to further enhance oxygen reduction reaction (ORR) activity. However, the influence of metal decoration on the electrolysis of the reverse reaction of ORR, that is, oxygen evolution reaction (OER), is seldom reported. Moreover, further improving the bifunctional activity and corrosion tolerance for carbon-based materials remains a big challenge, especially in OER potential regions. Here, bimetal-decorated, pyridinic N-dominated large-size carbon tubes (MM'-N/C) are proposed for the first time as highly efficient and durable ORR and OER catalysts. FeFe-N/C, CoCo-N/C, NiNi-N/C, MnMn-N/C, FeCo-N/C, NiFe-N/C, FeMn-N/C, CoNi-N/C, MnCo-N/C, and NiMn-N/C are systematically investigated in terms of their structure, composition, morphology, surface area, and active site densities. In contrast to conventional monometal and N-decorated carbon, small amounts of bimetal (≈2 at%) added during the one-step template-free synthesis contribute to increased pyridinic N content, much longer and more robust carbon tubes, reduced metal particle size, and stronger coupling between the encapsulated metals and carbon support. The synergy of those factors accounts for the dramatically improved ORR and OER activity and stability. By comparison, NiFe-N/C and MnCo-N/C stand out and achieve superior bifunctional oxygen catalytic performance, exceeding most of state-of-the-art catalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Reduction of nitrate in aquifer microcosms by carbon additions

    USGS Publications Warehouse

    Obenhuber, Donald C.; Lowrance , Richard

    1991-01-01

    Aquifer microcosms were used to examine the effects of NO−3 and C amendments on groundwater from the Claiborne aquifer. Nitrate concentrations of 12.17 mg L−1 in aquifer microcosms were reduced 0.92%/d to 5.84 mg L−1 by the addition of 10 mg C L−1 for 35 d. Nitrate disappearance correlated with increases in number of denitrifiers and dissolved N2O concentration and decreases in dissolved oxygen, suggesting biological denitrification. Nitrate/chloride ratios decreased in microcosms with 10 mg C L−1 added and then increased when the C addition was removed. Carbon additions of 0.4 mg C L−1 had no effect on the microbial or chemical properties of the microcosms. Nitrous oxide levels in wells sampling the Claiborne aquifer showed an increase with depth, indicating N2O production within the aquifer. Microcosms are useful tools to examine biological transformations of chemical contaminants in unconsolidated aquifer material. The remediation of NO−3 contaminated aquifers by organic infusion is possible and appears to be a function of microbial denitrification.

  1. H-atom addition and abstraction reactions in mixed CO, H2CO and CH3OH ices - an extended view on complex organic molecule formation

    NASA Astrophysics Data System (ADS)

    Chuang, K.-J.; Fedoseev, G.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.

    2016-01-01

    Complex organic molecules (COMs) have been observed not only in the hot cores surrounding low- and high-mass protostars, but also in cold dark clouds. Therefore, it is interesting to understand how such species can be formed without the presence of embedded energy sources. We present new laboratory experiments on the low-temperature solid state formation of three complex molecules - methyl formate (HC(O)OCH3), glycolaldehyde (HC(O)CH2OH) and ethylene glycol (H2C(OH)CH2OH) - through recombination of free radicals formed via H-atom addition and abstraction reactions at different stages in the CO→H2CO→CH3OH hydrogenation network at 15 K. The experiments extend previous CO hydrogenation studies and aim at resembling the physical-chemical conditions typical of the CO freeze-out stage in dark molecular clouds, when H2CO and CH3OH form by recombination of accreting CO molecules and H-atoms on ice grains. We confirm that H2CO, once formed through CO hydrogenation, not only yields CH3OH through ongoing H-atom addition reactions, but is also subject to H-atom-induced abstraction reactions, yielding CO again. In a similar way, H2CO is also formed in abstraction reactions involving CH3OH. The dominant methanol H-atom abstraction product is expected to be CH2OH, while H-atom additions to H2CO should at least partially proceed through CH3O intermediate radicals. The occurrence of H-atom abstraction reactions in ice mantles leads to more reactive intermediates (HCO, CH3O and CH2OH) than previously thought, when assuming sequential H-atom addition reactions only. This enhances the probability to form COMs through radical-radical recombination without the need of UV photolysis or cosmic rays as external triggers.

  2. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    NASA Astrophysics Data System (ADS)

    Zope, Rajendra R.; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar

    2015-08-01

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  3. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions.

    PubMed

    Zope, Rajendra R; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar

    2015-08-28

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  4. Application of gas-fluid atomization technology in ultrosonic vibration cutting titanium alloy workpiece

    NASA Astrophysics Data System (ADS)

    Zhou, Zhimin; Zhang, Yuangliang; Li, Xiaoyan; Sun, Baoyuan

    2009-11-01

    To further improve machined surface quality of diamond cutting titanium workpiece and reduce diamond tool wear, it puts forward a kind of machining technology with mixture of carbon dioxide gas, water and vegetable oil atomized mist as cooling media in the paper. The cooling media is sprayed to cutting area through gas-liquid atomizer device to achieve purpose of cooling, lubricating, and protecting diamond tool. Experiments indicate that carbon dioxide gas can touch cutting surface more adequately through using gas-liquid atomization technology, which makes iron atoms of cutting surface cause a chemical reaction directly with carbon in carbon dioxide gas and reduce graphitizing degree of diamond tool. Thus, this technology of using gas-liquid atomization and ultrasonic vibration together for cutting Titanium Alloy is able to improve machined surface quality of workpiece and slow of diamond tool wear.

  5. Metal-Assisted Oxo Atom Addition to an Fe(III) Thiolate.

    PubMed

    Villar-Acevedo, Gloria; Lugo-Mas, Priscilla; Blakely, Maike N; Rees, Julian A; Ganas, Abbie S; Hanada, Erin M; Kaminsky, Werner; Kovacs, Julie A

    2017-01-11

    Cysteinate oxygenation is intimately tied to the function of both cysteine dioxygenases (CDOs) and nitrile hydratases (NHases), and yet the mechanisms by which sulfurs are oxidized by these enzymes are unknown, in part because intermediates have yet to be observed. Herein, we report a five-coordinate bis-thiolate ligated Fe(III) complex, [Fe III (S 2 Me2 N 3 (Pr,Pr))] + (2), that reacts with oxo atom donors (PhIO, IBX-ester, and H 2 O 2 ) to afford a rare example of a singly oxygenated sulfenate, [Fe III (η 2 -S Me2 O)(S Me2 )N 3 (Pr,Pr)] + (5), resembling both a proposed intermediate in the CDO catalytic cycle and the essential NHase Fe-S(O) Cys114 proposed to be intimately involved in nitrile hydrolysis. Comparison of the reactivity of 2 with that of a more electron-rich, crystallographically characterized derivative, [Fe III S 2 Me2 N Me N 2 amide (Pr,Pr)] - (8), shows that oxo atom donor reactivity correlates with the metal ion's ability to bind exogenous ligands. Density functional theory calculations suggest that the mechanism of S-oxygenation does not proceed via direct attack at the thiolate sulfurs; the average spin-density on the thiolate sulfurs is approximately the same for 2 and 8, and Mulliken charges on the sulfurs of 8 are roughly twice those of 2, implying that 8 should be more susceptible to sulfur oxidation. Carboxamide-ligated 8 is shown to be unreactive towards oxo atom donors, in contrast to imine-ligated 2. Azide (N 3 - ) is shown to inhibit sulfur oxidation with 2, and a green intermediate is observed, which then slowly converts to sulfenate-ligated 5. This suggests that the mechanism of sulfur oxidation involves initial coordination of the oxo atom donor to the metal ion. Whether the green intermediate is an oxo atom donor adduct, Fe-O═I-Ph, or an Fe(V)═O remains to be determined.

  6. Comparison of adsorption behavior of PCDD/Fs on carbon nanotubes and activated carbons in a bench-scale dioxin generating system.

    PubMed

    Zhou, Xujian; Li, Xiaodong; Xu, Shuaixi; Zhao, Xiyuan; Ni, Mingjiang; Cen, Kefa

    2015-07-01

    Porous carbon-based materials are commonly used to remove various organic and inorganic pollutants from gaseous and liquid effluents and products. In this study, the adsorption of dioxins on both activated carbons and multi-walled carbon nanotube was internally compared, via series of bench scale experiments. A laboratory-scale dioxin generator was applied to generate PCDD/Fs with constant concentration (8.3 ng I-TEQ/Nm(3)). The results confirm that high-chlorinated congeners are more easily adsorbed on both activated carbons and carbon nanotubes than low-chlorinated congeners. Carbon nanotubes also achieved higher adsorption efficiency than activated carbons even though they have smaller BET-surface. Carbon nanotubes reached the total removal efficiency over 86.8 % to be compared with removal efficiencies of only 70.0 and 54.2 % for the two other activated carbons tested. In addition, because of different adsorption mechanisms, the removal efficiencies of carbon nanotubes dropped more slowly with time than was the case for activated carbons. It could be attributed to the abundant mesopores distributed in the surface of carbon nanotubes. They enhanced the pore filled process of dioxin molecules during adsorption. In addition, strong interactions between the two benzene rings of dioxin molecules and the hexagonal arrays of carbon atoms in the surface make carbon nanotubes have bigger adsorption capacity.

  7. Effect of alcohol addition on shock-initiated formation of soot from benzene

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael; Yuan, Tony

    1988-01-01

    Soot formation in benzene-methanol and benzene-ethanol argon-diluted mixtures was studied behind reflected shock waves by monitoring the attenuation of an He-Ne laser beam. The experiments were performed at temperatures 1580-2250 K, pressures 2.0-3.0 bar, and total carbon atom concentrations (2.0-2.7) x 10 to the 17th atoms/cu cm. The results obtained indicate that the addition of alcohol suppresses the formation of soot from benzene at all temperatures, and that the reduction in soot yields is increased with the amount of alcohol added. The analysis of the results indicates that the suppression effect is probably due to the oxidation of soot and soot precursors by OH and the removal of hydrogen atoms by alcohol and water molecules.

  8. Effects of nutrient additions on ecosystem carbon cycle in a Puerto Rican tropical wet forest

    Treesearch

    YIQING LI; MING XU; XIAOMING ZOU

    2006-01-01

    Wet tropical forests play a critical role in global ecosystem carbon (C) cycle, but C allocation and the response of different C pools to nutrient addition in these forests remain poorly understood. We measured soil organic carbon (SOC), litterfall, root biomass, microbial biomass and soil physical and chemical properties in a wet tropical forest from May 1996 to July...

  9. From Metal-Organic Frameworks to Single-Atom Fe Implanted N-doped Porous Carbons: Efficient Oxygen Reduction in Both Alkaline and Acidic Media.

    PubMed

    Jiao, Long; Wan, Gang; Zhang, Rui; Zhou, Hua; Yu, Shu-Hong; Jiang, Hai-Long

    2018-05-09

    It remains highly desired but a great challenge to achieve atomically dispersed metals in high loadings for efficient catalysis. Now porphyrinic metal-organic frameworks (MOFs) have been synthesized based on a novel mixed-ligand strategy to afford high-content (1.76 wt %) single-atom (SA) iron-implanted N-doped porous carbon (Fe SA -N-C) via pyrolysis. Thanks to the single-atom Fe sites, hierarchical pores, oriented mesochannels and high conductivity, the optimized Fe SA -N-C exhibits excellent oxygen reduction activity and stability, surpassing almost all non-noble-metal catalysts and state-of-the-art Pt/C, in both alkaline and more challenging acidic media. More far-reaching, this MOF-based mixed-ligand strategy opens a novel avenue to the precise fabrication of efficient single-atom catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Carbon dioxide adsorbents containing magnesium oxide suitable for use at high temperatures

    DOEpatents

    Mayorga, Steven Gerard; Weigel, Scott Jeffrey; Gaffney, Thomas Richard; Brzozowski, Jeffrey Richard

    2001-01-01

    Adsorption of carbon dioxide from gas streams at temperatures in the range of 300 to 500.degree. C. is carried out with a solid adsorbent containing magnesium oxide, preferably promoted with an alkali metal carbonate or bicarbonate so that the atomic ratio of alkali metal to magnesium is in the range of 0.006 to 2.60. Preferred adsorbents are made from the precipitate formed on addition of alkali metal and carbonate ions to an aqueous solution of a magnesium salt. Atomic ratios of alkali metal to magnesium can be adjusted by washing the precipitate with water. Low surface area adsorbents can be made by dehydration and CO.sub.2 removal of magnesium hydroxycarbonate, with or without alkali metal promotion. The process is especially valuable in pressure swing adsorption operations.

  11. Geometry at the aliphatic tertiary carbon atom: computational and experimental test of the Walsh rule.

    PubMed

    Böhm, Stanislav; Exner, Otto

    2004-02-01

    The geometrical parameters of molecules of 2-substituted 2-methylpropanes and 1-substituted bicyclo[2.2.2]octanes were calculated at the B3LYP/6-311+G(d,p) level. They agreed reasonably well with the mean crystallographic values retrieved from the Cambridge Structural Database for a set of diverse non-cyclic structures with a tertiary C atom. The angle deformations at this C atom produced by the immediately bonded substituent are also closely related to those observed previously in benzene mono derivatives (either as calculated or as derived from crystallographic data). The calculated geometrical parameters were used to test the classical Walsh rule: It is evidently true that an electron-attracting substituent increases the proportion of C-atom p-electrons in the bond to the substituent and leaves more s-electrons to the remaining bonds; as a consequence the C-C-C angles at a tertiary carbon are widened and the C-C bonds shortened. However, this rule describes only part of the reality since the bond angles and lengths are controlled by other factors as well, for instance by steric crowding. Another imperfection of the Walsh rule is that the sequence of substituents does not correspond to their electronegativities, as measured by any known scale; more probably it is connected with the inductive effect, but then only very roughly.

  12. Effect of organic additives on characteristics of carbon-coated LiCoPO4 synthesized by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Maeyoshi, Yuta; Miyamoto, Shohei; Noda, Yusaku; Munakata, Hirokazu; Kanamura, Kiyoshi

    2017-01-01

    Carbon-coated LiCoPO4 particles are synthesized by one-pot hydrothermal process using three different organic additives (carboxymethylcellulose sodium salt (CMC), glucose, and ascorbic acid). The effect of the organic additives on particle size, morphology, nature of carbon coating, and electrochemical property of the resulting LiCoPO4 is investigated. CMC plays important roles to decrease the particle size and form well-covered carbon coating on the surface. Carbon-coated LiCoPO4 prepared using CMC delivers higher initial discharge capacity of 135 mA h g-1 at 0.1 C, and shows superior rate capability and cyclic performance than the other samples. The improved electrochemical characteristics are attributed to not only the fine particle which allows facile electronic and ionic transport, but also the high coverage of carbon coating which improves the electrical conductivity and prevents the irreversible reactions of the charged LiCoPO4 with electrolyte.

  13. Lubricants or lubricant additives composed of ionic liquids containing ammonium cations

    DOEpatents

    Qu, Jun [Knoxville, TN; Truhan, Jr; John, J [Cookeville, TN; Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN; Blau, Peter J [Knoxville, TN

    2010-07-13

    A lubricant or lubricant additive is an ionic liquid alkylammonium salt. The alkylammonium salt has the structure R.sub.xNH.sub.(4-x).sup.+,[F.sub.3C(CF.sub.2).sub.yS(O).sub.2].sub.2N.sup- .- where x is 1 to 3, R is independently C.sub.1 to C.sub.12 straight chain alkyl, branched chain alkyl, cycloalkyl, alkyl substituted cycloalkyl, cycloalkyl substituted alkyl, or, optionally, when x is greater than 1, two R groups comprise a cyclic structure including the nitrogen atom and 4 to 12 carbon atoms, and y is independently 0 to 11. The lubricant is effective for the lubrication of many surfaces including aluminum and ceramics surfaces.

  14. Synthesis of barium and strontium carbonate crystals with unusual morphologies using an organic additive

    NASA Astrophysics Data System (ADS)

    Chen, Long; Jiang, Jizhong; Bao, Zuben; Pan, Jian; Xu, Weibing; Zhou, Lili; Wu, Zhigang; Chen, Xu

    2013-12-01

    In this paper, strontium carbonate (SrCO3) and barium carbonate (BaCO3) crystals were synthesized in the presence of an organic additive-hexamethylenetetramine (HMT) using two CO2 sources. Scanning electron microscopy and X-ray powder diffractometry were used to characterize the products. The results showed that the morphologies of orthorhombic strontianite SrCO3 transformed from branch-like to flower-like, and to capsicum-like at last, while the morphologies of BaCO3 change from fiber-like to branchlike, and to rod-like finally with an increase of the molar ratio HMT/Sr2+ and HMT/Ba2+ from 0.2 to 10 using ammonium carbonate as CO2 source. When using diethyl carbonate instead of ammonium carbonate as CO2 source, SrCO3 flowers aggregated by rods and BaCO3 shuttles were formed. The possible formation mechanisms of SrCO3 and BaCO3 crystals obtained in different conditions were also discussed.

  15. Roles of additives and surface control in slurry atomization. Final project report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, S.C.

    1992-12-31

    This project studies the rheology and airblast atomization of micronized coal slurries. Its major objectives are (1) to promote further understanding of the mechanisms and the roles of additives in airblast atomization of coal water slurry (CWS), and (2) to investigate the impacts of coal particle surface properties and interparticle forces on CWS rheology. We have found that the flow behavior index (n) of a suspension (or slurry) is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The interparticle attraction, measured by the Hamaker constant scaled to the thermal energy atmore » 25{degrees}C (A/kT), causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior (n< 1). At a constant particle volume fraction and surface charge density (qualitatively measured by the zeta potential in deionized water), n decreases linearly as A/kT increases. The relative viscosity of the pseudoplastic suspension with respect to that of the suspending liquid is found to be independent of particle density and correlate well with the particle Peclet number which equals the particle diffusional relaxation time multiplied by shear rate. Specifically, the relative viscosities of the pseudoplastic glycerol/water coal slurry and the ethylene glycol/glycerol sand slurry, at same volume fractions as well as similar particle size distributions and liquid viscosities, as functions of the particle Peclet number fall along the same line.« less

  16. First-principles study on silicon atom doped monolayer graphene

    NASA Astrophysics Data System (ADS)

    Rafique, Muhammad; Shuai, Yong; Hussain, Nayyar

    2018-01-01

    This paper illustrates the structural, electronic and optical properties of individual silicon (Si) atom-doped single layer graphene using density functional theory method. Si atom forms tight bonding with graphene layer. The effect of doping has been investigated by varying the concentration of Si atoms from 3.125% to 9.37% (i.e. From one to three Si atoms in 4 × 4 pure graphene supercell containing 32 carbon atoms), respectively. Electronic structure, partial density of states (PDOS) and optical properties of pure and Si atom-doped graphene sheet were calculated using VASP (Vienna ab-initio Simulation Package). The calculated results for pure graphene sheet were then compared with Si atom doped graphene. It is revealed that upon Si doping in graphene, a finite band gap appears at the high symmetric K-point, thereby making graphene a direct band gap semiconductor. Moreover, the band gap value is directly proportional to the concentration of impurity Si atoms present in graphene lattice. Upon analyzing the optical properties of Si atom-doped graphene structures, it is found that, there is significant change in the refractive index of the graphene after Si atom substitution in graphene. In addition, the overall absorption spectrum of graphene is decreased after Si atom doping. Although a significant red shift in absorption is found to occur towards visible range of radiation when Si atom is substituted in its lattice. The reflectivity of graphene improves in low energy region after Si atom substitution in graphene. These results can be useful for tuning the electronic structure and to manipulate the optical properties of graphene layer in the visible region.

  17. Effect of small addition of Cr on stability of retained austenite in high carbon steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Rumana; Pahlevani, Farshid, E-mail: f.pah

    High carbon steels with dual phase structures of martensite and austenite have considerable potential for industrial application in high abrasion environments due to their hardness, strength and relatively low cost. To design cost effective high carbon steels with superior properties, it is crucial to identify the effect of Chromium (Cr) on the stability of retained austenite (RA) and to fully understand its effect on solid-state phase transition. This study addresses this important knowledge gap. Using standard compression tests on bulk material, quantitative X-ray diffraction analysis, nano-indentation on individual austenitic grains, transmission electron microscopy and electron backscatter diffraction–based orientation microscopy techniques,more » the authors investigated the effect of Cr on the microstructure, transformation behaviour and mechanical stability of retained austenite in high carbon steel, with varying Cr contents. The results revealed that increasing the Cr %, altered the morphology of the RA and increased its stability, consequently, increasing the critical pressure for martensitic transformation. This study has critically addressed the elastoplastic behaviour of retained austenite – and provides a deep understanding of the effect of small additions of Cr on the metastable austenite of high carbon steel from the macro- to nano-level. Consequently, it paves the way for new applications for high carbon low alloy steels. - Highlights: • Effect of small addition of Cr on metastable austenite of high carbon steel from the macro- to nano-level • A multi-scale study of elastoplastic behaviour of retained austenite in high carbon steel • The mechanical stability of retained austenite during plastic deformation increased with increasing Cr content • Effect of grain boundary misorientation angle on hardness of individual retained austenite grains in high carbon steel.« less

  18. Neutron diffraction of acetazolamide-bound human carbonic anhydrase II reveals atomic details of drug binding

    PubMed Central

    Fisher, S. Zoë; Aggarwal, Mayank; Kovalevsky, Andrey Y.; Silverman, David N.; McKenna, Robert

    2012-01-01

    Carbonic anhydrases (CAs) catalyze the hydration of CO2 forming HCO3− and a proton, an important reaction for many physiological processes including respiration, fluid secretion, and pH regulation. As such, CA isoforms are prominent clinical targets for treating various diseases. The clinically used acetazolamide (AZM) is a sulfonamide that binds with high affinity to human CA isoform II (HCA II). There are several X-ray structures available of AZM bound to various CA isoforms, but these complexes do not show the charged state of AZM, or hydrogen (H) atom positions of the protein and solvent. Neutron diffraction is a useful technique for directly observing H atoms and the mapping of H-bonding networks that can greatly contribute to rational drug design. To this end the neutron structure of H/D exchanged HCA II crystals in complex with AZM was determined. The structure reveals the molecular details of AZM binding and the charged state of the bound drug. This represents the first determined neutron structure of a clinically used drug bound to its target. PMID:22928733

  19. DFT Modeling of Cross-Linked Polyethylene: Role of Gold Atoms and Dispersion Interactions.

    PubMed

    Blaško, Martin; Mach, Pavel; Antušek, Andrej; Urban, Miroslav

    2018-02-08

    Using DFT modeling, we analyze the concerted action of gold atoms and dispersion interactions in cross-linked polyethylene. Our model consists of two oligomer chains (PEn) with 7, 11, 15, 19, or 23 carbon atoms in each oligomer cross-linked with one to three Au atoms through C-Au-C bonds. In structures with a single gold atom the C-Au-C bond is located in the central position of the oligomer. Binding energies (BEs) with respect to two oligomer radical fragments and Au are as high as 362-489 kJ/mol depending on the length of the oligomer chain. When the dispersion contribution in PEn-Au-PEn oligomers is omitted, BE is almost independent of the number of carbon atoms, lying between 293 and 296 kJ/mol. The dispersion energy contributions to BEs in PEn-Au-PEn rise nearly linearly with the number of carbon atoms in the PEn chain. The carbon-carbon distance in the C-Au-C moiety is around 4.1 Å, similar to the bond distance between saturated closed shell chains in the polyethylene crystal. BEs of pure saturated closed shell PEn-PEn oligomers are 51-187 kJ/mol. Both Au atoms and dispersion interactions contribute considerably to the creation of nearly parallel chains of oligomers with reasonably high binding energies.

  20. Silicon carbide sintered body manufactured from silicon carbide powder containing boron, silicon and carbonaceous additive

    NASA Technical Reports Server (NTRS)

    Tanaka, Hidehiko

    1987-01-01

    A silicon carbide powder of a 5-micron grain size is mixed with 0.15 to 0.60 wt% mixture of a boron compound, i.e., boric acid, boron carbide (B4C), silicon boride (SiB4 or SiB6), aluminum boride, etc., and an aluminum compound, i.e., aluminum, aluminum oxide, aluminum hydroxide, aluminum carbide, etc., or aluminum boride (AlB2) alone, in such a proportion that the boron/aluminum atomic ratio in the sintered body becomes 0.05 to 0.25 wt% and 0.05 to 0.40 wt%, respectively, together with a carbonaceous additive to supply enough carbon to convert oxygen accompanying raw materials and additives into carbon monoxide.

  1. Exotic objects of atomic physics

    NASA Astrophysics Data System (ADS)

    Eletskii, A. V.

    2017-11-01

    There has been presented a short survey of physical properties, methods of production and exploration as well as directions of practical usage of the objects of atomic physics which are not yet described in detail in modern textbooks and manuals intended for students of technical universities. The family of these objects includes negative and multicharged ions, Rydberg atoms, excimer molecules, clusters. Besides of that, in recent decades this family was supplemented with new nanocarbon structures such as fullerenes, carbon nanotubes and graphene. The textbook “Exotic objects of atomic physics” [1] edited recently contains some information on the above-listed objects of the atomic physics. This textbook can be considered as a supplement to classic courses of atomic physics teaching in technical universities.

  2. Studies of carbon incorporation on the diamond [100] surface during chemical vapor deposition using density functional theory.

    PubMed

    Cheesman, Andrew; Harvey, Jeremy N; Ashfold, Michael N R

    2008-11-13

    Accurate potential energy surface calculations are presented for many of the key steps involved in diamond chemical vapor deposition on the [100] surface (in its 2 x 1 reconstructed and hydrogenated form). The growing diamond surface was described by using a large (approximately 1500 atoms) cluster model, with the key atoms involved in chemical steps being described by using a quantum mechanical (QM, density functional theory, DFT) method and the bulk of the atoms being described by molecular mechanics (MM). The resulting hybrid QM/MM calculations are more systematic and/or at a higher level of theory than previous work on this growth process. The dominant process for carbon addition, in the form of methyl radicals, is predicted to be addition to a surface radical site, opening of the adjacent C-C dimer bond, insertion, and ultimate ring closure. Other steps such as insertion across the trough between rows of dimer bonds or addition to a neighboring dimer leading to formation of a reconstruction on the next layer may also contribute. Etching of carbon can also occur; the most likely mechanism involves loss of a two-carbon moiety in the form of ethene. The present higher-level calculations confirm that migration of inserted carbon along both dimer rows and chains should be relatively facile, with barriers of approximately 150 kJ mol (-1) when starting from suitable diradical species, and that this step should play an important role in establishing growth of smooth surfaces.

  3. Production of complex organic molecules: H-atom addition versus UV irradiation

    NASA Astrophysics Data System (ADS)

    Chuang, K.-J.; Fedoseev, G.; Qasim, D.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.

    2017-05-01

    Complex organic molecules (COMs) have been identified in different environments in star-forming regions. Laboratory studies show that COMs form in the solid state, on icy grains, typically following a 'non-energetic' (atom-addition) or 'energetic' (UV-photon absorption) trigger. So far, such studies have been largely performed for single processes. Here, we present the first work that quantitatively investigates both the relative importance and the cumulative effect of '(non-)energetic' processing. We focus on astronomically relevant CO:CH3OH = 4:1 ice analogues exposed to doses relevant for the collapse stage of dense clouds. Hydrogenation experiments result in the formation of methyl formate (MF; HC(O)OCH3), glycolaldehyde (GA; HC(O)CH2OH) and ethylene glycol (EG; H2C(OH)CH2OH) at 14 K. The absolute abundances and the abundance fractions are found to be dependent on the H-atom/CO:CH3OH-molecule ratios and on the overall deposition rate. In the case that ices are exposed to UV photons only, several different COMs are found. Typically, the abundance fractions are 0.2 for MF, 0.3 for GA and 0.5 for EG as opposed to the values found in pure hydrogenation experiments without UV in which MF is largely absent: 0.0, 0.2-0.6 and 0.8-0.4, respectively. In experiments where both are applied, overall COM abundances drop to about half of those found in the pure UV irradiation experiments, but the composition fractions are very similar. This implies COM ratios can be used as a diagnostic tool to derive the processing history of an ice. Solid-state branching ratios derived here for GA and EG compare well with observations, while the MF case cannot be explained by solid-state conditions investigated here.

  4. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes.

    PubMed

    Yazdani, Nuri; Chawla, Vipin; Edwards, Eve; Wood, Vanessa; Park, Hyung Gyu; Utke, Ivo

    2014-01-01

    Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays.

  5. Rare Potassium-Bearing Mica in Allan Hills 84001: Additional Constraints on Carbonate Formation

    NASA Technical Reports Server (NTRS)

    Brearley, A. J.

    1998-01-01

    There have been presented several intriguing observations suggesting evidence of fossil life in martian orthopyroxenite ALH 84001. These exciting and controversial observations have stimulated extensive debate over the origin and history of ALH 84001, but many issues still remain unresolved. Among the most important is the question of the temperature at which the carbonates, which host the putative microfossils, formed. Oxygen- isotopic data, while showing that the carbonates are generally out of isotopic equilibria with the host rock, cannot constrain their temperature of formation. Both low- and high-temperature scenarios are plausible depending on whether carbonate growth occurred in an open or closed system. Petrographic arguments have generally been used to support a high-temperature origin but these appear to be suspect because they assume equilibrium between carbonate compositions that are not in contact. Some observations appear to be consistent with shock mobilization and growth from immiscible silicate-carbonate melts at high temperatures. Proponents of a low-temperature origin for the carbonates are hampered by the fact that there is currently no evidence of hydrous phases that would indicate low temperatures and the presence of a hydrous fluid during the formation of the carbonates. However, the absence of hydrous phases does not rule out carbonate formation at low temperatures, because the carbonate forming fluids may have been extremely CO2 rich, such that hydrous phases would not have been stabilized. In this study, I have carried out additional Transmission electron microscopy (TEM) studies of ALH-84001 and have found evidence of very rare phyllosilicates, which appear to be convincingly of pre-terrestrial origin. At present these observations are limited to one occurrence: further studies are in progress to determine if the phyllosilicates are more widespread.

  6. Atomic and molecular supernovae

    NASA Technical Reports Server (NTRS)

    Liu, Weihong

    1997-01-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  7. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zope, Rajendra R., E-mail: rzope@utep.edu; Baruah, Tunna; Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79958

    2015-08-28

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C{sub 60}@C{sub 240} and C{sub 60}@C{sub 180} onions shows that, compared to the polarizability of isolatedmore » C{sub 60} fullerene, the encapsulation of the C{sub 60} in C{sub 240} and C{sub 180} fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C{sub 60} in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.« less

  8. Quantum chemical molecular dynamics simulation of single-walled carbon nanotube cap nucleation on an iron particle.

    PubMed

    Ohta, Yasuhito; Okamoto, Yoshiko; Page, Alister J; Irle, Stephan; Morokuma, Keiji

    2009-11-24

    The atomic scale details of single-walled carbon nanotube (SWNT) nucleation on metal catalyst particles are elusive to experimental observations. Computer simulation of metal-catalyzed SWNT nucleation is a challenging topic but potentially of great importance to understand the factors affecting SWNT diameters, chirality, and growth efficiency. In this work, we use nonequilibrium density functional tight-binding molecular dynamics simulations and report nucleation of sp(2)-carbon cap structures on an iron particle consisting of 38 atoms. One C(2) molecule was placed every 1.0 ps around an Fe(38) cluster for 30 ps, after which a further 410 ps of annealing simulation without carbon supply was performed. We find that sp(2)-carbon network nucleation and annealing processes occur in three sequential and repetitive stages: (A) polyyne chains on the metal surface react with each other to evolve into a Y-shaped polyyne junction, which preferentially form a five-membered ring as a nucleus; (B) polyyne chains on the first five-membered ring form an additional fused five- or six-membered ring; and (C) pentagon-to-hexagon self-healing rearrangement takes place with the help of short-lived polyyne chains, stabilized by the mobile metal atoms. The observed nucleation process resembles the formation of a fullerene cage. However, the metal particle plays a key role in differentiating the nucleation process from fullerene cage formation, most importantly by keeping the growing cap structure from closing into a fullerene cage and by keeping the carbon edge "alive" for the addition of new carbon material.

  9. Change of Energy of the Cubic Subnanocluster of Iron Under Influence of Interstitial and Substitutional Atoms.

    PubMed

    Nedolya, Anatoliy V; Bondarenko, Natalya V

    2016-12-01

    Energy change of an iron face-centred cubic subnanocluster was evaluated using molecular mechanics method depending on the position of a carbon interstitial atom and substitutional atoms of nickel. Calculations of all possible positions of impurity atoms show that the energy change of the system are discrete and at certain positions of the atoms are close to continuous.In terms of energy, when all impurity atoms are on the same edge of an atomic cluster, their positions are more advantageous. The presence of nickel atoms on the edge of a cubic cluster resulted in decrease of potential barrier for a carbon atom and decrease in energy in the whole cluster. A similar drift of a carbon atom from central octahedral interstitial site to the surface in the direction <011> occurred under the influence of surface factors.Such configuration corresponds to decreasing symmetry and increasing the number of possible energy states of a subnanocluster, and it corresponds to the condition of spontaneous crystallization process in an isolated system.Taking into account accidental positions of the nickel atom in the iron cluster, such behaviour of the carbon atom can explain the mechanism of growth of a new phase and formation of new clusters in the presence of other kind of atoms because of surface influence.

  10. Delaminated graphene at silicon carbide facets: atomic scale imaging and spectroscopy.

    PubMed

    Nicotra, Giuseppe; Ramasse, Quentin M; Deretzis, Ioannis; La Magna, Antonino; Spinella, Corrado; Giannazzo, Filippo

    2013-04-23

    Atomic-resolution structural and spectroscopic characterization techniques (scanning transmission electron microscopy and electron energy loss spectroscopy) are combined with nanoscale electrical measurements (conductive atomic force microscopy) to study at the atomic scale the properties of graphene grown epitaxially through the controlled graphitization of a hexagonal SiC(0001) substrate by high temperature annealing. This growth technique is known to result in a pronounced electron-doping (∼10(13) cm(-2)) of graphene, which is thought to originate from an interface carbon buffer layer strongly bound to the substrate. The scanning transmission electron microscopy analysis, carried out at an energy below the knock-on threshold for carbon to ensure no damage is imparted to the film by the electron beam, demonstrates that the buffer layer present on the planar SiC(0001) face delaminates from it on the (112n) facets of SiC surface steps. In addition, electron energy loss spectroscopy reveals that the delaminated layer has a similar electronic configuration to purely sp2-hybridized graphene. These observations are used to explain the local increase of the graphene sheet resistance measured around the surface steps by conductive atomic force microscopy, which we suggest is due to significantly lower substrate-induced doping and a resonant scattering mechanism at the step regions. A first-principles-calibrated theoretical model is proposed to explain the structural instability of the buffer layer on the SiC facets and the resulting delamination.

  11. Conformal atomic layer deposition of alumina on millimeter tall, vertically-aligned carbon nanotube arrays.

    PubMed

    Stano, Kelly L; Carroll, Murphy; Padbury, Richard; McCord, Marian; Jur, Jesse S; Bradford, Philip D

    2014-11-12

    Atomic layer deposition (ALD) can be used to coat high aspect ratio and high surface area substrates with conformal and precisely controlled thin films. Vertically aligned arrays of multiwalled carbon nanotubes (MWCNTs) with lengths up to 1.5 mm were conformally coated with alumina from base to tip. The nucleation and growth behaviors of Al2O3 ALD precursors on the MWCNTs were studied as a function of CNT surface chemistry. CNT surfaces were modified through a series of post-treatments including pyrolytic carbon deposition, high temperature thermal annealing, and oxygen plasma functionalization. Conformal coatings were achieved where post-treatments resulted in increased defect density as well as the extent of functionalization, as characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. Using thermogravimetric analysis, it was determined that MWCNTs treated with pyrolytic carbon and plasma functionalization prior to ALD coating were more stable to thermal oxidation than pristine ALD coated samples. Functionalized and ALD coated arrays had a compressive modulus more than two times higher than a pristine array coated for the same number of cycles. Cross-sectional energy dispersive X-ray spectroscopy confirmed that Al2O3 could be uniformly deposited through the entire thickness of the vertically aligned MWCNT array by manipulating sample orientation and mounting techniques. Following the ALD coating, the MWCNT arrays demonstrated hydrophilic wetting behavior and also exhibited foam-like recovery following compressive strain.

  12. Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors

    NASA Astrophysics Data System (ADS)

    Barzegar, Farshad; Dangbegnon, Julien K.; Bello, Abdulhakeem; Momodu, Damilola Y.; Johnson, A. T. Charlie; Manyala, Ncholu

    2015-09-01

    This article is focused on polymer based gel electrolyte due to the fact that polymers are cheap and can be used to achieve extended potential window for improved energy density of the supercapacitor devices when compared to aqueous electrolytes. Electrochemical characterization of a symmetric supercapacitor devices based on activated carbon in different polyvinyl alcohol (PVA) based gel electrolytes was carried out. The device exhibited a maximum energy density of 24 Wh kg-1 when carbon black was added to the gel electrolyte as conductive additive. The good energy density was correlated with the improved conductivity of the electrolyte medium which is favorable for fast ion transport in this relatively viscous environment. Most importantly, the device remained stable with no capacitance lost after 10,000 cycles.

  13. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  14. Large-Scale Fabrication of Carbon Nanotube Probe Tips For Atomic Force Microscopy Critical Dimension Imaging Applications

    NASA Technical Reports Server (NTRS)

    Ye, Qi Laura; Cassell, Alan M.; Stevens, Ramsey M.; Meyyappan, Meyya; Li, Jun; Han, Jie; Liu, Hongbing; Chao, Gordon

    2004-01-01

    Carbon nanotube (CNT) probe tips for atomic force microscopy (AFM) offer several advantages over Si/Si3N4 probe tips, including improved resolution, shape, and mechanical properties. This viewgraph presentation discusses these advantages, and the drawbacks of existing methods for fabricating CNT probe tips for AFM. The presentation introduces a bottom up wafer scale fabrication method for CNT probe tips which integrates catalyst nanopatterning and nanomaterials synthesis with traditional silicon cantilever microfabrication technology. This method makes mass production of CNT AFM probe tips feasible, and can be applied to the fabrication of other nanodevices with CNT elements.

  15. Method of produce ultra-low friction carbon films

    DOEpatents

    Erdemir, Ali; Fenske, George R.; Eryilmaz, Osman Levent; Lee, Richard H.

    2003-04-15

    A method and article of manufacture of amorphous diamond-like carbon. The method involves providing a substrate in a chamber, providing a mixture of a carbon containing gas and hydrogen gas with the mixture adjusted such that the atomic molar ratio of carbon to hydrogen is less than 0.3, including all carbon atoms and all hydrogen atoms in the mixture. A plasma is formed of the mixture and the amorphous diamond-like carbon film is deposited on the substrate. To achieve optimum bonding an intervening bonding layer, such as Si or SiO.sub.2, can be formed from SiH.sub.4 with or without oxidation of the layer formed.

  16. Enhanced tortuosity for electrolytes in microwave irradiated self-organized carbon-doped Ni/Co hydroxide nanocomposite electrodes with higher Ni/Co atomic ratio and rate capability for an asymmetric supercapacitor

    NASA Astrophysics Data System (ADS)

    Kumar, Niraj; Kumar, Viresh; Panda, H. S.

    2017-11-01

    We demonstrate a green, facile and rapid microwave-mediated process for fabricating carbon black (CB) incorporated Ni/Co hydroxide porous nanocomposites and study the effect of various mass loading of CB on supercapacitor performance. The structure and interactions between CB and Ni/Co hydroxide are characterized by using x-ray diffraction, Fourier-transform infrared spectroscopy and x-ray photoelectron spectroscopy, which suggest the miniaturization of the single-phase Ni/Co hydroxide formation time. A morphology study reveals that the addition of CB into Ni/Co hydroxide develops a loose network structure with well-defined architectural pores. In addition, the nanocomposites demonstrate noticeable improvements in porosity and atomic ratio of Ni/Co with an increasing percentage of carbon, which results in a higher diffusion of electrolytes, and hence electrical conduction. The developed electrode materials exhibit a maximum specific capacitance value of 1526 Fg-1 at current density 1 Ag-1 with excellent cyclic stability (92% retention at 5000 cycles), energy density (76 Wh Kg-1), power density (250 W Kg-1) and rate capability. A solid state asymmetric supercapacitor device is fabricated and utilized to brighten a commercial LED effectively for validating real usage.

  17. Enhanced tortuosity for electrolytes in microwave irradiated self-organized carbon-doped Ni/Co hydroxide nanocomposite electrodes with higher Ni/Co atomic ratio and rate capability for an asymmetric supercapacitor.

    PubMed

    Kumar, Niraj; Kumar, Viresh; Panda, H S

    2017-11-03

    We demonstrate a green, facile and rapid microwave-mediated process for fabricating carbon black (CB) incorporated Ni/Co hydroxide porous nanocomposites and study the effect of various mass loading of CB on supercapacitor performance. The structure and interactions between CB and Ni/Co hydroxide are characterized by using x-ray diffraction, Fourier-transform infrared spectroscopy and x-ray photoelectron spectroscopy, which suggest the miniaturization of the single-phase Ni/Co hydroxide formation time. A morphology study reveals that the addition of CB into Ni/Co hydroxide develops a loose network structure with well-defined architectural pores. In addition, the nanocomposites demonstrate noticeable improvements in porosity and atomic ratio of Ni/Co with an increasing percentage of carbon, which results in a higher diffusion of electrolytes, and hence electrical conduction. The developed electrode materials exhibit a maximum specific capacitance value of 1526 Fg -1 at current density 1 Ag -1 with excellent cyclic stability (92% retention at 5000 cycles), energy density (76 Wh Kg -1 ), power density (250 W Kg -1 ) and rate capability. A solid state asymmetric supercapacitor device is fabricated and utilized to brighten a commercial LED effectively for validating real usage.

