Science.gov

Sample records for additional die casting

  1. Energy Consumption of Die Casting Operations

    SciTech Connect

    Jerald Brevick; clark Mount-Campbell; Carroll Mobley

    2004-03-15

    Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.

  2. Sputtered protective coatings for die casting dies

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Nieh, C. Y.; Wallace, J. F.

    1981-01-01

    This investigation determined whether selected ion beam sputtered coatings on H-13 die steel would have the potential of improving the thermal fatigue behavior of the steel used as a die in aluminum die casting. The coatings were selected to test candidate insulators and metals capable of providing protection of the die surface. The studies indicate that 1 micrometer thick W and Pt coatings reduced the thermal fatigue more than any other coating tested and are candidates to be used on a die surface to increase die life.

  3. On the performance of low pressure die-cast Al-Cu based automotive alloys: Role of additives

    NASA Astrophysics Data System (ADS)

    Zaki, Gergis Adel

    The present study focuses on the effect of alloying elements, namely, strontium (Sr), titanium (Ti), zirconium (Zr), scandium (Sc) and silver(Ag) individually or in combination, on the performance of a newly developed Al-2%Cu based alloy. A total of thirteen alloy compositions were used in the study. Tensile test bar castings were prepared employing the low pressure die casting (LPDC) technique. The test bars were solution heat treated at 495°C for 8 hours, followed by quenching in warm water, and then subjected to different isochronal aging treatments using an aging time of 5 hours and aging temperatures of 155°C, 180°C, 200°C, 240°C and 300°C. Tensile testing of as-cast and heat-treated test bars was carried out at room temperature using a strain rate of 4 x 10-4s-1. Five test bars were used per alloy composition/condition. Hardness measurements were also carried out on these alloys using a Brinell hardness tester. The microstructures of selected samples were examined using optical microscopy and electron probe microanalysis (EPMA). The results showed that adding Ti in the amount of 0.15 wt% in the form of Al-5%Ti-1%B master alloy is sufficient to refine the grains in the cast structure in the presence of 200 ppm Sr (0.02 wt%). Addition of Zr and Sc did not contribute further to the grain refining effect. The main role of addition of these two elements appeared in the formation of complex compounds with Al and Ti. Their presence resulted in extending the aging temperature range before the onset of softening. Mathematical analysis of the hardness and tensile data was carried out using the Minitab statistical software program. It was determined that the alloy containing (0.5wt% Zr + 0.15wt% Ti) is the most effective in maximizing the alloy tensile strength over the range of aging temperatures, from 155°C to 300°C. Addition of Ag is beneficial at high aging temperatures, in the range of 240°C-300°C. However, it is less effective compared to the (Zr + Ti

  4. Casting Characteristics of Aluminum Die Casting Alloys

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  5. Die Soldering in Aluminium Die Casting

    SciTech Connect

    Han, Q.; Kenik, E.A.; Viswanathan, S.

    2000-03-15

    Two types of tests, dipping tests and dip-coating tests were carried out on small steel cylinders using pure aluminum and 380 alloy to investigate the mechanism of die soldering during aluminum die casting. Optical and scanning electron microscopy were used to study the morphology and composition of the phases formed during soldering. A soldering mechanism is postulated based on experimental observations. A soldering critical temperature is postulated at which iron begins to react with aluminum to form an aluminum-rich liquid phase and solid intermetallic compounds. When the temperature at the die surface is higher than this critical temperature, the aluminum-rich phase is liquid and joins the die with the casting during the subsequent solidification. The paper discusses the mechanism of soldering for the case of pure aluminum and 380 alloy casting in a steel mold, the factors that promote soldering, and the strength of the bond formed when soldering occurs. conditions, an aluminum-rich soldering layer may also form over the intermetallic layer. Although a significant amount of research has been conducted on the nature of these intermetallics, little is known about the conditions under which soldering occurs.

  6. Prediction of Part Distortion in Die Casting

    SciTech Connect

    R. Allen Miller

    2005-03-30

    The die casting process is one of the net shape manufacturing techniques and is widely used to produce high production castings with tight tolerances for many industries. An understanding of the stress distribution and the deformation pattern of parts produced by die casting will result in less deviation from the part design specification, a better die design and eventually more productivity and cost savings. This report presents methods that can be used to simulate the die casting process in order to predict the deformation and stresses in the produced part and assesses the degree to which distortion modeling is practical for die casting at the current time. A coupled thermal-mechanical finite elements model was used to simulate the die casting process. The simulation models the effect of thermal and mechanical interaction between the casting and the die. It also includes the temperature dependant material properties of the casting. Based on a designed experiment, a sensitivity analysis was conducted on the model to investigate the effect of key factors. These factors include the casting material model, material properties and thermal interaction between casting and dies. To verify the casting distortion predictions, it was compared against the measured dimensions of produced parts. The comparison included dimensions along and across the parting plane and the flatness of one surface.

  7. Modeling the Mechanical Performance of Die Casting Dies

    SciTech Connect

    R. Allen Miller

    2004-02-27

    The following report covers work performed at Ohio State on modeling the mechanical performance of dies. The focus of the project was development and particularly verification of finite element techniques used to model and predict displacements and stresses in die casting dies. The work entails a major case study performed with and industrial partner on a production die and laboratory experiments performed at Ohio State.

  8. Sputtered protective coatings for die casting dies

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Nieh, C.-Y.; Wallace, J. F.

    1981-01-01

    Three experimental research designs investigating candidate materials and processes involved in protective die surface coating procedures by sputter deposition, using ion beam technologies, are discussed. Various pre-test results show that none of the coatings remained completely intact for 15,000 test cycles. The longest lifetime was observed for coatings such as tungsten, platinum, and molybdenum which reduced thermal fatigue, but exhibited oxidation and suppressed crack initiation only as long as the coating did not fracture. Final test results confirmed earlier findings and coatings with Pt and W proved to be the candidate materials to be used on a die surface to increase die life. In the W-coated specimens, which remained intact on the surface after thermal fatigue testing, no oxidation was found under the coating, although a few cracks formed on the surface where the coating broke down. Further research is planned.

  9. Enhancements in Magnesium Die Casting Impact Properties

    SciTech Connect

    David Schwam; John F. Wallace; Yulong Zhu; Srinath Viswanathan; Shafik Iskander

    2000-06-30

    % in AM50 to over 9% in AZ91, more of the intermetallic Mg17Al12 is formed in the microstructure. For instance, for 15 increase in the aluminum content from AM50 to AM60, the volume fraction of eutectic present in the microstructure increases by 35%! Eventually, the brittle Mg17Al12 compound forms an interconnected network that reduces ductility and impact resistance. The lower aluminum in AM50 and AM60 are therefore a desirable feature in applications that call for higher impact resistance. Further improvement in impact resistance depends on the processing condition of the casting. Sound castings without porosity and impurities will have better mechanical properties. Since magnesium oxidizes readily, good melting and metal transfer practices are essential. The liquid metal has to be protected from oxidation at all times and entrainment of oxide films in the casting needs to be prevented. In this regard, there is evidence that us of vacuum to evacuate air from the die casting cavity can improve the quality of the castings. Fast cooling rates, leading to smaller grain size are beneficial and promote superior mechanical properties. Micro-segregation and banding are two additional defect types often encountered in magnesium alloys, in particular in AZ91D. While difficult to eliminate, segregation can be minimized by careful thermal management of the dies and the shot sleeve. A major source of segregation is the premature solidification in the shot sleeve. The primary solid dendrites are carried into the casting and form a heterogeneous structure. Furthermore, during the shot, segregation banding can occur. The remedies for this kind of defects include a hotter shot sleeve, use of insulating coatings on the shot sleeve and a short lag time between pouring into the shot sleeve and the shot.

  10. Solvent casting flow from slot die

    NASA Astrophysics Data System (ADS)

    Lee, Semi; Nam, Jaewook

    2015-11-01

    A continuous solvent casting method using a slot die can precisely control the film thickness by adjusting the operating conditions, such as the belt speed and pumping rate, not the liquid property. Therefore, it is a suitable method for high precision continuous film production. In this particular method, the dope, or casting solution, is pumped through the feed slot to form a short curtain between the die and the moving belt. Although this method is widely used in producing films for various applications, it is difficult to find indepth analyses of such flow. In this study, we developed a finite element computational model for the steady-state two-dimensional sovent casting flow from the slot die. The effect of die configurations, rheological properties and operating conditions on the behavior and shape of the gas/liquid interfaces and the location of the dynamic contact line, which is the place where the dope meets the moving belt, were investigated.

  11. Fatigue of die cast zinc alloys

    SciTech Connect

    Schrems, K.K.; Dogan, O.N.; Goodwin, F.E.

    2006-04-01

    The rotating bending fatigue limit of die cast zinc alloy 2, alloy 3, alloy 5, AcuZinc 5, and ZA-8 were determined as a part of an on-going program by ILZRO into the mechanical properties of die cast zinc. The stress-life (S-N) curves of alloys 3, 5, AcuZinc 5, and ZA-8 were determined previously. This presentation reports the results of the S-N curve for Alloy 2 and the calculated fatigue limits for all five alloys. During the previous stress-life testing, the samples were stopped at 10 million cycles and the fatigue limit for alloy 3, alloy 5, and AcuZinc 5 appeared to be higher and the fatigue limit for ZA-8 appeared to be lower than the values reported in the literature. This was further investigated in alloy 5 and ZA-8 by testing continuous cast bulk alloy 5 and ZA-8.

  12. National Metal Casting Research Institute final report. Volume 2, Die casting research

    SciTech Connect

    Jensen, D.

    1994-06-01

    Four subprojects were completed: development and evaluation of die coatings, accelerated die life characterization of die materials, evaluation of fluid flow and solidification modeling programs, selection and characterization of Al-based die casting alloys, and influence of die materials and coatings on die casting quality.

  13. Use of RSP Tooling to Manufacture Die Casting Dies

    SciTech Connect

    Kevin McHugh

    2004-07-01

    The technology and art used to construct die casting dies has seen many improvements over the years. However, the time lag from when a design is finalized to the time a tool is in production has remained essentially the same. The two main causes for the bottleneck are the need to qualify a part design by making prototypes (usually from an alternative process), and the production tooling lead time after the prototypes are approved. Production tooling costs are high due to the labor and equipment costs associated with transforming a forged block of tool steel into a finished tool. CNC machining, sink EDM, benching, engraving and heat treatment unit operations are typically involved. As a result, there is increasing interest in rapid tooling (RT) technologies that shorten the design-to-part cycle and reduce the cost of dies. There are currently more than 20 RT methods being developed and refined around the world (1). The "rapid" in rapid tooling suggests time compression for tool delivery, but does not address robustness as nearly all RT approaches are intended for low-volume prototype work, primarily for molding plastics. Few options exist for die casting. An RT technology suitable for production-quality tooling in the time it normally takes for prototype tooling is highly desirable. In fact, there would be no need for a distinction between prototype and production tooling. True prototype parts could be made using the same processing conditions and materials intended for production. Qualification of the prototype part would allow the manufacturer to go directly into production with the same tool. A relatively new RT technology, Rapid Solidification Process (RSP) Tooling, is capable of making production-quality tooling in an RT timeframe for die casting applications. RSP Tooling, was developed at the Idaho National Engineering and Environmental Laboratory (INEEL), and commercialized with the formation of RSP Tooling, LLC (2). This paper describes the process, and

  14. Characterization of Spray Lubricants for the Die Casting Process

    SciTech Connect

    Sabau, Adrian S

    2008-01-01

    During the die casting process, lubricants are sprayed in order to cool the dies and facilitate the ejection of the casting. The cooling effects of the die lubricant were investigated using Thermogravimetric analysis (TGA), heat flux sensors (HFS), and infrared imaging. The evolution of the heat flux and pictures taken using a high speed infrared camera revealed that lubricant application was a transient process. The short time response of the HFS allows the monitoring and data acquisition of the surface temperature and heat flux without additional data processing. A similar set of experiments was performed with deionized water in order to assess the lubricant effect. The high heat flux obtained at 300 C was attributed to the wetting and absorbant properties of the lubricant. Pictures of the spray cone and lubricant flow on the die were also used to explain the heat flux evolution.

  15. Die Casting Part Distortion: Prediction and Attenuation

    SciTech Connect

    Dr, R. Allen Miller

    2002-02-12

    The goal of this research was to predict the part deformation and residual stresses after ejection from the die and cooling to room temperature. A finite element model was built to achieve this goal and several modeling techniques were investigated throughout this research. Die-casting is a very complex process and the researchers are faced with a large number of hard to solve physical problems when modeling the process. Several assumptions are made in our simulation model. The first significant assumption is the instantaneous cavity filling. This means that the cavity filling stage is not considered in our model. Considering the cavity filling stage increases the modeling complexity as a result of different flow patterns. expected in the shot sleeve, gate, runner and different cavity features. The flow of gas from the cavity through the vents is another problem that is ignored in our model as a result of this assumption. Our second assumption is that the cast metal has uniform temperature distribution inside the cavity, at the starting point of simulation. This temperature is assumed to be over liquidus limit, i.e. the solid fraction is 0.0% of the cast metal. The third assumption is due to ABAQUS (commercial software used in this research) limitations. ABAQUS cannot deal with multi-phase models; therefore we use solid elements to define the casting instead of multi-phase (liquid/solid) elements. Liquid elements can carry the hydrostatic pressure from the shot sleeve and apply it on the cavity surfaces, while the solid elements do not have this capability. To compensate for this assumption we add the cavity pressure as a boundary condition and apply it on the cavity surface separately from the part. Another issue with this assumption is that, liquid casting can follow the cavity shape when it distorts. With the use of solid elements to represent the casting during its liquid state, it loses this capability to follow the cavity. Several techniques were tested to

  16. Effect of Some Parameters on the Cast Component Properties in Hot Chamber Die Casting

    NASA Astrophysics Data System (ADS)

    Singh, Rupinder; Singh, Harvir

    2016-04-01

    Hot chamber die casting process is designed to achieve high dimensional accuracy for small products by forcing molten metal under high pressure into reusable moulds, called dies. The present research work is aimed at study of some parameters (as a case study of spring adjuster) on cast component properties in hot chamber die casting process. Three controllable factors of the hot chamber die casting process (namely: pressure at second phase, metal pouring temperature and die opening time) were studied at three levels each by Taguchi's parametric approach and single-response optimization was conducted to identify the main factors controlling surface hardness, dimensional accuracy and weight of the casting. Castings were produced using aluminium alloy, at recommended parameters through hot chamber die casting process. Analysis shows that in hot chamber die casting process the percentage contribution of second phase pressure, die opening time, metal pouring temperature for surface hardness is 82.48, 9.24 and 6.78 % respectively. While in the case of weight of cast component the contribution of second phase pressure is 94.03 %, followed by metal pouring temperature and die opening time (4.58 and 0.35 % respectively). Further for dimensional accuracy contribution of die opening time is 76.97 %, metal pouring temperature is 20.05 % and second phase pressure is 1.56 %. Confirmation experiments were conducted at an optimal condition showed that the surface hardness, dimensional accuracy and weight of the castings were improved significantly.

  17. Investigation of the interface phenomena and its effect on erosion and corrosion in aluminum die casting

    NASA Astrophysics Data System (ADS)

    Chu, Yeou-Li

    When performing an aluminum die casting operation, hot molten metal is injected into the die cavity. The die locks for part solidification. After the part solidifies, the casting will eject from the die. During this operation, the die surface experiences thermal cycling, high velocity impingement, chemical attack and interface friction. Thermal cycling leads to heat checking wear, high velocity impingement to erosive wear, chemical attack to soldering, and interface friction to the part bending and/or galling during ejection. The die casting process is a very capital intensive operation. All the above problems result in down time of the die casting shop. This down time results in loss of production and ultimately loss of capital. The purpose of this study is to (a) investigate the physical and chemical phenomena active at the die-cast aluminum metal interface, and (b) understand the performance of selected die surface treatments in protecting the interface from aluminum foundry alloy. Four laboratory tests were selected to study the aluminum die casting stages: (a) molten metal injection stage (erosive test), (b) filling and solidification (dissolution and wettability tests), and (c) parts ejection stage (friction test). Both qualitative and quantitative results were generated. This research produced many interesting discussions. In erosive testing, in addition to impingement velocity, the melt superheat and alloy types also found to play an important role in the erosion of the die steel. In the past, die casters believed that the higher molten aluminum temperature would cause higher erosive wear loss. However, this study found lower melt temperatures to result in greater erosive wear. In dissolution testing, the alloy elements were found to play an important role. In the past, die casters thought that Fe (Iron) was the main element which affects the dissolution of the die steel into the molten aluminum. This was found not to be necessary true. The Mn and Si

  18. Microstructures and properties of aluminum die casting alloys

    SciTech Connect

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  19. Casting defects in low-pressure die-cast aluminum alloy wheels

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Cockcroft, S. L.; Maijer, D. M.; Zhu, J. D.; Phillion, A. B.

    2005-11-01

    Defects in automotive aluminum alloy casting continue to challenge metallurgists and production engineers as greater emphasis is placed on product quality and production cost. A range of casting-related defects found in low-pressure die-cast aluminum wheels were examined metallographically in samples taken from several industrial wheel-casting facilities. The defects examined include macro- and micro- porosity, entrained oxide films, and exogenous oxide inclusions. Particular emphasis is placed on the impact of these defects with respect to the three main casting-related criteria by which automotive wheel quality are judged: wheel cosmetics, air-tightness, and wheel mechanical performance.

  20. The thermal fatigue resistance of H-13 Die Steel for aluminum die casting dies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The effects of welding, five selected surface coatings, and stress relieving on the thermal fatigue resistance of H-13 Die Steel for aluminum die casting dies were studied using eleven thermal fatigue specimens. Stress relieving was conducted after each 5,000 cycle interval at 1050 F for three hours. Four thermal fatigue specimens were welded with H-13 or maraging steel welding rods at ambient and elevated temperatures and subsequently, subjected to different post-weld heat treatments. Crack patterns were examined at 5,000, 10,000, and 15,000 cycles. The thermal fatigue resistance is expressed by two crack parameters which are the average maximum crack and the average cracked area. The results indicate that a significant improvement in thermal fatigue resistance over the control was obtained from the stress-relieving treatment. Small improvements were obtained from the H-13 welded specimens and from a salt bath nitrogen and carbon-surface treatment. The other surface treatments and welded specimens either did not affect or had a detrimental influence on the thermal fatigue properties of the H-13 die steel.

  1. An indicator for fitting castings to a die.

    PubMed

    Troendle, G R; Troendle, K B

    1992-10-01

    This article describes a procedure for making an indicator to be used in fitting a casting to a die. It also describes how to use the indicator in the laboratory. The materials for making the indicator are inexpensive, present no health hazard, and are readily available at any arts and crafts store. PMID:1403953

  2. Evaluation of permanent die coatings to improve the wear resistance of die casting dies. Final project report, January 1, 1995--April 30, 1997

    SciTech Connect

    Shivpuri, R.

    1997-09-18

    Die Casting dies are subject to severe service conditions during the die casting operation. While these severe conditions are necessary to achieve high production rates, they cause the dies which are commonly made of H13 die steel, to suffer frequent failures. The major die failure mechanisms are erosion or washout, Heat checking, soldering and corrosion. Due to their geometrical complexity, die casting dies are very expensive (some dies cost over a million dollars), and thus a large number of parts have to be produced by a die, to justify this cost and leverage the advantages of the die casting process (high production rates, low manpower costs). A potential increase in the die service life, thus has a significant impact on the economics of the die; casting operation. There are many ways to extend die life: developing new wear resistant die materials, developing new surface treatments including coatings, improving heat treatment of existing H13 dies, using better lubricants that can protect the die material, or modifying the die geometry and process parameters to reduce the intensity of wear. Of these the use of coatings to improve the wear resistance of the die surface has shown a lot of promise. Consequently, use of coatings in the die casting industry and their wide use to decrease die wear can improve significantly the productivity of shop operations resulting in large savings in material and energy usage.

  3. Qualitative Reasoning for Additional Die Casting Applications

    SciTech Connect

    R. Allen Miller; Dehua Cui; Yuming Ma

    2003-05-28

    If manufacturing incompatibility of a product can be evaluated at the early product design stage, the designers can modify their design to reduce the effect of potential manufacturing problems. This will result in fewer manufacturing problems, less redsign, less expensive tooling, lower cost, better quality, and shorter development time. For a given design, geometric reasoning can predict qualitatively the behaviors of a physical manufacturing process by representing and reasoning with incomplete knowledge of the physical phenomena. It integrates a design with manufacturing processes to help designers simultaneously consider design goals and manufacturing constraints during the early design stage. The geometric reasoning approach can encourage design engineers to qualitatively evaluate the compatibility of their design with manufacturing limitations and requirements.

  4. Die casting die deflections: Prediction and attenuation. Final report, July 1, 1995--September 30, 1997

    SciTech Connect

    Miller, R.A.; Ahuett-Garza, H.; Choudhury, A.K.; Dedhia, S.

    1998-05-01

    This report summarizes two years of research intended to develop methods to model and predict the deflection patterns in die casting dies. No comprehensive analysis of this type had previously been completed. The die casting process is complex and involves numerous mechanical and thermal phenomena that effect the mechanical behavior of the die. A critical activity in this work was sorting out and evaluating the relative contributions of the various mechanisms to die deflections. This evaluation was accomplished through a series of simple engineering analyses based primarily on the order of magnitude of the influence of each load considered on die deflections. A modeling approach incorporating commercially available finite element analysis software was developed and tested. The model evolved by testing simple models against more comprehensive models and against the limited experimental data that is available. The development of the modeling approach lead to consideration of the die casting machine in more detail than was originally anticipated. The machine is critical and cannot be ignored. A simplified model described as a spring/platen model was developed to account for the machine platens, tie bars, and toggles. The characteristics of this model are described and predictions based on this model are compared against full machine models and measured deflections of machine platens. Details of the modeling approach and the various case studies are provided in the report and in several publications that have resulted from the work.

  5. A study of erosion in die casting dies by a multiple pin accelerated erosion test

    NASA Astrophysics Data System (ADS)

    Shivpuri, R.; Yu, M.; Venkatesan, K.; Chu, Y.-L.

    1995-04-01

    An accelerated erosion test was developed to evaluate the erosion resistance of die materials and coatings for die casting application. An acceleration in wear was achieved by selecting pyramid-shaped core pins, hypereutectic aluminum silicon casting alloy, high melt temperatures and high gate velocities. Multiple pin design was selected to enable multiple test sites for comparative evaluation. Apilot run was conducted on a 300 ton commercial die casting machine at various sites (pins) to verify the thermal and flow similarities. Subsequently, campaigns were run on two different 300 ton commercial die casting machines to evaluate H13 die material and different coatings for erosive resistance. Coatings and surface treatments evaluated included surface micropeening, titanium nitride, boron carbide, vanadium carbide, and metallic coatings—tungsten, molybdenum, and platinum. Recent campaigns with different melt temperatures have indicated a possible link between soldering phenomena and erosive wear. This paper presents the details of the test set up and the results of the pilot and evaluation tests.

  6. Manufacture of die casting dies by hot isostatic pressing. CRADA final report

    SciTech Connect

    Viswanathan, S.; Ren, W.; Luk, K.; Brucher, H.G.

    1998-09-01

    The reason for this Cooperative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory (ORNL) and Doehler-Jarvis was to investigate the manufacture die-casting dies with internal water-cooling lines by hot-isostatic pressing (HIPing) of H13 tool steel powder. The use of HIPing will allow the near-net-shape manufacture of dies and the strategic placement of water-cooling lines during manufacture. The production of near-net-shape dies by HIPing involves the generation of HIPing diagrams, the design of the can that can be used for HIPing a die with complex details, strategic placement of water-cooling lines in the die, computer modeling to predict movement of the water lines during HIPing, and the development of strategies for placing water lines in the appropriate locations. The results presented include a literature review, particle analysis and characterization of H13 tool steel powder, and modeling of the HIPing process.

  7. Deburring die-castings by wet vibratory plant

    NASA Astrophysics Data System (ADS)

    Loeschbart, H. M.

    1980-02-01

    A wet vibratory procedure for the removal of burrs from die castings is described. In this process synthetic abrasive chips and detergent solutions are agitated with the work in such a way as to produce a spiral circulatory movement. Details of various forms of vibrator basin and shapes of abrasive are illustrated. The automation of deburring is illustrated through the application of vibrators of spiral design in combination with transport and drying devices.

  8. Deburring die-castings by wet vibratory plant

    NASA Technical Reports Server (NTRS)

    Loeschbart, H. M.

    1980-01-01

    A wet vibratory procedure for the removal of burrs from die castings is described. In this process synthetic abrasive chips and detergent solutions are agitated with the work in such a way as to produce a spiral circulatory movement. Details of various forms of vibrator basin and shapes of abrasive are illustrated. The automation of deburring is illustrated through the application of vibrators of spiral design in combination with transport and drying devices.

  9. Impact properties of zinc die cast alloys

    SciTech Connect

    Schrems, Karol K.; Dogan, Omer N.; Manahan, M.P.; Goodwin, F.E.

    2005-01-01

    Alloys 3, 5, AcuZinc 5, and ZA-8 were tested at five temperatures between -40 C and room temperature to determine impact properties. Izod impact energy data was obtained in accordance with ASTM D256. Unlike ASTM E23, these samples were tested with a milled notch in order to compare with plastic samples. In addition, flexural data was obtained for design use.

  10. Energy Saving Melting and Revert Reduction Technology: Improved Die Casting Process to Preserve the Life of the Inserts

    SciTech Connect

    David Schwam, PI; Xuejun Zhu, Sr. Research Associate

    2012-09-30

    The goal of this project was to study the combined effects of die design, proper internal cooling and efficient die lubricants on die life. The project targeted improvements in die casting insert life by: Optomized Die Design for Reduced Surface Temperature: The life of die casting dies is significantly shorter when the die is exposed to elevated temperature for significant periods of time. Any die operated under conditions leading to surface temperature in excess of 1050oF undergoes structural changes that reduce its strength. Optimized die design can improve die life significantly. This improvement can be accomplished by means of cooling lines, baffles and bubblers in the die. A key objective of the project was to establish criteria for the minimal distance of the cooling lines from the surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. The Uddeholm Dievar steel evaluated in this program showed superior resistance to thermal fatigue resistance. Based on the experimental evidence, cooling lines could be placed as close as 0.5" from the surface. Die Life Extension by Optimized Die Lubrication: The life of die casting dies is affected by additions made to its surface with the proper lubricants. These lubricants will protect the surface from the considerable temperature peaks that occur when the molten melt enters the die. Dies will reach a significantly higher temperature without this lubricant being applied. The amount and type of the lubricant are critical variables in the die casting process. However, these lubricants must not corrode the die surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. Chem- Trend participated in the program with die

  11. Determination of the metal/die interfacial heat transfer coefficient of high pressure die cast B390 alloy

    NASA Astrophysics Data System (ADS)

    Cao, Yongyou; Guo, Zhipeng; Xiong, Shoumei

    2012-07-01

    High-pressure die cast B390 alloy was prepared on a 350 ton cold chamber die casting machine. The metal/die interfacial heat transfer coefficient of the alloy was investigated. Considering the filling process, a "finger"-shaped casting was designed for the experiments. This casting consisted of five plates with different thicknesses (0.05 inch or 1.27 mm to 0.25 inch or 6.35 mm) as well as individual ingates and overflows. Experiments under various operation conditions were conducted, and temperatures were measured at various specific locations inside the die. Based on the results, the interfacial heat transfer coefficient and heat flux were determined by solving the inverse heat transfer problem. The influence of the mold-filling sequence, sensor locations, as well as processing parameters including the casting pressure, die temperature, and fast/slow shot speeds on the heat transfer coefficient were discussed.

  12. Notched bar Izod impact properties of zinc die castings

    SciTech Connect

    Schrems, K.K.; Dogan, O.N.; Goodwin, F.E.

    2007-03-01

    Notched bar Izod impact testing of zinc die cast Alloy 3, Alloy 5, ZA-8, and AcuZinc 5 was performed at five temperatures between -40\\mDC and room temperature in accordance with ASTM E23 for impact testing of metallic materials. A direct comparison between ASTM D256 for impact testing of plastics and ASTM E23 was performed using continuously cast zinc specimens of Alloy 5 and ZA-8 at -40\\mDC and room temperature. There are differences in sample sizes, impact velocity, and striker geometry between the two tests. Bulk zinc tested according to ASTM E23 resulted in higher impact energies at -40\\mDC and lower impact energies at room temperature then did the same alloys when tested according to ASTM D256.

  13. High-Pressure Die-Casting: Contradictions and Challenges

    NASA Astrophysics Data System (ADS)

    Bonollo, Franco; Gramegna, Nicola; Timelli, Giulio

    2015-05-01

    High-pressure die casting (HPDC) is particularly suitable for high production rates and it is applied in several industrial fields; actually, approximately half of the world production of light metal castings is obtained by this technology. An overview of the actual status of HPDC technology is described in the current work, where both critical aspects and potential advantages are evidenced. Specific attention is paid to the quality requirements from the end users, as well as to the achievable production rate, the process monitoring and control, and the European and worldwide scenario. This overview leads to individuate the most relevant challenges for HPDC industry: "zero-defect" production, real-time process control, understanding the role of the process variables, process optimization, introduction of research and development activities, and disseminating the knowledge about HPDC technology. Performing these actions, HPDC foundries could achieve a more mature and efficient approach to large end users and exploit their really relevant potential.

  14. Development of Thin Section Zinc Die Casting Technology

    SciTech Connect

    Goodwin, Frank

    2013-10-31

    A new high fluidity zinc high pressure die casting alloy, termed the HF alloy, was developed during laboratory trials and proven in industrial production. The HF alloy permits castings to be achieved with section thicknesses of 0.3 mm or less. Technology transfer activities were conducted to develop usage of the HF high fluidity alloy. These included production of a brochure and a one-hour webinar on the HF alloy. The brochure was then sent to 1,184 product designers in the Interzinc database. There was excellent reception to this mailing, and from this initial contact 5 technology transfer seminars were conducted for 81 participants from 30 companies across a wide range of business sectors. Many of the successful applications to date involve high quality surface finishes. Design and manufacturing assistance was given for development of selected applications.

  15. Vacuum Die Casting of Silicon Sheet for Photovoltaic Applications

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The development of a vacuum die-casting process for producing silicon sheet suitable for photovoltaic cells with a terrestrial efficiency greater than 12 percent and having the potential to be scaled for large quantity production is considered. The initial approach includes: (1) obtaining mechanical design parameters by using boron nitride, which has been shown to non-wetting to silicon; (2) optimizing silicon nitride material composition and coatings by sessile drop experiments; (3) testing effectiveness of fluoride salt interfacial media with a graphite mold; and (4) testing the effect of surface finish using both boron nitride and graphite. When the material and mechanical boundary conditions are established, a finalized version of the prototype assembly will be constructed and the casting variables determined.

  16. The Effects of Externally Solidified Product on Wave Celerity and Quality of Die Cast Products

    SciTech Connect

    Carroll Mobley; Yogeshwar Sahai; Jerry Brevick

    2003-10-10

    The cold chamber die casting process is used to produce essentially all the die cast aluminum products and about 50% of the die cast magnesium products made today. Modeling of the cold chamber die casting process and metallographic observations of cold chamber die cast products indicate that typically 5 to 20% of the shot weight is solidified in the shot sleeve before or during cavity filling. The protion of the resulting die casting which is solidified in the shot sleeve is referred to as externally solidified product, or, when identified as a casting defect, as cold flakes. This project was directed to extending the understanding of the effects of externally solidified product on the cold chamber die casting process and products to enable the production of defect-free die castings and reduce the energy associated with these products. The projected energy savings from controlling the fraction of externally solidified product in die cast components is 40 x 10 Btu through the year 2025.

  17. Microstructural analysis of aluminum high pressure die castings

    NASA Astrophysics Data System (ADS)

    David, Maria Diana

    Microstructural analysis of aluminum high pressure die castings (HPDC) is challenging and time consuming. Automating the stereology method is an efficient way in obtaining quantitative data; however, validating the accuracy of this technique can also pose some challenges. In this research, a semi-automated algorithm to quantify microstructural features in aluminum HPDC was developed. Analysis was done near the casting surface where it exhibited fine microstructure. Optical and Secondary electron (SE) and backscatter electron (BSE) SEM images were taken to characterize the features in the casting. Image processing steps applied on SEM and optical micrographs included median and range filters, dilation, erosion, and a hole-closing function. Measurements were done on different image pixel resolutions that ranged from 3 to 35 pixel/μm. Pixel resolutions below 6 px/μm were too low for the algorithm to distinguish the phases from each other. At resolutions higher than 6 px/μm, the volume fraction of primary α-Al and the line intercept count curves plateaued. Within this range, comparable results were obtained validating the assumption that there is a range of image pixel resolution relative to the size of the casting features at which stereology measurements become independent of the image resolution. Volume fraction within this curve plateau was consistent with the manual measurements while the line intercept count was significantly higher using the computerized technique for all resolutions. This was attributed to the ragged edges of some primary α-Al; hence, the algorithm still needs some improvements. Further validation of the code using other castings or alloys with known phase amount and size may also be beneficial.

  18. Interfacial Heat Transfer during Die Casting of an Al-Si-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Hamasaiid, A.; Wang, G.; Davidson, C.; Dour, G.; Dargusch, M. S.

    2009-12-01

    The relationship between in-cavity pressure, heat flux, and heat-transfer coefficient during high-pressure die casting of an Al-9 pct Si-3 pct Cu alloy was investigated. Detailed measurements were performed using infrared probes and thermocouple arrays that accurately determine both casting and die surface temperatures during the pressure die casting of an aluminum A380 alloy. Concurrent in-cavity pressure measurements were also performed. These measurements enabled the correlation between in-cavity pressure and accurate heat-transfer coefficients in high-pressure die-casting operations.

  19. Die casting die deflections: Prediction and attenuation. Final report, July 1, 1995--September 30, 1997

    SciTech Connect

    Miller, R.Allen; Ahuett-Garza, Horacio; Choudhury, Aswin K.; Dedhia, Sanjay

    1998-05-01

    The objective of this work was to develop and test die casting design evaluation techniques based on the visualization of geometric data that is related to potential defects or problems. Specifically, thickness information is used to provide insight into potential thermal problems in the part and die. Distance from the gate and a special type of animation of the fill pattern is used to provide an assessment of gate, vent and overflow locations. Techniques have been developed to convert part design information in the form of STL files to a volume-based representation called a voxel model. The use of STL files makes the process CAD system independent. Once in voxel form, methods that were developed in this work are used to identify thick regions in the part, thin regions in the part and/or die, distance from user specified entry locations (gates), and the qualitative depiction of the fill pattern. The methods were tested with a prototype implementation on the UNIX platform. The results of comparisons with numerical simulation and field reported defects were surprisingly good. The fill-related methods were also compared against short-shots and a water analog study using high speed video. The report contains the results of the testing plus detailed background material on the construction of voxel models, the methods used for displaying results, and the computational geometric reasoning methods used to create die casting-related information from the voxel model for display to the user.

  20. Microstructure and Elevated Temperature Properties of Die-cast AZ91- xNd Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Wang, Limin; An, Jian; Liu, Yongbing

    2008-10-01

    The effect of Nd addition on the microstructure and mechanical properties of a die-cast AZ91 alloy was investigated in the present work. The results show that the die-cast AZ91 alloy is composed of α-Mg matrix and γ-Mg17Al12 phase. Nd addition into the AZ91 alloy leads to the formation of rare earth containing intermetallic phase. Al4Nd phase forms when Nd content is less than or equal to 1.0 wt.%. Al2Nd phase appears simultaneously when Nd content reaches to 3.0 wt.%. The size and volume fraction of γ-Mg17Al12 phase decrease, because of the newly formed Al-Nd phase. And the γ-Mg17Al12 phase distributes from reticular to dispersive. Nd addition has a little effect on the room temperature properties of the die-cast AZ91 alloy, but greatly improves the elevated temperature properties. The tensile strength of AZ91-0.5Nd and AZ91-1.0Nd alloy tested at 150 °C is even close to the room temperature strength. The AZ91-1.0Nd alloy has the optimal properties.

  1. Development of materials for the rapid manufacture of die cast tooling

    NASA Astrophysics Data System (ADS)

    Hardro, Peter Jason

    The focus of this research is to develop a material composition that can be processed by rapid prototyping (RP) in order to produce tooling for the die casting process. Where these rapidly produced tools will be superior to traditional tooling production methods by offering one or more of the following advantages: reduced tooling cost, shortened tooling creation time, reduced man-hours for tool creation, increased tool life, and shortened die casting cycle time. By utilizing RP's additive build process and vast material selection, there was a prospect that die cast tooling may be produced quicker and with superior material properties. To this end, the material properties that influence die life and cycle time were determined, and a list of materials that fulfill these "optimal" properties were highlighted. Physical testing was conducted in order to grade the processability of each of the material systems and to optimize the manufacturing process for the downselected material system. Sample specimens were produced and microscopy techniques were utilized to determine a number of physical properties of the material system. Additionally, a benchmark geometry was selected and die casting dies were produced from traditional tool materials (H13 steel) and techniques (machining) and from the newly developed materials and RP techniques (selective laser sintering (SLS) and laser engineered net shaping (LENS)). Once the tools were created, a die cast alloy was selected and a preset number of parts were shot into each tool. During tool creation, the manufacturing time and cost was closely monitored and an economic model was developed to compare traditional tooling to RP tooling. This model allows one to determine, in the early design stages, when it is advantageous to implement RP tooling and when traditional tooling would be best. The results of the physical testing and economic analysis has shown that RP tooling is able to achieve a number of the research objectives, namely

  2. WARM WATER SCALE MODEL EXPERIMENTS FOR MAGNESIUM DIE CASTING

    SciTech Connect

    Sabau, Adrian S

    2006-01-01

    High-pressure die casting (HPDC) involves the filling of a cavity with the molten metal through a thin gate. High gate velocities yield jet break-up and atomization phenomena. In order to improve the quality of magnesium parts, the mold filling pattern, including atomization phenomena, needs to be understood. The goal of this study was to obtain experimental data on jet break-up characteristics for conditions similar to that of magnesium HPDC, and measure the droplet velocity and size distribution. A scale analysis is first presented in order to identify appropriate analogue for liquid magnesium alloys. Based on the scale analysis warm water was chosen as a suitable analogue and different nozzles were manufactured. A 2-D component phase Doppler particle analyzer (PDPA) and 2-D component particle image velocimetry (PIV) were then used to obtain fine particle diameter and velocity distributions in 2-D plane.

  3. The Effects of Microstructure Heterogeneities and Casting Defects on the Mechanical Properties of High-Pressure Die-Cast AlSi9Cu3(Fe) Alloys

    NASA Astrophysics Data System (ADS)

    Timelli, Giulio; Fabrizi, Alberto

    2014-11-01

    Detailed investigations of the salient microstructural features and casting defects of the high-pressure die-cast (HPDC) AlSi9Cu3(Fe) alloy are reported. These characteristics are addressed to the mechanical properties and reliability of separate HPDC tensile bars. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes throughout the tensile specimen. The results indicate that the die-cast microstructure consists of several microstructural heterogeneities such as positive eutectic segregation bands, externally solidified crystals (ESCs), cold flakes, primary Fe-rich intermetallics (sludge), and porosities. In addition, it results that sludge particles, gas porosity, as well as ESCs, and cold flakes are concentrated toward the casting center while low porosity and fine-grained structure is observed on the surface layer of the castings bars. The local variation of the hardness along the cross section as well as the change of tensile test results as a function of gage diameter of the tensile bars seem to be ascribed to the change of porosity content, eutectic fraction, and amount of sludge. Further, this behavior reflects upon the reliability of the die-cast alloy, as evidenced by the Weibull statistics.

  4. Modeling and Analysis of The Pressure Die Casting Using Response Surface Methodology

    SciTech Connect

    Kittur, Jayant K.; Herwadkar, T. V.; Parappagoudar, M. B.

    2010-10-26

    Pressure die casting is successfully used in the manufacture of Aluminum alloys components for automobile and many other industries. Die casting is a process involving many process parameters having complex relationship with the quality of the cast product. Though various process parameters have influence on the quality of die cast component, major influence is seen by the die casting machine parameters and their proper settings. In the present work, non-linear regression models have been developed for making predictions and analyzing the effect of die casting machine parameters on the performance characteristics of die casting process. Design of Experiments (DOE) with Response Surface Methodology (RSM) has been used to analyze the effect of effect of input parameters and their interaction on the response and further used to develop nonlinear input-output relationships. Die casting machine parameters, namely, fast shot velocity, slow shot to fast shot change over point, intensification pressure and holding time have been considered as the input variables. The quality characteristics of the cast product were determined by porosity, hardness and surface rough roughness (output/responses). Design of experiments has been used to plan the experiments and analyze the impact of variables on the quality of casting. On the other-hand Response Surface Methodology (Central Composite Design) is utilized to develop non-linear input-output relationships (regression models). The developed regression models have been tested for their statistical adequacy through ANOVA test. The practical usefulness of these models has been tested with some test cases. These models can be used to make the predictions about different quality characteristics, for the known set of die casting machine parameters, without conducting the experiments.

  5. Understanding the Relationship Between Filling Pattern and Part Quality in Die Casting

    SciTech Connect

    Jerald Brevick; R. Allen Miller

    2004-03-15

    The overall objective of this research project was to investigate phenomena involved in the filling of die cavities with molten alloy in the cold chamber die-casting process. It has long been recognized that the filling pattern of molten metal entering a die cavity influences the quality of die-cast parts. Filling pattern may be described as the progression of molten metal filling the die cavity geometry as a function of time. The location, size and geometric configuration of points of metal entry (gates), as well as the geometry of the casting cavity itself, have great influence on filling patterns. Knowledge of the anticipated filling patterns in die-castings is important for designers. Locating gates to avoid undesirable flow patterns that may entrap air in the casting is critical to casting quality - as locating vents to allow air to escape from the cavity (last places to fill). Casting quality attributes that are commonly flow related are non-fills, poor surface finish, internal porosity due to trapped air, cold shuts, cold laps, flow lines, casting skin delamination (flaking), and blistering during thermal treatment.

  6. Application of High-Temperature Mold Materials to Die Cast Copper Motor Rotor for Improved Efficiency

    SciTech Connect

    John G. Cowie; Edwin F. Brush, Jr.; Dale T. Peters; Stephen P. Midson; Darryl J. Van Son

    2003-05-01

    The objective of the study, Application of High-Temperature Mold Materials to Die Cast Copper Motor Rotor for Improved Efficiency, was to support the Copper Development Association (CDA) in its effort to design, fabricate and demonstrate mold technologies designed to withstand the copper motor rotor die casting environment for an economically acceptable life. The anticipated result from the compiled data and tests were to: (1) identify materials suitable for die casting copper, (2) fabricate motor rotor molds and (3) supply copper rotor motors for testing in actual compressor systems. Compressor manufacturers can apply the results to assess the technical and economical viability of copper rotor motors.

  7. Mechanical Properties of Die-Cast Magnesium Alloy MRI 230D

    NASA Astrophysics Data System (ADS)

    Aghion, Eli; Moscovitch, Nir; Arnon, Amir

    2009-10-01

    MRI 230D was specially developed to overcome the high-temperature limitations of conventionally die-cast magnesium alloys. This innovative alloy was primarily developed for the automotive industry, mainly for power-train applications operating under high-temperature conditions. The present article aims at evaluating the die-casting characteristics of MRI 230D in comparison with conventional AZ91D Mg alloy. These characteristics are used to evaluate the applicability of this alloy for die-casting operations which are essential for mass production.

  8. A method for surface quality assessment of die-castings based on laser triangulation

    NASA Astrophysics Data System (ADS)

    Bračun, Drago; Gruden, Valter; Možina, Janez

    2008-04-01

    This paper presents a new method for the surface quality assessment of safety-critical die-castings. We have developed a measurement system that measures the surface of a die-casting and provides quantitative surface quality assessment within a die-casting cycle of 70 s. The measurement system, based on the laser triangulation principle, has an asymmetrical measuring range and is capable of high-resolution measurements of the casting surface (0.02 mm). Geometry specific parameters (flatness of the particular surface region, average deviation of the measured points and height of the surface defects) are calculated from the acquired surface data and then checked whether/how they fit within the tolerances specified in a technical documentation. The method has been tested in the laboratory by examination of a sample of castings taken randomly from the production process. A comparison of the results obtained by this method and by a qualified operator has shown good agreement.

  9. Effect of Process Parameters, Casting Thickness, and Alloys on the Interfacial Heat-Transfer Coefficient in the High-Pressure Die-Casting Process

    NASA Astrophysics Data System (ADS)

    Guo, Zhi-Peng; Xiong, Shou-Mei; Liu, Bai-Cheng; Li, Mei; Allison, John

    2008-12-01

    The heat transfer at the metal-die interface is believed to have great influence on the solidification process and cast structure of the high-pressure die-casting (HPDC) process. The present article focused on the effects of process parameters, casting thickness, and alloys on the metal-die interfacial heat-transfer coefficient (IHTC) in the HPDC process. Experiment was carried out on a cold-chamber die-casting machine with two casting alloys AM50 and ADC12. A special casting, namely, “step-shape” casting, was used and cast against a H13 steel die. The IHTC was determined using an inverse approach based on the temperature measurements inside the die. Results show that the IHTC is different at different steps and changes as the solidification of the casting proceeds. Process parameters only influence the IHTC in its peak value, and for both AM50 and ADC12 alloys, a greater fast shot velocity leads to a greater IHTC peak value at steps 1 and 2. The initial die surface temperature has a more prominent influence on the IHTC peak values at the thicker steps, especially step 5. Results also show that a closer contact between the casting and die could be achieved when the casting alloy is ADC12 instead of AM50, which consequently leads to a higher IHTC.

  10. Secondary Al-Si-Mg High-pressure Die Casting Alloys with Enhanced Ductility

    NASA Astrophysics Data System (ADS)

    Bösch, Dominik; Pogatscher, Stefan; Hummel, Marc; Fragner, Werner; Uggowitzer, Peter J.; Göken, Mathias; Höppel, Heinz Werner

    2015-03-01

    Al-Si-Mg-based secondary cast alloys are attractive candidates for thin-walled high-pressure die castings for applications in the transport industry. The present study investigates the effect of manganese additions at high cooling rates on microstructure, mechanical properties, and on the dominating fracture mechanisms of alloy AlSi10Mg with an elevated iron concentration. Systematic variations of the Mn content from 0.20 to 0.85 wt pct at a constant Fe content of 0.55 wt pct illustrate the key changes in type, phase fraction, and shape of the Fe-containing intermetallic phases, and the corresponding influence on the alloy's ductility. For high-pressure die casting (HPDC), an optimal range of the Mn content between 0.40 and 0.60 wt pct, equivalent to a Mn/Fe ratio of approximately 1, has been identified. At these Mn and Fe contents, the high cooling rates obtained in HPDC result in the formation of fine and homogeneously distributed α-Al15(Fe,Mn)3Si2 phase, and crack initiation is transferred from AlFeSi intermetallics to eutectic silicon. The study interprets the microstructure-property relationship in the light of thermodynamic calculations which reveal a significant increase in undercooling of the α-Al15(Fe,Mn)3Si2 phase with increased Mn content. It concludes that the interdependence of the well-defined Mn/Fe ratio and the high cooling rate in HPDC can generate superior ductility in secondary AlSi10Mg cast alloys.

  11. Evaluation of a Heat Flux Sensor for Spray Cooling for the Die Casting Processes

    SciTech Connect

    Sabau, Adrian S; Wu, Zhuoxi

    2007-02-01

    During the die casting process, lubricants are sprayed in order to cool the dies and facilitate the ejection of the casting. In this paper, a new technique for measuring the heat flux during lubricant application is evaluated. Data from experiments conducted using water spray are first presented. Water spray experiments were conducted for different initial plate temperatures. Measurements were conducted for the application of two different lubricants, of dilution ratios of 1/15 and 1/50 of lubricant in water. The measurement uncertainties were documented. The results show that the surface temperature decreases initially very fast. Numerical simulation results confirmed that the abrupt temperature drop is not an artifact but illustrates the thermal shock experienced by the dies during the initial stages of lubricant application. The lubricant experiments show that the sensor can be successfully used for testing die lubricants with typical dilution ratios encountered in the die casting process.

  12. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Surface Engineered Coating Systems for Aluminum Pressure Die Casting Dies: Towards a 'Smart' Die Coating

    SciTech Connect

    Dr. John J. Moore; Dr. Jianliang Lin,

    2012-07-31

    The main objective of this research program was to design and develop an optimal coating system that extends die life by minimizing premature die failure. In high-pressure aluminum die-casting, the die, core pins and inserts must withstand severe processing conditions. Many of the dies and tools in the industry are being coated to improve wear-resistance and decrease down-time for maintenance. However, thermal fatigue in metal itself can still be a major problem, especially since it often leads to catastrophic failure (i.e. die breakage) as opposed to a wear-based failure (parts begin to go out of tolerance). Tooling costs remain the largest portion of production costs for many of these parts, so the ability prevent catastrophic failures would be transformative for the manufacturing industry.The technology offers energy savings through reduced energy use in the die casting process from several factors, including increased life of the tools and dies, reuse of the dies and die components, reduction/elimination of lubricants, and reduced machine down time, and reduction of Al solder sticking on the die. The use of the optimized die coating system will also reduce environmental wastes and scrap parts. Current (2012) annual energy saving estimates, based on initial dissemination to the casting industry in 2010 and market penetration of 80% by 2020, is 3.1 trillion BTU's/year. The average annual estimate of CO2 reduction per year through 2020 is 0.63 Million Metric Tons of Carbon Equivalent (MM TCE).

  13. High Density Die Casting (HDDC): new frontiers in the manufacturing of heat sinks

    NASA Astrophysics Data System (ADS)

    Sce, Andrea; Caporale, Lorenzo

    2014-07-01

    Finding a good solution for thermal management problems is every day more complex. due to the power density and the required performances. When a solution suitable for high volumes is needed. die-casting and extrusion are the most convenient technologies. However designers have to face the well-known limitations for those processes. High Density Die Casting (HDDC) is a process under advanced development. in order to overcome the extrusion and traditional die casting limits by working with alloys having much better thermal performances than the traditional die-casting process. while keeping the advantages of a flexible 3D design and a low cost for high volumes. HDDC offers the opportunity to design combining different materials (aluminium and copper. aluminium and stainless steel) obtaining a structure with zero porosity and overcoming some of die-casting limits. as shown in this paper. A dedicated process involving embedded heat pipes is currently under development in order to offer the possibility to dramatically improve the heat spreading.

  14. Development of an Innovative Laser-Assisted Coating Process for Extending Lifetime of Metal Casting Dies. Final Report

    SciTech Connect

    Madhav Rao Gonvindaraju

    1999-10-18

    Die casting dies used in the metal casting industry fail due to thermal fatigue cracking accompanied by the presence of residual tensile stresses, corrosion, erosion and wear of die surfaces. This phase 1 SBIR Final Report summarize Karta Technologies research involving the development of an innovative laser coating technology for metal casting dies. The process involves depositing complex protective coatings of nanocrystalline powders of TiC followed by a laser shot peening. The results indicate a significant improvement in corrosion and erosion resistance in molten aluminum for H13 die casting die steels. The laser-coated samples also showed improved surface finish, a homogeneous and uniform coating mircrostructure. The technology developed in this research can have a significant impact on the casting industry by saving the material costs involved in replacing dies, reducing downtime and improving the quality.

  15. Recycling of Al-Si die casting scraps for solar Si feedstock

    NASA Astrophysics Data System (ADS)

    Seo, Kum-Hee; Jeon, Je-Beom; Youn, Ji-Won; Kim, Suk Jun; Kim, Ki-Young

    2016-05-01

    Recycling of aluminum die-casting scraps for solar-grade silicon (SOG-Si) feedstock was performed successfully. 3 N purity Si was extracted from A383 die-casting scrap by using the combined process of solvent refining and an advanced centrifugal separation technique. The efficiency of separating Si from scrap alloys depended on both impurity level of scraps and the starting temperature of centrifugation. Impurities in melt and processing temperature governed the microstructure of the primary Si. The purity of Si extracted from the scrap melt was 99.963%, which was comparable to that of Si extracted from a commercial Al-30 wt% Si alloy, 99.980%. The initial purity of the scrap was 2.2% lower than that of the commercial alloy. This result confirmed that die-casting scrap is a potential source of high-purity Si for solar cells.