  18. Surface modification of nitrogen-doped carbon nanotubes by ozone via atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lushington, Andrew; Liu, Jian; Tang, Yongji

    The use of ozone as an oxidizing agent for atomic layer deposition (ALD) processes is rapidly growing due to its strong oxidizing capabilities. However, the effect of ozone on nanostructured substrates such as nitrogen-doped multiwalled carbon nanotubes (NCNTs) and pristine multiwalled carbon nanotubes (PCNTs) are not very well understood and may provide an avenue toward functionalizing the carbon nanotube surface prior to deposition. The effects of ALD ozone treatment on NCNTs and PCNTs using 10 wt. % ozone at temperatures of 150, 250, and 300 °C are studied. The effect of ozone pulse time and ALD cycle number on NCNTs and PCNTsmore » was also investigated. Morphological changes to the substrate were observed by scanning electron microscopy and high resolution transmission electron microscopy. Brunauer-Emmett-Teller measurements were also conducted to determine surface area, pore size, and pore size distribution following ozone treatment. The graphitic nature of both NCNTs and PCNTs was determined using Raman analysis while x-ray photoelectron spectroscopy (XPS) was employed to probe the chemical nature of NCNTs. It was found that O{sub 3} attack occurs preferentially to the outermost geometric surface of NCNTs. Our research also revealed that the deleterious effects of ozone are found only on NCNTs while little or no damage occurs on PCNTs. Furthermore, XPS analysis indicated that ALD ozone treatment on NCNTs, at elevated temperatures, results in loss of nitrogen content. Our studies demonstrate that ALD ozone treatment is an effective avenue toward creating low nitrogen content, defect rich substrates for use in electrochemical applications and ALD of various metal/metal oxides.« less

  19. Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste.

    PubMed

    Capson-Tojo, Gabriel; Moscoviz, Roman; Ruiz, Diane; Santa-Catalina, Gaëlle; Trably, Eric; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Bernet, Nicolas; Delgenès, Jean-Philippe; Escudié, Renaud

    2018-07-01

    The effect of supplementing granular activated carbon and trace elements on the anaerobic digestion performance of consecutive batch reactors treating food waste was investigated. The results from the first batch suggest that addition of activated carbon favored biomass acclimation, improving acetic acid consumption and enhancing methane production. Adding trace elements allowed a faster consumption of propionic acid. A second batch proved that a synergy existed when activated carbon and trace elements were supplemented simultaneously. The degradation kinetics of propionate oxidation were particularly improved, reducing significantly the batch duration and improving the average methane productivities. Addition of activated carbon favored the growth of archaea and syntrophic bacteria, suggesting that interactions between these microorganisms were enhanced. Interestingly, microbial analyses showed that hydrogenotrophic methanogens were predominant. This study shows for the first time that addition of granular activated carbon and trace elements may be a feasible solution to stabilize food waste anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Chiral Gold Nanoclusters: Atomic Level Origins of Chirality.

    PubMed

    Zeng, Chenjie; Jin, Rongchao

    2017-08-04

    Chiral nanomaterials have received wide interest in many areas, but the exact origin of chirality at the atomic level remains elusive in many cases. With recent significant progress in atomically precise gold nanoclusters (e.g., thiolate-protected Au n (SR) m ), several origins of chirality have been unveiled based upon atomic structures determined by using single-crystal X-ray crystallography. The reported chiral Au n (SR) m structures explicitly reveal a predominant origin of chirality that arises from the Au-S chiral patterns at the metal-ligand interface, as opposed to the chiral arrangement of metal atoms in the inner core (i.e. kernel). In addition, chirality can also be introduced by a chiral ligand, manifested in the circular dichroism response from metal-based electronic transitions other than the ligand's own transition(s). Lastly, the chiral arrangement of carbon tails of the ligands has also been discovered in a very recent work on chiral Au 133 (SR) 52 and Au 246 (SR) 80 nanoclusters. Overall, the origins of chirality discovered in Au n (SR) m nanoclusters may provide models for the understanding of chirality origins in other types of nanomaterials and also constitute the basis for the development of various applications of chiral nanoparticles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Mechanism of formation and spatial distribution of lead atoms in quartz tube atomizers

    NASA Astrophysics Data System (ADS)

    Johansson, M.; Baxter, D. C.; Ohlsson, K. E. A.; Frech, W.

    1997-05-01

    The cross-sectional and longitudinal spatial distributions of lead atoms in a quartz tube (QT) atomizers coupled to a gas chromatograph have been investigated. A uniform analyte atom distribution over the cross-section was found in a QT having an inner diameter (i.d.) of 7 mm, whereas a 10 mm i.d. QT showed an inhomogeneous distribution. These results accentuate the importance of using QTs with i.d.s below 10 mm to fulfil the prerequirement of the Beer—Lambert law to avoid bent calibration curves. The influence of the make up gas on the formation of lead atoms from alkyllead compounds has been studied, and carbon monoxide was found equally efficient in promoting free atom formation as hydrogen. This suggests that hydrogen radicals are not essential for mediating the atomization of alkyllead in QT atomizers at ˜ 1200 K. Furthermore, thermodynamic equilibrium calculations describing the investigated system were performed supporting the experimental results. Based on the presented data, a mechanism for free lead atom formation in continuously heated QT atomizers is proposed; thermal atomization occurs under thermodynamic equilibrium conditions in a reducing gas. The longitudinal atom distribution has been further investigated applying other make up gases, N 2 and He. These results show the effect of the influx of atmospheric oxygen on the free lead atom formation. Calculations of the partial pressure of oxygen in the atomizer gas phase assuming thermodynamic equilibrium have been undertaken using a convective-diffusional model.

  2. Does the Use of Diamond-Like Carbon Coating and Organophosphate Lubricant Additive Together Cause Excessive Tribochemical Material Removal?

    DOE PAGES

    Zhou, Yan; Leonard, Donovan N.; Meyer, Harry M.; ...

    2015-08-22

    We observe unexpected wear increase on a steel surface that rubbed against diamond-like carbon (DLC) coatings only when lubricated by phosphate-based antiwear additives. Contrary to the literature hypothesis of a competition between zinc dialkyldithiophosphate produced tribofilms and DLC-induced carbon transfer, here a new wear mechanism based on carbon-catalyzed tribochemical interactions supported by surface characterization is proposed

  3. Quantitative measurement of solvation shells using frequency modulated atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Uchihashi, T.; Higgins, M.; Nakayama, Y.; Sader, J. E.; Jarvis, S. P.

    2005-03-01

    The nanoscale specificity of interaction measurements and additional imaging capability of the atomic force microscope make it an ideal technique for measuring solvation shells in a variety of liquids next to a range of materials. Unfortunately, the widespread use of atomic force microscopy for the measurement of solvation shells has been limited by uncertainties over the dimensions, composition and durability of the tip during the measurements, and problems associated with quantitative force calibration of the most sensitive dynamic measurement techniques. We address both these issues by the combined use of carbon nanotube high aspect ratio probes and quantifying the highly sensitive frequency modulation (FM) detection technique using a recently developed analytical method. Due to the excellent reproducibility of the measurement technique, additional information regarding solvation shell size as a function of proximity to the surface has been obtained for two very different liquids. Further, it has been possible to identify differences between chemical and geometrical effects in the chosen systems.

  4. Ab initio calculations of ionic hydrocarbon compounds with heptacoordinate carbon.

    PubMed

    Wang, George; Rahman, A K Fazlur; Wang, Bin

    2018-04-25

    Ionic hydrocarbon compounds that contain hypercarbon atoms, which bond to five or more atoms, are important intermediates in chemical synthesis and may also find applications in hydrogen storage. Extensive investigations have identified hydrocarbon compounds that contain a five- or six-coordinated hypercarbon atom, such as the pentagonal-pyramidal hexamethylbenzene, C 6 (CH 3 ) 6 2+ , in which a hexacoordinate carbon atom is involved. It remains challenging to search for further higher-coordinated carbon in ionic hydrocarbon compounds, such as seven- and eight-coordinated carbon. Here, we report ab initio density functional calculations that show a stable 3D hexagonal-pyramidal configuration of tropylium trication, (C 7 H 7 ) 3+ , in which a heptacoordinate carbon atom is involved. We show that this tropylium trication is stable against deprotonation, dissociation, and structural deformation. In contrast, the pyramidal configurations of ionic C 8 H 8 compounds, which would contain an octacoordinate carbon atom, are unstable. These results provide insights for developing new molecular structures containing hypercarbon atoms, which may have potential applications in chemical synthesis and in hydrogen storage. Graphical abstract Possible structural transformations of stable configurations of (C 7 H 7 ) 3+ , which may result in the formation of the pyramidal structure that involves a heptacoordinate hypercarbon atom.

  5. Atomic substitutions in synthetic apatite; Insights from solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Vaughn, John S.

    Apatite, Ca5(PO4)3X (where X = F, Cl, or OH), is a unique mineral group capable of atomic substitutions for cations and anions of varied size and charge. Accommodation of differing substituents requires some kind of structural adaptation, e.g. new atomic positions, vacancies, or coupled substitutions. These structural adaptations often give rise to important physicochemical properties relevant to a range of scientific disciplines. Examples include volatile trapping during apatite crystallization, substitution for large radionuclides for long-term storage of nuclear fission waste, substitution for fluoride to improve acid resistivity in dental enamel composed dominantly of hydroxylapatite, and the development of novel biomaterials with enhanced biocompatibility. Despite the importance and ubiquity of atomic substitutions in apatite materials, many of the mechanisms by which these reactions occur are poorly understood. Presence of substituents at dilute concentration and occupancy of disordered atomic positions hinder detection by bulk characterization methods such as X-ray diffraction (XRD) and infrared (IR) spectroscopy. Solid-state nuclear magnetic resonance (NMR) spectroscopy is an isotope-specific structural characterization technique that does not require ordered atomic arrangements, and is therefore well suited to investigate atomic substitutions and structural adaptations in apatite. In the present work, solid-state NMR is utilized to investigate structural adaptations in three different types of apatite materials; a series of near-binary F, Cl apatite, carbonate-hydroxylapatite compositions prepared under various synthesis conditions, and a heat-treated hydroxylapatite enriched in 17O. The results indicate that hydroxyl groups in low-H, near binary F,Cl apatite facilitate solid-solution between F and Cl via column reversals, which result in average hexagonal symmetry despite very dilute OH concentration ( 2 mol percent). In addition, 19F NMR spectra indicate

  6. Functionalization of Single-Wall Carbon Nanotubes by Photo-Oxidation

    NASA Technical Reports Server (NTRS)

    Lebron-Colon, Marisabel; Meador, Michael A.

    2010-01-01

    new technique for carbon nanotube oxidation was developed based upon the photo-oxidation of organic compounds. The resulting method is more benign than conventional oxidation approaches and produces single-wall carbon nanotubes (SWCNTs) with higher levels of oxidation. In this procedure, an oxygen saturated suspension of SWNTs in a suitable solvent containing a singlet oxygen sensitizer, such as Rose Bengal, is irradiated with ultraviolet light. The resulting oxidized tubes are recovered by filtering the suspension, followed by washing to remove any adsorbed solvent and sensitizer, and drying in a vacuum oven. Chemical analysis by FT-infrared and x-ray photoelectron spectroscopy revealed that the oxygen content of the photo-oxidized SWCNT was 11.3 atomic % compared to 6.7 atomic % for SWCNT that had been oxidized by standard treatment in refluxing acid. The photo-oxidized SWCNT produced by this method can be used directly in various polymer matrixes, or can be further modified by chemical reactions at the oxygen functional groups and then used as additives. This method may also be suitable for use in oxidation of multiwall carbon nanotubes and graphenes.

  7. Background of SAM atom-fraction profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, Frank

    Atom-fraction profiles acquired by SAM (scanning Auger microprobe) have important applications, e.g. in the context of alloy surface engineering by infusion of carbon or nitrogen through the alloy surface. However, such profiles often exhibit an artifact in form of a background with a level that anti-correlates with the local atom fraction. This article presents a theory explaining this phenomenon as a consequence of the way in which random noise in the spectrum propagates into the discretized differentiated spectrum that is used for quantification. The resulting model of “energy channel statistics” leads to a useful semi-quantitative background reduction procedure, which ismore » validated by applying it to simulated data. Subsequently, the procedure is applied to an example of experimental SAM data. The analysis leads to conclusions regarding optimum experimental acquisition conditions. The proposed method of background reduction is based on general principles and should be useful for a broad variety of applications. - Highlights: • Atom-fraction–depth profiles of carbon measured by scanning Auger microprobe • Strong background, varies with local carbon concentration. • Needs correction e.g. for quantitative comparison with simulations • Quantitative theory explains background. • Provides background removal strategy and practical advice for acquisition.« less

  8. First principles study of hydrogen adsorption on carbon nanowires.

    NASA Astrophysics Data System (ADS)

    Tapia, Alejandro; Aguilera, Luis; Murrieta, Gabriel; de Coss, Romeo

    2007-03-01

    Recently has been reported a new type of one-dimensional carbon structures. Carbon nanowires formed by a linear carbon-atom chain inside an armchair (5,5) carbon nanotube has been observed using high-resolution transmission electron microscopy. In the present work we have studied the changes in the electronic structure of a carbon nanowires and (5,5) single-walled carbon nanotubes (SWCN) when a hydrogen atom is adsorbed. We used the Density Functional Theory and the calculations where performed by the pseudopotentials LCAO method (SIESTA code) and the Generalized Gradient Approximation (GGA) for the exchange-correlation potential. We have analyzed the changes in the atomic structure, density of states (LDOS), and the local orbital population. We found charge transfer from the nanotube to the linear chain and the hydrogen atom, the electronic character of the chain and nanotube sub-systems in chain@SWCN is the same that in the corresponding isolated systems, chain or SWCN. But the hydrogen adsorption produced changes in the atomic estructure and the electronic properties. This research was supported by PRIORI-UADY under Grant No. FING-05-004 and Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grants No. 43830-F and 49985-J.

  9. Direct evidence of atomic-scale structural fluctuations in catalyst nanoparticles.

    PubMed

    Lin, Pin Ann; Gomez-Ballesteros, Jose L; Burgos, Juan C; Balbuena, Perla B; Natarajan, Bharath; Sharma, Renu

    2017-05-01

    Rational catalyst design requires an atomic scale mechanistic understanding of the chemical pathways involved in the catalytic process. A heterogeneous catalyst typically works by adsorbing reactants onto its surface, where the energies for specific bonds to dissociate and/or combine with other species (to form desired intermediate or final products) are lower. Here, using the catalytic growth of single-walled carbon nanotubes (SWCNTs) as a prototype reaction, we show that the chemical pathway may in-fact involve the entire catalyst particle, and can proceed via the fluctuations in the formation and decomposition of metastable phases in the particle interior. We record in situ and at atomic resolution, the dynamic phase transformations occurring in a Cobalt catalyst nanoparticle during SWCNT growth, using a state-of-the-art environmental transmission electron microscope (ETEM). The fluctuations in catalyst carbon content are quantified by the automated, atomic-scale structural analysis of the time-resolved ETEM images and correlated with the SWCNT growth rate. We find the fluctuations in the carbon concentration in the catalyst nanoparticle and the fluctuations in nanotube growth rates to be of complementary character. These findings are successfully explained by reactive molecular dynamics (RMD) simulations that track the spatial and temporal evolution of the distribution of carbon atoms within and on the surface of the catalyst particle. We anticipate that our approach combining real-time, atomic-resolution image analysis and molecular dynamics simulations will facilitate catalyst design, improving reaction efficiencies and selectivity towards the growth of desired structure.

  10. Glycerol as an additional carbon source for bacterial cellulose synthesis

    NASA Astrophysics Data System (ADS)

    Agustin, Y. E.; Padmawijaya, K. S.; Rixwari, H. F.; Yuniharto, V. A. S.

    2018-03-01

    Bacterial cellulose, the fermentation result of Acetobacter xylinus can be produced when glycerol was used as an additional carbon source. In this research, bacterial cellulose produced in two different fermentation medium, Hestrin and Scharmm (HS) medium and HS medium with additional MgSO4. Concentration of glycerol that used in this research were 0%; 5%; 10%; and 15% (v/v). The optimum conditions of bacterial cellulose production on each experiment variations determined by characterization of the mechanical properties, including thickness, tensile strength and elongation. Fourier Transform Infra Red Spectroscopy (FTIR) revealed the characterization of bacterial cellulose. Results showed that the growth rate of bacterial cellulose in HS-MgSO4-glycerol medium was faster than in HS-glycerol medium. Increasing concentrations of glycerol will lower the value of tensile strength and elongation. Elongation test showed that the elongation bacterial cellulose (BC) with the addition of 4.95% (v/v) glycerol in the HS-MgSO4 medium is the highest elongation value. The optimum bacterial cellulose production was achieved when 4.95% (v/v) of glycerol added into HS-MgSO4 medium with stress at break of 116.885 MPa and 4.214% elongation.

  11. Carbon-coated ZnO mat passivation by atomic-layer-deposited HfO2 as an anode material for lithium-ion batteries.

    PubMed

    Jung, Mi-Hee

    2017-11-01

    ZnO has had little consideration as an anode material in lithium-ion batteries compared with other transition-metal oxides due to its inherent poor electrical conductivity and large volume expansion upon cycling and pulverization of ZnO-based electrodes. A logical design and facile synthesis of ZnO with well-controlled particle sizes and a specific morphology is essential to improving the performance of ZnO in lithium-ion batteries. In this paper, a simple approach is reported that uses a cation surfactant and a chelating agent to synthesize three-dimensional hierarchical nanostructured carbon-coated ZnO mats, in which the ZnO mats are composed of stacked individual ZnO nanowires and form well-defined nanoporous structures with high surface areas. In order to improve the performance of lithium-ion batteries, HfO 2 is deposited on the carbon-coated ZnO mat electrode via atomic layer deposition. Lithium-ion battery devices based on the carbon-coated ZnO mat passivation by atomic layer deposited HfO 2 exhibit an excellent initial discharge and charge capacities of 2684.01 and 963.21mAhg -1 , respectively, at a current density of 100mAg -1 in the voltage range of 0.01-3V. They also exhibit cycle stability after 125 cycles with a capacity of 740mAhg -1 and a remarkable rate capability. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Evaluation of soil carbon pools after the addition of prunings in subtropical orchards placed in terraces

    NASA Astrophysics Data System (ADS)

    Márquez San Emeterio, Layla; Martín Reyes, Marino Pedro; Ortiz Bernad, Irene; Fernández Ondoño, Emilia; Sierra Aragón, Manuel

    2017-04-01

    The amount of carbon that can be stored in a soil depends on many factors, such as the type of soil, the chemical composition of plant rests and the climate, and is also highly affected by land use and soil management. Agricultural ecosystems are proved to absorb a large amount of CO2 from the atmosphere through several sustainable management practices. In addition, organic materials such as leaves, grass, prunings, etc., comprise a significant type of agricultural practices as a result of waste recycling. The aim of this research was to evaluate the effects of the addition of different organic prunings on the potential for carbon sequestration in agricultural soils placed in terraces. Three subtropical orchards were sampled in Almuñécar (Granada, S Spain): mango (Mangifera indica L.), avocado (Persea americana Mill.) and cherimoya (Annonacherimola Mill.). The predominant climate is Subtropical Mediterranean and the soil is an Eutric Anthrosol. The experimental design consisted in the application of prunings from avocado, cherimoya and mango trees, placed on the surface soil underneath their correspondent trees, as well as garden prunings from the green areas surrounding the town center on the surface soils under the three orchard trees. Control experiences without the addition of prunings were also evaluated. These experiences were followed for three years. Soil samples were taken at4 cm depth. They were dried for 3-4 days and then sieved (<2 mm).Total soil organic C, water-soluble soil organic C, mineral-associated organic C and non-oxidable C were analyzed and expressed as carbon pools (Mg C ha-1for total soil organic C, or Kg C ha-1for the others). The results showed an increase of all organic carbon pools in all pruning treatments compared to the control experiences. Differences in total organic carbon pool were statistically significant between soils under avocado prunings and their control soil, and between soils under garden prunings with cherimoya and

  13. Pairwise additivity in the nuclear magnetic resonance interactions of atomic xenon.

    PubMed

    Hanni, Matti; Lantto, Perttu; Vaara, Juha

    2009-04-14

    Nuclear magnetic resonance (NMR) of atomic (129/131)Xe is used as a versatile probe of the structure and dynamics of various host materials, due to the sensitivity of the Xe NMR parameters to intermolecular interactions. The principles governing this sensitivity can be investigated using the prototypic system of interacting Xe atoms. In the pairwise additive approximation (PAA), the binary NMR chemical shift, nuclear quadrupole coupling (NQC), and spin-rotation (SR) curves for the xenon dimer are utilized for fast and efficient evaluation of the corresponding NMR tensors in small xenon clusters Xe(n) (n = 2-12). If accurate, the preparametrized PAA enables the analysis of the NMR properties of xenon clusters, condensed xenon phases, and xenon gas without having to resort to electronic structure calculations of instantaneous configurations for n > 2. The binary parameters for Xe(2) at different internuclear distances were obtained at the nonrelativistic Hartree-Fock level of theory. Quantum-chemical (QC) calculations at the corresponding level were used to obtain the NMR parameters of the Xe(n) (n = 2-12) clusters at the equilibrium geometries. Comparison of PAA and QC data indicates that the direct use of the binary property curves of Xe(2) can be expected to be well-suited for the analysis of Xe NMR in the gaseous phase dominated by binary collisions. For use in condensed phases where many-body effects should be considered, effective binary property functions were fitted using the principal components of QC tensors from Xe(n) clusters. Particularly, the chemical shift in Xe(n) is strikingly well-described by the effective PAA. The coordination number Z of the Xe site is found to be the most important factor determining the chemical shift, with the largest shifts being found for high-symmetry sites with the largest Z. This is rationalized in terms of the density of virtual electronic states available for response to magnetic perturbations.

  14. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    PubMed Central

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-01-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm−2 at 80 °C with a low platinum loading of 0.09 mgPt cm−2, corresponding to a platinum utilization of 0.13 gPt kW−1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction. PMID:28737170

  15. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm –2 at 80 °C with a low platinum loading of 0.09 mgPt cm –2, corresponding to a platinum utilization of 0.13 gPt kWmore » –1 in the fuel cell. Good fuel cell durability is also observed. As a result, theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.« less

  16. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    DOE PAGES

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; ...

    2017-07-24

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm –2 at 80 °C with a low platinum loading of 0.09 mgPt cm –2, corresponding to a platinum utilization of 0.13 gPt kWmore » –1 in the fuel cell. Good fuel cell durability is also observed. As a result, theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.« less

  17. Quantitative atomic-scale structure characterization of ordered mesoporous carbon materials by solid state NMR

    DOE PAGES

    Wang, Zhuoran; Opembe, Naftali; Kobayashi, Takeshi; ...

    2018-02-03

    In this study, solid-state (SS)NMR techniques were applied to characterize the atomic-scale structures of ordered mesoporous carbon (OMC) materials prepared using Pluronic F127 as template with resorcinol and formaldehyde as polymerizing precursors. A rigorous quantitative analysis was developed using a combination of 13C SSNMR spectra acquired with direct polarization and cross polarization on natural abundant and selectively 13C-enriched series of samples pyrolyzed at various temperatures. These experiments identified and counted the key functional groups present in the OMCs at various stages of preparation and thermal treatment. Lastly, the chemical evolution of molecular networks, the average sizes of aromatic clusters andmore » the extended molecular structures of OMCs were then inferred by coupling this information with the elemental analysis results.« less

  18. Quantitative atomic-scale structure characterization of ordered mesoporous carbon materials by solid state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhuoran; Opembe, Naftali; Kobayashi, Takeshi

    In this study, solid-state (SS)NMR techniques were applied to characterize the atomic-scale structures of ordered mesoporous carbon (OMC) materials prepared using Pluronic F127 as template with resorcinol and formaldehyde as polymerizing precursors. A rigorous quantitative analysis was developed using a combination of 13C SSNMR spectra acquired with direct polarization and cross polarization on natural abundant and selectively 13C-enriched series of samples pyrolyzed at various temperatures. These experiments identified and counted the key functional groups present in the OMCs at various stages of preparation and thermal treatment. Lastly, the chemical evolution of molecular networks, the average sizes of aromatic clusters andmore » the extended molecular structures of OMCs were then inferred by coupling this information with the elemental analysis results.« less

  19. An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery

    NASA Astrophysics Data System (ADS)

    Saravanan, M.; Ganesan, M.; Ambalavanan, S.

    2014-04-01

    In this work, we report an in situ generated carbon from sugar as additive in the Negative Active Mass (NAM) which enhances the charge-discharge characteristics of the lead-acid cells. In situ formed sugar derived carbon (SDC) with leady oxide (LO) provides a conductive network and excellent protection against NAM irreversible lead sulfation. The effect of SDC and carbon black (CB) added negative plates are characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), galvanostatic charge-discharge, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. The results show that subtle changes in the addition of carbon to NAM led to subsequent changes on the performance during partial-state-of-charge (PSoC) operations in lead-acid cells. Furthermore, SDC added cells exhibit remarkable improvement in the rate capability, active material utilization, cycle performance and charge acceptance compared to that of the conventional CB added cells. The impact of SDC with LO at various synthesis conditions on the electrochemical performance of the negative plate is studied systematically.

  20. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    PubMed

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  1. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials

    PubMed Central

    Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite’s chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface. PMID:28301544

  2. Carbon nanotube modified probes for stable and high sensitivity conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Slattery, Ashley D.; Shearer, Cameron J.; Gibson, Christopher T.; Shapter, Joseph G.; Lewis, David A.; Stapleton, Andrew J.

    2016-11-01

    Conductive atomic force microscopy (C-AFM) is used to characterise the nanoscale electrical properties of many conducting and semiconducting materials. We investigate the effect of single walled carbon nanotube (SWCNT) modification of commercial Pt/Ir cantilevers on the sensitivity and image stability during C-AFM imaging. Pt/Ir cantilevers were modified with small bundles of SWCNTs via a manual attachment procedure and secured with a conductive platinum pad. AFM images of topography and current were collected from heterogeneous polymer and nanomaterial samples using both standard and SWCNT modified cantilevers. Typically, achieving a good current image comes at the cost of reduced feedback stability. In part, this is due to electrostatic interaction and increased tip wear upon applying a bias between the tip and the sample. The SWCNT modified tips displayed superior current sensitivity and feedback stability which, combined with superior wear resistance of SWCNTs, is a significant advancement for C-AFM.

  3. Sulfate reduction in sulfuric material after re-flooding: Effectiveness of organic carbon addition and pH increase depends on soil properties.

    PubMed

    Yuan, Chaolei; Fitzpatrick, Rob; Mosley, Luke M; Marschner, Petra

    2015-11-15

    Sulfuric material is formed upon oxidation of sulfidic material; it is extremely acidic, and therefore, an environmental hazard. One option for increasing pH of sulfuric material may be stimulation of bacterial sulfate reduction. We investigated the effects of organic carbon addition and pH increase on sulfate reduction after re-flooding in ten sulfuric materials with four treatments: control, pH increase to 5.5 (+pH), organic carbon addition with 2% w/w finely ground wheat straw (+C), and organic carbon addition and pH increase (+C+pH). After 36 weeks, in five of the ten soils, only treatment +C+pH significantly increased the concentration of reduced inorganic sulfur (RIS) compared to the control and increased the soil pore water pH compared to treatment+pH. In four other soils, pH increase or/and organic carbon addition had no significant effect on RIS concentration compared to the control. The RIS concentration in treatment +C+pH as percentage of the control was negatively correlated with soil clay content and initial nitrate concentration. The results suggest that organic carbon addition and pH increase can stimulate sulfate reduction after re-flooding, but the effectiveness of this treatment depends on soil properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. First-Principles Study of Migration Mechanisms and Diffusion of Carbon in GaN (Open Access Publisher’s Version)

    DTIC Science & Technology

    2015-09-21

    and metal organic chemical vapor deposition (MOCVD) [18]. In the former case, carbon can contaminate the material during air exposure in standard... gallium . In addition, carbon can be found as a contaminant in the source gases or it can be etched off the susceptor that transfers heat to the substrate...split interstitial Figure 1: Split interstitials of carbon (yellow) and nitrogen (blue) surrounded by four gallium atoms (red). energy differences of

  5. Nanoscale soldering of axially positioned single-walled carbon nanotubes: a molecular dynamics simulation study.

    PubMed

    Cui, Jianlei; Yang, Lijun; Zhou, Liang; Wang, Yang

    2014-02-12

    The miniaturization of electronics devices into the nanometer scale is indispensable for next-generation semi-conductor technology. Carbon nanotubes (CNTs) are considered to be the promising candidates for future interconnection wires. To study the carbon nanotubes interconnection during nanosoldering, the melting process of nanosolder and nanosoldering process between single-walled carbon nanotubes are simulated with molecular dynamics method. As the simulation results, the melting point of 2 nm silver solder is about 605 K because of high surface energy, which is below the melting temperature of Ag bulk material. In the nanosoldering process simulations, Ag atoms may be dragged into the nanotubes to form different connection configuration, which has no apparent relationship with chirality of SWNTs. The length of core filling nanowires structure has the relationship with the diameter, and it does not become longer with the increasing diameter of SWNT. Subsequently, the dominant mechanism of was analyzed. In addition, as the heating temperature and time, respectively, increases, more Ag atoms can enter the SWNTs with longer length of Ag nanowires. And because of the strong metal bonds, less Ag atoms can remain with the tight atomic structures in the gap between SWNT and SWNT. The preferred interconnection configurations can be achieved between SWNT and SWNT in this paper.

  6. Self-assembly of endohedral metallofullerenes: a decisive role of cooling gas and metal-carbon bonding

    NASA Astrophysics Data System (ADS)

    Deng, Qingming; Heine, Thomas; Irle, Stephan; Popov, Alexey A.

    2016-02-01

    .e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc-C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3). Electronic supplementary information (ESI) available: Additional information on metal-carbon bonding and MD simulations. See DOI: 10.1039/c5nr08645k

  7. Determination of nickel in water, food, and biological samples by electrothermal atomic absorption spectrometry after preconcentration on modified carbon nanotubes.

    PubMed

    Taher, Mohammad Ali; Mazaheri, Lida; Ashkenani, Hamid; Mohadesi, Alireza; Afzali, Daryoush

    2014-01-01

    A new and sensitive SPE method using modified carbon nanotubes for extraction and preconcentration, and electrothermal atomic absorption spectrometric determination of nickel (Ni) in real samples at ng/L levels was investigated. First, multiwalled carbon nanotubes were oxidized with concentrated HNO3, then modified with 2-(5-bormo-2-pyridylazo)-5-diethylaminophenol reagent. The adsorption was achieved quantitatively on a modified carbon nanotubes column in a pH range of 6.5 to 8.5; the adsorbed Ni(II) ions were then desorbed by passing 5.0 mL of 1 M HNO3. The effects of analytical parameters, including pH of the solution, eluent type and volume, sample volume, flow rate of the eluent, and matrix ions, were investigated for optimization of the presented procedure. The enrichment factor was 180, and the LOD for Ni was 4.9 ng/L. The method was applied to the determination of Ni in water, food, and biological samples, and reproducible results were obtained.

  8. Initial mechanisms for the dissociation of carbon from electronically-excited nitrotoluene molecules

    NASA Astrophysics Data System (ADS)

    Yuan, Bing; Eilers, Hergen

    2017-12-01

    We calculated the photoinduced decomposition of various nitrotoluene molecules, resulting in the formation of atomic carbon, at the B3LYP/6-311++G(d,p) level of theory using Gaussian 09. In addition, we used TD-DFT (B3LYP/6-311++G(d,p)) to calculate the excitation energies. The results confirm our previously reported experimental results. Specifically, we show that the absorption of 226 nm (5.49 eV) light can lead to the decomposition of nitrotoluene molecules and the formation of atomic carbon. One 226 nm photon is sufficient for the dissociation of carbon from 2-NT and 4-NT molecules. During the dissociation process, the CH3 group provides the dissociated carbon atom and the NO2 group accepts the H atoms from either the CH3 group or the benzene ring before carbon exits the molecular system. For the second and third carbon dissociation of 2-NT, the energy barriers are 6.70 eV and 7.43 eV, respectively, and two 226 nm photons would need to be absorbed by the molecule. If extra NO is present during the first carbon dissociation of 2-NT, it gets involved in the last two decomposition steps and forms a C=NH-N=O structure which stabilizes the decomposition products and lowers the energy barrier from 5.22 eV to 4.70 eV. However, for the second and third carbon dissociation of 2-NT, the NO molecules have no apparent effect. For nitrotoluene molecules with two or three NO2 groups (i.e., 2,4-DNT, 2,6-DNT, 3,4-DNT, and 2,4,6-TNT), the first carbon dissociation energies are between 5.26 eV and 5.57 eV. The carbon dissociation pathways for these molecules are similar to those of 2-NT. In 2,4-DNT, the lowest energy barriers for the second and third carbon dissociation are 6.54 eV and 6.60 eV, respectively, which are about 1 eV higher than the energy barrier for the first carbon dissociation. In case of 2,4-DNT/NO and 2,4,6-TNT/NO, NO acts as a catalyst in the first carbon dissociation processes and forms a C=NH-N=O structure which lowers the energy barriers by 0.48 eV and 0

  9. Quantifying the Hierarchical Order in Self-Aligned Carbon Nanotubes from Atomic to Micrometer Scale.

    PubMed

    Meshot, Eric R; Zwissler, Darwin W; Bui, Ngoc; Kuykendall, Tevye R; Wang, Cheng; Hexemer, Alexander; Wu, Kuang Jen J; Fornasiero, Francesco

    2017-06-27

    Fundamental understanding of structure-property relationships in hierarchically organized nanostructures is crucial for the development of new functionality, yet quantifying structure across multiple length scales is challenging. In this work, we used nondestructive X-ray scattering to quantitatively map the multiscale structure of hierarchically self-organized carbon nanotube (CNT) "forests" across 4 orders of magnitude in length scale, from 2.0 Å to 1.5 μm. Fully resolved structural features include the graphitic honeycomb lattice and interlayer walls (atomic), CNT diameter (nano), as well as the greater CNT ensemble (meso) and large corrugations (micro). Correlating orientational order across hierarchical levels revealed a cascading decrease as we probed finer structural feature sizes with enhanced sensitivity to small-scale disorder. Furthermore, we established qualitative relationships for single-, few-, and multiwall CNT forest characteristics, showing that multiscale orientational order is directly correlated with number density spanning 10 9 -10 12 cm -2 , yet order is inversely proportional to CNT diameter, number of walls, and atomic defects. Lastly, we captured and quantified ultralow-q meridional scattering features and built a phenomenological model of the large-scale CNT forest morphology, which predicted and confirmed that these features arise due to microscale corrugations along the vertical forest direction. Providing detailed structural information at multiple length scales is important for design and synthesis of CNT materials as well as other hierarchically organized nanostructures.

  10. High temperature hydrogen sulfide adsorption on activated carbon - I. Effects of gas composition and metal addition

    USGS Publications Warehouse

    Cal, M.P.; Strickler, B.W.; Lizzio, A.A.

    2000-01-01

    Various types of activated carbon sorbents were evaluated for their ability to remove H2S from a simulated coal gas stream at a temperature of 550 ??C. The ability of activated carbon to remove H2S at elevated temperature was examined as a function of carbon surface chemistry (oxidation, thermal desorption, and metal addition), and gas composition. A sorbent prepared by steam activation, HNO3 oxidation and impregnated with Zn, and tested in a gas stream containing 0.5% H2S, 50% CO2 and 49.5% N2, had the greatest H2S adsorption capacity. Addition of H2, CO, and H2O to the inlet gas stream reduced H2S breakthrough time and H2S adsorption capacity. A Zn impregnated activated carbon, when tested using a simulated coal gas containing 0.5% H2S, 49.5% N2, 13% H2, 8.5% H2O, 21% CO, and 7.5% CO2, had a breakthrough time of 75 min, which was less than 25 percent of the length of breakthrough for screening experiments performed with a simplified gas mixture of 0.5% H2S, 50% CO2, and 49.5% N2.

  11. Re-use of drinking water treatment plant (DWTP) sludge: Characterization and technological behaviour of cement mortars with atomized sludge additions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husillos Rodriguez, N., E-mail: nuriah@ietcc.csic.e; Martinez Ramirez, S.; Blanco Varela, M.T.

    This paper aims to characterize spray-dried DWTP sludge and evaluate its possible use as an addition for the cement industry. It describes the physical, chemical and micro-structural characterization of the sludge as well as the effect of its addition to Portland cements on the hydration, water demand, setting and mechanical strength of standardized mortars. Spray drying DWTP sludge generates a readily handled powdery material whose particle size is similar to those of Portland cement. The atomized sludge contains 12-14% organic matter (mainly fatty acids), while its main mineral constituents are muscovite, quartz, calcite, dolomite and seraphinite (or clinoclor). Its amorphousmore » material content is 35%. The mortars were made with type CEM I Portland cement mixed with 10 to 30% atomized sludge exhibited lower mechanical strength than the control cement and a decline in slump. Setting was also altered in the blended cements with respect to the control.« less

  12. Catalytic Enantioselective Synthesis of Quaternary Carbon Stereocenters

    PubMed Central

    Quasdorf, Kyle W.; Overman, Larry E.

    2015-01-01

    Preface Quaternary carbon stereocenters–carbon atoms to which four distinct carbon substituents are attached–are common features of molecules found in nature. However, prior to recent advances in chemical catalysis, there were few methods available for constructing single stereoisomers of this important structural motif. Here we discuss the many catalytic enantioselective reactions developed during the past decade for synthesizing organic molecules containing such carbon atoms. This progress now makes it possible to selectively incorporate quaternary stereocenters in many high-value organic molecules for use in medicine, agriculture, and other areas. PMID:25503231

  13. Enhanced performance of starter lighting ignition type lead-acid batteries with carbon nanotubes as an additive to the active mass

    NASA Astrophysics Data System (ADS)

    Marom, Rotem; Ziv, Baruch; Banerjee, Anjan; Cahana, Beni; Luski, Shalom; Aurbach, Doron

    2015-11-01

    Addition of various carbon materials into lead-acid battery electrodes was studied and examined in order to enhance the power density, improve cycle life and stability of both negative and positive electrodes in lead acid batteries. High electrical-conductivity, high-aspect ratio, good mechanical properties and chemical stability of multi-wall carbon nanotubes (MWCNT, unmodified and mofified with carboxylic groups) position them as viable additives to enhance the electrodes' electrical conductivity, to mitigate the well-known sulfation failure mechanism and improve the physical integration of the electrodes. In this study, we investigated the incorporation-effect of carbon nanotubes (CNT) to the positive and the negative active materials in lead-acid battery prototypes in a configuration of flooded cells, as well as gelled cells. The cells were tested at 25% and 30% depth-of-discharge (DOD). The positive effect of the carbon nanotubes (CNT) utilization as additives to both positive and negative electrodes of lead-acid batteries was clearly demonstrated and is explained herein based on microscopic studies.

  14. Soil respiration characteristics in different land uses and response of soil organic carbon to biochar addition in high-latitude agricultural area.

    PubMed

    Ouyang, Wei; Geng, Xiaojun; Huang, Wejia; Hao, Fanghua; Zhao, Jinbo

    2016-02-01

    The farmland tillage practices changed the soil chemical properties, which also impacted the soil respiration (R s ) process and the soil carbon conservation. Originally, the farmland in northeast China had high soil carbon content, which was decreased in the recent decades due to the tillage practices. To better understand the R s dynamics in different land use types and its relationship with soil carbon loss, soil samples at two layers (0-15 and 15-30 cm) were analyzed for organic carbon (OC), total nitrogen (TN), total phosphorus (TP), total carbon (TC), available nitrogen (AN), available phosphorus (AP), soil particle size distribution, as well as the R s rate. The R s rate of the paddy land was 0.22 (at 0-15 cm) and 3.01 (at 15-30 cm) times of the upland. The average concentrations of OC and clay content in cultivated areas were much lower than in non-cultivated areas. The partial least squares analysis suggested that the TC and TN were significantly related to the R s process in cultivated soils. The upland soil was further used to test soil CO2 emission response at different biochar addition levels during 70-days incubation. The measurement in the limited incubation period demonstrated that the addition of biochar improved the soil C content because it had high concentration of pyrogenic C, which was resistant to mineralization. The analysis showed that biochar addition can promote soil OC by mitigating carbon dioxide (CO2) emission. The biochar addition achieved the best performance for the soil carbon conservation in high-latitude agricultural area due to the originally high carbon content.

  15. First row transition metal atoms embedded in multivacancies in a rippled graphene system

    NASA Astrophysics Data System (ADS)

    Mombrú, Dominique; Faccio, Ricardo; Mombrú, Alvaro W.