  16. The effect of process parameters on the internal quality of an aluminum die casting

    NASA Astrophysics Data System (ADS)

    Dewit, M. C. A. J.

    1986-01-01

    The influence of process parameters on the porosity of an aluminum die casting was investigated. Two types of die one of which had an interchangeable gate and two alloys, AlSi8Cu3 and AlSi7, were used. During the solidification phase of a die casting, air entrapment can occur; the air remains in the die casting under high pressure after solidification. The Rayleigh number which contains the velocity in the gate, the gate diameter, and the liquid metal surface tension, determines the air entrapment. It appears that there are two types of filling: solid front filling at low velocities, and standard spray filling at high velocities. With the former type, the castings contain no air, but the shrinkage is concentrated in big holes; with the latter type the castings contain much air, and the shrinkage is distributed over fine holes. The first phase velocity has no significant influence on the porosity; a decrease of the third phase velocity increases the porosity. Variations of the changeover point between the first and second phase have little influence.

  17. Evolution of Intermetallic Phases in Soldering of the Die Casting of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Song, Jie; Wang, Xiaoming; DenOuden, Tony; Han, Qingyou

    2016-06-01

    Most die failures are resulted from chemical reactions of dies and molten aluminum in the die casting of aluminum. The formation of intermetallic phases between a steel die and molten aluminum is investigated by stationary immersion tests and compared to a real die casting process. Three intermetallic phases are identified in the stationary immersion tests: a composite layer and two compact layers. The composite layer is a mixture of α bcc, Al, and Si phases. The α bcc phase changes in morphology from rod-like to spherical shape, while the growth rate of the layer changes from parabolic to linear pattern with immersion time. The first compact layer forms rapidly after immersion and maintains a relatively constant thickness. The second compact layer forms after 4 hours of immersion and exhibits parabolic growth with immersion time. In comparison, only a composite layer and the first compact layer are observed in a real die casting process. The fresh molten aluminum of high growth rate washes away the second intermetallic layer easily.

  18. Simple visualization techniques for die casting part and die design. Final report, July 1, 1995--September 30, 1997

    SciTech Connect

    Miller, R.A.; Lu, S.C.; Rebello, A.B.

    1998-05-01

    The objective of this work was to develop and test die casting design evaluation techniques based on the visualization of geometric data that is related to potential defects of problems. Specifically, thickness information is used to provide insight into potential thermal problems in the part and die. Distance from the gate and a special type of animation of the fill pattern is used to provide an assessment of gate, vent and overflow locations. Techniques have been developed to convert part design information in the form of STL files to a volume-based representation called a voxel model. The use of STL files makes the process CAD system independent. Once in voxel form, methods that were developed in this work are used to identify thick regions in the part, thin regions in the part and/or die, distance from user specified entry locations (gates), and the qualitative depiction of the fill pattern. The methods were tested with a prototype implementation on the UNIX platform. The results of comparisons with numerical simulation and field reported defects were surprisingly good. The fill-related methods were also compared against short-shots and a water analog study using high speed video. The report contains the results of the testing plus detailed background material on the construction of voxel models, the methods used for displaying results, and the computational geometric reasoning methods used to create die casting-related information from the voxel model for display to the user.

  19. Simple visualization techniques for die casting part and die design. Final report, July 1, 1995--September 30, 1997

    SciTech Connect

    Miller, R.A.; Lu, S.C.; Rebello, A.B.

    1998-05-01

    The objective of this work was to develop and test die casting design evaluation techniques based on the visualization of geometric data that is related to potential defects of problems. Specifically, thickness information is used to provide insight into potential thermal problems in the part and die. Distance from the gate and a special type of animation of the fill pattern is used to provide an assessment of gate, vent and overflow locations. Techniques have been developed to convert part design information in the form of STL files to a volume-based representation called a voxel model. The use of STL files makes the process CAD system independent. Once in voxel form, methods that were developed in this work are used to identify thick regions in the part, thin regions in the part and/or die, distance from user specified entry locations (gates), and the qualitative depiction of the fill pattern. The methods were tested with a prototype implementation on the UNIX platform. The results of comparisons with numerical simulation and field reported defects were surprisingly good. The fill-related methods were also compared against short-shots and a water analog study using high speed video. The report contains the results of the testing plus detailed background material on the construction of voxel models, the methods used for displaying results, and the computational geometric reasoning methods used to create die casting-related information form the voxel model for display to the user.

  20. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    SciTech Connect

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  1. The effect of Sr and Fe additions on the microstructure and mechanical properties of a direct squeeze cast Al-7Si-0.3Mg alloy

    SciTech Connect

    Dong, J.X.; Karnezis, P.A.; Durrant, G.; Cantor, B.

    1999-05-01

    This article describes the results of an investigation into the microstructure and mechanical properties of a gravity die cast and direct squeeze cast LM25 alloy (Al-7Si-0.3Mg-0.3Fe). The direct squeeze cast LM25 alloy has superior mechanical properties compared to the gravity die cast LM25 alloy, especially with regard to ductility, which is increased from {approximately}1.7 pct for the gravity die cast LM25 alloy to {approximately}8.0 pct for the direct squeeze cast LM25 alloy in the T6 heat-treated conditions. This increase in ductility is due to (1) the removal of porosity, (2) a decrease in Si particle size, and (3) a refinement of the Fe-Si-aluminide particles. High cooling rates in direct squeeze casting result in quench modification of the Si particles, such that chemical modification with Sr or Na may not be required. In addition, direct squeeze casting is more tolerant of Fe impurities in the alloy, due to the formation of smaller Fe-Si-aluminide particles than those in gravity die cast material. The direct squeeze cast LM25 + Fe alloy (Al-7Si-0.3Mg-1.0Fe) has a ductility of {approximately}6.5 pct, compared to that of {approximately}0.5 pct for the gravity die cast LM25 + Fe alloy in the T6 heat-treated condition. This increase in tolerance to Fe impurities can lead to a substantial reduction in manufacturing costs due to (1) reduced raw-material costs, (2) reduced die sticking, and (3) improved die life.

  2. The effect of Sr and Fe additions on the microstructure and mechanical properties of a direct squeeze cast Al-7Si-0.3Mg alloy

    NASA Astrophysics Data System (ADS)

    Dong, J. X.; Karnezis, P. A.; Durrant, G.; Cantor, B.

    1999-05-01

    This article describes the results of an investigation into the microstructure and mechanical properties of a gravity die cast and direct squeeze cast LM25 alloy (Al-7Si-0.3Mg-0.3Fe). The direct squeeze cast LM25 alloy has superior mechanical properties compared to the gravity die cast LM25 alloy, especially with regard to ductility, which is increased from ˜1.7 pct for the gravity die cast LM25 alloy to ˜8.0 pct for the direct squeeze cast LM25 alloy in the T6 heat-treated condition. This increase in ductility is due to (1) the removal of porosity, (2) a decrease in Si particle size, and (3) a refinement of the Fe-Si-aluminide particles. High cooling rates in direct squeeze casting result in quench modification of the Si particles, such that chemical modification with Sr or Na may not be required. In addition, direct squeeze casting is more tolerant of Fe impurities in the alloy, due to the formation of smaller Fe-Si-aluminide particles than those in gravity die cast material. The direct squeeze cast LM25+Fe alloy (Al-7Si-0.3Mg-1.0Fe) has a ductility of ˜6.5 pct, compared to that of ˜0.5 pct for the gravity die cast LM25 + Fe alloy in the T6 heat-treated condition. This increase in tolerance to Fe impurities can lead to a substantial reduction in manufacturing costs due to (1) reduced raw-material costs, (2) reduced die sticking, and (3) improved die life.

  3. Influence of Sludge Particles on the Tensile Properties of Die-Cast Secondary Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Ferraro, Stefano; Timelli, Giulio

    2015-04-01

    The effects of sludge intermetallic particles on the mechanical properties of a secondary AlSi9Cu3(Fe) die-casting alloy have been studied. Different alloys have been produced by systematically varying the Fe, Mn, and Cr contents within the composition tolerance limits of the standard EN AC-46000 alloy. The microstructure shows primary α-Al x (Fe,Mn,Cr) y Si z sludge particles, with polyhedral and star-like morphologies, although the presence of primary β-Al5FeSi phase is also observed at the highest Fe:Mn ratio. The volume fraction of primary compounds increases as the Fe, Mn, and Cr contents increase and this can be accurately predicts from the Sludge Factor by a linear relationship. The sludge amount seems to not influence the size and the content of porosity in the die-cast material. Furthermore, the sludge factor is not a reliable parameter to describe the mechanical properties of the die-cast AlSi9Cu3(Fe) alloy, because this value does not consider the mutual interaction between the elements. In the analyzed range of composition, the design of experiment methodology and the analysis of variance have been used in order to develop a semi-empirical model that accurately predicts the mechanical properties of the die-cast AlSi9Cu3(Fe) alloys as function of Fe, Mn, and Cr concentrations.

  4. Modeling of microstructure evolution of magnesium alloy during the high pressure die casting process

    NASA Astrophysics Data System (ADS)

    Wu, Mengwu; Xiong, Shoumei

    2012-07-01

    Two important microstructure characteristics of high pressure die cast magnesium alloy are the externally solidified crystals (ESCs) and the fully divorced eutectic which form at the filling stage of the shot sleeve and at the last stage of solidification in the die cavity, respectively. Both of them have a significant influence on the mechanical properties and performance of magnesium alloy die castings. In the present paper, a numerical model based on the cellular automaton (CA) method was developed to simulate the microstructure evolution of magnesium alloy during cold-chamber high pressure die casting (HPDC) process. Modeling of dendritic growth of magnesium alloy with six-fold symmetry was achieved by defining a special neighbourhood configuration and calculating of the growth kinetics from complete solution of the transport equations. Special attention was paid to establish a nucleation model considering both of the nucleation of externally solidified crystals in the shot sleeve and the massive nucleation in the die cavity. Meanwhile, simulation of the formation of fully divorced eutectic was also taken into account in the present CA model. Validation was performed and the capability of the present model was addressed by comparing the simulated results with those obtained by experiments.

  5. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    SciTech Connect

    David Schwam

    2012-12-15

    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment may be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.

  6. Assessment of Computer Simulation Software and Process Data for High Pressure Die Casting of Magnesium

    SciTech Connect

    Sabau, Adrian S; Hatfield, Edward C; Dinwiddie, Ralph Barton; Kuwana, Kazunori; Viti, Valerio; Hassan, Mohamed I; Saito, Kozo

    2007-09-01

    Computer software for the numerical simulation of solidification and mold filling is an effective design tool for cast structural automotive magnesium components. A review of commercial software capabilities and their validation procedures was conducted. Aside form the software assessment, the program addressed five main areas: lubricant degradation, lubricant application, gate atomization, and heat transfer at metal mold interfaces. A test stand for lubricant application was designed. A sensor was used for the direct measurement of heat fluxes during lubricant application and casting solidification in graphite molds. Spray experiments were conducted using pure deionized water and commercial die lubricants. The results show that the sensor can be used with confidence for measuring heat fluxes under conditions specific to the die lube application. The data on heat flux was presented in forms suitable for use in HPDC simulation software. Severe jet breakup and atomization phenomena are likely to occur due to high gate velocities in HPDC. As a result of gate atomization, droplet flow affects the mold filling pattern, air entrapment, skin formation, and ensuing defects. Warm water analogue dies were designed for obtaining experimental data on mold filling phenomena. Data on break-up jet length, break-up pattern, velocities, and droplet size distribution were obtained experimentally and was used to develop correlations for jet break-up phenomena specific to die casting gate configurations.

  7. Characterization of pores in high pressure die cast aluminum using active thermography and computed tomography

    NASA Astrophysics Data System (ADS)

    Maierhofer, Christiane; Myrach, Philipp; Röllig, Mathias; Jonietz, Florian; Illerhaus, Bernhard; Meinel, Dietmar; Richter, Uwe; Miksche, Ronald

    2016-02-01

    Larger high pressure die castings (HPDC) and decreasing wall thicknesses are raising the issue of casting defects like pores in aluminum structures. Properties of components are often strongly influenced by inner porosity. As these products are being established more and more in lightweight construction (e.g. automotive and other transport areas), non-destructive testing methods, which can be applied fast and on-site, are required for quality assurance. In this contribution, the application of active thermography for the direct detection of larger pores is demonstrated. The analysis of limits and accuracy of the method are completed by numerical simulation and the method is validated using computed tomography.

  8. Fatigue Crack Growth Mechanisms in High-Pressure Die-Cast Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    El Kadiri, Haitham; Horstemeyer, M. F.; Jordon, J. B.; Xue, Yibin

    2008-01-01

    Microstructure-affected micromechanisms of fatigue crack growth operating near the limit plasticity regime were experimentally identified for the four main commercial high-pressure die-cast (HPDC) magnesium alloys: AM50, AM60, AZ91, and AE44. These fatigue micromechanisms manifested by the concomitant effects of casting pores, interdendritic Al-rich solid solution layer, β-phase particles, Mn-rich inclusions, rare earth-rich intermetallics, dendrite cell size, and surface segregation phenomena. These concomitant mechanisms clearly delineated the fatigue durability observed for the AM50, AM60, AZ91, and AE44 Mg alloys in both the low- and high-cycle fatigue regimes.

  9. Casting Technology.

    ERIC Educational Resources Information Center

    Wright, Michael D.; And Others

    1992-01-01

    Three articles discuss (1) casting technology as it relates to industry, with comparisons of shell casting, shell molding, and die casting; (2) evaporative pattern casting for metals; and (3) high technological casting with silicone rubber. (JOW)

  10. Prediction of Thermal Fatigue in Tooling for Die-casting Copper via Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Sakhuja, Amit; Brevick, Jerald R.

    2004-06-01

    Recent research by the Copper Development Association (CDA) has demonstrated the feasibility of die-casting electric motor rotors using copper. Electric motors using copper rotors are significantly more energy efficient relative to motors using aluminum rotors. However, one of the challenges in copper rotor die-casting is low tool life. Experiments have shown that the higher molten metal temperature of copper (1085 °C), as compared to aluminum (660 °C) accelerates the onset of thermal fatigue or heat checking in traditional H-13 tool steel. This happens primarily because the mechanical properties of H-13 tool steel decrease significantly above 650 °C. Potential approaches to mitigate the heat checking problem include: 1) identification of potential tool materials having better high temperature mechanical properties than H-13, and 2) reduction of the magnitude of cyclic thermal excursions experienced by the tooling by increasing the bulk die temperature. A preliminary assessment of alternative tool materials has led to the selection of nickel-based alloys Haynes 230 and Inconel 617 as potential candidates. These alloys were selected based on their elevated temperature physical and mechanical properties. Therefore, the overall objective of this research work was to predict the number of copper rotor die-casting cycles to the onset of heat checking (tool life) as a function of bulk die temperature (up to 650 °C) for Haynes 230 and Inconel 617 alloys. To achieve these goals, a 2D thermo-mechanical FEA was performed to evaluate strain ranges on selected die surfaces. The method of Universal Slopes (Strain Life Method) was then employed for thermal fatigue life predictions.

  11. Microstructural stability and creep properties of die casting Mg-4Al-4RE magnesium alloy

    SciTech Connect

    Rzychon, Tomasz; Kielbus, Andrzej; Cwajna, Jan; Mizera, Jaroslaw

    2009-10-15

    The AE44 (Mg-4Al-4RE) alloy was prepared by a hot-chamber die casting method. The microstructure, microstructural stability and creep properties at 175 deg. C were investigated. The microstructure was analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and the Rietveld method. The results show that die cast AE44 magnesium alloy consists of {alpha}-Mg, Al{sub 11}RE{sub 3}, Al{sub 2}RE and Al{sub 2.12}RE{sub 0.88} phases. The Al{sub 11}RE{sub 3} phase is thermally stable at 175 deg. C whereas the metastable Al{sub 2.12}RE{sub 0.88} phase undergoes a transition into the equilibrium Al{sub 2}RE phase. The alloy investigated is characterized by good creep properties at temperatures of 175 deg. C and 200 {sup o}C.

  12. Fabrication of glass photonic crystal fibers with a die-cast process

    NASA Astrophysics Data System (ADS)

    Guiyao, Zhou; Zhiyun, Hou; Shuguang, Li; Lantian, Hou

    2006-06-01

    We demonstrate a novel method for the fabrication of glass photonic crystal fibers (PCFs) with a die-cast process. SF6 glass is used as the material for PCFs, and the die is made of heat-resisting alloy steel, whose inner structure matches the PCF's structure. The die is put vertically in the vessel with SF6 glass, and the vacuum hose is attached to the top of the die. The die and glass are put in the furnace to heat at 870 K. The die is slowly filled with the softening glass under vacuum conduction until it is full. It is kept in the furnace to anneal at a rate of 20 K/h to remove the thermal stress that could lead to cracks. The outer tube of the die is taken apart when its temperature is close to room temperature, and the fused glass bundle is etched in an acidic solution to remove the heat-resisting alloy steel rods. Thus, the etched bundle is ready to use as a PCF preform. The PCF is observed in the generation of a supercontinuum, with the flat plateau in the spectrum of the output emission stretching from 400 to 1400 nm by experimental measurement. The transmission loss is 0.2-0.3 dB/m at wavelengths of 420-900 nm.

  13. Mechanical Properties of Carbon Fiber-Reinforced Aluminum Manufactured by High-Pressure Die Casting

    NASA Astrophysics Data System (ADS)

    Kachold, Franziska; Singer, Robert

    2016-03-01

    Carbon fiber reinforced aluminum was produced by a specially adapted high-pressure die casting process. The MMC has a fiber volume fraction of 27%. Complete infiltration was achieved by preheating the bidirectional, PAN-based carbon fiber body with IR-emitters to temperatures of around 750 °C. The degradation of the fibers, due to attack of atmospheric oxygen at temperatures above 600 °C, was limited by heating them in argon-rich atmosphere. Additionally, the optimization of heating time and temperature prevented fiber degradation. Only the strength of the outer fibers is reduced by 40% at the most. The fibers in core of fiber body are nearly undamaged. In spite of successful manufacturing, the tensile strength of the MMC is below strength of the matrix material. Also unidirectional MMCs with a fiber volume fraction of 8% produced under the same conditions, lack of the reinforcing effect. Two main reasons for the unsatisfactory mechanical properties were identified: First, the fiber-free matrix, which covers the reinforced core, prevents effective load transfer from the matrix to the fibers. And second, the residual stresses in the fiber-free zones are as high as 100 MPa. This causes premature failure in the matrix. From this, it follows that the local reinforcement of an actual part is limited. The stress distribution caused by residual stresses and by loading needs to be known. In this way, the reinforcing phase can be placed and aligned accordingly. Otherwise delamination and premature failure might occur.

  14. Fatigue behaviour of friction stir processed AZ91 magnesium alloy produced by high pressure die casting

    SciTech Connect

    Cavaliere, P. . E-mail: pasquale.cavaliere@unile.it; De Marco, P.P.

    2007-03-15

    The room temperature fatigue properties of AZ91 magnesium alloy produced by high pressure die casting (HPDC) as cast, heat treated, friction stir processed (FSP) and FSP and heat treated were studied. The fatigue properties of the material were evaluated for the HPDC magnesium alloy in the as-received state and after a solution treatment at 415 deg. C for 2 h and an ageing treatment at 220 deg. C for 4 h. The heat treatment resulted in a significant increase in the fatigue properties of the HPDC material, while no significance influence of heat treatment was recorded in the FSP condition. The morphology of fracture surfaces was examined by employing a field emission gun scanning electron microscope (FEGSEM)

  15. Flow analysis and validation of numerical modelling for a thin walled high pressure die casting using SPH

    NASA Astrophysics Data System (ADS)

    Cleary, Paul W.; Savage, Gary; Ha, Joseph; Prakash, Mahesh

    2014-09-01

    High pressure die casting (HPDC) is an important process for high throughput manufacturing of complex shaped metallic components. The flow involves significant fragmentation and spray formation as the high pressure liquid jets into the die from the gate system. An important class of die cast components is one with large areas of thin walls. An example of this is the chassis of the laptop computer. Computational modelling provides an opportunity to both better understand the filling process and to optimize the runner, gates, flash overs and venting systems for the die. SPH has previously been found to be very suitable for predicting HPDC for bulkier automotive components. The modelling challenges arising from the very thin sections and the many flow paths in a laptop chassis require careful validation. A water analogue experiment is used to validate the predictions of the SPH model for this representative thin walled casting. SPH predictions are used to understand and characterise the filling process. Finally, comparison of flow lines visible in an etched finished casting with the high speed flow paths in the final filled SPH model show very strong agreement. Together these demonstrate that such an SPH model is able to capture substantial detail from both the water analogue system and the actual casting process and is very suitable for simulating these types of complex thin walled castings.

  16. Strategies to reduce the environmental impact of an aluminium pressure die casting plant: a scenario analysis.

    PubMed

    Neto, Belmira; Kroeze, Carolien; Hordijk, Leen; Costa, Carlos; Pulles, Tinus

    2009-02-01

    This study explores a model (MIKADO) to analyse scenarios for the reduction of the environmental impact of an aluminium die casting plant. Our model calculates the potential to reduce emissions, and the costs associated with implementation of reduction options. In an earlier paper [Neto, B., Kroeze, C., Hordijk, L., Costa, C., 2008. Modelling the environmental impact of an aluminium pressure die casting company and options for control. Environmental Modelling & Software 23 (2) 147-168] we included the model description and explored the model by applying it to a plant in which no reduction options are assumed to be implemented (so-called zero case, reflecting the current practice in the plant). Here, we perform a systematic analysis of reduction options. We analysed seven types of reduction strategies, assuming the simultaneous implementation of different reduction options. These strategies are analysed with respect to their potential to reduce emissions, environmental impact and costs associated with the implementation of options. These strategies were found to differ largely in their potential to reduce the environmental impact of the plant (10-87%), as well as in the costs associated with the implementation of options (-268 to +277keuro/year). We were able to define 11 strategies, reducing the overall environmental impact by more than 50%. Of these, two have net negative costs, indicating that the company may in fact earn money through their implementation. PMID:18342428

  17. An evaluation of direct pressure sensors for monitoring the aluminum die casting process

    SciTech Connect

    Zhang, X.

    1997-12-31

    This study was conducted as part of the US Department of Energy (DOE) sponsored project Die Cavity Instrumentation. One objective of that project was to evaluate thermal, pressure, and gas flow process monitoring sensors in or near the die cavity as a means of securing improved process monitoring and control and better resultant part quality. The objectives of this thesis are to (1) evaluate a direct cavity pressure sensor in a controlled production campaign at the GM Casting Advanced Development Center (CADC) at Bedford, Indiana; and (2) develop correlations between sensor responses and product quality in terms of the casting weight, volume, and density. A direct quartz-based pressure sensor developed and marked by Kistler Instrument Corp. was acquired for evaluating as an in-cavity liquid metal pressure sensor. This pressure sensor is designed for use up to 700 C and 2,000 bars (29,000 psi). It has a pressure overload capacity up to 2,500 bars (36,250 psi).

  18. Annealing of chromium oxycarbide coatings deposited by plasma immersion ion processing (PIIP) for aluminum die casting

    NASA Astrophysics Data System (ADS)

    Peters, A. M.; He, X. M.; Trkula, M.; Nastasi, M.

    2001-04-01

    Chromium oxycarbide coatings have been investigated for use as non-wetting coatings for aluminum die casting. This paper examines Cr-C-O coating stability and non-wetability at elevated temperatures for extended periods. Coatings were deposited onto 304 stainless steel from chromium carbonyl [Cr(CO) 6] by plasma immersion ion processing. The coatings were annealed in air at an aluminum die casting temperature of 700°C up to 8 h. Coatings were analyzed using resonant ion backscattering spectroscopy, nanoindentation and pin-on-disk tribometry. Molten aluminum was used to determine coating wetting and contact angle. Results indicate that the surface oxide layer reaches a maximum thickness of 900 nm. Oxygen concentrations in the coatings increased from 24% to 34%, while the surface concentration rose to almost 45%. Hardness values ranged from 22.1 to 6.7 GPa, wear coefficients ranged from 21 to 8×10 -6 mm3/ Nm and contact angles ranged from 156° to 127°.

  19. Modifying AM60B Magnesium Alloy Die Cast Surfaces by Friction Stir Processing

    SciTech Connect

    Santella, Michael L; Feng, Zhili; Degen, Cassandra; Pan, Dr. Tsung-Yu

    2006-01-01

    These experiments were done to evaluate the feasibility of locally modifying the surface properties of magnesium alloys with friction-stir processing. The magnesium alloy used for the study was high-pressure die-cast AM60B, nominally Mg-6Al-0.13 Mn (wt. %). Friction-stir passes were made with a translation speed of 1.7 mm/s using tool-rotation speeds of 1,250 rpm or 2,500 rpm. Stir passes with good appearance were obtained under both conditions. In some cases up to five passes were overlapped on a single bar to produce stir zones with cross-sectional dimensions of about 1.5 mm x 10 mm. Metallographic examinations indicated that the stir zones were largely comprised of a magnesium solid solution with equiaxed grains on the order of 5-10 {micro}m in size. Hardness mapping showed that the stir zones experienced increases of 16-25% compared to the as-cast metal. Room-temperature testing showed that, compared to the cast metal, the stir zones had flow stresses nearly 20% higher with about twice the tensile elongation.

  20. Plunger Kinematic Parameters Affecting Quality of High-Pressure Die-Cast Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Fiorese, Elena; Bonollo, Franco

    2016-07-01

    The selection of the optimal process parameters in high-pressure die casting has been long recognized as a complex problem due to the involvement of a large number of interconnected variables. Among these variables, the effect of the plunger motion has been proved to play a prominent role, even if a thorough and exhaustive study is still missing in the literature. To overcome this gap, this work aims at identifying the most relevant plunger kinematic parameters and estimates their correlation with the casting quality, by means of a statistically significant sample manufactured with different plunger motion profiles. In particular, slow and fast shot velocities and switching position between two stages have been varied randomly in accordance with design of experiment methodology. The quality has been assessed through the static mechanical properties and porosity percentage. As a further proof, the percentage of oxides has been estimated on the fracture surfaces. These measurements have been correlated to novel parameters, representing the mechanical energy and the inertial force related to the plunger motion, that have been extracted from the time-history of the displacement curves. The application of statistical methods demonstrates that these novel parameters accurately explain and predict the overall quality of castings.

  1. Plunger Kinematic Parameters Affecting Quality of High-Pressure Die-Cast Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Fiorese, Elena; Bonollo, Franco

    2016-04-01

    The selection of the optimal process parameters in high-pressure die casting has been long recognized as a complex problem due to the involvement of a large number of interconnected variables. Among these variables, the effect of the plunger motion has been proved to play a prominent role, even if a thorough and exhaustive study is still missing in the literature. To overcome this gap, this work aims at identifying the most relevant plunger kinematic parameters and estimates their correlation with the casting quality, by means of a statistically significant sample manufactured with different plunger motion profiles. In particular, slow and fast shot velocities and switching position between two stages have been varied randomly in accordance with design of experiment methodology. The quality has been assessed through the static mechanical properties and porosity percentage. As a further proof, the percentage of oxides has been estimated on the fracture surfaces. These measurements have been correlated to novel parameters, representing the mechanical energy and the inertial force related to the plunger motion, that have been extracted from the time-history of the displacement curves. The application of statistical methods demonstrates that these novel parameters accurately explain and predict the overall quality of castings.

  2. Effect of strontium modification on near-threshold fatigue crack growth in an Al-Si-Cu die cast alloy

    SciTech Connect

    Schaefer, M.; Fournelle, R.A.

    1996-05-01

    The effects of strontium modification on microstructure and fatigue properties in a die cast commercial aluminum-silicon alloy are demonstrated. Strontium additions of 0.010 and 0.018 wt pct drastically change the morphology of the eutectic silicon. The influence of these microstructural changes on fatigue properties is evaluated through fatigue crack growth testing. Examination of the fracture surfaces and the crack path establish distinct fatigue fracture modes for the modified and unmodified eutectic structures. Changes in fracture mode and crack path are correlated to the microstructure changes. A higher energy fracture mode and increased crack path tortuosity explain the observed improvement in fatigue properties for the modified alloys. Strontium modified alloys exhibit a 10 to 20 pct higher fatigue crack growth threshold compared to an unmodified alloy for testing at a load ratio of 0.5. No difference was observed for testing at a load ratio of 0.1.

  3. Improved design and durability of aluminum die casting horizontal shot sleeves

    NASA Astrophysics Data System (ADS)

    Birceanu, Sebastian

    The design and performance of shot sleeves is critical in meeting the engineering requirements of aluminum die cast parts. Improvement in shot sleeve materials have a major impact on dimensional stability, reproducibility and quality of the product. This investigation was undertaken in order to improve the life of aluminum die casting horizontal shot sleeves. Preliminary pin tests were run to evaluate the soldering, wash-out and thermal fatigue behavior of commercially available materials and coatings. An experimental rig was designed and constructed for shot sleeve configuration evaluation. Fabrication and testing of experimental shot sleeves was based upon preliminary results and manufacturing costs. Three shot sleeve designs and materials were compared to a reference nitrided H13 sleeve. Nitrided H13 is the preferred material for aluminum die casting shot sleeves because of wear resistance, strength and relative good soldering and wash-out resistance. The study was directed towards damage evaluation on the area under the pouring hole. This area is the most susceptible to damage because of high temperatures and impingement of molten aluminum. The results of this study showed that tungsten and molybdenum had the least amount of soldering and wash-out damage, and the best thermal fatigue resistance. Low solubility in molten aluminum and stability of intermetallic layers are main factors that determine the soldering and wash-out behavior. Thermal conductivity and thermal expansion coefficient directly influence thermal fatigue behavior. TiAlN nanolayered coating was chosen as the material with the best damage resistance among several commercial PVD coatings, because of relatively large thickness and simple deposition conditions. The results show that molybdenum thermal sprayed coating provided the best protection against damage under the pouring hole. Improved bonding is however required for life extension of the coating. TiAlN PVD coating applied on H13 nitrided

  4. The Effect of Porosity on Fatigue of Die Cast AM60

    NASA Astrophysics Data System (ADS)

    Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.

    2016-07-01

    AM60 high-pressure die castings are known to contain significant porosity which can affect fatigue life. We have studied this using samples drawn from prototype AM60 shock towers by conducting strain-controlled fatigue tests accompanied by X-ray computed tomography analysis. The results show that the machined surface is the preferential location for fatigue crack development, with pores close to these surfaces serving as initiation sites. Fatigue life shows a strong inverse correlation with the size of the fatigue-crack-initiating pore. Pore shape and pore orientation also influence the response. A supplemental study on surface roughness shows that porosity is the dominant factor in fatigue. Tomography enables the link between porosity and fatigue crack initiation to be clearly identified. These data are complemented by SEM observations of the fracture surfaces which are generally flat and full of randomly oriented serration patterns but without long-range fatigue striations.

  5. Case study of lean manufacturing application in a die casting manufacturing company

    NASA Astrophysics Data System (ADS)

    Ching, Ng Tan; Hoe, Clarence Chan Kok; Hong, Tang Sai; Ghobakhloo, Morteza; Pin, Chen Kah

    2015-05-01

    The case study of lean manufacturing aims to study the application of lean manufacturing in a die casting manufacturing company located in Pulau Penang, Malaysia. This case study describes mainly about the important concepts and applications of lean manufacturing which could gradually help the company in increasing the profit by studying and analyzing their current manufacturing process and company culture. Many approaches of lean manufacturing are studied in this project which includes: 5S housekeeping, Kaizen, and Takt Time. Besides, the lean tools mentioned, quality tool such as the House of Quality is being used as an analysis tool to continuously improve the product quality. In short, the existing lean culture in the company is studied and analyzed, with recommendations written at the end of this paper.

  6. The Effect of Porosity on Fatigue of Die Cast AM60

    NASA Astrophysics Data System (ADS)

    Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.

    2016-04-01

    AM60 high-pressure die castings are known to contain significant porosity which can affect fatigue life. We have studied this using samples drawn from prototype AM60 shock towers by conducting strain-controlled fatigue tests accompanied by X-ray computed tomography analysis. The results show that the machined surface is the preferential location for fatigue crack development, with pores close to these surfaces serving as initiation sites. Fatigue life shows a strong inverse correlation with the size of the fatigue-crack-initiating pore. Pore shape and pore orientation also influence the response. A supplemental study on surface roughness shows that porosity is the dominant factor in fatigue. Tomography enables the link between porosity and fatigue crack initiation to be clearly identified. These data are complemented by SEM observations of the fracture surfaces which are generally flat and full of randomly oriented serration patterns but without long-range fatigue striations.

  7. Effect of Viscosity Measurement Method to Simulate High Pressure Die Casting of Thin-Wall AlSi10MnMg Alloy Castings

    NASA Astrophysics Data System (ADS)

    Zhu, B. W.; Li, L. X.; Liu, X.; Zhang, L. Q.; Xu, R.

    2015-12-01

    In the present study, a rotating cylinder viscometer (RCV) was adopted to measure the viscosity of AlSi10MnMg aluminum alloy. The results show that the measured viscosity is much higher than previously reported viscosity of aluminum alloys measured by oscillation vessel viscometer. The viscosity measured by RCV was introduced into the simulation of the filling progress of high pressure die casting (HPDC) for thin-walled castings of aluminum alloy (TWCA). The simulated results match well with the experimental results indicating that the RCV is the most appropriate to use for simulations of HPDC for TWCA.

  8. Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

    SciTech Connect

    Choi, Kyoo Sil; Li, Dongsheng; Sun, Xin; Li, Mei; Allison, John

    2013-06-01

    In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) Magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses to induce the fracture by element removal, leading to the prediction of ductility. The results in this study show that the ductility monotonically decreases as the pore volume fraction increases and that the effect of ‘skin region’ on the ductility is noticeable under the condition of same local pore volume fraction in the center region of the sample and its existence can be beneficial for the improvement of ductility. The further synthetic microstructure-based 3D finite element analyses are planned to investigate the effects of pore size and pore size distribution.

  9. Quantitative characterization of processing-microstructure-properties relationships in pressure die-cast magnesium alloys

    NASA Astrophysics Data System (ADS)

    Lee, Soon Gi

    The central goal of this research is to quantitatively characterize the relationships between processing, microstructure, and mechanical properties of important high-pressure die-cast (HPDC) Mg-alloys. For this purpose, a new digital image processing technique for automatic detection and segmentation of gas and shrinkage pores in the cast microstructure is developed and it is applied to quantitatively characterize the effects of HPDC process parameters on the size distribution and spatial arrangement of porosity. To get better insights into detailed geometry and distribution of porosity and other microstructural features, an efficient and unbiased montage based serial sectioning technique is applied for reconstruction of three-dimensional microstructures. The quantitative microstructural data have been correlated to the HPDC process parameters and the mechanical properties. The analysis has led to hypothesis of formation of new type of shrinkage porosity called, "gas induced shrinkage porosity" that has been substantiated via simple heat transfer simulations. The presence of inverse surface macrosegregation has been also shown for the first time in the HPDC Mg-alloys. An image analysis based technique has been proposed for simulations of realistic virtual microstructures that have realistic complex pore morphologies. These virtual microstructures can be implemented in the object oriented finite elements framework to model the variability in the fracture sensitive mechanical properties of the HPDC alloys.

  10. A three-die cast technique for duplicating free gingival form in zirconia crowns: two case reports.

    PubMed

    Nozawa, Takeshi; Tanaka, Koji; Tsurumaki, Shunzo; Ookame, Yasuhisa; Enomoto, Hiroaki; Ito, Koichi

    2012-08-01

    This report describes a duplication technique of free gingival form from a provisional restoration to a zirconia crown. Three die casts were manufactured from a silicone impression with an acrylic resin ring tray. The first die cast was for the zirconia framework, the second for the provisionalized transfer coping, and the third for relining the provisional restoration. A free gingival impression was taken using a provisionalized transfer coping, and a soft gingival cast was manufactured. The depth of free gingival transparency was measured using a zirconia shade plate. Then, the zirconia framework was customized to allow for subgingival porcelain space. This technique seems to contribute to the clinical-laboratory interface in computer-aided design/computer-assisted manufacture restorations. PMID:22577656

  11. Casting dimensional control and fatigue life prediction for permanent mold casting dies. Technical progress report, September 29, 1993-- September 30, 1994

    SciTech Connect

    1994-11-01

    First year efforts as part of a three year program to address metal casting dimensional control and fatigue life prediction for permanent mold casting dies are described. Procedures have been developed and implemented to collect dimensional variability data from production steel castings. The influence of process variation and casting geometry variables on dimensional tolerances have been investigated. Preliminary results have shown that these factors have a significant influence on dimensional variability, although this variability is considerably less than the variability indicated in current tolerance standards. Gage repeatability and reproducibility testing must precede dimensional studies to insure that measurement system errors are acceptably small. Also initial efforts leading to the development and validation of a CAD/CAE model to predict the thermal fatigue life of permanent molds for aluminum castings are described. An appropriate thermomechanical property database for metal, mold and coating materials has been constructed. A finite element model has been developed to simulate the mold temperature distribution during repeated casting cycles. Initial validation trials have indicated the validity of the temperature distribution model developed.

  12. Final report to USAMP on the use of EBPVD in the light metal die casting industry

    SciTech Connect

    Heestand, G.M.

    1996-02-02

    This is the final report to the United States Automotive Materials Partnership (USAMP) on the use of Electron Beam Physical Vapor Deposition (EBPVD) to make rapid tooling for functional prototyping of metal mold processes. Historically this process has been successfully applied to the production of mold inserts for the plastics injection mold industry. Our approach for this project was to use the same technique to produce dies which could be used to make a few thousand light metal (aluminum and magnesium) prototype parts. The difficulty encountered in this project was that the requirements for the die casting industry, both in size and material requirements, were considerably more stringent than those encountered in the plastics injection industry. Consequently our technique, within the allotted time and budget constraints, was not able to meet the requirements set forth by USAMP. The remainder of this report is organized into five sections. The first discusses the technique in some detail while the second discusses a successful application. The third section discusses issues with this process while the fourth specifically discusses the work done in this project. The last is a short summary and conclusion section.

  13. The study of flow pattern and phase-change problem in die casting process

    NASA Technical Reports Server (NTRS)

    Wang, T. S.; Wei, H.; Chen, Y. S.; Shang, H. M.

    1996-01-01

    The flow pattern and solidification phenomena in die casting process have been investigated in the first phase study. The flow pattern in filling process is predicted by using a VOF (volume of fluid) method. A good agreement with experimental observation is obtained for filling the water into a die cavity with different gate geometry and with an obstacle in the cavity. An enthalpy method has been applied to solve the solidification problem. By treating the latent heat implicitly into the enthalpy instead of explicitly into the source term, the CPU time can be reduced at least 20 times. The effect of material properties on solidification fronts is tested. It concludes that the dependence of properties on temperature is significant. The influence of the natural convection over the diffusion has also been studied. The result shows that the liquid metal solidification phenomena is diffusion dominant, and the natural convection can affect the shape of the interface. In the second phase study, the filling and solidification processes will be considered simultaneously.

  14. Measurement of Heat Flux and Heat Transfer Coefficient Due to Spray Application for the Die Casting Process

    SciTech Connect

    Sabau, Adrian S

    2007-01-01

    Lubricant spray application experiments were conducted for the die casting process. The heat flux was measured in situ using a differential thermopile sensor for three application techniques. First, the lubricant was applied under a constant flowrate while the nozzle was held in the same position. Second, the lubricant was applied in a pulsed, static manner, in which the nozzle was held over the same surface while it was turned on and off several times. Third, the lubricant was applied in a sweeping manner, in which the nozzle was moved along the die surface while it was held open. The experiments were conducted at several die temperatures and at sweep speeds of 20, 23, and 68 cm/s. The heat flux data, which were obtained with a sensor that was located in the centre of the test plate, were presented and discussed. The sensor can be used to evaluate lubricants, monitor the consistency of die lubrication process, and obtain useful process data, such as surface temperature, heat flux, and heat transfer coefficients. The heat removed from the die surface during lubricant application is necessary for (a) designing the cooling channels in the die, i.e. their size and placement, and (b) performing accurate numerical simulations of the die casting process.

  15. Influence of the fabrication process on the functionality of piezoceramic patch transducers embedded in aluminum die castings

    NASA Astrophysics Data System (ADS)

    Klassen, Alexander; Rübner, Matthias; Ilg, Jürgen; Rupitsch, Stefan J.; Lerch, Reinhard; Singer, Robert F.; Körner, Carolin

    2012-11-01

    Piezoceramic patch transducers are integrated into aluminum components using high-pressure die casting. Expanded metal has proven suitable as a supporting structure for placing the patch transducers inside the die cavity and for stabilization during the injection of molten metal. However, difficulties arise when the transducers are positioned off the neutral axis within the wall of the casting. Numerical simulations of the die filling are performed to analyse the evolution of the integration process. The asymmetric infiltration of the supporting structure is identified as the major factor contributing to the formation of cracks and perforations inside the piezoceramic transducer. By means of measurements and numerical calculations of the electrical impedance of the transducer, a close relation is established between mechanical damage patterns observed in radiographs of the patch transducers and loss of performance.

  16. Low-Cycle Fatigue Behavior of Die-Cast Mg Alloys AZ91 and AM60

    NASA Astrophysics Data System (ADS)

    Rettberg, Luke H.; Jordon, J. Brian; Horstemeyer, Mark F.; Jones, J. Wayne

    2012-07-01

    The influence of microstructure and artificial aging response (T6) on the low-cycle fatigue behavior of super vacuum die-cast (SVDC) AZ91 and AM60 has been investigated. Fatigue lifetimes were determined from the total strain-controlled fatigue tests for strain amplitudes of 0.2 pct, 0.4 pct, 0.6 pct, 0.8 pct, and 1.0 pct under fully reversed loading at a frequency of 5 Hz. Cyclic stress-strain behavior was determined using an incremental step test (IST) and compared with the more traditional constant amplitude test. Two locations in a prototype casting were investigated to examine the role of microstructure and porosity on fatigue behavior. At all total strain amplitudes microstructure refinement had a negligible impact on fatigue life because of significant levels of porosity. AM60 showed an improvement in fatigue life at higher strain amplitudes when compared with AZ91 because of higher ductility. T6 heat treatment had no impact on fatigue life. Cyclic stress-strain behavior obtained via the incremental step test varied from constant amplitude test results due to load history effects. The constant amplitude test is believed to be the more accurate test method. In general, larger initiation pores led to shorter fatigue life. The fatigue life of AZ91 was more sensitive to initiation pore size and pore location than AM60 at the lowest tested strain amplitude of 0.2 pct. Fatigue crack paths did not favor any specific phase, interdentritic structure or eutectic structure. A multistage fatigue (MSF) model showed good correlation to the experimental strain-life results. The MSF model reinforced the dominant role of inclusion (pore) size on the scatter in fatigue life.

  17. Improved Life of Die Casting Dies of H13 Steel by Attaining Improved Mechanical Properties and Distortion Control During Heat Treatment

    SciTech Connect

    J. F. Wallace; D. Schwam

    1998-10-01

    The ultimate goal of this project is to increase die casting die life by using fast enough quenching rates to obtain good toughness and fatigue resistance in premium grade H-13 steel dies. The main tasks of the project were to compile a database on physical and mechanical properties of H-13; conduct gas quenching experiments to determine cooling rates of dies in difference vacuum furnaces; measure the as-quenched distortion of dies and the residual stresses; generate finite element analysis models to predict cooling rates, distortion, and residual stress of gas quenched dies; and establish rules and create PC-based expert system for prediction of cooling rates, distortion, and residual stress in vacuum/gas quenched H-13 dies. Cooling curves during gas quenching of H-13 blocks and die shapes have been measured under a variety of gas pressure. Dimensional changes caused by the gas quenching processes have been determined by accurate mapping of all surfaces with coordinate measuring machines before and after the quench. Residual stresses were determined by the ASTM E837 hole-drilling strain gage method. To facilitate the computer modeling work, a comprehensive database of H-13 mechanical and physical properties has been compiled. Finite element analysis of the heat treated shapes has been conducted using the TRAST/ABAQUS codes. There is a good fit between the predicted and measured distortion contours. However, the magnitude of the predicted distortion and residual stresses does not match well the measured values. Further fine tuning of the model is required before it can be used to predict distortion and residual stress in a quantitative manner. This last step is a prerequisite to generating rules for a reliable expert system.

  18. Cradle-to-Gate Impact Assessment of a High-Pressure Die-Casting Safety-Relevant Automotive Component

    NASA Astrophysics Data System (ADS)

    Cecchel, Silvia; Cornacchia, Giovanna; Panvini, Andrea

    2016-08-01

    The mass of automotive components has a direct influence on several aspects of vehicle performance, including both fuel consumption and tailpipe emissions, but the real environmental benefit has to be evaluated considering the entire life of the products with a proper life cycle assessment. In this context, the present paper analyzes the environmental burden connected to the production of a safety-relevant aluminum high-pressure die-casting component for commercial vehicles (a suspension cross-beam) considering all the phases connected to its manufacture. The focus on aluminum high-pressure die casting reflects the current trend of the industry and its high energy consumption. This work shows a new method that deeply analyzes every single step of the component's production through the implementation of a wide database of primary data collected thanks to collaborations of some automotive supplier companies. This energy analysis shows significant environmental benefits of aluminum recycling.

  19. The effects of intensification pressure, gate velocity, and intermediate shot velocity on the internal quality of aluminum die castings

    NASA Astrophysics Data System (ADS)

    Karban, Robert, Jr.

    The purpose of this study was to investigate the effects of intensification pressure, gate velocity, and intermediate shot velocity on the internal quality of aluminum die castings. An experimental design was developed to analyze two levels of intensification pressure, two levels of gate velocity, and four levels of intermediate shot velocity. These parameters were chosen because of the ease of their manipulation on the manufacturing floor in an effort to develop an optimum process for a given die design. Internal casting quality is measured by the density of the casting produced as compared to the theoretical density of the alloy being molded. The study also included monitoring of the biscuit length of the samples collected. A statistical analysis was conducted to determine any correlation between or among any of the independent variables or the other parameter monitored. The results of this study indicate that there is a statistical significance among and between the independent variables that were controlled in this experiment. The results also indicated a significant positive relationship between biscuit length and the density of the resultant castings.

  20. Wear Properties of Thixoformed and High Pressure Die Cast Aluminium Alloys for Connecting Rod Applications in Compressors

    NASA Astrophysics Data System (ADS)

    Birol, Yücel; Birol, Feriha

    2007-04-01

    Hypereutectic aluminium casting alloys are attractive candidates for connecting rod applications in compressors. The wear properties of these alloys are largely controlled by their microstructural features which in turn are affected by the processing route. Several hypo- and hypereutectic Al-Si alloys were produced by high pressure die casting and thixoforming in the present work. The former route produced a very fine microstructure while relatively coarser, globular α-Al matrix dominated in thixoformed grades. A modified Falex Block on Ring equipment was employed to investigate the wear properties of these alloys. Wear tests were carried out under service conditions in the lubricated state at 75°C. The superior wear properties of hypereutectic alloys produced by high pressure die casting with respect to the thixoformed variety is accounted for by the very fine microstructure with a fine dispersion of primary Si particles in the former. Of the two production routes employed, thixoforming had a favorable effect on wear properties at equal Si levels.

  1. Development of a 3D Filling Model of Low-Pressure Die-Cast Aluminum Alloy Wheels

    NASA Astrophysics Data System (ADS)

    Duan, Jianglan; Maijer, Daan; Cockcroft, Steve; Reilly, Carl

    2013-12-01

    A two-phase computational fluid dynamics model of the low-pressure die-cast process for the production of A356 aluminum alloy wheels has been developed to predict the flow conditions during die filling. The filling model represents a 36-deg section of a production wheel, and was developed within the commercial finite-volume package, ANSYS CFX, assuming isothermal conditions. To fully understand the behavior of the free surface, a novel technique was developed to approximate the vent resistances as they impact on the development of a backpressure within the die cavity. The filling model was first validated against experimental data, and then was used to investigate the effects of venting conditions and pressure curves during die filling. It was found that vent resistance and vent location strongly affected die filling time, free surface topography, and air entrainment for a given pressure fill-curve. With regard to the pressure curve, the model revealed a strong relation between the pressure curve and the flow behavior in the hub, which is an area prone to defect formation.

  2. The corrosion performance of die-cast magnesium alloy MRI230D in 3.5% NaCl solution saturated with Mg(OH){sub 2}

    SciTech Connect

    Aghion, E. Lulu, N.

    2010-11-15

    The environmental behavior of die-cast magnesium alloy MRI230D designated for high-temperature applications was evaluated in comparison with regular AZ91D alloy. The microstructure examination was carried out using SEM, TEM, and X-ray diffraction analysis; the corrosion performance in 3.5% NaCl solution was evaluated by immersion test, salt spray testing, potentiodynamic polarization analysis, and stress corrosion behavior by Slow Strain Rate Testing (SSRT). Although the general corrosion resistance of MRI230D was slightly improved compared to that of AZ91D alloy its stress corrosion resistance was relatively reduced. The variations in the environmental behavior of the two alloys were mainly due to the differences in their chemical composition and microstructure after die casting. In particular, the differences were related to the reduced Al content in MRI230D and the addition of Ca to this alloy, which consequently affected its relative microstructure and electrochemical characteristics. - Research Highlights: {yields}Corrosion and SCC resistance of a new Mg alloy MRI230D was evaluated vs. regular AZ91D. {yields}MRI230D has a minor advantage in corrosion performance compared with AZ91D. {yields}The SCC resistance of MRI230D by SSRT analysis was relatively reduced. {yields}The reduced SCC resistance of MRI230D was due to the detrimental effect of Ca on ductility.

  3. Slip casting and extruding shapes of rhenium with metal oxide additives. 1: Feasibility demonstration

    NASA Technical Reports Server (NTRS)

    Barr, F. A.; Page, R. J.

    1986-01-01

    The feasibility of fabricating small rhenium parts with metal oxide additives by means of slip casting and extrusion techniques is described. The metal oxides, ZrO2 and HfO2 were stabilized into the cubic phase with Y2O3. Additions of metal oxide to the rhenium of up to 15 weight percent were used. Tubes of 17 mm diameter with 0.5 mm walls were slip cast by adapting current ceramic oxide techniques. A complete cast double conical nozzle demonstrated the ability to meet shapes and tolerances. Extrusion of meter long tubing lengths of 3.9 mm o.d. x 2.3 mm i.d. final dimension is documented. Sintering schedules are presented to produce better than 95% of theoretical density parts. Finished machining was found possible were requried by electric discharge machining and diamond grinding.

  4. Thermal fatigue behavior of H-13 die steel for aluminum die casting with various ion sputtered coatings

    NASA Technical Reports Server (NTRS)

    Nieh, C. Y.; Wallace, J. F.

    1981-01-01

    Sputtered coatings of Mo, W, Pt, Ag, Au, Co, Cr, Ni, Ag + Cu, Mo + Pt, Si3N4, A1N, Cr3C2, Ta5Si3, and ZrO2 were applied to a 2-inch-square, 7-inch-long thermal fatigue test specimen which was then internally water cooled and alternately immersed in molten aluminum and cooled in air. After 15,000 cycles the thermal fatigue cracks at the specimen corners were measured. Results indicate that a significant improvement in thermal fatigue resistance was obtained with platinum, molybdenum, and tungsten coatings. Metallographic examination indicates that the improvement in thermal fatigue resistance resulted from protection of the surface of the die steel from oxidation. The high yield strength and ductility of molybdenum and tungsten contributed to the better thermal fatigue resistance.

  5. Effect of cerium addition on casting/chill interfacial heat flux and casting surface profile during solidification of Al-14%Si alloy

    NASA Astrophysics Data System (ADS)

    Vijeesh, V.; Prabhu, K. N.

    2016-03-01

    In the present investigation, Al-14 wt. % Si alloy was solidified against copper, brass and cast iron chills, to study the effect of Ce melt treatment on casting/chill interfacial heat flux transients and casting surface profile. The heat flux across the casting/chill interface was estimated using inverse modelling technique. On addition of 1.5% Ce, the peak heat flux increased by about 38%, 42% and 43% for copper, brass and cast iron chills respectively. The effect of Ce addition on casting surface texture was analyzed using a surface profilometer. The surface profile of the casting and the chill surfaces clearly indicated the formation of an air gap at the periphery of the casting. The arithmetic average value of the profile departure from the mean line (Ra) and arithmetical mean of the absolute departures of the waviness profile from the centre line (Wa) were found to decrease on Ce addition. The interfacial gap width formed for the unmodified and Ce treated casting surfaces at the periphery were found to be about 35µm and 13µm respectively. The enhancement in heat transfer on addition of Ce addition was attributed to the lowering of the surface tension of the liquid melt. The gap width at the interface was used to determine the variation of heat transfer coefficient (HTC) across the chill surface after the formation of stable solid shell. It was found that the HTC decreased along the radial direction for copper and brass chills and increased along radial direction for cast iron chills.

  6. Characterization of Pore Defects and Fatigue Cracks in Die Cast AM60 Using 3D X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.

    2015-08-01

    AM60 high pressure die castings have been used in automobile applications to reduce the weight of vehicles. However, the pore defects that are inherent in die casting may negatively affect mechanical properties, especially the fatigue properties. Here we have studied damage ( e.g., pore defects, fatigue cracks) during strained-controlled fatigue using 3-dimensional X-ray computed tomography (XCT). The fatigue test was interrupted every 2000 cycles and the specimen was removed to be scanned using a desktop micro-CT system. XCT reveals pore defects, cracks, and fracture surfaces. The results show that pores can be accurately measured and modeled in 3D. Defect bands are found to be made of pores under 50 µm (based on volume-equivalent sphere diameter). Larger pores are randomly distributed in the region between the defect bands. Observation of fatigue cracks by XCT is performed in three ways such that the 3D model gives the best illustration of crack-porosity interaction while the other two methods, with the cracks being viewed on transverse or longitudinal cross sections, have better detectability on crack initiation and crack tip observation. XCT is also of value in failure analysis on fracture surfaces. By assessing XCT data during fatigue testing and observing fracture surfaces on a 3D model, a better understanding on the crack initiation, crack-porosity interaction, and the morphology of fracture surface is achieved.

  7. Process Modeling of Low-Pressure Die Casting of Aluminum Alloy Automotive Wheels

    NASA Astrophysics Data System (ADS)

    Reilly, C.; Duan, J.; Yao, L.; Maijer, D. M.; Cockcroft, S. L.

    2013-09-01

    Although on initial inspection, the aluminum alloy automotive wheel seems to be a relatively simple component to cast based on its shape, further insight reveals that this is not the case. Automotive wheels are in a select group of cast components that have strict specifications for both mechanical and aesthetic characteristics due to their important structural requirements and their visibility on a vehicle. The modern aluminum alloy automotive wheel continues to experience tightened tolerances relating to defects to improve mechanical performance and/or the physical appearance. Automotive aluminum alloy wheels are assessed against three main criteria: wheel cosmetics, mechanical performance, and air tightness. Failure to achieve the required standards in any one of these categories will lead to the wheel either requiring costly repair or being rejected and remelted. Manufacturers are becoming more reliant on computational process modeling as a design tool for the wheel casting process. This article discusses and details examples of the use of computational process modeling as a predictive tool to optimize the casting process from the standpoint of defect minimization with the emphasis on those defects that lead to failure of aluminum automotive wheels, namely, macroporosity, microporosity, and oxide films. The current state of applied computational process modeling and its limitations with regard to wheel casting are discussed.

  8. Application of TPM indicators for analyzing work time of machines used in the pressure die casting

    NASA Astrophysics Data System (ADS)

    Borkowski, Stanisław; Czajkowska, Agnieszka; Stasiak-Betlejewska, Renata; Borade, Atul B.

    2014-05-01

    The article presents the application of total productive maintenance (TPM) to analyze the working time indicators of casting machines with particular emphasis on failures and unplanned downtime to reduce the proportion of emergency operation for preventive maintenance and diagnostics. The article presents that the influence of individual factors of complex machinery maintenance (TPM) is different and depends on the machines' modernity level. In an original way, by using correlation graphs, research findings on the impact of individual TPM factors on the castings quality were presented and interpreted. The examination results conducted for machines with varying modernity degrees allowed to determine changes within the impact of individual TPM factors depending on machine parameters. These results provide a rich source of information for the improvement processes on casting quality of the foundry industry that satisfies the automotive industry demand.

  9. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties.

    PubMed

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  10. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    PubMed Central

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  11. The effects of latex additions on centrifugally cast concrete for internal pipeline protection

    SciTech Connect

    Buchheit, R.G.; Hinkebein, T.E.; Hlava, P.F.; Melton, D.G.

    1993-07-01

    Centrifugally-cast concrete liners applied to the interiors of plain steel pipe sections were tested for corrosion performance in brine solutions. An American Petroleum Institute (API) standard concrete, with and without additions of a styrene-butadiene copolymer latex, was subjected to simulated service and laboratory tests. Simulated service tests used a mechanically pumped test manifold containing sections of concrete-lined pipe. Linear polarization probes embedded at steel-concrete interfaces tracked corrosion rates of these samples as a function of exposure time. Laboratory tests used electrochemical impedance spectroscopy to study corrosion occurring at the steel-concrete interfaces. Electron probe microanalysis (EPMA) determined ingress and distribution of damaging species, such as Cl, in concrete liners periodically returned from the field. Observations of concrete-liner fabrication indicate that latex loading levels were difficult to control in the centrifugal-casting process. Overall, test results indicate that latex additions do not impart significant improvements to the performance of centrifugally cast liners and may even be detrimental. Corrosion at steel-concrete interfaces appears to be localized and the area fraction of corroding interfaces can be greater in latex-modified concretes than in API baseline material. EPMA shows higher interfacial Cl concentration in the latex-modified concretes than in the API standard due to rapid brine transport through cracks to the steel surface.

  12. Heat transfer during quenching of modified and unmodified gravity die-cast A357 cylindrical bars

    NASA Astrophysics Data System (ADS)

    Prabhu, K. N.; Hemanna, P.

    2006-06-01

    Heat transfer during quenching of chill-cast modified and unmodified A357 Al-Si alloy was examined using a computer-aided cooling curve analysis. Water at 60 °C and a vegetable oil (palm oil) were used as quench media. The measured temperatures inside cylindrical probes of the A357 alloy were used as inputs in an inverse heat-conduction model to estimate heat flux transients at the probe/quenchant interface and the surface temperature of the probe in contact with the quench medium. It was observed that modified alloy probes yielded higher cooling rates and heat flux transients. The investigation clearly showed that the heat transfer during quenching depends on the casting history. The increase in the cooling rate and peak heat flux was attributed to the increase in the thermal conductivity of the material on modification melt treatment owing to the change in silicon morphology. Fine and fibrous silicon particles in modified A357 probes increase the conductance of the probe resulting in higher heat transfer rates. This was confirmed by measuring the electrical conductivity of modified samples, which were found to be higher than those of unmodified samples. The ultrasound velocity in the probes decreased on modification.

  13. Analysis of chill-cast NiAl intermetallic compound with copper additions

    NASA Astrophysics Data System (ADS)

    Colin, J.; Gonzalez, C.; Herrera, R.; Juarez-Islas, J. A.

    2002-10-01

    This study carried out a characterization of chill-cast NiAl alloys with copper additions, which were added to NiAl, such that the resulting alloy composition occurred in the β-field of the ternary NiAlCu phase diagram. The alloys were vacuum induction melted and casted in copper chill molds to produce ingots 0.002 m thick, 0.020 m wide, and 0.050 m long. X-ray diffractometry (XRD) and transmission electron microscopy (TEM) performed in chill-cast ingots identified mainly the presence of the β-(Ni,Cu)Al phase. As-cast ingots showed essentially no ductility at room temperature except for the Ni50Al40Cu10 alloy, which showed 1.79% of elongation at room temperature. Ingots with this alloy composition were then heat treated under a high-purity argon atmosphere at 550 °C (24 h) and cooled either in the furnace or in air, until room temperature was reached. β-(Ni,Cu)Al and γ'(Ni,Cu)3Al were present in specimens cooled in the furnace and β-(Ni,Cu)Al, γ'(Ni,Cu)3Al plus martensite-(Ni,Cu)Al were present in specimens cooled in air. Thermogravimetric analysis indicated that martensite transformation was the result of a solid-state reaction with M s ˜ 470 and M f ˜ 430 °C. Tensile tests performed on bulk heat-treated ingots showed room-temperature ductility between 3 and 6%, depending on the cooling media.

  14. Spray-formed tooling for injection molding and die casting applications

    SciTech Connect

    K. M. McHugh; B. R. Wickham

    2000-06-26

    Rapid Solidification Process (RSP) Tooling{trademark} is a spray forming technology tailored for producing molds and dies. The approach combines rapid solidification processing and net-shape materials processing in a single step. The ability of the sprayed deposit to capture features of the tool pattern eliminates costly machining operations in conventional mold making and reduces turnaround time. Moreover, rapid solidification suppresses carbide precipitation and growth, allowing many ferritic tool steels to be artificially aged, an alternative to conventional heat treatment that offers unique benefits. Material properties and microstructure transformation during heat treatment of spray-formed H13 tool steel are described.

  15. Spray-formed Tooling for Injection Molding and Die Casting Applications

    SciTech Connect

    Mc Hugh, Kevin Matthew

    2000-06-01

    Rapid Solidification Process (RSP) ToolingTM is a spray forming technology tailored for producing molds and dies. The approach combines rapid solidification processing and net-shape materials processing in a single step. The ability of the sprayed deposit to capture features of the tool pattern eliminates costly machining operations in conventional mold making and reduces turnaround time. Moreover, rapid solidification suppresses carbide precipitation and growth, allowing many ferritic tool steels to be artificially aged, an alternative to conventional heat treatment that offers unique benefits. Material properties and microstructure transformation during heat treatment of spray-formed H13 tool steel are described.

  16. The effect of microstructure on the thermal fatigue resistance of investment cast and wrought AISI H13 hot work die steel

    SciTech Connect

    Hochanadel, P.W.; Edwards, G.R.; Maguire, M.C.; Baldwin, M.D.

    1995-07-01

    Variable thickness plate investment castings of AISI H13 hot work die steel were pour and characterized in the as-cast and heat treated conditions. The characterization included light microscopy and mechanical testing. Wrought samples of standard and premium grade H13 steel were heat treated and characterized similarly for comparison. Microstructural differences were observed in as-cast samples poured to different section thicknesses. Dendrite cell size and carbide morphology constituted the most prominent microstructural differences observed. After a full heat treatment, however, Microstructural differences between the wrought material and cast materials were slight regardless of section thickness. The mechanical properties of the cast and heat treated material proved similar to the properties of the standard heat treated wrought material. A thermal fatigue testing unit was designed and built to correlate the heat checking susceptibility of AISI H13 steel to its processing and consequent microstructural condition. Surface hardness decreased significantly with thermal cycling, and heat checking was noticed in as few as 50 cycles. Thermal softening and thermal fatigue susceptibility were quantified and discussed relative to the microstructural conditions created by processing and heat treatment. It was found that the premium grade wrought H13 steel provided the best overall resistance to heat checking; however, the heat-treat cast and as-cast H13 tool steel (made from standard grade wrought H13 tool steel) provided comparable resistance to heat checking in terms Of area fraction of heat checking and maximum crack length.

  17. Predicting the Influence of Pore Characteristics on Ductility of Thin-Walled High Pressure Die Casting Magnesium

    SciTech Connect

    Sun, Xin; Choi, Kyoo Sil; Li, Dongsheng

    2013-06-10

    In this paper, a two-dimensional microstructure-based finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die casting Mg materials on their ductility. For this purpose, the cross-sections of AM50 and AM60 casting samples are first examined using optical microscope to obtain the overall information on the pore characteristics. The experimentally quantified pore characteristics are then used to generate a series of synthetic microstructures with different pore sizes, pore volume fractions and pore size distributions. Pores are explicitly represented in the synthetic microstructures and meshed out for the subsequent finite element analysis. In the finite element analysis, an intrinsic critical strain value is used for the Mg matrix material, beyond which work-hardening is no longer permissible. With no artificial failure criterion prescribed, ductility levels are predicted for the various microstructures in the form of strain localization. Mesh size effect study is also conducted, from which a mesh size dependent critical strain curve is determined. A concept of scalability of pore size effects is then presented and examined with the use of the mesh size dependent critical strain curve. The results in this study show that, for the regions with lower pore size and lower volume fraction, the ductility generally decreases as the pore size and pore volume fraction increase whereas, for the regions with larger pore size and larger pore volume fraction, other factors such as the mean distance between the pores begin to have some substantial influence on the ductility. The results also indicate that the pore size effects may be scalable for the models with good-representative pore shape and distribution with the use of the mesh size dependent critical strain curve.

  18. Micro-Plasma Transferred Arc Additive Manufacturing for Die and Mold Surface Remanufacturing

    NASA Astrophysics Data System (ADS)

    Jhavar, Suyog; Paul, Christ Prakash; Jain, Neelesh Kumar

    2016-07-01

    Micro-plasma transferred arc ( µPTA) additive manufacturing is one of the newest options for remanufacturing of dies and molds surfaces in the near-millimeter range leading to extended usage of the same. We deployed an automatic micro-plasma deposition setup to deposit a wire of 300 µm of AISI P20 tool steel on the substrate of same material for the potential application in remanufacturing of the die and mold surface. Our present research effort is to establish µPTA additive manufacturing as a viable economical and cleaner methodology for potential industrial applications. We undertook the optimization of single weld bead geometry as the first step in our present study. Bead-on-plate trials were conducted to deposit single bead geometry at various processing parameters. The bead geometry (shape and size) and dilution were measured and the parametric dependence was derived. A set of parameters leading to reproducible regular and smooth single bead geometry were identified and used to prepare a thin wall for mechanical testing. The deposits were subjected to material characterization such as microscopic studies, micro-hardness measurements and tensile testing. The process was compared qualitatively with other deposition processes involving high-energy density beams and was found to be advantageous in terms of low initial and running costs with comparable properties. The outcome of the study confirmed the process capability of µPTA deposition leading to deployment of cost-effective and environmentally friendlier technology for die and mold remanufacturing.

  19. Micro-Plasma Transferred Arc Additive Manufacturing for Die and Mold Surface Remanufacturing

    NASA Astrophysics Data System (ADS)

    Jhavar, Suyog; Paul, Christ Prakash; Jain, Neelesh Kumar

    2016-05-01

    Micro-plasma transferred arc (µPTA) additive manufacturing is one of the newest options for remanufacturing of dies and molds surfaces in the near-millimeter range leading to extended usage of the same. We deployed an automatic micro-plasma deposition setup to deposit a wire of 300 µm of AISI P20 tool steel on the substrate of same material for the potential application in remanufacturing of the die and mold surface. Our present research effort is to establish µPTA additive manufacturing as a viable economical and cleaner methodology for potential industrial applications. We undertook the optimization of single weld bead geometry as the first step in our present study. Bead-on-plate trials were conducted to deposit single bead geometry at various processing parameters. The bead geometry (shape and size) and dilution were measured and the parametric dependence was derived. A set of parameters leading to reproducible regular and smooth single bead geometry were identified and used to prepare a thin wall for mechanical testing. The deposits were subjected to material characterization such as microscopic studies, micro-hardness measurements and tensile testing. The process was compared qualitatively with other deposition processes involving high-energy density beams and was found to be advantageous in terms of low initial and running costs with comparable properties. The outcome of the study confirmed the process capability of µPTA deposition leading to deployment of cost-effective and environmentally friendlier technology for die and mold remanufacturing.

  20. Neurobehavioral testing of subjects exposed residentially to groundwater contaminated from an aluminum die-casting plant and local referents.

    PubMed

    Kilburn, K H; Warshaw, R H

    1993-08-01

    Residents adjoining a die-casting plant had excessive headaches, numbness of hands and feet, dizziness, blurred vision, staggering, sweating, abnormal heart rhythm, and depression, which led to measurements of neurobehavioral performance, affective status, and the frequency of symptoms. They had all been exposed via well water and proximity to the plant to volatile organic chemicals (VOC) and to polychlorinated biphenyls (PCBs). The 117 exposed women and men and 46 unexposed referents were studied together for simple and choice visual reaction time, body sway speed, blink reflex latency, color discrimination, Culture Fair (a nonverbal nonarithmetic intelligence test), recall of stories, figures, and numbers, cognitive and psychomotor control (slotted pegboard and trail making A and B), long-term memory, profile of mood states (POMS), and scores and frequencies of 34 symptoms. Choice reaction time, sway speed, and blink latency were impaired in both sexes of the exposed group and trail making B was impaired in exposed women. The POMS scores and frequencies of 30 of 34 symptoms were elevated in both sexes, compared to referents. Recall, long-term memory, psychomotor speed, and other cognitive function tests were reduced in exposed subjects and in the referents as compared to national referents. Neurophysiological impairment, and cognitive and psychomotor dysfunction and affective disorders, especially depression and excessive frequency of symptoms, were associated with the use of wells contaminated with VOCs, TCE and PCBs. PMID:8345533

  1. Fatigue characterization of high pressure die-cast magnesium AM60B alloy using experimental and computational investigations

    NASA Astrophysics Data System (ADS)

    Lu, You

    The object of the current dissertation is to foster fundamental advances in microstructure-fatigue characteristics of a high pressure die cast magnesium AM60B alloy. First, high cycle fatigue staircase experiments were conducted on specimens extracted from automobile instrument panels. The resulting fracture surfaces were then examined with scanning electron microscopic imaging to elucidate the fatigue crack initiation sites and propagation paths at different stages of the fatigue life. Due to the fact that the qualification of the crack initiation and propagation mechanisms through experiment alone is difficult, complementary micromechanical finite element simulations were conducted. Particularly, the effects of different applied loading conditions and the porosity morphology (e.g. pore shape, pore size, pore spacing, proximity to the free surface) on the maximum plastic shear strain range, as a driving force for crack initiation, were analyzed. Moreover, at the microstructually small crack (MSC) propagation stage, the shielding effects of beta-phase Mg17Al12 particles were systematically studied. Based on the distribution of the maximum principal stress within the particles and the maximum hydrostatic stress along the particle/matrix interfaces, the relative influence of the pre-damaged (fractured or debonded) particles and various particle cluster morphologies were carefully investigated. In the finite element simulations, the constitutive behaviours of AM60B alloy and the alpha-matrix were simulated by the advanced kinematic hardening law tuned with experimentally determined material parameters under cyclic loading.

  2. Influence of Electrolytic Plasma Oxidation Coating on Tensile Behavior of Die-Cast AM50 Alloy Subjected to Salt Corrosion

    NASA Astrophysics Data System (ADS)

    Han, Lihong; Nie, Xueyuan; Zhang, Peng; Zhang, Qiang; Hu, Henry

    Three different thickness ceramic coatings were deposited on die-cast AM50 magnesium alloy in KOH and NaAlO2 solution using electrolytic plasma oxidation (EPO) technology for corrosion prevention. Immersion corrosion tests were carried out in 3.5% NaCl solution for 336 hours to investigate the effect of coating thicknesses on tensile and fracture behaviors of the coated AM50 alloys. The results show that the yield strength (YS) and ultimate tensile strength (UTS) of the coated AM50 alloy subjected to immersion corrosion increase with an increase in coating thicknesses. Further analyses on stress and strain curves indicate that the coating enhances the strain-hardening rates of the corroded alloy during its plastic deformation. SEM examination on the fractured surface manifests that the substrate AM50 alloys exhibit characteristics of ductile deformation with deep dimples. However, brittle features prevail on the fractured surface of the mixed layer of coating plus oxidation corrosion product. Micro cracks were observed between the mixed layer and the AM50 alloy substrate induced by corrosion and within the mixed layer induced by EPO process, which could be responsible for the brittle fracture.

  3. Neurobehavioral testing of subjects exposed residentially to groundwater contaminated from an aluminum die-casting plant and local referents

    SciTech Connect

    Kilburn, K.H.; Warshaw, R.H. )

    1993-08-01

    Residents adjoining a die-casting plant had excessive headaches, numbness of hands and feet, dizziness, blurred vision, staggering, sweating, abnormal heart rhythm, and depression, which led to measurements of neurobehavioral performance, affective status, and the frequency of symptoms. They had all been exposed via well water and proximity to the plant to volatile organic chemicals (VOC) and to polychlorinated biphenyls (PCBs). The 117 exposed women and men and 46 unexposed referents were studied together for simple and choice visual reaction time, body sway speed, blink reflex latency, color discrimination, Culture Fair (a nonverbal nonarithmetic intelligence test), recall of stories, figures, and numbers, cognitive and psychomotor control (slotted pegboard and trail making A and B), long-term memory, profile of mood states (POMS), and scores and frequencies of 34 symptoms. Choice reaction time, sway speed, and blink latency were impaired in both sexes of the exposed group and trail making B was impaired in exposed women. The POMS scores and frequencies of 30 of 34 symptoms were elevated in both sexes, compared to referents. Recall, long-term memory, psychomotor speed, and other cognitive function tests were reduced in exposed subjects and in the referents as compared to national referents. Neurophysiological impairment, and cognitive and psychomotor dysfunction and affective disorders, especially depression and excessive frequency of symptoms, were associated with the use of wells contaminated with VOCs, TCE and PCBs.

  4. Microstructure and corrosion behavior of die-cast AM60B magnesium alloys in a complex salt solution. A slow positron beam study

    SciTech Connect

    Liu, Y. F.; Yang, W.; Qin, Q. L.; Wen, W.; Zhai, T.; Yu, B.; Liu, D. Y.; Luo, A.; Song, GuangLing

    2013-12-15

    The microstructure and corrosion behavior of high pressure die-cast (HPDC) and super vacuum die-cast (SVDC) AM60B magnesium alloys were investigated in a complex salt solution using slow positron beam technique and potentiodynamic polarization tests. The experiments revealed that a CaCO3 film was formed on the surface of the alloys and that the rate of CaCO3 formation for the SVDC alloy with immersion time was slower than that of the HPDC alloy. The larger volume fraction of b-phase in the skin layer of the SVDC alloy than that of the HPDC alloy was responsible for the better corrosion resistance.

  5. Social Organization in Parasitic Flatworms--Four Additional Echinostomoid Trematodes Have a Soldier Caste and One Does Not.

    PubMed

    Garcia-Vedrenne, Ana E; Quintana, Anastasia C E; DeRogatis, Andrea M; Martyn, Kayla; Kuris, Armand M; Hechinger, Ryan F

    2016-02-01

    Complex societies where individuals exhibit division of labor with physical polymorphism, behavioral specialization, and caste formation have evolved several times throughout the animal kingdom. Recently, such complex sociality has been recognized in digenean trematodes; evidence is limited to 6 marine species. Hence, the extent to which a soldier caste is present throughout the Trematoda is sparsely documented, and there are no studies detailing the structure of a species lacking such a social structure. Here we examine colony structure for an additional 5 echinostomoid species, 4 of which infect the marine snail Cerithidea californica and 1 (Echinostoma liei) that infects the freshwater snail Biomphalaria glabrata . For all species, we present redia morphology (pharynx and body size) and the distribution of individuals of different castes throughout the snail body. When morphological evidence indicated the presence of a soldier caste, we assessed behavior by measuring attack rates of the different morphs toward heterospecific trematodes. Our findings indicate that each of the 4 species from C. californica have a permanent soldier caste while E. liei does not. The observed intra- and inter-specific variation of caste structure for those species with soldiers, and the documentation of colony structure for a species explicitly lacking permanent soldiers, emphasizes the diverse nature of trematode sociality and the promise of the group to permit comparative investigations of the evolution and ecology of sociality. PMID:26560890

  6. Advances in aluminum casting technology

    SciTech Connect

    Tiryakioglu, M.; Campbell, J.

    1998-01-01

    This symposium focuses on the improvements of aluminum casting quality and reliability through a better understanding of processes and process variables, and explores the latest innovations in casting-process design that allow increasing use of the castings to replace complex assemblies and heavy steel and cast-iron components in aerospace and automotive applications. Presented are 35 papers by international experts in the various aspects of the subject. The contents include: Semisolid casting; Computer-aided designing of molds and castings; Casting-process modeling; Aluminum-matrix composite castings; HIPing of castings; Progress in the US car project; Die casting and die design; and Solidification and properties.

  7. Development of a Fluid-Particle Model in Simulating the Motion of External Solidified Crystals and the Evolution of Defect Bands in High-Pressure Die Casting

    NASA Astrophysics Data System (ADS)

    Bi, Cheng; Xiong, Shoumei; Li, Xiaobo; Guo, Zhipeng

    2016-04-01

    A numerical fluid-particle model was developed to simulate the motion of external solidified crystals (ESCs) in the melt during the filling process of high-pressure die casting (HPDC). Simulation results on a tensile bar casting with two types of ingates (semi-circle and circle) revealed that for a long time scale the ESCs tended to distribute in a ring pattern around the specimen center, whereas for a short time scale the ESC distribution changed constantly from the ring pattern to either the center pattern or the ring-center pattern. It was proposed that the defect bands would form at these areas where two solidification fronts met (where solidification shrinkage occurred), including one originating from the skin layer of the specimen and the other from the ESC region. Accordingly, three types of defect band patterns, which were commonly observed in HPDC experiment, could be successfully simulated and explained using this model.

  8. Study on Type C Coal Fly ash as an Additive to Molding Sand for Steel Casting

    NASA Astrophysics Data System (ADS)

    Palaniappan, Jayanthi

    2016-05-01

    Study of physio-chemical properties studies such as granulometric analysis, moisture, X ray fluorescence etc. were performed with Type C coal—combustion fly ash to investigate their potential as a distinct option for molding sand in foundry, thereby reducing the dependency on latter. Technological properties study such as compressive strength, tensile strength, permeability and compaction of various compositions of fly ash molding sand (10, 20 and 30 % fly ash substitute to chemically bonded sand) were performed and compared with silica molding sand. Steel casting production using this fly ash molding sand was done and the casting surface finish and typical casting parameters were assessed. It was noted that a good quality steel casting could be produced using type C fly ash molding sand, which effectively replaced 20 % of traditional molding sand and binders thereby providing greater financial profits to the foundry and an effective way of fly ash utilization (waste management).

  9. The Structure and Properties of Inductively Coupled Plasma Assisted Magnetron Sputtered Nanocrystalline NbN Coatings in Corrosion Protective Die Casting Molds.

    PubMed

    Chun, Sung-Yong

    2016-02-01

    Niobium nitride coatings for the surface modified die casting molds with various ICP powers have been prepared using ICP assisted magnetron sputtering. The applied ICP power was varied from 0 to 200 W. The deposited coatings were characterized post-deposition using X-ray diffractometry (XRD) and atomic force microscopy (AFM). Single NbN phased coatings with nano-grain sized (<7.6 nm) were identified. The corrosion resistance and hardness of each coating were evaluated from potentiostat and nanoindentator. Superior corrosion protective coatings in excess of 13.9 GPa were deposited with assistance of ICP plasma during sputtering. PMID:27433719

  10. Improved life of die casting dies of H13 steel by attaining improved mechanical properties and distortion control during heat treatment. Year 1 report, October 1994--September 1995

    SciTech Connect

    Wallace, J.F.; Schwam, D.

    1995-03-01

    Optimum heat treatment of dies (quenching) is critical in ensuring satisfactory service performance: rapid cooling rates increase the thermal fatigue/heat checking resistance of the steel, although very fast cooling rates can also lead to distortion and lower fracture toughness, increasing the danger of catastrophic fracture. Goal of this project is to increase die life by using fast enough quenching rates (> 30 F/min ave cooling rate from 1750 to 550 F, 1/2 in. below working surfaces) to obtain good toughness and fatigue resistance in Premium grade H-13 steel dies. An iterative approach of computer modeling validated by experiment was taken. Cooling curves during gas quenching of H-13 blocks and die shapes were measured under 2, 5, and 7.5 bar N2 and 4 bar Ar. Resulting dimensional changes and residual stresses were determined. To facilitate the computer modeling work, a database of H-13 mechanical and physical properties was compiled. Finite element analysis of the heat treated shapes was conducted. Good fit of modeled vs measured quenched rates was demonstrated for simple die shapes. The models predict well the phase transformation products from the quench. There is good fit between predicted and measured distortion contours; however magnitude of predicted distortion and residual stresses does not match well the measured values. Further fine tuning of the model is required.

  11. As-cast uranium-molybdenum based metallic fuel candidates and the effects of carbon addition

    NASA Astrophysics Data System (ADS)

    Blackwood, Van Stephen

    The objective of this research was to develop and recommend a metallic nuclear fuel candidate that lowered the onset temperature of gamma phase formation comparable or better than the uranium-10 wt. pct. molybdenum alloy, offered a solidus temperature as high or higher than uranium-10 wt. pct. zirconium (1250°C), and stabilized the fuel phase against interaction with iron and steel at least as much as uranium-10 wt. pct. zirconium stabilized the fuel phase. Two new as-cast alloy compositions were characterized to assess thermal equilibrium boundaries of the gamma phase field and the effect of carbon addition up to 0.22 wt. pct. The first system investigated was uranium- x wt. pct. M where x ranged between 5-20 wt. pct. M was held at a constant ratio of 50 wt. pct. molybdenum, 43 wt. pct. titanium, and 7 wt. pct. zirconium. The second system investigated was the uranium-molybdenum-tungsten system in the range 90 wt. pct. uranium - 10 wt. pct. molybdenum - 0 wt. pct. tungsten to 80 wt. pct. uranium - 10 wt. pct. molybdenum - 10 wt. pct. tungsten. The results showed that the solidus temperature increased with increased addition of M up to 12.5 wt. pct. for the uranium-M system. Alloy additions of titanium and zirconium were removed from uranium-molybdenum solid solution by carbide formation and segregation. The uranium-molybdenum-tungsten system solidus temperature increased to 1218°C at 2.5 wt. pct. with no significant change in temperature up to 5 wt. pct. tungsten suggesting the solubility limit of tungsten had been reached. Carbides were observed with surrounding areas enriched in both molybdenum and tungsten. The peak solidus temperatures for the alloy systems were roughly the same at 1226°C for the uranium-M system and 1218°C for the uranium-molybdenum-tungsten system. The uranium-molybdenum-tungsten system required less alloy addition to achieve similar solidus temperatures as the uranium-M system.

  12. Clean Metal Casting

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  13. Tensile and Fracture Properties of Cast and Forged Composite Synthesized by Addition of Al-Si Alloy to Magnesium

    NASA Astrophysics Data System (ADS)

    Nanjunda Swamy, H. M.; Nath, S. K.; Ray, S.

    2009-12-01

    Cast Mg-Al-Si composites synthesized by addition of Al-Si alloy containing 10, 15, and 20 wt pct of Si, in molten magnesium, to generate particles of Mg2Si by reaction between silicon and magnesium during stir casting has opened up the possibility to control the size of these particles. The microstructure of the cast composite consists of relatively dark polyhedral phase of Mg2Si and bright phase of β-Al12Mg17 along the boundary between dendrites of α-Mg solid solution. After hot forging at 350 °C, the microstructure has changed to relatively smaller sizes of β-Al12Mg17 and Mg2Si particles apart from larger grains surrounded by smaller grains due to dynamic recovery and recrystallization. Some of the Mg2Si particles crack during forging. In both the cast and forged composite, the Brinell hardness increases rapidly with increasing volume fraction of Mg2Si, but the hardness is higher in forged composites by about 100 BHN. Yield strength in cast composites improves over that of the cast alloy, but there is a marginal increase in yield strength with increasing Mg2Si content. In forged composites, there is significant improvement in yield strength with increasing Mg2Si particles and also over those observed in their cast counterpart. In cast composites, ultimate tensile strength (UTS) decreases with increasing Mg2Si content possibly due to increased casting defects such as porosity and segregation, which increases with increasing Mg2Si content and may counteract the strengthening effect of Mg2Si content. However, in forged composite, UTS increases with increasing Mg2Si content until 5.25 vol pct due to elimination of segregation and lowering of porosity, but at higher Mg2Si content of 7 vol pct, UTS decreases, possibly due to extensive cracking of Mg2Si particles. On forging, the ductility decreases in forged alloy and composites possibly due to the remaining strain and the forged microstructure. The initiation fracture toughness, J IC , decreases drastically in

  14. Effect of Ca addition on the microstructure and mechanical properties of as-cast Mg-Sm alloys.

    PubMed

    Luo, Xiaoping; Fang, Daqing; Chai, Yuesheng; Yang, Bin

    2016-08-01

    This study investigated the effect of Ca addition on the microstructure and mechanical properties of as-cast Mg-4Sm alloys. The addition of 1.0 wt% Ca led to a significant grain refinement of Mg-4.0Sm alloys owing to the formation of rod-like Mg2Ca phases that acted as active nucleates for the Mg matrix. The as-cast Mg-4.0Sm-1.0Ca alloy showed the smallest grain size at 45 μm. Furthermore, the Mg-4.0Sm-1.0Ca alloy exhibited greater hardness, higher tensile strength, and higher yield tensile strength and elongation than the other two alloys with different Ca contents. These results were attributed to the grain refinement and precipitation strengthening of the Mg2Ca and Mg41Sm5 phases. Microsc. Res. Tech. 79:707-711, 2016. © 2016 Wiley Periodicals, Inc. PMID:27311709

  15. Formulation, Casting, and Evaluation of Paraffin-Based Solid Fuels Containing Energetic and Novel Additives for Hybrid Rockets

    NASA Technical Reports Server (NTRS)

    Larson, Daniel B.; Desain, John D.; Boyer, Eric; Wachs, Trevor; Kuo, Kenneth K.; Borduin, Russell; Koo, Joseph H.; Brady, Brian B.; Curtiss, Thomas J.; Story, George

    2012-01-01

    This investigation studied the inclusion of various additives to paraffin wax for use in a hybrid rocket motor. Some of the paraffin-based fuels were doped with various percentages of LiAlH4 (up to 10%). Addition of LiAlH4 at 10% was found to increase regression rates between 7 - 10% over baseline paraffin through tests in a gaseous oxygen hybrid rocket motor. Mass burn rates for paraffin grains with 10% LiAlH4 were also higher than those of the baseline paraffin. RDX was also cast into a paraffin sample via a novel casting process which involved dissolving RDX into dimethylformamide (DMF) solvent and then drawing a vacuum on the mixture of paraffin and RDX/DMF in order to evaporate out the DMF. It was found that although all DMF was removed, the process was not conducive to generating small RDX particles. The slow boiling generated an inhomogeneous mixture of paraffin and RDX. It is likely that superheating the DMF to cause rapid boiling would likely reduce RDX particle sizes. In addition to paraffin/LiAlH4 grains, multi-walled carbon nanotubes (MWNT) were cast in paraffin for testing in a hybrid rocket motor, and assorted samples containing a range of MWNT percentages in paraffin were imaged using SEM. The fuel samples showed good distribution of MWNT in the paraffin matrix, but the MWNT were often agglomerated, indicating that a change to the sonication and mixing processes were required to achieve better uniformity and debundled MWNT. Fuel grains with MWNT fuel grains had slightly lower regression rate, likely due to the increased thermal conductivity to the fuel subsurface, reducing the burning surface temperature.

  16. Effect of N addition on tensile and corrosion behaviors of CD4MCU cast duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Son, Jinil; Kim, Sangshik; Lee, Jehyun; Choi, Byunghak

    2003-08-01

    The effect of N addition on the microstructure, tensile, and corrosion behaviors of CD4MCU (Fe-25Cr-5Ni-2.8Cu-2Mo) cast duplex stainless steel was examined in the present study. The slow strain rate tests were also conducted at a nominal strain rate of 1 × 10-6/s in air and 3.5 pct NaCl+5 pct H2SO4 solution for studying the stress corrosion cracking (SCC) behavior. It was observed that the volume fraction of austenitic phase in CD4MCU alloy varied from 38 to 59 pct with increasing nitrogen content from 0 to 0.27 wt. pct. The tensile behavior of CD4MCU cast duplex stainless steels, which tended to vary significantly with different N contents, appeared to be strongly related to the volume changes in ferritic and austenitic phases, rather than the intrinsic N effect. The improvement in the resistance to general corrosion in 3.5 pct NaCl+5 pct H2SO4 aqueous solution was notable with 0.13 pct N addition. The further improvement was not significant with further N addition. The resistance to SCC of CD4MCU cast duplex stainless steels in 3.5 pct NaCl+5 pct H2SO4 aqueous solution, however, increased continuously with increasing N content. The enhancement in the SCC resistance was believed to be related to the volume fraction of globular austenitic colonies, which tended to act as barriers for the development of initial pitting cracks in the ferritic phase into the sharp ones.

  17. Influence of strontium addition on the mechanical properties of gravity cast Mg-3Al-3Sn alloy

    SciTech Connect

    Germen, Gülşah Şevik, Hüseyin; Kurnaz, S. Can

    2013-12-16

    In this study, the effect of strontium (0.01, 0.1, 0.5, 1 wt%) addition on the microstructure and mechanical properties of the gravity cast Mg-3Al-3Sn alloy were investigated. X-ray diffractometry revealed that the main phases are α−Mg, β−Mg{sub 17}Al{sub 12} and Mg{sub 2}Sn in the Mg-3Al-3Sn alloy. With addition The tensile testing results showed that the yield and ultimate tensile strength and elongation of Mg-3Al-3Sn alloy increased by adding Sr up to 0.1 wt.% and then is gradually decreased with the addition of more alloying element.

  18. Effect of Ti addition on the microstructure and mechanical properties of a cast Fe-Ni-Mo-Mn maraging steel

    NASA Astrophysics Data System (ADS)

    Nejad, S. Hossein; Nili Ahmadabadi, M.

    2003-10-01

    To study the effect of Ti on the age hardening behavior of Fe-Ni-Mn maraging steels, a Fe-Ni-Mo-Mn steel was alloyed with Ti then mechanical properties and aging behavior of two cast steels were investigated. In this regard, two heats of nominal compositions of Fe-10Ni-6Mo-3Mn and Fe-lONi-6Mo-3Mn-0. 7Ti were induction melted in air and vacuum respectively and cast in iron mold. After homogenizing at 1473K for 21.6ks and water quenching, solution annealing was performed at 1223K for 3.6ks followed by air cooling. Age hardening behavior at 773Kin the range of 0.36-172. 8 ks was determined. Tensile properties and Charpy impact toughness were measured in the solution annealed and peak-aged conditions. Fractographic features were studied by scanning electron microscope equipped with EDX microanalyses. Tensile properties of the alloys in the peakaged condition were in the range of grade 200 standard maraging steel. It has been found that Ti addition resulted in increasing of hardness and strength in aged condition and decreasing of Charpy impact toughness in both solution annealed and aged conditions. Ti addition also changes type and morphology of inclusions and fracture mechanism from semi-ductile intergranular mode to semi-ductile transgranular one.

  19. Effects of La addition on the microstructure and tensile properties of Al-Si-Cu-Mg casting alloys

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Pan, Ye; Wu, Ji-li; Tao, Shi-wen; Chen, Yu

    2015-04-01

    The effects of La addition on the microstructure and tensile properties of B-refined and Sr-modified Al-11Si-1.5Cu-0.3Mg casting alloys were investigated. With a trace addition of La (0.05wt%-0.1wt%), the mutual poisoning effect between B and Sr can be neutralized by the formation of LaB6 rather than SrB6. By employing a La/B weight ratio of 2:1, uniform microstructures, which are characterized by well refined α-Al grains and adequately modified eutectic Si particles as well as the incorporation of precipitated strengthening intermetallics, are obtained and lead to appreciable tensile properties with an ultimate tensile strength of 270 MPa and elongation of 5.8%.

  20. Using special additions to preparation of the moulding mixture for casting steel parts of drive wheel type

    NASA Astrophysics Data System (ADS)

    Josan, A.; Pinca Bretotean, C.

    2015-06-01

    The paper presents the possibility of using special additions to the execution of moulding mixtures for steel castings, drive wheel type. Critical analysis of moulding technology leads to the idea that most defects appear due to using improper moulding mixture. Using a improper moulding mixture leads to penetration of steel in moulding mixture, resulting in the formation of adherences, due to inadequate refractarity of the mould and core mixtures. Using only the unique mixture to the moulding leads to increasing consumption of new sand, respectively to the increase of price of piece. Acording to the dates registered in the industrial practice is necessary to use the special additions to obtain the moulding mixtures, carbonaceous materials respectively.

  1. The Effect of Li Additions on Wear Properties of Al-Mg{sub 2}Si Cast In-situ Composites

    SciTech Connect

    Ghorbani, M. R.; Emamy, M.; Ghiasinejad, J.; Malekan, A.

    2010-06-15

    Wear rate of a modified Al-Mg{sub 2}Si composite was studied by the use of a conventional pin-on-disc technique. In-situ Al-Mg{sub 2}Si composites (15, 20, 25 wt.%) were cast in a simple cylindrical mold. 0.3 wt.% Li was added into the molten composite to modify its microstructure. It has been found that Li addition decreases the mean size of primary Mg{sub 2}Si particles. The wear behavior of different composites at different rates revealed that Li addition increases the wear properties of Al-15%Mg{sub 2}Si to some extent but it did not have any significant influence on wear properties of two other composites.

  2. Urinary casts

    MedlinePlus

    ... Casts in the urine; Fatty casts; Red blood cell casts; White blood cell casts ... The absence of cellular casts or presence of a few hyaline casts is normal. The examples above are common measurements for results of ...

  3. Urinary casts

    MedlinePlus

    ... people with advanced kidney disease and chronic kidney failure . White blood cell (WBC) casts are more common ... Hyaline casts; Granular casts; Renal tubular epithelial casts; Waxy casts; Casts in the ...

  4. Comment on the reported fiber attenuations in the visible regime in 'Fabrication of glass photonic crystal fibers with a die-cast process'

    SciTech Connect

    Feng Xian; Loh, Wei H.; Richardson, David J

    2008-10-01

    We comment on the recent paper by Zhou et al. [Appl. Opt.45, 4433 (2006)APOPAI0003-693510.1364/AO.45.004433], in which transmission losses of 0.2-0.3 dB/m were claimed across the wavelength range 420-900 nm in a high-index (nd=1.80518 at 587.6 nm) SF6 glass-based photonic crystal fiber fabricated by novel die-cast technique. If confirmed, these losses are at least 1 order of magnitude lower than previous reported losses of SF6 photonic crystal fibers from other fabrication approaches. Here we present a statistic survey on the relationship between the refractive index and the bulk material attenuation, based on a large number of commercial Schott optical glasses with the nd ranging between 1.40 and 2.05. It shows that the loss of a high-index (nd=1.80) glass optical fiber should be at the levels of 10-50 dB/m at 420 nm and 1-10 dB/m at 500 nm, respectively. Moreover, the material attenuation of such a high-index glass fiber should intrinsically show a large decay, from 10-50 dB/m at 420 nm to the level of 1 dB/m at 700 nm, which arises from the tail on the UV absorption edge of the high-index glass extending to the visible region. Therefore, we conclude that: (1) the low loss of 0.2-0.3 dB/m reported in the cited paper is abnormally one or two magnitudes lower than the material attenuation that a high-index (nd=1.80) glass optical fiber should have in the range between 420 and 500 nm and that (2) the flat loss curve between 420 and 700 nm in the cited paper deviates greatly from the intrinsic behavior of a high-index (nd=1.80) glass fiber.

  5. Optimization of Squeeze Casting for Aluminum Alloy Parts

    SciTech Connect

    David Schwam; John F. Wallace; Qingming Chang; Yulong Zhu

    2002-07-30

    This study was initiated with the installation of a new production size UBE 350 Ton VSC Squeeze Casting system in the Metal Casting Laboratory at Case Western University. A Lindberg 75k W electrical melting furnace was installed alongside. The challenge of installation and operation of such industrial-size equipment in an academic environment was met successfully. Subsequently, a Sterling oil die heater and a Visi-Track shot monitoring system were added. A significant number of inserts were designed and fabricated over the span of the project, primarily for squeeze casting different configurations of test bars and plates. A spiral ''ribbon insert'' for evaluation of molten metal fluidity was also fabricated. These inserts were used to generate a broad range of processing conditions and determine their effect on the quality of the squeeze cast parts. This investigation has studied the influence of the various casting variables on the quality of indirect squeeze castings primarily of aluminum alloys. The variables studied include gating design, fill time and fill patter, metal pressure and die temperature variations. The quality of the die casting was assessed by an analysis of both their surface condition and internal soundness. The primary metal tested was an aluminum 356 alloy. In addition to determining the effect of these casting variables on casting quality as measured by a flat plate die of various thickness, a number of test bar inserts with different gating designs have been inserted in the squeeze casting machine. The mechanical properties of these test bars produced under different squeeze casting conditions were measured and reported. The investigation of the resulting properties also included an analysis of the microstructure of the squeeze castings and the effect of the various structural constituents on the resulting properties. The main conclusions from this investigation are as follows: The ingate size and shape are very important since it must

  6. Slip casting and extruding shapes of rhemium with metal oxide additives. Part 2: Development of grain stabilized rhenium parts for resistojets

    NASA Technical Reports Server (NTRS)

    Barr, Francis A.; Page, Russell J.

    1987-01-01

    The adaptation of the powdered particle process used for pure metal oxides to the coprocessing of rhenium oxides suitable to produce pure miniature resistojet hardware has been successful. Both slip casting and extrusion processes were used. The metal oxide ZrO2 was stabilized into the cubic phase with Y2O3, for use as a potentially grain stabilizing additive to rhenium. Straight meter long tubing in two sizes are reported. Tubing suitable for resistojet ohmic heater use of fully fired dimensions of nominally 3.8 mm o.d. x 2.2 mm i.d.. and 1.26 mm o.d. x .45 mm i.d. with 0, 0.5, 1.0 and 5.0% zirconia additives were produced for further study. Photomicrographs of these are discussed. The addition of the metal oxide zirconia to rhenium resulted in more dense and less porous parts. The additions of phase stabilized zirconia most likely act as a sintering aid. Tubes of varying diameter were slip cast which were representative of miniature pressure cases.

  7. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  8. 75 FR 20387 - Contech Castings, LLC, Including Workers Whose Unemployment Insurance (UI) Wages Are Reported...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... workers are engaged in activities related to the production of aluminum and magnesium die casted component... who were adversely affected by increased imports of aluminum and magnesium die casted component...

  9. Modeling and control of casting and welding processes

    SciTech Connect

    Kou, S.; Mehrabian, R.

    1986-01-01

    This book contains papers divided among the following sections: process monitor and control in welding; plasma processing and refining; strip casting; modelling of welding processes; CAD/CAM in casting; investment and die casting; ingot, continuous and other shape casting; and rapid solidification and microstructural evolution.

  10. EFFECT OF Sn AND Pb ADDITIONS ON MICROSTRUCTURE OF Mg-6Al-1Zn AS-CAST MAGNESIUM ALLOYS

    NASA Astrophysics Data System (ADS)

    Hou, Haibo; Zhu, Tianping; Wang, Yuxin; Gao, Wei

    2013-07-01

    Much attention has been paid to Mg alloys given that Mg alloys are the most promising lightweight metallic material. They have found applications in automobile and other fields where weight saving is of great significance. Mg-Al-Zn alloy system (AZ series), including AZ91 and AZ61 Mg alloys, is widely used in industry. We have studied the enhancement of mechanical properties by adding alloying elements Sn and Pb. This paper reports our study on the microstructure and element distribution of the alloys with small amounts of tin (Sn) and lead (Pb) additions.

  11. Effect of Y, Sr, and Nd additions on the microstructure and microfracture mechanism of squeeze-cast AZ91-X magnesium alloys

    SciTech Connect

    Lee, S.; Lee, S.H.; Kim, D.H.

    1998-04-01

    This study aims to investigate the effects of Y, Sr, and Nd additions on the microstructure and microfracture mechanism of the four squeeze-cast magnesium alloys based on the commercial AZ91 alloy. Microstructural observation, in situ fracture tests, fractographic observation were conducted on the alloys to clarify the microfracture process. Microstructural analyses indicated that grain refinement could be achieved by small additions of alloying elements, although the discontinuously precipitated Mg{sub 17}Al{sub 12} phases still existed on grain boundaries. From in situ fracture observation of an AZ91-Sr alloy, it was seen that coarse needle-shaped compound particles and Mg{sub 17}Al{sub 12} phases located on the grain boundary provided easy intergranular fracture sites under low stress intensity factor levels, resulting in the drop in toughness. On the other hand, the AZ91-Y and AZ91-Nd alloys showed improved fracture toughness, since deformation and fracture paths proceeded into grains rather than to grain boundaries, as the planar slip bands and twinnings actively developed inside the grains. These findings suggested, on the basis of the well-developed planar slip bands and twinnings, that the small addition of Y or Nd was very effective in improving fracture toughness.

  12. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  13. Packaged die heater

    SciTech Connect

    Spielberger, Richard; Ohme, Bruce Walker; Jensen, Ronald J.

    2011-06-21

    A heater for heating packaged die for burn-in and heat testing is described. The heater may be a ceramic-type heater with a metal filament. The heater may be incorporated into the integrated circuit package as an additional ceramic layer of the package, or may be an external heater placed in contact with the package to heat the die. Many different types of integrated circuit packages may be accommodated. The method provides increased energy efficiency for heating the die while reducing temperature stresses on testing equipment. The method allows the use of multiple heaters to heat die to different temperatures. Faulty die may be heated to weaken die attach material to facilitate removal of the die. The heater filament or a separate temperature thermistor located in the package may be used to accurately measure die temperature.

  14. Effects of V Addition on Microstructure and Hardness of Fe-C-B-Ni-V Hardfacing Alloys Cast on Steel Substrates

    NASA Astrophysics Data System (ADS)

    Rovatti, L.; Lemke, J. N.; Emami, A.; Stejskal, O.; Vedani, M.

    2015-12-01

    Fe-based hardfacing alloys containing high volume fraction of hard phases are a suitable material to be deposited as wear resistant thick coatings. In the case of alloys containing high amount of interstitial alloying elements, a key factor affecting the performance is dilution with the substrate induced by the coating process. The present research was focused on the analysis of V-bearing Fe-based alloys after calibrated carbon and vanadium additions (in the range from 3 to 5 wt.%) to a commercial Fe-C-B-Ni hardfacing alloy. Vanadium carbides with a petal-like morphology were observed in the high-V hypereutectic alloys allowing to reach hardness values above 700 HV. The solidification range shifted to higher temperatures with increasing amount of vanadium addition and in the case of hypereutectic alloys, the gap remains close to that of the original alloy. In the last step of the research, the microstructural evolution after dilution was analyzed by casting the V-rich alloys on a steel substrate. The dilution, caused by the alloying element diffusion and the local melting of the substrate, modified the microstructure and the hardness for a relevant volume fraction of the hardfacing alloys. In particular, the drop of interstitial elements induced the transition from the hypereutectic to the hypoeutectic microstructure and the formation of near-spherical V-rich carbides. Even after dilution, the hardness of the new alloys remained higher than that measured in the original Fe-C-B-Ni alloy.

  15. Effects of phosphate addition on biofilm bacterial communities and water quality in annular reactors equipped with stainless steel and ductile cast iron pipes.