    2018-03-01

    Ab-initio calculations based on density functional theory (DFT) have been performed to study systems where a first row transition metal atom is embedded in a rippled graphene due to the existence of an 8-order multivacancy. In addition to these cases, also the inclusion of a zinc atom, with a 3d10 electron configuration, was also studied. Structural distortions and magnetic response for each system were studied. A correlation was found for the magnitude of the rippling and the distortion in the vacancy. Variation in the trends was found for Cu and Zn cases, which were explained on the basis of the filling of the 3dx2-y2 orbital. All the systems exhibit lower magnetic moment in comparison to the metal-less system. The quenching of the magnetic moment due to the carbon atoms in the vacancy is observed for Sc and Cu.

  16. Imaging powders with the atomic force microscope: from biominerals to commercial materials.

    PubMed

    Friedbacher, G; Hansma, P K; Ramli, E; Stucky, G D

    1991-09-13

    Atomically resolved images of pressed powder samples have been obtained with the atomic force microscope (AFM). The technique was successful in resolving the particle, domain, and atomic structure of pismo clam (Tivela stultorum) and sea urchin (Strongylocentrotus purpuratus) shells and of commercially available calcium carbonate (CaCO(3)) and strontium carbonate (SrCO(3)) powders. Grinding and subsequent pressing of the shells did not destroy the microstructure of these materials. The atomic-resolution imaging capabilities of AFM can be applied to polycrystalline samples by means of pressing powders with a grain size as small as 50 micrometers. These results illustrate that the AFM is a promising tool for material science and the study of biomineralization.

  17. Effects of dilute substitutional solutes on interstitial carbon in α-Fe: Interactions and associated carbon diffusion from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Peitao; Xing, Weiwei; Cheng, Xiyue; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu

    2014-07-01

    By means of first-principles calculations coupled with the kinetic Monte Carlo simulations, we have systematically investigated the effects of dilute substitutional solutes on the behaviors of carbon in α-Fe. Our results uncover the following. (i) Without the Fe vacancy the interactions between most solutes and carbon are repulsive due to the strain relief, whereas Mn has a weak attractive interaction with its nearest-neighbor carbon due to the local ferromagnetic coupling effect. (ii) The presence of the Fe vacancy results in attractive interactions of all the solutes with carbon. In particular, the Mn-vacancy pair shows an exceptionally large binding energy of -0.81 eV with carbon. (iii) The alloying addition significantly impacts the atomic-scale concentration distributions and chemical potential of carbon in the Fe matrix. Among them, Mn and Cr increase the carbon chemical potential, whereas Al and Si reduce it. (iv) Within the dilute scale of the alloying solution, the solute concentration- and temperature-dependent carbon diffusivities demonstrate that Mn has a little impact on the carbon diffusion, whereas Cr (Al or Si) remarkably retards the carbon diffusion. Our results provide a certain implication for better understanding the experimental observations related with the carbon solubility limit, carbon microsegregation, and carbide precipitations in the ferritic steels.

  18. Selective Laser Sintering of Porous Silica Enabled by Carbon Additive

    PubMed Central

    Chang, Shuai; Li, Liqun; Lu, Li

    2017-01-01

    The aim of this study is to investigate the possibility of a freeform fabrication of porous ceramic parts through selective laser sintering (SLS). SLS was proposed to manufacture ceramic green parts because this additive manufacturing technique can be used to fabricate three-dimensional objects directly without a mold, and the technique has the capability of generating porous ceramics with controlled porosity. However, ceramic printing has not yet fully achieved its 3D fabrication capabilities without using polymer binder. Except for the limitations of high melting point, brittleness, and low thermal shock resistance from ceramic material properties, the key obstacle lies in the very poor absorptivity of oxide ceramics to fiber laser, which is widely installed in commercial SLS equipment. An alternative solution to overcome the poor laser absorptivity via improving material compositions is presented in this study. The positive effect of carbon additive on the absorptivity of silica powder to fiber laser is discussed. To investigate the capabilities of the SLS process, 3D porous silica structures were successfully prepared and characterized. PMID:29144425

  19. Selective Laser Sintering of Porous Silica Enabled by Carbon Additive.

    PubMed

    Chang, Shuai; Li, Liqun; Lu, Li; Fuh, Jerry Ying Hsi

    2017-11-16

    The aim of this study is to investigate the possibility of a freeform fabrication of porous ceramic parts through selective laser sintering (SLS). SLS was proposed to manufacture ceramic green parts because this additive manufacturing technique can be used to fabricate three-dimensional objects directly without a mold, and the technique has the capability of generating porous ceramics with controlled porosity. However, ceramic printing has not yet fully achieved its 3D fabrication capabilities without using polymer binder. Except for the limitations of high melting point, brittleness, and low thermal shock resistance from ceramic material properties, the key obstacle lies in the very poor absorptivity of oxide ceramics to fiber laser, which is widely installed in commercial SLS equipment. An alternative solution to overcome the poor laser absorptivity via improving material compositions is presented in this study. The positive effect of carbon additive on the absorptivity of silica powder to fiber laser is discussed. To investigate the capabilities of the SLS process, 3D porous silica structures were successfully prepared and characterized.

  20. Synergic effect of atomic oxygen and outgassing phenomena on Carbon/SiC composites for space applications

    NASA Astrophysics Data System (ADS)

    Albano, Marta

    The space environment is one of the most critical for space structures. The low earth orbit (LEO) space environment includes hazards such as atomic oxygen, UV radiation, ionizing radiation (electrons, protons), high vacuum, plasma, micrometeoroids and debris, as well as severe temperature cycles. Exposure of composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The high vacuum induces material outgassing (e.g. low-molecular weight residues, plasticizers and additives) and consequent contamination of nearby surfaces. At LEO altitudes the neutral atmosphere consists primarily of ATOX (˜80%) and nitrogen molecules (˜20%). ATOX, which is formed by photo-dissociation of molecular oxygen in the upper atmosphere, is a severe hazard for composites. The number density of ATOX at about 300 km altitude is ˜2 × 109 to 8 × 109 atoms/cm3, for minimum and maximum solar activity, respectively. Front surfaces (ram direction) of space vehicles orbiting at a velocity of about 8 km/s collide with the ATOX species with impingement kinetic energy of approximately 5 eV. The ATOX flux is determined by such parameters as altitude, orbital inclination, solar activity and time of day. A nominal range of values for LEO is 1014-1015 atoms/cm2 s. The Low Earth Orbit is a complex and dynamic environment where constituents vary with position, local time, season and solar activity. Effects of different constituents of the space environment on spacecraft materials play an important role in determining the system function, reliability and lifetime. This is more crucial if the structure has to be used for the re-entry as thermal protection systems for example. In this case the integrity of the surface and its coating is crucial for the success of the entire mission. During the re-entry, resistance of materials is hard tested by fast chemical reactions

  1. Atomic-absorption determination of mercury in geological materials by flame and carbon-rod atomisation after solvent extraction and using co-extracted silver as a matrix modifier

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1983-01-01

    Based on modifications and expansion of the original Tindall's solvent extraction flame atomic-absorption procedure, an atomic-absorption spectrophotometric method has been developed for the determination of mercury in geological materials. The sample is digested with nitric and hydrochloric acids in a boiling water-bath. The solution is made ammoniacal and potassium iodide and silver nitrate are added. The mercury is extracted into isobutyl methyl ketone as the tetraiodomercurate(ll). Added silver is co-extracted with mercury and serves as a matrix modifier in the carbon-rod atomiser. The mercury in the isobutyl methyl ketone extract may be determined by either the flame- or the carbon-rod atomisation method, depending on the concentration level. The limits of determination are 0.05-10 p.p.m. of mercury for the carbon-rod atomisation and 1 -200 p.p.m. of mercury for the flame atomisation. Mercury values for reference samples obtained by replicate analyses are in good agreement with those reported by other workers, with relative standard deviations ranging from 2.3 to 0.9%. Recoveries of mercury spiked at two levels were 93-106%. Major and trace elements commonly found in geological materials do not interfere.

  2. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest.

    PubMed

    Brando, Paulo M; Oliveria-Santos, Claudinei; Rocha, Wanderley; Cury, Roberta; Coe, Michael T

    2016-07-01

    Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire-induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low-intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high-intensity, catastrophic fires during nondrought years. © 2016 John Wiley & Sons Ltd.

  3. Combustor exhaust-emissions and blowout-limits with diesel number 2 and Jet A fuels utilizing air-atomizing and pressure-atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    The effect of fuel properties on exhaust emissions and blowout limits of a high-pressure combustor segment is evaluated using a splash-groove air-atomizing fuel injector and a pressure-atomizing simplex fuel nozzle to burn both diesel number 2 and Jet A fuels. Exhaust emissions and blowout data are obtained and compared on the basis of the aromatic content and volatility of the two fuels. Exhaust smoke number and emission indices for oxides of nitrogen, carbon monoxide, and unburned hydrocarbons are determined for comparison. As compared to the pressure-atomizing nozzle, the air-atomizing nozzle is found to reduce nitrogen oxides by 20%, smoke number by 30%, carbon monoxide by 70%, and unburned hydrocarbons by 50% when used with diesel number 2 fuel. The higher concentration of aromatics and lower volatility of diesel number 2 fuel as compared to Jet A fuel appears to have the most detrimental effect on exhaust emissions. Smoke number and unburned hydrocarbons are twice as high with diesel number 2 as with Jet A fuel.

  4. H ATOM IRRADIATION OF CARBON GRAINS UNDER SIMULATED DENSE INTERSTELLAR MEDIUM CONDITIONS: THE EVOLUTION OF ORGANICS FROM DIFFUSE INTERSTELLAR CLOUDS TO THE SOLAR SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mennella, Vito, E-mail: mennella@na.astro.i

    2010-08-01

    We present the results of experiments aimed at studying the interaction of hydrogen atoms at 80 K with carbon grains covered with a water ice layer at 12 K. The effects of H processing have been analyzed, using IR spectroscopy, as a function of the water ice layer. The results confirm that exposure of the samples to H atoms induces the activation of the band at 3.47 {mu}m with no evidence for the formation of aromatic and aliphatic C-H bonds in the CH{sub 2} and CH{sub 3} functional groups. The formation cross section of the 3.47 {mu}m band has beenmore » estimated from the increase of its integrated optical depth as a function of the H atom fluence. The cross section decreases with increasing thickness of the water ice layer, indicating an increase of adsorption of H atoms in the water ice layer. A penetration depth of 100 nm has been estimated for H atoms in the porous water ice covering carbon grains. Sample warm-up at room temperature causes the activation of the IR features due to the vibrations of the CH{sub 2} and CH{sub 3} aliphatic functional groups. The evolution of the 3.47 {mu}m band carrier has been evaluated for dense and diffuse interstellar clouds, using the estimated formation cross section and assuming that the destruction cross section by energetic processing is the same as that derived for the 3.4 {mu}m band. In both environments, the presence of the 3.47 {mu}m band carrier is compatible with the evolutionary timescale limit imposed by fast cycling of materials between dense and diffuse regions of the interstellar medium. In diffuse regions the formation of the CH{sub 2} and CH{sub 3} aliphatic bands, inhibited in dense regions, takes place, masking the 3.47 {mu}m band. The activation of the CH{sub 2} and CH{sub 3} aliphatic vibrational modes at the end of H processing after sample warm-up represents the first experimental evidence supporting an evolutionary connection between the interstellar carbon grain population, which is responsible for

  5. Photoionization and Photofragmentation of Carbon Fullerene Molecular Ions

    NASA Astrophysics Data System (ADS)

    Baral, Kiran Kumar

    Cross sections are reported for single and double photoionization accompanied by the loss of as many as seven pairs of C atoms of C60 + and C70+ fullerene molecular ions in the photon energy range 18 eV to 150 eV. These measurements were performed at the Advanced Light Source (ALS) by merging a mass-selected ion beam with a beam of monochromatized synchrotron radiation. Threshold energies were determined for the formation of doubly and triply charged fragment ions from parent ions C60+ and C70+. The energy dependences of cross-sections for direct photoionization yielding C60 2+ and C702+ are compared with those for forming different doubly and triply charged fullerene fragment ions. Two-dimensional product ion scans were measured and quantified at four discrete photon energies: 35 eV, 65 eV, 105 eV and 140 eV, in the vacuum ultraviolet region, providing a comprehensive mapping of the product channels involving single ionization of fullerene ions C60+ and C 70+ accompanied by fragmentation. Since fullerenes are composed of even numbers of carbon atoms, the fragmentation occurs by the loss of differing numbers of carbon atom pairs. In addition to pure ionization, fragmentation product channels become relatively more important at higher photon energies.

  6. Carbon nanosheets-based supercapacitors: Design of dual redox additives of 1, 4-dihydroxyanthraquinone and hydroquinone for improved performance

    NASA Astrophysics Data System (ADS)

    Xu, Dong; Sun, Xiao Na; Hu, Wei; Chen, Xiang Ying

    2017-07-01

    Using thiocarbanilide and Mg(OH)2 powders as carbon precursor and template, respectively, novel 2D carbon nanosheets with large area have been produced. Next, based on the cooperative effect, 1, 4-dihydroxyanthraquinone (DQ) and hydroquinone (HQ) regarded as efficient dual redox additives have been incorporated into the electrode carbon material and H2SO4 electrolyte, respectively, to largely elevate the capacitive performance of supercapacitors. More importantly, the cooperative effect results from the redox processes of DQ and HQ consecutively occurring in the electrode carbon material and aqueous H2SO4 electrolyte, respectively. Besides, the molar ratio of DQ and HQ exerts a crucial role in the determination of the electrochemical behaviors and eventually the optimum condition is the mass ratio of 1:1 concerning the DQ and porous carbon within solid electrode while retaining the HQ concentration as 20 mmol L-1 in 1 mol L-1 H2SO4 electrolyte. As a result, the maximum specific capacitance is achieved of 239 F g-1 at 3 A g-1, and furthermore the maximum energy density up to 21.1 Wh kg-1 is almost 3.5 times larger than that of the one without introducing any redox additive.

  7. The Structures & Properties of Carbon

    ERIC Educational Resources Information Center

    Castellini, Olivia M.; Lisensky, George C.; Ehrlich, Jennifer; Zenner, Greta M.; Crone, Wendy C.

    2006-01-01

    The four main forms of carbon--diamond, graphite, buckyballs, and carbon nanotubes (CNTs)--are an excellent vehicle for teaching fundamental principles of chemical bonding, material structure, and properties. Carbon atoms form a variety of structures that are intrinsically connected to the properties they exhibit. Educators can take advantage of…

  8. Proposal for Testing and Validation of Vacuum Ultra-Violet Atomic Laser-Induced Fluorescence as a Method to Analyze Carbon Grid Erosion in Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Stevens, Richard

    2003-01-01

    Previous investigation under award NAG3-25 10 sought to determine the best method of LIF to determine the carbon density in a thruster plume. Initial reports from other groups were ambiguous as to the number of carbon clusters that might be present in the plume of a thruster. Carbon clusters would certainly affect the ability to LIF; if they were the dominant species, then perhaps the LIF method should target clusters. The results of quadrupole mass spectroscopy on sputtered carbon determined that minimal numbers of clusters were sputtered from graphite under impact from keV Krypton. There were some investigations in the keV range by other groups that hinted at clusters, but at the time the proposal was presented to NASA, there was no data from low-energy sputtering available. Thus, the proposal sought to develop a method to characterize the population only of atoms sputtered from a graphite target in a test cell. Most of the ground work had been established by the previous two years of investigation. The proposal covering 2003 sought to develop an anti-Stokes Raman shifting cell to generate VUW light and test this cell on two different laser systems, ArF and YAG- pumped dye. The second goal was to measure the lowest detectable amounts of carbon atoms by 156.1 nm and 165.7 nm LIF. If equipment was functioning properly, it was expected that these goals would be met easily during the timeframe of the proposal, and that is the reason only modest funding was requested. The PI was only funded at half- time by Glenn during the summer months. All other work time was paid for by Whitworth College. The college also funded a student, Charles Shawley, who worked on the project during the spring.

  9. A sputtering derived atomic oxygen source for studying fast atom reactions

    NASA Technical Reports Server (NTRS)

    Ferrieri, Richard A.; Yung, Y. Chu; Wolf, Alfred P.

    1987-01-01

    A technique for the generation of fast atomic oxygen was developed. These atoms are created by ion beam sputtering from metal oxide surfaces. Mass resolved ion beams at energies up to 60 KeV are produced for this purpose using a 150 cm isotope separator. Studies have shown that particles sputtered with 40 KeV Ar(+) on Ta2O5 were dominantly neutral and exclusively atomic. The atomic oxygen also resided exclusively in its 3P ground state. The translational energy distribution for these atoms peaked at ca 7 eV (the metal-oxygen bond energy). Additional measurements on V2O5 yielded a bimodal distribution with the lower energy peak at ca 5 eV coinciding reasonably well with the metal-oxygen bond energy. The 7 eV source was used to investigate fast oxygen atom reactions with the 2-butene stereoisomers. Relative excitation functions for H-abstraction and pi-bond reaction were measured with trans-2-butene. The abstraction channel, although of minor relative importance at thermal energy, becomes comparable to the addition channel at 0.9 eV and dominates the high-energy regime. Structural effects on the specific channels were also found to be important at high energy.

  10. Localization of carbon atoms and extended defects in silicon implanted separately with C+ and B+ ions and jointly with C+ and B+ ions

    NASA Astrophysics Data System (ADS)

    Jadan, M.; Chelyadinskii, A. R.; Odzhaev, V. B.

    2013-02-01

    The possibility to control the localization of implanted carbon in sites and interstices in silicon immediately during the implantation has been demonstrated. The formation of residual extended defects in silicon implanted separately with C+ and B+ ions and jointly with C+ and B+ ions has been shown. It has been found that the formation of residual defects can be suppressed due to annihilation of point defects at C atoms (the Watkins effect). The positive effect is attained if implanted carbon is localized over lattice sites, which is provided by its implantation with the effective current density of the scanning ion beam no lower than 1.0 μA cm-2.

  11. Effective Hubbard model for Helium atoms adsorbed on a graphite

    NASA Astrophysics Data System (ADS)

    Motoyama, Yuichi; Masaki-Kato, Akiko; Kawashima, Naoki

    Helium atoms adsorbed on a graphite is a two-dimensional strongly correlated quantum system and it has been an attractive subject of research for a long time. A helium atom feels Lennard-Jones like potential (Aziz potential) from another one and corrugated potential from the graphite. Therefore, this system may be described by a hardcore Bose Hubbard model with the nearest neighbor repulsion on the triangular lattice, which is the dual lattice of the honeycomb lattice formed by carbons. A Hubbard model is easier to simulate than the original problem in continuous space, but we need to know the model parameters of the effective model, hopping constant t and interaction V. In this presentation, we will present an estimation of the model parameters from ab initio quantum Monte Carlo calculation in continuous space in addition to results of quantum Monte Carlo simulation for an obtained discrete model.

  12. Effects of argon addition on a-CNx film deposition by hot carbon filament chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshihisa; Aono, Masami; Yamazaki, Ayumi; Kitazawa, Nobuaki; Nakamura, Yoshikazu

    2002-07-01

    Using a carbon filament which supplies carbon and heat, amorphous carbon nitride (a-CNx) films were prepared on Si (100) substrates by hot filament chemical vapor deposition. Deposition was performed in a low-pressure atmosphere of pure nitrogen and a gas mixture of nitrogen and argon. Effects of argon additions to the nitrogen atmosphere on the film microstructure and interface composition between the film and substrate were studied by field-emission scanning electron microscopy (FESEM) and x-ray photoelectron spectroscopy (XPS). FESEM observations reveal that the film prepared in a pure nitrogen atmosphere has uniform nucleation and a densely packed columnar pieces structure. The film prepared in the nitrogen and argon gas mixture exhibits preferential nucleation and a tapered structure with macroscopic voids. Depth analyses using XPS reveal that the film prepared in pure nitrogen possesses a broad interface, which includes silicon carbide as well as a-CNx, whereas a sharp interface is discerned in the film prepared in the mixed nitrogen and argon gas. We observed that silicon carbide formation is suppressed by an argon addition to the nitrogen atmosphere during deposition. copyright 2002 American Vacuum Society.

  13. Combustor exhaust-emissions and blowout-limits with diesel number 2 and jet A fuels utilizing air-atomizing and pressure atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    Experimental tests with diesel number 2 and Jet A fuels were conducted in a combustor segment to obtain comparative data on exhaust emissions and blowout limits. An air-atomizing nozzle was used to inject the fuels. Tests were also made with diesel number 2 fuel using a pressure-atomizing nozzle to determine the effectiveness of the air-atomizing nozzle in reducing exhaust emissions. Test conditions included fuel-air ratios of 0.008 to 0.018, inlet-air total pressures and temperatures of 41 to 203 newtons per square centimeter and 477 to 811 K, respectively, and a reference velocity of 21.3 meters per second. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. This was attributed to diesel number 2 having a higher concentration of aromatics and lower volatility than Jet A fuel. Oxides of nitrogen, carbon monoxide, and blowout limits were approximately the same for the two fuels. The air-atomizing nozzle, as compared with the pressure-atomizing nozzle, reduced oxides-of-nitrogen by 20 percent, smoke number by 30 percent, carbon monoxide by 70 percent, and unburned hydrocarbons by 50 percent when used with diesel number 2 fuel.

  14. Carbon films produced from ionic liquid carbon precursors

    DOEpatents

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  15. Consideration of critical axial properties of pristine and defected carbon nanotubes under compression.

    PubMed

    Ranjbartoreh, A R; Su, D; Wang, G

    2012-06-01

    Carbon nanotubes are hexagonally configured carbon atoms in cylindrical structures. Exceptionally high mechanical strength, electrical conductivity, surface area, thermal stability and optical transparency of carbon nanotubes outperformed other known materials in numerous advanced applications. However, their mechanical behaviors under practical loading conditions remain to be demonstrated. This study investigates the critical axial properties of pristine and defected single- and multi-walled carbon nanotubes under axial compression. Molecular dynamics simulation method has been employed to consider the destructive effects of Stone-Wales and atom vacancy defects on mechanical properties of armchair and zigzag carbon nanotubes under compressive loading condition. Armchair carbon nanotube shows higher axial stability than zigzag type. Increase in wall number leads to less susceptibility of multi-walled carbon nanotubes to defects and higher stability of them under axial compression. Atom vacancy defect reveals higher destructive effect than Stone-Wales defect on mechanical properties of carbon nanotubes. Critical axial strain of single-walled carbon nanotube declines by 67% and 26% due to atom vacancy and Stone-Wales defects.

  16. Carbon dioxide hydrogenation on Ni(110).

    PubMed

    Vesselli, Erik; De Rogatis, Loredana; Ding, Xunlei; Baraldi, Alessandro; Savio, Letizia; Vattuone, Luca; Rocca, Mario; Fornasiero, Paolo; Peressi, Maria; Baldereschi, Alfonso; Rosei, Renzo; Comelli, Giovanni

    2008-08-27

    We demonstrate that the key step for the reaction of CO 2 with hydrogen on Ni(110) is a change of the activated molecule coordination to the metal surface. At 90 K, CO 2 is negatively charged and chemically bonded via the carbon atom. When the temperature is increased and H approaches, the H-CO 2 complex flips and binds to the surface through the two oxygen atoms, while H binds to the carbon atom, thus yielding formate. We provide the atomic-level description of this process by means of conventional ultrahigh vacuum surface science techniques combined with density functional theory calculations and corroborated by high pressure reactivity tests. Knowledge about the details of the mechanisms involved in this reaction can yield a deeper comprehension of heterogeneous catalytic organic synthesis processes involving carbon dioxide as a reactant. We show why on Ni the CO 2 hydrogenation barrier is remarkably smaller than that on the common Cu metal-based catalyst. Our results provide a possible interpretation of the observed high catalytic activity of NiCu alloys.

  17. Atomic spectrometry update - atomic mass spectrometry.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacon, J.; Crain, J. S.; McMahon, A. W.

    The MS and XRF updates have been published together since their introduction in 1988. In the last few years, however, the two sections have been prepared independently of each other and it therefore seemed appropriate to publish the two sections separately. With effect from this issue, the MS Update will appear in the October issue of JAAS and the XRF Update in the November issue. The format used for the MS section is broadly similar to that used last year, with some additional sub-headings. This Update is intended to cover all atomic and stable isotopic MS techniques, but not thosemore » used in studies of fundamental nuclear physics and exotic nuclei far from stability. Also excluded are those reports in which MS is used as a tool in the study of molecular processes and of gaseous components. the review is based on critical selection of developments in instrumentation and methodology, notable for their innovation, originality or achievement of significant advances, and is not intended to be comprehensive in its coverage. Conference papers are only included if they contain enough information to show they meet these criteria, and our policy in general remains one of waiting for a development to appear in a full paper before inclusion in the review. a similar policy applies to foreign language papers unlikely to reach a wide audience. Routine applications of atomic MS are not included in this Update and the reader is referred to the Updates on Industrial Analysis: Metals, Chemicals and Advanced Materials (96/416), Environmental Analysis (96/1444) and Clinical and Biological Materials, Food and Beverages (96/2479). Also excluded are those applications, even if not routine, which use atomic spectroscopy as a tool for the study of a non-atomic property, for example, the use of stable isotope labeling of carbon or nitrogen in biomolecules in metabolic studies. There have been few general reviews on atomic MS of note in the period covered by this update. That of

  18. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts.

    PubMed

    Yin, Peiqun; Yao, Tao; Wu, Yuen; Zheng, Lirong; Lin, Yue; Liu, Wei; Ju, Huanxin; Zhu, Junfa; Hong, Xun; Deng, Zhaoxiang; Zhou, Gang; Wei, Shiqiang; Li, Yadong

    2016-08-26

    A new strategy for achieving stable Co single atoms (SAs) on nitrogen-doped porous carbon with high metal loading over 4 wt % is reported. The strategy is based on a pyrolysis process of predesigned bimetallic Zn/Co metal-organic frameworks, during which Co can be reduced by carbonization of the organic linker and Zn is selectively evaporated away at high temperatures above 800 °C. The spherical aberration correction electron microscopy and extended X-ray absorption fine structure measurements both confirm the atomic dispersion of Co atoms stabilized by as-generated N-doped porous carbon. Surprisingly, the obtained Co-Nx single sites exhibit superior ORR performance with a half-wave potential (0.881 V) that is more positive than commercial Pt/C (0.811 V) and most reported non-precious metal catalysts. Durability tests revealed that the Co single atoms exhibit outstanding chemical stability during electrocatalysis and thermal stability that resists sintering at 900 °C. Our findings open up a new routine for general and practical synthesis of a variety of materials bearing single atoms, which could facilitate new discoveries at the atomic scale in condensed materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High performance, rapid thermal/UV curing epoxy resin for additive manufacturing of short and continuous carbon fiber epoxy composites

    DOEpatents

    Lewicki, James

    2018-04-17

    An additive manufacturing resin system including an additive manufacturing print head; a continuous carbon fiber or short carbon fibers operatively connected to the additive manufacturing print head; and a tailored resin operatively connected to the print head, wherein the tailored resin has a resin mass and wherein the tailored resin includes an epoxy component, a filler component, a catalyst component, and a chain extender component; wherein the epoxy component is 70-95% of the resin mass, wherein the filler component is 1-20% of the resin mass, wherein the catalyst component is 0.1-10% of the resin mass, and wherein the chain extender component is 0-50% of the resin mass.

  20. When hydroquinone meets methoxy radical: Hydrogen abstraction reaction from the viewpoint of interacting quantum atoms.

    PubMed

    Petković, Milena; Nakarada, Đura; Etinski, Mihajlo

    2018-05-25

    Interacting Quantum Atoms methodology is used for a detailed analysis of hydrogen abstraction reaction from hydroquinone by methoxy radical. Two pathways are analyzed, which differ in the orientation of the reactants at the corresponding transition states. Although the discrepancy between the two barriers amounts to only 2 kJ/mol, which implies that the two pathways are of comparable probability, the extent of intra-atomic and inter-atomic energy changes differs considerably. We thus demonstrated that Interacting Quantum Atoms procedure can be applied to unravel distinct energy transfer routes in seemingly similar mechanisms. Identification of energy components with the greatest contribution to the variation of the overall energy (intra-atomic and inter-atomic terms that involve hydroquinone's oxygen and the carbon atom covalently bound to it, the transferring hydrogen and methoxy radical's oxygen), is performed using the Relative energy gradient method. Additionally, the Interacting Quantum Fragments approach shed light on the nature of dominant interactions among selected fragments: both Coulomb and exchange-correlation contributions are of comparable importance when considering interactions of the transferring hydrogen atom with all other atoms, whereas the exchange-correlation term dominates interaction between methoxy radical's methyl group and hydroquinone's aromatic ring. This study represents one of the first applications of Interacting Quantum Fragments approach on first order saddle points. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  1. Multi-functional carbon nanomaterials: Tailoring morphology for multidisciplinary applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dervishi, Enkeleda

    2015-05-14

    Carbon based nanomaterials are being developed to have many new properties and applications. Graphene, is a mono-layer 2D atomic thick structure formed from hexagons of carbon atoms bound together by sp^2hybrid bonds. A carbon nanotube (CNT) can be viewed as a sheet of graphene rolled up into a cylinder, usually 1-2 nanometers in diameter and a few microns thick. A few applications of graphene and carbon nanotubes include the development of Nanoelectronics, nanocomposite materials, Hydrogen storage and Li⁺ battery, etc.

  2. Molybdoenzyme That Catalyzes the Anaerobic Hydroxylation of a Tertiary Carbon Atom in the Side Chain of Cholesterol*

    PubMed Central

    Dermer, Juri; Fuchs, Georg

    2012-01-01

    Cholesterol is a ubiquitous hydrocarbon compound that can serve as substrate for microbial growth. This steroid and related cyclic compounds are recalcitrant due to their low solubility in water, complex ring structure, the presence of quaternary carbon atoms, and the low number of functional groups. Aerobic metabolism therefore makes use of reactive molecular oxygen as co-substrate of oxygenases to hydroxylate and cleave the sterane ring system. Consequently, anaerobic metabolism must substitute oxygenase-catalyzed steps by O2-independent hydroxylases. Here we show that one of the initial reactions of anaerobic cholesterol metabolism in the β-proteobacterium Sterolibacterium denitrificans is catalyzed by an unprecedented enzyme that hydroxylates the tertiary C25 atom of the side chain without molecular oxygen forming a tertiary alcohol. This steroid C25 dehydrogenase belongs to the dimethyl sulfoxide dehydrogenase molybdoenzyme family, the closest relative being ethylbenzene dehydrogenase. It is a heterotrimer, which is probably located at the periplasmic side of the membrane and contains one molybdenum cofactor, five [Fe-S] clusters, and one heme b. The draft genome of the organism contains several genes coding for related enzymes that probably replace oxygenases in steroid metabolism. PMID:22942275

  3. Investigating permeability and carbonation behavior of sustainable cements

    NASA Astrophysics Data System (ADS)

    White, C.; Blyth, A.; Scherer, G. W.; Morandeau, A. E.

    2015-12-01

    The durability of new sustainable cementitious materials is intimately linked with the ability for these materials to prevent the ingress of aggressive ions through their percolated pore networks. However, it is also important to be able to control and limit the detrimental chemical degradation mechanisms that occur to the cement binder once the ions have diffused through the pore network. Here, alkali-activated materials will be discussed, and recent research on measuring the permeability of this class of cements using the beam-bending method will be presented. It will be shown that the permeability can be controlled by tailoring the activator chemistry, and that the addition of free silica in the activator has a strong (favorable) influence on the resulting percolated pore network. Carbonation is one type of chemical degradation process that is known to severely shorten the service life of concrete, especially in environments containing elevated CO­2 levels. However, the exact atomic structural changes that occur to the main binder phase (calcium-silicate-hydrate gel) during carbonation remain largely unknown. Here, X-ray pair distribution function analysis is used to elucidate the local atomic structural changes that occur during carbonation of calcium-silicate-hydrate gel and calcium-aluminosilicate-hydrate gel (alkali-activated slag binder), where distinct differences in the extent of gel decalcification are measured according to the chemistry of the starting precursor material. The results will be discussed in the context of limiting the extent of carbonation in cementitious materials, with potential applications of alkali-activated materials in geological storage of CO2 due to their increased resistance to carbonation.

  4. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.

    2011-11-01

    Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C)more » for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of

  5. Reaction and Protection of Electrical Wire Insulators in Atomic-oxygen Environments

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Cantrell, Gidget

    1994-01-01

    Atomic-oxygen erosion on spacecraft in low Earth orbit is an issue which is becoming increasingly important because of the growing number of spacecraft that will fly in the orbits which have high concentrations of atomic oxygen. In this investigation, the atomic-oxygen durability of three types of electrical wire insulation (carbon-based, fluoropolymer, and polysiloxane elastomer) were evaluated. These insulation materials were exposed to thermal-energy atomic oxygen, which was obtained by RF excitation of air at a pressure of 11-20 Pa. The effects of atomic-oxygen exposure on insulation materials indicate that all carbon-based materials erode at about the same rate as polyamide Kapton and, therefore, are not atomic-oxygen durable. However, the durability of fluoropolymers needs to be evaluated on a case by case basis because the erosion rates of fluoropolymers vary widely. For example, experimental data suggest the formation of atomic fluorine during atomic-oxygen amorphous-fluorocarbon reactions. Dimethyl polysiloxanes (silicone) do not lose mass during atomic-oxygen exposure, but develop silica surfaces which are under tension and frequently crack as a result of loss of methyl groups. However, if the silicone sample surfaces were properly pretreated to provide a certain roughness, atomic oxygen exposure resulted in a sturdy, non-cracked atomic-oxygen durable SiO2 layer. Since the surface does not crack during such silicone-atomic oxygen reaction, the crack-induced contamination by silicone can be reduced or completely stopped. Therefore, with proper pretreatment, silicone can be either a wire insulation material or a coating on wire insulation materials to provide atomic-oxygen durability.

  6. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis

    PubMed Central

    Yue, Kai; Peng, Yan; Peng, Changhui; Yang, Wanqin; Peng, Xin; Wu, Fuzhong

    2016-01-01

    Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition. PMID:26813078

  7. Design considerations regarding an atomizer for multi-element electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri A.; Sadagov, Yuri M.

    2011-06-01

    The methodology of simultaneous multi-element electrothermal atomic absorption spectrometry (ETAAS-Electrothermal Atomic Absorption Spectrometry) stipulates rigid requirements to the design and operation of the atomizer. It must provide high degree of atomization for the group of analytes, invariant respective to the vaporization kinetics and heating ramp residence time of atoms in the absorption volume and absence of memory effects from major sample components. For the low resolution spectrometer with a continuum radiation source the reduced compared to traditional ETAAS (Electrothermal Atomic Absorption Spectrometry) sensitivity should be, at least partially, compensated by creating high density of atomic vapor in the absorption pulse. The sought-for characteristics were obtained for the 18 mm in length and 2.5 mm in internal diameter longitudinally heated graphite tube atomizer furnished with 2-4.5 mg of ring shaped carbon fiber yarn collector. The collector located next to the sampling port provides large substrate area that helps to keep the sample and its residue in the central part of the tube after drying. The collector also provides a "platform" effect that delays the vaporization and stipulates vapor release into absorption volume having already stabilized gas temperature. Due to the shape of external surface of the tube, presence of collector and rapid (about 10 °C/ms) heating, an inverse temperature distribution along the tube is attained at the beginnings of the atomization and cleaning steps. The effect is employed for cleaning of the atomizer using the set of short maximum power heating pulses. Preparation, optimal maintenance of the atomizer and its compliance to the multi-element determination requirements are evaluated and discussed. The experimental setup provides direct simultaneous determination of large group of element within 3-4 order concentration range. Limits of detection are close to those for sequential single element determination in

  8. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOEpatents

    Liu, W.; Flytzani-Stephanopoulos, M.

    1996-03-19

    A method and composition are disclosed for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdenum, copper, cobalt, manganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  9. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOEpatents

    Liu, Wei; Flytzani-Stephanopoulos, Maria

    1996-01-01

    A method and composition for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdnum, copper, cobalt, maganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  10. Angular distribution of hybridization in sputtered carbon thin film

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wang, H.; Wei, Z. C.

    2017-08-01

    The sp3/sp2 ratio of sputtered carbon thin film depends on the ion bombardment process and tailors the physical properties of carbon thin film. In present work, we report the angular distribution of hybridization in magnetron sputtered carbon thin film for the first time. By x-ray photoelectron spectra analyses, it is found that the sp3/sp2 ratio increases linearly with increasing the deposition angle from 0 to 90 degree, which could be attributed to the enhancement of direct knocking-out of near-surface target atoms. In addition, we also derive the sp3/sp2 ratio by simulation on complex permittivity in terahertz frequency using a modified percolation approximation tunneling model. Those derived data consist with the results from x-ray photoelectron spectroscopy.

  11. 3-D Observation of dopant distribution at NAND flash memory floating gate using Atom probe tomography

    NASA Astrophysics Data System (ADS)

    Lee, Ji-hyun; Chae, Byeong-Kyu; Kim, Joong-Jeong; Lee, Sun Young; Park, Chan Gyung

    2015-01-01

    Dopant control becomes more difficult and critical as silicon devices become smaller. We observed the dopant distribution in a thermally annealed polysilicon gate using Transmission Electron Microscopy (TEM) and Atom probe tomography (APT). Phosphorus was doped at the silicon-nitride-diffusion-barrier-layer-covered polycrystalline silicon gate. Carbon also incorporated at the gate for the enhancement of operation uniformity. The impurity distribution was observed using atom probe tomography. The carbon atoms had segregated at grain boundaries and suppressed silicon grain growth. Phosphorus atoms, on the other hand, tended to pile-up at the interface. A 1-nm-thick diffusion barrier effectively blocked P atom out-diffusion. [Figure not available: see fulltext.

  12. Characterization of Thermoplastic Polyurethane (TPU) and Ag Carbon Black TPU Nanocomposite for Potential Application in Additive Manufacturing (Postprint)

    DTIC Science & Technology

    2016-12-29

    APPLICATION IN ADDITIVE MANUFACTURING (POSTPRINT) Steven T. Patton, Chenggang Chen, Jianjun Hu, and Lawrence Grazulis University of Dayton Research...CARBON BLACK TPU NANOCOMPOSITE FOR POTENTIAL APPLICATION IN ADDITIVE MANUFACTURING (POSTPRINT) 5a. CONTRACT NUMBER FA8650-11-D-5401-0008 5b...and polymer nanocomposites (PNCs) are of interest for additive manufacturing (AM) and flexible electronics. Development/optimization of inks for AM

  13. Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions.

    PubMed

    Wang, Da-Wei; Li, Feng; Yin, Li-Chang; Lu, Xu; Chen, Zhi-Gang; Gentle, Ian R; Lu, Gao Qing; Cheng, Hui-Ming

    2012-04-23

    A nitrogen-doped porous carbon monolith was synthesized as a pseudo-capacitive electrode for use in alkaline supercapacitors. Ammonia-assisted carbonization was used to dope the surface with nitrogen heteroatoms in a way that replaced carbon atoms but kept the oxygen content constant. Ammonia treatment expanded the micropore size-distributions and increased the specific surface area from 383 m(2) g(-1) to 679 m(2) g(-1). The nitrogen-containing porous carbon material showed a higher capacitance (246 F g(-1)) in comparison with the nitrogen-free one (186 F g(-1)). Ex situ electrochemical spectroscopy was used to investigate the evolution of the nitrogen-containing functional groups on the surface of the N-doped carbon electrodes in a three-electrode cell. In addition, first-principles calculations were explored regarding the electronic structures of different nitrogen groups to determine their relative redox potentials. We proposed possible redox reaction pathways based on the calculated redox affinity of different groups and surface analysis, which involved the reversible attachment/detachment of hydroxy groups between pyridone and pyridine. The oxidation of nitrogen atoms in pyridine was also suggested as a possible reaction pathway. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Atomic oxygen beam source for erosion simulation

    NASA Technical Reports Server (NTRS)

    Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.; Vaughn, J. A.

    1991-01-01

    A device for the production of low energy (3 to 10 eV) neutral atomic beams for surface modification studies is described that reproduces the flux of atomic oxygen in low Earth orbit. The beam is produced by the acceleration of plasma ions onto a negatively biased plate of high-Z metal; the ions are neutralized and reflected by the surface, retaining some fraction of their incident kinetic energy, forming a beam of atoms. The plasma is generated by a coaxial RF exciter which produces a magnetically-confined (4 kG) plasma column. At the end of the column, ions fall through the sheath to the plate, whose bias relative to the plasma can be varied to adjust the beam energy. The source provides a neutral flux approximately equal to 5 x 10(exp 16)/sq cm at a distance of 9 cm and a fluence approximately equal to 10(exp 20)/sq cm in five hours. The composition and energy of inert gas beams was diagnosed using a mass spectometer/energy analyzer. The energy spectra of the beams demonstrate energies in the range 5 to 15 eV, and qualitatively show expected dependences upon incident and reflecting atom species and potential drop. Samples of carbon film, carbon-based paint, Kapton, mylar, and teflon exposed to atomic O beams show erosion quite similar to that observed in orbit on the space shuttle.

  15. First principles study of NH3 adsorption on carbon nanowires

    NASA Astrophysics Data System (ADS)

    Tapia, Jorge-Alejandro; Sanchez, Alvaro-Daniel; Acosta, Cesar; Canto, Gabriel

    2009-03-01

    Recently has been reported a new type of one-dimensional carbon structures. Carbon nanowires formed by a linear carbon-atom chain inside an armchair (5,5) carbon nanotube has been observed using high-resolution transmission electron microscopy. Theoretical and experimental studies of the NH3 adsorption in the carbon nanotubes report changes in the electronic properties of the carbon nanotubes. In the present work we have studied the electronic and structure properties of carbon nanowires (chain@SWCNT) when NH3 atoms are adsorbed. We used the Density Functional Theory and the calculations where performed by the pseudopotentials LCAO method (SIESTA code) and the Generalized Gradient Approximation (GGA) for the exchange-correlation potential. We have analyzed the changes in the atomic structure and density of states (DOS). We found that the electronic character of the carbon chain of the chain@SWCNT system, can be modulate by NH3 adsorption. This research was supported by SEP under Grant No. PROMEP/103.5/07/2595 and the Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grants No. 82497 and 60534.

  16. Rapid oxidation/stabilization technique for carbon foams, carbon fibers and C/C composites

    DOEpatents

    Tan, Seng; Tan, Cher-Dip

    2004-05-11

    An enhanced method for the post processing, i.e. oxidation or stabilization, of carbon materials including, but not limited to, carbon foams, carbon fibers, dense carbon-carbon composites, carbon/ceramic and carbon/metal composites, which method requires relatively very short and more effective such processing steps. The introduction of an "oxygen spill over catalyst" into the carbon precursor by blending with the carbon starting material or exposure of the carbon precursor to such a material supplies required oxygen at the atomic level and permits oxidation/stabilization of carbon materials in a fraction of the time and with a fraction of the energy normally required to accomplish such carbon processing steps. Carbon based foams, solids, composites and fiber products made utilizing this method are also described.

  17. High temperature superconductivity in distinct phases of amorphous B-doped Q-carbon

    NASA Astrophysics Data System (ADS)

    Narayan, Jagdish; Bhaumik, Anagh; Sachan, Ritesh

    2018-04-01

    Distinct phases of B-doped Q-carbon are formed when B-doped and undoped diamond tetrahedra are packed randomly after nanosecond laser melting and quenching of carbon. By changing the ratio of doped to undoped tetrahedra, distinct phases of B-doped Q-carbon with concentration varying from 5.0% to 50.0% can be created. We have synthesized three distinct phases of amorphous B-doped Q-carbon, which exhibit high-temperature superconductivity following the Bardeen-Cooper-Schrieffer mechanism. The first phase (QB1) has a B-concentration ˜17 at. % (Tc = 37 K), the second phase (QB2) has a B-concentration ˜27 at. % (Tc = 55 K), and the third phase (QB3) has a B-concentration ˜45 at. % (Tc expected over 100 K). From geometrical modeling, we derive that QB1 consists of randomly packed tetrahedra, where one out of every three tetrahedra contains a B atom in the center which is sp3 bonded to four carbon atoms with a concentration of 16.6 at. %. QB2 consists of randomly packed tetrahedra, where one out of every two tetrahedra contains a B atom in the center which is sp3 bonded to four carbon atoms with a concentration of 25 at. %. QB3 consists of randomly packed tetrahedra, where every tetrahedron contains a B atom in the center which is sp3 bonded to four carbon atoms with a concentration of 50 at. %. We present detailed high-resolution TEM results on structural characterization, and EELS and Raman spectroscopy results on the bonding characteristics of B and C atoms. From these studies, we conclude that the high electronic density of states near the Fermi energy level coupled with moderate electron-phonon coupling result in high-temperature superconductivity in B-doped Q-carbon.

  18. Many faces of carbon

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Zhang, Shunhong; Jena, Puru

    2016-12-01

    Due to the special electronic configuration, small atomic size, light mass, and flexible bonding features, carbon exhibits many different structural configurations with very different physical and chemical properties. Here we focus our discussion on three recent forms of carbon, namely, metallic carbon, magnetic carbon, and all-pentagon-based carbon. The metallic carbon can be used for metallic interconnects in future electronic circuits, nano devices and microprocessors while the magnetic carbon can have applications in spintronics. All-pentagon-based carbon nano-structure, penta-graphene, not only expands the family of carbon materials with a number of new features, but also provides the materials basis for the 2D packing of pentagons pursued by mathematicians for almost a century.

  19. Copper-catalyzed asymmetric conjugate addition of Grignard reagents to trisubstituted enones. Construction of all-carbon quaternary chiral centers.

    PubMed

    Martin, David; Kehrli, Stefan; d'Augustin, Magali; Clavier, Hervé; Mauduit, Marc; Alexakis, Alexandre

    2006-07-05

    The copper-catalyzed asymmetric conjugate addition of Grignard reagents to trisubstituted cyclic enones affords enantioenriched all-carbon quaternary centers with up to 96% ee. The chiral ligand is a diaminocarbene, directly generated in situ. The combination of Grignard reagent and diaminocarbene is unprecedented in conjugate addition, and the additon of the phenyl group, on such enones, cannot be done by other conjugate addition methods.

  20. Quantifying atom addition reactions on amorphous solid water: a review of recent laboratory advances

    NASA Astrophysics Data System (ADS)

    He, Jiao; Vidali, Gianfranco

    2018-06-01

    Complex organic molecules found in space are mostly formed on and in the ice mantle covering interstellar dust grains. In clouds where ionizing irradiation is insignificant, chemical reactions on the ice mantle are dominated by thermal processes. Modeling of grain surface chemistry requires detailed information from the laboratory, including sticking coefficients, binding energies, diffusion energy barriers, mechanism of reaction, and chemical desorption rates. In this talk, recent laboratory advances in obtaining these information would be reviewed. Specifically, this talk will focus on the efforts in our group in: 1) Determining the mechanism of atomic hydrogen addition reactions on amorphous solid water (ASW); 2) Measuring the chemical desorption coefficient of H+O3-->O2+OH using the time-resolved scattering technique; and 3) Measuring the diffusion energy barrier of volatile molecules on ASW. Further laboratory studies will be suggested.This research was supported by NSF Astronomy & Astrophysics Research Grant #1615897.

  1. Atomic scale simulations of vapor cooled carbon clusters

    NASA Astrophysics Data System (ADS)

    Bogana, M. P.; Colombo, L.

    2007-03-01

    By means of atomistic simulations we observed the formation of many topologically non-equivalent carbon clusters formed by the condensation of liquid droplets, including: (i) standard fullerenes and onion-like structures, (ii) clusters showing extremely complex surfaces with both positive and negative curvatures and (iii) complex endohedral structures. In this work we offer a thorough structural characterization of the above systems, as well as an attempt to correlate the resulting structure to the actual protocol of growth. The IR and Raman responses of some exotic linear carbon structures have been further investigated, finding good agreement with experimental evidence of carbinoid structures in cluster-assembled films. Towards the aim of fully understanding the process of cluster-to-cluster coalescence dynamics, we further simulated an aerosol of amorphous carbon clusters at controlled temperatures. Various annealing temperatures and times have been observed, identifying different pathways for cluster ripening, ranging from simple coalescence to extensive reconstruction.

  2. Synthesis of Antimony Doped Amorphous Carbon Films

    NASA Astrophysics Data System (ADS)

    Okuyama, H.; Takashima, M.; Akasaka, H.; Ohtake, N.

    2013-06-01

    We report the effects of antimony (Sb) doping on the electrical and optical properties of amorphous carbon (a-C:H) films grown on silicon and copper substrates by magnetron sputtering deposition. For film deposition, the mixture targets fabricated from carbon and antimony powders was used. The atomic concentration of carbon, hydrogen, and antimony, in the film deposited from the 1.0 mol% Sb containing target were 81, 17, 2 at.%, respectively. These elements were homogeneously distributed in the film. On the structural effect, the average continuous sp2 carbon bonding networks decreased with Sb concentration increasing, and defects in the films were increased with the Sb incorporation because atomic radius of Sb atoms is twice larger size than that of carbon. The optical gap and the electrical resistivity were carried out before and after the Sb doping. The results show that optical gap dropped from 3.15 to 3.04 eV corresponding to non-doping to Sb-doping conditions, respectively. The electrical resistivity reduced from 10.5 to 1.0 MΩm by the Sb doping. These results suggest the doping level was newly formed in the forbidden band.

  3. Tribological improvements of carbon-carbon composites by infiltration of atomic layer deposited lubricious nanostructured ceramic oxides

    NASA Astrophysics Data System (ADS)

    Mohseni, Hamidreza

    A number of investigators have reported enhancement in oxidation and wear resistant of carbon-carbon composites (CCC) in the presence of protective coating layers. However, application of a surface and subsurface coating system that can preserve its oxidation and wear resistance along with maintaining lubricity at high temperature remains unsolved. To this end, thermodynamically stable protective oxides (ZnO/Al2O3/ZrO2) have been deposited by atomic layer deposition (ALD) to infiltrate porous CCC and graphite foams in order to improve the thermal stability and wear resistance in low and high speed sliding contacts. Characterization of microstructural evolution was achieved by using energy dispersive x-ray spectroscopy (EDS) mapping in scanning electron microscope (SEM) coupled with focused ion beam (FIB), x-ray tomography, high resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM) and X-ray diffraction (XRD). Evaluation of the tribological properties of CCC coated with abovementioned ALD thin films were performed by employing low speed pure sliding tribometer and a high speed/frequency reciprocating rig to simulate the fretting wear behavior at ambient temperature and elevated temperatures of 400°C. It was determined with x-ray tomography imaging and EDS mapping that ALD ZnO/Al2O3/ZrO2 nanolaminates and baseline ZrO2 coatings exhibited excellent conformality and pore-filling capabilities down to ˜100 microm and 1.5 mm in the porous CCC and graphite foam, respectively, which were dependent on the exposure time of the ALD precursors. XRD and HRTEM determined the crystalline phases of {0002} textured ZnO (wurtzite), amorphous Al2O3, and {101}-tetragonal ZrO2. Significant improvements up to ˜65% in the sliding and fretting wear factors were determined for the nanolaminates in comparison to the uncoated CCC. A tribochemical sliding-induced mechanically mixed layer (MML) was found to be responsible for these improvements

  4. Evolution of the atomic order and valence state of rare-earth atoms and uranium in a new carbon-metal composite—diphthalocyanine pyrolysate C64H32N16 Me ( Me = Y, La, Ce, Eu, and U)

    NASA Astrophysics Data System (ADS)

    Sovestnov, A. E.; Kapustin, V. K.; Tikhonov, V. I.; Fomin, E. V.; Chernenkov, Yu. P.

    2014-08-01

    The structure of a metal-carbon composite formed by the pyrolysis of diphthalocyanine of some rare-earth elements (Y, La, Ce, Eu) and uranium in the temperature range T ann = 800-1700°C has been investigated for the first time by the methods of X-ray diffraction analysis and X-ray line shift. It has been shown that, in the general case, the studied pyrolysates consist of three phases. One phase corresponds to the structure of graphite. The second phase corresponds to nitrides, carbides, and oxides of basic metal elements with a crystallite size ranging from 5 to 100 nm. The third phase is amorphous or consisting of crystallites with a size of ˜1 nm. It has been found that all the basic elements (Y, La, Ce, Eu, U) and incorporated iodine atoms in the third phase are in a chemically bound state. The previously unobserved electronic configurations have been revealed for europium. The possibility of including not only atoms of elements forming diphthalocyanine but also other elements (for example, iodine) in the composite structure is of interest, in particular, for the creation of a thermally, chemically, and radiation resistant metal-carbon matrix for the radioactive waste storage.

  5. Water- and Plant-Mediated Responses of Ecosystem Carbon Fluxes to Warming and Nitrogen Addition on the Songnen Grassland in Northeast China

    PubMed Central

    Jiang, Li; Guo, Rui; Zhu, Tingcheng; Niu, Xuedun; Guo, Jixun; Sun, Wei

    2012-01-01

    Background Understanding how grasslands are affected by a long-term increase in temperature is crucial to predict the future impact of global climate change on terrestrial ecosystems. Additionally, it is not clear how the effects of global warming on grassland productivity are going to be altered by increased N deposition and N addition. Methodology/Principal Findings In-situ canopy CO2 exchange rates were measured in a meadow steppe subjected to 4-year warming and nitrogen addition treatments. Warming treatment reduced net ecosystem CO2 exchange (NEE) and increased ecosystem respiration (ER); but had no significant impacts on gross ecosystem productivity (GEP). N addition increased NEE, ER and GEP. However, there were no significant interactions between N addition and warming. The variation of NEE during the four experimental years was correlated with soil water content, particularly during early spring, suggesting that water availability is a primary driver of carbon fluxes in the studied semi-arid grassland. Conclusion/Significance Ecosystem carbon fluxes in grassland ecosystems are sensitive to warming and N addition. In the studied water-limited grassland, both warming and N addition influence ecosystem carbon fluxes by affecting water availability, which is the primary driver in many arid and semiarid ecosystems. It remains unknown to what extent the long-term N addition would affect the turn-over of soil organic matter and the C sink size of this grassland. PMID:23028848

  6. Carbon doped PDMS: conductance stability over time and implications for additive manufacturing of stretchable electronics

    NASA Astrophysics Data System (ADS)

    Tavakoli, Mahmoud; Rocha, Rui; Osorio, Luis; Almeida, Miguel; de Almeida, Anibal; Ramachandran, Vivek; Tabatabai, Arya; Lu, Tong; Majidi, Carmel

    2017-03-01

    Carbon doped PDMS (cPDMS), has been used as a conductive polymer for stretchable electronics. Compared to liquid metals, cPDMS is low cost and is easier to process or to print with an additive manufacturing process. However, changes on the conductance of the carbon based conductive PDMS (cPDMS) were observed over time, in particular after integration of cPDMS and the insulating polymer. In this article we investigate the process parameters that lead to improved stability over conductance of the cPDMS over time. Slight modifications to the fabrication process parameters were conducted and changes on the conductance of the samples for each method were monitored. Results suggested that change of the conductance happens mostly after integration of a pre-polymer over a cured cPDMS, and not after integration of the cPDMS over a cured insulating polymer. We show that such changes can be eliminated by adjusting the integration priority between the conductive and insulating polymers, by selecting the right curing temperature, changing the concentration of the carbon particles and the thickness of the conductive traces, and when possible by changing the insulating polymer material. In this way, we obtained important conclusions regarding the effect of these parameters on the change of the conductance over time, that should be considered for additive manufacturing of soft electronics. Also, we show that these changes can be possibly due to the diffusion from PDMS into cPDMS.

  7. Effect of nitrogen plasma afterglow on the surface charge effect resulted during XPS surface analysis of amorphous carbon nitride thin films

    NASA Astrophysics Data System (ADS)

    Kayed, Kamal

    2018-06-01

    The aim of this paper is to investigate the relationship between the micro structure and the surface charge effect resulted during XPS surface analysis of amorphous carbon nitride thin films prepared by laser ablation method. The study results show that the charge effect coefficient (E) is not just a correction factor. We found that the changes in this coefficient value due to incorporation of nitrogen atoms into the carbon network are related to the spatial configurations of the sp2 bonded carbon atoms, order degree and sp2 clusters size. In addition, results show that the curve E vs. C(sp3)-N is a characteristic curve of the micro structure. This means that using this curve makes it easy to sorting the samples according to the micro structure (hexagonal rings or chains).

  8. CARd-3D: Carbon Distribution in 3D Structure Program for Globular Proteins

    PubMed Central

    Ekambaram, Rajasekaran; Kannaiyan, Akila; Marimuthu, Vijayasarathy; Swaminathan, Vinobha Chinnaiah; Renganathan, Senthil; Perumal, Ananda Gopu

    2014-01-01

    Spatial arrangement of carbon in protein structure is analyzed here. Particularly, the carbon fractions around individual atoms are compared. It is hoped that it follows the principle of 31.45% carbon around individual atoms. The results reveal that globular protein's atoms follow this principle. A comparative study on monomer versus dimer reveal that carbon is better distributed in dimeric form than in its monomeric form. Similar study on solid versus liquid structures reveals that the liquid (NMR) structure has better carbon distribution over the corresponding solid (X-Ray) structure. The carbon fraction distributions in fiber and toxin protein are compared. Fiber proteins follow the principle of carbon fraction distribution. At the same time it has another broad spectrum of carbon distribution than in globular proteins. The toxin protein follows an abnormal carbon fraction distribution. The carbon fraction distribution plays an important role in deciding the structure and shape of proteins. It is hoped to help in understanding the protein folding and function. PMID:24748753

  9. High voltage electrochemical double layer capacitors using conductive carbons as additives

    NASA Astrophysics Data System (ADS)

    Michael, M. S.; Prabaharan, S. R. S.

    We describe here an interesting approach towards electrochemical capacitors (ECCs) using graphite materials (as being used as conductive additives in rechargeable lithium-ion battery cathodes) in a Li + containing organic electrolyte. The important result is that we achieved a voltage window of >4 V, which is rather large, compared to the standard window of 2.5 V for ordinary electric double layer capacitors (DLCs). The capacitor performance was evaluated by cyclic voltammetry (CV) and galvanostatic charge/discharge techniques. From charge-discharge studies of the symmetrical device (for instance, SFG6 carbon electrode), a specific capacitance of up to 14.5 F/g was obtained at 16 mA/cm 2 current rate and at a low current rate (3 mA/cm 2), a higher value was obtained (63 F/g). The specific capacitance decreased about 25% after 1000 cycles compared to the initial discharge process. The performances of these graphites are discussed in the light of both double layer capacitance (DLC) and pseudocapacitance (battery-like behavior). The high capacitance obtained was not only derived from the current-transient capacitive behavior but is also attributed to pseudocapacitance associated with some kind of faradaic reaction, which could probably occur due to Li + intercalation/deintercalation reactions into graphitic layers of the carbons used. The ac impedance (electrochemical impedances spectroscopy, EIS) measurements were also carried out to evaluate the capacitor parameters such as equivalent series resistance (ESR) and frequency dependent capacitance ( Cfreq). Cyclic voltammetry measurements were also performed to evaluate the cycling behavior of the carbon electrodes and the non-rectangular shaped voltammograms revealed the non-zero time constant [ τ( RC)≠0] confirming that the current contains a transient as well as steady-state components.

  10. Carbon Nanotube/Conductive Additive/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Watson, Kent A.; Delozier, Donavon M.; Connell, John W.

    2003-01-01

    Thin film membranes of space environmentally stable polymeric materials possessing low color/solar absorptivity (alpha) are of interest for potential applications on Gossamer spacecraft. In addition to these properties, sufficient electrical conductivity is required in order to dissipate electrostatic charge (ESC) build-up brought about by the charged orbital environment. One approach to achieve sufficient electrical conductivity for ESC mitigation is the incorporation of single wall carbon nanotubes (SWNTs). However, when the SWNTs are dispersed throughout the polymer matrix, the nanocomposite films tend to be significantly darker than the pristine material resulting in a higher alpha. The incorporation of conductive additives in combination with a decreased loading level of SWNTs is one approach for improving alpha while retaining conductivity. Taken individually, the low loading level of conductive additives and SWNTs is insufficient in achieving the percolation level necessary for electrical conductivity. When added simultaneously to the film, conductivity is achieved through a synergistic effect. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  11. Absorption properties of carbon dioxide enhanced-oil-recovery additives. Final Technical report, 12 May 1987-31 August 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, J.T.; Holbrook, S.T.

    1990-01-01

    The selection of the optimum foaming agent (surfactant) for enhancing oil production by carbon dioxide flooding is based on foamability and adsorption. Measurement of adsorption on carbonate cores from New Mexico reservoirs showed large adsorption differences between three commercial, high-foaming surfactants. An ethoxylated alcohol structure was least adsorbed, 0.64 mg/cc pore volume; an ethoxylated alcohol sulfate was next, 0.74 mg/cc pore volume; the highest adsorbed was a glyceryl sulfonate, 2.30 mg/cc pore volume. Commercial application of the foaming additive involves injecting alternate slugs of surfactant solution and carbon dioxide. Surfactant concentration should be determined to allow for the adsorption above.

  12. Surface Roughness of Various Diamond-Like Carbon Films

    NASA Astrophysics Data System (ADS)

    Liu, Dongping; Liu, Yanhong; Chen, Baoxiang

    2006-11-01

    Atomic force microscopy is used to estimate and compare the surface morphology of hydrogenated and hydrogen-free diamond-like carbon (DLC) films. The films were prepared by using DC magnetron sputtering of a graphite target, pulsed cathodic carbon arcs, electron cyclotron resonance (ECR), plasma source ion implantation and dielectric barrier discharge (DBD). The difference in the surface structure is presented for each method of deposition. The influences of various discharge parameters on the film surface properties are discussed based upon the experimental results. The coalescence process via the diffusion of adsorbed carbon species is responsible for the formation of hydrogen-free DLC films with rough surfaces. The films with surface roughness at an atomic level can be deposited by energetic ion impacts in a highly ionized carbon plasma. The dangling bonds created by atomic hydrogen lead to the uniform growth of hydrocarbon species at the a-C:H film surfaces of the ECR or DBD plasmas.

  13. Atomic switches: atomic-movement-controlled nanodevices for new types of computing

    PubMed Central

    Hino, Takami; Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Nayak, Alpana; Ohno, Takeo; Aono, Masakazu

    2011-01-01

    Atomic switches are nanoionic devices that control the diffusion of metal cations and their reduction/oxidation processes in the switching operation to form/annihilate a metal atomic bridge, which is a conductive path between two electrodes in the on-state. In contrast to conventional semiconductor devices, atomic switches can provide a highly conductive channel even if their size is of nanometer order. In addition to their small size and low on-resistance, their nonvolatility has enabled the development of new types of programmable devices, which may achieve all the required functions on a single chip. Three-terminal atomic switches have also been developed, in which the formation and annihilation of a metal atomic bridge between a source electrode and a drain electrode are controlled by a third (gate) electrode. Three-terminal atomic switches are expected to enhance the development of new types of logic circuits, such as nonvolatile logic. The recent development of atomic switches that use a metal oxide as the ionic conductive material has enabled the integration of atomic switches with complementary metal-oxide-semiconductor (CMOS) devices, which will facilitate the commercialization of atomic switches. The novel characteristics of atomic switches, such as their learning and photosensing abilities, are also introduced in the latter part of this review. PMID:27877376

  14. Atomic Oxygen Treatment as a Method of Recovering Smoke Damaged Paintings

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.; Forkapa, Mark; Stueber, Thomas; Sechkar, Edward; Malinowski, Kevin

    1998-01-01

    Smoke damage, as a result of a fire, can be difficult to remove from some types of painting media without causing swelling, leaching or pigment movement or removal. A non-contact technique has been developed which can remove soot from the surface of a painting by use of a gently flowing gas containing atomic oxygen. The atomic oxygen chemically reacts with the soot on the surface creating gasses such as carbon monoxide and carbon dioxide which can be removed through the use of an exhaust system. The reaction is limited to the surface so that the process can be timed to stop when the paint layer is reached. Atomic oxygen is a primary component of the low Earth orbital environment, but can be generated on Earth through various methods. This paper will discuss the results of atomic oxygen treatment of soot exposed acrylic gesso, ink on paper, and a varnished oil painting. Reflectance measurements were used to characterize the surfaces before and after treatment.

  15. Changes in soil carbon and nutrients following 6 years of litter removal and addition in a tropical semi-evergreen rain forest

    NASA Astrophysics Data System (ADS)

    Tanner, Edmund Vincent John; Sheldrake, Merlin W. A.; Turner, Benjamin L.

    2016-11-01

    Increasing atmospheric CO2 and temperature may increase forest productivity, including litterfall, but the consequences for soil organic matter remain poorly understood. To address this, we measured soil carbon and nutrient concentrations at nine depths to 2 m after 6 years of continuous litter removal and litter addition in a semi-evergreen rain forest in Panama. Soils in litter addition plots, compared to litter removal plots, had higher pH and contained greater concentrations of KCl-extractable nitrate (both to 30 cm); Mehlich-III extractable phosphorus and total carbon (both to 20 cm); total nitrogen (to 15 cm); Mehlich-III calcium (to 10 cm); and Mehlich-III magnesium and lower bulk density (both to 5 cm). In contrast, litter manipulation did not affect ammonium, manganese, potassium or zinc, and soils deeper than 30 cm did not differ for any nutrient. Comparison with previous analyses in the experiment indicates that the effect of litter manipulation on nutrient concentrations and the depth to which the effects are significant are increasing with time. To allow for changes in bulk density in calculation of changes in carbon stocks, we standardized total carbon and nitrogen on the basis of a constant mineral mass. For 200 kg m-2 of mineral soil (approximately the upper 20 cm of the profile) about 0.5 kg C m-2 was "missing" from the litter removal plots, with a similar amount accumulated in the litter addition plots. There was an additional 0.4 kg C m-2 extra in the litter standing crop of the litter addition plots compared to the control. This increase in carbon in surface soil and the litter standing crop can be interpreted as a potential partial mitigation of the effects of increasing CO2 concentrations in the atmosphere.

  16. Molecules Without Atoms

    NASA Astrophysics Data System (ADS)

    Ruth, Anthony; Collins, Laura; Gomes, Kenjiro; Janko, Boldizsar

    We present a real-space representation of molecules which results in the normal bonding rules and electronic structure of chemistry without atom-centered coulomb potentials. Using a simple mapping, we can generate atomless molecules from the structure of real molecules. Additionally, molecules without atoms show similar covalent bonding energies and transfer of charge in ionic bonds as real molecules. The atomless molecules contain only the valence and conduction electronic structure of the real molecule. Using the framework of the Atoms in Molecules (AIM) theory of Bader, we prove that the topological features of the valence charge distribution of molecules without atoms are identical to that of real molecules. In particular, the charge basins of atomless molecules show identical location and quantities of representative charge. We compare the accuracy, computational cost, and intuition gained from electronic structure calculations of molecules without atoms with the use of pseudopotentials to represent atomic cores in density functional theory. A. R. acknowledges support from a NASA Space Technology Research Fellowship.

  17. Spectroscopy and formation of lanthanum-hydrocarbon radicals formed by association and carbon-carbon bond cleavage of isoprene

    NASA Astrophysics Data System (ADS)

    Cao, Wenjin; Hewage, Dilrukshi; Yang, Dong-Sheng

    2018-05-01

    La atom reaction with isoprene is carried out in a laser-vaporization molecular beam source. The reaction yields an adduct as the major product and C—C cleaved and dehydrogenated species as the minor ones. La(C5H8), La(C2H2), and La(C3H4) are characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectra of all three species exhibit a strong origin band and several weak vibronic bands corresponding to La-ligand stretch and ligand-based bend excitations. La(C5H8) is a five-membered metallacycle, whereas La(C2H2) and La(C3H4) are three-membered rings. All three metallacycles prefer a doublet ground state with a La 6s1-based valence electron configuration and a singlet ion. The five-membered metallacycle is formed through La addition and isoprene isomerization, whereas the two three-membered rings are produced by La addition and insertion, hydrogen migration, and carbon-carbon bond cleavage.

  18. Technical note: Relating functional group measurements to carbon types for improved model-measurement comparisons of organic aerosol composition

    NASA Astrophysics Data System (ADS)

    Takahama, Satoshi; Ruggeri, Giulia

    2017-04-01

    Functional group (FG) analysis provides a means by which functionalization in organic aerosol can be attributed to the abundances of its underlying molecular structures. However, performing this attribution requires additional, unobserved details about the molecular mixture to provide constraints in the estimation process. We present an approach for conceptualizing FG measurements of organic aerosol in terms of its functionalized carbon atoms. This reformulation facilitates estimation of mass recovery and biases in popular carbon-centric metrics that describe the extent of functionalization (such as oxygen to carbon ratio, organic mass to organic carbon mass ratio, and mean carbon oxidation state) for any given set of molecules and FGs analyzed. Furthermore, this approach allows development of parameterizations to more precisely estimate the organic carbon content from measured FG abundance. We use simulated photooxidation products of α-pinene secondary organic aerosol previously reported by Ruggeri et al. (2016) and FG measurements by Fourier transform infrared (FT-IR) spectroscopy in chamber experiments by Sax et al. (2005) to infer the relationships among molecular composition, FG composition, and metrics of organic aerosol functionalization. We find that for this simulated system, ˜ 80 % of the carbon atoms should be detected by FGs for which calibration models are commonly developed, and ˜ 7 % of the carbon atoms are undetectable by FT-IR analysis because they are not associated with vibrational modes in the infrared. Estimated biases due to undetected carbon fraction for these simulations are used to make adjustments in these carbon-centric metrics such that model-measurement differences are framed in terms of unmeasured heteroatoms (e.g., in hydroperoxide and nitrate groups for the case studied in this demonstration). The formality of this method provides framework for extending FG analysis to not only model-measurement but also instrument

  19. Matrix modification with silver for the electrothermal atomization of arsenic and selenium

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1981-01-01

    Silver as a matrix modifier is shown to improve the carbon-rod atomization of both arsenic and selenium for atomic absorption spectrometry. Compared to nickel, the efficiency of silver is greater for arsenic and about the same for selenium. Silver fulfils two functions in its reaction, namely stabilization during the ashing stage and enhancement of absorbance in the final atomization. ?? 1981.

  20. A voltammetric determination of caffeic acid in red wines based on the nitrogen doped carbon modified glassy carbon electrode.

    PubMed

    Karikalan, Natarajan; Karthik, Raj; Chen, Shen-Ming; Chen, Hsi-An

    2017-04-05

    We reported an electrochemical determination of caffeic acid (CA) based on the nitrogen doped carbon (NDC). The described sensor material was prepared by the flame synthesis method, which gave an excellent platform for the synthesis of carbon nanomaterials with the hetero atom dopant. The synthesized material was confirmed by various physical characterizations and it was further characterized by different electrochemical experiments. The NDC modified glassy carbon electrode (NDC/GCE) shows the superior electrocatalytic performance towards the determination of CA with the wide linear concentration range from 0.01 to 350 μM. It achieves the lowest detection limit of 0.0024 μM and the limit of quantification of 0.004 μM. The NDC/GCE-CA sensor reveals the good selectivity, stability, sensitivity and reproducibility which endorsed that the NDC is promising electrode for the determination of CA. In addition, NDC modified electrode is applied to the determination of CA in red wines and acquired good results.

  1. Use of Atomic Fuels for Rocket-Powered Launch Vehicles Analyzed

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1999-01-01

    At the NASA Lewis Research Center, the launch vehicle gross lift-off weight (GLOW) was analyzed for solid particle feed systems that use high-energy density atomic propellants (ref. 1). The analyses covered several propellant combinations, including atoms of aluminum, boron, carbon, and hydrogen stored in a solid cryogenic particle, with a cryogenic liquid as the carrier fluid. Several different weight percents for the liquid carrier were investigated, and the GLOW values of vehicles using the solid particle feed systems were compared with that of a conventional oxygen/hydrogen (O2/H2) propellant vehicle. Atomic propellants, such as boron, carbon, and hydrogen, have an enormous potential for high specific impulse Isp operation, and their pursuit has been a topic of great interest for decades. Recent and continuing advances in the understanding of matter, the development of new technologies for simulating matter at its most basic level, and manipulations of matter through microtechnology and nanotechnology will no doubt create a bright future for atomic propellants and an exciting one for the researchers exploring this technology.

  2. Capturing Gases in Carbon Honeycomb

    NASA Astrophysics Data System (ADS)

    Krainyukova, Nina V.

    2017-04-01

    In our recent paper (Krainyukova and Zubarev in Phys Rev Lett 116:055501, 2016. doi: 10.1103/PhysRevLett.116.055501) we reported the observation of an exceptionally stable honeycomb carbon allotrope obtained by deposition of vacuum-sublimated graphite. A family of structures can be built from absolutely dominant {sp}2-bonded carbon atoms, and may be considered as three-dimensional graphene. Such structures demonstrate high absorption capacity for gases and liquids. In this work we show that the formation of honeycomb structures is highly sensitive to the carbon evaporation temperature and deposition rates. Both parameters are controlled by the electric current flowing through thin carbon rods. Two distinctly different regimes were found. At lower electric currents almost pure honeycomb structures form owing to sublimation. At higher currents the surface-to-bulk rod melting is observed. In the latter case densification of the carbon structures and a large contribution of glassy graphite emerge. The experimental diffraction patterns from honeycomb structures filled with absorbed gases and analyzed by the advanced method are consistent with the proposed models for composites which are different for Ar, Kr and Xe atoms in carbon matrices.

  3. Quantitative assessment of carbon allocation anomalies in low temperature bainite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rementeria, Rosalia

    Low temperature bainite is a mixture of ferrite and austenite with a high dislocation density and nanoscale precipitates produced by isothermal transformation of the austenite in high-carbon high-silicon steels. The mass balance for carbon is systematically unsuitable when considering only ferrite and austenite forming the structure, but no attempt has been made to evaluate the amount of carbon located at linear defects and precipitates. Additionally, bainitic ferrite has been recently shown to have a tetragonal crystal structure, allowing greater amounts of carbon in solid solution than those expected by the paraequilibrium phase boundaries. In order to quantify the contribution ofmore » all the carbon sinks, we have followed the evolution of carbon in ferrite and austenite, along with the precipitation of cementite and η–carbide, during the isothermal bainitic transformation at 220 and 250 °C by means of in-situ synchrotron high energy X-ray diffraction and complementary transmission electron microscopy (TEM) and atom probe tomography (APT) analyses. Furthermore, this is the first time that the mass balance for carbon is successfully achieved by considering all the transformation products together with an estimation of the carbon segregated to linear defects.« less

  4. Quantitative assessment of carbon allocation anomalies in low temperature bainite

    DOE PAGES

    Rementeria, Rosalia

    2017-05-24

    Low temperature bainite is a mixture of ferrite and austenite with a high dislocation density and nanoscale precipitates produced by isothermal transformation of the austenite in high-carbon high-silicon steels. The mass balance for carbon is systematically unsuitable when considering only ferrite and austenite forming the structure, but no attempt has been made to evaluate the amount of carbon located at linear defects and precipitates. Additionally, bainitic ferrite has been recently shown to have a tetragonal crystal structure, allowing greater amounts of carbon in solid solution than those expected by the paraequilibrium phase boundaries. In order to quantify the contribution ofmore » all the carbon sinks, we have followed the evolution of carbon in ferrite and austenite, along with the precipitation of cementite and η–carbide, during the isothermal bainitic transformation at 220 and 250 °C by means of in-situ synchrotron high energy X-ray diffraction and complementary transmission electron microscopy (TEM) and atom probe tomography (APT) analyses. Furthermore, this is the first time that the mass balance for carbon is successfully achieved by considering all the transformation products together with an estimation of the carbon segregated to linear defects.« less

  5. Massive carbon addition to an organic-rich Andosol increased the subsoil but not the topsoil carbon stock

    NASA Astrophysics Data System (ADS)

    Zieger, Antonia; Kaiser, Klaus; Ríos Guayasamín, Pedro; Kaupenjohann, Martin

    2018-05-01

    Andosols are among the most carbon-rich soils, with an average of 254 Mg ha-1 organic carbon (OC) in the upper 100 cm. A current theory proposes an upper limit for OC stocks independent of increasing carbon input, because of finite binding capacities of the soil mineral phase. We tested the possible limits in OC stocks for Andosols with already large OC concentrations and stocks (212 g kg-1 in the first horizon, 301 Mg ha-1 in the upper 100 cm). The soils received large inputs of 1800 Mg OC ha-1 as sawdust within a time period of 20 years. Adjacent soils without sawdust application served as controls. We determined total OC stocks as well as the storage forms of organic matter (OM) of five horizons down to 100 cm depth. Storage forms considered were pyrogenic carbon, OM of < 1.6 g cm-3 density and with little to no interaction with the mineral phase, and strongly mineral-bonded OM forming particles of densities between 1.6 and 2.0 g cm-3 or > 2.0 g cm-3. The two fractions > 1.6 g cm-3 were also analysed for aluminium-organic matter complexes (Al-OM complexes) and imogolite-type phases using ammonium-oxalate-oxalic-acid extraction and X-ray diffraction (XRD). Pyrogenic organic carbon represented only up to 5 wt % of OC, and thus contributed little to soil OM. In the two topsoil horizons, the fraction between 1.6 and 2.0 g cm-3 had 65-86 wt % of bulk soil OC and was dominated by Al-OM complexes. In deeper horizons, the fraction > 2.0 g cm-3 contained 80-97 wt % of the bulk soil's total OC and was characterized by a mixture of Al-OM complexes and imogolite-type phases, with proportions of imogolite-type phases increasing with depth. In response to the sawdust application, only the OC stock at 25-50 cm depth increased significantly (α = 0.05, 1 - β = 0.8). The increase was entirely due to increased OC in the two fractions > 1.6 g cm-3. However, there was no significant increase in the total OC stocks within the upper 100 cm. The results suggest that long-term large

  6. Influence of oxygen on growth of carbon thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Prabhat; Gupta, Mukul; Phase, D. M.; Stahn, Jochen

    2018-04-01

    In this work we studied the influence of oxygen gas on growth of carbon thin films in a magnetron sputtering process. X-ray absorption spectroscopy (XAS), x-ray and neutron reflectivity techniques were used to probe carbon thin films deposited with and without oxygen at room temperature. XAS in particularly x-ray absorption near edge spectroscopy (XANES) is powerful technique to identify the nature of hybridization of carbon atoms with other elements. In a XANES pattern, presence of C=O and C-O bonds is generally observed in spite of the fact that oxygen has not been deliberately included in the growth process. In order to confirm the presence of such features, we introduced a small amount of oxygen at 1% during the growth of carbon thin films. Though such additions do not affect the number density as observed by x-ray and neutron reflectivity, they severally affect the C K-edge spectra as evidenced by an enhancement in carbon-oxygen hybridization. Observed results are helpful in analyzing the C K-edge spectra more confidently.

  7. [Responses of soil organic carbon and its labile fractions to nitrogen and phosphorus additions in Cunninghamia lanceolata plantations in subtropical China.

    PubMed

    Zhang, Xiu Lan; Wang, Fang Chao; Fang, Xiang Min; He, Ping; Zhang, Yu Fei; Chen, Fu Sheng; Wang, Hui Min

    2017-02-01

    A series of nitrogen (N) and phosphorus (P) addition experiments using treatments of N 0 (0 kg N·hm -2 ·a -1 ), N 1 (50 kg N·hm -2 ·a -1 ), N 2 (100 kg N·hm -2 ·a -1 ), P (50 kg P·hm -2 ·a -1 ), N 1 P and N 2 P were conducted at Cunninghamia lanceolata plantations in subtropical China. The responses of soil organic carbon (SOC), particulate organic carbon (POC) and water-soluble organic carbon (WSOC) to the nutrient addition treatments after 3 years were determined. The results showed that N and P additions had no significant effects on SOC concentration in 0-20 cm soil layer, while P addition significantly decreased soil POC content in 0-5 cm soil layer by 26.1%. The responses of WSOC to N and P addition were mainly found in 0-5 cm soil layer, and low level N and P addition significantly increased the WSOC content in 0-5 cm soil layer. Nitrogen addition had no significant effect on POC/SOC, while the POC/SOC significantly decreased by 15.9% in response to P addition in 0-5 cm soil layer. In 5-10 cm and 10-20 cm soil layers, POC/SOC was not significantly altered in N and P addition treatments. Therefore, the forest soil C stability was mainly controlled by P content in subtropical areas. P addition was liable to cause the decomposition of surface soil active organic C and increased the soil C stability in the short term treatment.

  8. Four- and eight-membered rings carbon nanotubes: A new class of carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Li, Fangfang; Lu, Junzhe; Zhu, Hengjiang; Lin, Xiang

    2018-06-01

    A new class of carbon nanomaterials composed of alternating four- and eight-membered rings is studied by density functional theory (DFT), including single-walled carbon nanotubes (SWCNTs) double-walled carbon nanotubes (DWCNTs) and triple-walled CNTs (TWCNTs). The analysis of geometrical structure shows that carbon atoms' hybridization in novel carbon tubular clusters (CTCs) and the corresponding carbon nanotubes (CNTs) are both sp2 hybridization; The thermal properties exhibit the high stability of these new CTCs. The results of energy band and density of state (DOS) indicate that the electronic properties of CNTs are independent of their diameter, number of walls and chirality, exhibit obvious metal properties.

  9. Shock-tube measurements of carbon to oxygen atom ratios for incipient soot formation with C2H2, C2H4 and C2H6 fuels

    NASA Technical Reports Server (NTRS)

    Radcliffe, S. W.; Appleton, J. P.

    1971-01-01

    The critical atomic carbon to oxygen ratios, Phi sub C, for incipient soot formation in shock heated acetylene, ethylene, ethane/oxygen/ argon mixtures was measured over the temperature range 2000 K to 2500 K for reactant partial pressures between 0.1 and 0.4 atoms. Absorption of light from a He-Ne laser at 6328A was was used to detect soot. It was observed that the values of Phi sub C for all three fuels increased uniformly with temperature such that at the highest temperatures Phi sub C was considerably greater than unity, i.e. greater than the value of about unity at which solid carbon should have been precipitated on a thermochemical equilibrium basis. Observations were made over periods extending up to about one millisecond, which was well in excess of the time required for the major heat release of the combustion reactions. The relevance of these experimental findings to the problem of soot formation in gas turbine combustion chambers is discussed.

  10. Carbon Fibers Conductivity Studies

    NASA Technical Reports Server (NTRS)

    Yang, C. Y.; Butkus, A. M.

    1980-01-01

    In an attempt to understand the process of electrical conduction in polyacrylonitrile (PAN)-based carbon fibers, calculations were carried out on cluster models of the fiber consisting of carbon, nitrogen, and hydrogen atoms using the modified intermediate neglect of differential overlap (MINDO) molecular orbital (MO) method. The models were developed based on the assumption that PAN carbon fibers obtained with heat treatment temperatures (HTT) below 1000 C retain nitrogen in a graphite-like lattice. For clusters modeling an edge nitrogen site, analysis of the occupied MO's indicated an electron distribution similar to that of graphite. A similar analysis for the somewhat less stable interior nitrogen site revealed a partially localized II electron distribution around the nitrogen atom. The differences in bonding trends and structural stability between edge and interior nitrogen clusters led to a two-step process proposed for nitrogen evolution with increasing HTT.