    PubMed

    Jang, Hyun-Jung; Choi, Young-June; Ro, Hee-Myong; Ka, Jong-Ok

    2012-02-01

    The impact of orthophosphate addition on biofilm formation and water quality was studied in corrosion-resistant stainless steel (STS) pipe and corrosion-susceptible ductile cast iron (DCI) pipe using cultivation and culture-independent approaches. Sample coupons of DCI pipe and STS pipe were installed in annular reactors, which were operated for 9 months under hydraulic conditions similar to a domestic plumbing system. Addition of 5 mg/L of phosphate to the plumbing systems, under low residual chlorine conditions, promoted a more significant growth of biofilm and led to a greater rate reduction of disinfection by-products in DCI pipe than in STS pipe. While the level of THMs (trihalomethanes) increased under conditions of low biofilm concentration, the levels of HAAs (halo acetic acids) and CH (chloral hydrate) decreased in all cases in proportion to the amount of biofilm. It was also observed that chloroform, the main species of THM, was not readily decomposed biologically and decomposition was not proportional to the biofilm concentration; however, it was easily biodegraded after the addition of phosphate. Analysis of the 16S rDNA sequences of 102 biofilm isolates revealed that Proteobacteria (50%) was the most frequently detected phylum, followed by Firmicutes (10%) and Actinobacteria (2%), with 37% of the bacteria unclassified. Bradyrhizobium was the dominant genus on corroded DCI pipe, while Sphingomonas was predominant on non-corroded STS pipe. Methylobacterium and Afipia were detected only in the reactor without added phosphate. PCR-DGGE analysis showed that the diversity of species in biofilm tended to increase when phosphate was added regardless of the pipe material, indicating that phosphate addition upset the biological stability in the plumbing systems. PMID:22367933

  16. Effect of tungsten addition on the toughness and hardness of Fe{sub 2}B in wear-resistant Fe-B-C cast alloy

    SciTech Connect

    Huang, Zhifu Xing, Jiandong; Lv, Liangliang

    2013-01-15

    The effects of tungsten additions of 0%, 1.12%, 2.04%, and 3.17% (in wt.%) on the morphology, fracture toughness and micro-hardness of Fe{sub 2}B in Fe-B-C cast alloy were investigated. The results indicate that, with the increase of tungsten addition, the morphology and distribution of Fe{sub 2}B have no change and a new W-containing phase, except the (Fe, W){sub 2}B with a certain tungsten solution, does not form, and that the fracture toughness of Fe{sub 2}B increases first and then decreases, while the hardness increases first and then has a little change. Compared with the fracture toughness (3.8 MPa{center_dot}m{sup 1/2}) of Fe{sub 2}B without tungsten addition, the toughness at 2.04 wt.% tungsten can be improved by about above 80% and achieves about 6.9 MPa{center_dot}m{sup 1/2}, and variation characteristics of hardness and toughness of Fe{sub 2}B were also testified by viewing the indentation marks and cracks on the Fe{sub 2}B, respectively. - Highlights: Black-Right-Pointing-Pointer Poor toughness of Fe2B decreases obviously the wear resistance of the alloy. Black-Right-Pointing-Pointer As W content increases, Fe2B's toughness increases first and then decreases. Black-Right-Pointing-Pointer As W content increases, Fe2B's hardness first increases and then has little change. Black-Right-Pointing-Pointer The toughness at 2.04 % W can be improved by above 80% more than that at 0% W.

  17. First Results of Energy Saving at Process Redesign of Die Forging Al-Alloys

    SciTech Connect

    Pepelnjak, Tomaz; Kuzman, Karl; Kokol, Anton

    2011-05-04

    The contribution deals with eco-friendly solutions for shortened production chains of forging light alloys. During the die forging operations a remarkable amount of material goes into the flash and later on into chips during finish machining. These low value side products are rich with embedded energy therefore recycling or reprocessing could be very energy saving procedure.In cooperation with a die forging company a shortened reprocessing cycle has been studied starting from re-melting the forging flash and without additional heating to cast preforms for subsequent die forging. As such preforms have not as good formability characteristics as those done from extruded billets the isothermal forging process has been adopted. First results showed that without cracks and other defects the formability is sufficient for a broad spectrum of forgings.To improve the formability a homogenization process of cast preforms has been implemented. As the process started immediately after casting, amount of additional energy for heating was minimized. To reduce voids forging process was redesigned in a way to assure greater hydrostatic pressures in parts during forging. First results were promising therefore research is going towards improving processes without adding significantly more energy as it is needed for casting with homogenization and die forging.

  18. Exploratory study on H13 steel dies

    SciTech Connect

    Sunwoo, A.J.

    1994-04-01

    Ultrahigh-strength H13 steel is a recommended die material for aluminum die casting; dies made from H13 steel can be safely water- cooled during hot working operations without cracking. However, after time the dies exhibited surface cracking and excessive wear. Erosive wear also occurs owing to high pressure injection of molten Al. An exploratory study was made of the causes for surface cracking of H13 dies. Results suggest that surface cracking is caused by interrelated factors, internal to the die material as well as externally induced conditions.

  19. Enhanced alignment and magnetic properties of die-upset nano-crystal Nd2Fe14B magnets with Nb addition

    NASA Astrophysics Data System (ADS)

    Ma, Yilong; Chen, Dengming; Zhou, Anruo; Sun, Jianchun; Cao, Pengjun

    2012-12-01

    It is difficult to obtain the crystallographic alignment for stoichiometric Nd2Fe14B alloys by applying the melt-spun and subsequent hot-pressing and hot-deformation techniques. However, the enhanced alignment and magnetic properties of die-upset nano-crystal Nd2Fe14B magnets have been obtained by Nb addition in the present paper. The magnetic properties studies show that Nb addition leads to the remarkable increase of remanence Br and intrinsic coercivity Hci, which is due to the improvement of c-axis texture and refinement of microstructure. Microstructure studies using transmission electron microscopy (TEM) and X-ray diffraction (XRD) reveal that Nb atoms are enriched at grain boundary and the NbFeB phase is observed with increasing Nb content. Since some Fe atoms in the Nd2Fe14B phase participate in the formation of NbFeB phase, the excessive Nd atoms may be enriched at grain boundary, which may improve the physical property of grain boundary and provide a mass transport pass for preferential growth of oriented Nd2Fe14B grains, thus leading to the enhanced alignment and magnetic properties.

  20. Optimization of Composition and Heat Treating of Die Steels for Extended Lifetime

    SciTech Connect

    David Schwam; John F. Wallace; Quanyou Zhou

    2002-01-30

    An ''average'' die casting die costs fifty thousand dollars. A die used in making die cast aluminum engine blocks can cost well over one million dollars. These costs provide a strong incentive for extension of die life. While vacuum quenched Premium Grade H13 dies have become the most widely used in the United States, tool makers and die casters are constantly searching for new steels and heat treating procedures to extend die life. This project was undertaken to investigate the effects of composition and heat treating on die life and optimize these parameters.

  1. Casting in Sport

    PubMed Central

    DeCarlo, Mark; Malone, Kathy; Darmelio, John; Rettig, Arthur

    1994-01-01

    Attempts by sports medicine professionals to return high school athletes with hand and wrist injuries to competition quickly and safely have been the source of confusion and debate on many playing fields around the country. In addition to the differing views regarding the appropriateness of playing cast usage in high school football, a debate exists among sports medicine professionals as to which material is best suited for playing cast construction. Materials used in playing cast construction should be hard enough to provide sufficient stabilization to the injured area and include adequate padding to absorb blunt impact forces. The purpose of the biomechanical portion of this investigation was to attempt to determine the most appropriate materials for use in constructing playing casts for the hand and wrist by assessing different materials for: 1) hardness using a Shore durometer, and 2) ability to absorb impact using a force platform. Results revealed that RTV11 and Scotchcast were the “least hard” of the underlying casting materials and that Temper Stick foam greatly increased the ability of RTV11 to absorb impact. Assessment of the mechanical properties of playing cast materials and review of current developments in high school football rules are used to aid practitioners in choosing the most appropriate materials for playing cast construction. ImagesFig 1.Fig 2.Fig 3. PMID:16558257

  2. Predicting Pattern Tooling and Casting Dimensions for Investment Casting, Phase II

    SciTech Connect

    Nick Cannell; Adrian S. Sabau

    2005-09-30

    The investment casting process allows the production of complex-shape parts and close dimensional tolerances. One of the most important phases in the investment casting process is the design of the pattern die. Pattern dies are used to create wax patterns by injecting wax into dies. The first part of the project involved preparation of reports on the state of the art at that time for all the areas under consideration (die-wax, wax-shell, and shell-alloy). The primary R&D focus during Phase I was on the wax material since the least was known about it. The main R&D accomplishments during this phase were determination of procedures for obtaining the thermal conductivity and viscoelastic properties of an unfilled wax and validating those procedures. Phase II focused on die-wax and shell-alloy systems. A wax material model was developed based on results obtained during the previous R&D phase, and a die-wax model was successfully incorporated into and used in commercial computer programs. Current computer simulation programs have complementary features. A viscoelastic module was available in ABAQUS but unavailable in ProCAST, while the mold-filling module was available in ProCAST but unavailable in ABAQUS. Thus, the numerical simulation results were only in good qualitative agreement with experimental results, the predicted shrinkage factors being approximately 2.5 times larger than those measured. Significant progress was made, and results showed that the testing and modeling of wax material had great potential for industrial applications. Additional R&D focus was placed on one shell-alloy system. The fused-silica shell mold and A356 aluminum alloy were considered. The experimental part of the program was conducted at ORNL and commercial foundries, where wax patterns were injected, molds were invested, and alloys were poured. It was very important to obtain accurate temperature data from actual castings, and significant effort was made to obtain temperature profiles in

  3. Melting and casting of FeAl-based cast alloy

    SciTech Connect

    Sikka, V.K.; Wilkening, D.; Liebetrau, J.; Mackey, B.

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  4. SPHERICAL DIE

    DOEpatents

    Livingston, J.P.

    1959-01-27

    A die is presented for pressing powdered materials into a hemispherical shape of uniforin density and wall thickness comprising a fcmale and male die element held in a stationary spaced relation with the space being equivalent to the wall thickness and defining the hemispherical shape, a pressing ring linearly moveable along the male die element, an inlet to fill the space with powdered materials, a guiding system for moving the pressing ring along the male die element so as to press the powdered material and a heating system for heating the male element so that the powdered material is heated while being pressed.

  5. Rapid Tooling via Investment Casting and Rapid Prototype Patterns

    SciTech Connect

    Baldwin, Michael D.

    1999-06-01

    The objective of this work to develop the materials processing and design technologies required to reduce the die development time for metal mold processes from 12 months to 3 months, using die casting of Al and Mg as the example process. Sandia demonstrated that investment casting, using rapid prototype patterns produced from Stereo lithography or Selective laser Sintering, was a viable alternative/supplement to the current technology of machining form wrought stock. A demonstration die insert (ejector halt) was investment cast and subsequently tested in the die casting environment. The stationary half of the die insert was machined from wrought material to benchmark the cast half. The two inserts were run in a die casting machine for 3,100 shots of aluminum and at the end of the run no visible difference could be detected between the cast and machined inserts. Inspection concluded that the cast insert performed identically to the machined insert. Both inserts had no indications of heat checking or degradation.

  6. Pigmented casts.

    PubMed

    Miteva, Mariya; Romanelli, Paolo; Tosti, Antonella

    2014-01-01

    Pigmented casts have been reported with variable frequency in scalp biopsies from alopecia areata, trichotillomania, chemotherapy-induced alopecia and postoperative (pressure induced) alopecia. Their presence and morphology in other scalp disorders has not been described. The authors assessed for the presence and morphology of pigmented casts in 308 transversely bisected scalp biopsies from nonscarring and scarring alopecia, referred to the Department of Dermatology, University of Miami within a year. The pigmented casts were present in 21 of 29 cases of alopecia areata (72%), 7 of 7 cases of trichotillomania (100%), 1 case of friction alopecia, 4 of 28 cases of central centrifugal cicatricial alopecia (14%), and 4 of 4 cases of dissecting cellulitis (100%). They did not show any distinguishing features except for the morphology in trichotillomania, which included twisted, linear (zip), and "button"-like pigment aggregation. The linear arrangement was found also in friction alopecia and dissecting cellulitis. Pigmented casts in the hair canals of miniaturized/vellus hairs was a clue to alopecia areata. Pigmented casts can be observed in biopsies of different hair disorders, but they are not specific for the diagnosis. Horizontal sections allow to better assess their morphology and the follicular level of presence of pigmented casts, which in the context of the other follicular findings may be a clue to the diagnosis. PMID:23823025

  7. Predicting Pattern Tooling and Casting Dimensions for Investment Casting - Phase II

    SciTech Connect

    Sabau, Adrian S

    2005-09-01

    The investment casting process allows the production of complex-shape parts and close dimensional tolerances. One of the most important phases in the investment casting process is the design of the pattern die. Pattern dies are used to create wax patterns by injecting wax into dies. The wax patterns are used to create a ceramic shell by the application of a series of ceramic coatings, and the alloy is cast into the dewaxed shell mold (Fig. 1.1). However, the complexity of shape and the close dimensional tolerances required in the final casting make it difficult to determine tooling dimensions. The final linear dimension of the casting depends on the cumulative effects of the linear expansions or contractions in each step of the investment casting process (Fig. 1.2). In most cases, the mold geometry or cores restrict the shrinkage of the pattern or the cast part, and the final casting dimensions may be affected by time-dependent processes such as viscoelastic deformation of the wax, and viscoplastic creep and plastic deformations of the shell and alloy. The pattern die is often reworked several times to produce castings whose dimensions are within acceptable tolerances. To date, investment casting technology has been based on hands-on training and experience. Technical literature is limited to experimental, phenomenological studies aimed at obtaining empirical correlations for quick and easy application in industry. The goal of this project was to predict casting dimensions for investment castings in order to meet blueprint nominal during the first casting run. Several interactions have to be considered in a coupled manner to determine the shrinkage factors: these are the die-wax, wax-shell, and shell-alloy interactions (as illustrated in Fig. 1.3). In this work, the deformations of the die-wax and shell-alloy systems were considered in a coupled manner, while the coupled deformation of the wax-shell system was not considered. Future work is needed in order to

  8. Laser-Ultrasonic Inspection of MG/AL Castings

    SciTech Connect

    Blouin, Alain; Levesque, Daniel; Monchalin, Jean-Pierre; Baril, Eric; Fischersworring-Bunk, Andreas

    2005-04-09

    Laser-ultrasonics is used to assess the metallurgical bond between Mg/Al materials in die-cast Magnesium/Aluminum composite. The acoustic impedances of Mg, Al and air are such that the amplitude of ultrasonic echoes reflected back from a void is many times larger than the amplitude of those reflected back from a well-bonded interface. In addition, the polarity of echoes from a void is inverted compared to that from a well-bonded interface. Laser-ultrasonic F-SAFT is also used for imaging tilted Mg/Al interfaces. Experimental setup, signal processing and results for detecting voids in the Mg/Al interface of cast parts are presented.

  9. Project CAST.

    ERIC Educational Resources Information Center

    Charles County Board of Education, La Plata, MD. Office of Special Education.

    The document outlines procedures for implementing Project CAST (Community and School Together), a community-based career education program for secondary special education students in Charles County, Maryland. Initial sections discuss the role of a learning coordinator, (including relevant travel reimbursement and mileage forms) and an overview of…

  10. A comparative study of the centrifugal and vacuum-pressure techniques of casting removable partial denture frameworks.

    PubMed

    Shanley, J J; Ancowitz, S J; Fenster, R K; Pelleu, G B

    1981-01-01

    A study was undertaken to evaluate two techniques for casting accuracy on removable partial denture frameworks: centrifugal casting and vacuum-pressure casting. A standard metal die with predetermined reference points in a horizontal plane was duplicated in refractory investment. The casts were waxed, and castings of nickel-chrome alloy were fabricated by the two techniques. Both the casts and the castings were measured between the reference points with a measuring microscope. With both casting methods, the differences between the casts and the castings were significant, but no significant differences were found between castings produced by the two techniques. Vertical measurements at three designated points also showed no significant differences between the castings. Our findings indicate that dental laboratories should be able to use the vacuum-pressure method of casting removable partial denture frameworks and achieve accuracy similar to that obtained by the centrifugal method of casting. PMID:7007622

  11. Energy and Technolgy Assessment of Zinc and Magnesium Casting Plants, Technical Report Close-out, August 25,2006

    SciTech Connect

    Twin City Die Castings Company; Tom Heider; North American Die Castings Association

    2006-08-25

    Twin City Die Castings Company of Minneapolis, Minnesota, Twin City Die Castings Company was awarded project No. DE-FG36-05GO15097 to perform plant wide assessments of ten (10) die casting facilities that produce zinc and magnesium alloy castings in order to determine improvements and potential cost savings in energy use. Mr. Heider filled the role of team leader for the project and utilized the North American Die Casting Association (NADCA) to conduct audits at team participant plants so as to hold findings specific to each plant proprietary. The intended benefits of the project were to improve energy use through higher operational and process efficiency for the plants assessed. An improvement in energy efficiency of 5 – 15% was targeted. The primary objectives of the project was to: 1) Expand an energy and technology tool developed by the NADCA under a previous DOE project titled, “Energy and Technology Assessment for Die Casting Plants” for assessing aluminum die casting plants to be more specifically applicable to zinc and magnesium die casting facilities. 2) Conduct ten (10) assessments of zinc and magnesium die casting plants, within eight (8) companies, utilizing the assessment tool to identify, evaluate and recommend opportunities to enhance energy efficiency, minimize waste, and improve productivity. 3) Transfer the assessment tool to the die casting industry at large.

  12. A comparison of dimensional accuracy between three different addition cured silicone impression materials.

    PubMed

    Forrester-Baker, L; Seymour, K G; Samarawickrama, D; Zou, L; Cherukara, G; Patel, M

    2005-06-01

    Ten impressions of a metal implant abutment were made with each of three addition-cured silicone impression materials. Using the technique of co-ordinate metrology, the shoulder region of the abutment and corresponding regions of both impressions and dies made from these impressions were scanned and measured. Comparison of these measurements indicated that the mean dimension measured from the shoulder region for each group of impression materials was significantly different from those taken from the original metal implant abutment. However, when these impressions were cast in a gypsum based die material, none of the measured dimensions taken from the casts were significantly different from those taken from the original metal implant abutment. Thus, any change in measured dimensions occurring during impression making, was compensated for in some way by the casting process. PMID:16011234

  13. Casting methods

    DOEpatents

    Marsden, Kenneth C.; Meyer, Mitchell K.; Grover, Blair K.; Fielding, Randall S.; Wolfensberger, Billy W.

    2012-12-18

    A casting device includes a covered crucible having a top opening and a bottom orifice, a lid covering the top opening, a stopper rod sealing the bottom orifice, and a reusable mold having at least one chamber, a top end of the chamber being open to and positioned below the bottom orifice and a vacuum tap into the chamber being below the top end of the chamber. A casting method includes charging a crucible with a solid material and covering the crucible, heating the crucible, melting the material, evacuating a chamber of a mold to less than 1 atm absolute through a vacuum tap into the chamber, draining the melted material into the evacuated chamber, solidifying the material in the chamber, and removing the solidified material from the chamber without damaging the chamber.

  14. CASTING APPARATUS

    DOEpatents

    Gray, C.F.; Thompson, R.H.

    1958-09-23

    An apparatus is described for casting small quantities of uranlum. It consists of a crucible having a hole in the bottom with a mold positioned below. A vertical rcd passes through the hole in the crucible and has at its upper end a piercing head adapted to break the oxide skin encasing a molten uranium body. An air tight cylinder surrounds the crucible and mold, and is arranged to be evacuated.

  15. Simulating the deformation of dies in the foundry

    NASA Astrophysics Data System (ADS)

    Chabod, A.; Longa, Y.; Dracon, J. M.; Chailler, K.; Hairy, P.; Da Silva, A.

    2012-07-01

    Digital simulation (QuikCAST, ProCAST) is already used extensively when designing metallic dies for founding, in particular to design filling and gating systems. Simulation of the steady-state temperature cycles of dies has also been mastered. With large castings, the temperature gradient induced between the moulding surface and the rear surfaces of the die leads to deformations that may be large enough to measure, and incompatible with the required dimensional accuracy. The temperature gradient also creates thermal fatigue stresses that cause crazing of the die surface. In the study conducted by CTIF, aimed at measuring tooling deformations, various ways of measuring displacements at high temperatures (with and without contact) were investigated in order to evaluate their capabilities and limitations. An experimental device was designed - a test bench combining a metallic die having a simple geometry, in which an aluminium part could be cast, and instrumentation (temperature and displacement sensors). The deformations of the die were measured during first cycles of temperature homogenization. Concurrently, thermomechanical calculations were carried out on the same geometry using PROCAST. The calculation results are well correlated with the experimental measurements and validate the tools and the calculation methods. This thermomechanical approach makes it possible to optimize die design in the foundry and to predict high-temperature deformations as early as the design stage. Knowledge of these deformations makes it possible in turn to anticipate the geometrical and dimensional variations undergone by the castings themselves and so to improve their accuracy. The designer can act on the temperature of the die or the design of the casting, or create a die in which the expected thermal deformation is reversed so as to produce a casting having the correct dimensions. In short, thermomechanical simulation can be applied to this problem to achieve a better understanding

  16. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Mechanical Performance of Dies

    SciTech Connect

    R. Allen Miller, Principal Investigator; Kabiri-Bamoradian, Contributors: Khalil; Delgado-Garza, Abelardo; Murugesan, Karthik; Ragab, Adham

    2011-09-13

    provided to NADCA for distribution to the industry. Power law based meta-models for predicting machine tie bar loading and for predicting maximum parting surface separation were successfully developed and tested against simulation results for a wide range of machines and experimental data. The models proved to be remarkably accurate, certainly well within the requirements for practical application. In addition to making die structural modeling more accessible, the work advanced the state-of-the-art by developing improved modeling of cavity pressure effects, which is typically modeled as a hydrostatic boundary condition, and performing a systematic analysis of the influence of ejector die design variables on die deflection and parting plane separation. This cavity pressure modeling objective met with less than complete success due to the limits of current finite element based fluid structure interaction analysis methods, but an improved representation of the casting/die interface was accomplished using a combination of solid and shell elements in the finite element model. This approximation enabled good prediction of final part distortion verified with a comprehensive evaluation of the dimensions of test castings produced with a design experiment. An extra deliverable of the experimental work was development of high temperature mechanical properties for the A380 die casting alloy. The ejector side design objective was met and the results were incorporated into the metamodels described above. This new technology was predicted to result in an average energy savings of 2.03 trillion BTU's/year over a 10 year period. Current (2011) annual energy saving estimates over a ten year period, based on commercial introduction in 2009, a market penetration of 70% by 2014 is 4.26 trillion BTU's/year by 2019. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring

  17. Investment cast AISI H13 tooling for automotive applications

    SciTech Connect

    Maguire, M.C.; Baldwin, M.D.; Hochanadel, P.W.; Edwards, G.R.

    1995-07-01

    While many techniques exist for production of soft tooling, for die casting there is limited recent experience with cast tooling. The most common US alloy used for manufacture of die casting tooling is wrought AISI H13. If the performance of the cast material is comparable to the wrought counterpart, the use of investment cast HI 3 tooling directly from patterns made via rapid prototyping is of considerable interest. A metallurgical study of investment cast H13 was conducted to evaluate the mechanical behavior in simulated die casting applications. Variable thickness plate investment castings of AISI H13 hot work die steel were produced and characterized in the as-cast and heat-treated conditions. The characterization included light microscopy and mechanical testing. Wrought samples of standard and premium grade H13 were heat-treated and characterized similarly for comparison. Microstructural differences were observed in as-cast samples produced in different section thicknesses. Dendrite cell size and carbide morphology constituted the most prominent microstructural differences observed. After a full heat-treatment, microstructural differences between the wrought material and cast materials were slight regardless of section thickness.The mechanical properties of the cast and heat-treated material proved similar to the properties of the standard heat-treated wrought material. A thermal fatigue testing unit was to con-elate the heat checking susceptibility of H13 steel to its processing and consequent microstructural condition. Surface hardness decreased significantly with thermal cycling, and heat checking was observed in as few as 50 cycles. Thermal softening and thermal fatigue susceptibility were quantified and discussed relative to the microstructural conditions created by processing and heat-treatment. It was found that the premium grade wrought H13 steel provided the best overall resistance to heat checking.

  18. Addition of SiC Particles to Ag Die-Attach Paste to Improve High-Temperature Stability; Grain Growth Kinetics of Sintered Porous Ag

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Nagao, Shijo; Suganuma, Katsuaki

    2015-10-01

    To improve the high-temperature reliability of sintered Ag joints, three types of silicon carbide particle (SiCp) of different size and morphology were added to Ag micron-flake paste. Quality sintered joints between Cu dummy chips and Cu substrate were obtained at a relatively low temperature (250°C), in air, under low load (0.4 MPa), and 35 MPa die-shear strength was achieved. High-temperature stability was investigated by means of aging tests at 150, 200, and 250°C for 500 h, and by thermal cycling between -50°C and 250°C for up to 170 cycles. The best distribution and compatibility with porous sintered Ag structures was observed for sub-micron SiC particles with an average diameter of 600 nm. After high-temperature storage for 500 h at 250°C, mean Ag grain size of the SiC-containing joints was unchanged whereas that for pure sintered Ag increased from 1.1 to 2.5 μm. Ag joints containing the optimum amount (2 wt.%) of SiCp retained their original strength (20 MPa) after storage at 250°C for 500 h. The shear strength of Ag joints without added SiCp decreased from 27 to 7 MPa after 500 h because of grain growth, which obeyed the classical parabolic law. Grain growth in pure Ag joints is discussed in terms of a temperature-dependent exponent n and activation energy Q. Our SiCp-containing joints resisted the grain growth that induces interfacial cracks during thermal cycling.

  19. Cast aluminum denture base.

    PubMed

    Barco, M T; Dembert, M L

    1987-08-01

    The laboratory procedures for a cast aluminum base denture have been presented. If an induction casting machine is not available, the "two-oven technique" works well, provided the casting arm is kept spinning manually for 4 minutes after casting. If laboratory procedures are executed precisely and with care, the aluminum base denture can be cast with good results. PMID:3305884

  20. Effect of copper addition at a rate of 4% weight on the machininability of ZA-21A1 cast alloy by CNC milling

    NASA Astrophysics Data System (ADS)

    Alqawabah, S. M. A.; Zaid, A. I. O.

    2014-06-01

    Little work is published on the effect of copper addition to zinc-aluminium ZA-21Al alloy on its surface quality machined by milling. In this paper, the effect of copper addition at a rate 4 % weight to the ZA-21Al alloy on its hardness and surface quality is investigated. It was found that the addition of 4% Cu resulted in 18.3% enhancement in microhardness whereas the mechanical characteristics were reduced (softening) about 14.5% at 0.2% strain. It was found that the best surface finish for this alloy before copper addition ZA21 was achieved at a feed rate of 100 mm/min and 1.25 mm depth of cut whereas the best surface finish for ZA21-4% Cu was achieved at feed rate 250 mm/min, 1600 rpm cutting velocity and 1.25 mm depth of cut.

  1. Casting the Spirit: A Handmade Legacy

    ERIC Educational Resources Information Center

    Rutenberg, Mona

    2008-01-01

    This article discusses how an art therapist working in a hospital palliative care unit has incorporated a ritual of hand casting to help bring closure to dying patients and family members who are grieving as death approaches. The finished hand sculptures depict the hands of the patients and, sometimes, of their loved ones. They are faithful and…

  2. Casting materials

    DOEpatents

    Chaudhry, Anil R.; Dzugan, Robert; Harrington, Richard M.; Neece, Faurice D.; Singh, Nipendra P.

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  3. Accurate defect die placement and nuisance defect reduction for reticle die-to-die inspections

    NASA Astrophysics Data System (ADS)

    Wen, Vincent; Huang, L. R.; Lin, C. J.; Tseng, Y. N.; Huang, W. H.; Tuo, Laurent C.; Wylie, Mark; Chen, Ellison; Wang, Elvik; Glasser, Joshua; Kelkar, Amrish; Wu, David

    2015-10-01

    Die-to-die reticle inspections are among the simplest and most sensitive reticle inspections because of the use of an identical-design neighboring-die for the reference image. However, this inspection mode can have two key disadvantages: (1) The location of the defect is indeterminate because it is unclear to the inspector whether the test or reference image is defective; and (2) nuisance and false defects from mask manufacturing noise and tool optical variation can limit the usable sensitivity. The use of a new sequencing approach for a die-to-die inspection can resolve these issues without any additional scan time, without sacrifice in sensitivity requirement, and with a manageable increase in computation load. In this paper we explore another approach for die-to-die inspections using a new method of defect processing and sequencing. Utilizing die-to-die double arbitration during defect detection has been proven through extensive testing to generate accurate placement of the defect in the correct die to ensure efficient defect disposition at the AIMS step. The use of this method maintained the required inspection sensitivity for mask quality as verified with programmed-defectmask qualification and then further validated with production masks comparing the current inspection approach to the new method. Furthermore, this approach can significantly reduce the total number of defects that need to be reviewed by essentially eliminating the nuisance and false defects that can result from a die-to-die inspection. This "double-win" will significantly reduce the effort in classifying a die-to-die inspection result and will lead to improved cycle times.

  4. Steel castings by the electroslag casting technique

    NASA Astrophysics Data System (ADS)

    Sikka, V. K.; Mitchell, A.

    1984-10-01

    Electroslag casting facilities in Canada and the United States were reviewed. Several value body castings of 2 1/4 Cr-1 Mo, 9 Cr-1 Mo, and 18% Cr-8% Ni (Mo) steels were made at the University of British Columbia facility. These castings were examined for surface finish, chemical segregation, and macrostructure in the as-cast condition and after various heat treatments. Castings were subjected to tensile, charpy impact, and creep testing. Results of these tests were compared with similar data on wrought material and where applicable, with data on sand castings.

  5. Steel castings by the electroslag casting technique

    SciTech Connect

    Sikka, V.K.; Mitchell, A.

    1984-10-01

    Electroslag casting facilities in Canada and the United States were reviewed. Several valve body castings of 2 1/4 Cr-1 Mo, 9 Cr-1 Mo, and 18% Cr-8% Ni(Mo) steels were made at the University of British Columbia facility. These castings were examined for surface finish, chemical segregation, and macrostructure in the as-cast condition and after various heat treatments. Castings were subjected to tensile, Charpy impact, and creep testing. Results of these tests were compared with similar data on wrought material and, where applicable, with data on sand castings. 22 figures.

  6. WinMod: An expert advisor for investment casting

    SciTech Connect

    Bivens, H.P.; Williamson, G.A. Jr.; Luger, G.F.; Erdmann, R.G.; Maguire, M.C.; Baldwin, M.D.; Anderson, D.J.

    1998-04-01

    Investment casting is an important method for fabricating a variety of high quality components in mechanical systems. Cast components, unfortunately, have a large design and gate/runner build time associated with their fabrication. In addition, casting engineers often require many years of actual experience in order to consistently pour high quality castings. Since 1989, Sandia National Laboratories has been investigating casting technology and software that will reduce the time overhead involved in producing quality casts. Several companies in the casting industry have teamed up with Sandia to form the FASTCAST Consortium. One result of this research and the formation of the FASTCAST consortium is the creation of the WinMod software, an expert casting advisor that supports the decision making process of the casting engineer through visualization and advice to help eliminate possible casting defects.

  7. Superplastic Response of Continuously Cast AZ31B Magnesium Sheet Alloys

    NASA Astrophysics Data System (ADS)

    Boileau, J. M.; Friedman, P. A.; Houston, D. Q.; Luckey, S. G.

    2010-06-01

    Magnesium sheet is typically produced for commercial applications with the traditional DC-ingot casting method. As a result of the hexagonal close-packed crystallographic structure in magnesium, multiple rolling passes and annealing steps are required to reduce the thickness of the ingots. Thus, high fabrication costs characterize the creation of magnesium sheet suitable for common forming operations. Recently, continuous casting (CC) technology, where molten metal is solidified directly into sheet form, has been applied to magnesium alloys; this method has shown the potential to significantly reduce the cost of fabricating magnesium sheet alloys. In order to understand the viability of the CC process, a study was conducted to investigate the superplastic potential of alloys produced by this method. This study focused on AZ31B Mg that was continuously-cast on twin-roll casters from three different suppliers. These three materials were compared with a production DC-cast AZ31B alloy in terms of microstructure, elevated-temperature tensile properties, and superplastic forming response. The data from this study found that microstructural features such as grain size and segregation can significantly affect the forming response. Additionally, the CC alloys can have equivalent or superior SPF response compared to DC-cast alloys, as demonstrated in both elevated temperature tensile tests and superplastic forming trials using a rectangular pan die.

  8. Modeling of cast systems using smoothed-particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Cleary, Paul; Prakash, Mahesh; Ha, Joseph; Sinnott, Matthew; Nguyen, Thang; Grandfield, John

    2004-03-01

    To understand and control the filling process for metals in high-pressure die casting and ingot casting, researchers have used new flow-simulation software for the modeling of mold filling. Smoothed-particle hydrodynamics (SPH) is a non-conventional computational fluid dynamics method that has been successfully applied to these problems. Due to its mesh-free nature, it can handle complex splashing free surface flows and the differential motion of multiple solid-casting equipment components relatively easily. The ability of SPH to predict the detailed filling patterns of real large-scale automotive die castings is demonstrated in this study, and the use of SPH simulation for wheel shape optimization in ingot casting based on minimizing oxide generation while increasing the throughput is also presented.

  9. Comparing the Accuracy of Three Different Impression Materials in Making Duplicate Dies

    PubMed Central

    Bajoghli, Farshad; Sabouhi, Mahmoud; Nosouhian, Saeid; Davoudi, Amin; Behnamnia, Zeynab

    2015-01-01

    Background: Marginal adaptation is very important in cast restorations. Maladaptation leads to plaque retention, reduction of mechanical and esthetic properties. The aim of this study was to evaluate the precision of three different impression materials (including: Additional silicone [AS] and condensational silicone [CS] and polyether [PE]) for duplicating master dies. Materials and Methods: Three master dies from an acrylic tooth model-with supragingival and shoulder finishing line was made by using PE: Impergum, CS: Speedex, and AS: Panasil separately. The Ni-Cr copings were prepared from master dies separately. They were placed on the acrylic model and the mean marginal difference was recorded by using a stereomicroscope. Then 30 duplicate test dies were made by using the same impression materials and the marginal gaps were recorded. The comparison was done by one-way ANOVA and SPSS software (Version 13) at a significant level of 0.05. Results: The mean marginal difference of four walls from Impergum (38.56 um) was the lowest than Speedex (38.92 um) and Panasil (38.24 um). The Impergum had the highest capability in making duplicate dies (P > 0.05). Conclusion: The Impergum impression material manifested the highest capability in making a better marginal adaptation of duplicate dies but further studies are needed to make a precise decision. PMID:26229364

  10. Structure and properties of dies obtained from scrap of 5KhNM and R6M5 steels by electroslag remelting

    SciTech Connect

    Timchenko, E.I.; Semenova, L.M.; Berezkin, Yu.A.; Zaitseva, I.D.

    1987-11-01

    It is known that in a number of cases cast dies of tool steels for hot working possess increased life. In the Lozovaya Forging and Machining Plant in electroslag remelting (ESR) of worn dies, a method is used making it possible to improve the quality of the cast blanks (dies) by additional alloying of them. A consumable composite electrode made of worn dies of 5KhNM steel reforged into bars and butt welded and scrap of R6M5 tool steel welded along the whole length of the main electrode in the form of a solid bar is used. Practically none of the chromium, molybdenum, tungsten, and vanadium additionally added in electroslag remelting burns off and therefore it is sufficient to add the expensive R6M5 steel scrap once. The improved characteristics of the steel are maintained in subsequent operations in the production chain. A comparative investigation was made of the character of the structure in the as-cast, annealed, hardened, and tempered conditions of 5KhNMVF steel produced by the above method and of 5KhNM steel produced by different methods.

  11. Thin Wall Iron Castings

    SciTech Connect

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  12. The effect of upper limb casting on gait pattern.

    PubMed

    Dreyfuss, Daniel; Elbaz, Avi; Mor, Amit; Segal, Ganit; Calif, Edward

    2016-06-01

    Casting of the arm may interfere with normal walking patterns because of additional load of the cast or prevention of arm swing. This study aimed to determine the effect of applying various casts on temporospatial walking parameters, including gait velocity and cadence, step length, and single limb support. A computerized gait system was used to assess these variables for 23 healthy individuals in four walking modes: normal walking, with a cast above the elbow and a sling, and with a cast below the elbow, with and without a sling. Thirteen participants had their dominant hand casted and 10 had their nondominant hand casted. On average, casted participants took significantly smaller steps with the leg on the casted side and spent less time supported on the casted side. The least changes were noted with the arm in a cast below the elbow and no sling, and the greatest changes were noted with the arm in a cast above the elbow and in a sling. This difference was heightened when the dominant hand was casted and lessened when the nondominant hand was casted. No differences were found in walking velocity or cadence between the walking modes. Casting of the upper limb has significant effects on gait, which should be taken into consideration, especially in individuals with previous gait abnormalities. PMID:26855024

  13. High-Density-Tape Casting System

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1987-01-01

    Centrifuge packs solids from slurry into uniform, dense layer. New system produces tapes of nearly theoretical packing density. Centrifugal system used to cast thin tapes for capacitors, fuel cells, and filters. Cylindrical rotary casting chamber mounted on high-speed bearings and connected to motor. Liquid for vapor-pressure control and casting slurry introduced from syringes through rotary seal. During drying step, liquid and vapor vented through feed tubes or other openings. Laminated tapes produced by adding more syringes to cast additional layers of different materials.

  14. Die Materials for Critical Applications and Increased Production Rates

    SciTech Connect

    David Schwam; John Wallace; Sebastian Birceanu

    2002-11-30

    Die materials for aluminum die-casting need to be resistant to heat checking, and have good resistance to washout and to soldering in a fast flow of molten aluminum. To resist heat checking, die materials should have a low coefficient of thermal expansion, high thermal conductivity, high hot yield strength, good temper softening resistance, high creep strength, and adequate ductility. To resist the washout and soldering, die materials should have high hot hardness, good temper resistance, low solubility in molten aluminum and good oxidation resistance. It is difficult for one material to satisfy with all above requirements. In practice, H13 steel is the most popular material for aluminum die casting dies. While it is not an ideal choice, it is substantially less expensive to use than alternative materials. However, in very demanding applications, it is sometimes necessary to use alternative materials to ensure a reasonable die life. Copper-base, nickel-base alloys and superalloys, titanium-,molybdenum-, tungsten-base alloys, and to some extent yttrium and niobium alloys, have all been considered as potential materials for demanding die casting applications. Most of these alloys exhibit superior thermal fatigue resistance, but suffer from other shortcomings.

  15. Evaluation of Heat Checking and Washout of Heat Resistant Superalloys and Coatings for Die inserts

    SciTech Connect

    David Schwam; John F. Wallace; Yulong Zhu; Edward Courtright; Harold Adkins

    2005-01-30

    This project had two main objectives: (1) To design, fabricate and run a full size test for evaluating soldering and washout in die insert materials. This test utilizes the unique capabilities of the 350 Ton Squeeze Casting machine available in the Case Meal Casting Laboratory. Apply the test to evaluate resistance of die materials and coating, including heat resistant alloys to soldering and washout damage. (2) To evaluate materials and coatings, including heat resistant superalloys, for use as inserts in die casting of aluminum alloys.

  16. DIE Deflection Modeling: Empirical Validation and Tech Transfer

    SciTech Connect

    R. Allen Miller

    2003-05-28

    This report summarizes computer modeling work that was designed to help understand how the die casting die and machine contribute to parting plane separation during operation. Techniques developed in earlier research (8) were applied to complete a large computational experiment that systematically explored the relationship between the stiffness of the machine platens and key dimensional and structural variables (platen area covered, die thickness, platen thickness, thickness of insert and the location of the die with respect to the platen) describing the die/machine system. The results consistently show that there are many significant interactions among the variables and it is the interactions, more than the individual variables themselves, which determine the performance of the machine/die system. That said, the results consistently show that it is the stiffness of the machine platens that has the largest single impact on die separation.

  17. Wege in die Zukunft

    NASA Astrophysics Data System (ADS)

    Kauermann, Göran; Mosler, Karl

    Die Zukunft stellt große Herausforderungen an die Arbeit der Deutschen Statistischen Gesellschaft. Sie betreffen die gestiegenen Anforderungen der Nutzer von Statistik, die Kommunikationsmöglichkeiten des Internets sowie die Dynamik der statistischen Wissenschaften und ihrer Anwendungsgebiete. Das Kapitel 5 beschreibt, wie sich die Gesellschaft diesen Herausforderungen stellt und welche Ziele sie sich in der wissenschaftlichen Zusammenarbeit und im Kampf gegen das Innumeratentum gesetzt hat.

  18. Interfacial heat transfer in squeeze casting of magnesium alloy AM60 with variation of applied pressures and casting wall-thicknesses

    NASA Astrophysics Data System (ADS)

    Zhang, Xuezhi; Fang, Li; Sun, Zhizhong; Hu, Henry; Nie, Xueyuan; Tjong, Jimi

    2015-12-01

    The heat transfer coefficient at the casting-die interface is the most important factor on the solidification process. With the 75-ton hydraulic press machine and P20 steel die mold, 5-step castings of magnesium alloy AM60 with different wall-thicknesses (3, 5, 8, 12, 20 mm) were poured under various hydraulic pressures (30, 60, and 90 MPa) using an indirect squeeze casting process. Thermal histories throughout the die wall and the casting surface have been recorded by fine type-K thermocouples. The in-cavity local pressures measured by pressure transducers were explored at the casting-die interfaces of 5 steps. The casting-die interfacial heat transfer coefficients (IHTC) initially reached a maximum peak value followed by a gradually decline to the lower level. Similar characteristics of IHTC peak values can be observed at the applied pressures of 30, 60 and 90 MPa. With the applied pressure of 90 MPa, the peak IHTC values from steps 1 to 5 varied from 5623 to 10,649 W/m2 K. As the applied hydraulic pressure increased, the IHTC peak value of each step was increased accordingly. The wall thickness also affected IHTC peak values significantly. The peak IHTC value and heat flux increased as the step became thicker. The empirical equations relating the IHTCs to the local pressures and the solidification temperature at the casting surface were developed based on the multivariate linear and polynomial regression.

  19. Cool Cast Facts

    MedlinePlus

    ... outer layer is usually made of plaster or fiberglass. Fiberglass casts are made of fiberglass, which is a plastic that can be shaped. Fiberglass casts come in many different colors — if you' ...

  20. Computer simulation applied to jewellery casting: challenges, results and future possibilities

    NASA Astrophysics Data System (ADS)

    Tiberto, Dario; Klotz, Ulrich E.

    2012-07-01

    Computer simulation has been successfully applied in the past to several industrial processes (such as lost foam and die casting) by larger foundries and direct automotive suppliers, while for the jewelry sector it is a procedure which is not widespread, and which has been tested mainly in the context of research projects. On the basis of a recently concluded EU project, the authors here present the simulation of investment casting, using two different softwares: one for the filling step (Flow-3D®), the other one for the solidification (PoligonSoft®). A work on material characterization was conducted to obtain the necessary physical parameters for the investment (used for the mold) and for the gold alloys (through thermal analysis). A series of 18k and 14k gold alloys were cast in standard set-ups to have a series of benchmark trials with embedded thermocouples for temperature measurement, in order to compare and validate the software output in terms of the cooling curves for definite test parts. Results obtained with the simulation included the reduction of micro-porosity through an optimization of the feeding channels for a controlled solidification of the metal: examples of the predicted porosity in the cast parts (with metallographic comparison) will be shown. Considerations on the feasibility of applying the casting simulation in the jewelry sector will be reached, underlining the importance of the software parametrization necessary to obtain reliable results, and the discrepancies found with the experimental comparison. In addition an overview on further possibilities of application for the CFD in jewellery casting, such as the modeling of the centrifugal and tilting processes, will be presented.

  1. LLNL casting technology

    SciTech Connect

    Shapiro, A.B.; Comfort, W.J. III

    1994-01-01

    Competition to produce cast parts of higher quality, lower rejection rate, and lower cost is a fundamental factor in the global economy. To gain an edge on foreign competitors, the US casting industry must cut manufacturing costs and reduce the time from design to market. Casting research and development (R&D) are the key to increasing US compentiveness in the casting arena. Lawrence Livermore National Laboratory (LLNL) is the home of a wide range of R&D projects that push the boundaries of state-of-the art casting. LLNL casting expertise and technology include: casting modeling research and development, including numerical simulation of fluid flow, heat transfer, reaction/solidification kinetics, and part distortion with residual stresses; special facilities to cast toxic material; extensive experience casting metals and nonmetals; advanced measurement and instrumentation systems. Department of Energy (DOE) funding provides the leverage for LLNL to collaborate with industrial partners to share this advanced casting expertise and technology. At the same time, collaboration with industrial partners provides LLNL technologists with broader insights into casting industry issues, casting process data, and the collective, experience of industry experts. Casting R&D is also an excellent example of dual-use technology; it is the cornerstone for increasing US industrial competitiveness and minimizing waste nuclear material in weapon component production. Annual funding for casting projects at LLNL is $10M, which represents 1% of the total LLNL budget. Metal casting accounts for about 80% of the funding. Funding is nearly equally divided between development directed toward US industrial competitiveness and weapon component casting.

  2. LLNL casting technology

    NASA Astrophysics Data System (ADS)

    Shapiro, A. B.; Comfort, W. J., III

    1994-01-01

    Competition to produce cast parts of higher quality, lower rejection rate, and lower cost is a fundamental factor in the global economy. To gain an edge on foreign competitors, the US casting industry must cut manufacturing costs and reduce the time from design to market. Casting research and development (R&D) are the key to increasing US competiveness in the casting arena. Lawrence Livermore National Laboratory (LLNL) is the home of a wide range of R&D projects that push the boundaries of state-of-the art casting. LLNL casting expertise and technology include: casting modeling research and development, including numerical simulation of fluid flow, heat transfer, reaction/solidification kinetics, and part distortion with residual stresses; special facilities to cast toxic material; extensive experience casting metals and nonmetals; advanced measurement and instrumentation systems. Department of Energy (DOE) funding provides the leverage for LLNL to collaborate with industrial partners to share this advanced casting expertise and technology. At the same time, collaboration with industrial partners provides LLNL technologists with broader insights into casting industry issues, casting process data, and the collective experience of industry experts. Casting R&D is also an excellent example of dual-use technology; it is the cornerstone for increasing US industrial competitiveness and minimizing waste nuclear material in weapon component production. Annual funding for casting projects at LLNL is $10M, which represents 1% of the total LLNL budget. Metal casting accounts for about 80% of the funding. Funding is nearly equally divided between development directed toward US industrial competitiveness and weapon component casting.

  3. Investigation on Tool Wear Rate for Modified and Unmodified Aluminium-Silicon Casting Alloy

    NASA Astrophysics Data System (ADS)

    Haque, M. M.; Khan, A. A.; Ismail, Ahmad F.

    This study demonstrates and explains the effect of strontium modification on machinability of aluminium-silicon eutectic (LM-6 type) alloy. This alloy is known to have many favourable features including weight to strength ratio, high corrosion resistance and excellent castability. However, normal unmodified LM-6 alloy has poor machinability, which reduces its applications range. In this work, various samples of LM-6 alloy were cast using sand and metallic chill mould with and without strontium addition. Machining on each cast product, was carried out using recommended cutting parameters for Al-Si alloys. Strontium modified samples have recorded a reduction in average flank wear, an increase in shear plane angles and a reduction in chip thickness. The main reason for this improvement is the refining effect of strontium, which reduces the size of the hard silicon particles. As a result, their abrasive action on the tool face has reduced a lot. Dramatic reductions in tool wear rate were recorded when the microstructures were refined. On the other hand, when no refinement of microstructure occurs, tool wear rate becomes high. Chip analysis showed that strontium modified sample produced a thinner chip thickness with a larger shear plane angle, requiring less cutting forces. The tool wear depends not only on the phases present in the work material, but also on their sizes and distribution over entire structure. Thus, strontium modification has better effect on machinability of die cast alloy compared to that of the sand cast LM-6 alloy.

  4. Cast Metals Coalition Technology Transfer and Program Management Final Report

    SciTech Connect

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration

  5. Rapid tooling for functional prototyping of metal mold processes: Literature review on cast tooling

    SciTech Connect

    Baldwin, M.D.; Hochanadel, P.W.

    1995-11-01

    This report is a literature review on cast tooling with the general focus on AISI H13 tool steel. The review includes processing of both wrought and cast H13 steel along with the accompanying microstructures. Also included is the incorporation of new rapid prototyping technologies, such as Stereolithography and Selective Laser Sintering, into the investment casting of tool steel. The limiting property of using wrought or cast tool steel for die casting is heat checking. Heat checking is addressed in terms of testing procedures, theories regarding the mechanism, and microstructural aspects related to the cracking.

  6. Evaluation of electroslag castings

    SciTech Connect

    Judkins, R.R.; Sikka, V.K.

    1985-01-01

    Results of evaluations of electroslag castings of ferritic (2-1/4 Cr-1 Mo and 9 Cr-1 Mo) and austenitic (CF8M or type 316) steels are presented. The castings have been characterized for surface finish, cracking, solidification structure, chemical composition, hardness, ferrite distribution, tensile properties, Charpy impact properties, and creep properties. Pertinent data are compared with equivalent data for sand castings and wrought products of the same materials. Based on the results of these studies, the properties of electroslag castings compare favorably with those of sand castings and wrought materials.

  7. Shrinkage Prediction for the Investment Casting of Stainless Steels

    SciTech Connect

    Sabau, Adrian S

    2007-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine in order to obtain the actual tooling allowances. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. The numerical simulation results for the shrinkage factors were compared with experimental results.

  8. Prediction of ALLOY SHRINKAGE FACTORS FOR THE INVESTMENT CASTING PROCESS

    SciTech Connect

    Sabau, Adrian S

    2006-01-01

    This study deals with the experimental measurements and numerical predictions of alloy shrinkage factors (SFs) related to the investment casting process. The dimensions of the A356 aluminum alloy casting were determined from the numerical simulation results of solidification, heat transfer, fluid dynamics, and deformation phenomena. The investment casting process was carried out using wax patterns of unfilled wax and shell molds that were made of fused silica with a zircon prime coat. The dimensions of the die tooling, wax pattern, and casting were measured, in order to determine the actual tooling allowances. Several numerical simulations were carried out, to assess the level of accuracy for the casting shrinkage. The solid fraction threshold, at which the transition from the fluid dynamics to the solid dynamics occurs, was found to be important in predicting shrinkage factors (SFs). It was found that accurate predictions were obtained for all measued dimensions when the shell mold was considered a deformable material.

  9. Die drool and die drool theory

    NASA Astrophysics Data System (ADS)

    Schmalzer, A. M.; Giacomin, A. Jeffrey

    2013-04-01

    When molten plastic is extruded from a die, it sometimes collects on the open face of the die. Known as die drool, this phenomenon costs plastics manufacturers by requiring die cleaning. This has been attributed to many causes, but none of these has led to an equation for the drool rate. In this work we provide an exact analytical solution for the drool rate, and we base this solution on a postulate of a cohesive slip layer near the die walls. We thus attribute die drool to cohesive failure within the fluid at an internal surface where the fluid slips on itself. We adimensionalize the drool rate with the production rate, and call this the build up ratio, BR. We provide an exact analytical solution for BR when the cohesive slip layer either sticks at the wall. We examine the slit geometry corresponding to sheet or film extrusion.

  10. Characterization of Technetium Speciation in Cast Stone

    SciTech Connect

    Um, Wooyong; Jung, Hun Bok; Wang, Guohui; Westsik, Joseph H.; Peterson, Reid A.

    2013-11-11

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) EM-31 Support Program (EMSP) subtask, “Production and Long-Term Performance of Low Temperature Waste Forms” to provide additional information on technetium (Tc) speciation characterization in the Cast Stone waste form. To support the use of Cast Stone as an alternative to vitrification for solidifying low-activity waste (LAW) and as the current baseline waste form for secondary waste streams at the Hanford Site, additional understanding of Tc speciation in Cast Stone is needed to predict the long-term Tc leachability from Cast Stone and to meet the regulatory disposal-facility performance requirements for the Integrated Disposal Facility (IDF). Characterizations of the Tc speciation within the Cast Stone after leaching under various conditions provide insights into how the Tc is retained and released. The data generated by the laboratory tests described in this report provide both empirical and more scientific information to increase our understanding of Tc speciation in Cast Stone and its release mechanism under relevant leaching processes for the purpose of filling data gaps and to support the long-term risk and performance assessments of Cast Stone in the IDF at the Hanford Site.

  11. SLIP CASTING METHOD

    DOEpatents

    Allison, A.G.

    1959-09-01

    S>A process is described for preparing a magnesium oxide slip casting slurry which when used in conjunction with standard casting techniques results in a very strong "green" slip casting and a fired piece of very close dimensional tolerance. The process involves aging an aqueous magnestum oxide slurry, having a basic pH value, until it attains a specified critical viscosity at which time a deflocculating agent is added without upsetting the basic pH value.

  12. Displaced capillary dies

    DOEpatents

    Kalejs, Juris P.; Chalmers, Bruce; Surek, Thomas

    1984-01-01

    An asymmetrical shaped capillary die made exclusively of graphite is used to grow silicon ribbon which is capable of being made into solar cells that are more efficient than cells produced from ribbon made using a symmetrically shaped die.

  13. Displaced capillary dies

    DOEpatents

    Kalejs, Juris P.; Chalmers, Bruce; Surek, Thomas

    1982-01-01

    An asymmetrical shaped capillary die made exclusively of graphite is used to grow silicon ribbon which is capable of being made into solar cells that are more efficient than cells produced from ribbon made using a symmetrically shaped die.