  11. Atomic layer deposition of ruthenium on plasma-treated vertically aligned carbon nanotubes for high-performance ultracapacitors.

    PubMed

    Kim, Jun Woo; Kim, Byungwoo; Park, Suk Won; Kim, Woong; Shim, Joon Hyung

    2014-10-31

    It is challenging to realize a conformal metal coating by atomic layer deposition (ALD) because of the high surface energy of metals. In this study, ALD of ruthenium (Ru) on vertically aligned carbon nanotubes (CNTs) was carried out. To activate the surface of CNTs that lack surface functional groups essential for ALD, oxygen plasma was applied ex situ before ALD. X-ray photoelectron spectroscopy and Raman spectroscopy confirmed surface activation of CNTs by the plasma pretreatment. Transmission electron microscopy analysis with energy-dispersive x-ray spectroscopy composition mapping showed that ALD Ru grew conformally along CNTs walls. ALD Ru/CNTs were electrochemically oxidized to ruthenium oxide (RuOx) that can be a potentially useful candidate for use in the electrodes of ultracapacitors. Electrode performance of RuOx/CNTs was evaluated using cyclic voltammetry and galvanostatic charge-discharge measurements.

  12. Integrating Carbon Nanotubes For Atomic Force Microscopy Imaging Applications

    NASA Technical Reports Server (NTRS)

    Ye, Qi; Cassell, Alan M.; Liu, Hongbing; Han, Jie; Meyyappan, Meyya

    2004-01-01

    Carbon nanotube (CNT) related nanostructures possess remarkable electrical, mechanical, and thermal properties. To produce these nanostructures for real world applications, a large-scale controlled growth of carbon nanotubes is crucial for the integration and fabrication of nanodevices and nanosensors. We have taken the approach of integrating nanopatterning and nanomaterials synthesis with traditional silicon micro fabrication techniques. This integration requires a catalyst or nanomaterial protection scheme. In this paper, we report our recent work on fabricating wafer-scale carbon nanotube AFM cantilever probe tips. We will address the design and fabrication considerations in detail, and present the preliminary scanning probe test results. This work may serve as an example of rational design, fabrication, and integration of nanomaterials for advanced nanodevice and nanosensor applications.

  13. Charcoal addition to soils in NE England: a carbon sink with environmental co-benefits?

    PubMed

    Bell, M J; Worrall, F

    2011-04-01

    Interest in the application of biochar (charcoal produced during the pyrolysis of biomass) to agricultural land is increasing across the world, recognised as a potential way to capture and store atmospheric carbon. Its interest is heightened by its potential co-benefits for soil quality and fertility. The majority of research has however been undertaken in tropical rather than temperate regions. This study assessed the potential for lump-wood charcoal addition (as a substitute for biochar) to soil types which are typically under arable and forest land-use in North East England. The study was undertaken over a 28 week period and found: i) No significant difference in net ecosystem respiration (NER) between soils containing charcoal and those without, other than in week 1 of the trial. ii) A significantly higher dissolved organic carbon (DOC) flux from soils containing large amounts of charcoal than from those untreated, when planted with ryegrass. iii) That when increased respiration or DOC loss did occur, neither was sufficiently large to alter the carbon sink benefits of charcoal application. iv) That charcoal incorporation resulted in a significantly lower nitrate flux in soil leachate from mineral soils. v) That charcoal incorporation caused significant increases in soil pH, from 6.98 to 7.22 on bare arable soils when 87,500 kg charcoal/ha was applied. Consideration of both the carbon sink and environmental benefits observed here suggests that charcoal application to temperate soils typical of North East England should be considered as a method of carbon sequestration. Before large scale land application is encouraged, further large scale trials should be undertaken to confirm the positive results of this research. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Improved Process for Fabricating Carbon Nanotube Probes

    NASA Technical Reports Server (NTRS)

    Stevens, R.; Nguyen, C.; Cassell, A.; Delzeit, L.; Meyyappan, M.; Han, Jie

    2003-01-01

    An improved process has been developed for the efficient fabrication of carbon nanotube probes for use in atomic-force microscopes (AFMs) and nanomanipulators. Relative to prior nanotube tip production processes, this process offers advantages in alignment of the nanotube on the cantilever and stability of the nanotube's attachment. A procedure has also been developed at Ames that effectively sharpens the multiwalled nanotube, which improves the resolution of the multiwalled nanotube probes and, combined with the greater stability of multiwalled nanotube probes, increases the effective resolution of these probes, making them comparable in resolution to single-walled carbon nanotube probes. The robust attachment derived from this improved fabrication method and the natural strength and resiliency of the nanotube itself produces an AFM probe with an extremely long imaging lifetime. In a longevity test, a nanotube tip imaged a silicon nitride surface for 15 hours without measurable loss of resolution. In contrast, the resolution of conventional silicon probes noticeably begins to degrade within minutes. These carbon nanotube probes have many possible applications in the semiconductor industry, particularly as devices are approaching the nanometer scale and new atomic layer deposition techniques necessitate a higher resolution characterization technique. Previously at Ames, the use of nanotube probes has been demonstrated for imaging photoresist patterns with high aspect ratio. In addition, these tips have been used to analyze Mars simulant dust grains, extremophile protein crystals, and DNA structure.

  15. Performance-Enhanced Activated Carbon Electrodes for Supercapacitors Combining Both Graphene-Modified Current Collectors and Graphene Conductive Additive

    PubMed Central

    Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei

    2018-01-01

    Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors. PMID:29762528

  16. Performance-Enhanced Activated Carbon Electrodes for Supercapacitors Combining Both Graphene-Modified Current Collectors and Graphene Conductive Additive.

    PubMed

    Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei

    2018-05-15

    Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors.

  17. Low-temperature field ion microscopy of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ksenofontov, V. A.; Gurin, V. A.; Gurin, I. V.; Kolosenko, V. V.; Mikhailovskij, I. M.; Sadanov, E. V.; Mazilova, T. I.; Velikodnaya, O. A.

    2007-10-01

    The methods of high-resolution field ion microscopy with sample cooling to liquid helium temperature are used in a study of the products of gas-phase catalytic pyrolysis of hydrocarbons in the form of graphitized fibers containing carbon nanotubes. Full atomic resolution of the end cap of closed carbon nanotubes is achieved for the first time. It is found that the atomic structure of the tops of the caps of subnanometer carbon tubes consists predominantly of hexagonal rings. A possible reason for the improvement of the resolution of field ion images of nanotubes upon deep cooling is discussed.

  18. Down-to-earth studies of carbon clusters

    NASA Technical Reports Server (NTRS)

    Smalley, R. E.

    1990-01-01

    Recent advances in supersonic beam experiments with laser-vaporization sources of clusters have provided some interesting new insights into the nature of the small clusters of carbon, and the processes through which carbon condenses. One cluster in particular, C(sub 60), appears to play a central role. It is argued that this cluster takes the shape of a soccerball: a hollow sphere composed of a shell of 60 carbon atoms connected by a lattice of hexagonal and pentagonal rings, in a pattern of overall icosahedral symmetry. Although C(sub 60) appears to be uniquely stable due to its perfect symmetry, all other even-numbered carbon clusters in the 32 to 100+ atom size range seem to favor similar closed spheroidal forms. These species are interpreted as relatively unreactive side products in condensation reactions of carbon vapor involving spiraling graphitic sheets. The prevalence of C(sub 60) in laser-vaporized carbon vapors and sooting flames suggests that it may be formed readily whenever carbon condenses. Such ready formation and extraordinary stability may have substantial astrophysical implications.

  19. Down-to-earth studies of carbon clusters

    NASA Astrophysics Data System (ADS)

    Smalley, R. E.

    1990-04-01

    Recent advances in supersonic beam experiments with laser-vaporization sources of clusters have provided some interesting new insights into the nature of the small clusters of carbon, and the processes through which carbon condenses. One cluster in particular, C60, appears to play a central role. It is argued that this cluster takes the shape of a soccer ball: a hollow sphere composed of a shell of 60 carbon atoms connected by a lattice of hexagonal and pentagonal rings, in a pattern of overall icosahedral symmetry. Although C60 appears to be uniquely stable due to its perfect symmetry, all other even-numbered carbon clusters in the 32 to 100+ atom size range seem to favor similar closed spheroidal forms. These species are interpreted as relatively unreactive side products in condensation reactions of carbon vapor involving spiraling graphitic sheets. The prevalence of C60 in laser-vaporized carbon vapors and sooting flames suggests that it may be formed readily whenever carbon condenses. Such ready formation and extraordinary stability may have substantial astrophysical implications.

  20. EVALUATION OF CARBON BLACK SLURRIES AS CLEAN BURNING FUELS

    EPA Science Inventory

    Experiments were performed to examine the pumpability, atomization and combustion characteristics of slurries made of mixtures of carbon black with No. 2 fuel oil and methanol. Carbon black-No. 2 fuel oil and carbon black-methanol slurries, with carbon black contents of up to 50 ...

  1. Picoampere Resistive Switching Characteristics Realized with Vertically Contacted Carbon Nanotube Atomic Force Microscope Probe

    NASA Astrophysics Data System (ADS)

    Nakano, Haruhisa; Takahashi, Makoto; Sato, Motonobu; Kotsugi, Masato; Ohkochi, Takuo; Muro, Takayuki; Nihei, Mizuhisa; Yokoyama, Naoki

    2013-11-01

    The resistive switching characteristics of a TiO2/Ti structure have been investigated using a conductive atomic force microscopy (AFM) system with 5-nm-diameter carbon nanotube (CNT) probes. The resistive switching showed bipolar resistive random access memory (ReRAM) behaviors with extremely low switching currents in the order of Picoamperes when voltages were applied. From transmission electron microscopy (TEM) observation, we confirmed that filament-like nanocrystals, having a diameter of about 10 nm, existed in TiO2 films at resistive switching areas after not only set operation but also reset operation. Moreover, photoemission electron microscopy (PEEM) analysis showed that the anatase-type TiO2 structure did not change after set and reset operations. From these results, we suggested that the Picoampere resistive switching occurred at the interface between the TiO2 dielectric and conductive nanocrystal without any structural changes in the TiO2 film and nanocrystal. The resistive switching mechanism we suggested is highly promising to realize extremely low-power-consumption ReRAMs with vertically contacted CNT electrodes.

  2. Line splitting and modified atomic decay of atoms coupled with N quantized cavity modes

    NASA Astrophysics Data System (ADS)

    Zhu, Yifu

    1992-05-01

    We study the interaction of a two-level atom with N non-degenerate quantized cavity modes including dissipations from atomic decay and cavity damps. In the strong coupling regime, the absorption or emission spectrum of weakly excited atom-cavity system possesses N + 1 spectral peaks whose linewidths are the weighted averages of atomic and cavity linewidths. The coupled system shows subnatural (supernatural) atomic decay behavior if the photon loss rates from the N cavity modes are smaller (larger) than the atomic decay rate. If N cavity modes are degenerate, they can be treated effectively as a single mode. In addition, we present numerical calculations for N = 2 to characterize the system evolution from the weak coupling to strong coupling limits.

  3. The effects of amine/nitro/hydroxyl groups on the benzene rings of redox additives on the electrochemical performance of carbon-based supercapacitors.

    PubMed

    Huang, Xuan; Wang, Qian; Chen, Xiang Ying; Zhang, Zhong Jie

    2016-04-21

    In this work, a series of porous carbon materials with hierarchical porosities have been synthesized via a template carbonization method, in which cheap CaCO3 serves as a template and glucose as a carbon precursor. During the carbonization process, CO2 produced by the decomposition of the CaCO3 template can act as an internal activating agent, significantly improving microporosity and mesoporosity. All the carbon materials obtained by regulating the ratio of glucose to CaCO3 exhibit the amorphous features with a low graphitization degree. Among them, the carbon-1 : 2 sample shows a high BET surface area of up to 818.5 m(2) g(-1) and a large total pore volume of 1.78 cm(3) g(-1) as well as a specific capacitance of 107.0 F g(-1) at 1 A g(-1). In addition, a series of hydroquinone (HQ), p-aminophenol (PAP) and p-nitrophenol (PNP) as novel redox additives that can produce pseudo-capacitances have been added into the KOH electrolyte for promoting the total capacitive performances via redox reactions at the electrode-electrolyte interface. As expected, a 2.5-fold increase in the galvanostatic capacitance of 240.0 F g(-1) in the HQ-0.5 electrolyte occurs, compared with the conventional KOH electrolyte. Similarly, the PAP-0.5 electrolyte and the PNP-0.5 electrolyte also show a high specific capacitance of 184.0 F g(-1) at 2 A g(-1) (156.6 F g(-1) at 3 A g(-1)) and 153.0 F g(-1) at 3 A g(-1), respectively. Additionally, the three kinds of electrolytes exhibit excellent cyclic stability. The remarkable improvement of supercapacitors is attributed to the quick reversible Faradaic reactions of amine and hydroxyl groups adhering to the phenyl rings, which largely accelerates electron migration and brings additional pseudocapacitive contribution for carbon-based supercapacitors.

  4. Soil Microbial Community Responses to Additions of Organic Carbon Substrates and Heavy Metals (Pb and Cr)

    PubMed Central

    Nakatsu, Cindy H.; Carmosini, Nadia; Baldwin, Brett; Beasley, Federico; Kourtev, Peter; Konopka, Allan

    2005-01-01

    Microcosm experiments were conducted with soils contaminated with heavy metals (Pb and Cr) and aromatic hydrocarbons to determine the effects of each upon microbial community structure and function. Organic substrates were added as a driving force for change in the microbial community. Glucose represented an energy source used by a broad variety of bacteria, whereas fewer soil species were expected to use xylene. The metal amendments were chosen to inhibit the acute rate of organic mineralization by either 50% or 90%, and lower mineralization rates persisted over the entire 31-day incubation period. Significant biomass increases were abolished when metals were added in addition to organic carbon. The addition of organic carbon alone had the most significant impact on community composition and led to the proliferation of a few dominant phylotypes, as detected by PCR-denaturing gradient gel electrophoresis of bacterial 16S rRNA genes. However, the community-wide effects of heavy metal addition differed between the two carbon sources. For glucose, either Pb or Cr produced large changes and replacement with new phylotypes. In contrast, many phylotypes selected by xylene treatment were retained when either metal was added. Members of the Actinomycetales were very prevalent in microcosms with xylene and Cr(VI); gene copy numbers of biphenyl dioxygenase and phenol hydroxylase (but not other oxygenases) were elevated in these microcosms, as determined by real-time PCR. Much lower metal concentrations were needed to inhibit the catabolism of xylene than of glucose. Cr(VI) appeared to be reduced during the 31-day incubations, but in the case of glucose there was substantial microbial activity when much of the Cr(VI) remained. In the case of xylene, this was less clear. PMID:16332740

  5. Site-selective covalent functionalization at interior carbon atoms and on the rim of circumtrindene, a C36H12 open geodesic polyarene

    PubMed Central

    Cho, Hee Yeon; Ansems, Ronald B M

    2014-01-01

    Summary Circumtrindene (6, C36H12), one of the largest open geodesic polyarenes ever reported, exhibits fullerene-like reactivity at its interior carbon atoms, whereas its edge carbons react like those of planar polycyclic aromatic hydrocarbons (PAHs). The Bingel–Hirsch and Prato reactions – two traditional methods for fullerene functionalization – afford derivatives of circumtrindene with one of the interior 6:6 C=C bonds modified. On the other hand, functionalization on the rim of circumtrindene can be achieved by normal electrophilic aromatic substitution, the most common reaction of planar PAHs. This peripheral functionalization has been used to extend the π-system of the polyarene by subsequent coupling reactions and to probe the magnetic environment of the concave/convex space around the hydrocarbon bowl. For both classes of functionalization, computational results are reported to complement the experimental observations. PMID:24991245

  6. Determination of atomic positions from time resolved high resolution transmission electron microscopy images.

    PubMed

    Hussaini, Zahra; Lin, Pin Ann; Natarajan, Bharath; Zhu, Wenhui; Sharma, Renu

    2018-03-01

    For many reaction processes, such as catalysis, phase transformations, nanomaterial synthesis etc., nanoscale observations at high spatial (sub-nanometer) and temporal (millisecond) resolution are required to characterize and comprehend the underlying factors that favor one reaction over another. The combination of such spatial and temporal resolution (up to 600 µs), while rich in information, produces a large number of snapshots, each of which must be analyzed to obtain the structural (and thereby chemical) information. Here we present a methodology for automated quantitative measurement of real-time atomic position fluctuations in a nanoparticle. We leverage a combination of several image processing algorithms to precisely identify the positions of the atomic columns in each image. A geometric model is then used to measure the time-evolution of distances and angles between neighboring atomic columns to identify different phases and quantify local structural fluctuations. We apply this technique to determine the atomic-level fluctuations in the relative fractions of metal and metal-carbide phases in a cobalt catalyst nanoparticle during single-walled carbon nanotube (SWCNT) growth. These measurements provided a means to obtain the number of carbon atoms incorporated into and released from the catalyst particle, thereby helping resolve carbon reaction pathways during SWCNT growth. Further we demonstrate the use of this technique to measure the reaction kinetics of iron oxide reduction. Apart from reducing the data analysis time, the statistical approach allows us to measure atomic distances with sub-pixel resolution. We show that this method can be applied universally to measure atomic positions with a precision of 0.01 nm from any set of atomic-resolution video images. With the advent of high time-resolution direct detection cameras, we anticipate such methods will be essential in addressing the metrology problem of quantifying large datasets of time

  7. 3D hybrid carbon composed of multigraphene bridged by carbon chains

    NASA Astrophysics Data System (ADS)

    Liu, Lingyu; Hu, Meng; Liu, Chao; Shao, Cancan; Pan, Yilong; Ma, Mengdong; Wu, Yingju; Zhao, Zhisheng; Gao, Guoying; He, Julong

    2018-01-01

    The element carbon possesses various stable and metastable allotropes; some of them have been applied in diverse fields. The experimental evidences of both carbon chain and graphdiyne have been reported. Here, we reveal the mystery of an enchanting carbon allotrope with sp-, sp2-, and sp3-hybridized carbon atoms using a newly developed ab initio particle-swarm optimization algorithm for crystal structure prediction. This crystalline allotrope, namely m-C12, can be viewed as braided mesh architecture interwoven with multigraphene and carbon chains. The m-C12 meets the criteria for dynamic and mechanical stabilities and is energetically more stable than carbyne and graphdiyne. Analysis of the B/G and Poisson's ratio indicates that this allotrope is ductile. Notably, m-C12 is a superconducting carbon with Tc of 1.13 K, which is rare in the family of carbon allotropes.

  8. Addition of a thallium vertex to empty and centered nine-atom deltahedral zintl ions of germanium and tin.

    PubMed

    Rios, Daniel; Gillett-Kunnath, Miriam M; Taylor, Jacob D; Oliver, Allen G; Sevov, Slavi C

    2011-03-21

    Nickel atoms were inserted into nine-atom deltahedral Zintl ions of E(9)(4-) (E = Ge, Sn) via reactions with Ni(cod)(2) (cod = cyclooctadiene), and [Ni@Sn(9)](3-) was structurally characterized. Both the empty and the Ni-centered clusters react with TlCp (Cp = cyclopentadienyl anion) and add a thallium vertex to form the deltahedral ten-atom closo-species [E(9)Tl](3-) and [Ni@E(9)Tl](3-), respectively. The structures of [Ge(9)Tl](3-) and [Ni@Sn(9)Tl](3-) showed that, as expected, the geometry of the ten-atom clusters is that of a bicapped square antiprism where the Tl-atom occupies one of the two capping vertices. This illustrates that centering a nine-atom cluster with a nickel atom does not change its reactivity toward TlCp. All compounds were characterized by electrospray mass spectrometry.

  9. Accurate atom-mapping computation for biochemical reactions.

    PubMed

    Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D

    2012-11-26

    The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.

  10. Wavy carbon: A new series of carbon structures explored by quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Ohno, Koichi; Satoh, Hiroko; Iwamoto, Takeaki; Tokoyama, Hiroaki; Yamakado, Hideo

    2015-10-01

    A new carbon family adopting wavy structures has been found by quantum chemical calculations. The key motif of this family is a condensed four-membered ring. Periodically wavy-carbon sheets (wavy-Cn sheets, n = 2, 6, and 8) as well as wavy-C36 tube were found to be very similar to the previously reported prism-Cn carbon tubes (n = 5, 6, and 8) in several respects, including the relative energies per one carbon atom with respect to graphene, CC bond lengths, and CCC bond angles. Because of very high relative energies with respect to graphene (206-253 kJ mol-1), the wavy-carbons may behave as energy reserving materials.

  11. Raman fingerprints of atomically precise graphene nanoribbons

    DOE PAGES

    Verzhbitskiy, Ivan A.; Corato, Marzio De; Ruini, Alice; ...

    2016-02-23

    Bottom-up approaches allow the production of ultranarrow and atomically precise graphene nanoribbons (GNRs) with electronic and optical properties controlled by the specific atomic structure. Combining Raman spectroscopy and ab initio simulations, we show that GNR width, edge geometry, and functional groups all influence their Raman spectra. As a result, the low-energy spectral region below 1000 cm –1 is particularly sensitive to edge morphology and functionalization, while the D peak dispersion can be used to uniquely fingerprint the presence of GNRs and differentiates them from other sp 2 carbon nanostructures.

  12. CARBON-14. A Literature Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1965-01-01

    The bibliography was prepared by the Philippine Atomic Energy Commission (PAEC) for scientists and researchers interested in the study of Carbon 14. The bibliography contains 840 entries. The references cited in this work were abstracted in the Nuclear Science Abstracts (NSA) of the U.S. Atomic Energy Commission covering the period from January 1947 to April 1963.

  13. Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling.

    PubMed

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H; Burghardt, Irene; Martinazzo, Rocco

    2015-09-28

    An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theory for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.

  14. Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonfanti, Matteo, E-mail: matteo.bonfanti@unimi.it; Jackson, Bret; Hughes, Keith H.

    2015-09-28

    An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theorymore » for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.« less

  15. Neutral Atomic Emissions from Comet Hale-Bopp

    NASA Astrophysics Data System (ADS)

    Oliversen, R. J.; Scherb, F.; Roesler, F. L.; Mierkiewicz, E. J.; Woodward, R. C.; Hilton, G. M.; Doane, N. E.

    1997-07-01

    High resolution (R=100,000) spectra of atomic oxygen, hydrogen, and carbon from Comet Hale-Bopp were obtained at the NSO McMath-Pierce main telescope from February 8 to April 19, 1997, using a 50 mm dual-etalon Fabry-Perot/CCD spectrometer. The field of view was 6 arcmin. Spectra with good signal-to-noise were obtained for the emission lines [O I] 6300 Angstroms, Hα (6563 Angstroms), and [C I] 9850 Angstroms. On several of these nights, complementary [O I] 6300 Angstroms observations were simultaneously obtained with the Wisconsin Hα Mapper (WHα M) at Kitt Peak. Additional [O I] 6300 Angstroms observations were also obtained in September 1996. These [C I] 9850 Angstroms observations are the first extensive data set of this cometary line. We will present an overview of our observations and preliminary results.

  16. Selective Aliphatic Carbon-Carbon Bond Activation by Rhodium Porphyrin Complexes.

    PubMed

    To, Ching Tat; Chan, Kin Shing

    2017-07-18

    The carbon-carbon bond activation of organic molecules with transition metal complexes is an attractive transformation. These reactions form transition metal-carbon bonded intermediates, which contribute to fundamental understanding in organometallic chemistry. Alternatively, the metal-carbon bond in these intermediates can be further functionalized to construct new carbon-(hetero)atom bonds. This methodology promotes the concept that the carbon-carbon bond acts as a functional group, although carbon-carbon bonds are kinetically inert. In the past few decades, numerous efforts have been made to overcome the chemo-, regio- and, more recently, stereoselectivity obstacles. The synthetic usefulness of the selective carbon-carbon bond activation has been significantly expanded and is becoming increasingly practical: this technique covers a wide range of substrate scopes and transition metals. In the past 16 years, our laboratory has shown that rhodium porphyrin complexes effectively mediate the intermolecular stoichiometric and catalytic activation of both strained and nonstrained aliphatic carbon-carbon bonds. Rhodium(II) porphyrin metalloradicals readily activate the aliphatic carbon(sp 3 )-carbon(sp 3 ) bond in TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl) and its derivatives, nitriles, nonenolizable ketones, esters, and amides to produce rhodium(III) porphyrin alkyls. Recently, the cleavage of carbon-carbon σ-bonds in unfunctionalized and noncoordinating hydrocarbons with rhodium(II) porphyrin metalloradicals has been developed. The absence of carbon-hydrogen bond activation in these systems makes the reaction unique. Furthermore, rhodium(III) porphyrin hydroxide complexes can be generated in situ to selectively activate the carbon(α)-carbon(β) bond in ethers and the carbon(CO)-carbon(α) bond in ketones under mild conditions. The addition of PPh 3 promotes the reaction rate and yield of the carbon-carbon bond activation product. Thus, both rhodium

  17. Benchmark calculations of excess electrons in water cluster cavities: balancing the addition of atom-centered diffuse functions versus floating diffuse functions.

    PubMed

    Zhang, Changzhe; Bu, Yuxiang

    2016-09-14

    Diffuse functions have been proved to be especially crucial for the accurate characterization of excess electrons which are usually bound weakly in intermolecular zones far away from the nuclei. To examine the effects of diffuse functions on the nature of the cavity-shaped excess electrons in water cluster surroundings, both the HOMO and LUMO distributions, vertical detachment energies (VDEs) and visible absorption spectra of two selected (H2O)24(-) isomers are investigated in the present work. Two main types of diffuse functions are considered in calculations including the Pople-style atom-centered diffuse functions and the ghost-atom-based floating diffuse functions. It is found that augmentation of atom-centered diffuse functions contributes to a better description of the HOMO (corresponding to the VDE convergence), in agreement with previous studies, but also leads to unreasonable diffuse characters of the LUMO with significant red-shifts in the visible spectra, which is against the conventional point of view that the more the diffuse functions, the better the results. The issue of designing extra floating functions for excess electrons has also been systematically discussed, which indicates that the floating diffuse functions are necessary not only for reducing the computational cost but also for improving both the HOMO and LUMO accuracy. Thus, the basis sets with a combination of partial atom-centered diffuse functions and floating diffuse functions are recommended for a reliable description of the weakly bound electrons. This work presents an efficient way for characterizing the electronic properties of weakly bound electrons accurately by balancing the addition of atom-centered diffuse functions and floating diffuse functions and also by balancing the computational cost and accuracy of the calculated results, and thus is very useful in the relevant calculations of various solvated electron systems and weakly bound anionic systems.

  18. Atomic data and spectral analysis of carbon, nitrogen, oxygen and silicon ions observed with the International Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Pradhan, Anil K.

    1992-01-01

    According to the plan presented in the original proposal we have now completed most of the atomic calculations involving collision strengths and rate coefficients for electron impact excitation of C II, N III, and O IV ions. These have been reported in the first two publications appended with this report. We have now moved into the applications phase of the project with the new data being used to analyze the International Ultraviolet Explorer (IUE) observations of a variety of objects, as described in the third publication recently submitted (also appended). The analysis and interpretation of archival data will continue well into the next year with several collaborators that the PI and Co-PI are involved with. In addition, the atomic calculations on Si II have been started.

  19. On the trends of Fukui potential and hardness potential derivatives in isolated atoms vs. atoms in molecules.

    PubMed

    Bhattacharjee, Rituparna; Roy, Ram Kinkar

    2014-10-28

    In the present study, trends of electronic contribution to molecular electrostatic potential [Vel(r¯)(r=0)], Fukui potential [v(+)f|(r=0) and v(-)f|(r=0)] and hardness potential derivatives [Δ(+)h(k) and Δ(-)h(k)] for isolated atoms as well as atoms in molecules are investigated. The generated numerical values of these three reactivity descriptors in these two electronically different situations are critically analyzed through the relevant formalism. Values of Vel(r¯) (when r → 0, i.e., on the nucleus) are higher for atoms in molecules than that of isolated atoms. In contrast, higher values of v(+)|(r=0) and v(-)|(r=0) are observed for isolated atoms compared to the values for atoms in a molecule. However, no such regular trend is observed for the Δ(+)h(k) and Δ(-)h(k) values, which is attributed to the uncertainty in the Fukui function values of atoms in molecules. The sum of Fukui potential and the sum of hardness potential derivatives in molecules are also critically analyzed, which shows the efficacy of orbital relaxation effects in quantifying the values of these parameters. The chemical consequence of the observed trends of these descriptors in interpreting electron delocalization, electronic relaxation and non-negativity of atomic Fukui function indices is also touched upon. Several commonly used molecules containing carbon as well as heteroatoms are chosen to make the investigation more insightful.

  20. Additive Manufacturing of Multifunctional Components Using High Density Carbon Nanotube Yarn Filaments

    NASA Technical Reports Server (NTRS)

    Gardner, John M.; Sauti, Godfrey; Kim, Jae-Woo; Cano, Roberto J.; Wincheski, Russell A.; Stelter, Christopher J.; Grimsley, Brian W.; Working, Dennis C.; Siochi, Emilie J.

    2016-01-01

    Additive manufacturing allows for design freedom and part complexity not currently attainable using traditional manufacturing technologies. Fused Filament Fabrication (FFF), for example, can yield novel component geometries and functionalities because the method provides a high level of control over material placement and processing conditions. This is achievable by extrusion of a preprocessed filament feedstock material along a predetermined path. However if fabrication of a multifunctional part relies only on conventional filament materials, it will require a different material for each unique functionality printed into the part. Carbon nanotubes (CNTs) are an attractive material for many applications due to their high specific strength as well as good electrical and thermal conductivity. The presence of this set of properties in a single material presents an opportunity to use one material to achieve multifunctionality in an additively manufactured part. This paper describes a recently developed method for processing continuous CNT yarn filaments into three-dimensional articles, and summarizes the mechanical, electrical, and sensing performance of the components fabricated in this way.

  1. Atomization methods for forming magnet powders

    DOEpatents

    Sellers, Charles H.; Branagan, Daniel J.; Hyde, Timothy A.

    2000-01-01

    The invention encompasses methods of utilizing atomization, methods for forming magnet powders, methods for forming magnets, and methods for forming bonded magnets. The invention further encompasses methods for simulating atomization conditions. In one aspect, the invention includes an atomization method for forming a magnet powder comprising: a) forming a melt comprising R.sub.2.1 Q.sub.13.9 B.sub.1, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; b) atomizing the melt to form generally spherical alloy powder granules having an internal structure comprising at least one of a substantially amorphous phase or a substantially nanocrystalline phase; and c) heat treating the alloy powder to increase an energy product of the alloy powder; after the heat treatment, the alloy powder comprising an energy product of at least 10 MGOe. In another aspect, the invention includes a magnet comprising R, Q, B, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; the magnet comprising an internal structure comprising R.sub.2.1 Q.sub.13.9 B.sub.1.

  2. A nano universal joint made from curved double-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Kun; Cai, Haifang; Shi, Jiao

    2015-06-15

    A nano universal joint is constructed from curved double-wall carbon nanotubes with a short outer tube as stator and a long inner tube as a rotor. When one end of the rotor is driven (by a rotary motor) to rotate, the same rotational speed but with different rotational direction will be induced at the other end of the rotor. This mechanism makes the joint useful for designing a flexible nanodevice with an adjustable output rotational signal. The motion transmission effect of the universal joint is analyzed using a molecular dynamics simulation approach. In particular, the effects of three factors aremore » investigated. The first factor is the curvature of the stator, which produces a different rotational direction of the rotor at the output end. The second is the bonding conditions of carbon atoms on the adjacent tube ends of the motor and the rotor, sp{sup 1} or sp{sup 2} atoms, which create different attraction between the motor and the rotor. The third is the rotational speed of the motor, which can be considered as the input signal of the universal joint. It is noted that the rotor's rotational speed is usually the same as that of the motor when the carbon atoms on the adjacent ends of the motor and the rotor are sp{sup 1} carbon atoms. When they become the new sp{sup 2} atoms, the rotor experiences a jump in rotational speed from a lower value to that of the motor. The mechanism of drops in potential of the motor is revealed. If the carbon atoms on the adjacent ends are sp{sup 2} atoms, the rotor rotates more slowly than the motor, whereas the rotational speed is stable when driven by a higher speed motor.« less

  3. A nano universal joint made from curved double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cai, Kun; Cai, Haifang; Shi, Jiao; Qin, Qing H.

    2015-06-01

    A nano universal joint is constructed from curved double-wall carbon nanotubes with a short outer tube as stator and a long inner tube as a rotor. When one end of the rotor is driven (by a rotary motor) to rotate, the same rotational speed but with different rotational direction will be induced at the other end of the rotor. This mechanism makes the joint useful for designing a flexible nanodevice with an adjustable output rotational signal. The motion transmission effect of the universal joint is analyzed using a molecular dynamics simulation approach. In particular, the effects of three factors are investigated. The first factor is the curvature of the stator, which produces a different rotational direction of the rotor at the output end. The second is the bonding conditions of carbon atoms on the adjacent tube ends of the motor and the rotor, sp1 or sp2 atoms, which create different attraction between the motor and the rotor. The third is the rotational speed of the motor, which can be considered as the input signal of the universal joint. It is noted that the rotor's rotational speed is usually the same as that of the motor when the carbon atoms on the adjacent ends of the motor and the rotor are sp1 carbon atoms. When they become the new sp2 atoms, the rotor experiences a jump in rotational speed from a lower value to that of the motor. The mechanism of drops in potential of the motor is revealed. If the carbon atoms on the adjacent ends are sp2 atoms, the rotor rotates more slowly than the motor, whereas the rotational speed is stable when driven by a higher speed motor.

  4. Mechanics of low-dimensional carbon nanostructures: Atomistic, continuum, and multi-scale approaches

    NASA Astrophysics Data System (ADS)

    Mahdavi, Arash

    A new multiscale modeling technique called the Consistent Atomic-scale Finite Element (CAFE) method is introduced. Unlike traditional approaches for linking the atomic structure to its equivalent continuum, this method directly connects the atomic degrees of freedom to a reduced set of finite element degrees of freedom without passing through an intermediate homogenized continuum. As a result, there is no need to introduce stress and strain measures at the atomic level. The Tersoff-Brenner interatomic potential is used to calculate the consistent tangent stiffness matrix of the structure. In this finite element formulation, all local and non-local interactions between carbon atoms are taken into account using overlapping finite elements. In addition, a consistent hierarchical finite element modeling technique is developed for adaptively coarsening and refining the mesh over different parts of the model. This process is consistent with the underlying atomic structure and, by refining the mesh to the scale of atomic spacing, molecular dynamic results can be recovered. This method is valid across the scales and can be used to concurrently model atomistic and continuum phenomena so, in contrast with most other multi-scale methods, there is no need to introduce artificial boundaries for coupling atomistic and continuum regions. Effect of the length scale of the nanostructure is also included in the model by building the hierarchy of elements from bottom up using a finite size atom cluster as the building block. To be consistent with the bravais multi-lattice structure of sp2-bonded carbon, two independent displacement fields are used for reducing the order of the model. Sparse structure of the stiffness matrix of these nanostructures is exploited to reduce the memory requirement and to speed up the formation of the system matrices and solution of the equilibrium equations. Applicability of the method is shown with several examples of the nonlinear mechanics of carbon

  5. Optical field induced rotation of polarization in rubidium atoms with the additional magnetic field

    NASA Astrophysics Data System (ADS)

    Ummal Momeen, M.; Hu, Jianping

    2017-11-01

    We present the magnetic and optical field induced rotation of polarization in 87Rb and 85Rb atoms at geophysical magnetic fields. The line shape varies considerably in the presence of a magnetic field of the order of a few mG. Multiple Zeeman sublevel EIT systems involving rubidium atoms are investigated. Theoretical formalism of optical field induced polarization rotation in the presence of a magnetic field is discussed by considering all the Zeeman sublevels. It is noted that the ground state population distribution also plays a major role.

  6. Cubic martensite in high carbon steel

    NASA Astrophysics Data System (ADS)

    Chen, Yulin; Xiao, Wenlong; Jiao, Kun; Ping, Dehai; Xu, Huibin; Zhao, Xinqing; Wang, Yunzhi

    2018-05-01

    A distinguished structural characteristic of martensite in Fe-C steels is its tetragonality originating from carbon atoms occupying only one set of the three available octahedral interstitial sites in the body-centered-cubic (bcc) Fe lattice. Such a body-centered-tetragonal (bct) structure is believed to be thermodynamically stable because of elastic interactions between the interstitial carbon atoms. For such phase stability, however, there has been a lack of direct experimental evidence despite extensive studies of phase transformations in steels over one century. In this Rapid Communication, we report that the martensite formed in a high carbon Fe-8Ni-1.26C (wt%) steel at room temperature induced by applied stress/strain has actually a bcc rather than a bct crystal structure. This finding not only challenges the existing theories on the stability of bcc vs bct martensite in high carbon steels, but also provides insights into the mechanism for martensitic transformation in ferrous alloys.

  7. Toxicity and biocompatibility of carbon nanoparticles.

    PubMed

    Fiorito, S; Serafino, A; Andreola, F; Togna, A; Togna, G

    2006-03-01

    A review is presented of the literature data concerning the effects induced by carbon nanoparticles on the biological environment and the importance of these effects in human and animal health. The discovery in 1985 of fullerenes, a novel carbon allotrope with a polygonal structure made up solely by 60 carbon atoms, and in 1991 of carbon nanotubes, thin carbon filaments (1-3 microm in length and 1-3 nm in diameter) with extraordinary mechanical properties, opened a wide field of activity in carbon research. During the last few years, practical applications of fullerenes as biological as well as pharmacological agents have been investigated. Various fullerene-based compounds were tested for biological activity, including antiviral, antioxidant, and chemiotactic activities. Nanotubes consist of carbon atoms arranged spirally to form concentric cylinders, that are perfect crystals and thinner than graphite whiskers. They are stronger than steel but very flexible and lightweight and transfer heat better than any other known material. These characteristics make them suitable for various potential applications such as super strong cables and tips for scanning probe microscopes, as well as biomedical devices for drug delivery, medical diagnostic, and therapeutic applications. The effects induced by these nanostructures on rat lung tissues, as well as on human skin and human macrophage and keratinocyte cells are presented.

  8. The adsorption of helium atoms on coronene cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurzthaler, Thomas; Rasul, Bilal; Kuhn, Martin

    2016-08-14

    We report the first experimental study of the attachment of multiple foreign atoms to a cationic polycyclic aromatic hydrocarbon (PAH). The chosen PAH was coronene, C{sub 24}H{sub 12}, which was added to liquid helium nanodroplets and then subjected to electron bombardment. Using mass spectrometry, coronene cations decorated with helium atoms were clearly seen and the spectrum shows peaks with anomalously high intensities (“magic number” peaks), which represent ion-helium complexes with added stability. The data suggest the formation of a rigid helium layer consisting of 38 helium atoms that completely cover both faces of the coronene ion. Additional magic numbers canmore » be seen for the further addition of 3 and 6 helium atoms, which are thought to attach to the edge of the coronene. The observation of magic numbers for the addition of 38 and 44 helium atoms is in good agreement with a recent path integral Monte Carlo prediction for helium atoms on neutral coronene. An understanding of how atoms and molecules attach to PAH ions is important for a number of reasons including the potential role such complexes might play in the chemistry of the interstellar medium.« less

  9. Novel carbon-rich additives preparation by degradative solvent extraction of biomass wastes for coke-making.

    PubMed

    Zhu, Xianqing; Li, Xian; Xiao, Li; Zhang, Xiaoyong; Tong, Shan; Wu, Chao; Ashida, Ryuichi; Liu, Wenqiang; Miura, Kouichi; Yao, Hong

    2016-05-01

    In this work, two extracts (Soluble and Deposit) were produced by degradative solvent extraction of biomass wastes from 250 to 350°C. The feasibilities of using Soluble and Deposit as additives for coke-making were investigated for the first time. The Soluble and Deposit, having significantly higher carbon content, lower oxygen content and extremely lower ash content than raw biomasses. All Solubles and most of Deposits can melt completely at the temperature ranged from 80 to 120°C and 140 to 180°C, respectively. The additions of Soluble or Deposit into the coke-making coal significantly improved their thermoplastic properties with as high as 9°C increase of the plastic range. Furthermore, the addition of Deposit or Soluble also markedly enhanced the coke quality through increasing coke strength after reaction (CSR) and reducing coke reactivity index (CRI). Therefore, the Soluble and Deposit were proved to be good additives for coke-making. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Solvent-driven reductive activation of carbon dioxide by gold anions.

    PubMed

    Knurr, Benjamin J; Weber, J Mathias

    2012-11-14

    Catalytic activation and electrochemical reduction of CO(2) for the formation of chemically usable feedstock and fuel are central goals for establishing a carbon neutral fuel cycle. The role of solvent molecules in catalytic processes is little understood, although solvent-solute interactions can strongly influence activated intermediate species. We use vibrational spectroscopy of mass-selected Au(CO(2))(n)(-) cluster ions to probe the solvation of AuCO(2)(-) as a model for a reactive intermediate in the reductive activation of a CO(2) ligand by a single-atom catalyst. For the first few solvent molecules, solvation of the complex preferentially occurs at the CO(2) moiety, enhancing reductive activation through polarization of the excess charge onto the partially reduced ligand. At higher levels of solvation, direct interaction of additional solvent molecules with the Au atom diminishes reduction. The results show how the solvation environment can enhance or diminish the effects of a catalyst, offering design criteria for single-atom catalyst engineering.

  11. Carbon-containing cathodes for enhanced electron emission

    DOEpatents

    Cao, Renyu; Pan, Lawrence; Vergara, German; Fox, Ciaran

    2000-01-01

    A cathode has electropositive atoms directly bonded to a carbon-containing substrate. Preferably, the substrate comprises diamond or diamond-like (sp.sup.3) carbon, and the electropositive atoms are Cs. The cathode displays superior efficiency and durability. In one embodiment, the cathode has a negative electron affinity (NEA). The cathode can be used for field emission, thermionic emission, or photoemission. Upon exposure to air or oxygen, the cathode performance can be restored by annealing or other methods. Applications include detectors, electron multipliers, sensors, imaging systems, and displays, particularly flat panel displays.

  12. HPAM: Hirshfeld Partitioned Atomic Multipoles

    PubMed Central

    Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.

    2011-01-01

    An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank lmax on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from lmax = 0 (atomic charges) to lmax = 4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank lmax are shown to exactly reproduce ab initio molecular multipole moments of rank L for L ≤ lmax. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only (lmax = 0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. PMID:22140274

  13. A screened independent atom model for the description of ion collisions from atomic and molecular clusters

    NASA Astrophysics Data System (ADS)

    Lüdde, Hans Jürgen; Horbatsch, Marko; Kirchner, Tom

    2018-05-01

    We apply a recently introduced model for an independent-atom-like calculation of ion-impact electron transfer and ionization cross sections to proton collisions from water, neon, and carbon clusters. The model is based on a geometrical interpretation of the cluster cross section as an effective area composed of overlapping circular disks that are representative of the atomic contributions. The latter are calculated using a time-dependent density-functional-theory-based single-particle description with accurate exchange-only ground-state potentials. We find that the net capture and ionization cross sections in p-X n collisions are proportional to n α with 2/3 ≤ α ≤ 1. For capture from water clusters at 100 keV impact energy α is close to one, which is substantially different from the value α = 2/3 predicted by a previous theoretical work based on the simplest-level electron nuclear dynamics method. For ionization at 100 keV and for capture at lower energies we find smaller α values than for capture at 100 keV. This can be understood by considering the magnitude of the atomic cross sections and the resulting overlaps of the circular disks that make up the cluster cross section in our model. Results for neon and carbon clusters confirm these trends. Simple parametrizations are found which fit the cross sections remarkably well and suggest that they depend on the relevant bond lengths.

  14. Nano-soldering to single atomic layer

    DOEpatents

    Girit, Caglar O [Berkeley, CA; Zettl, Alexander K [Kensington, CA

    2011-10-11

    A simple technique to solder submicron sized, ohmic contacts to nanostructures has been disclosed. The technique has several advantages over standard electron beam lithography methods, which are complex, costly, and can contaminate samples. To demonstrate the soldering technique graphene, a single atomic layer of carbon, has been contacted, and low- and high-field electronic transport properties have been measured.

  15. Effects of mineral additives on biochar formation: carbon retention, stability, and properties.

    PubMed

    Li, Feiyue; Cao, Xinde; Zhao, Ling; Wang, Jianfei; Ding, Zhenliang

    2014-10-07

    Biochar is being recognized as a promising tool for long-term carbon sequestration, and biochar with high carbon retention and strong stability is supposed to be explored for that purpose. In this study, three minerals, including kaolin, calcite (CaCO3), and calcium dihydrogen phosphate [Ca(H2PO4)2], were added to rice straw feedstock at the ratio of 20% (w/w) for biochar formation through pyrolysis treatment, aiming to improve carbon retention and stabilization in biochar. Kaolin and CaCO3 had little effect on the carbon retention, whereas Ca(H2PO4)2 increased the carbon retention by up to 29% compared to untreated biochar. Although the carbon loss from the kaolin-modified biochar with hydrogen peroxide oxidation was enhanced, CaCO3 and Ca(H2PO4)2 modification reduced the carbon loss by 18.6 and 58.5%, respectively. Moreover, all three minerals reduced carbon loss of biochar with potassium dichromate oxidation from 0.3 to 38.8%. The microbial mineralization as CO2 emission in all three modified biochars was reduced by 22.2-88.7% under aerobic incubation and 5-61% under anaerobic incubation. Enhanced carbon retention and stability of biochar with mineral treatment might be caused by the enhanced formation of aromatic C, which was evidenced by cross-polarization magic angle spinning (13)C nuclear magnetic resonance spectra and Fourier transform infrared spectroscopy analysis. Our results indicated that the three minerals, especially Ca(H2PO4)2, were effective in increasing carbon retention and strengthening biochar stabilization, which provided a novel idea that people could explore and produce the designated biochar with high carbon sequestration capacity and stability.

  16. Experimental and theoretical investigation of radiation and dynamics properties in laser-produced carbon plasmas

    NASA Astrophysics Data System (ADS)

    Min, Qi; Su, Maogen; Wang, Bo; Cao, Shiquan; Sun, Duixiong; Dong, Chenzhong

    2018-05-01

    The radiation and dynamics properties of laser-produced carbon plasma in vacuum were studied experimentally with aid of a spatio-temporally resolved emission spectroscopy technique. In addition, a radiation hydrodynamics model based on the fluid dynamic equations and the radiative transfer equation was presented, and calculation of the charge states was performed within the time-dependent collisional radiative model. Detailed temporal and spatial evolution behavior about plasma parameters have been analyzed, such as velocity, electron temperature, charge state distribution, energy level population, and various atomic processes. At the same time, the effects of different atomic processes on the charge state distribution were examined. Finally, the validity of assuming a local thermodynamic equilibrium in the carbon plasma expansion was checked, and the results clearly indicate that the assumption was valid only at the initial (<80 ns) stage of plasma expansion. At longer delay times, it was not applicable near the plasma boundary because of a sharp drop of plasma temperature and electron density.

  17. Crystallized and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates

    PubMed Central

    Liu, Chao-Fei; Fan, Heng; Gou, Shih-Chuan; Liu, Wu-Ming

    2014-01-01

    Vortex is a topological defect with a quantized winding number of the phase in superfluids and superconductors. Here, we investigate the crystallized (triangular, square, honeycomb) and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates (BECs) by using the damped projected Gross-Pitaevskii equation. The amorphous vortices are the result of the considerable deviation induced by the interaction of atomic-molecular vortices. By changing the atom-molecule interaction from attractive to repulsive, the configuration of vortices can change from an overlapped atomic-molecular vortices to carbon-dioxide-type ones, then to atomic vortices with interstitial molecular vortices, and finally into independent separated ones. The Raman detuning can tune the ratio of the atomic vortex to the molecular vortex. We provide a phase diagram of vortices in rotating atomic-molecular BECs as a function of Raman detuning and the strength of atom-molecule interaction. PMID:24573303

  18. A Compact, High-Flux Cold Atom Beam Source

    NASA Technical Reports Server (NTRS)

    Kellogg, James R.; Kohel, James M.; Thompson, Robert J.; Aveline, David C.; Yu, Nan; Schlippert, Dennis

    2012-01-01

    The performance of cold atom experiments relying on three-dimensional magneto-optical trap techniques can be greatly enhanced by employing a highflux cold atom beam to obtain high atom loading rates while maintaining low background pressures in the UHV MOT (ultra-high vacuum magneto-optical trap) regions. Several techniques exist for generating slow beams of cold atoms. However, one of the technically simplest approaches is a two-dimensional (2D) MOT. Such an atom source typically employs at least two orthogonal trapping beams, plus an additional longitudinal "push" beam to yield maximum atomic flux. A 2D atom source was created with angled trapping collimators that not only traps atoms in two orthogonal directions, but also provides a longitudinal pushing component that eliminates the need for an additional push beam. This development reduces the overall package size, which in turn, makes the 2D trap simpler, and requires less total optical power. The atom source is more compact than a previously published effort, and has greater than an order of magnitude improved loading performance.

  19. Advanced Electrochemistry of Individual Metal Clusters Electrodeposited Atom by Atom to Nanometer by Nanometer.

    PubMed

    Kim, Jiyeon; Dick, Jeffrey E; Bard, Allen J

    2016-11-15

    Metal clusters are very important as building blocks for nanoparticles (NPs) for electrocatalysis and electroanalysis in both fundamental and applied electrochemistry. Attention has been given to understanding of traditional nucleation and growth of metal clusters and to their catalytic activities for various electrochemical applications in energy harvesting as well as analytical sensing. Importantly, understanding the properties of these clusters, primarily the relationship between catalysis and morphology, is required to optimize catalytic function. This has been difficult due to the heterogeneities in the size, shape, and surface properties. Thus, methods that address these issues are necessary to begin understanding the reactivity of individual catalytic centers as opposed to ensemble measurements, where the effect of size and morphology on the catalysis is averaged out in the measurement. This Account introduces our advanced electrochemical approaches to focus on each isolated metal cluster, where we electrochemically fabricated clusters or NPs atom by atom to nanometer by nanometer and explored their electrochemistry for their kinetic and catalytic behavior. Such approaches expand the dimensions of analysis, to include the electrochemistry of (1) a discrete atomic cluster, (2) solely a single NP, or (3) individual NPs in the ensemble sample. Specifically, we studied the electrocatalysis of atomic metal clusters as a nascent electrocatalyst via direct electrodeposition on carbon ultramicroelectrode (C UME) in a femtomolar metal ion precursor. In addition, we developed tunneling ultramicroelectrodes (TUMEs) to study electron transfer (ET) kinetics of a redox probe at a single metal NP electrodeposited on this TUME. Owing to the small dimension of a NP as an active area of a TUME, extremely high mass transfer conditions yielded a remarkably high standard ET rate constant, k 0 , of 36 cm/s for outer-sphere ET reaction. Most recently, we advanced nanoscale

  20. Macroevolutionary trends of atomic composition and related functional group proportion in eukaryotic and prokaryotic proteins.

    PubMed

    Zhang, Yu-Juan; Yang, Chun-Lin; Hao, You-Jin; Li, Ying; Chen, Bin; Wen, Jian-Fan

    2014-01-25

    To fully explore the trends of atomic composition during the macroevolution from prokaryote to eukaryote, five atoms (oxygen, sulfur, nitrogen, carbon, hydrogen) and related functional groups in prokaryotic and eukaryotic proteins were surveyed and compared. Genome-wide analysis showed that eukaryotic proteins have more oxygen, sulfur and nitrogen atoms than prokaryotes do. Clusters of Orthologous Groups (COG) analysis revealed that oxygen, sulfur, carbon and hydrogen frequencies are higher in eukaryotic proteins than in their prokaryotic orthologs. Furthermore, functional group analysis demonstrated that eukaryotic proteins tend to have higher proportions of sulfhydryl, hydroxyl and acylamino, but lower of sulfide and carboxyl. Taken together, an apparent trend of increase was observed for oxygen and sulfur atoms in the macroevolution; the variation of oxygen and sulfur compositions and their related functional groups in macroevolution made eukaryotic proteins carry more useful functional groups. These results will be helpful for better understanding the functional significances of atomic composition evolution. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Adsorptive removal of sulfate from acid mine drainage by polypyrrole modified activated carbons: Effects of polypyrrole deposition protocols and activated carbon source.

    PubMed

    Hong, Siqi; Cannon, Fred S; Hou, Pin; Byrne, Tim; Nieto-Delgado, Cesar

    2017-10-01

    Polypyrrole modified activated carbon was used to remove sulfate from acid mine drainage water. The polypyrrole modified activated carbon created positively charged functionality that offered elevated sorption capacity for sulfate. The effects of the activated carbon type, approach of polymerization, preparation temperature, solvent, and concentration of oxidant solution over the sulfate adsorption capacity were studied at an array of initial sulfate concentrations. A hardwood based activated carbon was the more favorable activated carbon template, and this offered better sulfate removal than when using bituminous based activated carbon or oak wood activated carbon as the template. The hardwood-based activated carbon modified with polypyrrole removed 44.7 mg/g sulfate, and this was five times higher than for the pristine hardwood-based activated carbon. Various protocols for depositing the polypyrrole onto the activated carbon were investigated. When ferric chloride was used as an oxidant, the deposition protocol that achieved the most N + atomic percent (3.35%) while also maintaining the least oxygen atomic percent (6.22%) offered the most favorable sulfate removal. For the rapid small scale column tests, when processing the AMD water, hardwood-based activated carbon modified with poly pyrrole exhibited 33 bed volume compared to the 5 bed volume of pristine activated carbons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Influence of Different Defects in Vertically Aligned Carbon Nanotubes on TiO2 Nanoparticle Formation through Atomic Layer Deposition.

    PubMed

    Acauan, Luiz; Dias, Anna C; Pereira, Marcelo B; Horowitz, Flavio; Bergmann, Carlos P

    2016-06-29

    The chemical inertness of carbon nanotubes (CNT) requires some degree of "defect engineering" for controlled deposition of metal oxides through atomic layer deposition (ALD). The type, quantity, and distribution of such defects rules the deposition rate and defines the growth behavior. In this work, we employed ALD to grow titanium oxide (TiO2) on vertically aligned carbon nanotubes (VACNT). The effects of nitrogen doping and oxygen plasma pretreatment of the CNT on the morphology and total amount of TiO2 were systematically studied using transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis. The induced chemical changes for each functionalization route were identified by X-ray photoelectron and Raman spectroscopies. The TiO2 mass fraction deposited with the same number of cycles for the pristine CNT, nitrogen-doped CNT, and plasma-treated CNT were 8, 47, and 80%, respectively. We demonstrate that TiO2 nucleation is dependent mainly on surface incorporation of heteroatoms and their distribution rather than structural defects that govern the growth behavior. Therefore, selecting the best way to functionalize CNT will allow us to tailor TiO2 distribution and hence fabricate complex heterostructures.

  3. Enhanced Production of Green Tide Algal Biomass through Additional Carbon Supply

    PubMed Central

    de Paula Silva, Pedro H.; Paul, Nicholas A.; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 −) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 − affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7–9.9), and grew at similar rates up to pH 9, demonstrating HCO3 − utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 −. PMID:24324672

  4. Enhanced production of green tide algal biomass through additional carbon supply.

    PubMed

    de Paula Silva, Pedro H; Paul, Nicholas A; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (-)) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (-) affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9), and grew at similar rates up to pH 9, demonstrating HCO3 (-) utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-).

  5. Receptor interactrions of imidazolines. VI. Significance of carbon bridge separating phenyl and imidazoline rings of tolazoline-like alpha adrenergic imidazolines.

    PubMed

    Ruffolo, R R; Yaden, E L; Waddell, J E; Dillard, R D

    1980-09-01

    The pharmacological significance of the carbon bridge separating the imidazoline and phenyl rings of tolazoline-like alpha adrenergic imidazolines has been investigated. Extending the carbon bridge to two carbon atoms, or deleting the carbon bridge, lowers affinity of the imidazolines for the alpha receptor and markedly decreases or abolishes efficacy (i.e., agonist activity), suggesting that a single carbon atome optimallyu separates the phenyl and imidazoline rings. Although one carbon is optimal for alpha adrenergic activity, this particular atom does not appear to be essential since nitrogen may substitute for carbon with no marked or consistent changes observed in affinity or efficacy. Hydroxylation of the carbon bridge decreases affinity for the receptor approximately 10-fold but does not alter efficacy, whereas a similar substitution made in the norepinephrine-series of phenethylamines markedly increases affinity (Patil et al., 1974). With both the imidazolines and phenethylamines, this carbon atom may stereoselectively influence binding to the receptor. These results suggest that the carbon atom bridging the phenyl and imidazoline rings of tolazoline-like imidazolines serves only to provide optimal separation between these rings and does not contribute directly to the binding process. It is proposed that alpha adrenergic imidazolines interact differently with the alpha adrenergic receptor than the norepinephrine-like phenethylamines.

  6. Composition and properties of the so-called 'diamond-like' amorphous carbon films

    NASA Technical Reports Server (NTRS)

    Angus, J. C.; Stultz, J. E.; Shiller, P. J.; Macdonald, J. R.; Mirtich, M. J.

    1984-01-01

    The composition of amorphous 'diamond-like' films made by direct low energy ion beam deposition, R.F. discharge and sputtering was determined by nuclear reaction analysis, IR spectroscopy and microcombustion chemical analysis. The nuclear reaction analysis showed very similar hydrogen depth profiles for all three types of samples. The atomic ratio of hydrogen to carbon was approximately 0.2 at the film surface and rose to approximately 1.0 at a depth of 500 A. The integrated intensity of the C-H stretching band at about 2900 per cm indicates that the amount of chemically bonded hydrogen is less than the total hydrogen content. Combustion analysis confirmed the overall atomic ratio of hydrogen to carbon determined by nuclear reaction analysis. The chemical state of the non-bonded hydrogen was not determined; however, the effective diffusion coefficient computed from the hydrogen depth profile was extremely low. This indicates either that the films are exceedingly impermeable or that the non-bonded hydrogen requires an additional activated step to leave the films, e.g., desorption or chemical reaction.

  7. Carbon mineralization in surface and subsurface soils in a subtropical mixed forest in central China

    NASA Astrophysics Data System (ADS)

    Liu, F.; Tian, Q.

    2014-12-01

    About a half of soil carbon is stored in subsurface soil horizons, their dynamics have the potential to significantly affect carbon balancing in terrestrial ecosystems. However, the main factors regulating subsurface soil carbon mineralization are poorly understood. As affected by mountain humid monsoon, the subtropical mountains in central China has an annual precipitation of about 2000 mm, which causes strong leaching of ions and nutrition. The objectives of this study were to monitor subsurface soil carbon mineralization and to determine if it is affected by nutrient limitation. We collected soil samples (up to 1 m deep) at three locations in a small watershed with three soil layers (0-10 cm, 10-30 cm, below 30 cm). For the three layers, soil organic carbon (SOC) ranged from 35.8 to 94.4 mg g-1, total nitrogen ranged from 3.51 to 8.03 mg g-1, microbial biomass carbon (MBC) ranged from 170.6 to 718.4 μg g-1 soil. We measured carbon mineralization with the addition of N (100 μg N/g soil), P (50 μg P/g soil), and liable carbon (glucose labeled by 5 atom% 13C, at five levels: control, 10% MBC, 50% MBC, 100% MBC, 200% MBC). The addition of N and P had negligible effects on CO2 production in surface soil layers; in the deepest soil layer, the addition of N and P decreased CO2 production from 4.32 to 3.20 μg C g-1 soil carbon h-1. Glucose addition stimulated both surface and subsurface microbial mineralization of SOC, causing priming effects. With the increase of glucose addition rate from 10% to 200% MBC, the primed mineralization rate increased from 0.19 to 3.20 μg C g-1 soil carbon h-1 (fifth day of glucose addition). The magnitude of priming effect increased from 28% to 120% as soil layers go deep compare to the basal CO2 production (fifth day of 200% MBC glucose addition, basal CO2 production rate for the surface and the deepest soil was 11.17 and 2.88 μg C g-1 soil carbon h-1). These results suggested that the mineralization of subsurface carbon is more

  8. Light element opacities of astrophysical interest from ATOMIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colgan, J.; Kilcrease, D. P.; Magee, N. H. Jr.

    We present new calculations of local-thermodynamic-equilibrium (LTE) light element opacities from the Los Alamos ATOMIC code for systems of astrophysical interest. ATOMIC is a multi-purpose code that can generate LTE or non-LTE quantities of interest at various levels of approximation. Our calculations, which include fine-structure detail, represent a systematic improvement over previous Los Alamos opacity calculations using the LEDCOP legacy code. The ATOMIC code uses ab-initio atomic structure data computed from the CATS code, which is based on Cowan's atomic structure codes, and photoionization cross section data computed from the Los Alamos ionization code GIPPER. ATOMIC also incorporates a newmore » equation-of-state (EOS) model based on the chemical picture. ATOMIC incorporates some physics packages from LEDCOP and also includes additional physical processes, such as improved free-free cross sections and additional scattering mechanisms. Our new calculations are made for elements of astrophysical interest and for a wide range of temperatures and densities.« less

  9. Computational Investigation of Graphene-Carbon Nanotube-Polymer Composite

    NASA Astrophysics Data System (ADS)

    Jha, Sanjiv; Roth, Michael; Todde, Guido; Subramanian, Gopinath; Shukla, Manoj; Univ of Southern Mississippi Collaboration; US Army Engineer Research; Development Center 3909 Halls Ferry Road Vicksburg, MS 39180, USA Collaboration

    Graphene is a single atom thick two dimensional carbon sheet where sp2 -hybridized carbon atoms are arranged in a honeycomb structure. The functionalization of graphene and carbon nanotubes (CNTs) with polymer is a route for developing high performance nanocomposite materials. We study the interfacial interactions among graphene, CNT, and Nylon 6 polymer using computational methods based on density functional theory (DFT) and empirical force-field. Our DFT calculations are carried out using Quantum-ESPRESSO electronic structure code with van der Waals functional (vdW-DF2), whereas the empirical calculations are performed using LAMMPS with the COMPASS force-field. Our results demonstrated that the interactions between (8,8) CNT and graphene, and between CNT/graphene and Nylon 6 consist mostly of van der Waals type. The computed Young's moduli indicated that the mechanical properties of carbon nanostructures are enhanced by their interactions with polymer. The presence of Stone-Wales (SW) defects lowered the Young's moduli of carbon nanostructures.

  10. Atom-by-atom assembly

    NASA Astrophysics Data System (ADS)

    Hla, Saw Wai

    2014-05-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed.

  11. Reaction kinetics of hydrogen atom abstraction from isopentanol by the H atom and HO2˙ radical.

    PubMed

    Parab, Prajakta Rajaram; Heufer, K Alexander; Fernandes, Ravi Xavier

    2018-04-25

    Isopentanol is a potential next-generation biofuel for future applications to Homogeneous Charge Compression Ignition (HCCI) engine concepts. To provide insights into the combustion behavior of isopentanol, especially to its auto-ignition behavior which is linked both to efficiency and pollutant formation in real combustion systems, detailed quantum chemical studies for crucial reactions are desired. H-Abstraction reaction rates from fuel molecules are key initiation steps for chain branching required for auto-ignition. In this study, rate constants are determined for the hydrogen atom abstraction reactions from isopentanol by the H atom and HO2˙ radical by implementing the CBS-QB3 composite method. For the treatment of the internal rotors, a Pitzer-Gwinn-like approximation is applied. On comparing the computed reaction energies, the highest exothermicity (ΔE = -46 kJ mol-1) is depicted for Hα abstraction by the H atom whereas the lowest endothermicity (ΔE = 29 kJ mol-1) is shown for the abstraction of Hα by the HO2˙ radical. The formation of hydrogen bonding is found to affect the kinetics of the H atom abstraction reactions by the HO2˙ radical. Further above 750 K, the calculated high pressure limit rate constants indicate that the total contribution from delta carbon sites (Cδ) is predominant for hydrogen atom abstraction by the H atom and HO2˙ radical.

  12. Flame Synthesis Used to Create Metal-Catalyzed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.

    2001-01-01

    Metal-catalyzed carbon nanotubes are highly ordered carbon structures of nanoscale dimensions. They may be thought of as hollow cylinders whose walls are formed by single atomic layers of graphite. Such cylinders may be composed of many nested, concentric atomic layers of carbon or only a single layer, the latter forming a single-walled carbon nanotube. This article reports unique results using a flame for their synthesis. Only recently were carbon nanotubes discovered within an arc discharge and recognized as fullerene derivatives. Today metal-catalyzed carbon nanotubes are of great interest for many reasons. They can be used as supports for the metal catalysts like those found in catalytic converters. Open-ended nanotubes are highly desirable because they can be filled by other elements, metals or gases, for battery and fuel cell applications. Because of their highly crystalline structure, they are significantly stronger than the commercial carbon fibers that are currently available (10 times as strong as steel but possessing one-sixth of the weight). This property makes them highly desirable for strengthening polymer and ceramic composite materials. Current methods of synthesizing carbon nanotubes include thermal pyrolysis of organometallics, laser ablation of metal targets within hydrocarbon atmospheres at high temperatures, and arc discharges. Each of these methods is costly, and it is unclear if they can be scaled for the commercial synthesis of carbon nanotubes. In contrast, flame synthesis is an economical means of bulk synthesis of a variety of aerosol materials such as carbon black. Flame synthesis of carbon nanotubes could potentially realize an economy of scale that would enable their use in common structural materials such as car-body panels. The top figure is a transmission electron micrograph of a multiwalled carbon nanotube. The image shows a cross section of the atomic structure of the nanotube. The dark lines are individual atomic layer planes of

  13. Single-atom gold catalysis in the context of developments in parahydrogen-induced polarization.

    PubMed

    Corma, Avelino; Salnikov, Oleg G; Barskiy, Danila A; Kovtunov, Kirill V; Koptyug, Igor V

    2015-05-04

    A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized, characterized, and tested in heterogeneous hydrogenation of 1,3-butadiene and 1-butyne with parahydrogen to maximize the polarization level and the contribution of the pairwise hydrogen addition route. The Au/MWCNTs catalyst was found to be active and efficient in pairwise hydrogen addition and the estimated contributions from the pairwise hydrogen addition route are at least an order of magnitude higher than those for supported metal nanoparticle catalysts. Therefore, the use of the highly isolated monoatomic catalysts is very promising for production of hyperpolarized fluids that can be used for the significant enhancement of NMR signals. A mechanism of 1,3-butadiene hydrogenation with parahydrogen over the highly isolated monoatomic Au/MWCNTs catalyst is also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The first investigation of Wilms' tumour atomic structure-nitrogen and carbon isotopic composition as a novel biomarker for the most individual approach in cancer disease

    PubMed Central

    Taran, Katarzyna; Frączek, Tomasz; Sikora-Szubert, Anita; Sitkiewicz, Anna; Młynarski, Wojciech; Kobos, Józef; Paneth, Piotr

    2016-01-01

    The paper describes a novel approach to investigating Wilms' tumour (nephroblastoma) biology at the atomic level. Isotope Ratio Mass Spectrometry (IRMS) was used to directly assess the isotope ratios of nitrogen and carbon in 84 Wilms' tumour tissue samples from 28 cases representing the histological spectrum of nephroblastoma. Marked differences in nitrogen and carbon isotope ratios were found between nephroblastoma histological types and along the course of cancer disease, with a breakout in isotope ratio of the examined elements in tumour tissue found between stages 2 and 3. Different isotopic compositions with regard to nitrogen and carbon content were observed in blastemal Wilms' tumour, with and without focal anaplasia, and in poorly- and well-differentiated epithelial nephroblastoma. This first assessment of nitrogen and carbon isotope ratio reveals the previously unknown part of Wilms' tumour biology and represents a potential novel biomarker, allowing for a highly individual approach to treating cancer. Furthermore, this method of estimating isotopic composition appears to be the most sensitive tool yet for cancer tissue evaluation, and a valuable complement to established cancer study methods with prospective clinical impact. PMID:27732932

  15. A Carbon Nanotube Cable for a Space Elevator

    ERIC Educational Resources Information Center

    Bochnícek, Zdenek

    2013-01-01

    In this paper the mechanical properties of carbon nanotubes are discussed in connection with the possibility to use them for the construction of a space elevator. From the fundamental information about the structure of a carbon nanotube and the chemical bond between carbon atoms, Young's modulus and the ultimate tensile strength are…

  16. Dynamics of the reaction of atomic oxygen with ethene: Observation of all carbon-containing products by single-photon ionization

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Huang; Huang, Wen-Jian; Chen, Wei-Kan

    2007-10-01

    We measured time-of-flight (TOF) spectra of products from the reaction O( 3P/ 1D) + C 2H 4 at collision energy 6.4 kcal mol -1 using a quadrupole mass filter and tunable vacuum-ultraviolet light for ionization. All carbon-containing products from five exit channels - CH 2CHO + H, CH 2CO + H 2, CH 3 + HCO, CH 2 + HCHO, and CH 2CO + 2H - were identified. Product channels CH 2CHO + H and CH 2CO + 2H associate with 3P and 1D atomic oxygen reactants, respectively. Both 3P and 1D oxygen reactants might be responsible for the other reactions. The ionization threshold of nascent vinoxy radicals is 9.3 ± 0.1 eV.

  17. An ab initio study on the effect of iron atom junction on transport characteristics of carbon-silicon mixed chain

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Zhou, Qinghua; Liu, Wenhua; Liang, Yan; Wang, Tao; Wan, Haiqing

    2018-04-01

    The effect of iron atom junction on transport characteristics of carbon-silicon mixed chain has been studied from an ab initio study. At zero bias, the Fe(CSi)n system appears to be the decrease of the conductance as the number of the Si-C pairs in the chain increases (n changes). When n > 5, the conductance tends to zero. These changes are independent of the transferring charge of the system, depending on the coupling of the electrodes and the central region. Under bias, the higher the bias voltage, the bigger the transmission coefficient of the system, and the transmission peak moves closer to the Fermi level. The I-V curves of Fe(CSi)2 and Fe (CSi)3 are linear, showing the behavior of metal resistance.

  18. 10 CFR 810.14 - Additional information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Additional information. 810.14 Section 810.14 Energy DEPARTMENT OF ENERGY ASSISTANCE TO FOREIGN ATOMIC ENERGY ACTIVITIES § 810.14 Additional information. The... activity to submit additional information. ...

  19. Effects of addition of different carbon materials on the electrochemical performance of nickel hydroxide electrode

    NASA Astrophysics Data System (ADS)

    Sierczynska, Agnieszka; Lota, Katarzyna; Lota, Grzegorz

    Nickel hydroxide is used as an active material in positive electrodes of rechargeable alkaline batteries. The capacity of nickel-metal hydride (Ni-MH) batteries depends on the specific capacity of the positive electrode and utilization of the active material because of the Ni(OH) 2/NiOOH electrode capacity limitation. The practical capacity of the positive nickel electrode depends on the efficiency of the conductive network connecting the Ni(OH) 2 particle with the current collector. As β-Ni(OH) 2 is a kind of semiconductor, the additives are necessary to improve the conductivity between the active material and the current collector. In this study the effect of adding different carbon materials (flake graphite, multi-walled carbon nanotubes (MWNT)) on the electrochemical performance of pasted nickel-foam electrode was established. A method of production of MWNT special type of catalysts had an influence on the performance of the nickel electrodes. The electrochemical tests showed that the electrode with added MWNT (110-170 nm diameter) exhibited better electrochemical properties in the chargeability, specific discharge capacity, active material utilization, discharge voltage and cycling stability. The nickel electrodes with MWNT addition (110-170 nm diameter) have exhibited a specific capacity close to 280 mAh g -1 of Ni(OH) 2, and the degree of active material utilization was ∼96%.

  20. ORIGIN OF PALMITIC ACID CARBON IN PALMITATES FORMED FROM HEXADECANE-1-C14 AND TETRADECANE-1-C14 BY MICROCOCCUS CERIFICANS

    PubMed Central

    Finnerty, W. R.; Kallio, R. E.

    1964-01-01

    Finnerty, W. R. (University of Iowa, Iowa City), and R. E. Kallio. Origin of palmitic acid carbon in palmitates formed from hexadecane-1-C14 and tetradecane-1-C14 by Micrococcus cerificans. J. Bacteriol. 87:1261–1265. 1964.—Degradation of the palmitic acid moiety of cetyl palmitate and myristyl palmitate formed from hexadecane-1-C14 and tetradecane-1-C14 by Micrococcus cerificans was carried out. The patterns of C14 labeling in palmitic acid from cetyl palmitate showed that hexadecane is oxidized at the C1 position, and cetyl alcohol and palmitic acid thus formed are directly esterified. Palmitic acid arising from tetradecane and esterified to tetradecanol appeared to have been synthesized by the addition of two carbon atoms to an existing 14-carbon atom skeleton. Considerable mixing of C14 occurred in the C1 and C2 positions of palmitic acid thus synthesized. PMID:14188700

  1. Carbon Exchange and Loss Processes on Mars

    NASA Image and Video Library

    2015-11-24

    This graphic depicts paths by which carbon has been exchanged between Martian interior, surface rocks, polar caps, waters and atmosphere, and also depicts a mechanism by which carbon is lost from the atmosphere with a strong effect on isotope ratio. Carbon dioxide (CO2) to generate the Martian atmosphere originated in the planet's mantle and has been released directly through volcanoes or trapped in rocks crystallized from magmas and released later. Once in the atmosphere, the CO2 can exchange with the polar caps, passing from gas to ice and back to gas again. The CO2 can also dissolve into waters, which can then precipitate out solid carbonates, either in lakes at the surface or in shallow aquifers. Carbon dioxide gas in the atmosphere is continually lost to space at a rate controlled in part by the sun's activity. One loss mechanism is called ultraviolet photodissociation. It occurs when ultraviolet radiation (indicated on the graphic as "hv") encounters a CO2 molecule, breaking the bonds to first form carbon monoxide (CO) molecules and then carbon (C) atoms. The ratio of carbon isotopes remaining in the atmosphere is affected as these carbon atoms are lost to space, because the lighter carbon-12 (12C) isotope is more easily removed than the heavier carbon-13 (13C) isotope. This fractionation, the preferential loss of carbon-12 to space, leaves a fingerprint: enrichment of the heavy carbon-13 isotope, measured in the atmosphere of Mars today. http://photojournal.jpl.nasa.gov/catalog/PIA20163

  2. First-Principles Study of Carbon and Vacancy Structures in Niobium

    DOE PAGES

    Ford, Denise C.; Zapol, Peter; Cooley, Lance D.

    2015-04-03

    The interstitial chemical impurities hydrogen, oxygen, nitrogen, and carbon are important for niobium metal production, and particularly for the optimization of niobium SRF technology. These atoms are present in refined sheets and can be absorbed into niobium during processing treatments, resulting in changes to the residual resistance and the performance of SRF cavities. A first-principles approach is taken to study the properties of carbon in niobium, and the results are compared and contrasted with the properties of the other interstitial impurities. The results indicate that C will likely form precipitates or atmospheres around defects rather than strongly bound complexes withmore » other impurities. Based on the analysis of carbon and hydrogen near niobium lattice vacancies and small vacancy chains and clusters, the formation of extended carbon chains and hydrocarbons is not likely to occur. Association of carbon with hydrogen atoms can, however, occur through the strain fields created by interstitial binding of the impurity atoms. In conclusion, calculated electronic densities of states indicate that interstitial C may have a similar effect as interstitial O on the superconducting transition temperature of Nb.« less

  3. Asymmetric Carbon–Carbon Bond Formation γ to a Carbonyl Group: Phosphine-Catalyzed Addition of Nitromethane to Allenes

    PubMed Central

    Smith, Sean W.; Fu, Gregory C.

    2009-01-01

    A chiral phosphine catalyzes the addition of a carbon nucleophile to the γ position of an electron-poor allene (amide-, ester-, or phosphonate-substituted), in preference to isomerization to a 1,3-diene, in good ee and yield. This strategy provides an attractive method for the catalytic asymmetric γ functionalization of carbonyl (and related) compounds. PMID:19772285

  4. The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils

    Treesearch

    Daniela F. Cusack; Margaret S. Torn; William H. McDowell; Whendee L. Silver

    2010-01-01

    Nitrogen (N) deposition is projected to increase significantly in tropical regions in the coming decades, where changes in climate are also expected. Additional N and warming each have the potential to alter soil carbon (C) storage via changes in microbial activity and decomposition, but little is known about the combined effects of these global change factors in...

  5. Spin-orbit coupling manipulating composite topological spin textures in atomic-molecular Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Fei; Juzeliūnas, Gediminas; Liu, W. M.

    2017-02-01

    Atomic-molecular Bose-Einstein condensates (BECs) offer brand new opportunities to revolutionize quantum gases and probe the variation of fundamental constants with unprecedented sensitivity. The recent realization of spin-orbit coupling (SOC) in BECs provides a new platform for exploring completely new phenomena unrealizable elsewhere. In this study, we find a way of creating a Rashba-Dresselhaus SOC in atomic-molecular BECs by combining the spin-dependent photoassociation and Raman coupling, which can control the formation and distribution of a different type of topological excitation—carbon-dioxide-like skyrmion. This skyrmion is formed by two half-skyrmions of molecular BECs coupling with one skyrmion of atomic BECs, where the two half-skyrmions locate at both sides of one skyrmion. Carbon-dioxide-like skyrmion can be detected by measuring the vortices structures using the time-of-flight absorption imaging technique in real experiments. Furthermore, we find that SOC can effectively change the occurrence of the Chern number in k space, which causes the creation of topological spin textures from some separated carbon-dioxide-like monomers each with topological charge -2 to a polymer chain of the skyrmions. This work helps in creating dual SOC atomic-molecular BECs and opens avenues to manipulate topological excitations.

  6. Synthesis and characterization of grafting polystyrene from guar gum using atom transfer radical addition.

    PubMed

    Yang, Yang; Chen, Fu; Chen, Qi; He, Jie; Bu, Tao; He, Xuemei

    2017-11-15

    To broaden the application fields for guar gum, this natural polymer is often grafted to/from the surface to modify its properties. Polystyrene-guar gum (PS-guar gum) is successfully synthesized using atom transfer radical addition based n-BuBr(C 4 H 9 Br), Cu(I)Cl and N,N,N',N″,N‴-penthamethyldiethylenetriamine (C 9 H 23 N 3 ,PMDETA) as initiator, electronating agent and ligand respectively in an inert atmosphere. The graft copolymer is characterized by FT-IR, 1 H NMR, XRD and scanning electron microscope (SEM). The results show that styrene is successfully introduced onto guar gum and particles of PS-guar gum adopt a disordered morphology with diameters of 100nm, and PS-guar gum are largely amorphous with poor crystallinity. Besides, add on shows an increasing trend on increasing the concentration of PS. Swelling behavior, hydrophobicity and thermal stability of PS-guar gum indicate that PS-guar gum has great thickening capacity and thermal stability. Nevertheless, modification of guar gum via ATRA truly is convenient to industrial production since facilitating the manufacturing process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Nanostructural characterization of amorphous diamondlike carbon films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SIEGAL,MICHAEL P.; TALLANT,DAVID R.; MARTINEZ-MIRANDA,L.J.

    2000-01-27

    Nanostructural characterization of amorphous diamondlike carbon (a-C) films grown on silicon using pulsed-laser deposition (PLD) is correlated to both growth energetic and film thickness. Raman spectroscopy and x-ray reflectivity probe both the topological nature of 3- and 4-fold coordinated carbon atom bonding and the topographical clustering of their distributions within a given film. In general, increasing the energetic of PLD growth results in films becoming more ``diamondlike'', i.e. increasing mass density and decreasing optical absorbance. However, these same properties decrease appreciably with thickness. The topology of carbon atom bonding is different for material near the substrate interface compared to materialmore » within the bulk portion of an a-C film. A simple model balancing the energy of residual stress and the free energies of resulting carbon topologies is proposed to provide an explanation of the evolution of topographical bonding clusters in a growing a-C film.« less

  8. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel.

    PubMed

    Gao, Shan; Lin, Yue; Jiao, Xingchen; Sun, Yongfu; Luo, Qiquan; Zhang, Wenhua; Li, Dianqi; Yang, Jinlong; Xie, Yi

    2016-01-07

    Electroreduction of CO2 into useful fuels, especially if driven by renewable energy, represents a potentially 'clean' strategy for replacing fossil feedstocks and dealing with increasing CO2 emissions and their adverse effects on climate. The critical bottleneck lies in activating CO2 into the CO2(•-) radical anion or other intermediates that can be converted further, as the activation usually requires impractically high overpotentials. Recently, electrocatalysts based on oxide-derived metal nanostructures have been shown to enable CO2 reduction at low overpotentials. However, it remains unclear how the electrocatalytic activity of these metals is influenced by their native oxides, mainly because microstructural features such as interfaces and defects influence CO2 reduction activity yet are difficult to control. To evaluate the role of the two different catalytic sites, here we fabricate two kinds of four-atom-thick layers: pure cobalt metal, and co-existing domains of cobalt metal and cobalt oxide. Cobalt mainly produces formate (HCOO(-)) during CO2 electroreduction; we find that surface cobalt atoms of the atomically thin layers have higher intrinsic activity and selectivity towards formate production, at lower overpotentials, than do surface cobalt atoms on bulk samples. Partial oxidation of the atomic layers further increases their intrinsic activity, allowing us to realize stable current densities of about 10 milliamperes per square centimetre over 40 hours, with approximately 90 per cent formate selectivity at an overpotential of only 0.24 volts, which outperforms previously reported metal or metal oxide electrodes evaluated under comparable conditions. The correct morphology and oxidation state can thus transform a material from one considered nearly non-catalytic for the CO2 electroreduction reaction into an active catalyst. These findings point to new opportunities for manipulating and improving the CO2 electroreduction properties of metal systems

  9. Mechanism of wiggling enhancement due to HBr gas addition during amorphous carbon etching

    NASA Astrophysics Data System (ADS)

    Kofuji, Naoyuki; Ishimura, Hiroaki; Kobayashi, Hitoshi; Une, Satoshi

    2015-06-01

    The effect of gas chemistry during etching of an amorphous carbon layer (ACL) on wiggling has been investigated, focusing especially on the changes in residual stress. Although the HBr gas addition reduces critical dimension loss, it enhances the surface stress and therefore increases wiggling. Attenuated total reflectance Fourier transform infrared spectroscopy revealed that the increase in surface stress was caused by hydrogenation of the ACL surface with hydrogen radicals. Three-dimensional (3D) nonlinear finite element method analysis confirmed that the increase in surface stress is large enough to cause the wiggling. These results also suggest that etching with hydrogen compound gases using an ACL mask has high potential to cause the wiggling.