  14. Study of protective coatings for aluminum die casting molds

    NASA Astrophysics Data System (ADS)

    Peter, Ildiko; Rosso, Mario; Gobber, Federico Simone

    2015-12-01

    In this paper, the development and characterization of some protective coatings on steel substrate are presented. The coatings are realized by plasma spray techniques. The substrate material used is a Cr-Mo-V based hot work tool steel, initially submitted to vacuum heat treatment to achieve homogeneous hardness. The main attention is focused on the study of wear and on the characterization of the interface between the substrate material and the coating layer, because of their key role in determining the resistance of the coating layer. Simulation of friction and wear processes is performed by pin-on-disk test and the tested samples are observed by scanning electron microscopy.

  15. Metallic Fuel Casting Development and Parameter Optimization Simulations

    SciTech Connect

    R.S. Fielding; J. Crapps; C. Unal; J.R. Kennedy

    2013-03-01

    One of the advantages of metallic fuel is the abilility to cast the fuel slugs to near net shape with little additional processing. However, the high aspect ratio of the fuel is not ideal for casting. EBR-II fuel was cast using counter gravity injection casting (CGIC) but, concerns have been raised concerning the feasibility of this process for americium bearing alloys. The Fuel Cycle Research and Development program has begun developing gravity casting techniques suitable for fuel production. Compared to CGIC gravity casting does not require a large heel that then is recycled, does not require application of a vacuum during melting, and is conducive to re-usable molds. Development has included fabrication of two separate benchscale, approximately 300 grams, systems. To shorten development time computer simulations have been used to ensure mold and crucible designs are feasible and to identify which fluid properties most affect casting behavior and therefore require more characterization.

  16. Casting Footprints for Eternity

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Apollo 11 Astronaut Buzz Aldrin has his footprints casted during the dedication ceremony of the rocket fountain at Building 4200 at Marshall Space Flight Center. The casts of Aldrin's footprints will be placed in the newly constructed Von Braun courtyard representing the accomplishments of the Apollo 11 lunar landing.

  17. HIGH PRESSURE DIES

    DOEpatents

    Wilson, W.B.

    1960-05-31

    A press was invented for subjecting specimens of bismuth, urania, yttria, or thoria to high pressures and temperatures. The press comprises die parts enclosing a space in which is placed an electric heater thermally insulated from the die parts so as not to damage them by heat. The die parts comprise two opposed inner frustoconical parts and an outer part having a double frustoconical recess receiving the inner parts. The die space decreases in size as the inner die parts move toward one another against the outer part and the inner parts, though very hard, do not fracture because of the mode of support provided by the outer part.

  18. An Application of Trapped-Air Analysis to Large Complex High-Pressure Magnesium Casting

    SciTech Connect

    Prindiville, J; Lee, S; Gokhale, A

    2004-07-08

    The usual method for simulating die-castings consists of a solidification analysis of the casting process - a computer calculation of heat transfer between the casting and the die components. The use of cyclic simulations, coupled with the geometric accuracy of the finite element method, has advanced this procedure to the point where it is routinely used for reliable prediction of shrinkage defects in die-castings. Filling analysis is also routinely used to get a glimpse of cavity filling and ensures that overflows are at their most effective location. When coupled with heat transfer, a filling analysis is also very effective in demonstrating the effects of heat loss in the fluid and how it consequentially can negatively affect filling.

  19. Casting the Die before the Die Is Cast: The Importance of the Home Numeracy Environment for Preschool Children

    ERIC Educational Resources Information Center

    Niklas, Frank; Schneider, Wolfgang

    2014-01-01

    Mathematical competencies are important not only for academic achievement at school but also for professional success later in life. Although we know a lot about the impact of "Home Literacy Environment" on the development of early linguistic competencies, research on "Home Numeracy Environment" (HNE) and the assessment of its…

  20. Advanced lost foam from casting technology

    SciTech Connect

    Bates, C. E.; Littleton, H. E.; Askeland, D.; Griffin, J.; Miller, B. A.; Sheldon, D. S.

    1996-05-01

    Previous research made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional research was needed to improve the process and make it more functional in an industrial environment. The current project focused on five areas listed as follows: Task 1: Precision Pattern Production Task 2: Pattern Coating Consistency Task 3: Sand Fill and Compaction Effects Task 4: Pattern Gating Task 5: Mechanical Properties of Castings. This report summarizes the work done under the current contract in all five areas in the period of October 1, 1994 through December 31, 1995. Twenty-eight (28) companies jointly participate in the project. These companies represent a variety of disciplines, including pattern designers, pattern producers, coating manufacturers, plant design companies, compaction equipment manufacturers, casting producers, and casting buyers.

  1. Pressure rig for repetitive casting

    NASA Technical Reports Server (NTRS)

    Vasquez, Peter (Inventor); Hutto, William R. (Inventor); Philips, Albert R. (Inventor)

    1989-01-01

    The invention is a pressure rig for repetitive casting of metal. The pressure rig performs like a piston for feeding molten metal into a mold. Pressure is applied to an expandable rubber diaphragm which expands like a balloon to force the metal into the mold. A ceramic cavity which holds molten metal is lined with blanket-type insulating material, necessitating only a relining for subsequent use and eliminating the lengthy cavity preparation inherent in previous rigs. In addition, the expandable rubber diaphragm is protected by the insulating material thereby decreasing its vulnerability to heat damage. As a result of the improved design the life expectancy of the pressure rig contemplated by the present invention is more than doubled. Moreover, the improved heat protection has allowed the casting of brass and other alloys with higher melting temperatures than possible in the conventional pressure rigs.

  2. Low Cost Al-Si Casting Alloy As In-Situ Composite for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    A new aluminum-silicon (Al-Si) alloy has been successfully developed at NASA- Marshall Space Flight Center (MSFC) that has significant improvement in tensile and fatigue strength at elevated temperatures (500 F-700 F). The alloy offers a number of benefits such as light weight, high hardness, low thermal expansion and high surface wear resistance. In hypereutectic form, this alloy is considered as an in-situ Al-Si composite with tensile strength of about 90% higher than the auto industry 390 alloy at 600 F. This composite is very economically produced by using either conventional permanent steel molds or die casting. The projected material cost is less than $0.90 per pound, and automotive components such as pistons can be cast for high production rate using conventional casting techniques with a low and fully accounted cost. Key Words: Metal matrix composites, In-situ composite, aluminum-silicon alloy, hypereutectic alloy, permanent mold casting, die casting.

  3. Compaction die for forming a solid annulus on a right circular cylinder. [Patent application

    DOEpatents

    Harlow, J.L.

    1981-09-14

    A compacting die is disclosed wherein the improvement comprises providing a screen in the die cavity, the screen being positioned parallel to the side walls of said die and dividing the die cavity into center and annular compartments. In addition, the use of this die in a method for producing an annular clad ceramic fuel material is disclosed.

  4. Impact of Simulation Technology on Die and Stamping Business

    NASA Astrophysics Data System (ADS)

    Stevens, Mark W.

    2005-08-01

    Over the last ten years, we have seen an explosion in the use of simulation-based techniques to improve the engineering, construction, and operation of GM production tools. The impact has been as profound as the overall switch to CAD/CAM from the old manual design and construction methods. The changeover to N/C machining from duplicating milling machines brought advances in accuracy and speed to our construction activity. It also brought significant reductions in fitting sculptured surfaces. Changing over to CAD design brought similar advances in accuracy, and today's use of solid modeling has enhanced that accuracy gain while finally leading to the reduction in lead time and cost through the development of parametric techniques. Elimination of paper drawings for die design, along with the process of blueprinting and distribution, provided the savings required to install high capacity computer servers, high-speed data transmission lines and integrated networks. These historic changes in the application of CAE technology in manufacturing engineering paved the way for the implementation of simulation to all aspects of our business. The benefits are being realized now, and the future holds even greater promise as the simulation techniques mature and expand. Every new line of dies is verified prior to casting for interference free operation. Sheet metal forming simulation validates the material flow, eliminating the high costs of physical experimentation dependent on trial and error methods of the past. Integrated forming simulation and die structural analysis and optimization has led to a reduction in die size and weight on the order of 30% or more. The latest techniques in factory simulation enable analysis of automated press lines, including all stamping operations with corresponding automation. This leads to manufacturing lines capable of running at higher levels of throughput, with actual results providing the capability of two or more additional strokes per

  5. Prediction of Cooling Curves for Squeeze Cast Al/SiCp Composites Using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Gurusamy, P.; Balasivanandha Prabu, S.; Paskaramoorthy, R.

    2015-04-01

    This paper reports the experimental and finite element analyses of the solidification behavior of Al/SiCp composites, fabricated by the squeeze casting technique. Experiments were carried out by varying the melt temperatures for cylindrical-shaped composite castings. The composite samples were produced at the following constant temperatures: melt—1023 K, 1073 K, 1123 K, and 1173 K (750 °C, 800 °C, 850 °C, and 900 °C); and die—673 K (400 °C). The pressure applied throughout the experiment is 100 MPa. The melt temperature shows significant influence on the solidification behavior of the metal matrix composite. It was observed that the solidification time was 40 seconds when the melt temperature was 1023 K (750 °C) but it increased to 51 seconds when the melt temperature was at 1173 K (900 °C). The results also showed that the cooling rate decreased on increasing the melt temperature. Cooling curves for our system, squeeze cast composites, were predicted using the finite element software ANSYS. K-type thermocouples were interfaced to the die and the microcomputer from which the experimental cooling curves were constructed. The experimental and predicted cooling curves were then compared. While both show similar trends, the finite element analysis consistently under-predicts the temperature. In addition, finite element stress analysis reveals that both radial and tangential thermal stresses increase with the melt temperature.

  6. INTERIOR VIEW WITH LARGE PIPE CASTING MACHINE CASTING A 48' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH LARGE PIPE CASTING MACHINE CASTING A 48' PIPE OPERATOR SPRAYING A POWDER TO HELP SOLIDIFY THE PIPE BEING CENTRIFUGALLY CAST. - United States Pipe & Foundry Company Plant, Pipe Casting & Testing Area, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  7. The twin-roll casting of magnesium alloys

    NASA Astrophysics Data System (ADS)

    Park, S. S.; Park, W.-J.; Kim, C. H.; You, B. S.; Kim, Nack J.

    2009-08-01

    Recently, technologies for twin-roll casting have been widely developed to efficiently fabricate the lightweight Mg alloy sheets that are quite attractive for numerous weight-sensitive applications. This paper reviews the recent progress in the twin-roll casting of Mg alloys, focusing on the processing aspects that have close relations to the solidification behavior of Mg alloy strips. In addition, recent attempts to develop new Mg alloys utilizing the metallurgical advantages attainable by this novel casting process are also presented.

  8. CASTING METHOD AND APPARATUS

    DOEpatents

    Gray, C.F.; Thompson, R.H.

    1958-10-01

    An improved apparatus for the melting and casting of uranium is described. A vacuum chamber is positioned over the casting mold and connected thereto, and a rod to pierce the oxide skin of the molten uranium is fitted into the bottom of the melting chamber. The entire apparatus is surrounded by a jacket, and operations are conducted under a vacuum. The improvement in this apparatus lies in the fact that the top of the melting chamber is fitted with a plunger which allows squeezing of the oxide skin to force out any molten uranium remaining after the skin has been broken and the molten charge has been cast.

  9. CENTRIFUGAL CASTING MACHINE

    DOEpatents

    Shuck, A.B.

    1958-04-01

    A device is described that is specifically designed to cast uraniumn fuel rods in a vacuunn, in order to obtain flawless, nonoxidized castings which subsequently require a maximum of machining or wastage of the expensive processed material. A chamber surrounded with heating elements is connected to the molds, and the entire apparatus is housed in an airtight container. A charge of uranium is placed in the chamber, heated, then is allowed to flow into the molds While being rotated. Water circulating through passages in the molds chills the casting to form a fine grained fuel rod in nearly finished form.

  10. Die singulation method

    SciTech Connect

    Swiler, Thomas P; Garcia, Ernest J; Francis, Kathryn M

    2014-01-07

    A method is disclosed for singulating die from a semiconductor substrate (e.g. a semiconductor-on-insulator substrate or a bulk silicon substrate) containing an oxide layer (e.g. silicon dioxide or a silicate glass) and one or more semiconductor layers (e.g. monocrystalline or polycrystalline silicon) located above the oxide layer. The method etches trenches through the substrate and through each semiconductor layer about the die being singulated, with the trenches being offset from each other around at least a part of the die so that the oxide layer between the trenches holds the substrate and die together. The trenches can be anisotropically etched using a Deep Reactive Ion Etching (DRIE) process. After the trenches are etched, the oxide layer between the trenches can be etched away with a HF etchant to singulate the die. A release fixture can be located near one side of the substrate to receive the singulated die.

  11. Die singulation method

    SciTech Connect

    Swiler, Thomas P.; Garcia, Ernest J.; Francis, Kathryn M.

    2013-06-11

    A method is disclosed for singulating die from a semiconductor substrate (e.g. a semiconductor-on-insulator substrate or a bulk silicon substrate) containing an oxide layer (e.g. silicon dioxide or a silicate glass) and one or more semiconductor layers (e.g. monocrystalline or polycrystalline silicon) located above the oxide layer. The method etches trenches through the substrate and through each semiconductor layer about the die being singulated, with the trenches being offset from each other around at least a part of the die so that the oxide layer between the trenches holds the substrate and die together. The trenches can be anisotropically etched using a Deep Reactive Ion Etching (DRIE) process. After the trenches are etched, the oxide layer between the trenches can be etched away with an HF etchant to singulate the die. A release fixture can be located near one side of the substrate to receive the singulated die.

  12. Extrusion die and method

    DOEpatents

    Lipp, G. Daniel

    1994-04-26

    A method and die apparatus for manufacturing a honeycomb body of rhombic cell cross-section by extrusion through an extrusion die of triangular cell discharge slot configuration, the die incorporating feedholes at selected slot intersections only, such that slot segments communicating directly with the feedholes discharge web material and slot segments not so connected do not discharge web material, whereby a rhombic cell cross-section in the extruded body is provided.

  13. The Ambiguous Dying Syndrome

    ERIC Educational Resources Information Center

    Bern-Klug, Mercedes

    2004-01-01

    More than one-half of the 2.4 million deaths that will occur in the United States in 2004 will be immediately preceded by a time in which the likelihood of dying can best be described as "ambiguous." Many people die without ever being considered "dying" or "at the end of life." These people may miss out on the opportunity to close important…

  14. Old soldiers never die ....

    PubMed Central

    2012-01-01

    An ancestral supersoldier phenotype of Pheidole ants can be recovered when selection for supersoldiers re-emerges, indicating that the developmental potential for caste pathways is retained. PMID:22356770

  15. MOLDS FOR CASTING PLUTONIUM

    DOEpatents

    Anderson, J.W.; Miley, F.; Pritchard, W.C.

    1962-02-27

    A coated mold for casting plutonium comprises a mold base portion of a material which remains solid and stable at temperatures as high as the pouring temperature of the metal to be cast and having a thin coating of the order of 0.005 inch thick on the interior thereof. The coating is composed of finely divided calcium fluoride having a particle size of about 149 microns. (AEC)

  16. Method of casting aerogels

    DOEpatents

    Poco, J.F.

    1993-09-07

    The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm[sup 3] to 0.6 g/cm[sup 3]. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of aerogel which occurs during the drying step of supercritical extraction of solvent. 2 figures.

  17. Method of casting aerogels

    DOEpatents

    Poco, John F.

    1993-01-01

    The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm.sup.3 to 0.6 g/cm.sup.3. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of alcogel which occurs during the drying step of supercritical extraction of solvent.

  18. Viability changes: Microbiological analysis of dental casts

    PubMed Central

    Žilinskas, Juozas; Junevičius, Jonas; Ramonaitė, Agnė; Pavilonis, Alvydas; Gleiznys, Alvydas; Sakalauskienė, Jurgina

    2014-01-01

    Background This study evaluated the survival of the most prevalent oral bacteria and fungi (Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, and Candida albicans) in dental casts, and compared changes in the amounts of these microorganisms at different time intervals to determine how long dental casts may pose threat to the health of dental personnel and patients. Material/Methods When manufacturing the casts, regular water was replaced with sterile distilled water, where suspensions of the studied bacteria or the fungus at certain concentrations were prepared. When the dental casts were fully set (solidified), plaster shavings were examined immediately after the contact of the studied microorganism with the plaster, as well as after 1, 2, 24, 48, 72, 96, and 120 hours. Following that, we measured how the amount of the studied bacteria and fungi in 1 gram of the plaster changed within the studied period of time. Results Klebsiella pneumoniae survived in plaster for up to 4 days, and the reduction in the number of these bacteria became statistically significant after 1 day (p<0.05). Staphylococcus aureus remained viable in plaster for up to 4 days, and the number of these bacteria dropped after 1 day (p<0.05). Escherichia coli disappeared after 2 days, and a reduction was already observed after 2 hours (p<0.05). Candida albicans in plaster models died within 2 days, and a reduction in their number was observed after 1 day (p<0.05). Conclusions The microorganisms did not multiply in the gypsum casts and their number significantly dropped instead of increasing. PMID:24902637

  19. A Winning Cast

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Howmet Research Corporation was the first to commercialize an innovative cast metal technology developed at Auburn University, Auburn, Alabama. With funding assistance from NASA's Marshall Space Flight Center, Auburn University's Solidification Design Center (a NASA Commercial Space Center), developed accurate nickel-based superalloy data for casting molten metals. Through a contract agreement, Howmet used the data to develop computer model predictions of molten metals and molding materials in cast metal manufacturing. Howmet Metal Mold (HMM), part of Howmet Corporation Specialty Products, of Whitehall, Michigan, utilizes metal molds to manufacture net shape castings in various alloys and amorphous metal (metallic glass). By implementing the thermophysical property data from by Auburn researchers, Howmet employs its newly developed computer model predictions to offer customers high-quality, low-cost, products with significantly improved mechanical properties. Components fabricated with this new process replace components originally made from forgings or billet. Compared with products manufactured through traditional casting methods, Howmet's computer-modeled castings come out on top.

  20. (Continuous casting 1985)

    SciTech Connect

    Wilde, R.A.

    1985-06-12

    The report covers the Continuous Casting '85 Conference including informal discussions with conference attendees. In general, the papers presented at the conference concerned an overview of continuous steel casting worldwide, state-of-the-art aspects of steel continuous casting technology including caster startup problems, modifications, control system strategies, energy use profiles, quality control aspects, steel chemistry control, refractories, operational aspects of continuous casters, etc. No papers were presented in the development of thin section or thin strip casting of steel. Informal discussions were held with several conference attendees including (1) Bernard Trentini, Executive Director of the Association Technique De La Siderurgie Francaise in Paris, France (similar to the American Iron and Steel Institute); (2) Dr. Wolfgang Reichelt and Dr. Peter Voss-Spilker both of Mannesmann Demag Huttentechnik -a continuous casting and other steel making machine builder in-lieu of meeting at their plant in Duisburg, FRG on May 31; (3) Ewan C. Hewitt of Devote McKee Corp., Sheffield, England; (4) Wilfried Heinemann, head of R D Dept. at Concast Standard AG in Zurich, Switzerland; and (5) Hideo Ueno, engineer of melting section, Mitsubishi Steel Mfg. Co. Ltd, Tokyo Japan. A visit was made to the Teesside Laboratories of British Steel Corp. for discussions of their thin section casting research program in particular and R D program in general.

  1. Salvaged castings and methods of salvaging castings with defective cast cooling bumps

    DOEpatents

    Johnson, Robert Alan; Schaeffer, Jon Conrad; Lee, Ching-Pang; Abuaf, Nesim; Hasz, Wayne Charles

    2002-01-01

    Castings for gas turbine parts exposed on one side to a high-temperature fluid medium have cast-in bumps on an opposite cooling surface side to enhance heat transfer. Areas on the cooling surface having defectively cast bumps, i.e., missing or partially formed bumps during casting, are coated with a braze alloy and cooling enhancement material to salvage the part.

  2. Cold Cracking Development in AA7050 Direct Chill-Cast Billets under Various Casting Conditions

    NASA Astrophysics Data System (ADS)

    Lalpoor, M.; Eskin, D. G.; Katgerman, L.

    2010-09-01

    Cold cracking is a potentially catastrophic phenomenon in direct chill (DC) casting of 7 xxx series aluminum alloys that leads to safety hazards and loss of production. The relatively low thermal conductivity and wide solidification temperature range in these alloys results in accumulation of residual thermal stress under nonuniform cooling conditions of the billets. In addition, such alloys show a severe loss in ductility below a critical temperature of 573 K (300 °C). This brittleness along with high stress concentration at the tips of voids and microcracks can lead to catastrophic failure. Casting process parameters affect the magnitude and distribution of stresses in the billet and increase the susceptibility of the material to cold cracking. In order to investigate the effect of casting process parameters such as casting speed, billet size, and water flow rate, thermomechanical simulations were applied using ALSIM5 casting simulation software. Among the studied casting process parameters, the increased billet size and high casting speed resulted in the most dramatic increase in residual stress level. Critical crack sizes that led to catastrophic failure were also calculated and are reported against process parameters.

  3. Numerical Optimization of the Method of Cooling of a Massive Casting of Ductile Cast-Iron

    NASA Astrophysics Data System (ADS)

    Dobrovska, Jana; Kavicka, Frantisek; Stransky, Karel; Sekanina, Bohumil; Stetina, Josef

    2010-06-01

    The numerical models of the temperature field of solidifying castings, according to various authors, have been observing two main goals—directed solidification as the basic assumption for the healthiness of a casting and the optimization of the technology while maintaining the optimal product properties. The achievement of these goals is conditioned by the ability to analyze and, successively, to control the effect of the deciding factors, which either characterize the process or accompany it. An original application of ANSYS simulated the forming of the temperature field of a massive casting from ductile cast-iron during the application various methods of its cooling using steel chills. The numerical model managed to optimize more than one method of cooling but, in addition to that, provided serious results for the successive model of structural and chemical heterogeneity, and so it also contributes to influencing the pouring structure. The file containing the acquired results from both models, as well as from their organic unification, brings new and, simultaneously, remarkable findings of causal relationships between the structural and chemical heterogeneity (i.e. between the sizes of the spheroids of graphite, the cells, density of the spheroids of graphite, etc.) and the local solidification time in any point of the casting. The determined relations therefore enable the prediction of the face density of the spheroids of graphite in dependence on the local solidification time. The calculated temperature field of a two-ton 500×500×1000 mm casting of ductile cast-iron with various methods of cooling has successfully been compared with temperatures obtained experimentally. The casting was cast in sand mould. The calculated model of the kinetics of the temperature field of the casting was verified during casting with temperature measurements in selected points. This has created a tool for the optimization of the structure with an even distribution of the

  4. A method for determining adequate resistance form of complete cast crown preparations.

    PubMed

    Weed, R M; Baez, R J

    1984-09-01

    A diagram with various degrees of occlusal convergence, which takes into consideration the length and diameter of complete crown preparations, was designed as a guide to assist the dentist to obtain adequate resistance form. To test the validity of the diagram, five groups of complete cast crown stainless steel dies were prepared (3.5 mm long, occlusal convergence 10, 13, 16, 19, and 22 degrees). Gold copings were cast for each of the 50 preparations. Displacement force was applied to the casting perpendicularly to a simulated 30-degree cuspal incline until the casting was displaced. Castings were deformed at margins except for the 22-degree group. Castings from this group were displaced without deformation, and it was concluded that there was a lack of adequate resistance form as predicted by the diagram. The hypothesis that the diagram could be used to predict adequate or inadequate resistance form was confirmed by this study. PMID:6384470

  5. Is Dying Young Worse than Dying Old?

    ERIC Educational Resources Information Center

    Jecker, Nancy S.; Schneiderman, Lawrence J.

    1994-01-01

    Notes that, in contemporary Western society, people feel death of small child is greater injustice than death of older adult and experience correspondingly greater sorrow, anger, regret, or bitterness when very young person dies. Contrasts these attitudes with those of ancient Greece and shows relevance that different attitudes toward death have…

  6. Extrusion die and method

    DOEpatents

    Lipp, G. Daniel

    1994-05-03

    A method and die apparatus for manufacturing a honeycomb body of triangular cell cross-section and high cell density, the die having a combination of (i) feedholes feeding slot intersections and (ii) feedholes feeding slot segments not supplied from slot intersections, whereby a reduction in feedhole count is achieved while still retaining good extrusion efficiency and extrudate uniformity.

  7. Micromechanical die attachment surcharge

    DOEpatents

    Filter, William F.; Hohimer, John P.

    2002-01-01

    An attachment structure is disclosed for attaching a die to a supporting substrate without the use of adhesives or solder. The attachment structure, which can be formed by micromachining, functions purely mechanically in utilizing a plurality of shaped pillars (e.g. round, square or polygonal and solid, hollow or slotted) that are formed on one of the die or supporting substrate and which can be urged into contact with various types of mating structures including other pillars, a deformable layer or a plurality of receptacles that are formed on the other of the die or supporting substrate, thereby forming a friction bond that holds the die to the supporting substrate. The attachment structure can further include an alignment structure for precise positioning of the die and supporting substrate to facilitate mounting the die to the supporting substrate. The attachment structure has applications for mounting semiconductor die containing a microelectromechanical (MEM) device, a microsensor or an integrated circuit (IC), and can be used to form a multichip module. The attachment structure is particularly useful for mounting die containing released MEM devices since these devices are fragile and can otherwise be damaged or degraded by adhesive or solder mounting.

  8. Slip casting and pressure slip casting of Si{sub 3}N{sub 4} aqueous suspensions

    SciTech Connect

    Castanho, S.M.; Moreno, R.; Salomoni, A.; Stamenkovic, I.

    1995-09-01

    The stability of silicon nitride aqueous slips has been studied in order to obtain Si{sub 3}N{sub 4} pressureless sintered compacts. High solid content slips (up to 65 wt%) have been prepared by using tetramethylammonium hydroxide as dispersing agent. The effect of sintering aids on the rheology and casting conditions has been studied by slip casting and uniaxial pressure filtration. The casting rate, the green density and the microstructure of samples obtained from both slurry consolidation techniques have been compared taking into account the role of the sintering additives. Sintering of cast green specimens has been performed at 1750{degrees}C in N{sub 2} atmosphere.

  9. Correlation between macroscopic porosity location and liquid metal pressure in centrifugal casting technique.

    PubMed

    Vaidyanathan, T K; Schulman, A; Nielsen, J P; Shalita, S

    1981-01-01

    Radiographic analysis of uniform cylindrical castings fabricated by the centrifugal casting technique has revealed that the macroscopic porosity is dependent on the location of the sprue attachment to the casting. This is attributed to the significant pressure gradient associated with the centrifugal casting technique. The pressure gradient results in different heat transfer rates at portions of the castings near and away from the free surface of the button. Consequently, the macroscopic porosity is invariably at portions of the casting close to the free surface of the button. In addition, some optimized sprue-reservoir combinations could be predicted and proved, based on this pressure gradient concept. PMID:7002971

  10. Steel castings by the electroslag casting technique. [CF8M

    SciTech Connect

    Sikka, V.K.; Mitchell, A.

    1984-01-01

    ELectroslag casting facilities in Canada and the United States were reviewed. Several valve body castings of 2-1/4 Cr-1 Mo, 9 Cr-1 Mo, and 18% Cr-8% Ni(Mo) steels were made at the University of British Columbia facility. These castings were examined for surface finish, chemical segregation, and macrostructure in the as-cast condition and after various heat treatments. Castings were subjected to tensile, Charpy impact, and creep testing. Results of these tests were compared with similar data on wrought material and sand castings.

  11. Die zwei Kulturen

    NASA Astrophysics Data System (ADS)

    Ankolekar, Anupriya; Krötzsch, Markus; Tran, Than; Vrandecic, Denny

    Oft werden zwei mögliche Entwicklungen des Webs diskutiert - das Web 2.0 und das Semantic Web. Wenn wir diese zwei Visionen für das zukünftige Web unter die Lupe nehmen, dann lässt sich feststellen, dass sich die Ideen in ihrem Kern und ihren Technologien gegenseitig ergänzen. Dementsprechend können und sollen beide Visionen von den Erfahrungen und Stärken der anderen profitieren. Wir glauben daran, dass zukünftige Webanwendungen den Web 2.0-Fokus auf Community und Benutzerfreundlichkeit beibehalten und, darüber hinaus, auch von Technologien des Semantic Web zur Vereinfachung der mashupähnlichen Datenintegration profitieren werden. Auf Basis eines Semantic Blog-Szenarios werden wir hier die Vorteile einer möglichen Kombination von Semantic Web und Web 2.0 illustrieren, die zeitnah realisiert werden kann. Wir werden auch auf technische Probleme eingehen, die bei der Erweiterung dieses Szenarios entstehen. Wir stellen dar, wie aktuelle Entwicklungen in der Semantic Web Forschung diese Probleme angehen können, und setzen zugleich auch Schwerpunkte für die zukünftige Forschung, die in diesem Zusammenhang relevant sind.

  12. Effect of composition and processing on the thermal fatigue and toughness of high performance die steels. Year 1 report

    SciTech Connect

    Wallace, J.F.; Wang, Yumin; Schwam, D.

    1996-06-01

    The goal of this project is to extend the lifetime of dies for die casting by 20%. Since the die contributes about 10% to the cost of die cast parts, such an improvement in lifetime would result in annual savings of over $200 Million dollars. This is based on the estimated annual die production of one Billion dollars in the US. The major tasks of this two year project are: (1) Evaluate NEW DIE STEEL COMPOSITIONS that have been developed for demanding applications and compare them to Premium Grade H-13 die steel. (2) Optimize the AUSTENITIZING TREATMENT of the new composition. Assess the effects of fast, medium and slow COOLING RATES DURING HEAT TREATMENT, on the thermal fatigue resistance and toughness of the die steel. (3) Determine the effect of ELECTRO-DISCHARGE MACHINING (EDM) on the thermal fatigue resistance and impact properties of the steel. (4) Select demanding components and conduct IN-PLANT TESTING by using the new steel. Compare the performance of the new steel with identical components made of Premium Grade H-13. The immersion thermal fatigue specimen developed at CWRU is being used to determine resistance to heat checking, and the Charpy V-notch test for evaluating the toughness. The overall result of this project will be identification of the best steel available on the market and the best processing methods for aluminum die casting dies. This is an interim report for year 1 of the project.

  13. Casting materials and their application in research and teaching.

    PubMed

    Haenssgen, Kati; Makanya, Andrew N; Djonov, Valentin

    2014-04-01

    From a biological point of view, casting refers to filling of anatomical and/or pathological spaces with extraneous material that reproduces a three-dimensional replica of the space. Casting may be accompanied by additional procedures such as corrosion, in which the soft tissue is digested out, leaving a clean cast, or the material may be mixed with radiopaque substances to allow x-ray photography or micro computed topography (µCT) scanning. Alternatively, clearing of the surrounding soft tissue increases transparency and allows visualization of the casted cavities. Combination of casting with tissue fixation allows anatomical dissection and didactic surgical procedures on the tissue. Casting materials fall into three categories namely, aqueous substances (India ink, Prussian blue ink), pliable materials (gelatins, latex, and silicone rubber), or hard materials (methyl methacrylates, polyurethanes, polyesters, and epoxy resins). Casting has proved invaluable in both teaching and research and many phenomenal biological processes have been discovered through casting. The choice of a particular material depends inter alia on the targeted use and the intended subsequent investigative procedures, such as dissection, microscopy, or µCT. The casting material needs to be pliable where anatomical and surgical manipulations are intended, and capillary-passable for ultrastructural investigations. PMID:24564951

  14. Machining of Silicon-Ribbon-Forming Dies

    NASA Technical Reports Server (NTRS)

    Menna, A. A.

    1985-01-01

    Carbon extension for dies used in forming silicon ribbon crystals machined precisely with help of special tool. Die extension has edges beveled toward narrow flats at top, with slot precisely oriented and centered between flats and bevels. Cutting tool assembled from standard angle cutter and circular saw or saws. Angle cutters cuts bevels while slot saw cuts slot between them. In alternative version, custom-ground edges or additional circular saws also cut flats simultaneously.

  15. Application of Numerical Optimization to Aluminum Alloy Wheel Casting

    NASA Astrophysics Data System (ADS)

    Duan, J.; Reilly, C.; Maijer, D. M.; Cockcroft, S. L.; Phillion, A. B.

    2015-06-01

    A method of numerically optimizing the cooling conditions in a low- pressure die casting process from the standpoint of maintaining good directional solidification, high cooling rates and reduced cycle times has been developed for the production of aluminumalloy wheels. The method focuses on the optimization of cooling channel timing and utilizes an open source numerical optimization algorithm coupled with an experimentally validated, ABAQUS-based, heat transfer model of the casting process. Key features of the method include: 1) carefully designed constraint functions to ensure directional solidification along the centerlineof the wheel; and 2) carefully formulated objective functions to maximize cooling rate. The method has been implemented on a prototype production die and the results have been tested with plant trial test.

  16. CAST FLOOR WITH VIEW OF TORPEDO LADLE (BENEATH CAST FLOOR) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CAST FLOOR WITH VIEW OF TORPEDO LADLE (BENEATH CAST FLOOR) AND KEEPERS OF THE CAST HOUSE FLOOR, S.L. KIMBROUGH AND DAVID HOLMES. - U.S. Steel, Fairfield Works, Blast Furnace No. 8, North of Valley Road, West of Ensley-Pleasant Grove Road, Fairfield, Jefferson County, AL

  17. Die Zeitung der Zukunft

    NASA Astrophysics Data System (ADS)

    Wieser, Christoph; Schaffert, Sebastian

    Schon lange wird spekuliert, wie wir in Zukunft Zeitung lesen werden. Werden wir am Frühstückstisch wie gewohnt in einer Zeitung aus Papier schmökern oder werden wir die Zeitung als biegsame Folie beschrieben mit elektronischer Tinte in Händen halten? Wird die Zeitung mit anderen Medien wie Radio und Fernsehen verschmelzen? Viele Varianten sind denkbar. Heute lässt sich schon ein Trend ablesen: Immer mehr Leser entdecken die Online-Zeitung als Informationsmedium, eine Voraussetzung für die Nutzung neuer Technologien in der Zeitung der Zukunft. In diesem Kapitel stellen wir Entwicklungsmöglichkeiten der Online-Zeitung dar, wie sie im Social Semantic Web möglich werden.

  18. When Somebody Dies

    MedlinePlus

    ... alguien muere All living things — including bugs and fish and people — die. It's difficult, even for grownups, ... kind of death for families and friends to deal with because it happens so fast. There is ...

  19. A new casting defect healing technology

    SciTech Connect

    Hodge, E.S.; Reddoch, T.W.; Viswanathan, S.

    1997-01-01

    A new technology is presented for healing of defects in 356 aluminium alloys that provides economic upgrading of these cast alloys. It uses pneumatic isostatic forging (PIF) to produce high quality Al alloys products with enhanced mechanical properties uniform throughout the part, allowing higher design allowables and increased usage of Al alloy castings. The fundamental mechanism underlying PIF is a single mode plastic deformation process that uses isostatic application of pressures for 10-30 seconds at temperature. The process can be integrated in-line with other production operations, i.e., using the latent heat from the previous casting step. Results of applying the PIF process indicate lower cost and significant improvement in mechanical properties that rival and often exceed corresponding properties of other technologies like hot isostatic pressing and related processes. This process offers many advantages that are described in this paper in addition to presenting case histories of property enhancement by PIF and the mechanism responsible for property enhancement.

  20. Method for casting polyethylene pipe

    NASA Technical Reports Server (NTRS)

    Elam, R. M., Jr.

    1973-01-01

    Short lengths of 7-cm ID polyethylene pipe are cast in a mold which has a core made of room-temperature-vulcanizable (RTV) silicone. Core expands during casting and shrinks on cooling to allow for contraction of the polyethylene.

  1. Casting Of Multilayer Ceramic Tapes

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1991-01-01

    Procedure for casting thin, multilayer ceramic membranes, commonly called tapes, involves centrifugal casting at accelerations of 1,800 to 2,000 times normal gravitational acceleration. Layers of tape cast one at a time on top of any previous layer or layers. Each layer cast from slurry of ground ceramic suspended in mixture of solvents, binders, and other components. Used in capacitors, fuel cells, and electrolytic separation of oxygen from air.

  2. Spray casting project final report

    SciTech Connect

    Churnetski, S.R.; Thompson, J.E.

    1996-08-01

    Lockheed Martin Energy Systems, Inc. (Energy Systems), along with other participating organizations, has been exploring the feasibility of spray casting depleted uranium (DU) to near-net shape as a waste minimization effort. Although this technology would be useful in a variety of applications where DU was the material of choice, this effort was aimed primarily at gamma-shielding components for use in storage and transportation canisters for high-level radioactive waste, particularly in the Multipurpose Canister (MPC) application. In addition to the waste-minimization benefits, spray casting would simplify the manufacturing process by allowing the shielding components for MPC to be produced as a single component, as opposed to multiple components with many fabrication and assembly steps. In earlier experiments, surrogate materials were used to simulate the properties (specifically reactivity and density) of DU. Based on the positive results from those studies, the project participants decided that further evaluation of the issues and concerns that would accompany spraying DU was warranted. That evaluation occupied substantially all of Fiscal Year 1995, yielding conceptual designs for both an intermediate facility and a production facility and their associated engineering estimates. An intermediate facility was included in this study to allow further technology development in spraying DU. Although spraying DU to near-net shape seems to be feasible, a number of technical, engineering, and safety issues would need to be evaluated before proceeding with a production facility. This report is intended to document the results from the spray-casting project and to provide information needed by anyone interested in proceeding to the next step.

  3. Structure and Property Studies on Austempered and As-Cast Ausferritic Gray Cast Irons

    NASA Astrophysics Data System (ADS)

    Vadiraj, Aravind; Balachandran, G.; Kamaraj, M.

    2010-10-01

    A high-strength and wear-resistant alloyed gray iron with ausferritic microstructure on solidification directly from molten condition could be made in a Ni and Mo alloyed gray cast iron. The as-cast ausferritic cast iron was compared with two conventionally austempered gray iron with and without Ni and Mo additions. The various phase constitution and volume fractions were analyzed using optical, SEM and XRD analyses. The various aspects of the alloy chemistry and processing conditions have been correlated with the microstructure and mechanical properties obtained. The analysis showed that the Ni-Mo alloyed austempered gray iron and the directly as-cast austempered gray iron had similar phase constitutions. The strength of the direct as-cast alloy with ausferritic microstructure was higher than the others due to its higher austenite content and carbide distribution. The wear rate of the conventionally austempered Ni and Mo containing alloy and direct as-cast ausferritic alloys is 20% of the austempered gray iron without Ni and Mo with friction coefficient less than 0.4.

  4. Mix/Cast Contamination Control

    NASA Technical Reports Server (NTRS)

    Wallentine, M.

    2005-01-01

    Presented is a training handbook for Mix/Cast Contamination Control; a part of a series of training courses to qualify access to Mix/Cast facilities. Contents: List Contamination Control Requirements; Identify foreign objects debris (FOD), Control Areas and their guidelines; Describe environmental monitoring; List Contamination Control Initiatives; Describe concern for Controlled Materials; Identify FOD Controlled Areas in Mix/Cast.

  5. Casting and Angling.

    ERIC Educational Resources Information Center

    Little, Mildred J.; Bunting, Camille

    The self-contained packet contains background information, lesson plans, 15 transparency and student handout masters, drills and games, 2 objective examinations, and references for teaching a 15-day unit on casting and angling to junior high and senior high school students, either as part of a regular physical education program or as a club…

  6. Extrusion cast explosive

    DOEpatents

    Scribner, Kenneth J.

    1985-01-01

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.

  7. ShakeCast Manual

    USGS Publications Warehouse

    Lin, Kuo-Wan; Wald, David J.

    2008-01-01

    ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users? facilities, and generates potential damage assessment notifications, facility damage maps, and other Web-based products for emergency managers and responders.

  8. Hair Casts or Pseudonits

    PubMed Central

    França, Katlein; Villa, Ricardo Tadeu; Silva, Isabella Rezende; de Carvalho, Cristine Almeida; Bedin, Valcinir

    2011-01-01

    Hair casts or pseudonits are thin, elongated, cylindrical concretions that encircle the hair shaft and can be easily dislodged. A case of pseudonits in a 9-year-old girl is reported. Though not unusual, false diagnoses are common. PMID:22223977

  9. Casting and Angling.

    ERIC Educational Resources Information Center

    Smith, Julian W.

    As part of a series of books and pamphlets on outdoor education, this manual consists of easy-to-follow instructions for fishing activities dealing with casting and angling. The manual may be used as a part of the regular physical education program in schools and colleges or as a club activity for the accomplished weekend fisherman or the…

  10. Evaluation of an improved centrifugal casting machine.

    PubMed

    Donovan, T E; White, L E

    1985-05-01

    A Type III gold alloy, a silver-palladium alloy, and a base metal alloy were cast in two different centrifugal casting machines. With the number of complete cast mesh squares as an indicator of castability, the Airspin casting machine produced superior castings with all three alloys. The base metal alloy produced the greatest number of complete squares with both casting machines. PMID:3889295

  11. Computer cast blast modelling

    SciTech Connect

    Chung, S.; McGill, M.; Preece, D.S.

    1994-07-01

    Cast blasting can be designed to utilize explosive energy effectively and economically for coal mining operations to remove overburden material. The more overburden removed by explosives, the less blasted material there is left to be transported with mechanical equipment, such as draglines and trucks. In order to optimize the percentage of rock that is cast, a higher powder factor than normal is required plus an initiation technique designed to produce a much greater degree of horizontal muck movement. This paper compares two blast models known as DMC (Distinct Motion Code) and SABREX (Scientific Approach to Breaking Rock with Explosives). DMC, applies discrete spherical elements interacted with the flow of explosive gases and the explicit time integration to track particle motion resulting from a blast. The input to this model includes multi-layer rock properties, and both loading geometry and explosives equation-of-state parameters. It enables the user to have a wide range of control over drill pattern and explosive loading design parameters. SABREX assumes that heave process is controlled by the explosive gases which determines the velocity and time of initial movement of blocks within the burden, and then tracks the motion of the blocks until they come to a rest. In order to reduce computing time, the in-flight collisions of blocks are not considered and the motion of the first row is made to limit the motion of subsequent rows. Although modelling a blast is a complex task, the DMC can perform a blast simulation in 0.5 hours on the SUN SPARCstation 10--41 while the new SABREX 3.5 produces results of a cast blast in ten seconds on a 486-PC computer. Predicted percentage of cast and face velocities from both computer codes compare well with the measured results from a full scale cast blast.

  12. Spall behavior of cast iron with varying microstructures

    NASA Astrophysics Data System (ADS)

    Plume, Gifford; Rousseau, Carl-Ernst

    2014-07-01

    The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94-1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.

  13. Spall behavior of cast iron with varying microstructures

    SciTech Connect

    Plume, Gifford; Rousseau, Carl-Ernst

    2014-07-21

    The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94–1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.

  14. Precision cast vs. wrought superalloys

    NASA Technical Reports Server (NTRS)

    Tien, J. K.; Borofka, J. C.; Casey, M. E.

    1986-01-01

    While cast polycrystalline superalloys recommend themselves in virtue of better 'buy-to-fly' ratios and higher strengthening gamma-prime volume fractions than those of wrought superalloys, the expansion of their use into such critical superalloy applications as gas turbine hot section components has been slowed by insufficient casting process opportunities for microstructural control. Attention is presently drawn, however, to casting process developments facilitating the production of defect-tolerant superalloy castings having improved fracture reliability. Integrally bladed turbine wheel and thin-walled turbine exhaust case near-net-shape castings have been produced by these means.

  15. Accurate Die Design for Automotive Panel Stamping Considering the Compensation Related with Die Deflection and Blank Thinning

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Xu, Dongkai; Xia, Guodong; Li, Xifeng; Chen, Jieshi; Zhang, Jian; Yan, Wei; Li, Yue

    2011-08-01

    In order to improve assembly accuracy, automotive body panels have to be fabricated with higher dimensional and surface quality requirements, therefore the die faces should be designed more accurately to consider more relevant factors. In the presented study, we proposed algorithms to realize the following functions: through forming process simulation, the thinning distribution on the deformed blank was extracted as first kind of compensation; through die structural CAE analysis which automatically mapped the boundary contact forces onto the die surfaces from process simulation results, the die deflection was calculated as second kind of compensation. These two quantitative contributions were added together to compensate the die face. The proposed methodologies were programmed and integrated with LS-Dyna and HyperWorks, and also integrated with Autoform and CATIA linear CAE functionalities separately. In addition, a software toolkit to calculate the contacting ratio was also developed to evaluate the effectiveness of die face compensation. The second toolkit developed was verified by an automotive structural part forming die design, through die compensation and geometric optimization, the predicted contact ratio between the die face and formed blank was improved a lot, and the first toolkit was testified by a fender drawing die design. It shows that the die face compensation can be realized and integrated seamlessly between CAD model, process simulation model and die structural CAE model with the help of data I/O tools developed by the authors.

  16. The Structure and Properties of Cast Iron Alloyed with Copper

    NASA Astrophysics Data System (ADS)

    Razumakov, A. A.; Stepanova, N. V.; Bataev, I. A.; Lenivtseva, O. G.; Riapolova, Iu Iu; Emurlaev, K. I.

    2016-04-01

    Cast iron with 3 wt. % Cu was prepared by induction melting and casting in sand molds. The structure of the samples was studied using light microscopy (LM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The addition of Cu promoted formation of pearlite and slightiy decreased the volume fraction of graphite. No Cu inclusions were found by LM and SEM. The nanoprecipitations of ε-Cu in lamellar pearlite were observed by TEM. The properties of the Cu-alloyed cast iron were compared with the properties of cast iron not alloyed with Cu. The hardness of cast iron after alloying with Cu increased and the friction coefficient decreased in comparison with the reference sample.

  17. Grain Refinement of Permanent Mold Cast Copper Base Alloys

    SciTech Connect

    M.Sadayappan; J.P.Thomson; M.Elboujdaini; G.Ping Gu; M. Sahoo

    2005-04-01

    Grain refinement is a well established process for many cast and wrought alloys. The mechanical properties of various alloys could be enhanced by reducing the grain size. Refinement is also known to improve casting characteristics such as fluidity and hot tearing. Grain refinement of copper-base alloys is not widely used, especially in sand casting process. However, in permanent mold casting of copper alloys it is now common to use grain refinement to counteract the problem of severe hot tearing which also improves the pressure tightness of plumbing components. The mechanism of grain refinement in copper-base alloys is not well understood. The issues to be studied include the effect of minor alloy additions on the microstructure, their interaction with the grain refiner, effect of cooling rate, and loss of grain refinement (fading). In this investigation, efforts were made to explore and understand grain refinement of copper alloys, especially in permanent mold casting conditions.

  18. AMCC casting development, volume 2

    NASA Technical Reports Server (NTRS)

    1995-01-01

    PCC successfully cast and performed nondestructive testing, FPI and x-ray, on seventeen AMCC castings. Destructive testing, lab analysis and chemical milling, was performed on eleven of the castings and the remaining six castings were shipped to NASA or Aerojet. Two of the six castings shipped, lots 015 and 016, were fully processed per blueprint requirements. PCC has fully developed the gating and processing parameters of this part and feels the part could be implemented into production, after four more castings have been completed to ensure the repeatability of the process. The AMCC casting has been a technically challenging part due to its size, configuration, and alloy type. The height and weight of the wax pattern assembly necessitated the development of a hollow gating system to ensure structural integrity of the shell throughout the investment process. The complexity in the jacket area of the casting required the development of an innovative casting technology that PCC has termed 'TGC' or thermal gradient control. This method of setting up thermal gradients in the casting during solidification represents a significant process improvement for PCC and has been successfully implemented on other programs. The alloy, JBK75, is a relatively new alloy in the investment casting arena and required our engineering staff to learn the gating, processing, and dimensional characteristics of the material.

  19. Effects of squeeze casting on the properties of Zn-Bi monotectic alloy

    NASA Astrophysics Data System (ADS)

    Savas, M. A.; Altintas, S.; Erturan, H.

    1997-07-01

    In composite production, the shortest route is via an in situ composite in which a melt dissociates simultaneously into two rather different solid phases. The monotectic alloys can be included in this group. The present work was aimed at extending our recent squeeze casting experience on the Zn-Bi monotectic alloy in order to increase its cast quality and mechanical properties. A squeeze casting unit was built, and its die and punch were machined. The molten monotectic alloy was squeezed in this unit under pressures up to 120 MPa in its freezing range until it solidified completely. It was found that an increase in squeeze casting pressure provided increases in density, tensile strength, and Vickers hardness, which resulted in decreases in chip length and electrical resistivity. Before the squeeze casting practice, the freezing characteristics of this monotectic were estimated using basic solidification principles.

  20. Technetium Getters to Improve Cast Stone Performance

    SciTech Connect

    Neeway, James J.; Lawter, Amanda R.; Serne, R. Jeffrey; Asmussen, Robert M.; Qafoku, Nikolla

    2015-10-15

    The cementitious material known as Cast Stone has been selected as the preferred waste form for solidification of aqueous secondary liquid effluents from the Hanford Tank Waste Treatment and Immobilization Plant (WTP) process condensates and low-activity waste (LAW) melter off-gas caustic scrubber effluents. Cast Stone is also being evaluated as a supplemental immobilization technology to provide the necessary LAW treatment capacity to complete the Hanford tank waste cleanup mission in a timely and cost effective manner. Two radionuclides of particular concern in these waste streams are technetium-99 (99Tc) and iodine-129 (129I). These radioactive tank waste components contribute the most to the environmental impacts associated with the cleanup of the Hanford site. A recent environmental assessment of Cast Stone performance, which assumes a diffusion controlled release of contaminants from the waste form, calculates groundwater in excess of the allowable maximum permissible concentrations for both contaminants. There is, therefore, a need and an opportunity to improve the retention of both 99Tc and 129I in Cast Stone. One method to improve the performance of Cast Stone is through the addition of “getters” that selectively sequester Tc and I, therefore reducing their diffusion out of Cast Stone. In this paper, we present results of Tc and I removal from solution with various getters with batch sorption experiments conducted in deionized water (DIW) and a highly caustic 7.8 M Na Ave LAW simulant. In general, the data show that the selected getters are effective in DIW but their performance is comprised when experiments are performed with the 7.8 M Na Ave LAW simulant. Reasons for the mitigated performance in the LAW simulant may be due to competition with Cr present in the 7.8 M Na Ave LAW simulant and to a pH effect.

  1. Issues with dying patients.

    PubMed

    Valent, P

    1978-04-22

    Doctors have the privilege of looking after patients from the moment of birth to the moment of death. Yet, the holistic approach to patients is interfered with by the doctor's role as a warrior against death, where death's everpresent claim on our lives, and its final victory, are ignored. This paper attempts to explore why doctors are in their current position, the mechanisms for ignoring death which are shared by doctors and patients, the nature of the fear of death, and practical implications for the treatment of dying patients. More and more patients die now in medical settings. It is incumbent on doctors to understand the dying process, if much unnecessary suffering is to be prevented. PMID:661717

  2. Experiences of the dying.

    PubMed

    Schoenbeck, Susan L

    2011-01-01

    It is often a mystery to us how we have come to know and believe in certain things. Beliefs are like guests who come up to a door. They come in only if the host opens it and invites them in. Otherwise they are turned away, unable to enter. LPNs/LVNs are invited to reflect on their experiences and expand their knowledge and beliefs. There is growing recognition that bedside talks of the dying, spirit travel and near-death events are real events for the people who experience them. LPNs/ LVNs are encouraged to expand their knowledge and beliefs about dying. PMID:23252027

  3. Assisted Dying in Canada.

    PubMed

    Schuklenk, Udo

    2014-01-01

    This paper makes an affirmative ethical case in favour of the decriminalization of assisted dying in Canada. It then proceeds to defending the affirmative case against various slippery-slope arguments that are typically deployed by opponents of assisted dying. Finally, a recent case of questionable professional conduct by anti-euthanasia campaigners cum academics is flagged as a warning to all of us not to permit the quality of the professional debate to deteriorate unacceptably, despite the personal emotional investments involved on all sides of the debate. PMID:26871530

  4. Volume MLS ray casting.

    PubMed

    Ledergerber, Christian; Guennebaud, Gaël; Meyer, Miriah; Bächer, Moritz; Pfister, Hanspeter

    2008-01-01

    The method of Moving Least Squares (MLS) is a popular framework for reconstructing continuous functions from scattered data due to its rich mathematical properties and well-understood theoretical foundations. This paper applies MLS to volume rendering, providing a unified mathematical framework for ray casting of scalar data stored over regular as well as irregular grids. We use the MLS reconstruction to render smooth isosurfaces and to compute accurate derivatives for high-quality shading effects. We also present a novel, adaptive preintegration scheme to improve the efficiency of the ray casting algorithm by reducing the overall number of function evaluations, and an efficient implementation of our framework exploiting modern graphics hardware. The resulting system enables high-quality volume integration and shaded isosurface rendering for regular and irregular volume data. PMID:18988986

  5. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-11-26

    Disclosed is an improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  6. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-01-29

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  7. Computer cast blast modelling

    SciTech Connect

    Chung, S.; McGill, M.; Preece, D.S.