  10. Sewage sludge additive

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Mueller, W. A.; Ingham, J. D. (Inventor)

    1980-01-01

    The additive is for a raw sewage treatment process of the type where settling tanks are used for the purpose of permitting the suspended matter in the raw sewage to be settled as well as to permit adsorption of the dissolved contaminants in the water of the sewage. The sludge, which settles down to the bottom of the settling tank is extracted, pyrolyzed and activated to form activated carbon and ash which is mixed with the sewage prior to its introduction into the settling tank. The sludge does not provide all of the activated carbon and ash required for adequate treatment of the raw sewage. It is necessary to add carbon to the process and instead of expensive commercial carbon, coal is used to provide the carbon supplement.

  11. Carbon-Encapsulated WOx Hybrids as Efficient Catalysts for Hydrogen Evolution.

    PubMed

    Jing, Shengyu; Lu, Jiajia; Yu, Guangtao; Yin, Shibin; Luo, Lin; Zhang, Zengsong; Ma, Yanfeng; Chen, Wei; Shen, Pei Kang

    2018-05-29

    Developing non-noble metal catalysts as Pt substitutes, with good activity and stability, remains a great challenge for cost-effective electrochemical evolution of hydrogen. Herein, carbon-encapsulated WO x anchored on a carbon support (WO x @C/C) that has remarkable Pt-like catalytic behavior for the hydrogen evolution reaction (HER) is reported. Theoretical calculations reveal that carbon encapsulation improves the conductivity, acting as an electron acceptor/donor, and also modifies the Gibbs free energy of H* values for different adsorption sites (carbon atoms over the W atom, O atom, WO bond, and hollow sites). Experimental results confirm that WO x @C/C obtained at 900 °C with 40 wt% metal loading has excellent HER activity regarding its Tafel slope and overpotential at 10 and 60 mA cm -2 , and also has outstanding stability at -50 mV for 18 h. Overall, the results and facile synthesis method offer an exciting avenue for the design of cost-effective catalysts for scalable hydrogen generation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Mechanical and Electrical Properties of a Polyimide Film Significantly Enhanced by the Addition of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2005-01-01

    Single-wall carbon nanotubes have been shown to possess a combination of outstanding mechanical, electrical, and thermal properties. The use of carbon nanotubes as an additive to improve the mechanical properties of polymers and/or enhance their thermal and electrical conductivity has been a topic of intense interest. Nanotube-modified polymeric materials could find a variety of applications in NASA missions including large-area antennas, solar arrays, and solar sails; radiation shielding materials for vehicles, habitats, and extravehicular activity suits; and multifunctional materials for vehicle structures and habitats. Use of these revolutionary materials could reduce vehicle weight significantly and improve vehicle performance and capabilities.

  13. Carbon cycling in terrestrial environments: Chapter 17

    USGS Publications Warehouse

    Wang, Yang; Huntington, Thomas G.; Osher, Laurie J.; Wassenaar, Leonard I; Trumbore, Susan E.; Amundson, Ronald; Harden, Jennifer W.; McKnight, Diane M.; Schiff, Sherry L.; Aiken, George R.; Lyons, W. Berry; Aravena, Ramon O.; Baron, Jill S.

    1998-01-01

    This chapter reviews a number of applications of isotopic techniques for the investigation of carbon cycling processes. Carbon dioxide (C02) is an important greenhouse gas. Its concentration in the atmosphere has increased from an estimated 270 ppm at the beginning of the industrial revolution to ∼ 360 ppm at present. Climatic conditions and atmospheric C02 concentration also influence isotopic discrimination during photosynthesis. Natural and anthropogenically induced variations in the carbon isotopic abundance can be exploited to investigate carbon transformations between pools on various time scales. It also discusses one of the isotopes of carbon, the 14C, that is produced in the atmosphere by interactions of cosmic-ray produced neutrons with stable isotopes of nitrogen (N), oxygen (O), and carbon (C), and has a natural abundance in the atmosphere of ∼1 atom 14 C per 1012 atoms 12C. The most important factor affecting the measured 14C ages of soil organic matter is the rate of organic carbon cycling in soils. Differences in the dynamics of soil carbon among different soils or soil horizons will result in different soil organic 14C signatures. As a result, the deviation of the measured 14C age from the true age could differ significantly among different soils or soil horizons.

  14. Irradiated recycled plastic as a concrete additive for improved chemo-mechanical properties and lower carbon footprint.

    PubMed

    Schaefer, Carolyn E; Kupwade-Patil, Kunal; Ortega, Michael; Soriano, Carmen; Büyüköztürk, Oral; White, Anne E; Short, Michael P

    2018-01-01

    Concrete production contributes heavily to greenhouse gas emissions, thus a need exists for the development of durable and sustainable concrete with a lower carbon footprint. This can be achieved when cement is partially replaced with another material, such as waste plastic, though normally with a tradeoff in compressive strength. This study discusses progress toward a high/medium strength concrete with a dense, cementitious matrix that contains an irradiated plastic additive, recovering the compressive strength while displacing concrete with waste materials to reduce greenhouse gas generation. Compressive strength tests showed that the addition of high dose (100kGy) irradiated plastic in multiple concretes resulted in increased compressive strength as compared to samples containing regular, non-irradiated plastic. This suggests that irradiating plastic at a high dose is a viable potential solution for regaining some of the strength that is lost when plastic is added to cement paste. X-ray Diffraction (XRD), Backscattered Electron Microscopy (BSE), and X-ray microtomography explain the mechanisms for strength retention when using irradiated plastic as a filler for cement paste. By partially replacing Portland cement with a recycled waste plastic, this design may have a potential to contribute to reduced carbon emissions when scaled to the level of mass concrete production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The deflection of carbon composite carbon nanotube / graphene using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Kolesnikova, A. S.; Kirillova, I. V.; Kossovich, L. U.

    2018-02-01

    For the first time, the dependence of the bending force on the transverse displacement of atoms in the center of the composite material consisting of graphene and parallel oriented zigzag nanotubes was studied. Mathematical modeling of the action of the needle of the atomic force microscope was carried out using the single-layer armchair carbon nanotube. Armchair nanotubes are convenient for using them as a needle of an atomic force microscope, because their edges are not sharpened (unlike zigzag tubes). Consequently, armchair nanotubes will cause minimal damage upon contact with the investigation object. The geometric parameters of the composite was revealed under the action of the bending force of 6μN.

  16. A measurement of the angular distribution of 5 eV atomic oxygen scattered off a solid surface in earth orbit

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Peters, Palmer N.

    1986-01-01

    The angular distribution of 5 eV atomic oxygen scattered off a polished vitreous carbon surface was measured on a recent Space Shuttle flight. The experimental apparatus was of novel design, completely passive, and used thin silver films as the recording device for oxygen atoms. Most of the incident oxygen was contained in the reflected beam and remained in an active form and probably still atoms. Allowance was made for 12 percent loss of incident atoms which are converted to CO at the carbon surface. The scattered distribution which is wide lobular, peaking 15 deg in the forward direction, shows almost but not quite full accommodation.

  17. Influence of Addition of Carboxyl Functionalized MWCNTs on Performance of Neat and Carbon Fiber Reinforced EPON 862

    DTIC Science & Technology

    2013-05-01

    control system (without CNTs). In addition, storage modulus, glass transition temperature, thermal stability were all improved in MWCNTs modified carbon...curve obtained from Flexural response of different composites (b) variation in flexural properties with the concentration of MWCNTs ...tensile test (b) variation in tensile strength and Young’s modulus with the percentage of MWCNT .... 65 7.4 Fracture morphology of (a) Neat, (b

  18. First-principles investigation of graphitic carbon nitride monolayer with embedded Fe atom

    NASA Astrophysics Data System (ADS)

    Abdullahi, Yusuf Zuntu; Yoon, Tiem Leong; Halim, Mohd Mahadi; Hashim, Md. Roslan; Lim, Thong Leng

    2018-01-01

    Density-functional theory (DFT) calculations with spin-polarized generalized gradient approximation and Hubbard U correction are carried out to investigate the mechanical, structural, electronic and magnetic properties of graphitic heptazine with embedded Fe atom under bi-axial tensile strain and applied perpendicular electric field. It was found that the binding energy of heptazine with embedded Fe atom system decreases as larger tensile strain is applied, while it increases as larger electric field strength is applied. Our calculations also predict a band gap at a peak value of 5% tensile strain but at expense of the structural stability of the system. The band gap open up at 5% tensile strain is due to distortion in the structure caused by the repulsive effect in the cavity between the lone pairs of the edge nitrogen atoms and dxy /dx2 -y2 orbital of Fe atom, forcing the unoccupied pz- orbital is forced to shift toward higher energy. The electronic and magnetic properties of the heptazine with embedded Fe system under perpendicular electric field up to a peak value of 8 V/nm is also well preserved despite an obvious buckled structure. Such properties are desirable for diluted magnetic semiconductors, spintronics, and sensing devices.

  19. Positive and negative contribution to birefringence in a family of carbonates: A Born effective charges analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Qun; Yang, Guang; Hou, Juan

    It is an important topic to investigate the birefringence and reveal the contribution from ions to birefringence because it plays an important role in nonlinear optical materials. In this paper, the birefringence of carbonates with coplanar CO{sub 3} groups were investigated using the first-principles method. The results show that the lead carbonates exhibit relative large birefringence. After detailed investigate the electronic structures, and Born effective charges, the authors find out that anisotropic electron distribution in the CO{sub 3} groups and Pb atoms give positive contribution, while the negative contribution was found from fluorine atoms, meanwhile the Ca, Mg, and Cdmore » atoms give very small contribution to birefringence. - Graphical abstract: Using the DFT and Born effective charges, the birefringence and the contribution of ions were investigated, the positive and negative contribution was found from Pb and F ions, respectively. - Highlights: • Optical properties and Born effective charges of carbonates are investigated. • Lead carbonates exhibit relative large birefringence. • Coplanar CO{sub 3} groups and Pb atoms give positive contribution. • F atoms give negative contribution. • Ca, Mg, and Cd atoms give very small contribution.« less

  20. Massive radius-dependent flow slippage in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Siria, Alessandro; Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Bocquet, Lydéric

    2016-11-01

    Nanofluidics is the frontier where the continuum picture of fluid mechanics confronts the atomic nature of matter. Recent reports indicate that carbon nanotubes exhibit exceptional water transport properties due to nearly frictionless interfaces and this has stimulated interest in nanotube-based membranes for desalination, nano-filtration, and energy harvesting. However, the fundamental mechanisms of water transport inside nanotubes and at water-carbon interfaces remain controversial, as existing theories fail to provide a satisfying explanation for the limited experimental results. We report a study of water jets emerging from single nanotubes made of carbon and boron-nitride materials. Our experiments reveal extensive and radius-dependent surface slippage in carbon nanotubes (CNT). In stark contrast, boron-nitride nanotubes (BNNT), which are crystallographically similar to CNTs but electronically different, exhibit no slippage. This shows that slippage originates in subtle atomic-scale details of the solid-liquid interface. ERC StG - NanoSOFT.

  1. Co-Occurring Atomic Contacts for the Characterization of Protein Binding Hot Spots.

    PubMed

    Liu, Qian; Ren, Jing; Song, Jiangning; Li, Jinyan

    2015-01-01

    A binding hot spot is a small area at a protein-protein interface that can make significant contribution to binding free energy. This work investigates the substantial contribution made by some special co-occurring atomic contacts at a binding hot spot. A co-occurring atomic contact is a pair of atomic contacts that are close to each other with no more than three covalent-bond steps. We found that two kinds of co-occurring atomic contacts can play an important part in the accurate prediction of binding hot spot residues. One is the co-occurrence of two nearby hydrogen bonds. For example, mutations of any residue in a hydrogen bond network consisting of multiple co-occurring hydrogen bonds could disrupt the interaction considerably. The other kind of co-occurring atomic contact is the co-occurrence of a hydrophobic carbon contact and a contact between a hydrophobic carbon atom and a π ring. In fact, this co-occurrence signifies the collective effect of hydrophobic contacts. We also found that the B-factor measurements of several specific groups of amino acids are useful for the prediction of hot spots. Taking the B-factor, individual atomic contacts and the co-occurring contacts as features, we developed a new prediction method and thoroughly assessed its performance via cross-validation and independent dataset test. The results show that our method achieves higher prediction performance than well-known methods such as Robetta, FoldX and Hotpoint. We conclude that these contact descriptors, in particular the novel co-occurring atomic contacts, can be used to facilitate accurate and interpretable characterization of protein binding hot spots.

  2. Co-Occurring Atomic Contacts for the Characterization of Protein Binding Hot Spots

    PubMed Central

    Liu, Qian; Ren, Jing; Song, Jiangning; Li, Jinyan

    2015-01-01

    A binding hot spot is a small area at a protein-protein interface that can make significant contribution to binding free energy. This work investigates the substantial contribution made by some special co-occurring atomic contacts at a binding hot spot. A co-occurring atomic contact is a pair of atomic contacts that are close to each other with no more than three covalent-bond steps. We found that two kinds of co-occurring atomic contacts can play an important part in the accurate prediction of binding hot spot residues. One is the co-occurrence of two nearby hydrogen bonds. For example, mutations of any residue in a hydrogen bond network consisting of multiple co-occurring hydrogen bonds could disrupt the interaction considerably. The other kind of co-occurring atomic contact is the co-occurrence of a hydrophobic carbon contact and a contact between a hydrophobic carbon atom and a π ring. In fact, this co-occurrence signifies the collective effect of hydrophobic contacts. We also found that the B-factor measurements of several specific groups of amino acids are useful for the prediction of hot spots. Taking the B-factor, individual atomic contacts and the co-occurring contacts as features, we developed a new prediction method and thoroughly assessed its performance via cross-validation and independent dataset test. The results show that our method achieves higher prediction performance than well-known methods such as Robetta, FoldX and Hotpoint. We conclude that these contact descriptors, in particular the novel co-occurring atomic contacts, can be used to facilitate accurate and interpretable characterization of protein binding hot spots. PMID:26675422

  3. An intrinsic representation of atomic structure: From clusters to periodic systems

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Tian; Xu, Shao-Gang; Yang, Xiao-Bao; Zhao, Yu-Jun

    2017-10-01

    We have improved our distance matrix and eigen-subspace projection function (EPF) [X.-T. Li et al., J. Chem. Phys. 146, 154108 (2017)] to describe the atomic structure for periodic systems. Depicting the local structure of an atom, the EPF turns out to be invariant with respect to the choices of the unit cell and coordinate frame, leading to an intrinsic representation of the crystal with a set of EPFs of the nontrivial atoms. The difference of EPFs reveals the difference of atoms in local structure, while the accumulated difference between two sets of EPFs can be taken as the distance between configurations. Exemplified with the cases of carbon allotropes and boron sheets, our EPF approach shows exceptional rationality and efficiency to distinguish the atomic structures, which is crucial in structure recognition, comparison, and analysis.

  4. An intrinsic representation of atomic structure: From clusters to periodic systems.

    PubMed

    Li, Xiao-Tian; Xu, Shao-Gang; Yang, Xiao-Bao; Zhao, Yu-Jun

    2017-10-14

    We have improved our distance matrix and eigen-subspace projection function (EPF) [X.-T. Li et al., J. Chem. Phys. 146, 154108 (2017)] to describe the atomic structure for periodic systems. Depicting the local structure of an atom, the EPF turns out to be invariant with respect to the choices of the unit cell and coordinate frame, leading to an intrinsic representation of the crystal with a set of EPFs of the nontrivial atoms. The difference of EPFs reveals the difference of atoms in local structure, while the accumulated difference between two sets of EPFs can be taken as the distance between configurations. Exemplified with the cases of carbon allotropes and boron sheets, our EPF approach shows exceptional rationality and efficiency to distinguish the atomic structures, which is crucial in structure recognition, comparison, and analysis.

  5. Grassland Soil Carbon Responses to Nitrogen Additions

    NASA Astrophysics Data System (ADS)

    Hofmockel, K. S.; Tfailly, M.; Callister, S.; Bramer, L.; Thompson, A.

    2017-12-01

    Using a long-term continental scale experiment, we tested if increases in nitrogen (N) inputs augment the accumulation of plant and microbial residues onto mineral soil surfaces. This research investigates N effects on molecular biogeochemistry across six sites from the Nutrient Network (NutNet) experiment. The coupling between concurrently changing carbon (C) and N cycles remains a key uncertainty in understanding feedbacks between the terrestrial C cycle and climate change. Existing models do not consider the full suite of linked C-N processes, particularly belowground, that could drive future C-climate feedbacks. Soil harbors a wealth of diverse organic molecules, most of which have not been measured in hypothesis driven field research. For the first time we systematically assess the chemical composition of soil organic matter (SOM) and functional characteristics of the soil microbiome, to enhance our understanding of the molecular underpinnings of ecosystem C and N cycling. We have acquired soils from 5 ecosystem experiments across the US that have been subjected to 8 years of N addition treatments. These soils have been analyzed for chemical composition to identify how the soil fertility and stability is altered by N fertilization. We found distinct SOM signatures from our field experiments and shifts in soil chemistry in response to 8 years of N fertilization. Across all sites, we found the molecular composition of SOM varied with clay content, supporting the importance of soil mineralogy in the accumulation of specific chemical classes of SOM. While many molecules were common across sites, we discovered a suite of molecules that were site specific. N fertilization had a significant effect on SOM composition. Differences between control and N amended plots were greater in sites rich in lipids and more complex molecules, compared to sites with SOM rich in amino-sugar and protein like substances. Our results have important implications for how SOM is

  6. Hybrid sp2+sp3 carbon phases created from carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tingaev, M. I.; Belenkov, E. A.

    2017-11-01

    Using the density functional theory in the gradient approximation (DFT-GGA) methods was calculated the geometrically optimized structure and electronic properties for six new hybrid carbon phases. These hybrid phases consists of atoms in three - and four-coordinated (sp2+sp3-hybridized) states. The initial structure of the carbon phases was constructed by partial cross-linking of (8,0) carbon nanotube bundles. Sublimation energies calculated for hybrid phases above the sublimation energy of cubic diamond, however, fall into the range of values typical for carbon materials, which are stable under normal conditions. The density of electronic states at the Fermi energy for the two phases is non-zero and these phases should have metallic properties. The other hybrid phases should be semiconductors with a band gap from 0.5 to 1.1 eV.

  7. Structural Evolution of Electrochemically Lithiated MoS2 Nanosheets and the Role of Carbon Additive in Li-Ion Batteries

    PubMed Central

    2016-01-01

    Understanding the structure and phase changes associated with conversion-type materials is key to optimizing their electrochemical performance in Li-ion batteries. For example, molybdenum disulfide (MoS2) offers a capacity up to 3-fold higher (∼1 Ah/g) than the currently used graphite anodes, but they suffer from limited Coulombic efficiency and capacity fading. The lack of insights into the structural dynamics induced by electrochemical conversion of MoS2 still hampers its implementation in high energy-density batteries. Here, by combining ab initio density-functional theory (DFT) simulation with electrochemical analysis, we found new sulfur-enriched intermediates that progressively insulate MoS2 electrodes and cause instability from the first discharge cycle. Because of this, the choice of conductive additives is critical for the battery performance. We investigate the mechanistic role of carbon additive by comparing equal loading of standard Super P carbon powder and carbon nanotubes (CNTs). The latter offer a nearly 2-fold increase in capacity and a 45% reduction in resistance along with Coulombic efficiency of over 90%. These insights into the phase changes during MoS2 conversion reactions and stabilization methods provide new solutions for implementing cost-effective metal sulfide electrodes, including Li–S systems in high energy-density batteries. PMID:27818575

  8. Novel silicon-carbon fullerene-like nanostructures: an Ab initio study on the stability of Si54C6 and Si60C6 clusters.

    PubMed

    Srinivasan, Aravind; Ray, Asok K

    2006-01-01

    Silicon fullerene like nanostructures with six carbon atoms on the surface of Si60 cages by substitution, as well as inside the cage at various symmetry orientations have been studied within the generalized gradient approximation to density functional theory. Full geometry optimizations have been performed without any symmetry constraints using the Gaussian 03 suite of programs and the LANL2DZ basis set. Thus, for the silicon atom, the Hay-Wadt pseudopotential with the associated basis set are used for the core electrons and the valence electrons, respectively. For the carbon atom, the Dunning/Huzinaga double zeta basis set is employed. Electronic and geometric properties of the nanostructures are presented and discussed in detail. It was found that optimized silicon-carbon fullerene like nanostructures have increased stability compared to bare Si60 cage and the stability depends on the orientation of carbon atoms, as well as on the nature of bonding between silicon and carbon atoms and also on the carbon-carbon bonding.

  9. X-ray diffraction analysis of LiCu2O2 crystals with additives of silver atoms

    NASA Astrophysics Data System (ADS)

    Sirotinkin, V. P.; Bush, A. A.; Kamentsev, K. E.; Dau, H. S.; Yakovlev, K. A.; Tishchenko, E. A.

    2015-09-01

    Silver-containing LiCu2O2 crystals up to 4 × 8 × 8 mm in size were grown by the crystallization of 80(1- x)CuO · 20 x AgNO3 · 20Li2CO3 (0 ≤ х ≤ 0.5) mixture melt. According to the X-ray spectral and Rietveld X-ray diffraction data, the maximum amount of silver incorporated in the LiCu2O2 structure is about 4 at % relative to the copper content. It was established that silver atoms occupy statistically crystallographic positions of lithium atoms. The incorporation of silver atoms is accompanied by a noticeable increase in parameter с of the LiCu2O2 rhombic unit cell, a slight increase in parameter а, and a slight decrease in parameter b.

  10. Sediment Tracking Using Carbon and Nitrogen Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Fox, J. F.; Papanicolaou, A.

    2002-12-01

    As landscapes are stripped of valuable, nutrient rich topsoils and streams are clouded with habitat degrading fine sediment, it becomes increasingly important to identify and mitigate erosive surfaces. Particle tracking using vegetative derived carbon (C) and nitrogen (N) isotopic signatures and carbon/nitrogen (C/N) atomic ratios offer a promising technique to identify such problematic sources. Consultants and researchers successfully use C, N, and other stable isotopes of water for hydrologic purposes, such as quantifying groundwater vs. surface water contribution to a hydrograph. Recently, C and N isotopes and C/N atomic ratios of sediment were used to determine sediment mass balance within estuarine environments. The current research investigates C and N isotopes and C/N atomic ratios of source sediment for two primary purposes: (1) to establish a blueprint methodology for estimating sediment source and erosion rates within a watershed using this isotopic technology coupled with mineralogy fingerprinting techniques, radionuclide transport monitoring, and erosion-transport models, and (2) to complete field studies of upland erosion processes, such as, solifluction, mass wasting, creep, fluvial erosion, and vegetative induced erosion. Upland and floodplain sediment profiles and riverine suspended sediment were sampled on two occasions, May 2002 and August 2002, in the upper Palouse River watershed of northern Idaho. Over 300 samples were obtained from deep intermountain valley (i.e. forest) and rolling crop field (i.e. agriculture) locations. Preliminary sample treatment was completed at the Washington State University Water Quality Laboratory where samples were dried, removed of organic constituents, and prepared for isotopic analysis. C and N isotope and C/N atomic ratio analyses was performed at the University of Idaho Natural Resources Stable Isotope Laboratory using a Costech 4010 Elemental Combustion System connected with a continuous flow inlet system to

  11. The Deformations of Carbon Nanotubes under Cutting.

    PubMed

    Deng, Jue; Wang, Chao; Guan, Guozhen; Wu, Hao; Sun, Hong; Qiu, Longbin; Chen, Peining; Pan, Zhiyong; Sun, Hao; Zhang, Bo; Che, Renchao; Peng, Huisheng

    2017-08-22

    The determination of structural evolution at the atomic level is essential to understanding the intrinsic physics and chemistries of nanomaterials. Mechanochemistry represents a promising method to trace structural evolution, but conventional mechanical tension generates random breaking points, which makes it unavailable for effective analysis. It remains difficult to find an appropriate model to study shear deformations. Here, we synthesize high-modulus carbon nanotubes that can be cut precisely, and the structural evolution is efficiently investigated through a combination of geometry phase analysis and first-principles calculations. The lattice fluctuation depends on the anisotropy, chirality, curvature, and slicing rate. The strain distribution further reveals a plastic breaking mechanism for the conjugated carbon atoms under cutting. The resulting sliced carbon nanotubes with controllable sizes and open ends are promising for various applications, for example, as an anode material for lithium-ion batteries.

  12. Effect of atomizer scale and fluid properties on atomization mechanisms and spray characteristics

    NASA Astrophysics Data System (ADS)

    Waind, Travis

    Atomization is chaos. The breakup of liquid structures by a gas encompasses such a wide range of possible configurations that a definitive mechanism describing breakup in any and all situations is an impossibility. However, when focus is applied, trends can be teased out of experimental data that seem to appropriately describe the action undertaken. These studies sought to better understand atomization, specifically coaxial, two-stream, airblast (or air-assist) atomization in which a central liquid jet is broken up by an annular, high-velocity gas stream. The studies enclosed focused on identifying the effect of changing the atomizer's scale on atomization. While most (but not all) atomization studies only focus on the resulting far-field drop diameters, these studies placed the focus largely on the intermediate structures, in the form of the intact liquid jet (ILJ), while also quantifying the resulting drop diameters. The location and shape of the ILJ constantly change, and on its surface, wavelengths were seen to form and grow, which have been correlated to the resulting drop diameters in previous studies. The studies enclosed herein are unique in that they attempt to apply and explain exiting mechanism-based breakup mechanisms to regimes, fluids, and geometry changes not yet evaluated in the literature. Existing correlations were compared to the experimental data for a range of atomizer geometries, and when they were found lacking, Buckingham-(Pi) theorem was used to develop new correlations for predicting behavior. Additionally, the method developed for the calculation of these parameters for other image sets is included, allowing for easy comparison and value verification. A small-scale, coaxial atomization system was used to atomize water and two silicone oils with air. The atomizers used in these studies had the same general geometry type, but had varying sizes, allowing for the effect of both scale and geometry to be evaluated. These studies quantified

  13. HOMO-LUMO analysis of multi walled carbon nanotubes doped Tetrafluoro Phthalate crystals for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Latha, B.; Kumaresan, P.; Nithiyanantham, S.; Sampathkumar, K.

    2018-01-01

    The MWCNTs doped Tetrafluoro Phthalate (C6H2F4O4) precious stones are constantly having higher transmission rate contrasted with immaculate Tetrafluoro Phthalate crystal. The dependability of Tetrafluoro Phthalate crystal was enhanced by doping MWCNTs.The basic, synthetic, optical, mechanical and non-direct optical properties of the doped precious crystals were dissected with the portrayal concentrates, for example, powder XRD, FT-IR, UV-Visible, Hardness and SHG estimations individually. The dopants are relied upon to substitute the carbon iotas in the Tetrafluoro Phthalate grid because of their change of valency and in addition vicinity of ionic sweep. The strength and charge delocalization of the particle were additionally concentrated on by characteristic security orbital (NBO) examination. The HOMO-LUMO energies depict the charge exchange happens inside the atom. Atomic electrostatic potential has been dissected. The SHG productivity of the immaculate and colors doped TFP crystals were additionally contemplated utilizing Nd:YAG Q-exchanged laser.

  14. Resonance of an unshared electron pair between two atoms connected by a single bond

    PubMed Central

    Pauling, Linus

    1983-01-01

    The reported structure of the dimer of a compound of bicovalent tin indicates that the tin-tin bond is of a new type. It can be described as involving resonance between two structures in which there is transfer of an electron pair from one tin atom to the other. The tin atoms are connected by a single covalent bond (each also forms two covalent bonds with carbon atoms), and an unshared electron pair resonates between the fourth sp3 orbitals of the two atoms. Similar structures probably occur in digermene and distannene. PMID:16593329

  15. Tungsten devices in analytical atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Hou, Xiandeng; Jones, Bradley T.

    2002-04-01

    Tungsten devices have been employed in analytical atomic spectrometry for approximately 30 years. Most of these atomizers can be electrically heated up to 3000 °C at very high heating rates, with a simple power supply. Usually, a tungsten device is employed in one of two modes: as an electrothermal atomizer with which the sample vapor is probed directly, or as an electrothermal vaporizer, which produces a sample aerosol that is then carried to a separate atomizer for analysis. Tungsten devices may take various physical shapes: tubes, cups, boats, ribbons, wires, filaments, coils and loops. Most of these orientations have been applied to many analytical techniques, such as atomic absorption spectrometry, atomic emission spectrometry, atomic fluorescence spectrometry, laser excited atomic fluorescence spectrometry, metastable transfer emission spectroscopy, inductively coupled plasma optical emission spectrometry, inductively coupled plasma mass spectrometry and microwave plasma atomic spectrometry. The analytical figures of merit and the practical applications reported for these techniques are reviewed. Atomization mechanisms reported for tungsten atomizers are also briefly summarized. In addition, less common applications of tungsten devices are discussed, including analyte preconcentration by adsorption or electrodeposition and electrothermal separation of analytes prior to analysis. Tungsten atomization devices continue to provide simple, versatile alternatives for analytical atomic spectrometry.

  16. New insights into canted spiro carbon interstitial in graphite

    NASA Astrophysics Data System (ADS)

    EL-Barbary, A. A.

    2017-12-01

    The self-interstitial carbon is the key to radiation damage in graphite moderator nuclear reactor, so an understanding of its behavior is essential for plant safety and maximized reactor lifetime. The density functional theory is applied on four different graphite unit cells, starting from of 64 carbon atoms up to 256 carbon atoms, using AIMPRO code to obtain the energetic, athermal and mechanical properties of carbon interstitial in graphite. This study presents first principles calculations of the energy of formation that prove its high barrier to athermal diffusion (1.1 eV) and the consequent large critical shear stress (39 eV-50 eV) necessary to shear graphite planes in its presence. Also, for the first time, the gamma surface of graphite in two dimensions is calculated and found to yield the critical shear stress for perfect graphite. Finally, in contrast to the extensive literature describing the interstitial of carbon in graphite as spiro interstitial, in this work the ground state of interstitial carbon is found to be canted spiro interstitial.

  17. Synthesis of nitrogen-containing carbon by solution plasma in aniline with high-repetition frequency discharges

    NASA Astrophysics Data System (ADS)

    Hyun, Koangyong; Ueno, Tomonaga; Saito, Nagahiro

    2016-01-01

    Nitrogen-containing carbon nanoparticles were synthesized in aniline by solution plasma with high-repetition frequency discharges. We developed a bipolar pulsed power supply that can apply high-repetition frequencies ranging from 25 to 200 kHz. By utilizing high-repetition frequencies, conductive carbons were directly synthesized. The crystallinity was increased and H/C ratio of carbon was decreased. Furthermore, nitrogen atoms were simultaneously embedded in the carbon matrix. Due to the presence of nitrogen atoms, the conductivity and electrocatalytic activity of the samples were remarkably improved compared to that of a pure carbon matrix synthesized from a benzene precursor.

  18. Structural, electronic and magnetic properties of carbon doped boron nitride nanowire: Ab initio study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalilian, Jaafar, E-mail: JaafarJalilian@gmail.com; Kanjouri, Faramarz, E-mail: kanjouri@khu.ac.ir

    2016-11-15

    Using spin-polarized density functional theory calculations, we demonstrated that carbon doped boron nitride nanowire (C-doped BNNW) has diverse electronic and magnetic properties depending on position of carbon atoms and their percentages. Our results show that only when one carbon atom is situated on the edge of the nanowire, C-doped BNNW is transformed into half-metal. The calculated electronic structure of the C-doped BNNW suggests that doping carbon can induce localized edge states around the Fermi level, and the interaction among localized edge states leads to semiconductor to half-metal transition. Overall, the bond reconstruction causes of appearance of different electronic behavior suchmore » as semiconducting, half-metallicity, nonmagnetic metallic, and ferromagnetic metallic characters. The formation energy of the system shows that when a C atom is doped on surface boron site, system is more stable than the other positions of carbon impurity. Our calculations show that C-doped BNNW may offer unique opportunities for developing nanoscale spintronic materials.« less

  19. The potentials and challenges of electron microscopy in the study of atomic chains

    NASA Astrophysics Data System (ADS)

    Banhart, Florian; Torre, Alessandro La; Romdhane, Ferdaous Ben; Cretu, Ovidiu

    2017-04-01

    The article is a brief review on the potential of transmission electron microscopy (TEM) in the investigation of atom chains which are the paradigm of a strictly one-dimensional material. After the progress of TEM in the study of new two-dimensional materials, microscopy of free-standing one-dimensional structures is a new challenge with its inherent potentials and difficulties. In-situ experiments in the TEM allowed, for the first time, to generate isolated atomic chains consisting of metals, carbon or boron nitride. Besides having delivered a solid proof for the existence of atomic chains, in-situ TEM studies also enabled us to measure the electrical properties of these fundamental linear structures. While ballistic quantum conductivity is observed in chains of metal atoms, electrical transport in chains of sp1-hybridized carbon is limited by resonant states and reflections at the contacts. Although substantial progress has been made in recent TEM studies of atom chains, fundamental questions have to be answered, concerning the structural stability of the chains, bonding states at the contacts, and the suitability for applications in nanotechnology. Contribution to the topical issue "The 16th European Microscopy Congress (EMC 2016)", edited by Richard Brydson and Pascale Bayle-Guillemaud

  20. Effect of a nano-sized TiC particle addition on the flow-assisted corrosion resistance of SA 106B carbon steel

    NASA Astrophysics Data System (ADS)

    Park, Jin-Ju; Park, Eun-Kwang; Lee, Gyoung-Ja; Rhee, Chang-Kyu; Lee, Min-Ku

    2017-09-01

    Carbon steel with dispersed nano-sized TiC ceramic particles was fabricated by the ex-situ introduction of the particles into the melt, with the flow-assisted corrosion (FAC) resistance then investigated in the presence and absence of TiC nanoparticles using a once-through type of FAC loop test. From the potentiodynamic polarization curves, the current density at any given anodic potential was decreased and the open-circuit potential was increased by the addition of TiC nanoparticles. In addition, when the nano-sized TiC particles were added, the FAC rate was 1.38 times lower than that of carbon steel without TiC nanoparticles, indicating an improvement of the FAC resistance due to the homogeneous distribution of the TiC reinforcing nanoparticles.

  1. Enantioselective construction of quaternary stereogenic carbon atoms by the Lewis base catalyzed additions of silyl ketene imines to aldehydes.

    PubMed

    Denmark, Scott E; Wilson, Tyler W; Burk, Matthew T

    2014-07-21

    Silyl ketene imines derived from a variety of α-branched nitriles have been developed as highly useful reagents for the construction of quaternary stereogenic centers via the aldol addition reaction. In the presence of SiCl4 and the catalytic action of a chiral phosphoramide, silyl ketene imines undergo extremely rapid and high yielding addition to a wide variety of aromatic aldehydes with excellent diastereo- and enantioselectivity. Of particular note are the high yields and selectivities obtained from electron-rich, electron-poor, and hindered aldehydes. Linear aliphatic aldehydes did react with good diastereo- and enantioselectivity in the presence of nBu4N(+)I(-), but branched aldehydes were much less reactive. Semiempirical calculations provided a rationalization of the observed diastereo- and enantioselectivity via open transitions states. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Carbon diffusion in bulk hcp zirconium: A multi-scale approach

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Roques, J.; Domain, C.; Simoni, E.

    2016-05-01

    In the framework of the geological repository of the used fuel claddings of pressurized water reactor, carbon behavior in bulk zirconium is studied by periodic Density Functional Theory calculations. The C interstitial sites were investigated and it was found that there are two possible carbon interstitial sites: a distorted basal tetragonal site and an octahedral site. There are four types of possible atomic jumps between them. After calculating the migration energies, the attempt frequencies and the jump probabilities for each possible migration path, kinetic Monte Carlo (KMC) simulations were performed to simulate carbon diffusion at the macroscopic scale. The results show that carbon diffusion in pure Zr bulk is extremely limited at the storage temperature (50 °C). Since there are defects in Zr bulk, in a second step, the effect of atomic vacancy was studied and it was proved that vacancies cannot increase carbon diffusion.

  3. Conductance Oscillations in Squashed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Mehrez, H.; Anantram, M. P.; Svizhenko, A.

    2003-01-01

    A combination of molecular dynamics and electrical conductance calculations are used to probe the electromechanical properties of squashed metallic carbon nanotubes. We find that the conductance and bandgap of armchair nanotubes show oscillations upon squashing. The physical origin of these oscillations is attributed to interaction of carbon atoms with a fourth neighbor. Squashing of armchair and zigzag nanotubes ultimately leads to metallic behavior.

  4. Variation of mechanical property of single-walled carbon nanotubes-treated cells explored by atomic force microscopy.

    PubMed

    Dulińska-Molak, Ida; Mao, Hongli; Kawazoe, Naoki; Chen, Guoping

    2014-04-01

    With a range of biological properties, single-walled carbon nanotubes (SWCNTs) are a promising material for nanobiotechnology. Concerns about their potential effect on human health have led to the interest in understanding the interaction between SWCNTs and cells. There are many reports showing the potential cellular effects of SWCNTs but this issue is quite controversially discussed in the literature. In this study, we used conventional biological evaluation methods and atomic force microscopy (AFM) to compare the effects of SWCNTs on three different cell types: bovine articular chondrocytes, human bone marrow-derived mesenchymal stem cells and HeLa cells. No obvious effects of SWCNTs on cell morphology and viability were observed during 3 days in vitro culture. However, SWCNTs significantly increased the Young's modulus of all the three types of cells. The effect of SWCNTs on Young's modulus was in an increasing order of Hela cells < chondrocytes < mesenchymal stem cells. AFM was shown to be a useful tool for investigation of the effect of nanomaterials on mechanical property of cells.

  5. Synthesis of empagliflozin, a novel and selective sodium-glucose co-transporter-2 inhibitor, labeled with carbon-14 and carbon-13.

    PubMed

    Hrapchak, Matt; Latli, Bachir; Wang, Xiao-Jun; Lee, Heewon; Campbell, Scot; Song, Jinhua J; Senanayake, Chris H

    2014-10-01

    Empagliflozin, (2S,3R,4R,5S,6R)-2-[4-chloro-3-[[4-[(3S)-oxolan-3-yl]oxyphenyl]methyl]phenyl]-6-(hydroxymethyl)oxane-3,4,5-triol was recently approved by the FDA for the treatment of chronic type 2 diabetes mellitus. Herein, we report the synthesis of carbon-13 and carbon-14 labeled empagliflozin. Carbon-13 labeled empagliflozin was prepared in five steps and in 34% overall chemical yield starting from the commercially available α-D-glucose-[(13)C6]. For the radiosynthesis, the carbon-14 atom was introduced in three different positions of the molecule. In the first synthesis, Carbon-14 D-(+)-gluconic acid δ-lactone was used to prepare specifically labeled empagliflozin in carbon-1 of the sugar moiety in four steps and in 19% overall radiochemical yield. Carbon-14 labeled empagliflozin with the radioactive atom in the benzylic position was obtained in eight steps and in 7% overall radiochemical yield. In the last synthesis carbon-14 uniformly labeled phenol was used to give [(14)C]empagliflozin in eight steps and in 18% overall radiochemical yield. In all these radiosyntheses, the specific activities of the final compounds were higher than 53 mCi/mmol, and the radiochemical purities were above 98.5%. Copyright © 2014 John Wiley & Sons, Ltd.

  6. HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy.

    PubMed

    Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F

    2015-12-01

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (<20 nm), tips display a curved surface and a significantly larger thickness. As far as a correlative approach aims at analysing the same specimen by both techniques, it is mandatory to explore the limits and advantages imposed by the particular geometry of atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Interactions of C+(2PJ) with rare gas atoms: incipient chemical interactions, potentials and transport coefficients

    NASA Astrophysics Data System (ADS)

    Tuttle, William D.; Thorington, Rebecca L.; Viehland, Larry A.; Breckenridge, W. H.; Wright, Timothy G.

    2018-03-01

    Accurate interatomic potentials were calculated for the interaction of a singly charged carbon cation, C+, with a single rare gas atom, RG (RG = Ne-Xe). The RCCSD(T) method and basis sets of quadruple-ζ and quintuple-ζ quality were employed; each interaction energy was counterpoise corrected and extrapolated to the basis set limit. The lowest C+(2P) electronic term of the carbon cation was considered, and the interatomic potentials calculated for the diatomic terms that arise from these: 2Π and 2Σ+. Additionally, the interatomic potentials for the respective spin-orbit levels were calculated, and the effect on the spectroscopic parameters was examined. In doing this, anomalously large spin-orbit splittings for RG = Ar-Xe were found, and this was investigated using multi-reference configuration interaction calculations. The latter indicated a small amount of RG → C+ electron transfer and this was used to rationalize the observations. This is taken as evidence of an incipient chemical interaction, which was also examined via contour plots, Birge-Sponer plots and various population analyses across the C+-RG series (RG = He-Xe), with the latter showing unexpected results. Trends in several spectroscopic parameters were examined as a function of the increasing atomic number of the RG atom. Finally, each set of RCCSD(T) potentials was employed, including spin-orbit coupling to calculate the transport coefficients for C+ in RG, and the results were compared with the limited available data. This article is part of the theme issue `Modern theoretical chemistry'.