    1994-12-31

    Cast blasting can be designed to utilize explosive energy effectively and economically for coal mining operations to remove overburden material. This paper compares two blast models known as DMC (Distinct Motion Code) and SABREX (Scientific Approach to Breaking Rock with Explosives). DMC applies discrete spherical elements interacted with the flow of explosive gases and the explicit time integration to track particle motion resulting from a blast. The input to this model includes multi-layer rock properties, and both loading geometry and explosives equation-of-state parameters. It enables the user to have a wide range of control over drill pattern and explosive loading design parameters. SABREX assumes that heave process is controlled by the explosive gases which determines the velocity and time of initial movement of blocks within the burden, and then tracks the motion of the blocks until they come to a rest. In order to reduce computing time, the in-flight collisions of blocks are not considered and the motion of the first row is made to limit the motion of subsequent rows. Although modelling a blast is a complex task, the advance in computer technology has increased the computing power of small work stations as well as PC (personal computers) to permit a much shorter turn-around time for complex computations. The DMC can perform a blast simulation in 0.5 hours on the SUN SPARC station 10-41 while the new SABREX 3.5 produces results of a cast blast in ten seconds on a 486-PC. Predicted percentage of cast and face velocities from both computer codes compare well with the measured results from a full scale cast blast.

  8. USGS ShakeCast

    USGS Publications Warehouse

    Wald, David; Lin, Kuo-Wan

    2007-01-01

    Automating, Simplifying, and Improving the Use of ShakeMap for Post-Earthquake Decisionmaking and Response. ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users facilities, and generates potential damage assessment notifications, facility damage maps, and other Web-based products for emergency managers and responders.

  9. [Casting faults and structural studies on bonded alloys comparing centrifugal castings and vacuum pressure castings].

    PubMed

    Fuchs, P; Küfmann, W

    1978-07-01

    The casting processes in use today such as centrifugal casting and vacuum pressure casting were compared with one another. An effort was made to answer the question whether the occurrence of shrink cavities and the mean diameter of the grain of the alloy is dependent on the method of casting. 80 crowns were made by both processes from the baked alloys Degudent Universal, Degudent N and the trial alloy 4437 of the firm Degusa. Slice sections were examined for macro and micro-porosity and the structural appearance was evaluated by linear analysis. Statistical analysis showed that casting faults and casting structure is independent of the method used and their causes must be found in the conditions of casting and the composition of the alloy. PMID:352670

  10. Influence of Refiner in ZA-12 Alloys During Centrifugal Casting Process

    NASA Astrophysics Data System (ADS)

    Jyothi, P. N.; Shailesh, Rao A.; Jagath, M. C.; Channakeshavalu, K.

    2014-05-01

    The behavior of the molten melt plays a predominant role in determining the quality cast product. In continuous casting, addition of refiner 1% (Al+Ti+B2) onto the molten metal increases its mechanical properties as a result of the nucleation within the process. In this article, the effect of refiners in the centrifugal casting process was studied. Eutectic ZA-12 alloys were taken for our experiment and cast at various rotational speeds (400 rpm, 600 rpm, and 800 rpm) with and without the addition of refiners. Rather than increase in the solidification rate as in continuous casting, these refiners diminish the solidification rate, which in turn forms an irregular-shaped cast tube. The microstructure and hardness for the entire cast specimen were discussed finally.

  11. Percutaneous yttrium aluminum garnet-laser lithotripsy of intrahepatic stones and casts after liver transplantation.

    PubMed

    Schlesinger, Nis Hallundbaek; Svenningsen, Peter; Frevert, Susanne; Wettergren, André; Hillingsø, Jens

    2015-06-01

    Bile duct stones and casts (BDSs) contribute importantly to morbidity after liver transplantation (LT). The purpose of this study was to estimate the clinical efficacy, safety, and long-term results of percutaneous transhepatic cholangioscopic lithotripsy (PTCSL) in transplant recipients and to discuss underlying factors affecting the outcome. A retrospective chart review revealed 18 recipients with BDSs treated by PTCSL laser lithotripsy with a holmium-yttrium aluminum garnet laser probe at 365 to 550 µm. They were analyzed in a median follow-up time of 55 months. In all but 1 patient (17/18 or 94%), it was technically feasible to clear all BDSs with a mean of 1.3 sessions. PTCSL was unsuccessful in 1 patient because of multiple stones impacting the bile ducts bilaterally; 17% had early complications (Clavien II). All biliary casts were successfully cleared; 39% had total remission; 61% needed additional interventions in the form of percutaneous transhepatic cholangiography and dilation (17%), re-PTCSL (11%), self-expandable metallic stents (22%), or hepaticojejunostomy (6%); and 22% eventually underwent retransplantation. The overall liver graft survival rate was 78%. Two patients died during follow-up for reasons not related to their BDS. Nonanastomotic strictures (NASs) were significantly associated with treatment failure. We conclude that PTCSL in LT patients is safe and feasible. NASs significantly increased the risk of relapse. Repeated minimally invasive treatments, however, prevented graft failure in 78% of the cases. PMID:25821134

  12. Casting larger polycrystalline silicon ingots

    SciTech Connect

    Wohlgemuth, J.; Tomlinson, T.; Cliber, J.; Shea, S.; Narayanan, M.

    1995-08-01

    Solarex has developed and patented a directional solidification casting process specifically designed for photovoltaics. In this process, silicon feedstock is melted in a ceramic crucible and solidified into a large grained semicrystalline silicon ingot. In-house manufacture of low cost, high purity ceramics is a key to the low cost fabrication of Solarex polycrystalline wafers. The casting process is performed in Solarex designed casting stations. The casting operation is computer controlled. There are no moving parts (except for the loading and unloading) so the growth process proceeds with virtually no operator intervention Today Solarex casting stations are used to produce ingots from which 4 bricks, each 11.4 cm by 11.4 cm in cross section, are cut. The stations themselves are physically capable of holding larger ingots, that would yield either: 4 bricks, 15 cm by 15 an; or 9 bricks, 11.4 cm by 11.4 an in cross-section. One of the tasks in the Solarex Cast Polycrystalline Silicon PVMaT Program is to design and modify one of the castings stations to cast these larger ingots. If successful, this effort will increase the production capacity of Solarex`s casting stations by 73% and reduce the labor content for casting by an equivalent percentage.

  13. Poetry and the Dying.

    ERIC Educational Resources Information Center

    Kramer, Aaron

    1992-01-01

    Demonstrates roles poetry can play as people confront the death of loved ones and their own dying. Gives examples of Heinrich Heine transforming his agony into art and, from the poetry of two college students, both in advanced stages of neurological disease, which was read aloud in class, teaching all present something about how to approach their…

  14. Tool & Die Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 23 units to consider for use in a tech prep competency profile for the occupation of tool and die technician. All the units listed will not necessarily apply to every situation or tech prep consortium, nor will all the competencies within each unit be appropriate. Several units appear within each specific occupation and…

  15. When a Baby Dies.

    ERIC Educational Resources Information Center

    Church, Martha Jo; And Others

    Written especially for grieving mothers whose babies have died, this booklet offers an overview of stages and experiences through which bereaved parents commonly pass. Specifically, the text is intended to give comfort to bereaved parents, offer insight into the grieving process, and provide thoughts on leave-taking ceremonies. The first section…

  16. Innovative Die Material and Lubrication Strategies for Clean and Energy Conserving Forging Technologies

    SciTech Connect

    Rajiv Shivpuri; Sailesh Babu; Lin Yang; Yijun Zhu

    2007-01-08

    The objective of this project was to develop and implement innovative die material and surface coating strategies such as composite dies and lubricated coatings to increase die lives and to reduce environmental pollution. In this project approaches and software were developed for die life optimization and optimal design of lubrication systems for hot forging. In addition, LENS applied nickel-aluminide coatings were developed and validated in the industrial environment for significant improvements in die life.

  17. Navigating "Assisted Dying".

    PubMed

    Schipper, Harvey

    2016-02-01

    Carter is a bellwether decision, an adjudication on a narrow point of law whose implications are vast across society, and whose impact may not be realized for years. Coupled with Quebec's Act Respecting End-of-life Care it has sharply changed the legal landscape with respect to actively ending a person's life. "Medically assisted dying" will be permitted under circumstances, and through processes, which have yet to be operationally defined. This decision carries with it moral assumptions, which mean that it will be difficult to reach a unifying consensus. For some, the decision and Act reflect a modern acknowledgement of individual autonomy. For others, allowing such acts is morally unspeakable. Having opened the Pandora's Box, the question becomes one of navigating a tolerable societal path. I believe it is possible to achieve a workable solution based on the core principle that "medically assisted dying" should be a very rarely employed last option, subject to transparent ongoing review, specifically as to why it was deemed necessary. My analysis is based on 1. The societal conditions in which have fostered demand for "assisted dying", 2. Actions in other jurisdictions, 3. Carter and Quebec Bill 52, 4. Political considerations, 5. Current medical practice. Leading to a series of recommendations regarding. 1. Legislation and regulation, 2. The role of professional regulatory agencies, 3. Medical professions education and practice, 4. Public education, 5. Health care delivery and palliative care. Given the burden of public opinion, and the legal steps already taken, a process for assisted-dying is required. However, those legal and regulatory steps should only be considered a necessary and defensive first step in a two stage process. The larger goal, the second step, is to drive the improvement of care, and thus minimize assisted-dying. PMID:27169205

  18. The Properties of Ammonium Dinitramine (ADN): Part 2: Melt Casting

    NASA Astrophysics Data System (ADS)

    Hahma, A.; Edvinsson, H.; Östmark, H.

    2010-04-01

    A melt casting technique for ammonium dinitramine (ADN) and ADN/aluminum was developed. ADN proved relatively easy to cast, when 1% of magnesium oxide was used as a stabilizer and crystallization kernels. Densities of ADN/MgO 99/1 were 92 to 97% of theoretical mean density (TMD) and those of ADN/Al/MgO 64/35/1 were between 95 and 99% of TMD. Sedimentation of Al in the melt was prevented and the particle wetting was ensured by selecting a suitable particle size for Al. No gelling agents or other additives were used. The casting process and factors influencing it are discussed.

  19. Herausforderungen durch die deutsche Wiedervereinigung

    NASA Astrophysics Data System (ADS)

    Stäglin, Reiner

    Die Wiedervereinigung stellte auch die Statistik vor große Aufgaben. Die als Organ der staatlichen Planung staatsnah orientierte Statistik der DDR musste auf das zur Neutralität und wissenschaftlichen Unabhängigkeit verpflichtete System der Bundesrepublik umgestellt werden. Ebenso verlangten die Universitäten eine Neuorientierung. Die Deutsche Statistische Gesellschaft hat sich vor allem dreier Aufgaben mit großem Engagement, aber auch mit Bedachtsamkeit angenommen: Aufnahme und Integration der Statistiker aus den neuen Bundesländern in die Gesellschaft, Begleitung der Neuausrichtung des Faches Statistik an deren Hochschulen und Sicherung sowie Nutzung von Datenbeständen der ehemaligen DDR.

  20. High density tape casting system

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor)

    1989-01-01

    A system is provided for casting thin sheets (or tapes) of particles bound together, that are used for oxygen membranes and other applications, which enables the particles to be cast at a high packing density in a tape of uniform thickness. A slurry contains the particles, a binder, and a solvent, and is cast against the inside walls of a rotating chamber. Prior to spraying the slurry against the chamber walls, a solvent is applied to a container. The solvent evaporates to saturate the chamber with solvent vapor. Only then is the slurry cast. As a result, the slurry remains fluid long enough to spread evenly over the casting surface formed by the chamber, and for the slurry particles to become densely packed. Only then is the chamber vented to remove solvent, so the slurry can dry. The major novel feature is applying solvent vapor to a rotating chamber before casting slurry against the chamber walls.

  1. Low Temperature Consolidation of Micro/Nanosilver Die-Attach Preforms

    NASA Astrophysics Data System (ADS)

    McCoppin, Jared; Reitz, Thomas L.; Miller, Ryan; Vijwani, Hema; Mukhopadhyay, Sharmila; Young, Daniel

    2014-09-01

    Organically passivated silver nanopowder paste-based sintering is considered a promising solution for die-attach in high temperature power and sensing electronic devices. However, oxygen requirements during burnout and inherently high shrinkage rates limit their use to small die sizes. This work reports an alternative fabrication method that resolves decomposition and shrinkage issues of the die-attach by utilizing a prestressed optimized tape cast mixture of micro- and nanosilver particles with a polypropylene carbonate binder. The effects of prestressing, micro/nanosilver bimodal distribution, and polymer content on resulting microstructure and shear strength were investigated. Prior to application as a die-attach, uniaxial compression of the tape was found to significantly decrease shrinkage and improve green strength. This pre-stressing strategy allows for a decoupling of the resulting die-attach materials properties from the pressure applied during assembly. Bimodal mixtures consisting of 1-3 μm spherical powders with nanosilver resulted in shear strengths comparable to those of pure nanosilver. Shear strength decreased as bimodal particle size increased above 5 μm. A polymer content of ˜10 wt.% polypropylene carbonate combined with prestressing was identified as optimal for maximizing die-attach shear strength while still maintaining pliability and formability. Tape casts that were prestressed to 212 MPa by uniaxially compression and formulated with 10 wt.% of polypropylene carbonate resulted in a die-attach material with a shear strength of 54 MPa when sintered. These materials were used to demonstrate void-free 25-mm2 die-attach assemblies, suggesting that tape cast micro/nanosilver materials may be a promising die-attach method for high temperature and large-area electronics devices.

  2. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  3. Investigation of Die Stress Profiles during Powder Compaction using Instrumented Die

    SciTech Connect

    Hong, Sung-tae; Hovanski, Yuri; Lavender, Curt A.; Weil, K. Scott

    2008-06-01

    The radial stress profile in a cylindrical die during compaction of titanium (Ti) powder was investigated by experiments. The concept of an instrumented die was extended to design an enhanced instrumented die. Custom-made strain gage pins were used to measure the radial stress during powder compaction. The test fixture was designed to simulate double-action pressing. The measured die stress profile for Ti powder was compared with that for a commercially available iron (Fe) powder. The stress history shows that an appreciable residual stress remains in the die in the radial direction after the axial compaction stress is removed from the powder. Furthermore, the radial stress profile in the die, while under maximum axial compaction stress, is more uniform across the height of the Fe compact than that of the Ti compact. In addition, the residual stress profile in the die in the radial direction reduces symmetrically in both directions beyond the height of the compact for both powders. Finally, the Ti powder shows a significantly higher frictional coefficient at the maximum axial compaction stress, and consequently a higher maximum axial ejection stress than the Fe powder.

  4. Development of an Optimization Methodology for the Aluminum Alloy Wheel Casting Process

    NASA Astrophysics Data System (ADS)

    Duan, Jianglan; Reilly, Carl; Maijer, Daan M.; Cockcroft, Steve L.; Phillion, Andre B.

    2015-08-01

    An optimization methodology has been developed for the aluminum alloy wheel casting process. The methodology is focused on improving the timing of cooling processes in a die to achieve improved casting quality. This methodology utilizes (1) a casting process model, which was developed within the commercial finite element package, ABAQUS™—ABAQUS is a trademark of Dassault Systèms; (2) a Python-based results extraction procedure; and (3) a numerical optimization module from the open-source Python library, Scipy. To achieve optimal casting quality, a set of constraints have been defined to ensure directional solidification, and an objective function, based on the solidification cooling rates, has been defined to either maximize, or target a specific, cooling rate. The methodology has been applied to a series of casting and die geometries with different cooling system configurations, including a 2-D axisymmetric wheel and die assembly generated from a full-scale prototype wheel. The results show that, with properly defined constraint and objective functions, solidification conditions can be improved and optimal cooling conditions can be achieved leading to process productivity and product quality improvements.

  5. Replacing London's cast iron mains

    SciTech Connect

    Thorne, A. ); Mathews, P. )

    1992-07-01

    This paper discusses the cast iron gas distribution systems that exist in many cities and contains considerable amounts of pipe that vary in age from 20 to 150 years. In many ways, cast iron is an excellent material. It is inherently corrosion resistant, easy to install and cheap. However, it is also brittle and smaller diameter cast iron pipe has a relatively low beam strength. This can lead, under some circumstances, to failure without external warning, with typically a full-circumferential failure. In congested areas this can lead to serious consequences. As a result, cast iron replacement programs are a common feature in such urban gas distribution systems.

  6. Melting, casting, and alpha-phase extrusion of the uranium-2. 4 weight percent niobium alloy

    SciTech Connect

    Anderson, R C; Beck, D E; Kollie, T G; Zorinsky, E J; Jones, J M

    1981-10-01

    The experimental details of the melting, casting, homogenization, and alpha-phase extrusion process used to fabricate the uranium-2.4 wt % niobium alloy into 46-mm-diameter rods is described. Extrusion defects that were detected by an ultrasonic technique were eliminated by proper choice of extrusion parameters; namely, reduction ratio, ram speed, die angle, and billet preheat temperature.

  7. Heated die facilitates tungsten forming

    NASA Technical Reports Server (NTRS)

    Chattin, J. H.; Haystrick, J. E.; Laughlin, J. C.; Leidy, R. A.

    1966-01-01

    Tungsten forming in a press brake employs a bottom die assembly with a heating manifold between two water-cooled die sections. The manifold has hydrogen-oxygen burners spaced along its length for even heat during forming.

  8. Casting Equipment. Casting and Angling Skills Series. Instructor Manual.

    ERIC Educational Resources Information Center

    Staton, Robert D., Jr.

    Part of a series of self-contained instructional units designed by the Missouri Department of Conservation to teach Missourians how to use outdoor resources wisely and skillfully, the instructor manual, the first in the casting and angling series, is intended both as a reference book on casting equipment and as an introduction to the sport.…

  9. Early Functional Treatment and Modern Cast Making for Indications in Hand Surgery.

    PubMed

    Bohr, S; Pallua, N

    2016-01-01

    Cast treatment can serve both as a nonsurgical treatment option and as a means for providing postoperative protection. However, with the duration of immobilization intervals, the benefits of cast treatment, especially in hand surgery, are at risk of being outweighed by undesired drawbacks such as joint stiffening and contracture formation. In order to minimize potential complications commonly associated with cast treatment, efforts to further improve cast making must attempt to reconcile two conflicting objectives: (1) to achieve stability and rigidity at the site of injury (e.g., fracture retention) and (2) to allow free range of joint movement as early as possible. In addition, in order to assure patient compliance, modern cast treatments should aim to improve wearing-comfort of the cast. This paper describes modern cast designs for four common types hand injuries, with sample cases highlighting the clinical outcome of each treatment. PMID:27190653

  10. Early Functional Treatment and Modern Cast Making for Indications in Hand Surgery

    PubMed Central

    Bohr, S.; Pallua, N.

    2016-01-01

    Cast treatment can serve both as a nonsurgical treatment option and as a means for providing postoperative protection. However, with the duration of immobilization intervals, the benefits of cast treatment, especially in hand surgery, are at risk of being outweighed by undesired drawbacks such as joint stiffening and contracture formation. In order to minimize potential complications commonly associated with cast treatment, efforts to further improve cast making must attempt to reconcile two conflicting objectives: (1) to achieve stability and rigidity at the site of injury (e.g., fracture retention) and (2) to allow free range of joint movement as early as possible. In addition, in order to assure patient compliance, modern cast treatments should aim to improve wearing-comfort of the cast. This paper describes modern cast designs for four common types hand injuries, with sample cases highlighting the clinical outcome of each treatment. PMID:27190653

  11. Psychotherapy with Older Dying Persons.

    ERIC Educational Resources Information Center

    Dye, Carol J.

    Psychotherapy with older dying patients can lead to problems of countertransference for the clinician. Working with dying patients requires flexibility to adapt basic therapeutics to the institutional setting. Goals of psychotherapy must be reconceptualized for dying clients. The problems of countertransference arise because clinicians themselves…

  12. When Your Child Needs a Cast

    MedlinePlus

    ... hard bandage that's usually made of material like fiberglass or plaster. Casts keep bones in place while ... water. Plaster of Paris casts are heavier than fiberglass casts and don't hold up as well ...

  13. Lost-Soap Aluminum Casting.

    ERIC Educational Resources Information Center

    Mihalow, Paula

    1980-01-01

    Lost-wax casting in sterling silver is a costly experience for the average high school student. However, this jewelry process can be learned at no cost if scrap aluminum is used instead of silver, and soap bars are used instead of wax. This lost-soap aluminum casting process is described. (Author/KC)

  14. Ultrasonically assisted single screw extrusion, film blowing and film casting of LLDPE/clay and PA6/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Niknezhad, Setareh

    The major objective of this study was to investigate the effect of ultrasonic treatment on the dispersion of modified clay particles in LLDPE and PA6 matrices and the final properties of nanocomposites. LLDPE and PA6 are two polymers that are widely used in packaging industry. Blown and cast films were manufactured from the prepared nanocomposites. To achieve one step film processing, an online ultrasonic film casting was developed. Ultrasonic waves caused high-energy mixing and dispersion due to the acoustic cavitation, causing the clay agglomorates to separate into individual platelets in polymer matrix. Ultrasonic waves also broke down the polymer molecular chains reducing viscosity of the melt, facilating dispersion of the clay platelets throughout the matrix. Ultrasound also led to a breakage of the clay platelets reducing the particle size and improving their distribution. Clay particles acted as a heterogenous nucleation agent generating smaller size polymer crystals. In turn, these improved different properties including mechanical properties, oxygen permeability and transparency of films. In LLDPE/clay 20A nanocomposites, the effect of ultrasound was more obvious at higher clay loadings. Exfoliated structure for ultrasonically treated nanocomposites containing 2.5, 5 and 7.5 wt% of clay 20A and highly intercalated structure for ultrasonically treated nanocomposites containing 10 wt% of clay 20A were achieved. However, in blown films, the exfoliated structure transferred to the intercalated structure due to the addition of more shear and thermal degradation of surfactants of the clay particles. While, manufacturing cast films using the new developed online ultrasonic cast film machine revealed the exfoliated structure with ultrasonic treatment till 7.5 wt% of clay loadings. Cast films of nanocomposites containing 5 wt% of clay loadings were also prepared with addition of different compatibilizers. The compatibilizer containing higher amount of grafted

  15. Electroslag component casting. [Nickel aluminide

    SciTech Connect

    Sikka, V.K.

    1986-01-01

    This project is directed toward the development of electroslag-casting (ESC) technology for use in coal conversion components such as valve bodies, pump housings, and pipe fittings. The aim is also to develop a sufficient data base to permit electroslag casting to become an ASME Code-accepted process. It is also intended to transfer the ESC process technology to private industry. A total of 32 electroslag castings of 2.25Cr-1Mo, 9Cr-1Mo, type 316, and nickel aluminide were procured from four facilities for evaluation (Table 1). The most complex castings procured during this program were the valve bodies shown in Figure 2. The castings were subjected to various heat treatments (Table 2), checked for chemical composition uniformity from top to bottom, and subjected to macrostructural evaluation and mechanical properties testing. Results are discussed. 10 refs., 7 figs., 3 tabs.

  16. [The concurrence of light-chain deposition disease, AL-amyloidosis, and cast nephropathy in a patient with multiple myeloma].

    PubMed

    Rekhtina, I G; Zakharova, E V; Stoliarevich, E S; Sinitsina, M N; Denisova, E N

    2015-01-01

    Despite of the fact that their clinical manifestations are similar, AL-amyloidosis (AL-A) and light chain deposition disease (LCDD) are individual nosological entities in view of considerable differences in their pathogenesis and pathomorphology. The paper describes a rare case of the concurrence of LCDD and AL-A in a patient with multiple myeloma. Clinically, there was dialysis-dependent renal failure, flail leg syndrome, myocardiopathy, and rhabdomyolysis. At the disease onset, his nephrobiopsy specimen could diagnose LCDD and myeloma or cast nephropathy. The disease was characterized by an aggressive course. Despite the administration of innovative agents, the patient had a short-term remission and died from disease progression. Autopsy additionally revealed amyloid deposition in the heart and kidney. The development of AL-A in the presence of prior LCDD may reflect the progression of the tumor and the appearance of an additional subclone of plasma cells that produce amyloidogenic light chains. The uncommonness of this case is that renal amyloid was found in the tubular casts and absent in the glomeruli, which may be considered as a special form--tubular AL-amyloidosis. PMID:26281203

  17. Advanced lost foam casting technology. 1995 summary report

    SciTech Connect

    Bates, C.E.; Littleton, H.E.; Askeland, D.; Griffin, J.; Miller, B.A.; Sheldon, D.S.

    1996-05-01

    Previous research made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional research was needed to improve the process and make it more functional in an industrial environment. The current project focused on five areas listed as follows: Task 1: Precision Pattern Production; Task 2: Pattern Coating Consistency; Task 3: Sand Fill and Compaction Effects; Task 4: Pattern Gating; and Task 5: Mechanical Properties of Castings. This report summarizes the work done under the current contract in all five areas. Twenty-eight (28) companies jointly participate in the project. These companies represent a variety of disciplines, including pattern designers, pattern producers, coating manufacturers, plant design companies, compaction equipment manufacturers, casting producers, and casting buyers. This report summarizes the work done in the past two years and the conclusions drawn from the work.

  18. Multi-scale simulation of ductile iron casting

    NASA Astrophysics Data System (ADS)

    Kubo, J.

    2015-06-01

    It has been well known that addition of rare earth elements was indispensable for production of ductile cast iron. The addition reduces solidification shrinkage. However there are still ambiguities in understanding the mechanism and predicting the casting defects. A possible explanation for the reduction of shrinkage is that the addition of rare earth promotes expansion of castings due to the graphite formation, which is related to cooling rate. In this study, the effect of rare earth addition was considered as a function of cooling rate and solidification shrinkage rate was determined by the macro-scale simulation. In the meso-scale and the micro-scale simulations, distribution of graphite nodules was compared with the experimental results. The multi-scale simulation result well reproduced the experimental results.

  19. X-ray detectors of the CAST experiment

    NASA Astrophysics Data System (ADS)

    Yildiz, S. C.

    2014-03-01

    CERN Axion Solar Telescope (CAST) is an experiment probing hypothetical particles: the axions, created in the solar core. Inside the transverse magnetic field of the CAST magnet, axions can be converted into x-rays, and be detected by four x-ray detectors at CAST. The expected x-ray signal in CAST is in 1-10 keV range, intensity depending strongly on the coupling constant of axion-photon conversion gaγ, which is expected to be low. This requires CAST to have detectors with very low background levels. The CAST Experiment makes use of three Micromesh Gaseous Structure (micromegas) detectors, which are gaseous detectors, derived from ideas of Multiwire Proportional Chambers (MWPC). CAST Micromegas detectors show perfect stability, good spatial and energy resolution. The intense study on Micromegas has enabled CAST to understand the nature of its background level, and improve it by a factor of 102 over ten years. New detector design, new readout system, better cosmic veto and addition of x-ray telescope will further improve the background in the next data taking of the experiment. The Charge-Coupled Device (CCD) of CAST is a pn-CCD detector with 200 × 64 pixels. The CAST CCD is coupled to an X-ray telescope, focusing all the parallel x-rays into a 9 mm diameter spot. The CCD will be replaced by the InGrid detector, a special manufactured micromegas detector. It is able to detect single electrons, and the low energy capabilities will open new frontiers on search of axions and other exotic particles. Another option is the Silicon Drift Detector (SDD), which is being tested in 2013, and has an energy threshold as low as 250 eV. The CAST experiment is the pioneering helioscope that excludes an important part of axion mass-coupling constant parameter space, and expects to exclude more in the following years. To succeed CAST, a new experiment, the International AXion Observatory (IAXO) is being designed and optimised, comprising the construction of a magnet specially built

  20. Nitriding of Aluminum Extrusion Die: Effect of Die Geometry

    NASA Astrophysics Data System (ADS)

    Akhtar, S. S.; Arif, A. F. M.; Yilbas, B. S.

    2010-04-01

    Nitriding of complex-shaped extrusion dies may result in non-uniform nitride layers and hence a required hardness may not be achieved in some regions of the bearing area. The present study is carried out to assess the effect of extrusion die profile on the characteristics and growth behavior of nitride layers so that the critical die design feature can be identified to enhance the uniformity of the nitride layer. For this purpose, AISI H13 steel samples have been manufactured with profiles similar to those of hot extrusion dies. The samples were then gas nitrided under controlled nitriding potential. The uniformity and depth of nitride layers have been investigated in terms of compound layer and total nitride case depth for selected die features. The results of this study indicated the need to include the effect of profile on the nitride layer for the optimal die design with improved service life.

  1. Sixty Years of Casting Research

    NASA Astrophysics Data System (ADS)

    Campbell, John

    2015-11-01

    The 60 years of solidification research since the publication of Chalmer's constitutional undercooling in 1953 has been a dramatic advance of understanding which has and continues to be an inspiration. In contrast, 60 years of casting research has seen mixed fortunes. One of its success stories relates to improvements in inoculation of gray irons, and another to the discovery of spheroidal graphite iron, although both of these can be classified as metallurgical rather than casting advances. It is suggested that true casting advances have dated from the author's lab in 1992 when a critical surface turbulence condition was defined for the first time. These last 20 years have seen the surface entrainment issues of castings developed to a sufficient sophistication to revolutionize the performance of light alloy and steel foundries. However, there is still a long way to go, with large sections of the steel and Ni-base casting industries still in denial that casting defects are important or even exist. The result has been that special ingots are still cast poorly, and shaped casting operations have suffered massive losses. For secondary melted and cast materials, electro-slag remelting has the potential to be much superior to expensive vacuum arc remelting, which has cost our aerospace and defense industries dearly over the years. This failure to address and upgrade our processing of liquid metals is a serious concern, since the principle entrainment defect, the bifilm, is seen as the principle initiator of cracks in metals; in general, bifilms are the Griffith cracks that initiate failures by cracking. A new generation of crack resistant metals and engineering structures can now be envisaged.

  2. Strip casting with fluxing agent applied to casting roll

    DOEpatents

    Williams, Robert S.; O'Malley, Ronald J.; Sussman, Richard C.

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) includes a tundish (12) for containing a melt (14), a pair of horizontally disposed water cooled casting rolls (22) and devices (29) for electrostatically coating the outer peripheral chill surfaces (44) of the casting rolls with a powder flux material (56). The casting rolls are juxtaposed relative to one another for forming a pouting basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). A preferred flux is boron oxide having a melting point of about 550.degree. C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll.

  3. Strip casting with fluxing agent applied to casting roll

    DOEpatents

    Williams, R.S.; O`Malley, R.J.; Sussman, R.C.

    1997-07-29

    A strip caster for producing a continuous strip includes a tundish for containing a melt, a pair of horizontally disposed water cooled casting rolls and devices for electrostatically coating the outer peripheral chill surfaces of the casting rolls with a powder flux material. The casting rolls are juxtaposed relative to one another for forming a pouting basin for receiving the melt through a teeming tube thereby establishing a meniscus between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line to a sealing chamber. A preferred flux is boron oxide having a melting point of about 550 C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll. 3 figs.

  4. Strip casting apparatus and method

    DOEpatents

    Williams, R.S.; Baker, D.F.

    1988-09-20

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip. 6 figs.

  5. Biomimetic Materials by Freeze Casting

    NASA Astrophysics Data System (ADS)

    Porter, Michael M.; Mckittrick, Joanna; Meyers, Marc A.

    2013-06-01

    Natural materials, such as bone and abalone nacre, exhibit exceptional mechanical properties, a product of their intricate microstructural organization. Freeze casting is a relatively simple, inexpensive, and adaptable materials processing method to form porous ceramic scaffolds with controllable microstructural features. After infiltration of a second polymeric phase, hybrid ceramic-polymer composites can be fabricated that closely resemble the architecture and mechanical performance of natural bone and nacre. Inspired by the narwhal tusk, magnetic fields applied during freeze casting can be used to further control architectural alignment, resulting in freeze-cast materials with enhanced mechanical properties.

  6. Slip-Cast Superconductive Parts

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Buckley, John D.; Vasquez, Peter; Buck, Gregory M.; Hicks, Lana P.; Hooker, Matthew W.; Taylor, Theodore D.

    1993-01-01

    Complex shapes fabricated without machining. Nonaqueous slip-casting technique used to form complexly shaped parts from high-temperature superconductive materials like YBa(2)Cu(3)O(7-delta). Such parts useful in motors, vibration dampers, and bearings. In process, organic solvent used as liquid medium. Ceramic molds made by lost-wax process used instead of plaster-of-paris molds, used in aqueous slip-casting but impervious to organic solvents and cannot drain away liquid medium. Organic-solvent-based castings do not stick to ceramic molds as they do to plaster molds.

  7. Strip casting apparatus and method

    DOEpatents

    Williams, Robert S.; Baker, Donald F.

    1988-01-01

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip.

  8. MACHINING ELIMINATION THROUGH APPLICATION OF THREAD FORMING FASTENERS IN NET SHAPED CAST HOLES

    SciTech Connect

    Cleaver, Ryan J; Cleaver, Todd H; Talbott, Richard

    2012-05-02

    The ultimate objective of this work was to eliminate approximately 30% of the machining performed in typical automotive engine and transmission plants by using thread forming fasteners in as-cast holes of aluminum and magnesium cast components. The primary issues at the source of engineers reluctance to implementing thread forming fasteners in lightweight castings are: * Little proof of consistency of clamp load vs. input torque in either aluminum or magnesium castings. * No known data to understand the effect on consistency of clamp load as casting dies wear. The clamp load consistency concern is founded in the fact that a portion of the input torque used to create clamp load is also used to create threads. The torque used for thread forming may not be consistent due to variations in casting material, hole size and shape due to tooling wear and process variation (thermal and mechanical). There is little data available to understand the magnitude of this concern or to form the basis of potential solutions if the range of clamp load variation is very high (> +/- 30%). The range of variation that can be expected in as-cast hole size and shape over the full life cycle of a high pressure die casting die was established in previous work completed by Pacific Northwest National Laboratory, (PNNL). This established range of variation was captured in a set of 12 cast bosses by designing core pins at the size and draft angles identified in the sited previous work. The cast bosses were cut into nuts that could be used in the Ford Fastener Laboratory test-cell to measure clamp load when a thread forming fastener was driven into a cast nut. There were two sets of experiments run. First, a series of cast aluminum nuts were made reflecting the range of shape and size variations to be expected over the life cycle of a die casting die. Taptite thread forming fasteners, (a widely used thread forming fastener suitable for aluminum applications), were driven into the various cored, as-cast

  9. 14 CFR 23.621 - Casting factors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... structural castings except castings that are pressure tested as parts of hydraulic or other fluid systems and do not support structural loads. (b) Bearing stresses and surfaces. The casting factors specified in... of § 23.305 at an ultimate load corresponding to a casting factor of 1.25; and (ii) The...

  10. 14 CFR 23.621 - Casting factors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... structural castings except castings that are pressure tested as parts of hydraulic or other fluid systems and do not support structural loads. (b) Bearing stresses and surfaces. The casting factors specified in... of § 23.305 at an ultimate load corresponding to a casting factor of 1.25; and (ii) The...

  11. 14 CFR 23.621 - Casting factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... structural castings except castings that are pressure tested as parts of hydraulic or other fluid systems and do not support structural loads. (b) Bearing stresses and surfaces. The casting factors specified in... of § 23.305 at an ultimate load corresponding to a casting factor of 1.25; and (ii) The...

  12. 14 CFR 23.621 - Casting factors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... structural castings except castings that are pressure tested as parts of hydraulic or other fluid systems and do not support structural loads. (b) Bearing stresses and surfaces. The casting factors specified in... of § 23.305 at an ultimate load corresponding to a casting factor of 1.25; and (ii) The...

  13. Graphite/Thermoplastic-Pultrusion Die

    NASA Technical Reports Server (NTRS)

    Wilson, Maywood L.; Frye, Mark W.; Johnson, Gary S.; Stanfield, Clarence E.

    1990-01-01

    Attachment to extruder produces thermoplastic-impregnated graphite tape. Consists of profile die, fiber/resin collimator, and crosshead die body. Die designed to be attached to commercially available extrusion machine capable of extruding high-performance thermoplastics. Simple attachment to commercial extruder enables developers of composites to begin experimenting with large numbers of proprietary resins, fibers, and hybrid composite structures. With device, almost any possible fiber/resin combination fabricated.

  14. Investment casting design of experiment. Final report

    SciTech Connect

    Owens, R.

    1997-10-01

    Specific steps in the investment casting process were analyzed in a designed experiment. The casting`s sensitivity to changes in these process steps was experimentally determined Dimensional and radiographic inspection were used to judge the sensitivity of the casting. Thirty-six castings of different pedigrees were poured and measured. Some of the dimensional inspection was conducted during the processing. It was confirmed that wax fixturing, number of gates, gate location, pour and mold temperature, pour speed, and cooling profile all affected the radiographic quality of the casting. Gate and runner assembly techniques, number of gates, and mold temperature affect the dimensional quality of the casting.

  15. Foreigners dying in Istanbul.

    PubMed

    Uzun, Ibrahim; Celbis, Osman; Baydar, Cetin Lutfi; Alkan, Nevzat; Arslan, Murat Nihat

    2009-09-01

    The study included 411 deaths selected from 14,647 medicolegal deaths autopsied in the Morgue Department of Forensic Medicine Institute Directorate, affiliated with the Ministry of Justice, between 1998 and 2002. Data were collected from court documents, coroner's investigation reports, and autopsy reports. The parameters of age, gender, nationality and origin, cause and place of death in foreigners dying in Istanbul were evaluated in the study. Out of 14,647 medicolegal deaths, 3.5% were foreigners from 34 different nationalities. The nationality with the highest rate of foreigner deaths (34%) was Romanian. Out of 411 deaths, 74.3% were male and 25.7% were female. Of all cases, 64.4% were tourists visiting Istanbul and 35.6% had a job in Istanbul. Of 146 foreigners employed in Istanbul, 94.5% did not have a work permit, while only 5.5% had a work permit. PMID:19674242

  16. Social interactions affecting caste development through physiological actions in termites

    PubMed Central

    Watanabe, Dai; Gotoh, Hiroki; Miura, Toru; Maekawa, Kiyoto

    2014-01-01

    A colony of social insects is not only an aggregation of individuals but also a functional unit. To achieve adaptive social behavior in fluctuating environmental conditions, in addition to coordination of physiological status in each individual, the whole colony is coordinated by interactions among colony members. The study on the regulation of social-insect colonies is termed “social physiology.” Termites, a major group of social insects, exhibit many interesting phenomena related to social physiology, such as mechanisms of caste regulation in a colony. In their colonies, there are different types of individuals, i.e., castes, which show distinctive phenotypes specialized in specific colony tasks. Termite castes comprise reproductives, soldiers and workers, and the caste composition can be altered depending on circumstances. For the regulation of caste compositions, interactions among individuals, i.e., social interactions, are thought to be important. In this article, we review previous studies on the adaptive meanings and those on the proximate mechanisms of the caste regulation in termites, and try to understand those comprehensively in terms of social physiology. Firstly, we summarize classical studies on the social interactions. Secondly, previous studies on the pheromone substances that mediate the caste regulatory mechanisms are overviewed. Then, we discuss the roles of a physiological factor, juvenile hormone (JH) in the regulation of caste differentiation. Finally, we introduce the achievements of molecular studies on the animal sociality (i.e., sociogenomics) in terms of social physiology. By comparing the proximate mechanisms of social physiology in termites with those in hymenopterans, we try to get insights into the general principles of social physiology in social animals. PMID:24782780

  17. The nature of urinary casts

    PubMed Central

    McQueen, E. G.

    1962-01-01

    The composition of hyaline casts has been investigated. The major constituent appears to be the urinary mucoprotein described by Tamm and Horsfall. Small amounts only of serum proteins are present. Neither the amounts excreted nor the concentration of Tamm-Horsfall protein appeared to determine the rate of cast formation. The only invariable association of hyaline cast formation was with the presence of significant amounts of serum proteins in the urine. In vitro it was found that aqueous solutions of serum albumin were particularly effective in producing precipitation of Tamm-Horsfall protein. This interaction was inhibited in normal urine but occurred to a greater extent in nephrotic urine and is suggested as the possible mechanism of hyaline cast formation. Images PMID:16810981

  18. Advanced casting: Today and tomorrow

    NASA Astrophysics Data System (ADS)

    Mietrach, D.

    The state of aluminum casting technology in terms of processes, component sizes, design and material-scientific data as well as mechanical characteristics was established during visits to foundries in the USA, Canada, France, Italy, Great Britain and the Federal Republic of Germany. Components of the primary structure of Tornado and ALPHA aircraft, (pylon, intake floor) classified according to the degree of difficulty during casting, were used to compare existing designs (riveted sheet metal and machined parts) and cast versions with regard to cost reduction and technical reliability. Visual inspection, dimensional checks, chemical composition analysis, penetrant tests, X-ray tests, metallographic investigations, and tensile tests were carried out. Cost savings of 25% and weight savings of 20% can be achieved by using castings.

  19. Casting Using A Polystyrene Pattern

    NASA Technical Reports Server (NTRS)

    Vasquez, Peter; Guenther, Bengamin; Vranas, Thomas; Veneris, Peter; Joyner, Michael

    1993-01-01

    New technique for making metal aircraft models saves significant amount of time and effort in comparison with conventional lost-wax method. Produces inexpensive, effective wind-tunnel models. Metal wind-tunnel model cast by use of polystyrene pattern.

  20. Microstructure and creep behavior of magnesium-aluminum alloys containing alkaline and rare earth additions

    NASA Astrophysics Data System (ADS)

    Saddock, Nicholas David

    In the past few decades governmental regulation and consumer demands have lead the automotive companies towards vehicle lightweighting. Powertrain components offer significant potential for vehicle weight reductions. Recently, magnesium alloys have shown promise for use in powertrain applications where creep has been a limiting factor. These systems are Mg-Al based, with alkaline earth or rare earth additions. The solidification, microstructure, and creep behavior of a series of Mg-4 Al- 4 X:(Ca, Ce, La, and Sr) alloys and a commercially developed AXJ530 (Mg--5 Al--3 Ca--0.15 Sr) alloy (by wt%) have been investigated. The order of decreasing freezing range of the five alloys was: AX44, AXJ530, AJ44, ALa44 and ACe44. All alloys exhibited a solid solution primary alpha-Mg phase surrounded by an interdendritic region of Mg and intermetallic(s). The primary phase was composed of grains approximately an order of magnitude larger than the cellular structure. All alloys were permanent mold cast directly to creep specimens and AXJ530 specimens were provided in die-cast form. The tensile creep behavior was investigated at 175 °C for stresses ranging from 40 to 100 MPa. The order of decreasing creep resistance was: die-cast AXJ530 and permanent mold cast AXJ530, AX44, AJ44, ALa44 and ACe44. Grain size, solute concentration, and matrix precipitates were the most significant microstructural features that influenced the creep resistance. Decreases in grain size or increases in solute concentration, both Al and the ternary addition, lowered the minimum creep rate. In the Mg-Al-Ca alloys, finely distributed Al2Ca precipitates in the matrix also improved the creep resistance by a factor of ten over the same alloy with coarse precipitates. The morphology of the eutectic region was distinct between alloys but did not contribute to difference in creep behavior. Creep strain distribution for the Mg-Al-Ca alloys developed heterogeneously on the scale of the alpha-Mg grains. As

  1. Moldless casting by laser

    NASA Astrophysics Data System (ADS)

    McLean, Marc A.; Shannon, G. J.; Steen, William M.

    1997-09-01

    The principle of laser cladding involves the use of high power carbon-dioxide lasers and powder deposition technology to provide wear and corrosion resistant surface coatings to engineering components. By injecting metal powder into a laser generated melt pool on a moving substrate a solidified metal track can be produced. Deposition of successive tracks produces a multi-layer build. Laser direct casting (LDC) utilizes a coaxial nozzle enabling consistent omnidirectional deposition to produce 3D components from a selection of metal powders. The influence of the principal process parameters over the process features namely, powder catchment efficiency, beam shape and build rates are presented with several successfully generated 3D components. Nickel, stainless steel and satellite powders were deposited at laser powders of 0.4 to 1.4 kW and speeds of 500 to 1000 mm/min achieving build rates of 3 to 9 mm3/s. Fully dense metallurgical structures have been produced with no cracking or porosity and powder catchment efficiencies up to 85% have been achieved.

  2. A Membrane Process for Recycling Die Lube from Wastewater Solutions

    SciTech Connect

    Eric S. Peterson; Jessica Trudeau; Bill Cleary; Michael Hackett; William A. Greene

    2003-04-01

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20–25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the die lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.

  3. A Membrane Process for Recycling Die Lube from Wastewater Solutions

    SciTech Connect

    Peterson, E. S.; Trudeau, J.; Cleary, B.; Hackett, M.; Greene, W. A.

    2003-04-30

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20-25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the die lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.

  4. Flexible, Ultra-Thin, Embedded Die Packaging

    NASA Astrophysics Data System (ADS)

    McPherson, Ryan J.

    As thin, flexible electronics solutions become more robust, their integration into everyday life becomes more likely. With possible applications in wearable electronics, biomedical sensors, or 'peel and stick' sensors, the reliability of these ultra-thin packages becomes paramount. Likewise, the density achievable with stacked packages benefits greatly from thinner die stacks. To this end, techniques previously developed have demonstrated packages with die thinned to approximately 20mum. Covered in this work are methods for thinning and packaging silicon die, as well as information on common materials used in these processes. The author's contribution is a fabrication process for embedding ultra-thin (approximately 10mum) silicon die in polyimide substrates. This method is fully illustrated in Chapter 3 and enumerated in the Appendix as a quick reference. Additionally, thermal cycle testing of passive daisy chain assemblies has shown promising reliability data. Packages were mounted in three alignments: flat, concave, and convex, and placed into thermal shock testing. Finally, the author discusses possible applications for this fabrication process, including the fabrication of multi-chip-modules.

  5. Letter Report: LAW Simulant Development for Cast Stone Screening Test

    SciTech Connect

    Russell, Renee L.; Westsik, Joseph H.; Swanberg, David J.; Eibling, Russell E.; Cozzi, Alex; Lindberg, Michael J.; Josephson, Gary B.; Rinehart, Donald E.

    2013-03-27

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in the HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second facility will be needed for the expected volume of additional LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with waste acceptance criteria for the IDF disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long term performance of the waste form in the IDF disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF. A

  6. Two Piece Compaction Die Design

    SciTech Connect

    Coffey, Ethan N

    2010-03-01

    Compaction dies used to create europium oxide and tantalum control plates were modeled using ANSYS 11.0. Two-piece designs were considered in order to make the dies easier to assemble than the five-piece dies that were previously used. The two areas of concern were the stresses at the interior corner of the die cavity and the distortion of the cavity wall due to the interference fit between the two pieces and the pressure exerted on the die during the compaction process. A successful die design would have stresses less than the yield stress of the material and a maximum wall distortion on the order of 0.0001 in. Design factors that were investigated include the inner corner radius, the value of the interference fit, the compaction force, the size of the cavity, and the outer radius and geometry of the outer ring. The results show that for the europium oxide die, a 0.01 in. diameter wire can be used to create the cavity, leading to a 0.0055 in. radius corner, if the radial interference fit is 0.003 in. For the tantalum die, the same wire can be used with a radial interference fit of 0.001 in. Also, for the europium oxide die with a 0.003 in. interference fit, it is possible to use a wire with a diameter of 0.006 in. for the wire burning process. Adding a 10% safety factor to the compaction force tends to lead to conservative estimates of the stresses but not for the wall distortion. However, when the 10% safety factor is removed, the wall distortion is not affected enough to discard the design. Finally, regarding the europium oxide die, when the cavity walls are increased by 0.002 in. per side or the outer ring is made to the same geometry as the tantalum die, all the stresses and wall distortions are within the desired range. Thus, the recommendation is to use a 0.006 in. diameter wire and a 0.003 in. interference fit for the europium oxide die and a 0.01 in. diameter wire and a 0.001 in. interference fit for the tantalum die. The dies can also be made to have the

  7. Titan Casts Revealing Shadow

    NASA Astrophysics Data System (ADS)

    2004-05-01

    A rare celestial event was captured by NASA's Chandra X-ray Observatory as Titan -- Saturn's largest moon and the only moon in the Solar System with a thick atmosphere -- crossed in front of the X-ray bright Crab Nebula. The X-ray shadow cast by Titan allowed astronomers to make the first X-ray measurement of the extent of its atmosphere. On January 5, 2003, Titan transited the Crab Nebula, the remnant of a supernova explosion that was observed to occur in the year 1054. Although Saturn and Titan pass within a few degrees of the Crab Nebula every 30 years, they rarely pass directly in front of it. "This may have been the first transit of the Crab Nebula by Titan since the birth of the Crab Nebula," said Koji Mori of Pennsylvania State University in University Park, and lead author on an Astrophysical Journal paper describing these results. "The next similar conjunction will take place in the year 2267, so this was truly a once in a lifetime event." Animation of Titan's Shadow on Crab Nebula Animation of Titan's Shadow on Crab Nebula Chandra's observation revealed that the diameter of the X-ray shadow cast by Titan was larger than the diameter of its solid surface. The difference in diameters gives a measurement of about 550 miles (880 kilometers) for the height of the X-ray absorbing region of Titan's atmosphere. The extent of the upper atmosphere is consistent with, or slightly (10-15%) larger, than that implied by Voyager I observations made at radio, infrared, and ultraviolet wavelengths in 1980. "Saturn was about 5% closer to the Sun in 2003, so increased solar heating of Titan may account for some of this atmospheric expansion," said Hiroshi Tsunemi of Osaka University in Japan, one of the coauthors on the paper. The X-ray brightness and extent of the Crab Nebula made it possible to study the tiny X-ray shadow cast by Titan during its transit. By using Chandra to precisely track Titan's position, astronomers were able to measure a shadow one arcsecond in

  8. Study of Thermal Fatigue of H13 Die Steel with Various Surface Treatments

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Ferguson, W. G.; Paine, I. R.

    Surfaces of die-casting dies are subjected to very severe conditions of cyclical thermal and mechanical load, and chemical and mechanical wear. Dies mostly fail due to a combination of heat checking, erosion, corrosion and soldering. It is conceivable that appropriate surface treatments and coatings have a favourable influence on the temperature dependant performance of the surface of the die. The objective of this study was to examine various surface treatments and coatings. including shot peening, nitriding, nitro-carburizing, laser hardening and remelting, electro-spark alloying (deposition) and plasma spraying, under thermal fatigue conditions. Thermal cycling tests were conducted by alternate dipping of treated samples in an LM24 melt and in water. Results and interpretation are presented in this paper. The best thermal fatigue resistance was shown for a double surface treatment of laser hardening plus electro-spark deposition.

  9. Adapt or die?

    PubMed

    Visser, S S; Nel, A H

    1996-12-01

    The worldwide economic recession and the concomitant limited stock of finances have had an influence on the available money of every household and have also inhibited the improvement of socio-economic conditions and medicine. The Reconstruction and Development Programme (RDP) has the objective of improving the living conditions of the people with regard to housing, education, training and health care. The latter seems to be a major problem which has to be addressed with the emphasis on the preventive and promotional aspects of health care. A comprehensive health care system did not come into being property in the past because of the maldistribution of health care services, personnel and differences in culture and health care beliefs and values. The question that now arises, is how to render a quality health care service within the constraints of inadequate financing and resources. A comprehensive literature study has been done with reference to quality health care and financing followed by a survey of existing health services and finances. Recommendations are made about minimum requirements to be accepted if one were to adapt rather than die in terms of the provision of healthcare: the decentralization and rationalization of the administration of health care, the stress on and realization of effective and efficient primary health care, the acceptance of participative management in health providing organizations, the provision of financial management training for health care managers and the application of management accounting principles for the improvement of the efficiency and effectiveness of management. PMID:9283343

  10. Dying and multiplying life.

    PubMed

    Rodríguez-Arias, David

    2014-09-01

    It was only after James P. Lovette's death, in 2006, that I discovered that the twenty-four-year-old colleague and friend with whom I had spent so many afternoons debating issues in organ transplantation had been the first successful child heart transplantee in the world and one of the longest-living survivors of a second transplant. During the years we met, he never even hinted at the fact that three different hearts had beaten in his chest. The revelation that his life had been an almost uninterrupted chain of medical challenges suddenly made me appreciate his quirkiness in a whole new light. Organ transplantation crudely exemplifies a traditional moral dilemma between means and ends: in order to save a life, someone else has to die. Bioethicists involved in this field have the role of identifying the ethical issues surrounding organ donation and helping others to argue in an intelligible and convincing way. In my view, bioethicists have the obligation to foster a discussion as open and transparent as possible on these matters. Still, I sometimes fear that I may be helping to cause unnecessary harms to potential recipients who are desperately waiting for a vital organ. Scholars would be chillingly cold if their quest for truth systematically came at the cost of lives lost. Every life can be meaningful and provide meaning to many others. This is true even with organ recipients, who often have short lives full of considerable suffering. PMID:25231665

  11. Fillability of Thin-Wall Steel Castings

    SciTech Connect

    Robert C. Voigt; Joseph Bertoletti; Andrew Kaley; Sandi Ricotta; Travis Sunday

    2002-07-30

    The use of steel components is being challenged by lighter nonferrous or cast iron components. The development of techniques for enhancing and ensuring the filability of thin-wall mold cavities is most critical for thinner wall cast steel production. The purpose of this research was to develop thin-wall casting techniques that can be used to reliably produce thin-wall castings from traditional gravity poured sand casting processes. The focus of the research was to enhance the filling behavior to prevent misrunds. Experiments were conducted to investigate the influence of various foundry variables on the filling of thin section steel castings. These variables include casting design, heat transfer, gating design, and metal fluidity. Wall thickness and pouring temperature have the greatest effect on casting fill. As wall thickness increases the volume to surface area of the casting increases, which increases the solidification time, allowing the metal to flow further in thicker sect ions. Pouring time is another significant variable affecting casting fill. Increases or decreases of 20% in the pouring time were found to have a significant effect on the filling of thin-wall production castings. Gating variables, including venting, pouring head height, and mold tilting also significantly affected thin-wall casting fill. Filters offer less turbulent, steadier flow, which is appropriate for thicker castings, but they do not enhance thin-wall casting fill.

  12. Microstructural evolution and intermetallic formation in Al-8wt% Si-0.8wt% Fe alloy due to grain refiner and modifier additions

    NASA Astrophysics Data System (ADS)

    Hassani, Amir; Ranjbar, Khalil; Sami, Sattar

    2012-08-01

    An alloy of Al-8wt% Si-0.8wt% Fe was cast in a metallic die, and its microstructural changes due to Ti-B refiner and Sr modifier additions were studied. Apart from usual refinement and modification of the microstructure, some mutual influences of the additives took place, and no mutual poisoning effects by these additives, in combined form, were observed. It was noticed that the dimensions of the iron-rich intermetallics were influenced by the additives causing them to become larger. The needle-shaped intermetallics that were obtained from refiner addition became thicker and longer when adding the modifier. It was also found that α-Al and eutectic silicon phases preferentially nucleate on different types of intermetallic compounds. The more iron content of the intermetallic compounds and the more changes in their dimensions occurred. Formation of the shrinkage porosities was also observed.

  13. Cast adrift: Gortex cast liners allow greater patient activity.

    PubMed

    Dubowitz, Gerald; Miller, Deborah M

    2003-01-01

    Extremity fractures are a common injury, with nearly 1.5 million cases reported in the United States in 1998. Treatment often involves lengthy periods of immobilization. This report outlines the use of a Gortex cast liner by a subject who was able to engage in swimming and scuba diving during the healing process. We report that a Gortex cast liner may be considered for an active patient who is keen to return to limited activities during fracture healing. Apparently because of a lack of knowledge of their existence, physicians currently are underutilizing this method of casting in active patients. The use of Gortex liners elsewhere has been reported to have higher patient and physician satisfaction in both use and performance, with no reported detrimental effects on outcome. PMID:14518627

  14. Instant Casting Movie Theater: The Future Cast System

    NASA Astrophysics Data System (ADS)

    Maejima, Akinobu; Wemler, Shuhei; Machida, Tamotsu; Takebayashi, Masao; Morishima, Shigeo

    We have developed a visual entertainment system called “Future Cast” which enables anyone to easily participate in a pre-recorded or pre-created film as an instant CG movie star. This system provides audiences with the amazing opportunity to join the cast of a movie in real-time. The Future Cast System can automatically perform all the processes required to make this possible, from capturing participants' facial characteristics to rendering them into the movie. Our system can also be applied to any movie created using the same production process. We conducted our first experimental trial demonstration of the Future Cast System at the Mitsui-Toshiba pavilion at the 2005 World Exposition in Aichi Japan.

  15. Effect of molybdenum, vanadium, boron on mechanical properties of high chromium white cast iron in as-cast condition

    NASA Astrophysics Data System (ADS)

    Nurjaman, F.; Sumardi, S.; Shofi, A.; Aryati, M.; Suharno, B.

    2016-02-01

    In this experiment, the effect of the addition carbide forming elements on high chromium white cast iron, such as molybdenum, vanadium and boron on its mechanical properties and microstructure was investigated. The high chromium white cast iron was produced by casting process and formed in 50 mm size of grinding balls with several compositions. Characterization of these grinding balls was conducted by using some testing methods, such as: chemical and microstructure analysis, hardness, and impact test. From the results, the addition of molybdenum, vanadium, and boron on high chromium white cast iron provided a significant improvement on its hardness, but reduced its toughness. Molybdenum induced fully austenitic matrix and Mo2C formation among eutectic M7C3 carbide. Vanadium was dissolved in the matrix and carbide. While boron was played a role to form fine eutectic carbide. Grinding balls with 1.89 C-13.1 Cr-1.32 Mo-1.36 V-0.00051 B in as-cast condition had the highest hardness, which was caused by finer structure of eutectic carbide, needle like structure (upper bainite) matrix, and martensite on its carbide boundary.

  16. Phase transformations in cast duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Kim, Yoon-Jun

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as sigma (sigma) and chi (chi) can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (sigma + chi) formation were analyzed using the Johnson-Mehl-Avrami (JMA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities, a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, a was stabilized with increasing Cr addition and chi by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  17. Phase Transformations in Cast Duplex Stainless Steels

    SciTech Connect

    Yoon-Jun Kim

    2004-12-19

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as {sigma} and {chi} can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase ({sigma} + {chi}) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, {sigma} was stabilized with increasing Cr addition and {chi} by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  18. Factors contributing to the temperature beneath plaster or fiberglass cast material

    PubMed Central

    Hutchinson, Michael J; Hutchinson, Mark R

    2008-01-01

    Background Most cast materials mature and harden via an exothermic reaction. Although rare, thermal injuries secondary to casting can occur. The purpose of this study was to evaluate factors that contribute to the elevated temperature beneath a cast and, more specifically, evaluate the differences of modern casting materials including fiberglass and prefabricated splints. Methods The temperature beneath various types (plaster, fiberglass, and fiberglass splints), brands, and thickness of cast material were measured after they were applied over thermometer which was on the surface of a single diameter and thickness PVC tube. A single layer of cotton stockinette with variable layers and types of cast padding were placed prior to application of the cast. Serial temperature measurements were made as the cast matured and reached peak temperature. Time to peak, duration of peak, and peak temperature were noted. Additional tests included varying the dip water temperature and assessing external insulating factors. Ambient temperature, ambient humidity and dip water freshness were controlled. Results Outcomes revealed that material type, cast thickness, and dip water temperature played key roles regarding the temperature beneath the cast. Faster setting plasters achieved peak temperature quicker and at a higher level than slower setting plasters. Thicker fiberglass and plaster casts led to greater peak temperature levels. Likewise increasing dip-water temperature led to elevated temperatures. The thickness and type of cast padding had less of an effect for all materials. With a definition of thermal injury risk of skin injury being greater than 49 degrees Celsius, we found that thick casts of extra fast setting plaster consistently approached dangerous levels (greater than 49 degrees for an extended period). Indeed a cast of extra-fast setting plaster, 20 layers thick, placed on a pillow during maturation maintained temperatures over 50 degrees of Celsius for over 20

  19. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2014-02-28

    concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leachability indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste

  20. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect

    Fox, K. M.; Edwards, T. A.; Roberts, K. B.

    2013-10-02

    concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leach indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The

  1. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2013-09-17

    concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leach indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The

  2. Yield improvement and defect reduction in steel casting

    SciTech Connect

    Kent Carlson

    2004-03-16

    This research project investigated yield improvement and defect reduction techniques in steel casting. Research and technology development was performed in the following three specific areas: (1) Feeding rules for high alloy steel castings; (2) Unconventional yield improvement and defect reduction techniques--(a) Riser pressurization; and (b) Filling with a tilting mold; and (3) Modeling of reoxidation inclusions during filling of steel castings. During the preparation of the proposal for this project, these areas were identified by the High Alloy Committee and Carbon and Low Alloy Committee of the Steel Founders' Society of America (SFSA) as having the highest research priority to the steel foundry industry. The research in each of the areas involved a combination of foundry experiments, modeling and simulation. Numerous SFSA member steel foundries participated in the project through casting trials and meetings. The technology resulting from this project will result in decreased scrap and rework, casting yield improvement, and higher quality steel castings produced with less iteration. This will result in considerable business benefits to steel foundries, primarily due to reduced energy and labor costs, increased capacity and productivity, reduced lead-time, and wider use and application of steel castings. As estimated using energy data provided by the DOE, the technology produced as a result of this project will result in an energy savings of 2.6 x 10{sup 12} BTU/year. This excludes the savings that were anticipated from the mold tilting research. In addition to the energy savings, and corresponding financial savings this implies, there are substantial environmental benefits as well. The results from each of the research areas listed above are summarized.

  3. Macrovoid Defect Growth during Evaporative Casting of Polymeric Membranes

    NASA Technical Reports Server (NTRS)

    Greenberg, A. R.; Khare, V. P.; Zartman, J.; Krantz, W. B.; Todd, P.

    2003-01-01

    Macrovoid (MV) formation is a significant problem in evaporatively cast polymeric membranes. MVs are large, elongated or teardrop-shaped pores (10-50 micron) that can impair membrane structural integrity. Although MVs have been extensively studied, there is no general agreement on the mechanisms governing MV growth. Recently, our research group has formulated the solutocapillary convection (SC) hypothesis, which contends that MV growth involves three principal forces: a Marangoni force generated by surface tension gradients within the MV interface, a viscous drag force, and a gravitationally induced body force. Two sets of complementary experiments were conducted to test the SC hypothesis. Ground-based videomicroscopy flow-visualization (VMFV) was utilized to measure the flow velocities at the MV-casting solution interface and deep within the casting solution. The measurements were performed with casting solutions containing 10 wt% cellulose acetate (CA), 30 wt% H2O, 60 wt% acetone, and 200- ppm TiO2 particles for flow visualization, and the surface tension was controlled by surfactant addition. Qualitatively, the experiments indicated that MV growth occurs in three distinct phases: (1) a very rapid initial growth period, (2) a much slower growth phase, and (3) absorption of selected MVs into the expanding demixed region. The presence of tracer particles inside the MVs suggests the presence of a convective flow, which transfers the particles from the bulk solution to the MV interior. Although the VMFV experiments did not establish any surfactant effect on the interfacial velocities, a statistically significant effect on the MV number density was observed. In the second set of experiments, membranes were cast aboard a KC-135 aircraft under 0-g and 2-g conditions. Despite careful attention to the design and fabrication of the membrane casting apparatus (MCA), several problems were encountered, the most significant of which was the contamination of the casting

  4. Magnesium-lithium casting alloys

    NASA Technical Reports Server (NTRS)

    Latenko, V. P.; Silchenko, T. V.; Tikhonov, V. A.; Maltsev, V. P.; Korablin, V. P.

    1974-01-01

    The strength properties of magnesium-lithium alloys at room, low, and high temperatures are investigated. It is found that the alloys may have practical application at ambient temperatures up to 100 C, that negative temperatures have a favorable influence on the alloy strength, and that cyclic temperature variations have practically no effect on the strength characteristics. The influence of chemical coatings on corrosion resistance of the MgLi alloys is examined. Several facilities based on pressure casting machines, low-pressure casting machines, and magnetodynamic pumps were designed for producing MgLi alloy castings. Results were obtained for MgLi alloys reinforced with fibers having a volumetric content of 15%.

  5. Strain Rate Dependency of Bronze Metal Matrix Composite Mechanical Properties as a Function of Casting Technique

    NASA Astrophysics Data System (ADS)

    Brown, Lloyd; Joyce, Peter; Radice, Joshua; Gregorian, Dro; Gobble, Michael

    2012-07-01

    Strain rate dependency of mechanical properties of tungsten carbide (WC)-filled bronze castings fabricated by centrifugal and sedimentation-casting techniques are examined, in this study. Both casting techniques are an attempt to produce a functionally graded material with high wear resistance at a chosen surface. Potential applications of such materials include shaft bushings, electrical contact surfaces, and brake rotors. Knowledge of strain rate-dependent mechanical properties is recommended for predicting component response due to dynamic loading or impact events. A brief overview of the casting techniques for the materials considered in this study is followed by an explanation of the test matrix and testing techniques. Hardness testing, density measurement, and determination of the volume fraction of WC particles are performed throughout the castings using both image analysis and optical microscopy. The effects of particle filling on mechanical properties are first evaluated through a microhardness survey of the castings. The volume fraction of WC particles is validated using a thorough density survey and a rule-of-mixtures model. Split Hopkinson Pressure Bar (SHPB) testing of various volume fraction specimens is conducted to determine strain dependence of mechanical properties and to compare the process-property relationships between the two casting techniques. The baseline performances of C95400 bronze are provided for comparison. The results show that the addition of WC particles improves microhardness significantly for the centrifugally cast specimens, and, to a lesser extent, in the sedimentation-cast specimens, largely because the WC particles are more concentrated as a result of the centrifugal-casting process. Both metal matrix composites (MMCs) demonstrate strain rate dependency, with sedimentation casting having a greater, but variable, effects on material response. This difference is attributed to legacy effects from the casting process, namely

  6. Coolant Characteristics and Control in Direct Chill Casting

    SciTech Connect

    2001-10-01

    This project focuses on understanding the fundamentals of coolant behavior and developing strategies to control the cooling rate of DC casting of aluminum ingots. Project partners will conduct a fundamental study to identify various parameters affecting critical heat flux and boiling transition and evaluate the effects of various additives (impurity particulates, sodium and calcium salts, carbonates, bicarbonates, surfactants, etc.).

  7. 18. THIS VIEW, LOOKING NORTHEAST AND UPWARD, SHOWS THE CAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. THIS VIEW, LOOKING NORTHEAST AND UPWARD, SHOWS THE CAST PANEL CONTAINING THE CONSTRUCTION DATE, WHICH IS LOCATED ABOVE THE CENTRAL PIER. ADDITIONAL I-SECTIONS HAVE BEEN USED TO STABILIZE THE BRIDGE SLIPPAGE. - Putnam County Bridge No. 111, Spanning Little Walnut Creek on County Road 50, Greencastle, Putnam County, IN

  8. Quantitative chemical analysis of nickel-chromium dental casting alloys.

    PubMed

    Nagayama, K; Kuroiwa, A; Ando, Y; Hashimoto, H

    1990-01-01

    Twenty-nine brands of dental casting nickel-chromium alloys made in Japan for small castings were analyzed by electron probe X-ray microanalyzer. Nickel-chromium alloys for metal-ceramic application were composed primarily of nickel, chromium, and molybdenum with the exception of one brand. Of the nickel-chromium alloys for inlay, crown, and bridgework applications, 11 of the 22 alloys were up to the standard of the Ministry of Welfare specifications. And additive metal elements of these alloys were molybdenum, iron, copper, manganese, aluminum, silicon, tin, indium, silver, titanium, and gallium. PMID:2134288

  9. Casting propellant in rocket engine

    NASA Technical Reports Server (NTRS)

    Roach, J. E.; Froehling, S. C. (Inventor)

    1976-01-01

    A method is described for casting a solid propellant in the casing of a rocket engine having a continuous wall with a single opening which is formed by leaves of a material which melt at a temperature of the propellant and with curved edges concentric to the curvature of the spherical casing. The leaves are inserted into the spherical casing through the opening forming a core having a greater width than the width of the single opening and with curved peripheral edges. The cast propellant forms a solid mass and then heated to melt the leaves and provide a central opening with radial projecting flutes.

  10. Cementite Solidification in Cast Iron

    NASA Astrophysics Data System (ADS)

    Coronado, J. J.; Sinatora, A.; Albertin, E.

    2014-06-01

    Two hypereutectic cast irons (5.01 pct Cr and 5.19 pct V) were cast and the polished surfaces of test pieces were deep-etched and analyzed via scanning electron microscopy. The results show that graphite lamellae intersect the cementite and a thin austenite film nucleates and grows on the cementite plates. For both compositions, graphite and cementite can coexist as equilibrium phases, with the former always nucleating and growing first. The eutectic carbides grow from the austenite dendrites in a direction perpendicular to the primary plates.

  11. Casting behavior of titanium alloys in a centrifugal casting machine.

    PubMed

    Watanabe, K; Miyakawa, O; Takada, Y; Okuno, O; Okabe, T

    2003-05-01

    Since dental casting requires replication of complex shapes with great accuracy, this study examined how well some commercial titanium alloys and experimental titanium-copper alloys filled a mold cavity. The metals examined were three types of commercial dental titanium [commercially pure titanium (hereinafter noted as CP-Ti), Ti-6Al-4V (T64) and Ti-6Al-7Nb (T67)], and experimental titanium-copper alloys [3%, 5% and 10% Cu (mass %)]. The volume percentage filling the cavity was evaluated in castings prepared in a very thin perforated sheet pattern and cast in a centrifugal casting machine. The flow behavior of the molten metal was also examined using a so-called "tracer element technique." The amounts of CP-Ti and all the Ti-Cu alloys filling the cavity were similar; less T64 and T67 filled the cavity. However, the Ti-Cu alloys failed to reach the end of the cavities due to a lower fluidity compared to the other metals. A mold prepared with specially designed perforated sheets was effective at differentiating the flow behavior of the metals tested. The present technique also revealed that the more viscous Ti-Cu alloys with a wide freezing range failed to sequentially flow to the end of the cavity. PMID:12593955

  12. What Happens When Someone Dies?

    MedlinePlus

    ... and sleepiness Mental confusion Constipation or incontinence Nausea Refusal to eat or drink Each of these symptoms, ... having a "non-hospital DNR" (see Understanding Health Care Decisions ) if the person is dying at home. ...

  13. Rapid prototyping: A paradigm shift in investment casting

    SciTech Connect

    Atwood, C.L.; Maguire, M.C.; Baldwin, M.D.; Pardo, B.T.

    1996-09-01

    The quest for fabricating complex metal parts rapidly and with minimal cost has brought rapid prototyping (RP) processes to the forefront of the investment casting industry. Relatively recent advances in DTM Corporation`s selective laser sintering (SLS) and 3D Systems stereolithography (SL) processes have had a significant impact on the overall quality of patterns produced using these rapid prototyping processes. Sandia National Laboratories uses patterns generated from rapid prototyping processes to reduce the cycle time and cost of fabricating prototype and small lot production parts in support of a program called FASTCAST. The SLS process is used to fabricate patterns from materials such as investment casting wax, polycarbonate, and a new material called TrueForm PM{trademark}. With the timely introduction of each of these materials, the quality of patterns fabricated has improved. The development and implementation of SL QuickCast{trademark} software has enabled this process to produce highly accurate patterns for use in investment casting. This paper focuses on the successes with these new pattern materials and the infrastructure required to cast rapid prototyping patterns successfully. In addition, a brief overview of other applications of rapid prototyping at Sandia will be discussed.

  14. INTERIOR VIEW WITH CASTING MACHINE AND A 4" DUCTILE IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH CASTING MACHINE AND A 4" DUCTILE IRON PIPE BEING EXTRACTED FROM CASTING MACHINE - McWane Cast Iron Pipe Company, Pipe Casting Area, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  15. INTERIOR VIEW OF CASTING MACHINE WITH 4' DUCTILE IRON PIPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF CASTING MACHINE WITH 4' DUCTILE IRON PIPE BEING WEIGHED ON SCALES AT CASTING MACHINE. - McWane Cast Iron Pipe Company, Pipe Casting Area, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  16. INTERIOR VIEW WITH CASTING MACHINE AND A 4' DUCTILE IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH CASTING MACHINE AND A 4' DUCTILE IRON PIPE BEING CENTRIFUGALLY CAST, AS OPERATOR WATCHES TO ENSURE QUALITY. - McWane Cast Iron Pipe Company, Pipe Casting Area, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  17. INTERIOR VIEW WITH CASTING MACHINE COOLING A 20' IRON PIPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH CASTING MACHINE COOLING A 20' IRON PIPE PRIOR TO EXTRACTION FROM CASTING MACHINE. - McWane Cast Iron Pipe Company, Pipe Casting Area, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  18. Advanced Lost Foam Casting technology: 1997 summary report

    SciTech Connect

    1997-12-31

    Previous research made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional research was needed to improve the process and make it more functional in an industrial environment. The current project focused on eight tasks listed as follows: Task 1--pyrolysis defects and sand distortion; Task 2--bronze casting technology; Task 3--steel casting technology; Task 4--sand filling and compaction; Task 5--coating technology; Task 6--precision pattern production; Task 7--computational modeling; and Task 8--project management and technology transfer. This report summarizes the work done under the current contract in all eight tasks in the period of October 1, 1995 through December 31, 1997.

  19. CIR Casting System for making transtibial sockets.

    PubMed

    Wu, Yeongchi; Casanova, Hector R; Reisinger, Kim D; Smith, William K; Childress, Dudley S

    2009-03-01

    This paper describes a new casting system for transtibial socket fabrication. Like the earlier CIR Sand Casting System, the CIR Casting System is based on the 'dilatancy' principle that is similar to the packaging process for coffee beans by which loose beans become a solid mass when a vacuum is applied. The main difference from the CIR Sand Casting System is that the CIR Casting System uses light-weight, polystyrene beads in place of silica sand as the primary material for casting the negative mold. The formed negative mold can be converted into a positive sand model for modification and socket formation. With the new plaster-less casting system, the prosthetist can fabricate a transtibial prosthesis in about one hour. It reduces the set-up cost, overall weight and size of the casting system, and increases portability for service in remote areas. The System also creates minimal waste and is energy-conserving and environmentally-friendly. PMID:19235060

  20. Properties of electroslag castings: Part 1

    SciTech Connect

    Sikka, V.K.

    1984-11-01

    This part of several reports to be published on the properties of electroslag castings of 2 1/4 Cr-1 Mo, 9 Cr-1 Mo, and type 316 stainless steel describes the properties of three electroslag-cast valve bodies of type 316 stainless steel. These castings were electroslag cast at the University of British Columbia in Canada from ORNL-supplied electrodes. The castings have been characterized for surface finish, cracking, solidification structure, chemical analysis, hardness, ferrite distribution, tensile properties, Charpy impact properties, and creep properties. Tensile data on these castings were compared with the American Society of Mechanical Engineers (ASME) code minimum values for sand castings. The creep data were compared with the data on sand castings and the ASME code minimum curve for wrought material. 29 figures, 7 tables.

  1. REFRACTORY DIE FOR EXTRUDING URANIUM

    DOEpatents

    Creutz, E.C.

    1959-08-11

    A die is presented for the extrusion of metals, said die being formed of a refractory complex oxide having the composition M/sub n/O/sub m/R/sub x/O/sub y/ where M is magnesium, zinc, manganese, or iron, R is aluminum, chromic chromium, ferric iron, or manganic manganese, and m, n, x, and y are whole numbers. Specific examples are spinel, magnesium aluminate, magnetite, magnesioferrite, chromite, and franklinite.

  2. Improving care of dying children.

    PubMed Central

    Martinson, I M

    1995-01-01

    Every year about 5,000 children aged 0 to 14 years need hospice care in the United States. Children seem to know that they are dying, although this is difficult for parents to accept. Clear, empathic understanding is needed. Communication with clarity and understanding is imperative with the changes in goals from cure to palliation to comfort. The ideal place for most dying children is at home, where symptoms can be managed as effectively as in a hospital. PMID:7571589

  3. Development and Demonstration of Adanced Tooling Alloys for Molds and Dies

    SciTech Connect

    Kevin M. McHugh; Enrique J. Lavernia

    2006-01-01

    This report summarizes research results in the project Development and Demonstration of Advanced Tooling Alloys for Molds and Dies. Molds, dies and related tooling are used to manufacture most of the plastic and metal products we use every day. Conventional fabrication of molds and dies involves a multiplicity of machining, benching and heat treatment unit operations. This approach is very expensive and time consuming. Rapid Solidifcation Process (RSP) Tooling is a spray-forming technology tailored for producing molds and dies. The appraoch combines rapid solidifcation processing and net-shape materials processing in a single step. An atomized spray of a tool-forming alloy, typically a tool steel, is deposited onto an easy-to-form tool pattern to replicate the pattern's shape and surface features. By so doing, the approach eliminates many machining operations in conventional mold making, significantly reducing cost, lead time and energy. Moreover, rapid solidification creates unique microstructural features by suppressing carbide precipitation and growth, and creating metastable phases. This can result in unique material properties following heat treatment. Spray-formed and aged tool steel dies have exhibited extended life compared to conventional dies in many forming operations such as forging, extrusion and die casting. RSP Tooling technolocy was commercialized with the formation of RSP Tooling, LLC in Solon, Oh.

  4. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography

    NASA Astrophysics Data System (ADS)

    Bae, Chang-Jun

    Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to

  5. Effect of ferrite on cast stainless steels

    SciTech Connect

    Nadezhdin, A.; Cooper, K. ); Timbers, G. . Kraft Pulp Division)

    1994-09-01

    Premature failure of stainless steel castings in bleach washing service is attributed to poor casting quality high porosity and to a high ferrite content, which makes the castings susceptible to corrosion by hot acid chloride solutions. A survey of the chemical compositions and ferrite contents of corrosion-resistant castings in bleach plants at three pulp mills found high [delta]-ferrite levels in the austenitic matrix due to the improper balance between austenite and ferrite stabilizers.

  6. CAST: Effective and Efficient User Interaction for Context-Aware Selection in 3D Particle Clouds.

    PubMed

    Yu, Lingyun; Efstathiou, Konstantinos; Isenberg, Petra; Isenberg, Tobias

    2016-01-01

    We present a family of three interactive Context-Aware Selection Techniques (CAST) for the analysis of large 3D particle datasets. For these datasets, spatial selection is an essential prerequisite to many other analysis tasks. Traditionally, such interactive target selection has been particularly challenging when the data subsets of interest were implicitly defined in the form of complicated structures of thousands of particles. Our new techniques SpaceCast, TraceCast, and PointCast improve usability and speed of spatial selection in point clouds through novel context-aware algorithms. They are able to infer a user's subtle selection intention from gestural input, can deal with complex situations such as partially occluded point clusters or multiple cluster layers, and can all be fine-tuned after the selection interaction has been completed. Together, they provide an effective and efficient tool set for the fast exploratory analysis of large datasets. In addition to presenting Cast, we report on a formal user study that compares our new techniques not only to each other but also to existing state-of-the-art selection methods. Our results show that Cast family members are virtually always faster than existing methods without tradeoffs in accuracy. In addition, qualitative feedback shows that PointCast and TraceCast were strongly favored by our participants for intuitiveness and efficiency. PMID:26390474

  7. Initial solidification phenomena in continuous casting

    NASA Astrophysics Data System (ADS)

    Badri, Adam

    Continuous casting is the main process route for the mass production of steel today, yielding in excess of 560 million tons annually, corresponding to 80% of total steel production worldwide. As with any process, as improvements are introduced and quality is enhanced, there is the ever greater push to reduce problems that were once minor. The restrictions on quality for certain products require that defects be kept to a minimum. Currently, the industry has developed a wealth of experience in how to deal with slabs with oscillation marks. However, these practices are circumventions of the symptoms of the problems, not solutions for the causes. By understanding the formation mechanism, one can then develop practices based on a logical consideration oft he causes. The goals of this current work were to develop a mold simulator that could replicate the surface quality of industrial slabs. The techniques developed allowed for a more detailed examination of the heat transfer interactions during continuous casting, such that the variations of heat flux due to irregular solidification could be observed. It is shown that the mechanisms proposed in the literature are not individually sufficient for the formation of an oscillation mark, but several are necessary and must occur in concert for one to form. A mechanism is proposed for the formation of oscillation marks based upon the experimental results. This hypothesis is formulated as a series of necessary conditions that must be satisfied for an oscillation mark to be formed. This hypothesis is described, and shown to be in agreement with the trends observed and reported in the literature. It can explain both the overflow- and depression-type mark seen in industrial slabs. Additionally, this hypothesis was successfully used as a method of predicting the locations of oscillation marks on cast shells based upon the mold heat transfer measurements.

  8. 14 CFR 27.621 - Casting factors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... approved specifications. Paragraphs (c) and (d) of this section apply to structural castings except... structural loads. (b) Bearing stresses and surfaces. The casting factors specified in paragraphs (c) and (d... at an ultimate load corresponding to a casting factor of 1.25; and (ii) The deformation...

  9. 14 CFR 27.621 - Casting factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... approved specifications. Paragraphs (c) and (d) of this section apply to structural castings except... structural loads. (b) Bearing stresses and surfaces. The casting factors specified in paragraphs (c) and (d... at an ultimate load corresponding to a casting factor of 1.25; and (ii) The deformation...

  10. 14 CFR 29.621 - Casting factors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... approved specifications. Paragraphs (c) and (d) of this section apply to structural castings except... structural loads. (b) Bearing stresses and surfaces. The casting factors specified in paragraphs (c) and (d... at an ultimate load corresponding to a casting factor of 1.25; and (ii) The deformation...

  11. 14 CFR 29.621 - Casting factors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... approved specifications. Paragraphs (c) and (d) of this section apply to structural castings except... structural loads. (b) Bearing stresses and surfaces. The casting factors specified in paragraphs (c) and (d... at an ultimate load corresponding to a casting factor of 1.25; and (ii) The deformation...

  12. 14 CFR 27.621 - Casting factors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... approved specifications. Paragraphs (c) and (d) of this section apply to structural castings except... structural loads. (b) Bearing stresses and surfaces. The casting factors specified in paragraphs (c) and (d... at an ultimate load corresponding to a casting factor of 1.25; and (ii) The deformation...

  13. 14 CFR 29.621 - Casting factors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... approved specifications. Paragraphs (c) and (d) of this section apply to structural castings except... structural loads. (b) Bearing stresses and surfaces. The casting factors specified in paragraphs (c) and (d... at an ultimate load corresponding to a casting factor of 1.25; and (ii) The deformation...

  14. 14 CFR 29.621 - Casting factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... approved specifications. Paragraphs (c) and (d) of this section apply to structural castings except... structural loads. (b) Bearing stresses and surfaces. The casting factors specified in paragraphs (c) and (d... at an ultimate load corresponding to a casting factor of 1.25; and (ii) The deformation...

  15. 14 CFR 27.621 - Casting factors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... approved specifications. Paragraphs (c) and (d) of this section apply to structural castings except... structural loads. (b) Bearing stresses and surfaces. The casting factors specified in paragraphs (c) and (d... at an ultimate load corresponding to a casting factor of 1.25; and (ii) The deformation...

  16. Chimerical categories: caste, race, and genetics.

    PubMed

    Sabir, Sharjeel

    2003-12-01

    Is discrimination based on caste equivalent to racism? This paper explores the complex relationship between genetic, race and caste. It also discusses the debate over the exclusion of a discussion of caste-based discrimination at the 2001 World Conference against Racism, Racial Discrimination, Xenophobia and Related Intolerance held in Durban, South Africa. PMID:14768649

  17. Pressure distribution in centrifugal dental casting.

    PubMed

    Nielsen, J P

    1978-02-01

    Equations are developed for liquid metal pressure in centrifugal dental casting, given the instantaneous rotational velocity, density, and certain dimensions of the casting machine and casting pattern. A "reference parabola" is introduced making the fluid pressure concept more understandable. A specially designed specimen demonstrates experimentally the reference parabola at freezing. PMID:355283

  18. Prediction of Microporosity in Shrouded Impeller Castings

    SciTech Connect

    Viswanathan, S. Nelson, C.D.

    1998-09-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory (ORNL) and Morris Bean and Company was to link computer models of heat and fluid flow with previously developed quality criteria for the prediction of microporosity in a Al-4.5% Cu alloy shrouded impeller casting. The results may be used to analyze the casting process design for the commercial production of 206 o alloy shrouded impeller castings. Test impeller castings were poured in the laboratory for the purpose of obtaining thermal data and porosity distributions. Also, a simulation of the test impeller casting was conducted and the results validated with porosity measurements on the test castings. A comparison of the predicted and measured microporosity distributions indicated an excellent correlation between experiments and prediction. The results of the experimental and modeling studies undertaken in this project indicate that the quality criteria developed for the prediction of microporosity in Al-4.5% Cu alloy castings can accurately predict regions of elevated microporosity even in complex castings such as the shrouded impeller casting. Accordingly, it should be possible to use quality criteria for porosity prediction in conjunction with computer models of heat and fluid flow to optimize the casting process for the production of shrouded impeller castings. Since high levels of microporosity may be expected to result in poor fatigue properties, casting designs that are optimized for low levels of microporosity should exhibit superior fatigue life.

  19. Casting Freedom, 1860-1862

    ERIC Educational Resources Information Center

    Social Education, 2005

    2005-01-01

    Thomas Crawford, an American Sculptor, created the full-size figure of Freedom in clay. Molds were made, from which a full-size positive plaster model was cast in five main sections. This model is on view today in the basement rotunda of the Russell Senate Office Building. Clark Mills was a self-taught American sculptor with experience in casting…

  20. Tape casting of magnesium oxide.

    SciTech Connect

    Ayala, Alicia; Corral, Erica L.; Loehman, Ronald E.; Bencoe, Denise Nora; Reiterer, Markus; Shah, Raja A.

    2008-02-01

    A tape casting procedure for fabricating ceramic magnesium oxide tapes has been developed as a method to produce flat sheets of sintered MgO that are thin and porous. Thickness of single layer tapes is in the range of 200-400 {micro}m with corresponding surface roughness values in the range of 10-20 {micro}m as measured by laser profilometry. Development of the tape casting technique required optimization of pretreatment for the starting magnesium oxide (MgO) powder as well as a detailed study of the casting slurry preparation and subsequent heat treatments for sintering and final tape flattening. Milling time of the ceramic powder, plasticizer, and binder mixture was identified as a primary factor affecting surface morphology of the tapes. In general, longer milling times resulted in green tapes with a noticeably smoother surface. This work demonstrates that meticulous control of the entire tape casting operation is necessary to obtain high-quality MgO tapes.

  1. Graphite Formation in Cast Iron

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.

    1985-01-01

    In the first phase of the project it was proven that by changing the ratio between the thermal gradient and the growth rate for commercial cast iron samples solidifying in a Bridgman type furnace, it is possible to produce all types of graphite structures, from flake to spheroidal, and all types of matrices, from ferritic to white at a certain given level of cerium. KC-135 flight experiments have shown that in a low-gravity environment, no flotation occurs even in spheroidal graphite cast irons with carbon equivalent as high as 5%, while extensive graphite flotation occurred in both flake and spheroidal graphite cast irons, in high carbon samples solidified in a high gravity environment. This opens the way for production of iron-carbon composite materials, with high carbon content (e.g., 10%) in a low gravity environment. By using KC-135 flights, the influence of some basic elements on the solidification of cast iron will be studied. The mechanism of flake to spheroidal graphite transition will be studied, by using quenching experiments at both low and one gravity for different G/R ratios.

  2. ENVIRONMENTAL ASSESSMENT OF IRON CASTING

    EPA Science Inventory

    Sampling of ductile iron casting in green sand molds with phenolic isocyanate cores and in phenol-formaldehyde bound shell molds did not provide definitive proof that environmentally hazardous organic emission occur. Both molding systems produced the same type of major emissions,...

  3. Advanced Lost Foam Casting Technology

    SciTech Connect

    Charles E. Bates; Harry E. Littleton; Don Askeland; Taras Molibog; Jason Hopper; Ben Vatankhah

    2000-11-30

    This report describes the research done under the six tasks to improve the process and make it more functional in an industrial environment. Task 1: Pattern Pyrolysis Products and Pattern Properties Task 2: Coating Quality Control Task 3: Fill and Solidification Code Task 4: Alternate Pattern Materials Task 5: Casting Distortion Task 6: Technology Transfer

  4. Diabetic Neuropathy: What is a Total Contact Cast?

    MedlinePlus

    ... Web version Diabetic Neuropathy | What is a Total Contact Cast? What is a total contact cast? A total contact cast is a cast used to treat ulcers ( ... foot--that's why it is called a total contact cast. The cast helps to protect the skin ...

  5. Food additives

    MedlinePlus

    Food additives are substances that become part of a food product when they are added during the processing or making of that food. "Direct" food additives are often added during processing to: Add nutrients ...

  6. Shallow water model for horizontal centrifugal casting

    NASA Astrophysics Data System (ADS)

    Boháček, J.; Kharicha, A.; Ludwig, A.; Wu, M.

    2012-07-01

    A numerical model was proposed to simulate the solidification process of an outer shell of work roll made by the horizontal centrifugal casting technique. Shallow water model was adopted to solve the 2D average flow dynamics of melt spreading and the average temperature distribution inside the centrifugal casting mould by considering the centrifugal force, Coriolis force, viscous force due to zero velocity on the mould wall, gravity, and energy transport by the flow. Additionally, a 1D sub-model was implemented to consider the heat transfer in the radial direction from the solidifying shell to the mould. The solidification front was tracked by fulfilling the Stefan condition. Radiative and convective heat losses were included from both, the free liquid surface and the outer wall of the mould. Several cases were simulated with the following assumed initial conditions: constant height of the liquid metal (10, 20, and 30 mm), uniform temperature of the free liquid surface (1755 K). The simulation results have shown that while the solidification front remained rather flat, the free surface was disturbed by waves. The amplitude of waves increased with the liquid height. Free surface waves diminished as the solidification proceeded.

  7. Inoculated Slightly Hypereutectic Gray Cast Irons

    NASA Astrophysics Data System (ADS)

    Chisamera, Mihai; Riposan, Iulian; Stan, Stelian; Militaru, Cristina; Anton, Irina; Barstow, Michael

    2012-03-01

    The current experimental investigation in this article was designed to characterize the structure of mold (M) and ladle (L) inoculated, low-S (0.025 wt.% S), low-Al (0.003 wt.% Al), slightly hypereutectic (CE = 4.4-4.5 wt.%) electric melted gray irons, typical for high performance thin-wall castings. It describes the effect of a Ca, Al, Zr-FeSi inoculant addition of 0-0.25 wt.% on structure characteristics, and compares to similar treatments with hypoeutectic irons (3.5-3.6 wt.% CE, 0.025 wt.% S, and 0.003 wt.% Al). A complex structure including primary graphite, austenite dendrites, and eutectic cells is obtained in hypereutectic irons, as the result of nonequilibrium solidification following the concept of a coexisting region. Dendrites appear to be distributed between eutectic cells at higher eutectic undercooling, while in inoculated irons and for lower undercooling, the eutectic cells are "reinforced" by eutectic austenite dendrites. A Zr, Ca, Al-FeSi alloy appears to be an effective inoculant in low S, low Al, gray cast irons, especially for a late inoculation technique, with beneficial effects on both graphite and austenite phases. First, inoculation influenced the nucleation of graphite/eutectic cell, and then their characteristics. A further role of these active elements directly contributed to form nucleation sites for austenite, as complex (Mn,X)S particles.

  8. Advanced Lost Foam Casting Technology - Phase V

    SciTech Connect

    Wanliang Sun; Harry E. Littleton; Charles E. Bates

    2004-04-29

    Previous research, conducted under DOE Contracts DE-FC07-89ID12869, DE-FC07-93ID12230 and DE-FC07-95ID113358 made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional developments were needed to improve the process and make it more functional in industrial environments. The current project focused on eight tasks listed as follows: Task 1--Computational Model for the Process and Data Base to Support the Model; Task 2--Casting Dimensional Accuracy; Task 3--Pattern Production; Task 4--Improved Pattern Materials; Task 5--Coating Control; Task 6--In-Plant Case Studies; Task 7--Energy and the Environmental Data; and Task 8--Technology Transfer. This report summarizes the work done on all tasks in the period of October 1, 1999 through September 30, 2004. The results obtained in each task and subtask are summarized in this Executive Summary and details are provided in subsequent sections of the report.

  9. Mechanical evaluation of a soft cast material.

    PubMed

    Zmurko, M G; Belkoff, S M; Herzenberg, J E

    1997-08-01

    In this study, the structural and material properties of a new semi-rigid material, Scotchcast SoftCast (SCS), were compared to the properties of two rigid materials, plaster of paris (POP) and Scotchcast Plus (SCP). Cylinders and flat beams made from 4, 6, 8, and 10 layers of each casting material were tested in three-point bending and diametrical compression. Initial stiffness and yield force values of SCS casts were significantly lower than for casts of SCP and POP made of the same number of layers. Casts made from SCS may be indicated for non-rigid applications, but not where rigid immobilization is required. PMID:9263288

  10. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  11. Numerical simulation of casting process to assist in defects reduction in complex steel tidal power component

    NASA Astrophysics Data System (ADS)

    Guo, E. J.; Zhao, S. C.; Wang, L. P.; Wu, T.; Xin, B. P.; Tan, J. J.; Jia, H. L.

    2016-03-01

    In order to reduce defects and improve casting quality, ProCAST software is performed to study the solidification process of discharge bowl. Simulated results of original casting process show that the hot tearing is serious at the intersection of blades and outer or inner rings. The shrinkage porosity appears at the bottom of discharge bowl and the transition area of wall thickness. Based on the formation mechanisms of the defects, the structure of chills attached on the outer surface of discharge bowl casting is optimized. The thickness of chills ranges from 25mm to 35mm. The positions of chills corresponded to the outer surface of the T-shaped parts. Compared to the original casting design (without chills), the hot tearing and shrinkage porosity of the discharge bowl are greatly improved with addition of chills.

  12. Implementation of reflected light die-to-die inspection and ReviewSmart to improve 65nm DRAM mask fabrication

    NASA Astrophysics Data System (ADS)

    Kim, Do Young; Cho, Won Il; Park, Jin Hyung; Chung, Dong Hoon; Cha, Byung Chul; Choi, Seong Woon; Han, Woo Sung; Park, Ki Hun; Kim, Nam Wook; Hess, Carl; Ma, Weimin; Kim, David

    2005-11-01

    As the design rule continues to shrink towards 65nm size and beyond the defect criteria are becoming ever more challenging. Pattern fidelity and reticle defects that were once considered as insignificant or nuisance are now becoming significant yield impacting defects. The intent of this study is to utilize the new generation DUV system to compare Die-to-Die Reflected Light inspection and Die-to-Die Transmitted Light Inspection to increase defect detection for optimization of the 65nm node process. In addition, the ReviewSmart will be implemented to help categorically identify systematic tool and process variations and thus allowing user to expedite the learning process to develop a production worthy 65nm node mask process. The learning will be applied to Samsung's pattern inspection strategy, complementing Transmitted Light Inspection, on critical layers of 65 nm node to gain ability to find defects that adversely affect process window.

  13. Process development of thin strip steel casting

    SciTech Connect

    Sussman, R.C.; Williams, R.S.

    1990-12-01

    An important new frontier is being opened in steel processing with the emergence of thin strip casting. Casting steel directly to thin strip has enormous benefits in energy savings by potentially eliminating the need for hot reduction in a hot strip mill. This has been the driving force for numerous current research efforts into the direct strip casting of steel. The US Department of Energy initiated a program to evaluate the development of thin strip casting in the steel industry. In earlier phases of this program, planar flow casting on an experimental caster was studied by a team of engineers from Westinghouse Electric corporation and Armco Inc. A subsequent research program was designed as a fundamental and developmental study of both planar and melt overflow casting processes. This study was arranged as several separate and distinct tasks which were often completed by different teams of researchers. An early task was to design and build a water model to study fluid flow through different designs of planar flow casting nozzles. Another important task was mathematically modeling of melt overflow casting process. A mathematical solidification model for the formation of the strip in the melt overflow process was written. A study of the material and conditioning of casting substrates was made on the small wheel caster using the melt overflow casting process. This report discusses work on the development of thin steel casting.

  14. Emulsion based cast booster - a priming system

    SciTech Connect

    Gupta, R.N.; Mishra, A.K.

    2005-07-01

    This paper explores the potential of emulsion based cast booster to be used as primer to initiate bulk delivered emulsion explosives used in mines. An attempt has been made for comparative study between conventional cast booster and emulsion based cast booster in terms of the initiation process developed and their capability to develop and maintain the stable detonation process in the column explosives. The study has been conducted using a continuous velocity of detonation (VOD) measuring instrument. During this study three blasts have been monitored. In each blast two holes have been selected for study, the first hole being initiated with conventional cast booster while the other one with emulsion based cast booster. The findings of the study advocates that emulsion based cast booster is capable of efficient priming of bulk delivered column explosive with stable detonation process in the column. Further, the booster had advantages over the conventional PETN/TNT based cast booster. 5 refs., 2 figs., 1 tab., 1 photo.

  15. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    SciTech Connect

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  16. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    SciTech Connect

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  17. Multiscale Modeling and Simulation of Directional Solidification Process of Turbine Blade Casting with MCA Method

    NASA Astrophysics Data System (ADS)

    Xu, Qingyan; Zhang, Hang; Qi, Xiang; Liu, Baicheng

    2014-04-01

    Nickel-based superalloy turbine blade castings are widely used as a key part in aero engines. However, due to the complex manufacturing processes, the complicated internal structure, and the interaction between different parts of the turbine blade, casting defects, such as stray grains, often happen during the directional solidification of turbine blade castings, which causes low production yield and high production cost. To improve the quality of the directionally solidified turbine blade castings, modeling and simulation technique has been employed to study the microstructure evolution as well as to optimize the casting process. In this article, a modified cellular automaton (MCA) method was used to simulate the directional solidification of turbine blade casting. The MCA method was coupled with macro heat transfer and micro grain growth kinetics to simulate the microstructure evolution during the directional solidification. In addition, a ray tracing method was proposed to calculate the heat transfer, especially the heat radiation of multiple blade castings in a Bridgman furnace. A competitive mechanism was incorporated into the grain growth model to describe the grain selection behavior phenomena of multiple columnar grains in the grain selector. With the proposed models, the microstructure evolution and related defects could be simulated, while the processing parameters optimized and the blade casting quality guaranteed as well. Several experiments were carried out to validate the proposed models, and good agreement between the simulated and experimental results was achieved.

  18. Characterization of fold defects in AZ91D and AE42 magnesium alloy permanent mold castings

    SciTech Connect

    Bichler, L.; Ravindran, C.

    2010-03-15

    Casting premium-quality magnesium alloy components for aerospace and automotive applications poses unique challenges. Magnesium alloys are known to freeze rapidly prior to filling a casting cavity, resulting in misruns and cold shuts. In addition, melt oxidation, solute segregation and turbulent metal flow during casting contribute to the formation of fold defects. In this research, formation of fold defects in AZ91D and AE42 magnesium alloys cast via the permanent mold casting process was investigated. Computer simulations of the casting process predicted the development of a turbulent metal flow in a critical casting region with abrupt geometrical transitions. SEM and light optical microscopy examinations revealed the presence of folds in this region for both alloys. However, each alloy exhibited a unique mechanism responsible for fold formation. In the AZ91D alloy, melt oxidation and velocity gradients in the critical casting region prevented fusion of merging metal front streams. In the AE42 alloy, limited solubility of rare-earth intermetallic compounds in the {alpha}-Mg phase resulted in segregation of Al{sub 2}RE particles at the leading edge of a metal front and created microstructural inhomogeneity across the fold.

  19. Acting to let someone die.

    PubMed

    McGee, Andrew

    2015-02-01

    This paper examines the recent prominent view in medical ethics that withdrawing life-sustaining treatment (LST) is an act of killing. I trace this view to the rejection of the traditional claim that withdrawing LST is an omission rather than an act. Although that traditional claim is not as problematic as this recent prominent view suggests, my main claim is that even if we accepted that withdrawing LST should be classified as an act rather than as an omission, it could still be classified as letting die rather than killing. Even though omissions are contrasted with acts, letting die need not be, for one can let die by means of acts. The remainder of the paper is devoted to establishing this claim and addresses certain objections to it. PMID:24320715

  20. Clinical management of dying patients.

    PubMed Central

    Gavrin, J; Chapman, C R

    1995-01-01

    Dying is universal, and death should be a peaceful time. Myriad comfort measures are available in the last weeks before life ends. Discussions about end-of-life issues often suffer from lack of informed opinion. Palliative care experts have identified specific somatic and psychological sources of distress for dying patients and their loved ones. Pain, shortness of breath, nausea and vomiting, and fear of abandonment contribute substantially to both physical and psychological discomfort toward the end of life. Simple, effective methods exist for relieving those symptoms. Knowledge about the natural events associated with dying and an informed approach to medical and psychological interventions contribute to systematic and successful comfort care. We describe the origin of physical and psychological distress at the end of life and provide strategies for alleviating many of the discomforts. PMID:7571591

  1. Predicting Pattern Tooling and Casting Dimensions for Investment Casting, Phase III

    SciTech Connect

    Sabau, Adrian S

    2008-04-01

    obtained from numerical simulations. For 17-4PH stainless steel parts, the alloy shrinkage factors were over-predicted, as compared with experimental data. Additional R&D focus was placed on obtaining material property data for filled waxes, waxes that are common in the industry. For the first time in the investment casting industry, the thermo-mechanical properties of unfilled and filled waxes were measured. Test specimens of three waxes were injected at commercial foundries. Rheometry measurement of filled waxes was conducted at ORNL. The analysis of the rheometry data to obtain viscoelastic properties was not completed due to the reduction in the budget of the project (approximately 50% funds were received).

  2. Titanium casting: the surface reaction layer of castings obtained using ultra-low-temperature molds.

    PubMed

    Kikuchi, H; Onouchi, M; Hsu, H C; Kurotani, T; Nishiyama, M

    2001-03-01

    To examine whether the surface reaction layer of titanium castings can be reduced by lowering the mold temperature during casting, we cast titanium at three mold temperatures, including an ultra-low temperature produced by cooling the mold with liquid nitrogen, then measured the tensile strength and elongation of the castings. The titanium was cast using a centrifugal casting machine, and the molds were incinerated according to the manufacturers' instructions. Castings were then made with the molds at 200 degrees C, 600 degrees C, and an ultra-low temperature (-196 degrees C). The castability of titanium cast in the mold at the ultra-low temperature was good. The Vickers hardness near the surface layer of castings decreased as the mold temperature decreased. PMID:11383633

  3. Inner surface roughness of complete cast crowns made by centrifugal casting machines.

    PubMed

    Ogura, H; Raptis, C N; Asgar, K

    1981-05-01

    Six variables that could affect the surface roughness of a casting were investigated. The variables were (1) type of alloy, (2) mold temperature, (3) metal casting temperature, (4) casting machine, (5) sandblasting, and (6) location of each section. It was determined that the training portion of a complete cast crown had rougher surfaces than the leading portion. Higher mold and casting temperatures produced rougher castings, and this effect was more pronounced in the case of the base metal alloy. Sandblasting reduced the roughness, but produced scratched surfaces. Sandblasting had a more pronounced affect on the surface roughness of the base metal alloy cast either at a higher mold temperature or metal casting temperature. The morphology and the roughness profile of the original cast surface differed considerably with the type of alloy used. PMID:7012322

  4. 'Die Zeit' im Konversationsunterricht ('Die Zeit' in a Conversation Class)

    ERIC Educational Resources Information Center

    Becker-Cantarino, Barbel

    1975-01-01

    The German weekly newspaper "Die Zeit" contains a very rich variety of topics and is therefore an inexhaustable source for an exciting conversation class. This article outlines and lists the advantages of a German conversation course organized around this newspaper. (Text is in German.) (TL)

  5. Portable punch and die jig

    DOEpatents

    Lewandowski, Edward F.; Anderson, Petrus A.