  8. Graphene as a flexible template for controlling magnetic interactions between metal atoms.

    PubMed

    Lee, Sungwoo; Kim, Dongwook; Robertson, Alex W; Yoon, Euijoon; Hong, Suklyun; Ihm, Jisoon; Yu, Jaejun; Warner, Jamie H; Lee, Gun-Do

    2017-03-01

    Metal-doped graphene produces magnetic moments that have potential application in spintronics. Here we use density function theory computational methods to show how the magnetic interaction between metal atoms doped in graphene can be controlled by the degree of flexure in a graphene membrane. Bending graphene by flexing causes the distance between two substitutional Fe atoms covalently bonded in graphene to gradually increase and these results in the magnetic moment disappearing at a critical strain value. At the critical strain, a carbon atom can enter between the two Fe atoms and blocks the interaction between relevant orbitals of Fe atoms to quench the magnetic moment. The control of interactions between doped atoms by exploiting the mechanical flexibility of graphene is a unique approach to manipulating the magnetic properties and opens up new opportunities for mechanical-magnetic 2D device systems.

  9. Interaction-Free Effects Between Distant Atoms

    NASA Astrophysics Data System (ADS)

    Aharonov, Yakir; Cohen, Eliahu; Elitzur, Avshalom C.; Smolin, Lee

    2018-01-01

    A Gedanken experiment is presented where an excited and a ground-state atom are positioned such that, within the former's half-life time, they exchange a photon with 50% probability. A measurement of their energy state will therefore indicate in 50% of the cases that no photon was exchanged. Yet other measurements would reveal that, by the mere possibility of exchange, the two atoms have become entangled. Consequently, the "no exchange" result, apparently precluding entanglement, is non-locally established between the atoms by this very entanglement. This quantum-mechanical version of the ancient Liar Paradox can be realized with already existing transmission schemes, with the addition of Bell's theorem applied to the no-exchange cases. Under appropriate probabilities, the initially-excited atom, still excited, can be entangled with additional atoms time and again, or alternatively, exert multipartite nonlocal correlations in an interaction free manner. When densely repeated several times, this result also gives rise to the Quantum Zeno effect, again exerted between distant atoms without photon exchange. We discuss these experiments as variants of interaction-free-measurement, now generalized for both spatial and temporal uncertainties. We next employ weak measurements for elucidating the paradox. Interpretational issues are discussed in the conclusion, and a resolution is offered within the Two-State Vector Formalism and its new Heisenberg framework.

  10. Interaction-Free Effects Between Distant Atoms

    NASA Astrophysics Data System (ADS)

    Aharonov, Yakir; Cohen, Eliahu; Elitzur, Avshalom C.; Smolin, Lee

    2017-12-01

    A Gedanken experiment is presented where an excited and a ground-state atom are positioned such that, within the former's half-life time, they exchange a photon with 50% probability. A measurement of their energy state will therefore indicate in 50% of the cases that no photon was exchanged. Yet other measurements would reveal that, by the mere possibility of exchange, the two atoms have become entangled. Consequently, the "no exchange" result, apparently precluding entanglement, is non-locally established between the atoms by this very entanglement. This quantum-mechanical version of the ancient Liar Paradox can be realized with already existing transmission schemes, with the addition of Bell's theorem applied to the no-exchange cases. Under appropriate probabilities, the initially-excited atom, still excited, can be entangled with additional atoms time and again, or alternatively, exert multipartite nonlocal correlations in an interaction free manner. When densely repeated several times, this result also gives rise to the Quantum Zeno effect, again exerted between distant atoms without photon exchange. We discuss these experiments as variants of interaction-free-measurement, now generalized for both spatial and temporal uncertainties. We next employ weak measurements for elucidating the paradox. Interpretational issues are discussed in the conclusion, and a resolution is offered within the Two-State Vector Formalism and its new Heisenberg framework.

  11. Catalytic carbide formation at aluminium-carbon interfaces

    NASA Technical Reports Server (NTRS)

    Maruyama, B.; Rabenberg, L.; Ohuchi, F. S.

    1990-01-01

    X-ray photoelectron spectroscopy investigations of the reaction of several monolayer-thick films of aluminum with glassy carbon substrates are presented. The influence of molecular oxygen and water vapor on the rate of reaction is examined. It is concluded that water vapor catalyzed the formation of aluminum carbide from aluminum and carbon by forming active sites which weakened carbon-carbon bonds at the glassy carbon surface, thus assisting their cleavage. The rate of carbide formation for undosed and molecular oxygen-dosed examples was less as neither metallic aluminum nor oxygen-formed alumina could bond to the carbon atom with sufficient strength to dissociate it quickly.

  12. On diamond, graphitic and amorphous carbons in primitive extraterrestrial solar system materials

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1990-01-01

    Carbon is among the most abundant elements in the universe and carbon chemistry in meteorites and comets is an important key to understanding many Solar System and interstellar processes. Yet, the mineralogical properties and interrelations between various structural forms of elemental carbon remain ambiguous. Crystalline elemental carbons include rhombohedral graphite, hexagonal graphite, cubic diamond, hexagonal diamond (i.e., lonsdaleite or carbon-2H) and chaoite. Elemental carbon also occurs as amorphous carbon and poorly graphitized (or turbostratic) carbon but of all the forms of elemental carbon only graphite is stable under physical conditions that prevail in small Solar System bodies and in the interstellar medium. The recent discovery of cubic diamond in carbonaceous chondrites and hexagonal diamond in chondritic interplanetary dust particles (IDPs) have created a renewed interest in the crystalline elemental carbons that were not formed by shock processes on a parent body. Another technique, Raman spectroscopy, confirms a widespread occurrence of disordered graphite in the Allende carbonaceous chondrite and in chondritic IDPs. Elemental carbons have also been identified by their characteristic K-edge features in electron energy loss spectra (EELS). However, the spectroscopic data do not necessarily coincide with those obtained by selected area electron diffraction (SAED). In order to interpret these data in terms of rational crystalline structures, it may be useful to consider the principles underlying electron diffraction and spectroscopic analyses. Electron diffraction depends on electron scattering, on the type of atom and the distance between atoms in a crystal lattice. Spectroscopic data are a function of the type of atom and the energy of bonds between atoms. Also, SAED is a bulk sampling technique when compared to techniques such as Raman spectroscopy or EELS. Thus, it appears that combined analyses provide contradictory results and that amorphous

  13. Substrate Dependent Ad-Atom Migration on Graphene and the Impact on Electron-Beam Sculpting Functional Nanopores.

    PubMed

    Freedman, Kevin J; Goyal, Gaurav; Ahn, Chi Won; Kim, Min Jun

    2017-05-10

    The use of atomically thin graphene for molecular sensing has attracted tremendous attention over the years and, in some instances, could displace the use of classical thin films. For nanopore sensing, graphene must be suspended over an aperture so that a single pore can be formed in the free-standing region. Nanopores are typically drilled using an electron beam (e-beam) which is tightly focused until a desired pore size is obtained. E-beam sculpting of graphene however is not just dependent on the ability to displace atoms but also the ability to hinder the migration of ad-atoms on the surface of graphene. Using relatively lower e-beam fluxes from a thermionic electron source, the C-atom knockout rate seems to be comparable to the rate of carbon ad-atom attraction and accumulation at the e-beam/graphene interface (i.e., R knockout ≈ R accumulation ). Working at this unique regime has allowed the study of carbon ad-atom migration as well as the influence of various substrate materials on e-beam sculpting of graphene. We also show that this information was pivotal to fabricating functional graphene nanopores for studying DNA with increased spatial resolution which is attributed to atomically thin membranes.

  14. Energy budgeting and carbon footprint of transgenic cotton-wheat production system through peanut intercropping and FYM addition.

    PubMed

    Singh, Raman Jeet; Ahlawat, I P S

    2015-05-01

    Two of the most pressing sustainability issues are the depletion of fossil energy resources and the emission of atmospheric green house gases like carbon dioxide to the atmosphere. The aim of this study was to assess energy budgeting and carbon footprint in transgenic cotton-wheat cropping system through peanut intercropping with using 25-50% substitution of recommended dose of nitrogen (RDN) of cotton through farmyard manure (FYM) along with 100% RDN through urea and control (0 N). To quantify the residual effects of previous crops and their fertility levels, a succeeding crop of wheat was grown with varying rates of nitrogen, viz. 0, 50, 100, and 150 kg ha(-1). Cotton + peanut-wheat cropping system recorded 21% higher system productivity which ultimately helped to maintain higher net energy return (22%), energy use efficiency (12%), human energy profitability (3%), energy productivity (7%), carbon outputs (20%), carbon efficiency (17%), and 11% lower carbon footprint over sole cotton-wheat cropping system. Peanut addition in cotton-wheat system increased the share of renewable energy inputs from 18 to 21%. With substitution of 25% RDN of cotton through FYM, share of renewable energy resources increased in the range of 21% which resulted into higher system productivity (4%), net energy return (5%), energy ratio (6%), human energy profitability (74%), energy productivity (6%), energy profitability (5%), and 5% lower carbon footprint over no substitution. The highest carbon footprint (0.201) was recorded under control followed by 50 % substitution of RDN through FYM (0.189). With each successive increase in N dose up to 150 kg N ha(-1) to wheat, energy productivity significantly reduced and share of renewable energy inputs decreased from 25 to 13%. Application of 100 kg N ha(-1) to wheat maintained the highest grain yield (3.71 t ha(-1)), net energy return (105,516 MJ ha(-1)), and human energy profitability (223.4) over other N doses applied to wheat

  15. Transformation of Graphitic and Amorphous Carbon Dust to Complex Organic Molecules in a Massive Carbon Cycle in Protostellar Nebulae

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    More than 95% of silicate minerals and other oxides found in meteorites were melted, or vaporized and recondensed in the Solar Nebula prior to their incorporation into meteorite parent bodies. Gravitational accretion energy and heating via radioactive decay further transformed oxide minerals accreted into planetesimals. In such an oxygen-rich environment the carbonaceous dust that fell into the nebula as an intimate mixture with oxide grains should have been almost completely converted to CO. While some pre-collapse, molecular-cloud carbonaceous dust does survive, much in the same manner as do pre-solar oxide grains, such materials constitute only a few percent of meteoritic carbon and are clearly distinguished by elevated D/H, N-15/N-16, C-13/C-12 ratios or noble gas patterns. Carbonaceous Dust in Meteorites: We argue that nearly all of the carbon in meteorites was synthesized in the Solar Nebula from CO and that this CO was generated by the reaction of carbonaceous dust with solid oxides, water or OH. It is probable that some fraction of carbonaceous dust that is newly synthesized in the Solar Nebula is also converted back into CO by additional thermal processing. CO processing might occur on grains in the outer nebula through irradiation of CO-containing ice coatings or in the inner nebula via Fischer-Tropsch type (FTT) reactions on grain surfaces. Large-scale transport of both gaseous reaction products and dust from the inner nebula out to regions where comets formed would spread newly formed carbonaceous materials throughout the solar nebula. Formation of Organic Carbon: Carbon dust in the ISM might easily be described as inorganic graphite or amorphous carbon, with relatively low structural abundances of H, N, O and S . Products of FTT reactions or organics produced via irradiation of icy grains contain abundant aromatic and aliphatic hydrocarbons. aldehydes, keytones, acids, amines and amides.. The net result of the massive nebular carbon cycle is to convert

  16. Evaluation of carbon nanotube probes in critical dimension atomic force microscopes.

    PubMed

    Choi, Jinho; Park, Byong Chon; Ahn, Sang Jung; Kim, Dal-Hyun; Lyou, Joon; Dixson, Ronald G; Orji, Ndubuisi G; Fu, Joseph; Vorburger, Theodore V

    2016-07-01

    The decreasing size of semiconductor features and the increasing structural complexity of advanced devices have placed continuously greater demands on manufacturing metrology, arising both from the measurement challenges of smaller feature sizes and the growing requirement to characterize structures in more than just a single critical dimension. For scanning electron microscopy, this has resulted in increasing sophistication of imaging models. For critical dimension atomic force microscopes (CD-AFMs), this has resulted in the need for smaller and more complex tips. Carbon nanotube (CNT) tips have thus been the focus of much interest and effort by a number of researchers. However, there have been significant issues surrounding both the manufacture and use of CNT tips. Specifically, the growth or attachment of CNTs to AFM cantilevers has been a challenge to the fabrication of CNT tips, and the flexibility and resultant bending artifacts have presented challenges to using CNT tips. The Korea Research Institute for Standards and Science (KRISS) has invested considerable effort in the controlled fabrication of CNT tips and is collaborating with the National Institute of Standards and Technology on the application of CNT tips for CD-AFM. Progress by KRISS on the precise control of CNT orientation, length, and end modification, using manipulation and focused ion beam processes, has allowed us to implement ball-capped CNT tips and bent CNT tips for CD-AFM. Using two different generations of CD-AFM instruments, we have evaluated these tip types by imaging a line/space grating and a programmed line edge roughness specimen. We concluded that these CNTs are capable of scanning the profiles of these structures, including re-entrant sidewalls, but there remain important challenges to address. These challenges include tighter control of tip geometry and careful optimization of scan parameters and algorithms for using CNT tips.

  17. Additive interaction of carbon dots extracted from soluble coffee and biogenic silver nanoparticles against bacteria

    NASA Astrophysics Data System (ADS)

    Andrade, Patricia F.; Nakazato, Gerson; Durán, Nelson

    2017-06-01

    It is known the presence of carbon dots (CDs) in carbohydrate based foods. CDs extracted from coffee grounds and instant coffee was also published. CDs from soluble coffee revealed an average size of 4.4 nm. CDs were well-dispersed in water, fluorescent and we have characterized by XPS, XRD analysis, fluorescence and by FTIR spectra. The MIC value by serial micro-dilution assays for CDs on S. aureus ATCC 25923 was 250 μg/mL and E. coli ATCC 25922 >1000 ug/mL. For silver nanoparticles biogenically synthesized was 6.7 μg/mL. Following the checkerboard assay with combining ½ MIC values of the MICs of 125 μg/mL of carbon dots and 3.4 μg/mL of silver nanoparticles, following the fractionated inhibitory concentration (FIC) index methodology, on S. aureus gave a fractionated inhibitory concentration (FIC) value of 1.0, meaning additive interaction. In general, the unfunctionalized CDs showed to be inefficient as antibacterial compounds, however the CDs extracted from Coffee powder and together silver nanoparticles appeared interesting as antibacterial association.

  18. Designed synergetic effect of electrolyte additives to improve interfacial chemistry of MCMB electrode in propylene carbonate-based electrolyte for enhanced low and room temperature performance.

    PubMed

    Wotango, Aselefech Sorsa; Su, Wei-Nien; Haregewoin, Atetegeb Meazah; Chen, Hung-Ming; Cheng, Ju-Hsiang; Lin, Ming-Hsien; Wang, Chia-Hsin; Hwang, Bing-Joe

    2018-05-09

    The performance of lithium ion batteries rapidly falls at lower temperatures due to decreasing conductivity of electrolytes and Solid Electrolyte Interphase (SEI) on graphite anode. Hence, it limits the practical use of lithium ion batteries at sub-zero temperatures and also affects the development of lithium ion batteries for widespread applications. The SEI formed on the graphite surface is very influential in determining the performance of the battery. Herein, a new electrolyte additive, 4-Chloromethyl-1,3,2-dioxathiolane-2-oxide (CMDO), is prepared to improve the properties of commonly used electrolyte constituents - ethylene carbonate (EC), and fluoroethylene carbonate (FEC). The formation of an efficient passivation layer in propylene carbonate (PC) -based electrolyte for MCMB electrode was investigated. The addition of CMDO resulted in a much less irreversible capacity loss and induces thin SEI formation. However, the combination of the three additives played a key role to enhance reversible capacity of MCMB electrode at lower or ambient temperature. The electrochemical measurement analysis showed that the SEI formed from a mixture of the three additives gave better intercalation-deintercalation of lithium ions.

  19. Carbon-carbon piston development

    NASA Technical Reports Server (NTRS)

    Gorton, Mark P.

    1994-01-01

    A new piston concept, made of carbon-carbon refractory-composite material, has been developed that overcomes a number of the shortcomings of aluminum pistons. Carbon-carbon material, developed in the early 1960's, is lighter in weight than aluminum, has higher strength and stiffness than aluminum and maintains these properties at temperatures over 2500 F. In addition, carbon-carbon material has a low coefficient of thermal expansion and excellent resistance to thermal shock. An effort, called the Advanced Carbon-Carbon Piston Program was started in 1986 to develop and test carbon-carbon pistons for use in spark ignition engines. The carbon-carbon pistons were designed to be replacements for existing aluminum pistons, using standard piston pin assemblies and using standard rings. Carbon-carbon pistons can potentially enable engines to be more reliable, more efficient and have greater power output. By utilizing the unique characteristics of carbon-carbon material a piston can: (1) have greater resistance to structural damage caused by overheating, lean air-fuel mixture conditions and detonation; (2) be designed to be lighter than an aluminum piston thus, reducing the reciprocating mass of an engine, and (3) be operated in a higher combustion temperature environment without failure.

  20. The effects of hydrogen proportion on the synthesis of carbon nanomaterials with gaseous detonation (deflagration) method

    NASA Astrophysics Data System (ADS)

    Zhao, Tiejun; Li, Xiaojie; Lee, John H. S.; Yan, Honghao

    2018-02-01

    Using ferrocene, H2 and O2, Carbon nanomaterials were prepared with gaseous detonation (deflagration) method. The effects of H2 on the phase and morphology of carbon nanomaterials were studied by various proportions of H2 in the reaction. The prepared samples were characterized by x-ray diffractometer, transmission electron microscope and Raman spectrometer. The results show that hydrogen proportion has a great influence on the phase and morphology of carbon nanomaterials. The high hydrogen proportion leads to much unreacted hydrogen, which could protect the iron atom from oxidation of carbon and dilute the reactants contributing to uniform particle size. In addition, the graphitization degree of multi-walled carbon nanotubes, observed in samples with high H2 proportion, is high enough to see the lattice fringes, but the degree of graphitization of whole sample is lower than which fabricated with low H2 proportion, and it may result from the low energy generation.

  1. Mechanical properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Salvetat, J.-P.; Bonard, J.-M.; Thomson, N. H.; Kulik, A. J.; Forró, L.; Benoit, W.; Zuppiroli, L.

    A variety of outstanding experimental results on the elucidation of the elastic properties of carbon nanotubes are fast appearing. These are based mainly on the techniques of high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM) to determine the Young's moduli of single-wall nanotube bundles and multi-walled nanotubes, prepared by a number of methods. These results are confirming the theoretical predictions that carbon nanotubes have high strength plus extraordinary flexibility and resilience. As well as summarising the most notable achievements of theory and experiment in the last few years, this paper explains the properties of nanotubes in the wider context of materials science and highlights the contribution of our research group in this rapidly expanding field. A deeper understanding of the relationship between the structural order of the nanotubes and their mechanical properties will be necessary for the development of carbon-nanotube-based composites. Our research to date illustrates a qualitative relationship between the Young's modulus of a nanotube and the amount of disorder in the atomic structure of the walls. Other exciting results indicate that composites will benefit from the exceptional mechanical properties of carbon nanotubes, but that the major outstanding problem of load transfer efficiency must be overcome before suitable engineering materials can be produced.

  2. Novel rGO-T-C(n) Nanosheets developed via click chemistry as a lubricant anti-wear additive.

    PubMed

    Bagheri, Samira; Jamal, Nadia; Halilu, Ahmed; TermehYousefi, Amin

    2018-04-18

    Process equipment and facilities are constantly facing the dilemmas of tear and wear. This manuscript introducing functionalized reduced graphene oxide with triazole moiety via click chemistry as a anti-wear additive. While this has been achieved successfully, full characterization of the new anti-wear additive material revealed it to be promising in ameliorating issues of wears. One of the merits of the synthesized material includes reduction of contact asperity as the lipophilic alkyl chain length increases. It has been tested to be functional when formulated as an additive in group III petroleum base oil. Accordingly, it shows an irregularity in renewable base oil. Following screening evaluations of the lipophilic alkyl chain lengths, the additive with twelve carbon atoms; functionalized reduced graphene oxide, rGO-T-C(12) was confirmed to stand out among others with the good reduction of friction coefficient and the least wear scar diameter of ~539.78 µm, compared to the base oil containing no additive.

  3. Optical angular momentum and atoms

    PubMed Central

    2017-01-01

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766

  4. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Cheng, Niancai; Stambula, Samantha; Wang, Da; Banis, Mohammad Norouzi; Liu, Jian; Riese, Adam; Xiao, Biwei; Li, Ruying; Sham, Tsun-Kong; Liu, Li-Min; Botton, Gianluigi A.; Sun, Xueliang

    2016-11-01

    Platinum-based catalysts have been considered the most effective electrocatalysts for the hydrogen evolution reaction in water splitting. However, platinum utilization in these electrocatalysts is extremely low, as the active sites are only located on the surface of the catalyst particles. Downsizing catalyst nanoparticles to single atoms is highly desirable to maximize their efficiency by utilizing nearly all platinum atoms. Here we report on a practical synthesis method to produce isolated single platinum atoms and clusters using the atomic layer deposition technique. The single platinum atom catalysts are investigated for the hydrogen evolution reaction, where they exhibit significantly enhanced catalytic activity (up to 37 times) and high stability in comparison with the state-of-the-art commercial platinum/carbon catalysts. The X-ray absorption fine structure and density functional theory analyses indicate that the partially unoccupied density of states of the platinum atoms' 5d orbitals on the nitrogen-doped graphene are responsible for the excellent performance.

  5. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction

    PubMed Central

    Cheng, Niancai; Stambula, Samantha; Wang, Da; Banis, Mohammad Norouzi; Liu, Jian; Riese, Adam; Xiao, Biwei; Li, Ruying; Sham, Tsun-Kong; Liu, Li-Min; Botton, Gianluigi A.; Sun, Xueliang

    2016-01-01

    Platinum-based catalysts have been considered the most effective electrocatalysts for the hydrogen evolution reaction in water splitting. However, platinum utilization in these electrocatalysts is extremely low, as the active sites are only located on the surface of the catalyst particles. Downsizing catalyst nanoparticles to single atoms is highly desirable to maximize their efficiency by utilizing nearly all platinum atoms. Here we report on a practical synthesis method to produce isolated single platinum atoms and clusters using the atomic layer deposition technique. The single platinum atom catalysts are investigated for the hydrogen evolution reaction, where they exhibit significantly enhanced catalytic activity (up to 37 times) and high stability in comparison with the state-of-the-art commercial platinum/carbon catalysts. The X-ray absorption fine structure and density functional theory analyses indicate that the partially unoccupied density of states of the platinum atoms' 5d orbitals on the nitrogen-doped graphene are responsible for the excellent performance. PMID:27901129

  6. Direct extraction of lead (II) from untreated human blood serum using restricted access carbon nanotubes and its determination by atomic absorption spectrometry.

    PubMed

    Barbosa, Valéria Maria Pereira; Barbosa, Adriano Francisco; Bettini, Jefferson; Luccas, Pedro Orival; Figueiredo, Eduardo Costa

    2016-01-15

    Oxidized carbon nanotubes were covered with layers of bovine serum albumin to result in so-called restricted-access carbon nanotubes (RACNTs). This material can extract Pb(2+) ions directly from untreated human blood serum while excluding all the serum proteins. The RACNTs have a protein exclusion capacity of almost 100% and a maximum Pb(2+) adsorption capacity of 34.5mg g(-1). High resolution transmission electron microscopy, scanning transmission electron microscopy and energy dispersive spectroscopy were used to confirm the BSA layer and Pb(2+) adsorption sites. A mini-column filled with RACNTs was used in an on-line solid phase extraction system coupled to a thermospray flame furnace atomic absorption spectrometry. At optimized experimental conditions, the method has a detection limit as low as 2.1µg L(-1), an enrichment factor of 5.5, and inter- and intra-day precisions (expressed as relative standard deviation) of <8.1%. Recoveries of the Pb(2+) spiked samples ranged from 89.4% to 107.3% for the extraction from untreated human blood serum. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. RADIATION CHEMISTRY OF HIGH ENERGY CARBON, NEON AND ARGON IONS: INTEGRAL YIELDS FROM FERROUS SULFATE SOLUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christman, E.A.; Appleby, A.; Jayko, M.

    1980-07-01

    Chemical yields of Fe{sup 3+} have been measured from FeSO{sub 4} solutions irradiated in the presence and absence of oxygen with carbon, neon, and argon ions from the Berkeley Bevalac facility. G(Fe{sup 3+}) decreases with increasing beam penetration and with increasing atomic number of the incident ion. The results are compared with current theoretical expectations of the behavior of these particles in an aqueous absorber. The chemical yields are consistently higher than theoretically predicted, by amounts varying from <6.2% (carbon ions) to <13.2% (argon ions). The additional yields are possibly attributable to fragmentation of the primary particle beams.

  8. Microwave plasma induced surface modification of diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Rao Polaki, Shyamala; Kumar, Niranjan; Gopala Krishna, Nanda; Madapu, Kishore; Kamruddin, Mohamed; Dash, Sitaram; Tyagi, Ashok Kumar

    2017-12-01

    Tailoring the surface of diamond-like carbon (DLC) film is technically relevant for altering the physical and chemical properties, desirable for useful applications. A physically smooth and sp3 dominated DLC film with tetrahedral coordination was prepared by plasma-enhanced chemical vapor deposition technique. The surface of the DLC film was exposed to hydrogen, oxygen and nitrogen plasma for physical and chemical modifications. The surface modification was based on the concept of adsorption-desorption of plasma species and surface entities of films. Energetic chemical species of microwave plasma are adsorbed, leading to desorbtion of the surface carbon atoms due to energy and momentum exchange. The interaction of such reactive species with DLC films enhanced the roughness, surface defects and dangling bonds of carbon atoms. Adsorbed hydrogen, oxygen and nitrogen formed a covalent network while saturating the dangling carbon bonds around the tetrahedral sp3 valency. The modified surface chemical affinity depends upon the charge carriers and electron covalency of the adsorbed atoms. The contact angle of chemically reconstructed surface increases when a water droplet interacts either through hydrogen or van dear Waals bonding. These weak interactions influenced the wetting property of the DLC surface to a great extent.

  9. Dynamics of microbial community composition and soil organic carbon mineralization in soil following addition of pyrogenic and fresh organic matter

    PubMed Central

    Whitman, Thea; Pepe-Ranney, Charles; Enders, Akio; Koechli, Chantal; Campbell, Ashley; Buckley, Daniel H; Lehmann, Johannes

    2016-01-01

    Pyrogenic organic matter (PyOM) additions to soils can have large impacts on soil organic carbon (SOC) cycling. As the soil microbial community drives SOC fluxes, understanding how PyOM additions affect soil microbes is essential to understanding how PyOM affects SOC. We studied SOC dynamics and surveyed soil bacterial communities after OM additions in a field experiment. We produced and mixed in either 350 °C corn stover PyOM or an equivalent initial amount of dried corn stover to a Typic Fragiudept soil. Stover increased SOC-derived and total CO2 fluxes (up to 6x), and caused rapid and persistent changes in bacterial community composition over 82 days. In contrast, PyOM only temporarily increased total soil CO2 fluxes (up to 2x) and caused fewer changes in bacterial community composition. Of the operational taxonomic units (OTUs) that increased in response to PyOM additions, 70% also responded to stover additions. These OTUs likely thrive on easily mineralizable carbon (C) that is found both in stover and, to a lesser extent, in PyOM. In contrast, we also identified unique PyOM responders, which may respond to substrates such as polyaromatic C. In particular, members of Gemmatimonadetes tended to increase in relative abundance in response to PyOM but not to fresh organic matter. We identify taxa to target for future investigations of the mechanistic underpinnings of ecological phenomena associated with PyOM additions to soil. PMID:27128990

  10. Dynamics of microbial community composition and soil organic carbon mineralization in soil following addition of pyrogenic and fresh organic matter.

    PubMed

    Whitman, Thea; Pepe-Ranney, Charles; Enders, Akio; Koechli, Chantal; Campbell, Ashley; Buckley, Daniel H; Lehmann, Johannes

    2016-12-01

    Pyrogenic organic matter (PyOM) additions to soils can have large impacts on soil organic carbon (SOC) cycling. As the soil microbial community drives SOC fluxes, understanding how PyOM additions affect soil microbes is essential to understanding how PyOM affects SOC. We studied SOC dynamics and surveyed soil bacterial communities after OM additions in a field experiment. We produced and mixed in either 350 °C corn stover PyOM or an equivalent initial amount of dried corn stover to a Typic Fragiudept soil. Stover increased SOC-derived and total CO 2 fluxes (up to 6x), and caused rapid and persistent changes in bacterial community composition over 82 days. In contrast, PyOM only temporarily increased total soil CO 2 fluxes (up to 2x) and caused fewer changes in bacterial community composition. Of the operational taxonomic units (OTUs) that increased in response to PyOM additions, 70% also responded to stover additions. These OTUs likely thrive on easily mineralizable carbon (C) that is found both in stover and, to a lesser extent, in PyOM. In contrast, we also identified unique PyOM responders, which may respond to substrates such as polyaromatic C. In particular, members of Gemmatimonadetes tended to increase in relative abundance in response to PyOM but not to fresh organic matter. We identify taxa to target for future investigations of the mechanistic underpinnings of ecological phenomena associated with PyOM additions to soil.

  11. Plasmonic welded single walled carbon nanotubes on monolayer graphene for sensing target protein

    NASA Astrophysics Data System (ADS)

    Kim, Jangheon; Kim, Gi Gyu; Kim, Soohyun; Jung, Wonsuk

    2016-05-01

    We developed plasmonic welded single walled carbon nanotubes (SWCNTs) on monolayer graphene as a biosensor to detect target antigen molecules, fc fusion protein without any treatment to generate binder groups for linker and antibody. This plasmonic welding induces atomic networks between SWCNTs as junctions containing carboxylic groups and improves the electrical sensitivity of a SWCNTs and the graphene membrane to detect target protein. We investigated generation of the atomic networks between SWCNTs by field-emission scanning electron microscopy and atomic force microscopy after plasmonic welding process. We compared the intensity ratios of D to G peaks from the Raman spectra and electrical sheet resistance of welded SWCNTs with the results of normal SWCNTs, which decreased from 0.115 to 0.086 and from 10.5 to 4.12, respectively. Additionally, we measured the drain current via source/drain voltage after binding of the antigen to the antibody molecules. This electrical sensitivity of the welded SWCNTs was 1.55 times larger than normal SWCNTs.

  12. Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation

    NASA Astrophysics Data System (ADS)

    Chan, Chun Wong Aaron; Mahadi, Abdul Hanif; Li, Molly Meng-Jung; Corbos, Elena Cristina; Tang, Chiu; Jones, Glenn; Kuo, Winson Chun Hsin; Cookson, James; Brown, Christopher Michael; Bishop, Peter Trenton; Tsang, Shik Chi Edman

    2014-12-01

    Lindlar catalysts comprising of palladium/calcium carbonate modified with lead acetate and quinoline are widely employed industrially for the partial hydrogenation of alkynes. However, their use is restricted, particularly for food, cosmetic and drug manufacture, due to the extremely toxic nature of lead, and the risk of its leaching from catalyst surface. In addition, the catalysts also exhibit poor selectivities in a number of cases. Here we report that a non-surface modification of palladium gives rise to the formation of an ultra-selective nanocatalyst. Boron atoms are found to take residence in palladium interstitial lattice sites with good chemical and thermal stability. This is favoured due to a strong host-guest electronic interaction when supported palladium nanoparticles are treated with a borane tetrahydrofuran solution. The adsorptive properties of palladium are modified by the subsurface boron atoms and display ultra-selectivity in a number of challenging alkyne hydrogenation reactions, which outclass the performance of Lindlar catalysts.

  13. Pseudocapacitive Effects of N-Doped Carbon Nanotube Electrodes in Supercapacitors

    PubMed Central

    Yun, Young Soo; Park, Hyun Ho; Jin, Hyoung-Joon

    2012-01-01

    Nitrogen- and micropore-containing carbon nanotubes (NMCNTs) were prepared by carbonization of nitrogen-enriched, polymer-coated carbon nanotubes (CNTs), and the electrochemical performances of the NMCNTs with different heteroatom contents were investigated. NMCNTs-700 containing 9.1 wt% nitrogen atoms had a capacitance of 190.8 F/g, which was much higher than that of pristine CNTs (48.4 F/g), despite the similar surface area of the two CNTs, and was also higher than that of activated CNTs (151.7 F/g) with a surface area of 778 m2/g and a nitrogen atom content of 1.2 wt%. These results showed that pseudocapacitive effects play an important role in the electrochemical performance of supercapacitor electrodes.

  14. Internal and external atomic steps in graphite exhibit dramatically different physical and chemical properties.

    PubMed

    Lee, Hyunsoo; Lee, Han-Bo-Ram; Kwon, Sangku; Salmeron, Miquel; Park, Jeong Young

    2015-04-28

    We report on the physical and chemical properties of atomic steps on the surface of highly oriented pyrolytic graphite (HOPG) investigated using atomic force microscopy. Two types of step edges are identified: internal (formed during crystal growth) and external (formed by mechanical cleavage of bulk HOPG). The external steps exhibit higher friction than the internal steps due to the broken bonds of the exposed edge C atoms, while carbon atoms in the internal steps are not exposed. The reactivity of the atomic steps is manifested in a variety of ways, including the preferential attachment of Pt nanoparticles deposited on HOPG when using atomic layer deposition and KOH clusters formed during drop casting from aqueous solutions. These phenomena imply that only external atomic steps can be used for selective electrodeposition for nanoscale electronic devices.

  15. Atomic and Molecular Layer Deposition for Enhanced Lithium Ion Battery Electrodes and Development of Conductive Metal Oxide/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Travis, Jonathan

    The performance and safety of lithium-ion batteries (LIBs) are dependent on interfacial processes at the positive and negative electrodes. For example, the surface layers that form on cathodes and anodes are known to affect the kinetics and capacity of LIBs. Interfacial reactions between the electrolyte and the electrodes are also known to initiate electrolyte combustion during thermal runaway events that compromise battery safety. Atomic layer deposition (ALD) and molecular layer deposition (MLD) are thin film deposition techniques based on sequential, self-limiting surface reactions. ALD and MLD can deposit ultrathin and conformal films on high aspect ratio and porous substrates such as composite particulate electrodes in lithium-ion batteries. The effects of electrode surface modification via ALD and MLD are studied using a variety of techniques. It was found that sub-nm thick coatings of Al2O 3 deposited via ALD have beneficial effects on the stability of LIB anodes and cathodes. These same Al2O3 ALD films were found to improve the safety of graphite based anodes through prevention of exothermic solid electrolyte interface (SEI) degradation at elevated temperatures. Ultrathin and conformal metal alkoxide polymer films known as "metalcones" were grown utilizing MLD techniques with trimethylaluminum (TMA) or titanium tetrachloride (TiCl4) and organic diols or triols, such as ethylene glycol (EG), glycerol (GL) or hydroquinone (HQ), as the reactants. Pyrolysis of these metalcone films under inert gas conditions led to the development of conductive metal oxide/carbon composites. The composites were found to contain sp2 carbon using micro-Raman spectroscopy in the pyrolyzed films with pyrolysis temperatures ≥ 600°C. Four point probe measurements demonstrated that the graphitic sp2 carbon domains in the metalcone films grown using GL and HQ led to significant conductivity. The pyrolysis of conformal MLD films to obtain conductive metal oxide/carbon composite films

  16. Role of additives in formation of solid-electrolyte interfaces on carbon electrodes and their effect on high-voltage stability.

    PubMed

    Qu, Weiguo; Dorjpalam, Enkhtuvshin; Rajagopalan, Ramakrishnan; Randall, Clive A

    2014-04-01

    The in situ modification of a lithium hexafluorophosphate-based electrolyte using a molybdenum oxide catalyst and small amount of water (1 vol %) yields hydrolysis products such as mono-, di-, and alkylfluorophosphates. The electrochemical stability of ultrahigh-purity, high-surface-area carbon electrodes derived from polyfurfuryl alcohol was tested using the modified electrolyte. Favorable modification of the solid electrolyte interface (SEI) layer on the activated carbon electrode increased the cyclable electrochemical voltage window (4.8-1.2 V vs. Li/Li(+)). The chemical modification of the SEI layer induced by electrolyte additives was characterized by using X-ray photoelectron spectroscopy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Additive effect on reductive decomposition and binding of carbonate-based solvent toward solid electrolyte interphase formation in lithium-ion battery.

    PubMed

    Ushirogata, Keisuke; Sodeyama, Keitaro; Okuno, Yukihiro; Tateyama, Yoshitaka

    2013-08-14

    The solid-electrolyte interphase (SEI) formed through the reductive decomposition of solvent molecules plays a crucial role in the stability and capability of a lithium-ion battery (LIB). Here we investigated the effects of adding vinylene carbonate (VC) to ethylene carbonate (EC) solvent, a typical electrolyte in LIBs, on the reductive decomposition. We focused on both thermodynamics and kinetics of the possible processes and used density functional theory-based molecular dynamics with explicit solvent and Blue-moon ensemble technique for the free energy change. We considered Li(+) in only EC solvent (EC system) and in EC solvent with a VC additive (EC/VC system) to elucidate the additive effects. In addition to clarifying the equilibrium properties, we evaluated the free energy changes along several EC or VC decomposition pathways under one-electron (1e) reduction condition. Two-electron (2e) reduction and attacks of anion radicals to intact molecules were also examined. The present results completely reproduce the gaseous products observed in the experiments. We also found a new mechanism involving the VC additive: the VC additive preferentially reacts with the EC anion radical to suppress the 2e reduction of EC and enhance the initial SEI formation, contrary to the conventional scenario in which VC additive is sacrificially reduced and its radical oligomerization becomes the source of SEI. Because our mechanism needs only 1e reduction, the irreversible capacity at the SEI formation will decrease, which is also consistent with the experimental observations. These results reveal the primary role of VC additive in the EC solvent.

  18. Process for the formation of wear- and scuff-resistant carbon coatings

    DOEpatents

    Malaczynski, Gerard W.; Qiu, Xiaohong; Mantese, Joseph V.; Elmoursi, Alaa A.; Hamdi, Aboud H.; Wood, Blake P.; Walter, Kevin C.; Nastasi, Michael A.

    1995-01-01

    A process for forming an adherent diamond-like carbon coating on a workpiece of suitable material such as an aluminum alloy is disclosed. The workpiece is successively immersed in different plasma atmospheres and subjected to short duration, high voltage, negative electrical potential pulses or constant negative electrical potentials or the like so as to clean the surface of oxygen atoms, implant carbon atoms into the surface of the alloy to form carbide compounds while codepositing a carbonaceous layer on the surface, bombard and remove the carbonaceous layer, and to thereafter deposit a generally amorphous hydrogen-containing carbon layer on the surface of the article.

  19. Hot atoms in cosmic chemistry.

    PubMed

    Rossler, K; Jung, H J; Nebeling, B

    1984-01-01

    High energy chemical reactions and atom molecule interactions might be important for cosmic chemistry with respect to the accelerated species in solar wind, cosmic rays, colliding gas and dust clouds and secondary knock-on particles in solids. "Hot" atoms with energies ranging from a few eV to some MeV can be generated via nuclear reactions and consequent recoil processes. The chemical fate of the radioactive atoms can be followed by radiochemical methods (radio GC or HPLC). Hot atom chemistry may serve for laboratory simulation of the reactions of energetic species with gaseous or solid interstellar matter. Due to the effective measurement of 10(8)-10(10) atoms only it covers a low to medium dose regime and may add to the studies of ion implantation which due to the optical methods applied are necessarily in the high dose regime. Experimental results are given for the systems: C/H2O (gas), C/H2O (solid, 77 K), N/CH4 (solid, 77K) and C/NH3 (solid, 77 K). Nuclear reactions used for the generation of 2 to 3 MeV atoms are: N(p,alpha) 11C, 16O(p,alpha pn) 11C and 12C(d,n) 13N with 8 to 45 MeV protons or deuterons from a cyclotron. Typical reactions products are: CO, CO2, CH4, CH2O, CH3OH, HCOOH, NH3, CH3NH2, cyanamide, formamidine, guanidine etc. Products of hot reactions in solids are more complex than in corresponding gaseous systems, which underlines the importance of solid state reactions for the build-up of precursors for biomolecules in space. As one of the major mechanisms for product formation, the simultaneous or fast consecutive reactions of a hot carbon with two target molecules (reaction complex) is discussed.

  20. Development of atomic radical monitoring probe and its application to spatial distribution measurements of H and O atomic radical densities in radical-based plasma processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Shunji; Katagiri Engineering Co., Ltd., 3-5-34 Shitte Tsurumi-ku, Yokohama 230-0003; Takashima, Seigo

    2009-09-01

    Atomic radicals such as hydrogen (H) and oxygen (O) play important roles in process plasmas. In a previous study, we developed a system for measuring the absolute density of H, O, nitrogen, and carbon atoms in plasmas using vacuum ultraviolet absorption spectroscopy (VUVAS) with a compact light source using an atmospheric pressure microplasma [microdischarge hollow cathode lamp (MHCL)]. In this study, we developed a monitoring probe for atomic radicals employing the VUVAS with the MHCL. The probe size was 2.7 mm in diameter. Using this probe, only a single port needs to be accessed for radical density measurements. We successfullymore » measured the spatial distribution of the absolute densities of H and O atomic radicals in a radical-based plasma processing system by moving the probe along the radial direction of the chamber. This probe allows convenient analysis of atomic radical densities to be carried out for any type of process plasma at any time. We refer to this probe as a ubiquitous monitoring probe for atomic radicals.« less