    1978-01-01

    A portable punch and die jig includes a U-shaped jig of predetermined width having a slot of predetermined width in the base thereof extending completely across the width of the jig adapted to fit over the walls of rectangular tubes and a punch and die assembly disposed in a hole extending through the base of the jig communicating with the slot in the base of the jig for punching a hole in the walls of the rectangular tubes at precisely determined locations.

  6. Dying radio galaxies in clusters

    NASA Astrophysics Data System (ADS)

    Murgia, M.; Parma, P.; Mack, K.-H.; de Ruiter, H. R.; Fanti, R.; Govoni, F.; Tarchi, A.; Giacintucci, S.; Markevitch, M.

    2011-02-01

    Aims: We present a study of five "dying" nearby (z ≤ 0.2) radio galaxies belonging to both the WENSS minisurvey and the B2 bright catalogs WNB1734+6407, WNB1829+6911, WNB1851+5707, B2 0120+33, and B2 1610+29. Methods: These sources have been selected on the basis of their extremely steep broad-band radio spectra, which strongly indicates that either these objects belong to the rare class of dying radio galaxies or we are observing "fossil" radio plasma remaining from a previous instance of nuclear activity. We derive the relative duration of the dying phase from the fit of a synchrotron radiative model to the radio spectra of the sources. Results: The modeling of the integrated spectra and the deep spectral index images obtained with the VLA confirmed that in these sources the central engine has ceased to be active for a significant fraction of their lifetime, although their extended lobes have not yet completely faded away. We found that WNB1851+5707 is in reality composed of two distinct dying galaxies, which appear blended together as a single source in the WENSS. In the cases of WNB1829+6911 and B2 0120+33, the fossil radio lobes are seen in conjunction with a currently active core. A very faint core is also detected in a MERLIN image of WNB1851+5707a, one of the two dying sources composing WNB1851+5707. We found that all sources in our sample are located (at least in projection) at the center of an X-ray emitting cluster. Conclusions: Our results suggest that the duration of the dying phase for a radio source in a cluster can be significantly higher than that of a radio galaxy in the field, although no firm conclusions can be drawn because of the small number statistics involved. The simplest interpretation of the tendency for dying galaxies to be found in clusters is that the low-frequency radio emission from the fading radio lobes lasts longer if their expansion is somewhat reduced or even stopped. Another possibility is that the occurrence of dying

  7. Die Herz-Lungen-Maschine

    NASA Astrophysics Data System (ADS)

    Krane, Markus; Bauernschmitt, Robert; Lange, Rüdiger

    Das Kapitel der modernen Herzchirurgie mit Einsatz der Herz-Lungen-Maschine am Menschen beginnt am 6. Mai 1953, als J. Gibbon bei einer 18-jährigen Patientin einen angeborenen Defekt in der Vorhofscheidewand verschließt [1]. Mit ersten experimentellen Versuchen zur extrakorporalen Zirkulation begann Gibbon bereits in den 30er Jahren des 20. Jahrhunderts. Die Grundlage für die heute gebräuchliche Rollerpumpe schufen Porter und Bradley mit ihrer "rotary pump“, welche sie 1855 zum Patent anmeldeten. Diese Pumpe wurde von DeBakey und Schmidt modifiziert und entspricht im Wesentlichen noch der heute sich im Routinebetrieb befindlichen Rollerpumpe [2].

  8. MHD technology in aluminum casting

    SciTech Connect

    Kalinichenko, I.

    1984-08-01

    The use of MHD technology in aluminum casting is discussed. Associates of the Latvian Academy of Sciences Institute of Physics developed magnetohydrodynamic units for the Siberian plant. A MHD unit made it possible to free five persons from heavy work at the plant. Labor productivity doubled in this section. With the aid of the magnetic field, the alloy silumin is obtained in only three hours. Specialists of the Irkutsk affiliate of the All-Union Scientific Research and Design Institute of the Aluminum, Magnesium and Electrode Industry are convinced that MHD technology has a bright future. However, this will necessitate the development of new MHD technology for different types of casting facilities, with their specific features taken into account.

  9. 43 CFR 3502.41 - What happens to a permit or lease if the permittee or lessee dies?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... permittee or lessee dies? 3502.41 Section 3502.41 Public Lands: Interior Regulations Relating to Public... Additional Concerns § 3502.41 What happens to a permit or lease if the permittee or lessee dies? If the permittee or lessee dies, BLM will recognize as the record title holder of the permit or lease: (a)...

  10. 43 CFR 3502.41 - What happens to a permit or lease if the permittee or lessee dies?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... permittee or lessee dies? 3502.41 Section 3502.41 Public Lands: Interior Regulations Relating to Public... Additional Concerns § 3502.41 What happens to a permit or lease if the permittee or lessee dies? If the permittee or lessee dies, BLM will recognize as the record title holder of the permit or lease: (a)...

  11. 43 CFR 3502.41 - What happens to a permit or lease if the permittee or lessee dies?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... permittee or lessee dies? 3502.41 Section 3502.41 Public Lands: Interior Regulations Relating to Public... Additional Concerns § 3502.41 What happens to a permit or lease if the permittee or lessee dies? If the permittee or lessee dies, BLM will recognize as the record title holder of the permit or lease: (a)...

  12. 43 CFR 3502.41 - What happens to a permit or lease if the permittee or lessee dies?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... permittee or lessee dies? 3502.41 Section 3502.41 Public Lands: Interior Regulations Relating to Public... Additional Concerns § 3502.41 What happens to a permit or lease if the permittee or lessee dies? If the permittee or lessee dies, BLM will recognize as the record title holder of the permit or lease: (a)...

  13. Experimental Determination of Heat Transfer Within the Metal/Mold Gap in a DC Casting Mold: Part II. Effect of Casting Metal, Mold Material, and Other Casting Parameters

    NASA Astrophysics Data System (ADS)

    Prasad, Arvind; Bainbridge, Ian F.

    2013-07-01

    Extensive experimental studies were conducted to quantify the effect of different parameters that can affect the heat transfer from the metal to the mold during the steady-state phase of DC casting. In the first part previously published, the experimental technique was established and results were reported for the effect of gas type (atmosphere within the mold) and the gap between the metal and the mold. The results showed the significant effect of gas thermal conductivity and the metal-mold gap on the mold wall heat transfer coefficient. In this second publication on heat transfer in the mold wall region of a DC casting mold, the results from the effect of casting temperature, gas flow rate, casting alloy, mold material, and the mold insert material on the mold wall heat transfer coefficient are described. The experiments reported in the current paper show that these additional factors tested do not affect the heat flux through the mold wall to the same extent as the gap size or the gas type. The heat transfer coefficient changes by less than 5 pct when casting temperature is changed by ±25 K, less than 15 pct when the gas flow rate within the metal-mold gap flows at up to 3 LPM, and approximately 30 pct when the mold material is changed from stainless steel to AA601 to copper. Similar results were obtained when different insert materials were used. These results are explained with the help of an electrical analogy of heat transfer and are consistent with the heat transfer theory.

  14. FEM stress analysis of the cooling hole of an HPDC die

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Yamagata, H.; Tanikawa, S.

    2015-06-01

    Cracking at a cooling hole is a typical die failure mode in a high-pressure die-casting (HPDC) die. We simulated the thermal distortion of a die considering the HPDC machine deflection and revealed a stress concentration at the cooling hole. The stress concentration at the cooling hole changes after injection or after spraying and blowing air. The cooling hole top remains in a compression stress state 5, 10, and 20 mm deep from the die surface, but the stress amplitudes are higher when the depths are shallower. It was suggested that cracking takes place due to the high compressive stress and that the shear stress assists the propagation of the initiated crack. On the other hand, the stress condition at the R portion of the cooling hole is always a tensile state, but the mean stress and stress amplitude values were not found to be in the range that causes fatigue fracture. It was demonstrated that the developed analysis is valuable in designing the cooling hole of an HPDC die.

  15. Initial solidification phenomena: Factors affecting heat transfer in strip casting

    NASA Astrophysics Data System (ADS)

    Nolli, Paolo

    In the last few years a few companies have announced the final stage of the commercial development of strip casting of steels. In strip casting heat extraction and productivity are limited by the thermal resistance at the interface between processed material and moving mold (rolls for twin-roll strip casters). Among many factors influencing interfacial heat transfer, films of various composition, either formed during casting or deposited before casting on the surface of the rolls, melt superheat and gas atmosphere composition can have a significantly positive or negative effect on the achieved heat transfer rate. From an industrial point view, methods to improve interfacial heat transfer rates must be found, in order to increase productivity. The objective of this research project is to assess if it is feasible to improve heat transfer rates during solidification of steel in direct contact with a copper mold: (1) by the application of thin coatings on the mold surface; (2) by adding a reactive gas species containing sulfur in the gas shrouding where casting is performed. To address the former, solidification experiments were performed with the mold surface either kept uncoated or coated with coatings of different compositions. To address the latter, the experiments were performed in gas shrouding atmospheres with or without sulphydric acid. It was observed that the resulting heat extraction rates were improved by the application of certain coatings and by the addition of H2S to the gas atmosphere. These findings prove that the application of coatings and the use of small amounts of reactive gaseous species containing sulfur may be methods to increase productivity in strip casting. The effect of superheat and the effect of naturally deposited oxides (Mn-oxide) were also evaluated experimentally. A numerical study of the effect of the critical undercooling on the productivity of a twin-roll strip caster showed that the maximum allowable casting speed can be increased

  16. Numerical simulation of centrifugal casting of pipes

    NASA Astrophysics Data System (ADS)

    Kaschnitz, E.

    2012-07-01

    A numerical simulation model for the horizontal centrifugal pipe casting process was developed with the commercial simulation package Flow3D. It considers - additionally to mass, energy and momentum conservation equations and free surface tracking - the fast radial and slower horizontal movement of the mold. The iron inflow is not steady state but time dependent. Of special importance is the friction between the liquid and the mold in connection with the viscosity and turbulence of the iron. Experiments with the mold at controlled revolution speeds were carried out using a high-speed camera. From these experiments friction coefficients for the description of the interaction between mold and melt were obtained. With the simulation model, the influence of typical process parameters (e.g. melts inflow, mold movement, melt temperature, cooling media) on the wall thickness of the pipes can be studied. The comparison to results of pipes from production shows a good agreement between simulation and reality.

  17. Fractal structures in casting films from chlorophyll

    NASA Astrophysics Data System (ADS)

    Pedro, G. C.; Gorza, F. D. S.; de Souza, N. C.; Silva, J. R.

    2014-04-01

    Chlorophyll (Chl) molecules are important because they can act as natural light-harvesting devices during the photosynthesis. In addition, they have potential for application as component of solar cell. In this work, we have prepared casting films from chlorophyll (Chl) and demonstrated the occurrence of fractal structures when the films were submitted to different concentrations. By using optical microscopy and the box-count method, we have found that the fractal dimension is Df = 1.55. This value is close to predicted by the diffusion-limited aggregation (DLA) model. This suggests that the major mechanism - which determines the growth of the fractal structures from Chl molecules - is the molecular diffusion. Since the efficiencies of solar cells depend on the morphology of their interfaces, these finds can be useful to improve this kind of device.

  18. Energy Saving Melting and Revert Reduction (E-SMARRT): Precision Casting of Steel

    SciTech Connect

    Dr. Von L. Richards

    2011-09-30

    of the casting opposite the gate. (3) It is recommended that lost foam castings in steel be gated for a quiescent fill in an empty cavity mold to prevent foam occlusion defects from the collapse mode. The energy benefit is primarily in yield savings and lower casting weight per function due to elimination of draft and parting lines for the larger lost foam castings. For the smaller investment casting, scrap losses due to shell cracking will be reduced. Both of these effects will reduce the metal melted per good ton of castings. There will also be less machine stock required per casting which is a yield savings and a small additional energy savings in machining. Downstream savings will come from heavy truck and railroad applications. Application of these processes to heavy truck castings will lighten the heavy truck fleet by about ten pounds per truck. Using ten years to achieve full penetration of the truck fleet at linear rate this will result in a fuel savings of 131 trillion BTU over ten years.

  19. Effects of molten aluminum on H13 dies and coatings

    NASA Astrophysics Data System (ADS)

    Yu, M.; Shivpuri, R.; Rapp, R. A.

    1995-04-01

    The effects of molten aluminum casting alloy A390 on a commercially heat treated H13 die steel and two wear-resistant coatings, Cr23C6 and TiN, were investigated by an accelerated corrosion test. The H13 steel suffered severe corrosion due to the rapid formation of intermetallic compounds. The formation of multilayer intermetallic compounds and the simultaneous dissociation of the intermetallic compound τ6 (Al4FeSi) were attributed to the fast dissolution of H13 steels into the melt. This dissolution of the H13 steel was accelerated dramatically by turbulence and an increase in melt temperature. Significant improvement in corrosion resistance was achieved for the H13 steel coated by Cr23C6 via a pack cementation process.

  20. Extrusion strains produced in cast and in powder aluminum billets

    SciTech Connect

    Peacock, H B; Berghaus, D G

    1986-01-01

    A full-field solution for strains produced during axisymmetric extrusion may be obtained through a study of laminar flowlines which are produced as the material flows through the die. A flow function is mathematically constructed, using the flowlines, to determine the material flow rate along the given path. Velocities and strain-rates are determined along the flowlines. Flowline curves are determined experimentally from the stamped rectangular grid which was originally placed on an axial plane in a pre-extruded billet. For the powder metal billet, density values must also be determined experimentally. The method has been applied to the axisymmetric extrusion of cast and powder aluminum billets. Material deformation was studied for the powdered metal billet using the Scanning Electron Microscope.

  1. Robert Merton Dies at 92

    ERIC Educational Resources Information Center

    Snell, Joel C.

    2006-01-01

    This article features Robert Merton, who died recently at age 92. Merton came into this world as a Jewish baby named Meyer Schkolnick. He lived in South Philly where his parents wrenched a living as blue-collar workers. Merton chose an Anglicized name to move into the Yankee dominated America of the 20's and 30's. At Harvard, he studied under…

  2. Attitudes on Death and Dying.

    ERIC Educational Resources Information Center

    Andrus, Charles E.

    This paper explored attitudes toward death and dying revealed through interviews with members of the clergy, the medical profession, funeral directors, nursing home residents, and selected others. The sampling was small and results are not intended to be representative of the groups to which these people belong. Rather, the study may be used as a…

  3. Integrated Forming Simulations and Die Structural Analysis for Optimal Die Designs

    NASA Astrophysics Data System (ADS)

    Aitharaju, Venkat; Liu, Malcolm; Dong, Jennifer; Zhang, Jimmy; Wang, Chuan-tao

    2005-08-01

    After gaining a huge success in applying stamping simulations and formability analysis to validate die face developments, GM moves forward to winning total manufacturability in stamping process. Of which, ensuring die structure integrity and minimizing weight is one of the important initiatives. Stamping die design (or solid modeling of stamping dies) was traditionally conducted by following the die design manuals and standards. For any design changes beyond the standards, however, there are no math-based tools available to die designers to verify the outcome of the changes. Die structural analysis (DSA) provides a math-tool to validate the design changes and quantify the safety factors. Several years ago, GM Manufacturing Engineering — Die Center started die structural analysis to meet the increasing demands of customer needs in various areas: (1) to validate design changes; (2) to identify root cause of die breakage during the tryout and stamping operations and propose repair schemes; (3) to optimize the die design for weight reduction; (4) to improve press throughput via optimizing the scrap chute openings, and (5) to provide a math-based tool to validate revisions to the current die design standards. In the integrated forming and die structural analysis, after successful line die surface developments, the forming loads (binder force, pad force, and forming tonnages) are extracted from forming simulations and applied to solid die members for structural analyses of stress, strains, and deflections. In the past few years, Die Center conducted static, dynamic and fatigue analysis for many dies that covers the die design changes requested by die design, die construction and stamping plants. This paper presents some fundamentals and issues of integrated forming and die structural analysis and illustrates the significant impact of die structural analysis on die design, die construction and production stamping.

  4. Low-gravity solidification of cast iron and space technology applications

    NASA Technical Reports Server (NTRS)

    Graham, J. A.

    1984-01-01

    Two types of analyses relating to cast iron solidification were conducted. A theoretical analysis using a computer to predict the cooling versus time relationship throughout the test specimen was performed. Tests were also conducted in a ground-based laboratory to generate a cooling time curve for cast iron. In addition, cast iron was cooled through the solidification period on a KC-135 and an F-104 aircraft while these aircraft were going through a period of low gravity. Future subjects for low gravity tests are enumerated.

  5. Anisotropic constitutive model and FE simulation of the sintering process of slip cast traditional porcelain

    NASA Astrophysics Data System (ADS)

    Sarbandi, B.; Besson, J.; Boussuge, M.; Ryckelynck, D.

    2010-06-01

    Slip cast ceramic components undergo both sintering shrinkage and creep deformation caused by gravity during the firing cycle. In addition sintering may be anisotropic due to the development of preferential directions during slip casting. Both phenomena induce complex deformations of parts which make the design of casting molds difficult. To help solving this problem, anisotropic constitutive equations are proposed to represent the behavior of the ceramic compacts during sintering. The model parameters are identified using tests allowing to characterize both sintering and creep. The model was implemented in a finite element software and used to simulate the deformation of a traditional ceramic object during sintering.

  6. Anisotropic constitutive model and FE simulation of the sintering process of slip cast traditional porcelain

    SciTech Connect

    Sarbandi, B.; Besson, J.; Boussuge, M.; Ryckelynck, D.

    2010-06-15

    Slip cast ceramic components undergo both sintering shrinkage and creep deformation caused by gravity during the firing cycle. In addition sintering may be anisotropic due to the development of preferential directions during slip casting. Both phenomena induce complex deformations of parts which make the design of casting molds difficult. To help solving this problem, anisotropic constitutive equations are proposed to represent the behavior of the ceramic compacts during sintering. The model parameters are identified using tests allowing to characterize both sintering and creep. The model was implemented in a finite element software and used to simulate the deformation of a traditional ceramic object during sintering.

  7. Biological profiling of the ToxCast Phase II Chemical Library in Primary Human Cell Co-Culture Systems

    EPA Science Inventory

    The U.S. EPA’s ToxCast research project was developed to address the need for high-throughput testing of chemicals and a pathway-based approach to hazard screening. Phase I of ToxCast tested over 300 unique compounds (mostly pesticides and antimicrobials). With the addition of Ph...

  8. Void-free epoxy castings for cryogenic insulators and seals

    SciTech Connect

    Quirk, J.F.

    1983-01-01

    The design of the Westinghouse Magnet for the Oak Ridge National Laboratory's Large Coil Program (LCP) incorporates a main lead bushing which transmits heat-leak loads by conduction to the supercritical helium stream. The bushing, which consists of epoxy resin cast about a copper conductor, must be electrically insulated, vacuum tight and be capable of withstanding the stresses encountered in cryognic service. The seal design of the bushing is especially important; leakage from either the helium system or the external environment into the vacuum will cause the magnet to quench. Additionally, the epoxy-resin casting must resist mechanical loads caused by the weight of leads attached to the bushing and thermal stresses transmitted to the epoxy via the conductor. The epoxy resin is cast about the conductor in such a way as to provide the required vacuum tight seal. The technique by which this is accomplished is reviewed. Equally important is the elimination of voids in the epoxy which will act as stress-concentrating discontinuities during cooling to or warming from 4K. The types of voids that could be expected and their causes are described. The paper reviews techniques employed to eliminate voids within the cast-resin portion of the bushing.

  9. Marginal accuracy of nickel chromium copings fabricated by conventional and accelerated casting procedures, produced with ringless and metal ring investment procedures: A comparative in vitro study

    PubMed Central

    Alex, Deepa; Shetty, Y. Bharath; Miranda, Glynis Anita; Prabhu, M. Bharath; Karkera, Reshma

    2015-01-01

    Background: Conventional investing and casting techniques are time-consuming and usually requires 2–4 h for completion. Accelerated nonstandard, casting techniques have been reported to achieve similar quality results in significantly less time, namely, in 30–40 min. During casting, it is essential to achieve compensation for the shrinkage of solidifying alloy by investment expansion. The metal casting ring restricts the thermal expansion of investment because the thermal expansion of the ring is lesser than that of the investment. The use of casting ring was challenged with the introduction of the ringless technique. Materials and Methods: A total of 40 test samples of nickel chromium (Ni-Cr) cast copings were obtained from the patterns fabricated using inlay casting wax. The 20 wax patterns were invested using metal ring and 20 wax patterns were invested using the ringless investment system. Of both the groups, 10 samples underwent conventional casting, and the other 10 underwent accelerated casting. The patterns were casted using the induction casting technique. All the test samples of cast copings were evaluated for vertical marginal gaps at four points on the die employing a stereo optical microscope. Results: The vertical marginal discrepancy data obtained were tabulated. Mean and standard deviations were obtained. Vertical discrepancies were analyzed using analysis of variance and Tukey honestly significantly different. The data obtained were found to be very highly significant (P < 0.001). Mean vertical gap was the maximum for Group II (53.64 μm) followed by Group IV (47.62 μm), Group I (44.83 μm) and Group III (35.35 μm). Conclusion: The Ni-Cr cast copings fabricated with the conventional casting using ringless investment system showed significantly better marginal fit than that of cast copings fabricated from conventional and accelerated casting with metal ring investment and accelerated casting using ringless investment since those copings had

  10. Food additives.

    PubMed

    Berglund, F

    1978-01-01

    The use of additives to food fulfils many purposes, as shown by the index issued by the Codex Committee on Food Additives: Acids, bases and salts; Preservatives, Antioxidants and antioxidant synergists; Anticaking agents; Colours; Emulfifiers; Thickening agents; Flour-treatment agents; Extraction solvents; Carrier solvents; Flavours (synthetic); Flavour enhancers; Non-nutritive sweeteners; Processing aids; Enzyme preparations. Many additives occur naturally in foods, but this does not exclude toxicity at higher levels. Some food additives are nutrients, or even essential nutritents, e.g. NaCl. Examples are known of food additives causing toxicity in man even when used according to regulations, e.g. cobalt in beer. In other instances, poisoning has been due to carry-over, e.g. by nitrate in cheese whey - when used for artificial feed for infants. Poisonings also occur as the result of the permitted substance being added at too high levels, by accident or carelessness, e.g. nitrite in fish. Finally, there are examples of hypersensitivity to food additives, e.g. to tartrazine and other food colours. The toxicological evaluation, based on animal feeding studies, may be complicated by impurities, e.g. orthotoluene-sulfonamide in saccharin; by transformation or disappearance of the additive in food processing in storage, e.g. bisulfite in raisins; by reaction products with food constituents, e.g. formation of ethylurethane from diethyl pyrocarbonate; by metabolic transformation products, e.g. formation in the gut of cyclohexylamine from cyclamate. Metabolic end products may differ in experimental animals and in man: guanylic acid and inosinic acid are metabolized to allantoin in the rat but to uric acid in man. The magnitude of the safety margin in man of the Acceptable Daily Intake (ADI) is not identical to the "safety factor" used when calculating the ADI. The symptoms of Chinese Restaurant Syndrome, although not hazardous, furthermore illustrate that the whole ADI

  11. Magnetic properties of bulk nanocomposite permanent magnets based on NdDyFeB alloys with additions

    NASA Astrophysics Data System (ADS)

    Marinescu, M.; Chiriac, H.; Grigoras, M.

    2005-04-01

    NdFeB-based bulk nanocomposite permanent magnets with addition of Mo, Ti, Zr, Cu, Nb, V, respectively, Dy substitution for Nd and Co substitution for Fe, in form of rods with diameters ranging from 0.5 to 0.8 mm, have been prepared by devitrification annealing of amorphous and partly-amorphous precursors produced by injection die casting. A fully amorphous structure was obtained for rods with the diameter as large as 0.6 mm. The best-achieved magnetic properties have been obtained for the optimum devitrification annealed Nd 3Dy 1Fe 66Co 10B 20 rods with 0.6 mm diameter and are: iH c=296 kA/m, μ0Mr=0.86 T, Mr/ Mmax=0.65 and ( BH) max=74 kJ/m 3.

  12. Method for casting thin metal objects

    DOEpatents

    Pehrson, Brandon P; Moore, Alan F

    2015-04-14

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  13. Clean Cast Steel Technology, Phase IV

    SciTech Connect

    Charles E. Bates

    2003-02-24

    The objective of the Clean Cast Steel Technology Program was to improve casting product quality by removing or minimizing oxide defects and to allow the production of higher integrity castings for high speed machining lines. Previous research has concentrated on macro-inclusions that break, chip, or crack machine tool cutters and drills and cause immediate shutdown of the machining lines. The overall goal of the project is to reduce the amount of surface macro-inclusions and improve the machinability of steel castings. Macro-inclusions and improve the machinability of steel castings. Macro-inclusions have been identified by industrial sponsors as a major barrier to improving the quality and marketability of steel castings.

  14. Gating of Permanent Molds for ALuminum Casting

    SciTech Connect

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-03-30

    This report summarizes a two-year project, DE-FC07-01ID13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings.

  15. Properties of electroslag castings. Part 2

    SciTech Connect

    Sikka, V.K.

    1985-08-01

    The quality, response to heat treatment, and mechanical properties of electroslag-cast step blocks from Cameron Iron Works and from Selectrotech, Inc., are described. The mechanical properties include Charpy impact, tensile, and creep. Properties of the electroslag castings were compared to determine the differences between casters, between wrought and electroslag cast properties, and between sand and electroslag castings. Results are presented to show that the electroslag casting process has a potential for producing properties similar to those of wrought material for 2 1/4 Cr-1 Mo and 9 Cr-1 Mo steel and similar to those of sand-cast material for type 316 stainless steel. 5 refs., 46 figs., 4 tabs.

  16. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Use of Laser Engineered Net Shaping for Rapid Manufacturing of Dies with Protective Coatings and Improved Thermal Management

    SciTech Connect

    Brevick, Jerald R.

    2014-06-13

    In the high pressure die casting process, molten metal is introduced into a die cavity at high pressure and velocity, enabling castings of thin wall section and complex geometry to be obtained. Traditional die materials have been hot work die steels, commonly H13. Manufacture of the dies involves machining the desired geometry from monolithic blocks of annealed tool steel, heat treating to desired hardness and toughness, and final machining, grinding and polishing. The die is fabricated with internal water cooling passages created by drilling. These materials and fabrication methods have been used for many years, however, there are limitations. Tool steels have relatively low thermal conductivity, and as a result, it takes time to remove the heat from the tool steel via the drilled internal water cooling passages. Furthermore, the low thermal conductivity generates large thermal gradients at the die cavity surfaces, which ultimately leads to thermal fatigue cracking on the surfaces of the die steel. The high die surface temperatures also promote the metallurgical bonding of the aluminum casting alloy to the surface of the die steel (soldering). In terms of process efficiency, these tooling limitations reduce the number of die castings that can be made per unit time by increasing cycle time required for cooling, and increasing downtime and cost to replace tooling which has failed either by soldering or by thermal fatigue cracking (heat checking). The objective of this research was to evaluate the feasibility of designing, fabricating, and testing high pressure die casting tooling having properties equivalent to H13 on the surface in contact with molten casting alloy - for high temperature and high velocity molten metal erosion resistance – but with the ability to conduct heat rapidly to interior water cooling passages. A layered bimetallic tool design was selected, and the design evaluated for thermal and mechanical performance via finite element analysis. H13 was

  17. Directional Solidification of Nodular Cast Iron

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Stefanescu, D. M.; Hendrix, J. C.

    1987-01-01

    Cerium enhances formation of graphite nodules. Preliminary experiments in directional solidification of cast iron shows quantitative correlation of graphite microstructure with growth rate and thermal gradient, with sufficient spheroidizing element to form spheroidal graphite under proper thermal conditions. Experimental approach enables use of directional solidification to study solidification of spheriodal-graphite cast iron in low gravity. Possible to form new structural materials from nodular cast iron.

  18. A Benchmark Study on Casting Residual Stress

    SciTech Connect

    Johnson, Eric M.; Watkins, Thomas R; Schmidlin, Joshua E; Dutler, S. A.

    2012-01-01

    Stringent regulatory requirements, such as Tier IV norms, have pushed the cast iron for automotive applications to its limit. The castings need to be designed with closer tolerances by incorporating hitherto unknowns, such as residual stresses arising due to thermal gradients, phase and microstructural changes during solidification phenomenon. Residual stresses were earlier neglected in the casting designs by incorporating large factors of safety. Experimental measurement of residual stress in a casting through neutron or X-ray diffraction, sectioning or hole drilling, magnetic, electric or photoelastic measurements is very difficult and time consuming exercise. A detailed multi-physics model, incorporating thermo-mechanical and phase transformation phenomenon, provides an attractive alternative to assess the residual stresses generated during casting. However, before relying on the simulation methodology, it is important to rigorously validate the prediction capability by comparing it to experimental measurements. In the present work, a benchmark study was undertaken for casting residual stress measurements through neutron diffraction, which was subsequently used to validate the accuracy of simulation prediction. The stress lattice specimen geometry was designed such that subsequent castings would generate adequate residual stresses during solidification and cooling, without any cracks. The residual stresses in the cast specimen were measured using neutron diffraction. Considering the difficulty in accessing the neutron diffraction facility, these measurements can be considered as benchmark for casting simulation validations. Simulations were performed using the identical specimen geometry and casting conditions for predictions of residual stresses. The simulation predictions were found to agree well with the experimentally measured residual stresses. The experimentally validated model can be subsequently used to predict residual stresses in different cast

  19. Cast Process Simulation for the Rapid Tooling.

    NASA Astrophysics Data System (ADS)

    Zhang, Renji; Jiang, Rui; Liu, Yuan; Yan, Yongnian

    1997-03-01

    A major use for RP (Rapid Prototyping) now is in the foundry industry. It is so called RT (Rapid Tooling). Models are used as patterns for sand and plaster casting or used as sacrificial models in investment casting in the RT. In order to improve casting quality, a cast process simulation program for the RT has been made. This simulation depends on analysis of size accuracy parameters. The result could be came back into the CAD forming program. After that a new CAD data have been adopted in RT process. Then the RT technology could have sufficient accuracy in fabrication. Work supported by the Natural Science Foundation of China (NSFC).

  20. Casting copper to tungsten for high power arc lamp cathodes

    NASA Technical Reports Server (NTRS)

    Will, H. A.

    1973-01-01

    A method for making 400-kW arc lamp cathodes is described. The cathodes are made by casting a 1.75-in. diameter copper body onto a thoriated tungsten insert. The addition of 0.5-percent nickel to the copper prevents voids from forming at the copper-tungsten interface. Cathodes made by this process have withstood more than 110 hours of operation in a 400-kW arc lamp.

  1. Release of ToxCastDB and ExpoCastDB databases

    EPA Science Inventory

    EPA has released two databases - the Toxicity Forecaster database (ToxCastDB) and a database of chemical exposure studies (ExpoCastDB) - that scientists and the public can use to access chemical toxicity and exposure data. ToxCastDB users can search and download data from over 50...

  2. Guide for extrusion dies eliminates straightening operation

    NASA Technical Reports Server (NTRS)

    Gyorgak, C. A.; Hoover, R. J.

    1964-01-01

    To prevent distortion of extruded metal, a guidance assembly is aligned with the die. As the metal emerges from the extrusion dies, it passes directly into the receiver and straightening tube system, and the completed extrusion is withdrawn.

  3. Control of Cast Iron Microstructure

    NASA Technical Reports Server (NTRS)

    Graham, J.; Lillybeck, N.; Franco, N.; Stefanescu, D. M.

    1985-01-01

    The use of microgravity for industrial research in the processing of cast iron was investigated. Solidification experiments were conducted using the KC-135 and F-104 aircraft, and an experiment plan was developed for follow-on experiments using the Shuttle. Three areas of interest are identified: (1) measurement of thermophysical properties in the melt; (2) understanding of the relative roles of homogeneous nucleation, grain multiplication, and innocultants in forming the microstructure; and (3) exploring the possibility of obtaining an aligned graphite structure in hypereutectic Fe, Ni, and Co.

  4. Microdefects in cast multicrystalline silicon

    SciTech Connect

    Wolf, E.; Klinger, D.; Bergmann, S.

    1995-08-01

    The microdefect etching behavior of cast multicrystalline BAYSIX and SILSO samples is mainly the same as that of EFG silicon, in spite of the very different growth parameters applied to these two techniques and the different carbon contents of the investigated materials. Intentional decorating of mc silicon with copper, iron and gold did not influence the results of etching and with help of infrared transmission microscopy no metal precipitates at the assumed microdefects could be established. There are many open questions concerning the origin of the assumed, not yet doubtless proved microdefects.

  5. [Dying with cancer: Hollywood lessons].

    PubMed

    Niemeyer, Fernanda; Kruse, Maria Henriqueta Luce

    2013-12-01

    The study attempts to understand how dying from cancer is portrayed by five movies produced in Hollywood between 1993 and 2006. Based on the cultural studies and their post-structuralism version and supported by the notions of discourse and subjectivity, as proposed by philosopher Michel Foucault, we suggest one of the possible readings of the movie picture corpus. We assess how the movie picture discourse acts as a cultural pedagogy that produces ways of seeing dying with cancer: immortalizing the healthy body image, silencing death, taking care of the dead body and, finally, accepting death. Our proposal is intended to stimulate reflections that may contribute to care and education in nursing. PMID:25080714

  6. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  7. Phosphazene additives

    SciTech Connect

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  8. Development of a New Membrane Casting Apparatus for Studying Macrovoid Defects in Low-G

    NASA Technical Reports Server (NTRS)

    Lee, Hanyong; Hwang, Sun-Tak; Krantz, William B.; Greenberg, Alan R.; Khare, Vivek; Zartman, Jeremiah; Todd, Paul W.

    2002-01-01

    include provision for removing the membranes from the casting wells in a less destructive manner. This was accomplished by using a slit geometry for the casting well that permitted disassembly for removal of the cast membrane. The materials used in the construction of this casting apparatus were chosen to insure wetting at the side walls and to maintain precise control of the thickness of the polymer solution in the casting well. An additional provision in this new casting apparatus is the ability to carry out both wet- as well as dry-casting. As such, this apparatus permitted the first studies of the wet-casting of polymeric membranes in low-g. Both wet- and dry-casting experiments on NASA's KC-135 research aircraft employing this new membrane-casting apparatus are scheduled in July 2002. The morphology of the resulting membranes will be characterized using an environmental scanning electron microscope (ESEM). The results of these low-g studies will be reported later.

  9. RSP Tooling - A Revolutionary New Process to Manufacture Die Cast Production Tooling in Prototype Timing

    SciTech Connect

    Mc Hugh, Kevin Matthew; Knirsch, James; Folkestad, James

    2002-10-01

    RSP Tooling, LLC (Solon, OH) has signed an exclusive license with the Idaho National Engineered and Environmental Laboratory - INEEL (Idaho Falls, ID) - for the development and commercialization of the rapid solidification process within the field of tooling (RSP tooling), which is a recent revolution in the moldmaking industry. The first production machine is scheduled for delivery this year. This machine will be able to produce a 6 x 6 x 4 inch tool with finished cavities in two hours. Such a production rate is revolutionary, and will likely change the tooling industry dramatically.

  10. Killing, letting die and euthanasia.

    PubMed

    Husak, D N

    1979-12-01

    Medical ethicists debate whether or not the moral assessment of cases of euthanasia should depend on whether the patient is 'killed' or 'allowed to die'. The usual presupposition is that a clear distinction between killing and letting die can be drawn so that this substantive question is not begged. I contend that the categorisation of cases of instances of killing rather than as instances of letting die depends in part on a prior moral assessment of the case. Hence is it trivially rather than substantively true that the distinction has moral significance. But even if a morally neutral (ie non-question begging) distinction could be drawn, its application to the euthanasia controversy is problematic. I illustrate the difficulties of employing this distinction to reach moral conclusions by critically discussing Philippa Foot's recent treatment of euthanasia. I conclude that even if an act of euthanasia is an instance of killing, and there exists a prima facie moral duty not to kill, and no more stringent duty overrides this duty, one still cannot determine such an act to be morally impermissible. PMID:541821

  11. Adolescents’ Perceived Risk of Dying

    PubMed Central

    Fischhoff, Baruch; de Bruin, Wändi Bruine; Parker, Andrew M.; Millstein, Susan G.; Halpern-Felsher, Bonnie L.

    2009-01-01

    Purpose Although adolescents’ expectations are accurate or moderately optimistic for many significant life events, they greatly overestimate their chances of dying soon. We examine here whether adolescents’ mortality judgments are correlated with their perceptions of direct threats to their survival. Such sensitivity would indicate the importance of ensuring that adolescents have accurate information about those threats, as well as the psychological support needed to deal with them. Methods Data from two separate studies were used: a national study of 3,436 14–18 year old adolescents and a regional sample of 124 7th graders and 132 9th graders, 12–16 years old. Participants were asked about their chance of dying in the next year and before age 20, and about the extent of various threats to their physical well being. Results Adolescents in both samples greatly overestimated their chance of dying. Those mortality estimates were higher for adolescents who reported direct threats (e.g., an unsafe neighborhood). Thus, adolescents were sensitive to the relative size of threats to their survival, but not to the implications for absolute risk levels. Conclusions Contrary to the folk wisdom that adolescents have a unique sense of invulnerability, those studied here reported an exaggerated sense of mortality, which was highest among those reporting greater threats in their lives. Such fears could affect adolescents’ short-term well being and future planning. PMID:20159504

  12. Yield Improvement in Steel Casting (Yield II)

    SciTech Connect

    Richard A. Hardin; Christoph Beckermann; Tim Hays

    2002-02-18

    This report presents work conducted on the following main projects tasks undertaken in the Yield Improvement in Steel Casting research program: Improvement of Conventional Feeding and Risering Methods, Use of Unconventional Yield Improvement Techniques, and Case Studies in Yield Improvement. Casting trials were conducted and then simulated using the precise casting conditions as recorded by the participating SFSA foundries. These results present a statistically meaningful set of experimental data on soundness versus feeding length. Comparisons between these casting trials and casting trials performed more than forty years ago by Pellini and the SFSA are quite good and appear reasonable. Comparisons between the current SFSA feeding rules and feeding rules based on the minimum Niyama criterion reveal that the Niyama-based rules are generally less conservative. The niyama-based rules also agree better with both the trials presented here, and the casting trails performed by Pellini an d the SFSA years ago. Furthermore, the use of the Niyama criterion to predict centerline shrinkage for horizontally fed plate sections has a theoretical basis according to the casting literature reviewed here. These results strongly support the use of improved feeding rules for horizontal plate sections based on the Niyama criterion, which can be tailored to the casting conditions for a given alloy and to a desired level of soundness. The reliability and repeatability of ASTM shrinkage x-ray ratings was investigated in a statistical study performed on 128 x-rays, each of which were rated seven different times. A manual ''Feeding and Risering Guidelines for Steel Castings' is given in this final report. Results of casting trials performed to test unconventional techniques for improving casting yield are presented. These use a stacked arrangement of castings and riser pressurization to increase the casting yield. Riser pressurization was demonstrated to feed a casting up to four time s the

  13. Clean cast steel technology. Final report

    SciTech Connect

    Bates, C.E.; Griffin, J.A.

    1998-06-01

    This report documents the results obtained from the Clean Cast Steel Technology Program financially supported by the DOE Metal Casting Competitiveness Research Program and industry. The primary objective of this program is to develop technology for delivering steel free of oxide macroinclusions to mold cavities. The overall objective is to improve the quality of cast steel by developing and demonstrating the technology for substantially reducing surface and sub-surface oxide inclusions. Two approaches are discussed here. A total of 23 castings were produced by submerge pouring along with sixty conventionally poured castings. The submerged poured castings contained, on average, 96% fewer observable surface inclusions (11.9 vs 0.4) compared to the conventionally poured cast parts. The variation in the population of surface inclusions also decreased by 88% from 5.5 to 0.7. The machinability of the casting was also improved by submerged pouring. The submerge poured castings required fewer cutting tool changes and less operator intervention during machining. Subsequent to these trials, the foundry has decided to purchase more shrouds for continued experimentation on other problem castings where submerge pouring is possible. An examination of melting and pouring practices in four foundries has been carried out. Three of the four foundries showed significant improvement in casting quality by manipulating the melting practice. These melting practice variables can be grouped into two separate categories. The first category is the pouring and filling practice. The second category concerns the concentration of oxidizable elements contained in the steel. Silicon, manganese, and aluminum concentrations were important factors in all four foundries. Clean heats can consistently be produced through improved melting practice and reducing exposure of the steel to atmospheric oxygen during pouring and filling.

  14. Contoured Orifice for Silicon-Ribbon Die

    NASA Technical Reports Server (NTRS)

    Mackintosh, B. H.

    1985-01-01

    Die configuration encourages purity and stable growth. Contour of die orifice changes near ribbon edges. As result, silicon ribbon has nearly constant width and little carbon contamination. Die part of furnace being developed to produce high-quality, low-cost material for solar cells.

  15. Jewish tradition in death and dying.

    PubMed

    Ross, H M

    1998-10-01

    Death is often a spiritually difficult time for the dying and their families. Judaism approaches dying with some unique views that can differ from other religious traditions. Through an understanding of Jewish tradition, nurses can ease the dying process for Jewish patients and their families. PMID:10036429

  16. Reducing the Surface Degradation of Aluminum Extrusion Dies During Preheating

    NASA Astrophysics Data System (ADS)

    Stratton, Paul

    2010-07-01

    Aluminum extrusion dies are usually made from H13 steel that is ferritically nitrocarburized to minimize wear and pick-up. Before being placed in the extrusion press, the dies are preheated to minimize thermal shock at the start of the extrusion cycle. During the preheating time, the nitrocarburized layer oxidizes. Some of this layer can break away during extrusion leaving marks on the product. Although inerting the preheat furnaces with nitrogen has been found to reduce the oxidation, it does not solve the problem completely. Experiments have shown that a small addition of ammonia to the preheating protective atmosphere could eliminate oxidation and prevent nitrogen loss from the surface nitride layer.

  17. 26 CFR 20.2201-1 - Members of the Armed Forces dying during an induction period.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 14 2013-04-01 2013-04-01 false Members of the Armed Forces dying during an... Miscellaneous § 20.2201-1 Members of the Armed Forces dying during an induction period. (a) The additional...) (see paragraph (b) of this section) and while in active service as a member of the Armed Forces of...

  18. 26 CFR 20.2201-1 - Members of the Armed Forces dying during an induction period.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 14 2011-04-01 2010-04-01 true Members of the Armed Forces dying during an... Miscellaneous § 20.2201-1 Members of the Armed Forces dying during an induction period. (a) The additional...) (see paragraph (b) of this section) and while in active service as a member of the Armed Forces of...

  19. 26 CFR 20.2201-1 - Members of the Armed Forces dying during an induction period.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Members of the Armed Forces dying during an... Miscellaneous § 20.2201-1 Members of the Armed Forces dying during an induction period. (a) The additional...) (see paragraph (b) of this section) and while in active service as a member of the Armed Forces of...

  20. 26 CFR 20.2201-1 - Members of the Armed Forces dying during an induction period.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 14 2014-04-01 2013-04-01 true Members of the Armed Forces dying during an... Miscellaneous § 20.2201-1 Members of the Armed Forces dying during an induction period. (a) The additional...) (see paragraph (b) of this section) and while in active service as a member of the Armed Forces of...

  1. INTERIOR VIEW WITH CASTING MACHINE AND A 20' DUCTILE IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH CASTING MACHINE AND A 20' DUCTILE IRON PIPE BEING EXTRACTED USING PIPE PULLERS. - McWane Cast Iron Pipe Company, Pipe Casting Area, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  2. Energy use in selected metal casting facilities - 2003

    SciTech Connect

    Eppich, Robert E.

    2004-05-01

    This report represents an energy benchmark for various metal casting processes. It describes process flows and energy use by fuel type and processes for selected casting operations. It also provides recommendations for improving energy efficiency in casting.

  3. Effects of melt temperature and casting speed on the structure and defect formation during direct-chill casting of an Al-Cu alloy

    NASA Astrophysics Data System (ADS)

    Eskin, D. G.; Savran, V. I.; Katgerman, L.

    2005-07-01

    A thorough experimental investigation of the effects of melt temperature and casting speed on the structure and defect formation during the steady and nonsteady stages of direct-chill (DC) casting of an Al-2.8 pct Cu alloy is performed. In addition, the temperature and melt-flow distributions in the sump of billets cast at different melt temperatures are numerically simulated and used in the discussion on the experimental results. Apart from already known phenomena such as the coarsening of the structure, deepening of the sump, and increased probability of bleed-outs during DC casting with increased casting temperature, a few new observations are made. The increased melt temperature is shown to increase the severity of subsurface segregation, whereas the macrosegregation in the rest of the billet remains virtually unaffected. Hot-tearing susceptibility is strongly diminished by an increased melt superheat. The amount and distribution of “floating” grains is demonstrated to depend on both the melt temperature and the casting speed. The porosity was found to only slightly depend on the melt temperature. The amount of nonequilibrium eutectic in the center of the billet increases with increasing melt temperature. The effects of melt temperature on the dimensions of the sump, transition region, and mushy zone and on the melt-flow pattern in the sump are discussed and used in the interpretation of experimentally observed phenomena.

  4. Celestial Fireworks from Dying Stars

    NASA Astrophysics Data System (ADS)

    2011-04-01

    This image of the nebula NGC 3582, which was captured by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile, shows giant loops of gas bearing a striking resemblance to solar prominences. These loops are thought to have been ejected by dying stars, but new stars are also being born within this stellar nursery. These energetic youngsters emit intense ultraviolet radiation that makes the gas in the nebula glow, producing the fiery display shown here. NGC 3582 is part of a large star-forming region in the Milky Way, called RCW 57. It lies close to the central plane of the Milky Way in the southern constellation of Carina (The Keel of Jason's ship, the Argo). John Herschel first saw this complex region of glowing gas and dark dust clouds in 1834, during his stay in South Africa. Some of the stars forming in regions like NGC 3582 are much heavier than the Sun. These monster stars emit energy at prodigious rates and have very short lives that end in explosions as supernovae. The material ejected from these dramatic events creates bubbles in the surrounding gas and dust. This is the probable cause of the loops visible in this picture. This image was taken through multiple filters. From the Wide Field Imager, data taken through a red filter are shown in green and red, and data taken through a filter that isolates the red glow characteristic of hydrogen are also shown in red. Additional infrared data from the Digitized Sky Survey are shown in blue. The image was processed by ESO using the observational data identified by Joe DePasquale, from the United States [1], who participated in ESO's Hidden Treasures 2010 astrophotography competition [2]. The competition was organised by ESO in October-November 2010, for everyone who enjoys making beautiful images of the night sky using astronomical data obtained using professional telescopes. Notes [1] Joe searched through ESO's archive and identified datasets that he used to compose his

  5. Casting fine grained, fully dense, strong inorganic materials

    SciTech Connect

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.

    2015-11-24

    Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.

  6. 21 CFR 880.6185 - Cast cover.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cast cover. 880.6185 Section 880.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Miscellaneous Devices § 880.6185 Cast cover. (a) Identification. A...

  7. 14 CFR 29.621 - Casting factors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Casting factors. 29.621 Section 29.621 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.621 Casting factors. (a) General. The factors, tests, and...

  8. 14 CFR 25.621 - Casting factors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... meet approved specifications. Paragraphs (c) and (d) of this section apply to any structural castings... structural loads. (b) Bearing stresses and surfaces. The casting factors specified in paragraphs (c) and (d... of 1.25; and (ii) The deformation requirements of § 25.305 at a load of 1.15 times the limit load....

  9. 14 CFR 25.621 - Casting factors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Casting factors. 25.621 Section 25.621 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.621 Casting factors. (a) General. The factors, tests, and...

  10. 14 CFR 25.621 - Casting factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... meet approved specifications. Paragraphs (c) and (d) of this section apply to any structural castings... structural loads. (b) Bearing stresses and surfaces. The casting factors specified in paragraphs (c) and (d... of 1.25; and (ii) The deformation requirements of § 25.305 at a load of 1.15 times the limit load....

  11. 14 CFR 23.621 - Casting factors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Casting factors. 23.621 Section 23.621 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction § 23.621 Casting factors. (a) General. The...

  12. 14 CFR 25.621 - Casting factors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... meet approved specifications. Paragraphs (c) and (d) of this section apply to any structural castings... structural loads. (b) Bearing stresses and surfaces. The casting factors specified in paragraphs (c) and (d... of 1.25; and (ii) The deformation requirements of § 25.305 at a load of 1.15 times the limit load....

  13. 14 CFR 27.621 - Casting factors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Casting factors. 27.621 Section 27.621 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.621 Casting factors. (a) General. The factors, tests, and...

  14. 14 CFR 25.621 - Casting factors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... meet approved specifications. Paragraphs (c) and (d) of this section apply to any structural castings... structural loads. (b) Bearing stresses and surfaces. The casting factors specified in paragraphs (c) and (d... of 1.25; and (ii) The deformation requirements of § 25.305 at a load of 1.15 times the limit load....

  15. The CAST (Childhood Asperger Syndrome Test)

    ERIC Educational Resources Information Center

    Williams, Jo; Scott, Fiona; Stott, Carol; Allison, Carrie; Bolton, Patrick; Baron-Cohen, Simon; Brayne, Carol

    2005-01-01

    The Childhood Asperger Syndrome Test (CAST) is a parental questionnaire to screen for autism spectrum conditions. In this validation study, the CAST was distributed to 1925 children aged 5-11 in mainstream Cambridgeshire schools. A sample of participants received a full diagnostic assessment, conducted blind to screen status. The sensitivity of…

  16. Iron/Phosphorus Alloys for Continuous Casting

    NASA Technical Reports Server (NTRS)

    Dufresne, E. R.

    1986-01-01

    Continuous casting becomes practicable because of reduced eutectic temperature. Experimental ferrous alloy has melting point about 350 degrees C lower than conventional steels, making possible to cast structural members and eliminating need for hot rolling. Product has normal metal structure and good physical properties. Process used to make rails, beams, slabs, channels, and pipes.

  17. PRODUCTION OF SLIP CAST CALCIA HOLLOWWARE

    DOEpatents

    Stoddard, S.D.; Nuckolls, D.E.; Cowan, R.E.

    1963-12-31

    A method for producing slip cast calcia hollow ware in which a dense calcia grain is suspended in isobutyl acetate or a mixture of tertiary amyl alcohol and o-xylene is presented. A minor amount of triethanolamine and oleic acid is added to the suspension vehicle as viscosity adjusting agents and the suspension is cast in a plaster mold, dried, and fired. (AEC)

  18. Casting Shadows in the Science Classroom.

    ERIC Educational Resources Information Center

    Nolan, Kathleen

    2003-01-01

    Uses the metaphor of shadows in a critical exploration of what it means to know and how the cultures of classrooms have shaped these images of knowing. Directs attention to objects that cast shadows on the learning and knowing of mathematics and science through the voices of preservice teachers. Discusses shadow casting toward textbooks, teachers,…

  19. Slip casting and nitridation of silicon powder

    NASA Astrophysics Data System (ADS)

    Seiko, Y.

    1985-03-01

    Powdered Silicon was slip-cast with a CaSO4 x 0.5H2O mold and nitrided in a N atm. containing 0 or 5 vol. % H at 1000 to 1420 deg. To remove the castings, the modeling faces were coated successively with an aq. salt soap and powdered cellulose containing Na alginate, and thus prevented the sticking problem.

  20. Slip casting and nitridation of silicon powder

    NASA Technical Reports Server (NTRS)

    Seiko, Y.

    1985-01-01

    Powdered Silicon was slip-cast with a CaSO4 x 0.5H2O mold and nitrided in a N atm. containing 0 or 5 vol. % H at 1000 to 1420 deg. To remove the castings, the modeling faces were coated successively with an aq. salt soap and powdered cellulose containing Na alginate, and thus prevented the sticking problem.